WO2017140781A1 - Stabilisatoren zur verbesserung der lagerstabilität von polymerpulver enthaltenden baustofftrockenformulierungen - Google Patents

Stabilisatoren zur verbesserung der lagerstabilität von polymerpulver enthaltenden baustofftrockenformulierungen Download PDF

Info

Publication number
WO2017140781A1
WO2017140781A1 PCT/EP2017/053503 EP2017053503W WO2017140781A1 WO 2017140781 A1 WO2017140781 A1 WO 2017140781A1 EP 2017053503 W EP2017053503 W EP 2017053503W WO 2017140781 A1 WO2017140781 A1 WO 2017140781A1
Authority
WO
WIPO (PCT)
Prior art keywords
building material
stabilizers
water
dry formulations
material dry
Prior art date
Application number
PCT/EP2017/053503
Other languages
English (en)
French (fr)
Inventor
Klaus Bonin
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Priority to BR112018016728-2A priority Critical patent/BR112018016728B1/pt
Priority to CN201780012382.1A priority patent/CN108698946B/zh
Priority to SG11201806329RA priority patent/SG11201806329RA/en
Publication of WO2017140781A1 publication Critical patent/WO2017140781A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/047Zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00637Uses not provided for elsewhere in C04B2111/00 as glue or binder for uniting building or structural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Definitions

  • Stabilizers for improving the storage stability of building material dry formulations containing polymer powders for improving the storage stability of building material dry formulations containing polymer powders
  • the invention relates to the use of stabilizers for improving the storage stability of building material dry mixtures containing polymer powder, stabilizer-containing polymer compositions and stabilizer-containing polymer compositions and their use, for example, in adhesives or coatings, especially tile adhesives, leveling compounds, screeds or reinforcing materials for thermal insulation systems.
  • Dry building material formulations usually comprise hydraulically setting binders, such as cement or hydraulic lime, as well as fillers, polymers in the form of water-redispersible powders and optionally further additives. Before application, the building material dry formulations are mixed with water. As polymers in the form of water-redispersible powders, it is called powder composition which, by means of drying, the corresponding aqueous solution
  • a problem is to provide polymer powder-containing building material dry formulations, which are sufficiently stable in storage, in particular under moist, warm or even moist, such as tropical conditions, and from which the polymers are completely redispersed and thus released after the addition of water.
  • This problem arises precisely when it comes to the hydraulically setting binders of the building blocks containing polymer powders.
  • Substance-dry formulations in substantial proportions to cement or hydraulic lime is. If no or only small amounts of cement or hydraulic lime are used as hydraulically setting binders, this problem arises not or not to a relevant extent, so that such building material dry formulations can give no indication for improving the storage stability of building material dry formulations according to the invention.
  • Baustofftrocken formulations should not block as long as possible and their Rieself ability should suffer no loss.
  • Incompletely redispersed polymers give fresh mortars or cured construction products which do not have the required performance properties, such as course, tack, suppleness or air-particle content of the fresh mortar or impact resistance, cohesion or adhesion of the cured building products.
  • the problems mentioned also occur in temperate climates, in which, in seasonal changes, humid and / or humid conditions may temporarily prevail.
  • Perforations are perforations of bags and have, for example, diameters in the millimeter range. Perforations simplify the filling of building material - dry formulations in bags.
  • the building material drying formulations are usually mixed with air in order to convert them into a fluid state and thus to be able to easily fill in bags. The air escapes through the perforations from the sacks.
  • the building material dry formulations are also exposed to the ambient air and a corresponding material exchange via the perforations during storage or during transport, which has a fatal effect on the property profile of the dry powder-containing building material dry formulations, especially at high air humidity, especially at warm temperatures.
  • WO-A 2012/019908 recommends polymer powder compositions containing fatty acid (derivatives) or organosilicon compounds for this purpose. It is proposed in GB 826,316 to add to the cement additives such as pentachlorophenol / chloro-cresolic acid mixtures or mixtures with oleic acid. GB 841,304 suggests the addition of
  • GB 1,188,713 it is known to add to the cement long-chain amines to improve the storage stability.
  • Portland cement is ground with an additive, in particular from the group of fatty acids.
  • adipic acid or a mixture with adipic acid is added to improve the storage stability of cement.
  • the addition of antioxidants is recommended in EP 1260490 A1.
  • the previously known approaches to improve the storage stability of cement or hydraulic lime-containing dry mortar often have the disadvantage that often a cover milling of the additives with the hydraulically setting binder is required.
  • a further disadvantage is that after modification of dry mortars with corresponding additives, the property profile of fresh mortars produced therefrom and of cured building products is accompanied.
  • the CN 203143402 recommends for the storage of cement silos, which are equipped with an anti-condensation device, so as to prevent the deposition of cement on the silo walls.
  • the anti-condensation device contains silica gel.
  • CA 1132784 describes rapidly setting dry mixes based on cement, lime, alabaster and optionally silica gel.
  • WO2015 / 062749 teaches gypsum-based binder compositions which contain cement and zeolite as additive, and recommends their use in construction-chemical products which, in addition to fillers, may optionally contain water-redispersible polymer powders.
  • EP1381643 recommends poly merpulverzusararaen stuen, which may contain a wide variety of inorganic fillers.
  • CN 1792975 is concerned with aqueous coating compositions containing inorganic binders, copolymers, polyvinyl alcohol and silica and thus can not contribute to improving the storage of building material dry formulations.
  • CN 102249604 also describes aqueous coating compositions based on polymer dispersions, silica sol and fillers.
  • the object was to provide measures for improving the storage stability of building material dry formulations containing water-redispersible polymer powder and hydraulic binders as a significant proportion of cement and hydraulic lime.
  • the storage stability of the building material dry formulations under moist or warm, preferably moist, warm conditions, such as tropical conditions, should be improved.
  • such Baustofftrockenformultechniken during storage over a longer period preferably should not block and their Rieself ability should suffer no loss.
  • the building material dry formulations should retain their performance properties during storage and, after storage, yield, for example, fresh mortar or cured construction products which have the desired property profile in terms of flow, tack, suppleness, air pore content or impact resistance, cohesion or adhesion. This task is particularly relevant for polymer powder-containing building pulp formulations which are stored in perforated bags.
  • the problem could be solved by using silica gel or zeolites as stabilizer.
  • the stabilizers are part of the building material dry formulations.
  • the stabilizers and the building materials dryer are Although spatially separated, but via air exchange in contact with each other.
  • An object of the invention is the use of one or more stabilizers to improve the storage stability of Baustofftrockenformulierungen containing
  • one or more fillers and optionally one or more additives characterized in that one or more stabilizers are selected from the group comprising silica gel and zeolites,
  • a) are part of the building material dry formulations; or b) spatially separate from the building material dry formulations but in contact with the dry building material formulations via air exchange, and
  • hydraulically setting binders are cement and / or hydraulic lime, based on the total weight of the hydraulically setting binder.
  • the dry building material formulations are preferably stored for more than one day, more preferably for more than a week, even more preferably for more than one month, more preferably for more than six months, and most preferably for more than twelve months in the manner of the invention.
  • the storage temperatures may be, for example, between -50 ° C and 60 ° C, preferably between 15 ° C and 50 ° C, especially preferably between 25 ° C and 45 ° C and most preferably between 30 and 40 ° C.
  • the relative humidities are for example from 20 to 100%, preferably from 50 to 95%, more preferably from 60 to 90%, more preferably from 70 to 90% and most preferably from 80 to 90%.
  • the storage of the building material dry formulations according to alternative a) or b) can be carried out in air-permeable containers.
  • the air-permeable containers are based for example on cellulosic materials such as paper or cardboard, or plastics such as polystyrene, in particular polyethylene or polypropylene. Alternatively, for example, plastic-coated or laminated with one or more plastic films cellulosic materials are suitable.
  • the air-permeable containers can, for example, consist entirely or at least in places of porous materials. Porous materials are permeable to air.
  • the luft devisläs ⁇ sigen containers can also be perforated, ie be provided with holes. A perforation is a perforation of the container.
  • a perforation has a diameter of vorzugswei ⁇ se ⁇ 2 mm, more preferably ⁇ 1 mm and most preferably ⁇ 0.5 mm.
  • a perforation is preferably> 0.1 mm and more preferably> 0.5 mm.
  • the perforations can be arranged arbitrarily, that is to say in an unordered or ordered form, for example forming one or more lines or a diamond or raster pattern or even applied in an irregular manner.
  • Air exchange or air permeability here also includes exchange or permeability of water vapor or gaseous water.
  • the air exchange is generally made possible by the fact that the building material dry formulations and the stabilizers are exposed to the same air medium.
  • the building material dry formulations and the stabilizers may each be in a separate air-permeable container, in particular a package, for example a sack, a bag or a bag.
  • an air-permeable container contains at least two air-permeable chambers, wherein at least one air-permeable chamber contains a building material dry formulation, but no stabilizer and at least one air-permeable chamber stabilizers, but no Baustoffftrockenformulmaschine.
  • one of the two aforementioned components can be located in an air-permeable container which is in direct or indirect contact with the other component.
  • direct contact the air-permeable container and the other component touch.
  • indirect contact the air-permeable container and the other component are in the same room without touching each other.
  • the spatially separate building material dryer formulations and stabilizers can be located, for example, within a container, for example a container, or a building, for example a warehouse.
  • the spatially separate use according to alternative b) has the advantage that the Baustofftrockenformultechniken and the stabilizers easily separated after storage and the stabilizers can be used again for the storage of building material dry formulations or for other purposes.
  • the stabilizers can therefore be recycled.
  • the stabilizers are regenerated prior to further use, for example by heating, preferably to a temperature in the range of 50 to 500 ° C, more preferably 60 to 350 ° C, and most preferably 70 to 200 ° C.
  • one or more hydraulically setting binders one or more polymers in the form of water-redispersible powders,
  • one or more stabilizers selected from the group comprising silica gel and zeolites are contained and at least 40% by weight of the hydraulically setting binders are cement and / or hydraulic lime, based on the total weight of the hydraulically setting binder.
  • the stabilizers are generally used in the form of powders.
  • the stabilizers have particle sizes of preferably 0.1 ⁇ m to 10 mm, more preferably 1 ⁇ m to 5 mm, even more preferably 10 ⁇ m to 3 mm, particularly preferably 100 ⁇ m to 1 mm and most preferably 200 to 500 ⁇ m (determined by means of trans-electron microscopy with the device Libra 120 from Zeiss).
  • the amount of stabilizer is preferably 0.1 to 30% by weight, more preferably 0.5 to 20% by weight, and most preferably 1 to 10% by weight, based on the total weight of the building material dry formulations.
  • silica gel is preferable.
  • Silica gel is known to be an amorphous silica. Silica gel is generally insoluble in water or sedimented in water.
  • Silica gel at 40% relative humidity and 23 ° C has an adsorption capacity for water of preferably 30 30% by weight and more preferably ⁇ 25% by weight, based on the dry weight of the silica gel.
  • the silica gel has a water adsorption capacity of preferably 26% by weight, more preferably 30% by weight, and most preferably> 32% by weight, based on the dry weight of the silica gel.
  • the data relate preferably to 1 atm or 1 bar, or generally to ambient pressure.
  • the dry weight refers to the mass of the silica gel after drying at 150 ° C to constant weight.
  • the determination of the adsorption capacity is carried out gravimetrically.
  • the adsorption behavior of the silica gel is particularly advantageous for achieving the object according to the invention, especially when the building material dry formulations are exposed to changing climatic conditions.
  • the silica gel used has a residual water content of preferably 15% by weight, more preferably 11% by weight and most preferably 6% by weight, based on the total weight of the silica gel (determined at 150 ° C. in the IR range). Dryer).
  • the silica gel has a BET surface area of preferably 300 to 500 m 2 / g and particularly preferably 350 to 450 m 2 / g (determination according to DIN 66131 (with nitrogen)).
  • silica gel The preparation of silica gel is well known.
  • the preparation of silica gel is generally carried out by reacting water glass, for example water-soluble alkali silicates, in particular the potassium or sodium silicates, with acid, in particular mineral acids such as hydrochloric acid or sulfuric acid, and then drying.
  • Water glass is known, for example, obtainable by melting quartz sand with alkali metal carbonates at 1400 ° C to 1500 ° C and subsequent conversion into an aqueous solution.
  • Silica gel as well as water glass are commercially available.
  • Zeolites are known to belong to the class of alumosilicates, in particular crystalline aluminosilicates. Zeolites are generally composed of units of A-
  • Zeolites are known to have secondary structures for which pores and / or channels are characteristic. Zeolites are a very narrow selection from the large class of aluminosilicates.
  • zeolites by synthesis, modified Zeo lithe ⁇ or preferably natural zeolites used.
  • zeolites are Faserzeolithe (in particular Natolith, Laumontit, Mordenit, Thomsonit), Blattzeolithe (in particular Heulandit, Stilbit, Phillipsit, Harmotom, Yugawarellite) and Würfelzeolithe (in particular Faujasit, Gmelinit, Chabasit, Offretit, Levyn).
  • Faserzeolithe in particular Natolith, Laumontit, Mordenit, Thomsonit
  • Blattzeolithe in particular Heulandit, Stilbit, Phillipsit, Harmotom, Yugawarellite
  • Würfelzeolithe in particular Faujasit, Gmelinit, Chabasit, Offretit, Levyn.
  • zeolite zeolites Particularly preferred are zeolite zeolites.
  • the zeolites have a pore size of preferably 1 to 10 ⁇ , more preferably 2 to 8 ⁇ , and most preferably 2 to 5 ⁇ .
  • Suitable hydraulically setting binders are, for example, cements, in particular Portland cement, aluminate cement, trass cement, metallurgical cement, magnesia cement, phosphate cement or blastfurnace cement, as well as mixed cements, filler cements, fly ash, hydraulic lime or gypsum. Preference is given to cements, such as Portland cement, Aluminatzement, Kirtenzement, mixed cements and filling cements, or hydraulic lime.
  • the hydraulically setting binders comprise cement and / or hydraulic lime preferably at> 50% by weight, more preferably> 60% by weight, even more preferably> 70% by weight and most preferably 90% by weight, based on the total weight of the hydraulically setting binders. Most preferred are hydraulically setting binders containing exclusively hydraulic lime, preferably cement.
  • the construction dry formulations contain from 1 to 70 weight percent, preferably from 5 to 60 weight percent, more preferably from 8 to 50 weight percent, even more preferably from 10 to 40 weight percent, most preferably from 10 to 30 weight percent. % and most preferably 10 to 20% by weight of hydraulically setting binders, each based on the total weight of the building material dry formulations.
  • the building material drying formulations may contain one or more pozzolans.
  • Preferred pozzolans are from ⁇ selected from the group comprising kaolin, microsilica, di ⁇ atoms earth, fly ash, trass powder, ground blast furnace slag, Glass flour, precipitated silica and fumed silica.
  • Particularly preferred pozzolans are kaolin, microsilica, fly ash, ground blast furnace slag, especially metakaolin.
  • pozzolans do not comprise zeolites and in particular no silica gel.
  • the dry building material formulations can contain, for example, 0.1 to 20% by weight, preferably 1 to 10% by weight and particularly preferably 1 to 5% by weight of pozzolans, based on the total weight of the building material dry formulations.
  • suitable fillers are quartz sand, quartz flour, calcium carbonate, dolomite, clay, chalk, hydrated lime, talc or mica, or light fillers such as pumice, foam glass, aerated concrete, perlite, vermiculite, carbon nanotubes (CNT). It is also possible to use any desired mixtures of the stated fillers. Preference is given to quartz sand, quartz flour, calcium carbonate, chalk or hydrated lime. By way of clarification, it should be noted that fillers do not comprise zeolites and in particular no silica gel.
  • the building material dry formulations generally contain from 5 to 95% by weight, preferably from 30 to 90% by weight and more preferably from 40 to 85% by weight of fillers, based in each case on the total weight of the building material dry formulations.
  • thickeners for example polysaccharides such as cellulose ethers and modified cellulose ethers, starch ethers, guar gum, xanthan gum, layered silicates, polycarboxylic acids such as polyacrylic acid and their partial esters, and polyvinylalcohols which may optionally be acetalated or hydrophobically modified , Casein and associative thickeners.
  • Typical additives are also retarders, such as hydroxycarboxylic acids, or dicarboxylic acids or their salts, saccharides,
  • Other common additives are setting accelerators, For example, alkali metal or alkaline earth metal salts of inorganic or organic acids.
  • additives do not comprise zeolites and in particular no silica gel.
  • Additives are preferably present at 0 to 20 wt .-%, particularly preferably 0.1 to 10 wt .-% in the building material dry formulations, based on the total weight of the building material dry formulations.
  • the dry building material formulations generally contain from 0.1 to 90% by weight, preferably from 0.5 to 60% by weight, more preferably from 1 to 50% by weight, even more preferably from 2 to 45% by weight, most preferably 5 to 40.0% by weight, and most preferably from 10 to 35% by weight, of polymers of ethylenically unsaturated monomers, in each case based on the total weight of the building material dry formulations.
  • Suitable polymers of ethylenically unsaturated monomers are, for example, those based on one or more monomers from the group consisting of vinyl esters, (meth) acrylic esters, vinylaromatics, olefins, 1,3-dienes and vinyl halides and optionally further monomers copolymerizable therewith ,
  • the polymers are preferably not crosslinked.
  • Suitable vinyl esters are those of carboxylic acids having 1 to 15 carbon atoms.
  • vinyl acetate Preference is given to vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl laurate, 1-methylvinyl acetate, vinyl pivalate and vinyl esters of ⁇ -branched monocarboxylic acids having 9 to 11 C atoms, for example VeoVa9 R or VeoVal0 R (trade names the company Resolution). Particularly preferred is vinyl acetate.
  • Suitable monomers from the group of acrylic acid esters or methacrylic esters are esters of unbranched or branched alcohols having 1 to 15 C atoms.
  • Preferred methacrylates or acrylates are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, 2-ethylhexyl acrylate.
  • Particularly preferred are methyl acrylate, methyl methacrylate, n-butyl acrylate, t-butyl acrylate and 2-ethylhexyl acrylate.
  • Preferred vinyl aromatic compounds are styrene, methylstyrene and vinyltoluene.
  • Preferred vinyl halide is vinyl chloride.
  • the preferred olefins are ethylene, propylene and the preferred dienes are 1,3-butadiene and isoprene.
  • auxiliary monomers can be copolymerized from 0.1 to 5% by weight, based on the total weight of the monomer mixture.
  • auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids, preferably acrylic acid, methacrylic acid, fumaric acid and maleic acid; ethylenically unsaturated carboxylic acid amides and nitrites, preferably acrylamide and acrylonitrile; Monoesters and diesters of fumaric acid and maleic acid, such as diethyl and diisopropyl esters and maleic anhydride; ethylenically unsaturated sulfonic acids or salts thereof, preferably vinylsulfonic acid, 2-acrylamido-2-methyl-propanesulfonic acid.
  • precrosslinking comonomers such as multiply ethylenically unsaturated comonomers, for example diallyl phthalate, divinyl adipate, diallyl maleate, allyl methacrylate or triallyl cyanurate, or postcrosslinking comonomers, for example acrylamidoglycolic acid (A-GA), methyl acrylamidoglycolic acid methyl ester (MAGME), N-methylolacrylamide (NMA), N- Methylolmethacrylamide, N-methylolallyl carbamate, alkyl ethers such as the isobutoxy ether or esters of N-methylolacrylamide, of N-methylolmethacrylamide and of N-methylolallylcarbamate.
  • A-GA acrylamidoglycolic acid
  • MAGME methyl acrylamidoglycolic acid methyl ester
  • NMA N-methylolacrylamide
  • NMA N- Methylolmethacryl
  • epoxide-functional comonomers such as glycidyl methacrylate and glycidyl acrylate.
  • silicon-functional comonomers such as Acryloxypropyltri (alkoxy) - and Methacryloxypropyltri (alkoxy) - silanes, Vinyltrialkoxysilane and Vinylmethyldialkoxysilane, which may be contained as alkoxy, for example, ethoxy and Ethoxypro- pylenglykolether residues.
  • methacrylic acid and acrylic acid hydroxyalkyl esters such as hydroxyethyl, hydroxypropyl or hydroxybutyl acrylate or methacrylate
  • compounds such as diacetone acrylamide and acetylacetoxyethyl acrylate or methacrylate.
  • the monomer selection or the selection of the weight proportions of the comonomers is carried out so that a glass transition temperature Tg of -25 ° C to + 25 ° C, preferably -10 ° C to + 10 ° C, more preferably -10 ° C to 0 ° C. results.
  • the glass transition temperature Tg of the polymers can be determined in a known manner by means of
  • Tg Differential Scanning Calorimetry (DSC) can be determined.
  • copolymers of vinyl acetate with 1 to 50% by weight of ethylene Preference is given to copolymers of vinyl acetate with 1 to 50% by weight of ethylene, copolymers of vinyl acetate with 1 to 50% by weight of ethylene and 1 to 50% by weight of one or more further comonomers from the group of vinyl esters having 1 to 12 C atoms in the carboxylic acid radical such as vinyl propionate, vinyl laurate, vinyl esters of alpha-branched carboxylic acids having 9 to 13 carbon atoms such as VeoVa9, VeoValO, VeoVall; Copolymers of vinyl acetate, 1 to 50% by weight of ethylene and preferably 1 to 60% by weight of (meth) acrylic acid esters of unbranched or branched alcohols having 1 to 15 carbon atoms, in particular n-butyl acrylate or 2-ethylhexyl acrylate ; and copolymers with 30 to 75% by weight of vinyl acetate, 1 to 30% by weight of vinyl
  • (meth) acrylic acid ester polymers such as copolymers of n-butyl acrylate or 2-ethylhexyl acrylate or copolymers of methyl methacrylate with n-butyl acrylate and / or 2-ethylhexyl acrylate; Styrene-acrylic acid ester copolymers with one or more monomers from the group of methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, vinyl acetate / acrylic ester copolymers with one or more monomers from the group of methyl acrylate, ethyl acrylate Propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate and optionally ethylene; Styrene-1,3-butadiene copolymers; wherein the polymers still mentioned
  • copolymers with vinyl acetate and 5 to 50 wt .-% of ethylene or copolymers with vinyl acetate, 1 to 50 wt .-% of ethylene and 1 to 50 wt .-% of a vinyl ester of ⁇ -branched monocarboxylic acids having 9 to 11 C atoms, or copolymers with 30 to 75% by weight of vinyl acetate, 1 to 30% by weight of vinyl laurate or vinyl ester of an aliphatic branched carboxylic acid having 9 to 11 C atoms, and 1 to 30% by weight ( Meth) acrylic acid esters of unbranched or branched alcohols having 1 to 15 carbon atoms, which still contain 1 to 40 wt .-% ethylene, or copolymers with vinyl acetate, 5 to 50 wt .-% of ethylene and 1 to 60 wt .-% vinyl - chloride.
  • the polymers are generally prepared in aqueous medium and preferably after the suspension or in particular according to the emulsion polymerization - as described for example in DE-A 102008043988.
  • the polymers are obtained in the form of aqueous dispersions.
  • the usual emulsifiers and / or preferably protective colloids can be used, as in DE-A
  • the protective colloids may be anionic or, preferably, cationic or nonionic. Combinations of cationic and nonionic protective colloids are also preferred.
  • Preferred nonionic protective colloids are polyvinyl alcohols.
  • Preferred cationic protective colloids are polymers which carry one or more cationic charges, as for example in E. W. Flick, Water Soluble Resins - Industrial Guide, Noyes Publications, Park Ridge, N.J., 1991. preferred
  • Protective colloids are polyvinyl alcohols, in particular partially hydrolyzed or fully hydrolyzed polyvinyl alcohols having a degree of hydrolysis of from 80 to 100% by weight. Particularly preferred are partially hydrolyzed polyvinyl alcohols having a degree of hydrolysis of 80 to 94 mol% and a Höppler viscosity, in 4% aqueous solution of 1 to 30 mPas (method according to Hoppler at 20 ° C, DIN 53015).
  • the abovementioned protective colloids can be obtained by methods known to the person skilled in the art and are generally added in a total amount of from 1 to 20% by weight, based on the total weight of the monomers, during the polymerization.
  • the polymers in the form of aqueous dispersions can, as described, for example, in DE-A 102008043988, be converted into corresponding water-redispersible powders.
  • a drying aid in a total amount of from 3 to 30% by weight, preferably from 5 to 20% by weight, based on the polymeric constituents of the dispersion, is used.
  • the aforementioned polyvinyl alcohols are preferred.
  • Polymers in the form of protective colloid-stabilized, water-redispersible powders are therefore preferred.
  • the drying of the dispersions can, for example, by fluidized bed drying, freeze drying or spray drying respectively.
  • the dispersions are spray-dried.
  • the spray drying is carried out in conventional spray drying systems, wherein the atomization can be done by means of one-, two- or multi-fluid nozzles or with a rotating disk.
  • the exit temperature is generally in the range of 45 ° C to 120 ° C, preferably 60 ° C to 90 ° C, depending on the system, Tg of the resin and the desired degree of drying selected.
  • the viscosity of the food to be atomized is adjusted via the solids content so that a value of ⁇ 500 mPas (Brookfield viscosity at 20 revolutions and 23 ° C.), preferably ⁇ 250 mPas, is obtained.
  • the solids content of the dispersion to be sprayed is preferably from 30 to 75% by weight and more preferably from 50 to 60% by weight.
  • a content of up to 1.5% by weight of antifoaming agent, based on the polymer has proven favorable in many cases.
  • the polymer powder obtained can be provided with one or more anti-blocking agents, preferably from 1 to 30% by weight, based on the total weight of polymeric constituents.
  • antiblocking agents are Ca or Mg carbonate, talc, gypsum, silicic acid, kaolins such as metakaolin, silicates having particle sizes preferably in the range from 10 nm to 10 ⁇ m.
  • Antiblocking agents are different from the stabilizers according to the invention.
  • the antiblocking agents can be used in addition to the stabilizers according to the invention.
  • additives may additionally be added during drying, such as, for example, pigments, fillers, foam stabilizers, water repellents or cement liquefiers.
  • a further subject of the invention are processes for the preparation of building material dry formulations in which one or more hydraulically setting binders, one or more polymers in the form of water-redispersible powders, optionally one or more fillers and optionally one or more additives are mixed, characterized in that
  • dry building material formulations are obtainable, for example, by mixing and homogenizing the individual constituents of the building material formulations in conventional powder mixing devices, for example by means of mortar, concrete mixers or plastering machines or stirrers.
  • the building material formulations according to the invention are therefore in the form of dry mixtures.
  • the preparation of the construction dry formulations generally takes place without the addition of water or in the absence of water.
  • the amount of water required for the application of the dry building material formulations is added prior to its application in the well-known amounts.
  • premixes are first prepared from at least two constituents of the building material dry formulations, which are then blended with one or more other constituents of the building material dry formulations.
  • Preferred premixes contain one or more stabilizers and one or more polymers in the form of water-redispersible powders. With such compositions, the object of the invention can be achieved in a particularly advantageous manner.
  • the invention further provides water-redispersible polymer compositions obtainable by mixing one or more polymers in the form of water-redispersible powders and one or more stabilizers selected from the group comprising silica gel and zeolite.
  • the polymer compositions preferably contain from 0.1 to 1000% by weight, more preferably from 1 to 700% by weight and most preferably from 5 to 500% by weight of stabilizers, based on the total weight of the water-redispersible polymers.
  • the polymer compositions preferably contain 50% by weight, more preferably 80 80% by weight and even more preferably 90 90% by weight of stabilizers and polymers in the form of water-redispersible powders, based on the total weight of the polymer - Compositions. Most preferably, the polymer compositions consist of stabilizers and polymers in the form of water-redispersible powders.
  • Another object of the invention are methods for preparing the water-redispersible polymer compositions, characterized in that
  • one or more polymers in the form of water-redispersible powders and one or more stabilizers selected from the group comprising silica gel and zeolites are mixed.
  • the mixing of the polymers and the stabilizers is not bound to any particular procedure or device and can be done in the usual mixing containers.
  • polymers in the form of aqueous dispersions are converted into water-redispersible powders by drying, and then stabilizers are added.
  • the addition of the stabilizers thus takes place after the drying of the polymer dispersions.
  • the stabilization After the drying process, the polymer dispersion can be metered into the spray dryer after the drying process has ended, if appropriate together with other conventionally admixable additives, for example antiblocking agents, defoamers, foam stabilizers, fillers, dyes, biocides, thickening agents.
  • the building material dry formulations according to the invention are suitable, for example, for the production of reinforcing materials for thermal insulation composite systems, or for the production of adhesives or coating compositions.
  • adhesives are adhesives for thermal insulation boards and sound insulation boards, tile adhesives, jointing mortars and adhesives for bonding wood and wood-based materials.
  • coating compositions are mortars, leveling compounds, screeds, skim coat, sealing slurries, powder paints and plasters.
  • the storage stability of the building material dry formulations is improved by the procedure according to the invention and this even under moist or warm or even moist, for example tropical storage conditions.
  • This also applies in particular to the storage of building material dry formulations in perforated bags.
  • the procedure according to the invention for example, the flowability of building material dry formulations can be better preserved and their
  • building material dry formulations according to the invention lead after storage to construction products with better application properties, such as course, tack, suppleness or air pore content of fresh mortars or impact resistance, cohesion or adhesion of cured building products.
  • Polyvinyl alcohol-stabilized, water-redispersible polymer powder based on a copolymer of vinyl acetate, ethylene and VeoValO, with calcium carbonate and kaolin as an anti-blocking agent.
  • ⁇ dry stock formulation For storing the respective sample of the respective construction ⁇ dry stock formulation was placed in a plastic cup with a volume of 125 ml.
  • the lid of the plastic cup had a hole of 1 mm in diameter. Otherwise provided with the De ⁇ ckel plastic cup was hermetically sealed.
  • Table 1 Storage stability of the building material dry formulation:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Ein Gegenstand der Erfindung ist Verwendung von einem oder mehreren Stabilisatoren zur Verbesserung der Lagerstabilität von Baustofftrockenformulierungen enthaltend ein oder mehrere hydraulisch abbindende Bindemittel, ein oder mehrere Polymerisate in Form von in Wasser redispergierbaren Pulvern, gegebenenfalls ein oder mehrere Füllstoffe und gegebenenfalls ein oder mehrere Zusatzstoffe, dadurch gekennzeichnet, dass ein oder mehrere Stabilisatoren ausgewählt werden aus der Gruppe umfassend Silicagel und Zeolithe, wobei die Stabilisatoren a) Bestandteil der Baustofftrockenformulierungen sind; oder b) räumlich getrennt von den Baustofftrockenformulierungen, aber über Luftaustausch in Kontakt mit den Baustofftrockenformulierungen sind; und wobei mindestens 40 Gew.-% der hydraulisch abbindenden Bindemittel Zement und/oder hydraulischer Kalk sind, bezogen auf das Gesamtgewicht der hydraulisch abbindenden Bindemittel.

Description

Stabilisatoren zur Verbesserung der Lagerstabilität von Polymerpulver enthaltenden Baustofftrockenformulierungen
Die Erfindung betrifft die Verwendung von Stabilisatoren zur Verbesserung der Lagerstabilität von Polymerpulver enthaltenden Baustofftrockenformulierungen, Stabilisatoren enthaltende Baustofftrockenformulierungen und Stabilisatoren enthaltende Polymer-Zusammensetzungen sowie deren Verwendung beispielsweise in Klebe- oder Beschichtungsmitteln, insbesondere Fliesen- kleber, Verlaufsmassen, Estrichen oder Armierungsmassen für Wärmedämmverbundsysteme .
Baustofftrockenformulierungen enthalten üblicherweise hydraulisch abbindende Bindemittel, wie Zement oder hydraulischer Kalk, sowie Füllstoffe, Polymere in Form von in Wasser redis- pergierbaren Pulvern und gegebenenfalls weitere Additive. Vor der Applikation werden die Baustofftrockenformulierungen mit Wasser angemacht. Als Polymerisate in Form von in Wasser re- dispergierbaren Pulvern bezeichnet man Pulverzusammenset zun- gen, welche mittels Trocknung der entsprechenden wässrigen
Polymerdispersionen in Gegenwart von Schutzkolloiden zugänglich werden. Aufgrund dieses Herstellungsprozesses wird das feinteilige Polymerharz der Dispersion mit einem wasserlöslichen Schutzkolloid ausreichender Menge umhüllt. Bei der Trocknung wirkt das Schutzkolloid wie ein Mantel, welcher das Zusammenkleben der Teilchen verhindert. Beim Redispergieren der Polymerpulver in Wasser löst sich das Schutzkolloid wieder in Wasser und es liegt eine wässrige Dispersion der ursprünglichen Polymerteilchen vor (Schulze J. in TIZ, No . 9, 1985) .
Ein Problem besteht jedoch darin, Polymerpulver enthaltende Baustofftrockenformulierungen bereitzustellen, die insbesondere unter feuchten, warmen oder gar feuchtwarmen, wie tropischen Bedingungen, hinreichend lagerstabil sind, und aus denen die Polymerisate nach Zugabe von Wasser möglichst vollständig redispergiert und somit freigesetzt werden. Diese Problemstellung tritt gerade dann auf, wenn es sich bei den hydraulisch abbindenden Bindemitteln der Polymerpulver enthaltenden Bau- Stofftrockenformulierungen zu erheblichen Anteilen um Zement oder hydraulischen Kalk handelt. Wenn als hydraulisch abbindende Bindemittel keine oder nur geringe Anteile an Zement o- der hydraulischem Kalk zum Einsatz kommen, tritt diese Prob- lemstellung nicht oder nicht in relevantem Maße auf, so dass solche Baustofftrockenformulierungen keinen Hinweis zur Verbesserung der Lagerstabilität von erfindungsgemäßen Baustofftrockenformulierungen geben können. Während der Lagerung sollen solche Baustofftrockenformulierungen möglichst lange nicht verblocken und ihre Rieself higkeit soll keine Einbuße erleiden. Unvollständig redispergierte Polymerisate ergeben Frischmörtel oder ausgehärtete Bauprodukte, die nicht die geforderten anwendungstechnischen Eigenschaften aufweisen, wie beispielsweise Verlauf, Klebrigkeit, Geschmeidigkeit oder Luftpo- rengehalt der Frischmörtel oder Schlagfestigkeit, Kohäsion o- der Adhäsion der ausgehärteten Bauprodukte. Die genannten Probleme treten auch in gemäßigten Klimazonen auf, in denen im jahreszeitlichen Wechsel zeitweise auch feuchte und/oder feuchtwarme Bedingungen herrschen können.
Solche Problemstellungen sind besonders ausgeprägt beim gängigen Lagern und Transportieren von Baustofftrockenformulierungen in perforierten Säcken. Perforationen sind Durchlochungen von Säcken und haben beispielsweise Durchmesser im Millimeter- bereich. Perforationen vereinfachen das Abfüllen von Baustoff - trockenformulierungen in Säcke. Beim Abfüllvorgang werden die Baustofftrockenformulierungen üblicherweise mit Luft gemischt, um sie in einen fluiden Zustand zu überführen und so leicht in Säcke abfüllen zu können. Die Luft entweicht durch die Perfo- rationen aus den Säcken. Über die Perforationen sind die Baustofftrockenformulierungen allerdings auch während der Lagerung oder während des Transports in Kontakt mit der Umgebungs- luft und einem entsprechenden stofflichen Austausch ausgesetzt, was sich insbesondere bei hoher Luftfeuchtigkeit gerade bei warmen Temperaturen fatal auf das Eigenschaftsprofil der Polymerpulver enthaltenden Baustofftrockenformulierungen auswirkt . Zur Lösung solcher Problemstellungen wurde im Stand der Technik vielfach der Zusatz von organischen Additiven zu zementä- ren Trockenmörteln gelehrt. Beispielsweise empfiehlt die WO-A 2012/019908 hierfür Fettsäure (derivate) oder Organosilicium- Verbindungen enthaltende Polymerpulverzusammensetzungen. In der GB 826,316 wird vorgeschlagen, dem Zement Additive wie Pentachlorphenol/Chlor-Kresolsäure-Gemische oder Gemische mit Ölsäure zuzugeben. Die GB 841,304 schlägt die Zugabe von
Schmieröl und/oder Wachs und Ölsäure zum Zement vor. Aus der GB 1,188,713 ist bekannt, zur Verbesserung der Lagerstabilität dem Zement langkettige Amine zuzugeben. Bei dem Verfahren aus der GB 1,012,182 wird Portlandzement mit einem Additiv, insbesondere aus der Gruppe der Fettsäuren vermählen. In der US 7,074,269 B2 wird zur Verbesserung der Lagerstabilität von Ze- ment Adipinsäure oder ein Gemisch mit Adipinsäure zugegeben. Zur Verbesserung der Lagerstabilität von Trockenmörtelformulierungen wird in der EP 1260490 AI die Zugabe von Antioxidantien empfohlen. Die bisher bekannten Ansätze zur Verbesserung der Lagerstabilität von Zement oder hydraulischen Kalk enthaltenden Trockenmörtel haben vielfach den Nachteil, dass häufig eine Covermahlung der Additive mit dem hydraulisch abbindenden Bindemittel erforderlich ist. Ein weiterer Nachteil besteht darin, dass nach Modifizierung von Trockenmörteln mit entsprechenden Additiven das Eigenschaftsprofil daraus herge- stellter Frischmörtel und ausgehärteter Bauprodukte einhergeht .
Die CN 203143402 empfiehlt für die Lagerung von Zement Silos, die mit einer Antikondensationsvorrichtung ausgestattet sind, um so die Ablagerung von Zement an den Silowänden zu unterbinden. Die Antikondensationsvorrichtung enthält Silicagel. Die CA 1132784 beschreibt rasch abbindende Trockenmischungen basierend auf Zement, Kalk, Alabaster und gegebenenfalls Silicagel. Die WO2015/062749 lehrt Gips-basierte Bindemittelzusam- mensetzungen, die als Additiv Zement und Zeolith enthalten, und empfiehlt deren Einsatz in bauchemischen Produkten, die neben Füllstoffen gegebenenfalls in Wasser redispergierbare Polymerpulver enthalten können. Die EP1381643 empfiehlt Poly- merpulverzusararaensetzungen, die unterschiedlichste anorganische Füllstoffe enthalten können.
Die CN 1792975 befasst sich mit wässrigen Beschichtungsmitteln enthaltend anorganische Bindemittel, Copolymere, Polyvinylal- kohol sowie Silica und kann somit keinen Beitrag zur Verbesserung der Lagerung von Baustofftrockenformulierungen leisten. Auch die CN 102249604 beschreibt wässrige Beschichtungsmittel basierend auf Polymerdispersionen, Silicasol und Füllstoffen.
Vor diesem Hintergrund bestand die Aufgabe in der Bereitstellung von Maßnahmen zur Verbesserung der Lagerstabilität von Baustofftrockenformulierungen, die in Wasser redispergierbare Polymerpulver und als hydraulisch abbindende Bindemittel zu erheblichem Anteil Zement und hydraulischen Kalk enthalten.
Hierbei sollte insbesondere die Lagerstabilität der Baustofftrockenformulierungen unter feuchten oder warmen, vorzugsweise feuchtwarmen, wie tropischen Bedingungen, verbessert werden. Beispielsweise sollen solche Baustofftrockenformulierungen während der Lagerung über einen längeren Zeitraum hinweg vorzugsweise nicht verblocken und ihre Rieself higkeit soll keine Einbuße erleiden. Nach Möglichkeit sollen die Baustofftrocken- formulierungen bei der Lagerung ihre anwendungstechnischen Eigenschaften bewahren und nach der Lagerung beispielsweise Frischmörtel oder ausgehärtete Bauprodukte ergeben, die hinsichtlich Verlauf, Klebrigkeit, Geschmeidigkeit, Luftporengehalt oder Schlagfestigkeit, Kohäsion oder Adhäsion das gewünschte Eigenschaftsprofil aufweisen. Diese Aufgabenstellung ist besonders relevant für Polymerpulver enthaltende Bau- Stofftrockenformulierungen, die in perforierten Säcken gelagert werden.
Überraschenderweise konnte die Aufgabe durch Einsatz von Sili- cagel oder Zeolithen als Stabilisator gelöst werden. In einer bevorzugten Ausführungsform sind die Stabilisatoren Bestandteil der Baustofftrockenformulierungen. In einer alternativen Ausführungsform sind die Stabilisatoren und die Baustofftro- ckenformulierungen zwar räumlich voneinander getrennt, aber über Luftaustausch in Kontakt miteinander.
Herkömmliche Additive, wie sie üblicherweise als Antiblockmit- tel für in Wasser redispergierbare Polymerpulver eingesetzt werden, wie Carbonate oder hierfür gängige Silikate, erwiesen sich zum Lösen der Aufgabe als unzureichend. Polymerpulver mit Antiblockmitteln, wie Kieselsäuren oder Aluminiumsilikaten, sind beispielsweise in der DE-A 2214410 oder der GB 929704 be- schrieben. Die DE-A 3101413 empfiehlt für den analogen Zweck hydrophobe Kieselsäuren.
Ein Gegenstand der Erfindung ist die Verwendung von einem oder mehreren Stabilisatoren zur Verbesserung der Lagerstabilität von Baustofftrockenformulierungen enthaltend
ein oder mehrere hydraulisch abbindende Bindemittel,
ein oder mehrere Polymerisate in Form von in Wasser redisper- gierbaren Pulvern,
gegebenenfalls ein oder mehrere Füllstoffe und gegebenenfalls ein oder mehrere Zusatzstoffe, dadurch gekennzeichnet, dass ein oder mehrere Stabilisatoren ausgewählt werden aus der Gruppe umfassend Silicagel und Zeolithe,
wobei die Stabilisatoren
a) Bestandteil der Baustofftrockenformulierungen sind; oder b) räumlich getrennt von den Baustofftrockenformulierungen, aber über Luftaustausch in Kontakt mit den Baustofftrockenformulierungen sind, und
wobei mindestens 40 Gew.-% der hydraulisch abbindenden Bindemittel Zement und/oder hydraulischer Kalk sind, bezogen auf das Gesamtgewicht der hydraulisch abbindenden Bindemittel.
Die Baustofftrockenformulierungen werden vorzugsweise für mehr als einen Tag, mehr bevorzugt für mehr als eine Woche, noch mehr bevorzugt für mehr als einen Monat, besonders bevorzugt für mehr als sechs Monate und am meisten bevorzugt für mehr als zwölf Monate auf die erfindungsgemäße Weise gelagert. Die Temperaturen bei der Lagerung können beispielsweise zwischen -50°C und 60°C, vorzugsweise zwischen 15°C und 50°C, besonders bevorzugt zwischen 25°C und 45°C und am meisten bevorzugt zwischen 30 und 40°C liegen. Die relativen Luftfeuchtigkeiten liegen beispielsweise bei 20 bis 100%, vorzugsweise bei 50 bis 95%, mehr bevorzugt bei 60 bis 90%, besonders bevorzugt bei 70 bis 90% und am meisten bevorzugt bei 80 bis 90%.
Die Lagerung der Baustofftrockenformulierungen gemäß Alternative a) oder b) kann in luftdurchlässigen Behältnissen erfolgen. Die luftdurchlässigen Behältnisse basieren beispielsweise auf cellulosischen Materialien, wie Papier oder Karton, oder Kunststoffen, wie Polystyrol, insbesondere Polyethylen oder Polypropylen. Alternativ sind beispielsweise auch kunststoffbeschichtete oder mit einer oder mehreren Kunststoff folien kaschierte cellulosische Materialien geeignet. Die luftdurchläs- sigen Behältnisse können beispielsweise ganz oder zumindest stellenweise aus porösen Materialien bestehen. Poröse Materialien sind luftdurchlässig. Alternativ können die luftdurchläs¬ sigen Behältnisse auch perforiert sein, d.h. mit Löchern versehen sein. Eine Perforation ist eine Durchlochung des Behält - nisses. Eine Perforation hat einen Durchmesser von vorzugswei¬ se ^ 2 mm, besonders bevorzugt ^ 1 mm und am meisten bevorzugt < 0,5 mm. Eine Perforation ist vorzugsweise > 0,1 mm und mehr bevorzugt > 0,5 mm. Die Perforationen können beliebig, das heißt in ungeordneter oder geordneter Form angebracht sein, beispielsweise eine oder mehrere Linien oder ein Rauten- oder Raster-Muster bilden oder auch in unregelmäßiger Weise appliziert sein.
Luftaustausch oder Luftdurchlässigkeit umfasst hierbei auch Austausch beziehungsweise Durchlässigkeit von Wasserdampf oder gasförmigem Wasser. Der Luftaustausch wird allgemein dadurch ermöglicht, dass die Baustofftrockenformulierungen und die Stabilisatoren demselben Luftmedium ausgesetzt sind. Bei der räumlich getrennten Verwendung gemäß Alternative b) können sich die Baustofftrockenformulierungen und die Stabilisatoren jeweils in einem separaten luftdurchlässigen Behältnis befinden, insbesondere einer Verpackung, beispielsweise einem Sack, einer Tasche oder einem Beutel. In einer alternativen Ausführungsform enthält ein luftdurchlässiges Behältnis mindestens zwei luftdurchlässige Kammern, wobei mindestens eine luftdurchlässige Kammer eine Baustofftrockenformulierung, aber keinen Stabilisator und mindestens eine luftdurchlässige Kammer Stabilisatoren, aber keine Baustofftrockenformulierung enthält. Schließlich kann sich alternativ eine der beiden vorgenannten Komponenten in einem luftdurchlässigen Behältnis befinden, das in unmittelbarem oder mittelbarem Kontakt mit der anderen Komponente steht. Bei unmittelbarem Kontakt berühren sich das luftdurchlässige Behältnis und die andere Komponente. Bei mittelbarem Kontakt befinden sich das luftdurchlässige Behältnis und die andere Komponente in demselben Raum, ohne sich zu berühren. Die räumlich voneinander getrennten Baustofftro- ckenformulierungen und Stabilisatoren können sich beispielsweise innerhalb eines Behälters, beispielsweise einem Container, oder eines Gebäudes, beispielsweise einer Lagerhalle, befinden . Die räumlich getrennte Verwendung gemäß Alternative b) hat den Vorteil, dass die Baustofftrockenformulierungen und die Stabilisatoren nach der Lagerung leicht separiert und die Stabilisatoren erneut für die Lagerung von Baustofftrockenformulierungen oder für andere Zwecke verwendet werden können. Die Stabilisatoren können also recycled werden. Vorzugsweise werden die Stabilisatoren vor einer weiteren Verwendung regeneriert, beispielsweise durch Erhitzen, vorzugsweise auf eine Temperatur im Bereich von 50 bis 500 °C, besonders bevorzugt 60 bis 350°C und am meisten bevorzugt 70 bis 200°C.
Bevorzugt ist die erfindungsgemäße Verwendung der Stabilisatoren gemäß Alternative a) , bei der die Stabilisatoren in den Baustofftrockenformulierungen enthalten sind. Ein weiterer Gegenstand der Erfindung sind Baustofftrockenformulierungen enthaltend
ein oder mehrere hydraulisch abbindende Bindemittel, ein oder mehrere Polymerisate in Form von in Wasser redisper- gierbaren Pulvern,
gegebenenfalls ein oder mehrere Füllstoffe und
gegebenenfalls ein oder mehrere Zusatzstoffe,
dadurch gekennzeichnet, dass
zusätzlich ein oder mehrere Stabilisatoren ausgewählt aus der Gruppe umfassend Silicagel und Zeolithe enthalten sind und mindestens 40 Gew.-% der hydraulisch abbindenden Bindemittel Zement und/oder hydraulischer Kalk sind, bezogen auf das Ge- samtgewicht der hydraulisch abbindenden Bindemittel.
Die Stabilisatoren werden im Allgemeinen in Form von Pulvern eingesetzt. Die Stabilisatoren haben Teilchengrößen von vorzugsweise 0,1 μιη bis 10 mm, mehr bevorzugt 1 μτη bis 5 mm, noch mehr bevorzugt 10 μτη bis 3 mm, besonders bevorzugt 100 μττι bis 1 mm und am meisten bevorzugt 200 bis 500 μιη (bestimmt mittels Transelektronenmikroskopie mit dem Gerät Libra 120 der Firma Zeiss) . Die Menge an Stablilisatoren beträgt vorzugsweise 0,1 bis 30 Gew.-%, besonders bevorzugt 0,5 bis 20 Gew.-% und am meisten bevorzugt 1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Baustofftrockenformulierungen . Als Stabilisator ist Silicagel bevorzugt. Silicagel ist bekanntermaßen ein amorphes Siliciumdioxid . Silicagel ist generell wasserunlöslich bzw. sedimentiert in Wasser.
Silicagel hat bei 40% relativer Luftfeuchtigkeit und 23°C eine Adsorptionskapazität für Wasser von vorzugsweise ^ 30 Gew.-% und besonders bevorzugt < 25 Gew.-%, bezogen auf das Trockengewicht des Silicagels. Bei 80% relativer Luftfeuchtigkeit und 23 °C hat das Silicagel eine Adsorptionskapazität für Wasser von vorzugsweise 26 Gew.-%, besonders bevorzugt 30 Gew. -% und am meisten bevorzugt > 32 Gew.-%, bezogen auf das Trockengewicht des Silicagels. Die Angaben beziehen sich vorzugsweise auf 1 atm oder 1 bar, oder allgemein auf Umgebungsdruck. Das Trockengewicht bezeichnet hierbei die Masse des Silicagels nach Trocknen bei 150°C bis zur Gewichtskonstanz. Die Bestimmung der Adsorptionskapazität erfolgt gravimetrisch . Das Adsorptionsverhalten des Silicagels ist besonders vorteilhaft zur Lösung der erfindungsgemäßen Aufgabe, insbesondere wenn die Baustofftrockenformulierungen wechselnden klimatischen Bedingungen ausgesetzt sind.
Das eingesetzte Silicagel, hat einen Restwassergehalt von vorzugsweise ^ 15 Gew.-%, besonders bevorzugt ^ 11 Gew.-% und am meisten bevorzugt ^ 6 Gew. -%, bezogen auf das Gesamtgewicht des Silicagels (bestimmt bei 150°C im IR-Trockner) .
Das Silicagel hat eine BET-Oberflache von vorzugsweise 300 bis 500 m2/g und besonders bevorzugt 350 bis 450 m2/g (Bestimmung gemäß DIN 66131 (mit Stickstoff) ) .
Die Herstellung von Silicagel ist allgemein bekannt. Die Herstellung von Silicagel erfolgt im Allgemeinen durch Umsetzung von Wasserglas, beispielsweise wasserlöslichen Alkali-Silica- ten, insbesondere den Kalium- oder Natrium-Silicaten, mit Säure, insbesondere Mineralsäuren, wie Salzsäure oder Schwefelsäure, und anschließender Trocknung. Wasserglas ist bekanntermaßen beispielsweise erhältlich durch Zusammenschmelzen von Quarzsand mit Alkalicarbonaten bei 1400°C bis 1500°C und an- schließender Überführung in eine wässrige Lösung. Silicagel wie auch Wasserglas sind kommerziell verfügbar.
Zeolithen gehören bekanntermaßen zu der Substanzklasse der Alumosilicate , insbesondere der kristallinen Alumosilicate . Zeolithe sind im Allgemeinen aus Einheiten von A-
104 Tetraedern und Si04 Tetraedern aufgebaut, die durch Sauerstoffatome miteinander verbunden sind. Zeolithe haben bekanntermaßen Sekundärstrukturen, für die Poren und/oder Kanälen charakteristisch sind. Zeolithe stellen eine sehr enge Auswahl aus der großen Substanzklasse der Alumosilicate dar.
Es können synthetisch hergestellte Zeolithe, modifizierte Zeo¬ lithe oder vorzugsweise natürliche Zeolithe Einsatz finden. Beispiele für Zeolithe sind Faserzeolithe (insbesondere Natro- lith, Laumontit, Mordenit, Thomsonit) , Blätterzeolithe (insbesondere Heulandit, Stilbit, Phillipsit, Harmotom, Yugawara- lith) und Würfelzeolithe (insbesondere Faujasit, Gmelinit, Chabasit, Offretit, Levyn) . Besonders bevorzugt sind Blätterzeolithe .
Die Zeolithe haben eine Porenweite von vorzugsweise 1 bis 10 A, besonders bevorzugt von 2 bis 8 Ä und am meisten bevorzugt von 2 bis 5 Ä.
Geeignete hydraulisch abbindende Bindemittel sind beispielsweise Zemente, insbesondere Portlandzement , Aluminatzement , Trasszement, Hüttenzement, Magnesiazement, Phosphatzement oder Hochofenzement, sowie Mischzemente, Füllzemente, Flugasche, hydraulischer Kalk oder auch Gips. Bevorzugt werden Zemente, wie Portlandzement, Aluminatzement, Hüttenzement, Mischzemente und Füllzemente, oder hydraulischer Kalk. Die hydraulisch abbindenden Bindemittel umfassen Zement und/oder hydraulischen Kalk vorzugsweise zu > 50 Gew.-%, besonders bevorzugt > 60 Gew.-%, noch mehr bevorzugt > 70 Gew.-% und am meisten bevorzugt 90 Gew.-%, bezogen auf das Gesamtgewicht der hydraulisch abbindenden Bindemittel. Am allermeis- ten bevorzugt sind als hydraulisch abbindende Bindemittel ausschließlich hydraulischer Kalk, vorzugsweise Zement enthalten.
Im Allgemeinen enthalten die Baustofftrockenformulierungen 1 bis 70 Gew.-%, vorzugsweise 5 bis 60 Gew.-%, mehr bevorzugt 8 bis 50 Gew.-%, noch mehr bevorzugt 10 bis 40 Gew. -%, besonders bevorzugt 10 bis 30 Gew. -% und am meisten bevorzugt 10 bis 20 Gew.-% hydraulisch abbindende Bindemittel, jeweils bezogen auf das Gesamtgewicht der Baustofftrockenformulierungen . Des Weiteren können die Baustofftrockenformulierungen ein oder mehrere Puzzolane enthalten. Bevorzugte Puzzolane werden aus¬ gewählt aus der Gruppe umfassend Kaolin, Mikrosilica, Di¬ atomeenerde, Flugasche, Trassmehl, gemahlene Hochofenschlacke, Glasmehl, gefällte Kieselsäure und pyrogene Kieselsäure. Besonders bevorzugte Puzzolane sind Kaolin, Mikrosilica, Flugasche, gemahlene Hochofenschlacke, insbesondere Metakaolin. Klarstellend sei angemerkt, dass Puzzolane keine Zeolithe und insbesondere kein Silicagel umfassen.
Die Baustofftrockenformulierungen können beispielsweise 0,1 bis 20 Gew.-%, vorzugsweise 1 bis 10 Gew.-% und besonders bevorzugt 1 bis 5 Gew.-% Puzzolane enthalten, bezogen auf das Gesamtgewicht der Baustofftrockenformulierungen .
Beispiele für geeignete Füllstoffe sind Quarzsand, Quarzmehl, Calciumcarbonat, Dolomit, Ton, Kreide, Weißkalkhydrat, Talkum oder Glimmer, oder auch Leichtfüllstoffe, wie Bims, Schaum- glas, Gasbeton, Perlite, Vermiculite, Carbon-Nano-Tubes (CNT) . Es können auch beliebige Gemische der genannten Füllstoffe eingesetzt werden. Bevorzugt werden Quarzsand, Quarzmehl, Calciumcarbonat, Kreide oder Weißkalkhydrat. Klarstellend sei angemerkt, dass Füllstoffe keine Zeolithe und insbesondere kein Silicagel umfassen.
Die Baustofftrockenformulierungen enthalten im Allgemeinen 5 bis 95 Gew.-%, vorzugsweise 30 bis 90 Gew.-% und besonders bevorzugt 40 bis 85 Gew.-% Füllstoffe, jeweils bezogen auf das Gesamtgewicht der Baustofftrockenformulierungen .
Weitere übliche Zusatzstoffe für die Baustofftrockenformulierungen sind Verdickungsmittel, beispielsweise Polysaccharide wie Celluloseether und modifizierte Celluloseether, Stärke- ether, Guar Gum, Xanthan Gum, Schichtsilikate, Polycarbonsäu- ren wie Polyacrylsäure und deren Teilester, sowie Polyvinylal- kohole welche gegebenenfalls acetalisiert oder hydrophob modifiziert sein können, Casein und assoziativ wirkende Verdicker. Übliche Zusatzstoffe sind auch Verzögerer, wie Hydroxycarbon- säuren, oder Dicarbonsäuren oder deren Salze, Saccharide,
Oxalsäure, Bernsteinsäure, Weinsäure, Gluconsäure, Zitronensäure, Sucrose, Glucose, Fructose, Sorbit, Pentaerythrit . Weitere gängige Zusatzstoffe sind Abbindebeschleuniger, bei- spielsweise Alkali- oder Erdalkalisalze von anorganischen oder organischen Säuren. Darüber hinaus sind noch zu nennen: Hydrophobierungsmittel, Konservierungsmittel, Filmbildehilfsmittel, Dispergiermittel, Schaumstabilisatoren, Entschäumer und Flamm- Schutzmittel (z.B. Aluminiumhydroxid) . Klarstellend sei angemerkt, dass Zusatzstoffe keine Zeolithe und insbesondere kein Silicagel umfassen.
Zusatzstoffe sind vorzugsweise zu 0 bis 20 Gew.-%, besonders bevorzugt 0,1 bis 10 Gew.-% in den Baustofftrockenformulierungen enthalten, bezogen auf das Gesamtgewicht der Baustofftrockenformulierungen .
Die Baustofftrockenformulierungen enthalten im Allgemeinen 0,1 bis 90 Gew.-%, vorzugsweise 0,5 bis 60 Gew.-%, mehr bevorzugt 1 bis 50 Gew.-%, noch mehr bevorzugt 2 bis 45 Gew.-%, besonders bevorzugt 5 bis 40,0 Gew.- und am meisten bevorzugt 10 bis 35 Gew.-% Polymerisate von ethylenisch ungesättigten Monomeren, jeweils bezogen auf das Gesamtgewicht der Baustofftro- ckenformulierungen .
Geeignete Polymerisate von ethylenisch ungesättigten Monomeren sind beispielsweise solche auf der Basis von einem oder mehreren Monomeren aus der Gruppe umfassend Vinylester, (Meth) - acrylsäureester , Vinylaromaten, Olefine, 1,3-Diene und Vinyl- halogenide und gegebenenfalls weiteren damit copolymerisierba- ren Monomeren. Die Polymerisate sind vorzugsweise nicht vernetzt . Geeignete Vinylester sind solche von Carbonsäuren mit 1 bis 15 C-Atomen. Bevorzugt werden Vinylacetat, Vinylpropionat , Vinyl- butyrat, Vinyl -2 -ethylhexanoat , Vinyllaurat, 1 -Methylvinyl - acetat, Vinylpivalat und Vinylester von α-verzweigten Monocar- bonsäuren mit 9 bis 11 C-Atomen, beispielsweise VeoVa9R oder VeoVal0R (Handelsnamen der Firma Resolution) . Besonders bevorzugt ist Vinylacetat. Geeignete Monomeren aus der Gruppe Acrylsäureester oder Meth- acrylsäureester sind Ester von unverzweigten oder verzweigten Alkoholen mit 1 bis 15 C-Atomen. Bevorzugte Methacrylsäure- ester oder Acrylsäureester sind Methylacrylat , Methylmeth- acrylat, Ethylacrylat , Ethylmethacrylat , Propylacrylat , Propy- lmethacrylat , n-Butylacrylat , n-Butylmethacrylat , t-Butyl- acrylat, t-Butylmethacrylat , 2 -Ethylhexylacrylat . Besonders bevorzugt sind Methylacrylat, Methylmethacrylat , n-Butyl- acrylat, t-Butylacrylat und 2 -Ethylhexylacrylat .
Als Vinylaromaten bevorzugt sind Styrol, Methylstyrol und Vi- nyltoluol . Bevorzugtes Vinylhalogenid ist Vinylchlorid . Die bevorzugten Olefine sind Ethylen, Propylen und die bevorzugten Diene sind 1,3-Butadien und Isopren.
Gegebenenfalls können noch 0,1 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des Monomergemisches , Hilfsmonomere copolymeri- siert werden. Bevorzugt werden 0,5 bis 2,5 Gew.-% Hilfsmonomere eingesetzt. Beispiele für Hilfsmonomere sind ethylenisch ungesättigte Mono- und Dicarbonsäuren, vorzugsweise Acrylsäu- re, Methacrylsäure , Fumarsäure und Maleinsäure; ethylenisch ungesättigte Carbonsäureamide und -nitrile, vorzugsweise Ac- rylamid und Acrylnitril ; Mono- und Diester der Fumarsäure und Maleinsäure wie die Diethyl-, und Diisopropylester sowie Mal- einsäureanhydrid; ethylenisch ungesättigte Sulfonsäuren bzw. deren Salze, vorzugsweise Vinylsulfonsäure , 2-Acrylamido-2- methyl-propansulfonsäure . Weitere Beispiele sind vorvernetzende Comonomere wie mehrfach ethylenisch ungesättigte Comonomere, beispielsweise Diallylphthalat , Divinyladipat , Diallyl- maleat, Allylmethacrylat oder Triallylcyanurat , oder nachvernetzende Comonomere, beispielsweise Acrylamidoglykolsäure (A- GA) , Methylacrylamidoglykolsäuremethylester (MAGME) , N- Methylolacrylamid (NMA) , N-Methylolmethacrylamid, N-Methy- lolallylcarbamat , Alkylether wie der Isobutoxyether oder Ester des N-Methylolacrylamids , des N-Methylolmethacrylamids und des N-Methylolallylcarbamats . Geeignet sind auch epoxidfunktionel- le Comonomere wie Glycidylmethacrylat und Glycidylacrylat . Weitere Beispiele sind siliciumfunktionelle Comonomere, wie Acryloxypropyltri (alkoxy) - und Methacryloxypropyltri (alkoxy) - Silane, Vinyltrialkoxysilane und Vinylmethyldialkoxysilane , wobei als Alkoxygruppen beispielsweise Ethoxy- und Ethoxypro- pylenglykolether-Reste enthalten sein können. Genannt seien auch Monomere mit Hydroxy- oder CO-Gruppen, beispielsweise Me- thacrylsäure- und Acrylsäurehydroxyalkylester wie Hydroxy- ethyl-, Hydroxypropyl - oder Hydroxybutylacrylat oder -meth- acrylat sowie Verbindungen wie Diacetonacrylamid und Acetyla- cetoxyethylacrylat oder -methacrylat .
Die Monomerauswahl bzw. die Auswahl der Gewichtsanteile der Comonomere erfolgt dabei so, das eine Glasübergangstemperatur Tg von -25°C bis +25°C, vorzugsweise -10°C bis +10°C, besonders bevorzugt -10°C bis 0°C resultiert. Die Glasübergangstem- peratur Tg der Polymerisate kann in bekannter Weise mittels
Differential Scanning Calorimetry (DSC) ermittelt werden. Die Tg kann auch mittels der Fox-Gleichung näherungsweise vorausberechnet werden. Nach Fox T. G., Bull. Am. Physics Soc . 1, 3, page 123 (1956) gilt: 1/Tg = xl/Tgl + x2/Tg2 + ... + xn/Tgn, wobei xn für den Massebruch (Gew. -%/100) des Monomeren n steht, und Tgn die Glasübergangstemperatur in Kelvin des Homo- polymeren des Monomeren n ist. Tg-Werte für Homopolymerisate sind in Polymer Handbook 2nd Edition, J. Wiley & Sons, New York (1975) aufgeführt.
Bevorzugt werden Mischpolymerisate von Vinylacetat mit 1 bis 50 Gew.-% Ethylen,- Mischpolymerisate von Vinylacetat mit 1 bis 50 Gew.-% Ethylen und 1 bis 50 Gew.-% von einem oder mehreren weiteren Comonomeren aus der Gruppe Vinylester mit 1 bis 12 C- Atomen im Carbonsäurerest wie Vinylpropionat , Vinyllaurat, Vinylester von alpha-verzweigten Carbonsäuren mit 9 bis 13 C- Atomen wie VeoVa9, VeoValO, VeoVall; Mischpolymerisate von Vinylacetat, 1 bis 50 Gew. -% Ethylen und vorzugsweise 1 bis 60 Gew.-% (Meth) Acrylsäureester von unverzweigten oder verzweig- ten Alkoholen mit 1 bis 15 C-Atomen, insbesonders n-Butyl- acrylat oder 2 -Ethylhexylacrylat ; und Mischpolymerisate mit 30 bis 75 Gew.-% Vinylacetat, 1 bis 30 Gew.-% Vinyllaurat oder Vinylester einer alpha-verzweigten Carbonsäure mit 9 bis 11 C- Atomen, sowie 1 bis 30 Gew.-% (Meth) Acrylsäureester von unverzweigten oder verzweigten Alkoholen mit 1 bis 15 C-Atomen, insbesonders n-Butylacrylat oder 2 -Ethylhexylacrylat , welche noch 1 bis 40 Gew.-% Ethylen enthalten; Mischpolymerisate mit Vinylacetat, 1 bis 50 Gew.-% Ethylen und 1 bis 60 Gew.-% Vi- nylchlorid; wobei die Polymerisate noch die genannten Hilfsmonomere in den genannten Mengen enthalten können, und sich die Angaben in Gew.-% auf jeweils 100 Gew.-% aufaddieren. Bevorzugt werden auch (Meth) acrylsäureester-Polymerisate , wie Mischpolymerisate von n-Butylacrylat oder 2 -Ethylhexylacrylat oder Copolymerisate von Methylmethacrylat mit n-Butylacrylat und/oder 2 -Ethylhexylacrylat ; Styrol-Acrylsäureester-Copoly- merisate mit einem oder mehreren Monomeren aus der Gruppe Me- thylacrylat, Ethylacrylat , Propylacrylat , n-Butylacrylat, 2- Ethylhexylacrylat ,· Vinylacetat-Acrylsäureester-Copolymerisate mit einem oder mehreren Monomeren aus der Gruppe Methylacry- lat, Ethylacrylat, Propylacrylat, n-Butylacrylat, 2 -Ethylhexylacrylat und gegebenenfalls Ethylen; Styrol- 1 , 3 -Butadien- Copolymerisate; wobei die Polymerisate noch die genannten
Hilfsmonomere in den genannten Mengen enthalten können, und sich die Angaben in Gew.-% auf jeweils 100 Gew. -% aufaddieren.
Am meisten bevorzugt werden Mischpolymerisate mit Vinylacetat und 5 bis 50 Gew.-% Ethylen, oder Mischpolymerisate mit Vinylacetat, 1 bis 50 Gew.-% Ethylen und 1 bis 50 Gew.-% von einem Vinylester von α-verzweigten Monocarbonsäuren mit 9 bis 11 C-Atomen, oder Mischpolymerisate mit 30 bis 75 Gew. -% Vinylacetat, 1 bis 30 Gew. -% Vinyllaurat oder Vinylester einer al- pha- erzweigten Carbonsäure mit 9 bis 11 C-Atomen, sowie 1 bis 30 Gew.-% (Meth) Acrylsäureester von unverzweigten oder verzweigten Alkoholen mit 1 bis 15 C-Atomen, welche noch 1 bis 40 Gew.-% Ethylen enthalten, oder Mischpolymerisate mit Vinylacetat, 5 bis 50 Gew.-% Ethylen und 1 bis 60 Gew.-% Vinyl- chlorid.
Die Herstellung der Polymere erfolgt im Allgemeinen in wässri- gem Medium und bevorzugt nach dem Suspensions- oder insbeson- dere nach dem Emulsionspolymerisationsverfahren - wie beispielsweise in DE-A 102008043988 beschrieben. Die Polymere fallen dabei in Form von wässrigen Dispersionen an. Bei der Polymerisation können die gängigen Emulgatoren und/oder vor- zugsweise Schutzkolloide eingesetzt werden, wie in der DE-A
102008043988 beschrieben. Bevorzugt sind also Polymere in Form von Schutzkolloid stabilisierten wässrigen Dispersionen. Die Schutzkolloide können anionisch oder vorzugweise kationisch oder nichtionisch sein. Bevorzugt sind auch Kombinationen von kationischen und nichtionischen Schutzkolloiden. Bevorzugte nichtionische Schutzkolloide sind Polyvinylalkohole. Bevorzugte kationische Schutzkolloide sind Polymere, die ein oder mehrere kationische Ladungen tragen, wie beispielsweise in E . W. Flick, Water Soluble Resins - an Industrial Guide, Noyes Pub- lications, Park Ridge, N.J., 1991, beschrieben. Bevorzugte
Schutzkolloide sind Polyvinylalkohole, insbesondere teilverseifte oder vollverseifte Polyvinylalkohole mit einem Hydrolysegrad von 80 bis 100 ol-%. Besonders bevorzugt sind teilverseifte Polyvinylalkohole mit einem Hydrolysegrad von 80 bis 94 Mol-% und einer Höpplerviskosität , in 4 %-iger wässriger Lösung von 1 bis 30 mPas (Methode nach Höppler bei 20°C, DIN 53015) . Die genannten Schutzkolloide sind mittels dem Fachmann bekannter Verfahren zugänglich und werden im Allgemeinen in einer Menge von insgesamt 1 bis 20 Gew.-%, bezogen auf das Ge- samtgewicht der Monomere, bei der Polymerisation zugesetzt.
Die Polymere in Form von wässrigen Dispersionen können, wie beispielsweise in der DE-A 102008043988 beschrieben, in entsprechende in Wasser redispergierbare Pulver überführt werden. Dabei wird in der Regel eine Trocknungshilfe in einer Gesamtmenge von 3 bis 30 Gew.-%, vorzugsweise 5 bis 20 Gew.-%, bezogen auf die polymeren Bestandteile der Dispersion, eingesetzt. Als Trocknungshilfe sind die vorgenannten Polyvinylalkohole bevorzugt. Bevorzugt sind also Polymere in Form von Schutzkol - loid stabilisierten, in Wasser redispergierbaren Pulvern.
Die Trocknung der Dispersionen kann beispielsweise mittels Wirbelschichttrocknung, Gefriertrocknung oder Sprühtrocknung erfolgen. Vorzugsweise werden die Dispersionen sprühgetrocknet. Die Sprühtrocknung erfolgt dabei in üblichen Sprühtrocknungsanlagen, wobei die Zerstäubung mittels Ein-, Zwei- oder Mehrstoffdüsen oder mit einer rotierenden Scheibe erfolgen kann. Die Austrittstemperatur wird im Allgemeinen im Bereich von 45°C bis 120°C, bevorzugt 60°C bis 90°C, je nach Anlage, Tg des Harzes und gewünschtem Trocknungsgrad, gewählt. Die Viskosität der zu verdüsenden Speise wird über den Feststoffgehalt so eingestellt, dass ein Wert von < 500 mPas (Brook- field-Viskosität bei 20 Umdrehungen und 23 °C) , bevorzugt < 250 mPas , erhalten wird. Der Feststoffgehalt der zu verdüsenden Dispersion beträgt vorzugsweise 30 bis 75 Gew.-% und besonders bevorzugt 50 bis 60 Gew.-%. Bei der Verdüsung hat sich vielfach ein Gehalt von bis zu 1,5 Gew.-% Antischaummittel , bezogen auf das Polymerisat, als günstig erwiesen. Zur Erhöhung der Lagerfähigkeit durch Verbesserung der Verblockungsstabilität, insbesondere bei Polymerpulvern mit niedriger Glasübergangstemperatur, kann das er- haltene Polymerpulver mit einem oder mehreren Antiblockmitteln (Antibackmittel) , vorzugsweise 1 bis 30 Gew.-%, bezogen auf das Gesamtgewicht polymerer Bestandteile, ausgerüstet werden. Beispiele für Antiblockmittel sind Ca- bzw. Mg-Carbonat, Talk, Gips, Kieselsäure, Kaoline wie Metakaolin, Silicate mit Teil- chengrößen vorzugsweise im Bereich von 10 nm bis 10 pm. Die
Antiblockmittel sind von den erfindungsgemäßen Stabilisatoren verschieden. Die Antiblockmittel können zusätzlich zu den erfindungsgemäßen Stabilisatoren eingesetzt werden. Zur Verbesserung der anwendungstechnischen Eigenschaften können bei der Trocknung zusätzlich Additive zugegeben werden, wie beispielsweise Pigmente, Füllstoffe, Schaumstabilisatoren, Hydrophobierungsmittel oder Zementverflüssiger . Ein weiterer Gegenstand der Erfindung sind Verfahren zur Herstellung von Baustofftrockenformulierungen, indem ein oder mehrere hydraulisch abbindende Bindemittel, ein oder mehrere Polymerisate in Form von in Wasser redispergierbaren Pulvern, gegebenenfalls ein oder mehrere Füllstoffe und gegebenenfalls ein oder mehrere Zusatzstoffe gemischt werden, dadurch gekennzeichnet, dass
zusätzlich ein oder mehrere Stabilisatoren ausgewählt aus der Gruppe umfassend Silicagel und Zeolithe beigemengt werden und mindestens 40 Gew.-% der hydraulisch abbindenden Bindemittel Zement und/oder hydraulischer Kalk sind, bezogen auf das Gesamtgewicht der hydraulisch abbindenden Bindemittel. Die Herstellung der Baustofftrockenformulierungen ist an keine besondere Vorgehensweise oder Mischvorrichtung gebunden. So sind Baustofftrockenformulierungen beispielsweise erhältlich, indem die einzelnen Bestandteile der Baustoffformulierungen in herkömmlichen Pulvermischvorrichtungen, beispielsweise mittels Mörtel-, Beton-Mischer oder Putzmaschinen oder Rührern, vermischt und homogenisiert werden.
Die erfindungsgemäßen Baustoffformulierungen liegen also in Form von Trockenmischungen vor. Die Herstellung der Bau- stofftrockenformulierungen erfolgt allgemein ohne Zugabe von Wasser bzw. in Abwesenheit von Wasser. Die für die Anwendung der Baustofftrockenformulierungen erforderliche Wassermenge wird vor ihrer Applikation in den allgemein bekannten Mengen hinzugefügt .
In einem alternativen Verfahren zur Herstellung der Baustofftrockenformulierungen werden zuerst Vormischungen aus mindestens zwei Bestandteilen der Baustofftrockenformulierungen hergestellt, die anschließend mit einem oder mehreren wei- teren Bestandteilen der Baustofftrockenformulierungen abgemischt werden.
Bevorzugte Vormischungen enthalten ein oder mehrere Stabilisatoren und ein oder mehrere Polymerisate in Form von in Wasser redispergierbaren Pulvern. Mit derartigen Zusammensetzungen kann die erfindungsgemäße Aufgabe in besonders vorteilhafter Weise gelöst werden. Ein weiterer Gegenstand der Erfindung sind in Wasser redisper- gierbare Polymer- Zusammensetzungen erhältlich durch Mischen von einem oder mehreren Polymerisaten in Form von in Wasser redispergierbaren Pulvern und einem oder mehreren Stabilisato- ren ausgewählt aus der Gruppe umfassend Silicagel und Zeolit- he.
Die Polymer- Zusammensetzungen enthalten vorzugsweise 0,1 bis 1000 Gew.-%, besonders bevorzugt 1 bis 700 Gew.-% und am meis- ten bevorzugt 5 bis 500 Gew.-% Stabilisatoren, bezogen auf das Gesamtgewicht der in Wasser redispergierbaren Polymerisate.
Die Polymer- usammensetzungen enthalten vorzugsweise 50 Gew.-%, besonders bevorzugt ^ 80 Gew.-% und noch mehr bevor- zugt ^ 90 Gew.-% an Stabilisatoren und Polymerisaten in Form von in Wasser redispergierbaren Pulvern, bezogen auf das Gesamtgewicht der Polymer- Zusammensetzungen . Am meisten bevorzugt bestehen die Polymer- Zusammensetzungen aus Stabilisatoren und Polymerisaten in Form von in Wasser redispergierbaren Pul- vern.
Ein weiterer Gegenstand der Erfindung sind Verfahren zur Herstellung der in Wasser redispergierbaren Polymer-Zusammensetzungen, dadurch gekennzeichnet, dass
ein oder mehrere Polymerisate in Form von in Wasser redispergierbaren Pulvern und ein oder mehrere Stabilisatoren ausgewählt aus der Gruppe umfassend Silicagel und Zeolithe gemischt werden . Das Mischen der Polymerisate und der Stabilisatoren ist an keine besondere Vorgehensweise oder Vorrichtung gebunden und kann in den gängigen Mischbehältern erfolgen.
Beispielsweise werden Polymerisate in Form von wässrigen Dis- persionen mittels Trocknung in Wasser redispergierbare Pulver überführt, und anschließend werden Stabilisatoren zugegeben. Die Zugabe der Stabilisatoren erfolgt also nach der Trocknung der Polymerdispersionen. Gegebenenfalls können die Stabilisa- toren in den Sprühtrockner nach erfolgtem Trocknungsvorgang der Polymerdispersion zudosiert werden, gegebenenfalls zusammen mit anderen, auf herkömmliche Weise zumischbaren Zusatzstoffen, wie beispielsweise Antiblockmitteln, Entschäumern, Schaumstabilisatoren, Füllstoffen, Farbstoffen, Bioziden, Ver- dickungs itteln .
Die erfindungsgemäßen Baustofftrockenformulierungen eignen sich beispielsweise zur Herstellung von Armierungsmassen für Wärmedämmverbundsysteme, oder zur Herstellung von Klebemitteln oder Beschichtungsmitteln. Beispiele für Klebemittel sind Klebemittel für Wärmedämmplatten und Schallschutzplatten, Fliesenkleber, Fugenmörtel und Klebemittel zur Verklebung von Holz und Holzwerkstoffen. Beispiele für Beschichtungsmittel sind Mörtel, Verlaufsmassen, Estriche, skim coat , Dichtungsschlämme, Pulverfarben und Putze.
Überraschenderweise wird durch die erfindungsgemäße Vorgehens- weise die Lagerstabilität der Baustofftrockenformulierungen verbessert und dies sogar unter feuchten oder warmen oder gar feuchtwarmen, beispielsweise tropischen Lagerbedingungen. Dies gilt insbesondere auch für die Lagerung von Baustofftrocken- formulierungen in perforierten Säcken. So kann mit der erfindungsgemäßen Vorgehensweise beispielsweise die Rieselfähigkeit von Baustofftrockenformulierungen besser bewahrt und deren
Verblockung während der Lagerung entgegengewirkt werden. Darüber hinaus führen erfindungsgemäße Baustofftrockenformulierungen verglichen mit herkömmlichen Baustofftrockenformulierungen nach Lagerung zu Bauprodukten mit besseren anwendungs - technischen Eigenschaften, wie beispielsweise Verlauf, Klebrigkeit, Geschmeidigkeit oder Luftporengehalt von Frischmörteln oder Schlagfestigkeit, Kohäsion oder Adhäsion von ausgehärteten Bauprodukten.
Die nachfolgenden Beispiele dienen zur weiteren Erläuterung der Erfindung. Polymerpulver :
Polyvinylalkohol - stabilisiertes , in Wasser redispergierbares Polymerpulver auf Basis eines Copolymers von Vinylacetat , Ethylen und VeoValO, mit Calcium-Carbonat und Kaolin als Anti- blockmittel .
Herstellung der Baustofftrockenformulierungeni
Aus den aufgelisteten Bestandteilen der folgenden Rezeptur wurden entsprechend den ergänzenden Angaben in Tabelle 1 durch intensives Mischen bei 23 °C und 50% relativer Luftfeuchtigkeit
Baustofftrockenformulierungen hergestellt :
Portlandzement 42,5 111,0 Gew.-T
Kalkhydrat 50,0 Gew.-T
Quarzsand 505,5 Gew.-T
Polymerpulver 333,5 Gew.-T
gegebenenfalls Silicagel 50,0 Gew.-T.
Austestung der LagerStabilität der Baustofftrockenformulierungen:
Zur Lagerung wurde die jeweilige Probe der jeweiligen Bau¬ stofftrockenformulierung in einen Plastikbecher mit einem Volumen von 125 ml gegeben. Der Deckel des Plastikbechers hatte ein Loch von 1 mm Durchmesser. Ansonsten war der mit dem De¬ ckel versehene Plastikbecher luftdicht verschlossen.
Die Lagerung erfolgte bei 35°C und 75% relativer Luftfeuchtig¬ keit. Die Lagerstabilität der Proben wurde nach einem Tag, 7 Tagen und 28 Tagen Lagerung an Hand des folgenden Schulnoten¬ systems beurteilt:
1 = rieselfähig, keine Veränderung während der Lagerung;
2 = rieselfähig; kleine Agglomerate vorhanden, die mit einem Spatel leicht deagglomerierbar sind;
3 = gesamte Probe zu einem Körper verfestigt; mit einem Spatel einfach deagglomerierbar;
4 = wie 3 aber Probe stärker verfestigt;
5 = gesamte Probe stark verfestigt, bildete einen einzigen
Körper und haftete am Plastikbecher.
Die Ergebnisse der Austestung sind in Tabelle 1 zusammenge- fasst . Tabelle 1: Lagerstabilität der Baustofftrockenformulierung :
Figure imgf000023_0001

Claims

Patentansprüche :
1. Verwendung von einem oder mehreren Stabilisatoren zur Verbesserung der Lagerstabilität von Baustofftrockenformulierungen enthaltend ein oder mehrere hydraulisch abbindende Bindemittel, ein oder mehrere Polymerisate in Form von in Wasser redispergierbaren Pulvern, gegebenenfalls ein oder mehrere Füllstoffe und gegebenenfalls ein oder mehrere Zusatzstoffe, dadurch gekennzeichnet, dass ein oder mehrere Stabilisatoren ausgewählt werden aus der Gruppe umfassend Silicagel und Zeolithe, wobei die Stabilisatoren
a) Bestandteil der Baustofftrockenformulierungen sind; o- der
b) räumlich getrennt von den Baustofftrockenformulierungen, aber über Luftaustausch in Kontakt mit den Baustofftrockenformulierungen sind; und
wobei mindestens 40 Gew.-% der hydraulisch abbindenden Bindemittel Zement und/oder hydraulischer Kalk sind, bezogen auf das Gesamtgewicht der hydraulisch abbindenden Bindemittel .
2. Verwendung von Stabilisatoren zur Verbesserung der Lagerstabilität von Baustofftrockenformulierungen nach Anspruch 1, dadurch gekennzeichnet, dass die Baustofftrockenformulierungen bei Temperaturen zwischen 30 und 60°C und bei relativen Luftfeuchtigkeiten von 50 bis 100% gelagert werden .
3. Baustofftrockenformulierungen enthaltend ein oder mehrere hydraulisch abbindende Bindemittel, ein oder mehrere Polymerisate in Form von in Wasser redispergierbaren Pulvern, gegebenenf lls ein oder mehrere Füllstoffe und gegebenenfalls ein oder mehrere Zusatzstoffe, dadurch gekennzeichnet, dass
zusätzlich ein oder mehrere Stabilisatoren ausgewählt aus der Gruppe umfassend Silicagel und Zeolithe enthalten sind und mindestens 40 Gew.-% der hydraulisch abbindenden Bindemittel Zement und/oder hydraulischer Kalk sind, bezogen auf das Gesamtgewicht der hydraulisch abbindenden Bindemittel .
4. Verwendung von Stabilisatoren zur Verbesserung der Lagerstabilität von Baustofftrockenformulierungen nach Anspruch 1 oder 2 oder Baustofftrockenformulierungen gemäß Anspruch 3, dadurch gekennzeichnet, dass das Silicagel
bei 40% relativer Luftfeuchtigkeit und 23 °C eine Adsorptionskapazität für Wasser von < 30 Gew.-% und/oder
bei 80% relativer Luftfeuchtigkeit und 23 °C eine Adsorptionskapazität für Wasser von ^ 26 Gew.-% hat,
je bezogen auf das Trockengewicht des Silicagels.
5. Verwendung von Stabilisatoren zur Verbesserung der Lagerstabilität von Baustofftrockenformulierungen nach Anspruch 1 oder 2 oder Baustofftrockenformulierungen gemäß Anspruch 3, dadurch gekennzeichnet, dass
die Polymerisate in Form von in Wasser redispergierbaren Pulvern mit Polyvinylalkohol stabilisiert sind.
6. Verfahren zur Herstellung von Baustofftrockenformulierungen, indem ein oder mehrere hydraulisch abbindende Bindemittel, ein oder mehrere Polymerisate in Form von in Wasser redispergierbaren Pulvern, gegebenenfalls ein oder mehrere Füllstoffe und gegebenenfalls ein oder mehrere Zusatzstoffe gemischt werden, dadurch gekennzeichnet, dass zusätzlich ein oder mehrere Stabilisatoren ausgewählt aus der Gruppe umfassend Silicagel und Zeolithe beigemengt werden und
mindestens 40 Gew.-% der hydraulisch abbindenden Bindemittel Zement und/oder hydraulischer Kalk sind, bezogen auf das Gesamtgewicht der hydraulisch abbindenden Bindemittel.
7. In Wasser redispergierbare Polymer-Zusammensetzungen erhältlich durch Mischen von einem oder mehreren Polymerisaten in Form von in Wasser redispergierbaren Pulvern und einem oder mehreren Stabilisatoren ausgewählt aus der Gruppe umfassend Silicagel und Zeolithe.
8. In Wasser redispergierbare Polymer-Zusammensetzungen gemäß Anspruch 7, dadurch gekennzeichnet, dass die Polymer- Zusammensetzungen ^ 50 Ge .-% an Stabilisatoren und Polymerisaten in Form von in Wasser redispergierbaren Pulvern enthalten, bezogen auf das Gesamtgewicht der Polymer- Zusammensetzungen .
9. Verfahren zur Herstellung von in Wasser redispergierbaren Polymer- Zusammensetzungen , dadurch gekennzeichnet, dass ein oder mehrere Polymerisate in Form von in Wasser redispergierbaren Pulvern und ein oder mehrere Stabilisatoren ausgewählt aus der Gruppe umfassend Silicagel und Zeolithe gemischt werden.
10. Verwendung der Baustofftrockenformulierungen aus Anspruch 3 zur Herstellung von Klebemitteln, Beschichtungsmitteln oder von Armierungsmassen für Wärmedämmverbundsysteme.
PCT/EP2017/053503 2016-02-19 2017-02-16 Stabilisatoren zur verbesserung der lagerstabilität von polymerpulver enthaltenden baustofftrockenformulierungen WO2017140781A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112018016728-2A BR112018016728B1 (pt) 2016-02-19 2017-02-16 Formulação seca de material de construção, uso de sílicagel como estabilizador, uso de estabilizadores paramelhorar a estabilidade de armazenamento de formulações secas de material de construção, processo para a produçãode formulações secas de material de construção e uso dasformulações secas de material de construção
CN201780012382.1A CN108698946B (zh) 2016-02-19 2017-02-16 改善包含聚合物粉末的建筑材料干燥配制品的存储稳定性的稳定剂
SG11201806329RA SG11201806329RA (en) 2016-02-19 2017-02-16 Stabilizers for improving the storage stability of building material dry formulations containing polymer powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016202618.6A DE102016202618A1 (de) 2016-02-19 2016-02-19 Stabilisatoren zur Verbesserung der Lagerstabilität von Polymerpulver enthaltenden Baustofftrockenformulierungen
DE102016202618.6 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017140781A1 true WO2017140781A1 (de) 2017-08-24

Family

ID=58185495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/053503 WO2017140781A1 (de) 2016-02-19 2017-02-16 Stabilisatoren zur verbesserung der lagerstabilität von polymerpulver enthaltenden baustofftrockenformulierungen

Country Status (5)

Country Link
CN (1) CN108698946B (de)
BR (1) BR112018016728B1 (de)
DE (1) DE102016202618A1 (de)
SG (1) SG11201806329RA (de)
WO (1) WO2017140781A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2948300T3 (es) * 2019-10-09 2023-09-08 Sika Tech Ag Proceso para la impermeabilización de materiales de construcción porosos

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB826316A (en) 1957-11-12 1959-12-31 Aspada Ltd Improvements in or relating to the manufacture of building materials
GB841304A (en) 1957-05-28 1960-07-13 Aspada Ltd Improvements in or relating to additive materials for rendering cement water resistant
GB929704A (en) 1958-06-30 1963-06-26 Shawinigan Resins Corp Improvements in and relating to drying
GB1012182A (en) 1963-04-23 1965-12-08 Ass Portland Cement Improvement in the manufacture of hydraulic cement
GB1188713A (en) 1967-04-26 1970-04-22 Teutonia Cementwerk Process for Increasing the Storage Life of Cement
DE2214410A1 (de) 1972-03-24 1973-10-04 Hoechst Ag Verfahren zur herstellung eines redispergierbaren vinylacetat/aethylen-polymerdisperionspulvers
DE2927420A1 (de) * 1978-07-06 1980-01-24 Geol Upravlenie Ts Rajonov Mos Schnellbindendes, trockenes, zementierendes gemisch zur beseitigung von komplikationszonen beim bohren von bohrloechern und verfahren zu dessen herstellung
DE3101413A1 (de) 1981-01-17 1982-07-29 Hoechst Ag, 6000 Frankfurt "pulverfoermige polymerkomposition, verfahren zu ihrer herstellung und ihre verwendung"
DE19601699A1 (de) * 1996-01-18 1997-07-24 Wacker Chemie Gmbh Redispergierbare Polymerisatpulver und daraus erhältliche wäßrige Polymerisat-Dispersionen
DE19620817A1 (de) * 1996-05-23 1997-11-27 Wacker Chemie Gmbh Flexible Baustoffmassen
EP0812872A2 (de) * 1996-06-12 1997-12-17 BASF Aktiengesellschaft Verfahren zur Herstellung von Polymerisatpulver
JP2002302410A (ja) * 2001-04-03 2002-10-18 Ngk Spark Plug Co Ltd リン酸カルシウムセメント粉体の保管方法
EP1260490A1 (de) 2001-05-17 2002-11-27 Wacker Polymer Systems GmbH & Co. KG Trockenmörtelformulierung
US6588345B1 (en) * 2002-04-18 2003-07-08 United States Sugar Corporation System for improving the flowability of hygroscopic materials from a hopper
EP1381643A1 (de) 2001-03-26 2004-01-21 Henkel Kommanditgesellschaft auf Aktien Füllstoffhaltige redispersionspulver, verfahren zu deren herstellung und deren verwendung
EP1544182A1 (de) * 2003-12-12 2005-06-22 Kehrmann Alexander Hydraulisches Bindemittel
US20060037884A1 (en) * 2004-08-23 2006-02-23 United States Gypsum Company Plastic bag for fine powders
CN1792975A (zh) 2005-10-12 2006-06-28 株式会社时空Tech 无机类物质内墙材料
US7074269B2 (en) 2001-07-26 2006-07-11 Rhodia Polymide Intermediates Hydraulic binder with enhanced aging properties
DE102006048656A1 (de) * 2006-10-14 2008-04-17 Pci Augsburg Gmbh Verwendung einer Baustoff-Mischung als Fliesenkleber
CN101648797A (zh) * 2009-06-29 2010-02-17 上海东升新材料有限公司 自流坪干粉砂浆组合物
DE102008043988A1 (de) 2008-11-21 2010-05-27 Wacker Chemie Ag Faserhaltige Mörtelzusammensetzung
CN102249604A (zh) 2010-05-21 2011-11-23 安徽省建筑科学研究设计院 一种用于聚苯板薄抹灰外墙外保温系统的聚合物乳液-硅溶胶复合型抹面胶浆
WO2012019908A1 (de) 2010-08-13 2012-02-16 Wacker Chemie Ag Verwendung von in wasser redispergierbaren polymerpulvern zur verbesserung der lagerstabilität von zement oder zementären trockenmörteln
CN203143402U (zh) 2013-03-13 2013-08-21 江苏名和集团有限公司 一种水泥库顶的防结露装置
WO2015062749A1 (de) 2013-10-31 2015-05-07 Henkel Ag & Co. Kgaa Wasserbeständiges bindemittel auf basis von beta-calciumsulfat-hemihydrat

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242141A (en) * 1979-07-05 1980-12-30 Lipatov Nikolai K Rapid-setting dry packing mix for eliminating bore hole troubles and method of manufacture thereof
TW527332B (en) * 2000-05-19 2003-04-11 Akzo Nobel Nv Composition and method to prepare a concrete composition
CN102417042A (zh) * 2011-07-25 2012-04-18 武汉科技大学 易水化粉末标准样品/物质的包装与贮存方法
DE102011084048A1 (de) * 2011-10-05 2013-04-11 Wacker Chemie Ag Polymerpulver enthaltende Baustofftrockenformulierungen
US9353009B2 (en) * 2012-03-09 2016-05-31 Parexgroup Sa Dry composition based on mineral binder and intended for the preparation of a hardenable wet formulation for the construction industry
CN103553490B (zh) * 2013-10-16 2016-09-14 北京新奥混凝土集团有限公司 一种高保坍性混凝土及其制备方法和应用
CN104073104B (zh) * 2014-06-24 2016-04-06 哈尔滨佳饰达科技开发有限公司 一种可预防室内装饰性开裂的基底性抹平材料
CN104326712A (zh) * 2014-09-29 2015-02-04 江苏瀚渝易科节能新材料有限公司 一种自保温砂浆

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841304A (en) 1957-05-28 1960-07-13 Aspada Ltd Improvements in or relating to additive materials for rendering cement water resistant
GB826316A (en) 1957-11-12 1959-12-31 Aspada Ltd Improvements in or relating to the manufacture of building materials
GB929704A (en) 1958-06-30 1963-06-26 Shawinigan Resins Corp Improvements in and relating to drying
GB1012182A (en) 1963-04-23 1965-12-08 Ass Portland Cement Improvement in the manufacture of hydraulic cement
GB1188713A (en) 1967-04-26 1970-04-22 Teutonia Cementwerk Process for Increasing the Storage Life of Cement
DE2214410A1 (de) 1972-03-24 1973-10-04 Hoechst Ag Verfahren zur herstellung eines redispergierbaren vinylacetat/aethylen-polymerdisperionspulvers
DE2927420A1 (de) * 1978-07-06 1980-01-24 Geol Upravlenie Ts Rajonov Mos Schnellbindendes, trockenes, zementierendes gemisch zur beseitigung von komplikationszonen beim bohren von bohrloechern und verfahren zu dessen herstellung
CA1132784A (en) 1978-07-06 1982-10-05 Viktor F. Rogov Rapid-setting dry packing mix for eliminating bore hole troubles and method of manufacture thereof
DE3101413A1 (de) 1981-01-17 1982-07-29 Hoechst Ag, 6000 Frankfurt "pulverfoermige polymerkomposition, verfahren zu ihrer herstellung und ihre verwendung"
DE19601699A1 (de) * 1996-01-18 1997-07-24 Wacker Chemie Gmbh Redispergierbare Polymerisatpulver und daraus erhältliche wäßrige Polymerisat-Dispersionen
DE19620817A1 (de) * 1996-05-23 1997-11-27 Wacker Chemie Gmbh Flexible Baustoffmassen
EP0812872A2 (de) * 1996-06-12 1997-12-17 BASF Aktiengesellschaft Verfahren zur Herstellung von Polymerisatpulver
EP1381643A1 (de) 2001-03-26 2004-01-21 Henkel Kommanditgesellschaft auf Aktien Füllstoffhaltige redispersionspulver, verfahren zu deren herstellung und deren verwendung
JP2002302410A (ja) * 2001-04-03 2002-10-18 Ngk Spark Plug Co Ltd リン酸カルシウムセメント粉体の保管方法
EP1260490A1 (de) 2001-05-17 2002-11-27 Wacker Polymer Systems GmbH & Co. KG Trockenmörtelformulierung
US7074269B2 (en) 2001-07-26 2006-07-11 Rhodia Polymide Intermediates Hydraulic binder with enhanced aging properties
US6588345B1 (en) * 2002-04-18 2003-07-08 United States Sugar Corporation System for improving the flowability of hygroscopic materials from a hopper
EP1544182A1 (de) * 2003-12-12 2005-06-22 Kehrmann Alexander Hydraulisches Bindemittel
US20060037884A1 (en) * 2004-08-23 2006-02-23 United States Gypsum Company Plastic bag for fine powders
CN1792975A (zh) 2005-10-12 2006-06-28 株式会社时空Tech 无机类物质内墙材料
DE102006048656A1 (de) * 2006-10-14 2008-04-17 Pci Augsburg Gmbh Verwendung einer Baustoff-Mischung als Fliesenkleber
DE102008043988A1 (de) 2008-11-21 2010-05-27 Wacker Chemie Ag Faserhaltige Mörtelzusammensetzung
CN101648797A (zh) * 2009-06-29 2010-02-17 上海东升新材料有限公司 自流坪干粉砂浆组合物
CN102249604A (zh) 2010-05-21 2011-11-23 安徽省建筑科学研究设计院 一种用于聚苯板薄抹灰外墙外保温系统的聚合物乳液-硅溶胶复合型抹面胶浆
WO2012019908A1 (de) 2010-08-13 2012-02-16 Wacker Chemie Ag Verwendung von in wasser redispergierbaren polymerpulvern zur verbesserung der lagerstabilität von zement oder zementären trockenmörteln
CN203143402U (zh) 2013-03-13 2013-08-21 江苏名和集团有限公司 一种水泥库顶的防结露装置
WO2015062749A1 (de) 2013-10-31 2015-05-07 Henkel Ag & Co. Kgaa Wasserbeständiges bindemittel auf basis von beta-calciumsulfat-hemihydrat

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Polymer Handbook 2nd Edition,", 1975, J. WILEY & SONS
E. W. FLICK: "Water Soluble Resins - an Industrial Guide", 1991, NOYES PUBLICATIONS
FOX T. G., BULL. AM. PHYSICS SOC., vol. 1, no. 3, 1956, pages 123
SCHULZE J., TIZ, 1985

Also Published As

Publication number Publication date
BR112018016728B1 (pt) 2023-02-14
DE102016202618A1 (de) 2017-08-24
CN108698946B (zh) 2022-04-12
BR112018016728A2 (pt) 2018-12-26
CN108698946A (zh) 2018-10-23
SG11201806329RA (en) 2018-09-27

Similar Documents

Publication Publication Date Title
EP2764044B1 (de) Polymerpulver enthaltende baustofftrockenformulierungen
EP1817371B2 (de) Hydrophobierendes additiv
EP1615861B1 (de) Redispersionspulver-zusammensetzung mit abbindebesschleunigender wirkung
EP1498446B1 (de) Redispersionspulver mit puzzolanischen Komponenten
EP2655280B1 (de) Staubreduzierungsmittel für trockenmischungen von baustoffformulierungen
EP1725507A2 (de) Verwendung von in wasser redispergierbaren polymerpulver-zusammensetzungen in lehmbaustoffen
EP2558541B1 (de) Oberflächenbehandlung von zementären untergründen
DE1771962A1 (de) Trockene Polymer-Zementmasse
EP1394193A1 (de) Redispergierbare Dispersionspulver-Zusammensetzung, Verfahren zu deren Herstellung, sowie deren Verwendung
WO2012038288A1 (de) Beschichtungsmittel zur herstellung von dauerflexiblen beschichtungen
EP2984123B1 (de) Verfahren zur herstellung von dispersionspulvern
WO2017140781A1 (de) Stabilisatoren zur verbesserung der lagerstabilität von polymerpulver enthaltenden baustofftrockenformulierungen
EP3707109B1 (de) Hydrophobe, in wasser redispergierbare polymerpulver-zusammensetzung
EP3500537A1 (de) Poröser formkörper in gestalt einer dämmputzschicht oder einer dämmplatte
EP1694120B1 (de) Verwendung von biozide enthaltenden, in wasser redispergierbaren polymerpulver-zusammensetzungen in mineralischen baustoffmassen
WO2018033218A1 (de) Wärmedämmverbundsystem
DE102010042003A1 (de) Verwendung von Polypropylenoxid oder Ethylenoxid-Propylenoxid-Mischpolymerisat als haftungsverbessernden Zusatz in Klebe- und Armierungsmörtel
EP4157804A1 (de) Verfahren zur herstellung von in wasser redispergierbaren polymerpulvern für baustofftrockenformulierungen
CA3118748C (en) Composition for a low shrinkage pasty fill and finishing material, pasty fill and finishing material, and method for producing a pasty fill and finishing material
EP3199501A1 (de) Staubreduzierte pulverförmige mischungen
DE102015203227A1 (de) Polymermischungen in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern
EP3847215A1 (de) In wasser redispergierbare polymerpulver-zusammensetzungen
WO2021013357A1 (de) Dispersionspulver-zusammensetzung mit fettalkohol-kohlensäureester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17707493

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11201806329R

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018016728

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018016728

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180816

122 Ep: pct application non-entry in european phase

Ref document number: 17707493

Country of ref document: EP

Kind code of ref document: A1