WO2017141114A1 - 초임계 알코올을 이용한 래그 레이어의 전환 방법 - Google Patents

초임계 알코올을 이용한 래그 레이어의 전환 방법 Download PDF

Info

Publication number
WO2017141114A1
WO2017141114A1 PCT/IB2017/000231 IB2017000231W WO2017141114A1 WO 2017141114 A1 WO2017141114 A1 WO 2017141114A1 IB 2017000231 W IB2017000231 W IB 2017000231W WO 2017141114 A1 WO2017141114 A1 WO 2017141114A1
Authority
WO
WIPO (PCT)
Prior art keywords
lag layer
alcohol
layer
reaction
supercritical
Prior art date
Application number
PCT/IB2017/000231
Other languages
English (en)
French (fr)
Inventor
김재훈
칸 무하마드 카시프
크웩 위나르토
Original Assignee
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교 산학협력단 filed Critical 성균관대학교 산학협력단
Publication of WO2017141114A1 publication Critical patent/WO2017141114A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/14Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for

Definitions

  • the present invention relates to a method of converting a rag layer using a supercritical alcohol, and more particularly, using a lag layer generated in a desalter during the petroleum refining process as a raw material, supercritical alcohol
  • a lag layer generated in a desalter during the petroleum refining process as a raw material, supercritical alcohol
  • non-traditional crude oil contains an excessive amount of impurities in various components, which causes many problems when it is added to the existing refinery process without pretreatment.
  • the high acidity crude oil has an API of 22 and contains super-heavy components such as asphaltenes. 2-4% by weight, total acid number (TAN) is 4 mg
  • Asphaltene content is very high (10-15% by weight), heavy metals such as vanadium (V), nickel (Ni), etc. are 200 ppm, sulfur content is 6% by weight, which is a factor of clogging during movement.
  • V vanadium
  • Ni nickel
  • sulfur content is 6% by weight, which is a factor of clogging during movement.
  • lead-acid / naphthaceous scabies and asphaltenes form water-in-oil emulsions which are very stable at the interface between crude oil and water in the decontamination machine, and these emulsions clump together.
  • the lag layer contains water, lead acid, calcium lead acid, asphaltenes, and crude oil. Once formed, the lag layer is very stable and contains excess crude oil, which can lead to the loss of usable crude oil, and if the removal or conversion is not carried out in an appropriate manner, the catalyst can be deactivated in the upgrading process using the subsequent supported catalyst. Causing a lot of problems.
  • Adsorption has the advantage that it can be different from high acidity crude oil containing high concentration of leadsen acid. It has the limitation of the process for separating and treating lead-sen acid which is harmful to the environment afterwards. Extraction is mainly a process of extracting lead-senic acid as a water-soluble liquid at the liquid-liquid interface. Since there is a stable W / 0 emulsion formed, there is a limit in separating the lead senic acid from it.
  • decarboxylation and esterification reaction are a method of using a metal supported catalyst, a Co-Mo catalyst, a Ni-Mo catalyst, or a metal oxide catalyst under high temperature and high pressure conditions.
  • Leadsenic acid and asphaltene conversion technology using catalysts and hydrogen are relatively effective for model compounds, but there is a problem that expensive hydrogen is used in excess, and impurities contained in the lag layer (sulfur, inorganic dissolved in water, dissolved in water). (Inorganic substances, etc.), the activity of the catalyst is rapidly deteriorated, and it is not effective in removing leadsen acid discharged from the decontamination machine and preparing useful components from the lag layer.
  • the lag layer contains high concentrations of sulfur, heavy metals, lead-acid / calcium-naphate, and asphaltenes, which cause the inactivation of the supported catalyst, and when the decarboxylation / cracking technique utilizing the existing catalyst and hydrogen is applied, Inactivation of the catalyst proceeds rapidly, and there is a disadvantage that expensive hydrogen is used in excess.
  • Patent Document 1 Japanese Unexamined Publication No. 2009-067951
  • Patent Document 2 US Patent Publication No. 9005432
  • the present invention uses a supercritical alcohol as a solvent and a reactant to reduce the acidity of high acidity crude oil by converting leadacetic acid and calcium leadsenate, and to obtain a high molecular weight crude oil such as asphaltene contained in super heavy crude oil. It is an object of the present invention to provide a method of converting a lag layer which can be cracked to convert to a low molecule to produce a useful component.
  • the present invention by effectively reacting the lag layer using a supercritical alcohol, reducing the acidity of crude oil, reduced asphaltene content, heavy metals, and sulfur content without using expensive hydrogen and heterogeneous catalyst provided from the outside It is aimed at providing reduced crude oil.
  • the method of converting the lag layer may further include a separation and recovery step of separating and recovering the reaction product after the reaction step.
  • the lag layer may be in the form of a water-in-oil type (W / 0) emulsion formed from non-traditional crude oil or traditional crude oil, and the non-traditional crude oil may include at least one of high acidity crude oil, ultra heavy crude oil, tight oil, and bitumen. have.
  • W / 0 water-in-oil type
  • the crude oil may include at least one of lead senic acid, calcium lead senate, asphaltenes, heavy metals, and sulfur components, and the heavy metals may be vanadium (V) and / or nickel (Ni).
  • the lag layer may have a water content of 20 to 80% by weight.
  • the alcohol solvent is methanol, ethanol, propanol, isopropyl alcohol, butane, isobutanol, 2—butanol, tert-butanol, n-pentanol, isopentyl alcohol, 2-methyl-1-butanol, neopentyl alcohol, Diethyl kebinol, methyl propyl kebinol, methyl isopropyl kebinol dimethyl ethyl kebinol, 1-nucleool, 2-nucleic acid, 3-nucleool, 2-methyl- 1-pentanol, 3-methyl-1- Pentanol, 4-methyl-1-pentanol, 2-methyl-2-pentanol, 3 ⁇ methyl-2-pentanol, 4-methyl-2-pentane, 2-methyl-3-pentane, 3- Methyl-3-pentan
  • the mixing step based on the total amount of the alcohol and the lag layer, the alcohol may be mixed with 10 to 90% by weight of the lag layer.
  • impurities included in the lag layer may be removed and / or converted, and the impurities may include at least one of lead-sen acid, calcium lead-senate, asphaltene, heavy metal, and sulfur.
  • reaction step reaction temperature 200 to 600 o C, reaction pressure 30 to
  • the present invention can provide crude oil recovered from the lag layer through the method of switching the lag layer, impurities are removed.
  • the method for converting a lag layer using a supercritical alcohol according to the present invention does not use an expensive hydrogen and heterogeneous catalyst provided externally, and effectively uses lead-acid, calcium lead-senate, asphaltene, organic heavy metal, By converting and / or removing the sulfur component, there is an advantage that can utilize the useful components of the crude oil contained in the lag layer.
  • FIG. 1 shows an optical microscope image of a lag layer prepared in one embodiment of the present invention.
  • Example 2 is a liquid material prepared by reacting with methanol in a supercritical state using a lag layer as a raw material according to Example 3 of the present invention, and a saturated compound, aromatic compound, resin, and asphaltene content using thin layer chromatography. It shows the result of analysis.
  • FIG. 3 shows the results of analyzing the liquid material prepared in Example 3 by time-of-flight mass spectrometry-gas chromatography.
  • the present invention relates to a method of converting a lag layer using a supercritical alcohol, by using a lag layer containing impurities as a raw material, and removing impurities contained in the lag layer with a supercritical alcohol-supercritical water mixed supercritical fluid.
  • Lag layer conversion method of the present invention may include a mixing step (S10), reaction step (S20), optionally separation and recovery step (S30).
  • the mixing step (S10) is a step of mixing by adding a lag layer and an alcohol solvent to the reactor.
  • the lag layer that can be used in the present invention is not particularly limited, but may be in the form of a water-in-oil type (W / 0) emulsion formed from non-traditional crude oil or traditional crude oil, and the non-traditional crude oil is high acidity crude oil, ultra heavy crude oil, and tight oil. And at least one of leumenemia.
  • the lag layer that can be used in the present invention, when various kinds of non-traditional crude oil or traditional crude oil is added to the decontamination machine, the oil formed at the interface where the water of the lower base of the decontamination machine and the oil of the upper layer are separated from each other—
  • the lag layer may be a raw material in which impurities such as lead-senic acid, calcium lead-senate, asphaltenes, heavy metals, and sulfur, which are contained in crude oil, are partially transferred to the lag layer.
  • the heavy metal may be vanadium (V) and / or nickel (Ni).
  • the water content present in the lag layer may be 20 to 80% by weight, depending on the operating conditions of the decontamination machine, such as the use of chemicals, such as the temperature, pressure, demulsifier, etc. possessed by each oil refiner.
  • the alcohol solvent may be an alcohol solvent including one or more hydroxyl groups in the main chain having 1 to 10 carbon atoms.
  • an alcohol having one or more hydroxyl groups bonded to the main chain having 1 to 7 carbon atoms may be used, but the present invention is not limited thereto.
  • the configuration of the half-unggi used in the mixing step (S10) is a special limitation However, batch or continuous reactors can be used.
  • the concentration of the lag layer in the mixture of the alcohol solvent and the lag layer in the mixing step (S10) may be 10 to 90% by weight, preferably 20 to 80% by weight. If the concentration of the lag layer is less than 10% by weight, the concentration is too thin, so the amount of the lag layer from which impurities are removed in unit time is too low, and the economic efficiency is low. No elimination reaction can take place.
  • the reaction step (S20) is a step of removing and / or converting the impurities contained in the lag layer in the mixed supercritical fluid state of the water contained in the alcohol solvent and the lag layer, specifically, the temperature of the reaction The pressure is raised above the critical temperature and critical pressure of alcohol and water to remove and / or convert impurities contained in the lag layer in the supercritical fluid state.
  • An advantage of the impurity removal and / or conversion method included in the lag layer using the mixed supercritical fluid is that effective acidity reduction reaction, hydrogenation reaction and cracking reaction are possible without using an externally provided hydrogen and heterogeneous catalyst. .
  • Lead-acid alcohols such as ester if icat ion, alkylat ion and alkoxylation at alkoxyl at ion, increase the acidity of crude oil.
  • Carboxylic acid contained in calcium senate can be converted to other materials without an externally provided catalyst to reduce the acidity of crude oil, thereby eliminating the cause of corrosion in the subsequent process.
  • the highly active hydrogen self-generating in the supercritical alcohol can prepare a saturated hydrocarbon and aromatic components having a low molecular weight useful as cracking reaction of asphaltene having a high molecular weight.
  • Asphaltene is a very complex compound in which aromatic compounds and heterocyclic compounds are connected to each other, and supercritical alcohol itself is produced by hydrogen without the use of externally provided hydrogen and catalysts when cracking in supercritical fluids. Activation intermediates produced during cracking reactions can be stabilized to inhibit coke formation.
  • heavy metals such as V, Ni and other heavy metals, which are released by cracking a compound of the porphyrin structure combined with heavy metals, It can be converted into the V0 X and NiO x material through, and removed from the liquid phase produced.
  • sulfur may be converted into a gaseous phase such as H 2 S and removed from the liquid phase produced.
  • the supercritical alcohol can provide very active hydrogen, which generates itself according to temperature and pressure.
  • supercritical propanol can provide highly active hydrogens such as protons and hydrides by at least three mechanisms (Nakagawa et al., J Supercr it Fluids 2003, 27, 255-261; Ross et al. , Fuel 1979, 58, 438-442; Brand et al., Energy, 2013, 59, 173-182).
  • the reaction temperature may be 200 to 600 ° C., and preferably 300 to 500 ° C. If the reaction temperature is less than 200 o C, it is difficult to effectively react the hydrogen generation, cracking reaction and acidity reduction reaction of supercritical alcohol, and it is difficult to effectively remove impurities contained in the lag layer, and the reaction temperature is 600 o. If it exceeds C, there is a possibility that the cracking reaction occurs actively, so that the crude oil component may be gasified, thereby lowering the yield of the liquid phase due to the conversion of the lag layer, thereby reducing the economic efficiency.
  • reaction pressure in the reaction step (S20) may be 30 to 700 bar, preferably 100 to 500 bar. If the reaction pressure is less than 30 bar, it is difficult to effectively remove impurities from the lag layer due to the deterioration of hydrogen generation reaction, cracking reaction, and acidity reduction reaction of the supercritical alcohol, and maintain high pressure when the reaction pressure exceeds 700 bar. There is a problem that the process cost for doing so rises.
  • reaction time in the reaction step (S20) is not particularly limited, may be 10 seconds to 6 hours, preferably 1 minute to 3 hours. If the reaction time is less than 10 seconds, there is a problem that an effective impurity removal cannot be achieved because the reaction time is too short for the reaction to remove impurities from the lag layer by hydrogen generation reaction, cracking reaction, and acidity reduction reaction of the supercritical alcohol. If reaction time exceeds 6 hours, high temperature and high pressure must be maintained for a long time. There is a problem of rising costs.
  • the separation and recovery step (S30) is a step of separating and recovering the reaction product by lowering the temperature and pressure after the reaction step (S20).
  • the reaction product may be discharged through a decompression device located at the outlet of the reaction.
  • the reaction product may include gaseous carbon dioxide, carbon monoxide, methane ethane, ethylene, propylene, propane, butane, and the like, and the liquid substance may be reacted with a lag layer, crude oil, a solvent alcohol, water, and a reaction to alcohol.
  • Organic compounds converted from, and the solid residue may contain char, tar and inorganics.
  • the separation of the gaseous product can be separated by gas-liquid separation by lowering the temperature and pressure, and the residue separation in the solid state can be separated through solid-liquid separation using a filter, cyclone, and the like.
  • oil-water separation or distillation can be used as a method of separating useful components from the liquid substance.
  • the present invention can provide crude oil from which impurities are removed from the lag layer through the method of switching the lag layer.
  • the total acid number (TAN) of crude oil and the total acid number of the lag layer before and after the reaction were the amount of K0H required to neutralize the acid contained in the lag layer lg, and were measured using the Metrohm 848 Ti tr ino plus by the ASTM D664 method.
  • Saturated compounds, aromatics, resins, and asphaltene contents of crude oil and ung ung before and after lag layer were analyzed using MK_6 Iatroscan manufactured by Mitsubishi Chemical Rulece Corporatm.
  • the liquid material prepared in Example 3 the result of analyzing the content of saturated compounds, aromatic compounds, resins, asphaltenes using thin layer chromatography is shown in FIG.
  • the rag layer used in this example is 40% by weight Colombian super heavy crude oil (Rubiales, asphaltene content 31.6 area% SARA method; TAN 1.3 g KOH / g oi l), 30% by weight Venezuela high acid crude oil ( Laguna, asphaltene content 27.5 area%; TAN 5.05 g K0H / g oi l, 30 wt%> Venezuela high acidity crude oil (Ba mangoro-13, asphaltene content 261.1 area%; TAN 4.21 g K0H / g oi l ) As a raw material.
  • Heptol mixed with 80 vol% n-heptane and 20 vol 3 ⁇ 4> toluene in crude oil was mixed with each other by introducing 40% by weight to the weight to prepare the entire leg layer.
  • the salt ine water made with D— 1411 was added 40% by weight to the weight to make the entire leg layer, and 4 weight 3 ⁇ 4 of the weight to make the whole leg layer to increase the acidity of the leg layer.
  • Naphthenic acid and 4% by weight of naphthaic acid was added and stirred in the incubator for 12 hours. Thereafter, the resultant was treated for 90 minutes in an ultra sonicator, followed by separation of a solution prepared using a centrifuge, and separated into three layers of an oil layer, a lag layer, and a water layer.
  • the prepared lag layer was recovered by separating it from the oil layer and the water layer.
  • An optical microscope (Nikon microscope, model # ECLIPSE Ti) image of the lag layer is shown in FIG. 1. As shown in FIG. 1, it can be seen that a water-in-oil type (W / 0) emulsion was formed.
  • the prepared lag layer was analyzed and the results are shown in Table 2 and Table 4.
  • the prepared lag layer and methanol were introduced at a concentration of 17 wt% in a 140 mi volumetric batch reactor, and then pressurized with the reactor at 10 bar of nitrogen and heated at a rate of about 20 o C / min to raise the reaction temperature to 400 °.
  • the lag layer was reacted with supercritical methane for 30 minutes at C and reaction pressure 350 bar.
  • the produced gaseous product was collected in Tedl ar bag and analyzed, and the solid and liquid products were separated using a filter. Separation of crude oil and solvent (methanol / water) in the liquid phase was performed by adding dichloromethane, transferring crude oil onto dichloromethane, and forming a liquid-liquid interface to recover crude oil. The characteristics of the recovered crude oil were evaluated and the results are shown in Tables 1 to 3.
  • the lag layer was reacted in the same manner as in Example 1 except that the reaction time was 60 minutes, and the lag layer was analyzed in the same manner as in Example 1, and the results are shown in Tables 1 to 3. .
  • the lag layer was reacted in the same manner as in Example 1 except that the reaction time was 90 minutes, and the lag layer was analyzed in the same manner as in Example 1, and the results are shown in Tables 1 to 3. .
  • the lag layer was reacted in the same manner as in Example 3 except that the lag layer concentration was 20 weight 3 ⁇ 4 » and the lag layer was analyzed in the same manner as in Example 3, and the results are shown in Tables 1 to Table 3 is shown.
  • the lag layer was reacted in the same manner as in Example 3 except that the reaction temperature was 375 ° C.
  • the layers were analyzed and the results are shown in Tables 1-3.
  • the lag layer was reacted in the same manner as in Example 3 except that the reaction temperature was 350 ° C, and the lag layer was analyzed in the same manner as in Example 3, and the results are shown in Tables 1 to 3. Indicated.
  • the lag layer was reacted in the same manner as in Example 3 except for using ethanol instead of methanol, and the lag layer was analyzed in the same manner as in Example 3, and the results are shown in Tables 1 to 3. .
  • Example 3 Except for using isopropyl alcohol instead of methanol, the lag layer was reacted in the same manner as in Example 3, the lag layer was analyzed in the same manner as in Example 3, and the results are shown in Tables 1 to 3. Indicated.
  • the lag layer was reacted in the same manner as in Example 3 except that butanol was used instead of methanol, and the lag layer was analyzed in the same manner as in Example 3, and the results are shown in Tables 1 to 3. .
  • the yield of the product finally obtained in this Example was calculated according to the following formulas (1) to (3) from the weight of each component.
  • the rag layer used in the above example contains 60% by weight of water and 10% by weight of inorganic material, so that the weight of the rag layer from which the inorganic material is removed and dried is used for the liquid and gas phase yield calculation.
  • the yield of the solid residue was dried rag layer weight.
  • the liquid yield is 76 to 80% by weight
  • the solid residue yield is 11.5 to 15.9% by weight
  • the gas phase yield is 0.3 to 1.0% by weight Less than%
  • the reaction temperature is lowered to 375 ° C and 350 in Examples 6 to 7
  • the liquid phase yield is about 70 to 79% by weight
  • the solid residue yield is 9.9 to 14.5 weight 3 ⁇ 4
  • the gas phase yield is 0. It can be seen that the liquid phase was mainly produced even at a low temperature of less than 1 weight 3 ⁇ 4.
  • the liquid yield was about 76 to 79% by weight, and the solid residue yield was 11.5 to 12.9% by weight. And, it can be seen that the liquid phase is mainly produced in the gas phase yield of 0.3 to 0.7% by weight. This allows the supercritical alcohol to effectively provide hydrogen, inhibit condensat ion or polymerisation (repolymer i zat ion) reactions that produce solid residues, and ester reactions without the use of catalysts.
  • the total acid number (TAN) of the lag layer before and after the reaction was measured by using Met r ohm 848 Ti tr ino plus by ASTM D664 method as the amount of K0H required to neutralize the acid contained in the lag layer lg.
  • Saturated, aromatic, resin, and asphaltene contents of the lag ' layer before and after the reaction were analyzed using MK-6 Iatroscan manufactured by Mitsubishi Chemical Rulece Corporat ion.
  • MK-6 Iatroscan manufactured by Mitsubishi Chemical Rulece Corporat ion the results of analyzing the content of saturated compounds, aromatic compounds, resins, asphaltenes using the liquid substance ol, thin layer chromatography prepared in Example 3 are shown in FIG. 2.
  • the leg layer was analyzed using a gas chromatography-time-of-flight mass spectrometer. As a result, some linear and branched hydrocarbons were detected together with the lead-acid component, but the liquid phase prepared in Example 2 was C11-. The linear hydrocarbon of C40 was the main compound, indicating that the diesel component and the lubricating oil component were mainly produced.
  • Example 4 the reaction concentrations were measured at 400 ° C., respectively. Even when increased to 20 to 25%, it can be seen that the asphaltene content contained in the lag layer was converted to the saturated, aromatic, and resin components in the same manner as in Example 3. After the reaction, the TAN was significantly reduced from 9.7 to 13.1 rag KOH / g compared with the lag layer before the reaction. It was found that the lead sensate contained in the lag layer was effectively removed when the lag layer was reacted with high concentration. As shown in Table 3, as a result of analyzing the components of the gas products of Examples 4 to 5, the excess of C0 2 (44.85 to 51.52 raol%) and C0 (26.46 to 34.36 mol%) was detected. The carbonylation and decarboxylation reaction showed that the oxygen contained in the lag layer was removed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 초임계 알코올을 이용한 래그 레이어의 전환 방법에 관한 것으로, 초임계 상태의 알코올을 용매 및 반응물질로 이용하여 래그 레이어의 주성분인 아스팔텐을 크래킹 반응으로 유용 성분인 포화화합물 및 방향족화합물로 전환하고, 납센산, 납센산 칼슘, 중금속 (Ni/V), 및 황 등의 불순물을 일정 부분 저감하는, 효과적인 래그 레이어의 전환 방법을 제공할 수 있다.

Description

【발명의 설명】
【발명의 명칭】
초임계 알코올을 이용한 래그 레이어의 전환 방법 {CONVERSION METHOD OF RAG LAYER USING SUPERCRITICAL ALCOHOLS}
【기술분야】
본 발명은 초임계 알코을을 이용하여 래그 레이어 (rag layer)를 전환하는 방법에 관한 것으로, 보다 상세하게는 석유 정제 공정 중 제염기 (desalter)에서 발생되는 래그 레이어를 원료로 이용하고, 초임계 알코올을 이용하여 래그 레이어를 전환하여 유용한 화학 성분을 제조함으로써, 한정된 자원인 원유 활용 극대화에 관한 것이다.
【발명의 배경이 되는 기술】
전 세계적으로 원유의 중질화가 가속화됨으로써 중동산 전통원유의 가채매장량이 점차 감소하고, 비전통원유 (초중질원유, 고산도원유 오일샌드)의 매장량이 전체 원유의 30~40%에 이르고 있어, 비전통원유의 효율적인 정제 공정이 각광받고 있다. 비전통원유 중 개발이 가장 활발히 이루어지고 있는 캐나다는 오일샌드 개발을 개방하고 투자 기업의 활성화를 위해 인센티브 프로그램을 도입하고 있다. 또한, 고산도원유는 주로 서아프리카, 북해, 중국, 남미 지역에서 생산되고 있으며, 채산성이 확보되면서 고산도원유의 생산량은 점차 증가하고 있는 추세로, 특히 서아프리카와 남미가 고산도원유 생산량 증가를 주도하고 있다. 또한 중국, 인도, 동남아시아 등 신홍국의 급속한 경제개발로 향후 원유 및 석유제품에 대한 수요의 급증 등이 예상됨에 따라 국.내외 주요 국가들은 초중질원유, 고산도원유, 비튜멘, 셰일오일 등 비전통원유 도입을 통한 원유 도입 다변화 정책 및 관련 기술개발을 적극적으로 추진중에 있다.
비전통원유에는 전통원유와는 달리 다양한 성분의 불순물이 과량으로 존재하여, 기존의 정유 공정에 전처리 없이 투입하였을 경우 많은 문제를 야기하게 된다. 비전통원유 중 고산도원유는 API가 22로 아스팔텐을 비롯한 초중질 성분이 포함되어 있을뿐더러 납센산 및 납센산 칼슘이 원유 종류에 따라 2-4 중량 % 포함되어 있어, 전산가 (total acid number , TAN)가 4 mg
KOH/g이상으로 높고, 칼슘 (Ca) 함량이 250 ppm 이상으로 높기 때문에, 기존 정제 공정에 적절한 전처리 없이 투입하였을 경우 매우 심각한 장치의 부식을 일으키며, 관막힘의 요인이 된다.
한편, 초중질원유는 API가 12로 매우 낮고. 아스팔텐 함량이 10~15 중량 %로 매우 높으며, 바나듐 (V) , 니켈 (Ni ) 등의 중금속 함량이 200 ppm, 황 함량이 6 중량 %로 매우 높아서 이동 시 관막힘의 요인이 되며, 초중질 성분으로 원유와 물의 비중이 서로 비슷하여 제염기에서 원유 -물간 적절한 유수 분리가 이루어지기 어려워, 제염기에서 원유 분리가 매우 어렵다. 또한 납센산 /납센산 칼슴 및 아스팔텐은 제염기에서 원유와 물의 계면에서 매우 안정한 유중수형 (water-in— oi l , W/0) 에멀견 (emul sion)을 형성하고, 이러한 에멀젼들이 서로 뭉쳐서 물과 원유의 계면에 존재하는 래그 레이어 (rag layer )를 형성한다. 래그 레이어에는 물, 납센산, 납센산 칼슘, 아스팔텐 및 원유 성분이 포함되어 있다. 한번 형성된 래그 레이어는 매우 안정하고 과량의 원유가 포함되어 있기 때문에 활용 가능한 원유의 손실을 일으키며, 적절한 방법으로 제거 또는 전환이 이루어지지 않을 경우, 후단의 담지 촉매를 이용한 업그래이딩 공정에서 촉매의 비활성을 일으키는 등 많은 문제를 야기하게 된다.
이러한 비전통원유 정제 공정의 문제점을 해결하기 위해서, 전통원유에 소량의 비전통원유를 블랜딩하여 정제 공정에 투입하는 방법과, 황 또는 인 계열의 부식방지첨가제를 사용하여 공정 장치의 부식을 감소시키는 방법이 제시되어 있으나, 사용 가능한 비전통원유의 함량이 낮고, 전통원유- 비전통원유간 흔화성이 악화되는 문제점이 있으며, 납센산을 분리 및 처리하는 공정이 아니기 때문에 정제 공정에서 존재하는 납센산은 후속 촉매 공정에 촉매 비활성화 등 악영향을 미치는 문제점이 있다.
한편, 비전통원유에 포함되어 있는 납센산, 납센산 칼슴, 아스팔텐, 중금속, 황 등의 불순물을 제거 또는 전환하기 위한 방법으로는 흡착, 추출, 촉매기반의 탈카르복실화 /에스테르화, 초임계수 활용 등의 방법이 제시되어 있다. 흡착은 고농도 납센산이 포함된 고산도원유를 다를 수 있는 장점이 있으나, 흡착 후 환경에 유해한 납센산을 분리 및 처리하기 위한 공정의 한계를 지니고 있고, 추출은 주로 액체 -액체 계면에서 납센산을 수용성 액체로 추출하는 공정으로 초중질원유 내 포함된 납센산 제거에 효과적이지 않고, 안정된 W/0 에멜젼이 형성되기 때문에 이로부터 납센산을 분리하는데 한계가 있다.
한편 탈카르복실화 및 에스테르화 반웅은, 고온ᅳ고압 조건에서 금속담지촉매, Co-Mo계 촉매, Ni-Mo계 촉매, 또는 금속산화물계 촉매를 이용하는 방법이다. 촉매 및 수소를 활용한 납센산 및 아스팔텐 전환기술은 모델화합물에는 비교적 효과적이나 고가의 수소를 과량으로 사용해야 하는 문제점이 있고, 래그 레이어에 포함된 불순물 (황, 물에 용해된 무기물, 물에 용해되지 않는 무기물 등)로 인해 촉매의 활성이 급격히 악화되는 문제점 있어, 실제 제염기에서 배출되는 납센산 제거 및 래그 레이어로부터 유용 성분을 제조하는 것에는 효과적이지 않다.
한편, 비전통원유에 포함되어 있는 납센산, 납센산 칼슘, 아스팔텐, 증금속, 황 성분 등은 제염기에 투입되었을 경우, 물-원유의 계면에서 형성되는 유중수형 (W/0) 에멀견에 흡착되는 성질이 강하여 매우 안정한 래그 레이어를 형성하게 된다. 따라서 적절한 래그 레이어의 형성을 통해 비전통원유에 포함되는 불순물을 제거할 수 있으며, 제거된 래그 레이어에 포함되어 있는 유용 성분을 적절한 방법으로 전환또는 분리하여 활용하였을 경우, 기존 정제 공정을 이용하여 비전통원유의 사용량을 극대화 할 수 있다. 하지만, 래그 레이어에는 담지 촉매의 비활성을 일으키는 황, 중금속, 납센산 /납센산 칼슘, 아스팔텐이 고농도로 포함되어 있어, 기존의 촉매 및 수소를 활용하는 디카르복실화 /크래킹 기술을 적용하였을 경우, 촉매의 비활성이 급격하게 진행되고, 고가의 수소를 과량으로 사용해야 하는 단점이 있다.
따라서, 불균일 촉매 및 수소를 이용하지 않고도 래그 레이어에 존재하는 다양한 종류의 불순물 (납센산 /납센산 칼슘, 아스팔텐, 중금속, 황 등)을 효과적으로 제거한 후, 원유를 회수하여 기존의 정유 공정을 그대로 활용할 수 있는 래그 레이어의 전환 방법이 절실히 요구된다.
【선행기술문헌】 【특허문헌】
(특허문헌 1) 일본공개공보 제 2009-067951호
(특허문헌 2) 미국등록공보 제 9005432호
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 초임계 상태의 알코을을 용매 및 반응물질로 이용하여, 납센산 및 납센산 칼슘을 전환하여 고산도원유의 산도를 낮추고, 초중질원유에 포함되어 있는 아스팔텐 등 분자량이 높은 원유 성분을 크래킹하여 저분자로 전환하여 유용 성분을 제조할 수 있는 래그 레이어의 전환 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 초임계 상태의 알코올을 이용하여 래그 레이어를 효과적으로 반웅시킴으로써, 외부에서 제공하는 고가의 수소 및 불균일 촉매를 이용하지 않고 원유의 산도 감소, 아스팔텐 함량 감소, 중금속, 및 황 함량이 감소된 원유를 제공하는 것을 목적으로 한다.
【과제의 해결 수단】
상기 목적을 달성하기 위한 본 발명에 따른 초임계 알코을을 이용한 래그 레이어의 전환 방법은, 래그 레이어와 알코올 용매를 흔합하는 흔합 단계; 및 상기 알코올 용매의 초임계 알코올 상태에서 상기 래그 레이어를 반웅시키는 반응 단계를 포함할 수 있다.
상기 래그 레이어의 전환 방법은, 상기 반웅 단계 후 반응 산물을 분리하고 회수하는 분리 및 회수 단계를 더 포함할 수 있다.
상기 래그 레이어는, 비전통원유 또는 전통원유로부터 형성된 유중수형 (W/0) 에멀젼 형태일 수 있고, 상기 비전통원유는 고산도원유, 초중질원유, 타이트오일, 및 비튜멘 중 적어도 하나를 포함할 수 있다.
또한, 상기 원유는 납센산, 납센산 칼슘, 아스팔텐, 중금속, 및 황 성분 중 적어도 하나를 포함할 수 있고, 상기 중금속은 바나듐 (V) 및 /또는 니켈 (Ni )일 수 있다.
상기 래그 레이어는 수분 함량이 20 내지 80 중량 %일 수 있다. 상기 알코올 용매는, 메탄올, 에탄올, 프로판올, 이소프로필알코올, 부탄을, 이소부탄올, 2—부탄올, tert-부탄올, n-펜탄올, 이소펜틸 알코올, 2- 메틸 -1-부탄올, 네오펜틸 알코을, 디에틸 케비놀, 메틸 프로필 케비놀, 메틸 이소프로필 케비놀 디메틸 에틸 케비놀, 1-핵산올, 2-핵산을, 3-핵산올, 2- 메틸— 1-펜탄올, 3-메틸 -1-펜탄올, 4-메틸 -1-펜탄올, 2-메틸 -2-펜탄올, 3ᅳ메틸 -2- 펜탄올, 4-메틸 -2-펜탄을, 2—메틸 -3-펜탄을, 3-메틸 -3-펜탄올, 2 , 2-디메틸 -1- 부탄올, 2 , 3-디메틸 -1-부탄올, 2, 3-디메틸 -2-부탄올, 3 , 3-디메틸 -1-부탄올, 2- 에틸 -1-부탄올, 1-헵탄을, 2-헵탄올, 3-헵탄을, 및 4-헵탄올 중 적어도 하나를 포함할 수 있다.
상기 흔합 단계는, 상기 알코을 용매와 래그 레이어의 합계량을 기준으로, 상기 래그 레이어를 10 내지 90 중량 %로 흔합할 수 있다.
상기 반웅 단계는, 상기 래그 레이어에 포함된 불순물을 제거 및 /또는 전환할 수 있으며, 상기 불순물은 납센산, 납센산 칼슘, 아스팔텐, 중금속, 및 황 성분 중 적어도 하나를 포함할수 있다.
또한, 상기 반웅 단계는, 반웅 온도 200 내지 600oC , 반웅 압력 30 내지
700 bar의 초임계 알코을 상태에서 진행될 수 있다.
본 발명은 상기 래그 레이어의 전환 방법을 통해 래그 레이어로부터 회수된, 불순물이 제거된 원유를 제공할 수 있다.
【발명의 효과】
본 발명에 따른 초임계 알코을을 이용한 래그 레이어의 전환 방법은, 외부에서 제공하는 고가의 수소 및 불균일 촉매를 이용하지 않고, 효과적으로 래그 레이어에 존재하는 납센산, 납센산 칼슘, 아스팔텐, 유기중금속, 황 성분을 전환 및 /또는 제거함으로써, 래그 레이어에 포함된 원유의 유용 성분을 활용할 수 있는 장점이 있다.
또한, 비전통원유에 포함된 불순물을 래그 레이어 형성으로 제거하고, 수거된 래그 레이어를 초임계 알코올로 처리하여 얻은 불순물이 제거된 유용 성분을, 기존 석유화학 리파이너리 공정에 투입함으로써, 원유활용의 다변화 및 극대화를 할 수 있는 장점이 있다. 【도면의 간단한 설명】
도 1은 본 발명의 일 실시예에서 제조된 래그 레이어의 광학현미경 (opt ical microscope) 이미지를 나타낸다.
도 2는 본 발명의 실시예 3에 따라, 래그 레이어를 원료로 이용하여 초임계 상태의 메탄올로 반웅시켜 제조된 액상 물질을, 박막크로마토그래피를 이용하여 포화화합물, 방향족화합물, 레진, 아스팔텐 함량을 분석한 결과를 나타낸다.
도 3은 실시예 3에서 제조된 액상 물질을, 비행시간형 질량분석기- 가스크로마토그래피로 분석한 결과를 나타낸다.
【발명을 실시하기 위한 구체적인 내용】
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어 (기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.
본 발명은 초임계 알코올을 이용한 래그 레이어의 전환 방법에 관한 것으로, 불순물이 포함된 래그 레이어를 원료로 이용하여, 초임계 알코을-초임계 수의 흔합 초임계 유체로 래그 레이어에 포함된 불순물을 제거하고, 불순물이 제거된 래그 레이어를 회수함으로써, 유용 성분이 포함된 원유를 제공할 수 있다. 본 발명의 래그 레이어 전환 방법은 흔합 단계 (S10) , 반웅 단계 (S20) , 선택적으로 분리 및 회수 단계 (S30)를 포함할 수 있다.
본 발명의 일 실시예에 따른 상기 래그 레이어의 불순물 제거 및 원유 회수 방법의 각 단계에 대하여 구체적으로 설명한다 .
먼저, 흔합 단계 (S10)는 래그 레이어와 알코올 용매를 반응기에 투입하여 흔합하는 단계이다. 본 발명에서 이용될 수 있는 래그 레이어로는 특별한 제한은 없지만, 비전통원유 또는 전통원유로부터 형성된 유중수형 (W/0) 에멀젼 형태일 수 있고, 상기 비전통원유는 고산도원유, 초중질원유, 타이트오일, 및 비류멘 증 적어도 하나일 수 있다.
구체적으로 본 발명에서 이용될 수 있는 래그 레이어는, 다양한 종류의 비전통원유 또는 전통원유 등이 제염기에 투입되었을 경우, 제염기 하층의 물과 상층의 오일이 서로 분리가 되는 계면에서 형성되는 오일—물간 유중수형 에멀견의 형태로, 원유에 포함되어 있는 불순물인 납센산, 납센산 칼슘, 아스팔텐, 중금속, 황 성분이 일정부분 래그 레이어로 전달되어 있는 원료일 수 있다. 상기 중금속은 바나듐 (V) 및 /또는 니켈 (Ni)일 수 있다.
또한, 상기 래그 레이어에 존재하는 수분 함량은 각 정유사가 보유한 제염기의 온도, 압력, 항유화제 (demulsifier) 등의 케미컬 사용 등 제염기 운전조건에 따라 달라질 수 있지만 20 내지 80 중량 %일 수 있다.
상기 알코을 용매는 탄소수가 1 내지 10인 주쇄에 1개 이상의 하이드록실기를 포함하는 알코을 용매일 수 있다. 바람직하게는 탄소수가 1 내지 7개의 주쇄에 1 개 이상의 하이드록실기가 결합되어 있는 알코을을 이용할 수 있으나, 본 발명이 이에 한정되는 것은 아니다. 상기 알코올 용매는, 메탄올 (임계 온도 = 239 °C; 임계 압력 = 81 bar), 에탄을 (임계 온도 = 241 0C; 임계 압력 = 63 bar), 프로판올 (임계 온도 = 264 °C; 임계 압력 = 52 bar), 이소프로필알코올 (임계 온도 = 307 °C; 임계 압력 = 41 bar), 부탄을 (임계 온도
= 289 °C; 임계 압력 = 45 bar), 이소부탄을 (임계 온도 = 275 °C; 임계 압력 =
45 bar), 2-부탄올 (임계 온도 = 263 °C; 임계 압력 = 42 bar), tert-부탄올 (임계 온도 = 233 °C; 임계 압력 = 40 bar), n-펜탄을 (임계 온도 = 307 °C; 임계 압력
= 39 bar), 이소펜틸 알코올 (임계 온도 = 306 °C; 임계 압력 = 39 bar), 2-메틸- 1-부탄올 (임계 온도 = 302 °C; 임계 압력 = 39 bar), 네오펜틸 알코올 (임계 온도 = 276 °C; 임계 압력 = 40 bar), 디에틸 케비놀 (임계 온도 = 286 °C; 임계 압력 = 39 bar), 메틸 프로필 케비놀 (임계 온도 = 287 °C; 임계 압력 = 37 bar), 메틸 이소프로필 케비놀 (임계 온도 = 283 °C; 임계 압력 = 39 bar), 디메틸 에틸 케비놀 (임계 은도 = 271 X; 임계 압력 = 37 bar), 1-핵산올 (임계 온도 = 337 0C; 임계 압력 = 34 bar), 2-핵산올 (임계 온도 = 310 °C; 임계 압력 = 33 bar), 3- 헥산올 (임계 온도 = 309 °C; 임계 압력 = 34 bar), 2-메틸 -1-펜탄올 (임계 온도 = 331 °C; 임계 압력 = 35 bar), 3-메틸 -1-펜탄을 (임계 온도 = 387 °C; 임계 압력 = 30 bar), 4—메틸 -1-펜탄올 (임계 온도 = 330 °C; 임계 압력 = 30 bar), 2-메틸-
2-펜탄을 (임계 온도 = 286 °C; 임계 압력 = 36 bar), 3-메틸 -2-펜탄올 (임계 온도 = 333 °C; 임계 압력 = 36 bar), 4—메틸 -2-펜탄을 (임계 온도 = 301 °C; 임계 압력 = 35 bar), 2-메틸 -3-펜탄을 (임계 온도 = 303 °C; 임계 압력 = 35 bar)ᅳ 3- 메틸 -3-펜탄올 (임계 온도 = 302 °C; 임계 압력 = 35 bar), 2, 2-디메틸 -1- 부탄을 (임계 온도 - 301 °C; 임계 압력 = 35 bar), 2,3-디메틸-1-부탄올(임계 온도 = 331 °C; 임계 압력 = 35 bar), 2, 3-디메틸 -2-부탄올 (임계 은도 = 331 °C; 임계 압력 = 35 bar), 3, 3-디메틸ᅳ1-부탄올 (임계 온도 = 331 °C; 임계 압력 = 35 bar), 2-에틸— 1-부탄올 (임계 온도 = 307 °C; 임계 압력 = 34 bar), 1- 헵탄을 (임계 온도 = 360 °C; 임계 압력 = 31 bar), 2-헵탄올 (임계 온도 = 335 0C; 임계 압력 = 30 bar), 3-헵탄을 (임계 온도 = 332 0C; 임계 압력 = 30 bar), 및 4-헵탄을 (임계 온도 = 329 °C; 임계 압력 = 30 bar) 중 적어도 하나를 포함할 수 있다.
상기 흔합 단계 (S10)에서 사용되는 반웅기의 구성은 특별한 제한은 없지만 배치형 또는 연속형 반웅기가사용될 수 있다.
또한, 상기 흔합 단계 (S10)에서 알코올 용매와 래그 레이어의 흔합물 중 래그 레이어의 농도는 10 내지 90 중량 %일 수 있으며, 바람직하게는 20 내지 80 중량 %일 수 있다. 래그 레이어의 농도가 10 중량 % 미만이면 농도가 너무 희박하여 단위 시간에 불순물이 제거되는 래그 레이어의 양이 너무 적어 경제성이 떨어지고, 90 중량 %를 초과하면 농도가 너무 진하여 초임계 알코올의 효과적인 불순물 제거 반응이 이루어질 수 없다.
다음으로, 반웅 단계 (S20)는 상기 알코올 용매 및 래그 레이어에 포함된 물의 흔합 초임계 유체 상태에서 상기 래그 레이어에 포함된 불순물을 제거 및 /또는 전환하는 단계로, 구체적으로는 반웅기의 온도와 압력을 알코을 및 물의 임계 온도 및 임계 압력 이상으로 높여, 초임계 유체 상태에서 래그 레이어에 포함된 불순물을 제거 및 /또는 전환하는 단계이다. 상기 흔합 초임계 유체를 이용한 래그 레이어에 포함된 불순물 제거 및 /또는 전환 방법의 장점은, 외부에서 제공하는 수소 및 불균일 촉매를 이용하지 않고도 효과적인 산도저감 반웅, 수소화 반응 및 크래킹 반웅이 가능하다는 점이다. 초임계 알코올이 지니는 독특한 화학반웅성인 에스테르화 반응 (ester i f icat ion) , 알킬레이션 반웅 (alkylat ion) , 알콕실레이션 반응 (alkoxyl at ion) 등으로 원유의 산도를 증가시키는 물질인 납센산 및 납센산 칼슘에 포함되어 있는 카르복실산을, 외부에서 제공하는 촉매 없이 다른 물질로 전환하여 원유의 산도를 저감할 수 있어, 후단 공정에서 부식을 일으키는 요인을 원천적으로 제거할 수 있다. 또한, 상기 초임계 알코올에서 자체발생하는 고활성 수소는 고분자량을 갖는 아스팔텐의 크래킹 반웅으로 유용한 저분자량을 갖는 포화 탄화수소 및 아로마틱 성분을 제조할 수 있다. 아스팔텐 성분은 매우 복잡한 화합물로 아로마틱 화합물과 이종고리 화합물이 서로 연결되어 있는 구조로, 초임계 유체 내 크래킹 시 외부에서 제공하는 수소 및 촉매를 활용하지 않아도, 초임계 알코을이 자체적으로 발생하는 수소로 크래킹 반웅 중에 생성되는 활성화 중간체를 안정화하여 코크 형성을 억제할 수 있다. 또한 V, Ni 등 중금속 물질이 결합되어 있는 포피린 구조의 화합물을 크래킹하여 배출되는 중금속 이은을, 산화반웅을 통해 V0X 및 NiOx 물질로 전환하여, 제조되는 액상으로부터 제거할 수 있다. 또한 황이 포함된 이종고리 화합물을 크래킹하여 황을 H2S 등의 기상으로 전환하여, 제조되는 액상으로부터 제거할 수 있다.
상기 초임계 알코올은 온도와 압력에 따라 자체적으로 발생하는 매우 활성이 높은 수소를 제공할 수 있다. 일 예로, 초임계 상태의 프로판올은 적어도 세가지 메커니즘에 의해 프로톤, 하이드라이 등 활성이 높은 수소를 제공할 수 있다 (Nakagawa et al ., J Supercr i t Fluids 2003, 27, 255-261; Ross et al . , Fuel 1979 , 58, 438-442; Brand et al . , Energy, 2013 , 59 , 173-182) .
상기 반웅 단계 (S20)에서 반웅 온도는 200 내지 600oC일 수 있고, 바람직하게는 300 내지 500°C일 수 있다. 반웅 온도가 200oC 미만일 경우 초임계 알코을의 효과적인 수소발생 반응, 크래킹 반응 및 산도저감 반웅이 일어나기 어려워, 래그 레이어에 포함되어 있는 불순물의 제거가 효과적으로 이루어질 수 없는 문제가 있고, 반웅 온도가 600oC를 초과할 경우 크래킹 반웅이 활발하게 일어나 원유 성분이 가스화될 가능성이 있어 래그 레이어 전환에 따른 액상의 수율이 낮아져 경제성이 감소되는 문제가 있다.
또한, 상기 반웅 단계 (S20)에서 반응 압력은 30 내지 700 bar일 수 있고, 바람직하게는 100 내지 500 bar일 수 있다. 반응 압력이 30 bar 미만일 경우 초임계 알코올의 수소발생 반웅, 크래킹 반응, 및 산도저감 반웅 능력이 저하되어 래그 레이어로부터 효과적인 불순물 제거가 어려운 문제가 있고, 반웅 압력이 700 bar를 초과할 경우 고압을 유지하기 위한 공정 비용이 상승하는 문제가 있다.
아울러, 상기 반웅 단계 (S20)에서 반웅 시간은 특별한 제한은 없지만, 10초 내지 6시간일 수 있고, 바람직하게는 1분 내지 3시간일 수 있다. 반웅 시간이 10초 미만일 경우 초임계 알코올의 수소발생 반웅, 크래킹 반웅, 및 산도저감 반웅으로 래그 레이어로부터 불순물이 제거되는 반웅이 진행되기에 시간이 너무 짧아 효과적인 불순물 제거가 이루어질 수 없는 문제가 있고, 반웅 시간이 6시간을 초과할 경우 고온 ·고압을 장시간 유지시켜야 하기 때문에 공정 비용이 상승하는 문제가 있다.
다음으로, 분리 및 회수 단계 (S30)는 상기 반웅 단계 (S20) 후 온도와 압력을 낮추어 반웅 산물을 분리하고 회수하는 단계이다. 상기 반웅 산물은 반웅기의 배출구에 위치한 감압장치를 통하여 배출될 수 있다. 상기 반웅 산물은 기체 상태의 이산화탄소, 일산화탄소, 메탄 에탄, 에틸렌, 프로필렌, 프로판, 부탄 등이 있을 수 있고, 액체 상태의 물질은 반웅된 래그 레이어, 원유, 용매인 알코올, 물 및 반응에 참여하여 알코올로부터 전환된 유기화합물을 포함할 수 있고, 고체 상태의 잔류물은 촤, 타르, 무기물질올 포함할 수 있다. 이때 기체 상태의 생성물의 분리는 온도와 압력을 낮추어서 기-액 분리를 통해 분리할 수 있고, 고체 상태의 잔류물 분리는 필터, 사이클론 등을 이용한 고-액 분리를 통해 분리할 수 있다. 액체 상태의 물질로부터 유용 성분을 분리하는 방법은 유-수 분리, 증류 둥의 방법이 이용될 수 있다. 본 발명은 상기 래그 레이어의 전환 방법을 통해, 래그 레이어로부터 불순물이 제거된 원유를 제공할 수 있다.
이하, 본 발명의 구체적인 내용을 하기 실시예 및 비교예를 통하여 상세히 설명하고자하나, 이는 본 발명의 예시목적을 위한 것으로 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
실시예 -초임계 알코올을 이용한 래그 레이어의 전환
실험예 -분석 방법
원유의 전산가 (Total Acid Number , TAN) 및 반웅 전후 래그 레이어의 전산가는 래그 레이어 lg에 포함된 산을 중화하는데 필요한 K0H의 양으로, ASTM D664 방법으로 Metrohm 848 Ti tr ino plus를 이용하여 측정하였다. 원유 및 반웅 전후 래그 레이어의 포화화합물, 방향족화합물, 레진, 아스팔텐 함량 분석은 Mi tsubi shi Chemical Medience Corporat m에서 제작한 MK_6 Iatroscan을 이용하여 수행하였다. 특히, 실시예 3에서 제조된 액상 물질을, 박막크로마토그래피를 이용하여 포화화합물, 방향족화합물, 레진, 아스팔텐 함량을 분석한 결과를 도 2에 나타내었다.
또한, 기체 반웅 생성물의 정성 및 정량분석은 열전도검출기 (thermal conduct ivity detector , TCD)와 불꽃이온화검줄기 ( f lame ioni zat ion detector , FID)가 장착된 가스크로마토그래피 (Gas chromatography, GC, Clarus 600 GC- Model Arnel 1115PPC Ref inery Gas Analyzer (RGA) , PerkineElmer )를 이용하여 분석하였다.
레그 레이어 및 생성물의 액상의 분석은 비행시간형 질량분석기 (t ime— of- f l ight mass spectroscopy, TOF/MS)가 장착된 가스 크로마토그래피 (Agi lent Technologies 7890A)를 이용하여 분석하였다. 특히, 실시예 3에서 제조된 액상 물질을, 비행시간형 질량분석기-가스크로마토그래피로 분석하여 그 결과를 도 3에 나타내었다.
실시예 1
본 실시예에서 이용된 래그 레이어는 40 중량 %의 콜롬비아산 초중질원유 (Rubiales , 아스팔텐 함량 31.6 area% SARA 측정법; TAN 1.3 g KOH/g oi l ) , 30 중량 %의 베네주엘라산 고산도 원유 (Laguna, 아스팔텐 함량 27.5 area%; TAN 5.05 g K0H/g oi l ) , 30 중량>의 베네주엘라산 고산도 원유 (Bachaquero-13 , 아스팔텐 함량 26. 1 area%; TAN 4.21 g K0H/g oi l )을 원료로 이용하여 제조하였다. 원유에 80 부피 % n-헵탄 (heptane)과 20 부피 ¾> 를루엔 (toluene)이 흔합된 헵를 (Heptol )을 전체 레그 레이어를 제조하기 위한 무게 대비 40 중량 %을 도입하여 서로 흔합한 다음, ASTM D— 1411으로 제조된 식염수 (sal ine water)를 전체 레그 레이어를 제조하기 위한 무게 대비 40 중량 %을 첨가하였고, 레그 레이어의 산도를 증가시키기 위해 전체 레그 레이어를 제조하기 위한 무게 대비 4 중량 ¾의 납센산 및 4 중량 %의 납센산 칼슴을 추가하여 incubator에서 12시간 동안 교반하였다. 이 후 초음파분쇄기 (ultra sonicator)에서 90분간 처리한 다음 원심분리기를 사용하여 제조된 용액의 분리를 수행하여, 오일층, 래그 레이어, 및 물층의 3개 충으로 분리하였다. 제조된 래그 레이어를 오일층 및 물층으로부터 분리하여 회수하였다. 상기 래그 레이어의 광학현미경 (Nikon microscope , model # ECLIPSE Ti ) 이미지를 도 1에 나타내었다. 도 1에 보이듯이 유중수형 (W/0) 에멀견이 형성되었음을 알 수 있다. 제조된 래그 레이어를 분석하여 그 결과를 표 2 및 표 4에 나타내었다. 140 mi 부피의 배치형 반웅기에 17 중량 %의 농도로 상기 제조된 래그 레이어 및 메탄올을 도입한 후 10 bar의 질소로 반웅기를 가압하고 약 20oC/min의 속도로 승온하여 반응 온도 400°C 및 반웅 압력 350 bar에서 30분간 초임계 메탄을로 래그 레이어를 반응하였다. 이때 생성된 기상 생성물을 Tedl ar bag에 포집하여 분석하였고, 고상 및 액상 생성물은 필터를 사용하여 분리하였다. 액상 중 원유 및 용매 (메탄올 /물) 분리는 다이클로로메테인 (di chloromethane)을 첨가하여, 원유를 다이클로로메테인 상에 전달한 후, 액체 -액체 계면을 형성하여 원유를 회수하였다. 회수된 원유의 특성을 평가하여 그 결과를 표 1 내지 표 3에 나타내었다.
실시예 2
반웅 시간이 60분인 점을 제외하고는 상기 실시예 1과 동일한 방법으로 래그 레이어를 반옹시켜, 상기 실시예 1과 동일한 방법으로 반웅된 래그 레이어를 분석하여 그 결과를 표 1 내지 표 3에 나타내었다.
실시예 3
반웅 시간이 90분인 점을 제외하고는 상기 실시예 1과 동일한 방법으로 래그 레이어를 반웅시켜, 상기 실시예 1과 동일한 방법으로 반웅된 래그 레이어를 분석하여 그 결과를 표 1 내지 표 3에 나타내었다.
실시예 4
래그레이어 농도가 20 중량 ¾»인 점을 제외하고는 상기 실시예 3과 동일한 방법으로 래그 레이어를 반웅시켜, 상기 실시예 3과 동일한 방법으로 반웅된 래그 레이어를 분석하여 그 결과를 표 1 내지 표 3에 나타내었다.
실시예 5
래그레이어 농도가 25 중량 %인 점을 제외하고는 상기 실시예 3과 동일한 방법으로 래그 레이어를 반웅시켜, 상기 실시예 3과 동일한 방법으로 반웅된 래그 레이어를 분석하여 그 결과를 표 1 내지 표 3에 나타내었다.
실시예 6
반웅 온도가 375°C인 점올 제외하고는 상기 실시예 3과 동일한 방법으로 래그 레이어를 반웅시켜, 상기 실시예 3과 동일한 방법으로 반웅된 래그 레이어를 분석하여 그 결과를 표 1 내지 표 3에 나타내었다.
실시예 7
반웅 온도가 350°C인 점을 제외하고는 상기 실시예 3과 동일한 방법으로 래그 레이어를 반웅시켜, 상기 실시예 3과 동일한 방법으로 반웅된 래그 레이어를 분석하여 그 결과를 표 1 내지 표 3에 나타내었다.
실시예 8
메탄올 대신 에탄올을 사용한 점을 제외하고는 상기 실시예 3과 동일한 방법으로 래그 레이어를 반웅시켜, 상기 실시예 3과 동일한 방법으로 반웅된 래그 레이어를 분석하여 그 결과를 표 1 내지 표 3에 나타내었다.
실시예 9
메탄올 대신 이소프로필알코올을 사용한 점을 제외하고는 상기 실시예 3과 동일한 방법으로 래그 레이어를 반웅시켜, 상기 실시예 3과 동일한 방법으로 반웅된 래그 레이어를 분석하여 그 결과를 표 1 내지 표 3에 나타내었다.
실시예 10
메탄올 대신 부탄올을 사용한 점을 제외하고는 상기 실시예 3과 동일한 방법으로 래그 레이어를 반웅시켜, 상기 실시예 3과 동일한 방법으로 반웅된 래그 레이어를 분석하여 그 결과를 표 1 내지 표 3에 나타내었다.
<생성물의 특성 분석 >
상기 실시예에 있어서 최종적으로 얻어지는 생성물의 수율은 각 성분의 중량으로부터 하기 수학식 1 내지 3에 따라 계산되었다. 수학식 1 내지 3의 경우, 상기 실시예에서 사용된 래그 레이어에는 60 중량 %의 수분 및 10 중량 %의 무기물이 함유되어 있어서, 무기물이 제거되고 건조된 래그 레이어 중량을 액상 및 기상 수율 계산에 사용하였고, 고체잔류물의 수율은 건조된 래그 레이어 중량을 사용하였다.
[수학식 1] ofl J ᄉ。 , ^ 상오일의 중량
엑상수 " j: x lOO
¾조 ¾ 무기물이 제거훤 rag layer쭝¾ [수학식 2] 。, ^ 고체¾류둘 풀량
고제 "물 수물 ( ω r%) = 100
건조된 rag layer중량
[수학식 3] 생 ^물의 증
기상수 "(a»ftt= ——ᅳᅳ ― X 100
건조 ¾ 무 1 이 제거 ¾ rag layer ¾
상기 수학식에 따라 계산한 초임계 알코올을 이용한 래그 레이어의 반응에 따른 기상, 액상 및 고상물질 수율을 하기 표 1에 나타내었다.
【표 1】
Figure imgf000017_0001
이소
프로필
알코올
실시예 10 초임계 400 350 17 90 75.9 12.9 0.5
부탄올
상기 표 1에 나타낸 바와 같이, 실시예 1 내지 실시예 3에서 래그 레이어를 400oC 온도 조건 및 350 bar의 압력 조건과 30 내지 90분 반응 시간 조건에서 초임계 메탄을로 반웅하였을 경우, 반응된 액상 수율이 68.7 내지 76.7 중량 고체잔류물 수율이 13 증량 % 미만, 기상 수율이 약 0. 1 내지 0.7 중량 %로 액상 수율이 매우 높고 기상 수율이 매우 낮은 것을 알 수 있었다. 따라서 래그 레이어의 대부분이 액상으로 전환되었다는 것을 알수 있다.
한편, 실시예 4 내지 실시예 5에서 반응 농도를 20 내지 25 중량 %로 증가시켰을 경우에도 액상 수율이 76 내지 80 중량 %, 고체 잔류물 수율이 11.5 내지 15.9 중량 %, 기상 수율이 0.3 내지 1.0 중량 % 미만으로, 높은 농도의 래그 레이어를 반응하였을 경우에도 주로 액상으로 전환이 이루어졌음을 알수 있다. 한편, 실시예 6 내지 실시예 7에서 반응 온도를 375°C 및 350 로 낮추었을 경우에도, 액상 수율이 약 70 내지 79 중량 %, 고체 잔류물 수율이 9.9 내지 14.5 중량 ¾, 기상 수율이 0. 1 중량 ¾ 미만으로, 낮은 온도에서도 액상이 주로 생성되었음을 알 수 있다.
또한 실시예 8 내지 실시예 10에서 초임계 알코을로 초임계 에탄올, 초임계 이소프로판올 및 초임계 부탄올을 이용하였을 경우에도, 액상 수율이 약 76 내지 79 중량 %, 고체 잔류물 수율이 11.5 내지 12.9 중량 %, 및 기상 수율이 0.3 내지 0.7 중량 %로 액상이 주로 생성되었음을 알 수 있다. 이는 초임계 알코올이 수소를 효과적으로 제공할 수 있어, 고체상태의 잔류물을 생산하는 웅축 (condensat ion) 또는 고분자화 (repolymer i zat ion) 반응을 억제할 수 있고, 촉매를 활용하지 않고도 에스테르 반응 (ester i f icat ion) , 알킬레이션 반웅 (alkylat ion) , 알콕실레이션 반응 (alkoxylat ion) 등이 효과적으로 진행되어, 래그 레이어 내 존재하는 유기물의 분해 시 발생하는 불안정한 중간체를 안정화시켜서 액상수율을 증가시켰기 때문이라고사료된다.
다음으로, 반웅 전후 래그 레이어에 포함된 액상 성분을 분석하여 표 2에, 기체 반웅 생성물의 성분을 분석하여 표 3에 나타내었다.
먼저, 반웅 전후 래그 레이어의 전산가 (Total Acid Number , TAN)는 래그 레이어 lg에 포함된 산을 중화하는데 필요한 K0H의 양으로, ASTM D664 방법으로 Met r ohm 848 Ti tr ino plus를 이용하여 측정하였다. 반웅 전후 래그'레이어의 포화화합물, 방향족화합물, 레진, 아스팔텐 함량 분석은 Mi tsubi shi Chemical Medience Corporat ion에서 제작한 MK-6 Iatroscan을 이용하여 수행하였다. 특히, 실시예 3에서 제조된 액상 물질올, 박막크로마토그래피를 이용하여 포화화합물, 방향족화합물, 레진, 아스팔텐 함량을 분석한 결과를 도 2에 나타내었다.
또한, 기체 반웅 생성물의 정성 및 정량분석은 열전도검출기 (thermal conduct ivi ty detector , TCD)와 불꽃이은화검줄기 ( f lame ionizat ion detector , FID)가 장착된 가스크로마토그래피 (Gas chromatography, GC , Clarus 600 GC- Model Arnel 1115PPC Ref inery Gas Analyzer (RGA) , PerkineElmer )를 이용하여 분석하였다.
【표 2]
Figure imgf000019_0001
실시예 5 24.2 34.0 41.8 0.0 13. 1
실시예 6 21.8 48.8 16.8 12.7 11.7
실시예 7 21.0 34.9 19. 1 25. 1 18.6
실시예 8 26.0 36.7 40.2 2. 1 7.8
실시예 9 25.2 35.2 43.2 1.5 8.2
실시예 10 23. 1 32.8 41.7 2.7 5.6
【표 3】
Figure imgf000020_0001
상기 표 2에서 나타낸 바와 같이, 래그 레이어의 경우 유용 성분인 포화화합물 및 방향족화합물 함량이 레진 및 아스팔텐 함량보다 낮은 것으로, 래그 레이어에는 중질 성분이 과량으로 포함되어 있음을 알 수 있다. 래그 레이어에 포함된 유용 성분인 포화화합물과 방향족화합물의 함량은 총 25.7
3^3%로 매우 낮았다. 실시예 1에서 초임계 메탄올을 이용하여 400oC 온도 조건 및 30분간 반웅하였을 경우, 유용 성분 (포화화합물 + 방향족화합물) 함량이 71. 1 3^3%로 큰 폭으로 증가하였으며, 레진 및 아스팔텐 함량이 각각 감소한 것으로, 효과적인 래그 레이어가유용 성분으로의 전환 반웅이 진행되었음을 알 수 있다. 반웅된 후 TAN이 11.7 rag KOH/g로 반웅 전 래그 레이어의 TAN인 58.7 mg KOH/g과 비교하였을 때 크게 감소한 것으로, 래그 레이어에 포함된 납센산이 성공적으로 제거되었음을 알 수 있었다. 상기 표 3에 나타낸 바와 같이, 실시예 1의 기체 생성물의 성분을 분석한 결과 C02(32.47 mol¾>)이 과량으로 검출된 것으로, 탈카르보닐화 반웅으로 래그 레이어 내 포함되어 있는 산소가 제거되었음을 알 수 있었고, H2(0.40 mol%)가 검출된 것으로, 외부에서 수소를 제공해 주지 않아도 초임계 상태의 메탄올이 수소를 발생하여, 반웅에서 일어날 수 있는 재결합 (recombinat ion) 또는 축합 (condensat ion)반웅을 억제하여 반웅된 액상 수율이 높음을 알 수 있었다. 또한 C2H4+C2H6(5.77 mol%) , C3H6+C3H8( 1.30 mol%) 및 C4+ 기상물질 (0.47 mol%)이 소량 검출된 것으로, 래그 레이어의 기상 전환 반웅이 억제된 것을 알 수 있었다. 도 3에 나타낸 바와 같이, 레그 레이어를 가스 크로마토그래피- 비행시간형 질량 분석기를 이용하여 분석한 결과, 납센산 성분과 함께 일부 선형 및 가지형 탄화수소가 검출되었으나 실시예 2에서 제조된 액상은 C11-C40의 선형 탄화수소가 주 화합물로 디젤성분 및 윤활기유 성분이 주로 생성되었음을 알 수 있었다.
실시예 2 내지 실시예 3에서 400oC 온도 조건에서 반웅 시간을 각각 60 분 내지 90분으로 증가시켜서 초임계 메탄올로 래그 레이어를 반웅하였을 경우, 아스팔텐 함량이 반웅 전의 래그 레이어인 49.2 3^3%와 비교하였을 때 거의 대부분 제거 되었고, 유용 성분 함량은 각각 52.8 area% 및 58.2 3^3%로 증가하였고, 레진 성분이 45.2 area% 및 41.8 3^^로 증가한 것으로, 긴 반웅 시간에서 매우 효과적인 아스팔텐 크래킹 및 유용 성분 전환 반웅이 진행되었음을 알 수 있었다. 반응된 후 TAN이 5~6 mg KOH/g로 반웅 전 래그 레이어와 비교하였을 때 크게 감소한 것으로, 장시간 반웅하였을 경우 래그 레이어에 포함된 납센산이 더욱 효과적으로 제거되었음을 알 수 있었다. 상기 표
3에 나타낸 바와 같이, 가스 성분을 분석한 결과 C2H4+C2H6(4. 11~5.95 mol ) ,
C3¾+C3H8(2.73~5.86 mol ) , 및 C4+ 기상물질 (0.88~3.42 mol%)이 소량 검출된 것으로, 장시간 반응을 진행하였더라도 래그 레이어의 기상 전환 반응이 억제된 것을 알수 있었다.
한편 실시예 4 내지 실시예 5에서 400oC 온도 조건에서 반응 농도를 각각 20 내지 25 %로 증가시켰을 경우에도, 실시예 3과 유사하게 래그 레이어에 포함된 아스팔텐 함량이 대부분 포화화합물, 방향족화합물, 및 레진 성분으로 전환되었음을 알 수 있다. 반웅된 후 TAN이 9.7~ 13.1 rag KOH/g로 반웅 전 래그 레이어와 비교하였을 때 크게 감소한 것으로, 고농도의 래그 레이어를 반응하였을 경우 래그 레이어에 포함된 납센산이 효과적으로 제거되었음을 알 수 있었다. 상기 표 3에 나타낸 바와 같이, 실시예 4 내지 실시예 5의 기체 생성물의 성분을 분석한 결과 C02(44.85~51.52 raol%) 및 C0(26.46~34.36 mol%)가 과량 검출된 것으로, 탈카르보닐화 및 탈카르복실화 반웅으로 래그 레이어 내 포함되어 있는 산소가 제거되었음을 알 수 있었고,
C2H4+C2¾(0.95~1.38 mol%) , C3¾+C3¾(0.61~0.93 mol%) 및 C4+ 기상물질 (0. 15~0.28mol%)이 소량 검출된 것으로, 장시간 반응을 진행하였더라도 래그 레이어의 기상 전환 반웅이 억제된 것을 알수 있었다.
또한 실시예 6 내지 실시예 7에서 반웅 시간 90분 조건에서 반웅 온도를 각각 3750C 및 350oC로 낮추었을 경우, 아스팔텐 함량이 각각 12 /7 area% 및
25. 1 3^3%로 실시예 3의 완전 아스팔텐 전환 경우와 비교하였을 때 낮은 반웅 온도에서는 아스팔텐이 완전 전환되지 않았으나, 유용 성분 (포화화합물 + 방향족화합물)의 함량이 375°C 반웅 조건에서는 70.6 area% 및 350oC 반웅 조건에서는 55.9 3^3¾>로 높은 것으로, 효과적인 유용 성분으로 전환 반웅이 진행되었음을 알 수 있었다. 반웅된 후 TAN이 11.7~ 18.6 rag KOH/g로 반웅 전 래그 레이어와 비교하였을 때 크게 감소한 것으로, 낮은 반웅 온도에서도 래그 레이어에 포함된 납센산이 성공적으로 제거되었음을 알 수 있었다.
또한, 실시예 8 내지 실시예 10에서 초임계 메탄올 대신 초임계 에탄을, 초임계 이소프로필알코올, 초임계 부탄올을 사용하였을 경우에도, 반웅 전 래그 레이어와 비교하였을 때 유용 성분의 함량이 55.9~62.7 3^^로 높았고, 아스팔텐 함량이 1.5~2.7 3^3%로 큰 폭으로 감소하였으며, 레진 함량이 40.2-41.7 area¾)로 높은 것으로, 초임계 메탄올과 유사하게 래그 레이어에 포함된 대부분의 아스팔텐이 성공적으로 크래킹 되어 유용 성분 및 레진으로 전환되었음을 알 수 있다. 반응된 후 TAN이 5.6~7.8 mg KOH/g로 반웅 전 래그 레이어와 비교하였을 때 크게 감소한 것으로, 낮은 초임계 알코을로 초임계 에탄올, 초임계 이소프로필알코올, 및 초임계 부탄올을 사용하였을 경우에도 래그 레이어에 포함된 납센산이 성공적으로 제거되었음을 알 수 있었다. 실시예
8 내지 실시예 10의 기체 생성물의 성분을 분석한 결과 C02(25.69 ~37.51 mol%) 및 C0( 15.47~29.84 mol%)가 과량 검출된 것으로, 탈카르보닐화 및 탈카르복실화 반웅으로 래그 레이어 내 포함되어 있는 산소가 제거되었음을 알 수 있었고, C2H4+C2H6(3.25~7.23 mol%) , C3¾+C3H8(3.47~4.38 mol%) , 및 C4+ 기상물질
(2.64-3.98 mol%)이 소량 검출된 것으로, 장시간 반응을 진행하였더라도 래그 레이어의 기상 전환 반웅이 억제된 것을 알수 있었다.
반응 전후 래그 레이어의 불순물 제거 효과를 알아보기 위해서, Agi lent 7500 유도결합플라즈마 질량분석기 ( Induct ive Coupled Plasma-Mass Spectroscopy)를 이용하여 액상을 분석하여 그 결과를 표 4에 나타내었다.
【표 4】
Figure imgf000023_0002
Figure imgf000023_0001
량 1300 rag/kg, Ni 함량 21.8 rag/kg 및 V 함량 231 rag/kg이 검출된 반면, 실시예 3에 따른 래그 레이어 전환 반응 결과, 황 함량 0.2 중량 %로 56% 감소하였고, Ca 함량 35.5 mg/kg로 97% 감소하였으몌 Ni 함량은 0.01 mg/kg 미만으로 거의 대부분 제거되었고, V 함량의 경우 63 mg/kg으로 73% 감소한 것으로, 효과적인 불순물 저감 반웅이 진행되었음을 알 수 있다. 본 발명의 구성은 상기의 실시예를 통해 그 우수성이 입증되었지만 상기의 구성에 의해서만 반드시 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변경 및 변형이 가능하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.

Claims

【청구범위】
【청구항 1】
래그 레이어와 알코을 용매를 흔합하는 흔합 단계; 및
상기 알코올 용매의 초임계 알코을 상태에서 상기 래그 레이어를 반웅시키는 반웅 단계를 포함하는 초임계 알코올을 이용한 래그 레이어의 전환 방법.
【청구항 2]
제 1항에 있어서,
상기 반응 단계 후, 반응 산물을 분리하고 회수하는 분리 및 회수 단계를 더 포함하는 초임계 알코올을 이용한 래그 레이어의 전환 방법.
【청구항 3]
제 1항에 있어서,
상기 래그 레이어는, 비전통원유 또는 전통원유로부터 형성된 유중수형 (W/0) 에멀견 형태인 것인 초임계 알코올을 이용한 래그 레이어의 전환 방법.
【청구항 4]
제 3항에 있어서,
상기 비전통원유는 고산도원유, 초중질원유, 타이트오일, 및 비튜멘 중 적어도 하나를 포함하는 초임계 알코올을 이용한 래그 레이어의 전환 방법.
【청구항 5]
제 3항에 있어서,
상기 원유는 납센산, 납센산 칼슘, 아스팔텐, 중금속, 및 황 성분 중 적어도 하나를 포함하는 초임계 알코올을 이용한 래그 레이어의 전환 방법 .
【청구항 6]
제 5항에 있어서,
상기 중금속은 바나듐 (V) 및 /또는 니켈 (Ni )인 것인 초임계 알코올을 이용한 래그 레이어의 전환 방법 .
【청구항 7] 제 1항에 있어서,
상기 래그 레이어는 수분 함량이 20 내지 80 중량 ¾인 초임계 알코올을 이용한 래그 레이어의 전환 방법.
【청구항 8]
제 1항에 있어서,
상기 알코올 용매는, 메탄올, 에탄을, 프로판올, 이소프로필알코올, 부탄올, 이소부탄올, 2-부탄올, tert-부탄올, n-펜탄을, 이소펜틸 알코올, 2- 메틸 -1-부탄올, 네오펜틸 알코올, 디에틸 케비놀, 메틸 프로필 케비놀, 메틸 이소프로필 케비놀, 디메틸 에틸 케비놀, 1-핵산올, 2-핵산올, 3-핵산올, 2- 메틸 -1-펜탄올, 3-메틸 -1—펜탄올, 4-메틸 -1-펜탄올, 2-메틸 -2-펜탄올, 3-메틸 -2- 펜탄올, 4-메틸 -2-펜탄올, 2-메틸 -3-펜탄올, 3—메틸 -3-펜탄올, 2,2-디메틸 -1- 부탄올, 2, 3-디메틸 -1-부탄올, 2, 3-디메틸 -2—부탄올, 3, 3-디메틸 -1-부탄을, 2- 에틸 -1-부탄올, 1-헵탄을, 2-헵탄올, 3-헵탄올, 및 4-헵탄을 중 적어도 하나를 포함하는 초임계 알코올을 이용한 래그 레이어의 전환 방법.
【청구항 9]
제 1항에 있어서,
상기 흔합 단계는 상기 알코올 용매와 래그 레이어의 합계량을 기준으로, 상기 래그 레이어를 10 내지 90 중량 %로 흔합하는 초임계 알코을을 이용한 래그 레이어의 전환 방법 .
【청구항 10]
제 1항에 있어서,
상기 반웅 단계는, 상기 래그 레이어에 포함된 불순물을 제거, 또는 전환, 또는 제거 및 전환하는 단계인 초임계 알코올을 이용한 래그 레이어의 전환 방법.
【청구항 11]
제 10항에 있어서,
상기 불순물은 납센산, 납센산 칼슘, 아스팔텐, 중금속, 및 황 성분 중 적어도 하나를 포함하는 것인 초임계 알코올을 이용한 래그 레이어의 전환 방법.
【청구항 12] 제 1항에 있어서,
상기 반웅 단계는, 반웅 온도 200 내지 600oC , 반응 압력 30 내지 700 bar의 초임계 알코올 상태에서 진행되는 것인 초임계 알코올을 이용한 래그 레이어의 전환 방법.
【청구항 13】
제 1항 내지 제 12항 중 어느 한 항의 전환 방법을 통해 래그 레이어로부터 회수된 원유.
PCT/IB2017/000231 2016-02-16 2017-02-16 초임계 알코올을 이용한 래그 레이어의 전환 방법 WO2017141114A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160017949A KR101726972B1 (ko) 2016-02-16 2016-02-16 초임계 알코올을 이용한 래그 레이어의 전환 방법
KR1020160017949 2016-02-16

Publications (1)

Publication Number Publication Date
WO2017141114A1 true WO2017141114A1 (ko) 2017-08-24

Family

ID=58579887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/000231 WO2017141114A1 (ko) 2016-02-16 2017-02-16 초임계 알코올을 이용한 래그 레이어의 전환 방법

Country Status (2)

Country Link
KR (1) KR101726972B1 (ko)
WO (1) WO2017141114A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789191A (zh) * 2021-09-13 2021-12-14 延安大学 一种基于超临界甲醇的重油减黏与脱硫方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777713B1 (ko) * 2017-04-25 2017-09-12 (주)일신오토클레이브 래그 레이어 내에서 유용물질을 획득하기 위한 래그 레이어 처리장치
KR102061960B1 (ko) * 2017-05-11 2020-01-03 서울대학교산학협력단 초임계 유체를 이용한 아스팔텐 저감 방법
KR102098148B1 (ko) * 2018-06-22 2020-04-07 서울대학교산학협력단 아스팔텐 저감 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143586A (ja) * 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd 脂肪酸エステルの製造方法および脂肪酸エステルを含む燃料
KR20070068292A (ko) * 2005-12-26 2007-06-29 주식회사 에코솔루션 초임계 알코올 및 용매를 이용한 바이오디젤의 제조방법
JP2009067951A (ja) * 2007-09-14 2009-04-02 Hitachi Ltd 重油の不純物装置
KR20140001193A (ko) * 2010-06-29 2014-01-06 사우디 아라비안 오일 컴퍼니 석유 스트림으로부터 황 화합물의 제거

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143586A (ja) * 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd 脂肪酸エステルの製造方法および脂肪酸エステルを含む燃料
KR20070068292A (ko) * 2005-12-26 2007-06-29 주식회사 에코솔루션 초임계 알코올 및 용매를 이용한 바이오디젤의 제조방법
JP2009067951A (ja) * 2007-09-14 2009-04-02 Hitachi Ltd 重油の不純物装置
KR20140001193A (ko) * 2010-06-29 2014-01-06 사우디 아라비안 오일 컴퍼니 석유 스트림으로부터 황 화합물의 제거

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MANDAL, PRADIP CHANDRA: "Non-catalytic reduction of total acid number (TAN) of naphthenic acids (NAs) using supercritical methanol", FUEL PROCESSING TECHNOLOGY, vol. 106, February 2013 (2013-02-01), pages 641 - 644, XP055600504 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789191A (zh) * 2021-09-13 2021-12-14 延安大学 一种基于超临界甲醇的重油减黏与脱硫方法

Also Published As

Publication number Publication date
KR101726972B1 (ko) 2017-04-13

Similar Documents

Publication Publication Date Title
Sato et al. Upgrading of bitumen with formic acid in supercritical water
US8183422B2 (en) Hydrocarbons from pyrolysis oil
WO2017141114A1 (ko) 초임계 알코올을 이용한 래그 레이어의 전환 방법
EP3891126A1 (en) Oxidized disulfide oil solvent compositions
WO2013089839A1 (en) Methods for deoxygenating biomass-derived pyrolysis oil
US9309471B2 (en) Decontamination of deoxygenated biomass-derived pyrolysis oil using ionic liquids
Anderson et al. Naphthenic acid extraction and speciation from Doba crude oil using carbonate-based ionic liquids
JP2015504937A (ja) バイオマス由来熱分解油を脱酸素化するための方法
Pedersen Hydrothermal liquefaction of biomass and model compounds
WO2013191788A1 (en) Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil
JP5221997B2 (ja) 炭化水素油の分解方法
US9675956B2 (en) Conversion of triacylglycerides-containing oils
KR20180100771A (ko) 초임계 알코올을 이용하여 중질유로부터 경질유를 생산하는 방법
Huan et al. Red mud catalysts for hydrothermal liquefaction of alkali lignin: Optimization of reaction parameters
WO2014182499A1 (en) Process for upgrading biomass derived products using liquid-liquid extraction
US10947459B2 (en) One-step low-temperature process for crude oil refining
KR20170111864A (ko) 초임계수를 이용한 레그 레이어의 전환 방법
EA041790B1 (ru) Одностадийный низкотемпературный способ переработки сырой нефти
KR20180067867A (ko) 메탄올을 이용한 고산도 원유의 산도 저감 방법
Gaile et al. Extraction treatment of catalytic cracking feedstock
Евтушенко et al. OIL REFINING IN THE FOCUS OF FUTURE PROFESSION
EP3481524A1 (en) Process for upgrading biomass derived products using liquid-liquid extraction
Kim et al. Continuous Flow Upgrading of Lignin Pyrolysis Oils to Gasoline-and Diesel-Range Hydrocarbons Over Noble Metal Catalysts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752741

Country of ref document: EP

Kind code of ref document: A1