WO2017140270A1 - 一种新能源汽车的充电系统 - Google Patents

一种新能源汽车的充电系统 Download PDF

Info

Publication number
WO2017140270A1
WO2017140270A1 PCT/CN2017/074082 CN2017074082W WO2017140270A1 WO 2017140270 A1 WO2017140270 A1 WO 2017140270A1 CN 2017074082 W CN2017074082 W CN 2017074082W WO 2017140270 A1 WO2017140270 A1 WO 2017140270A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
module
power
modules
demand signal
Prior art date
Application number
PCT/CN2017/074082
Other languages
English (en)
French (fr)
Inventor
华桂潮
Original Assignee
英飞特电子(杭州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英飞特电子(杭州)股份有限公司 filed Critical 英飞特电子(杭州)股份有限公司
Publication of WO2017140270A1 publication Critical patent/WO2017140270A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the embodiments of the present invention relate to the field of battery charging technologies, and in particular, to a charging system for an electric vehicle.
  • each independent charger must be compatible with a higher power charging requirement, and the probability that all charging stations of the charging station are simultaneously in the maximum power state of charge is extremely small, so that the total power of all the chargers greatly exceeds the actual needs. This has caused a huge waste of the cost of the charger, and the capacity of the grid is often configured according to the total power of all the chargers, which also causes huge waste.
  • the charging demand will change, the charging specifications will change, the early construction of the charger is fixed, the power is difficult to expand, and it can only be eliminated and scrapped, making it difficult to upgrade at a low cost.
  • the embodiment of the present application provides a charging system for a new energy vehicle to solve the problem of cost waste caused by insufficient utilization of the charging system in the prior art, and facilitates upgrading and upgrading of the charging system in the future.
  • the embodiment of the present application provides a charging system for a new energy vehicle, including an AC-DC module, a plurality of DC-DC charging modules, a DC bus, and a total controller, wherein
  • An output of the AC-DC module is connected to the DC bus, and the DC bus is used to provide electric power for all DC-DC charging modules;
  • the input ends of the plurality of DC-DC charging modules are connected to the DC bus, the outputs of the plurality of DC-DC charging modules are used for connecting an electric vehicle, and a charging demand signal is sent to the overall controller. ;
  • the DC-DC charging module outputs a charging demand signal, and the charging demand signal is used as an input signal of the overall controller;
  • the total controller allocates power of the plurality of DC-DC charging modules according to different charging demand signals according to the maximum output power that the AC-DC module can output.
  • the AC-DC module and the DC-DC charging module are separate modules.
  • the AC-DC module and the DC-DC charging module are disposed in different spaces.
  • the plurality of the DC-DC charging modules are separate modules.
  • the sum of the maximum output powers of all the DC-DC charging modules is greater than the maximum output power of the AC-DC module.
  • the maximum output power of the AC-DC module is in accordance with the DC-DC charging module.
  • the sum of the maximum output powers of all DC-DC charging modules is equal to the maximum output power of the AC-DC module.
  • the reasonable allocation of power of the plurality of DC-DC charging modules is based on:
  • the reasonable allocation of the power of the multiple DC-DC charging modules is ,include:
  • the power corresponding to the corresponding DC-DC charging module is supplied according to the requirements of the charging demand signal.
  • the reasonable allocation of the power of the multiple DC-DC charging modules is ,include:
  • the power of the DC-DC charging module is allocated and limited according to a preset algorithm.
  • the allocating and limiting the power of the DC-DC charging module according to a preset algorithm includes:
  • the charging priority level is adjusted according to the amount of remaining power of the car or the charging price to allocate and limit the power of the DC-DC charging module.
  • the total output power corresponding to all the charging demand signals received by the total controller is greater than the maximum output power of the AC-DC module, the reasonable allocation of multiple DC-DC charging modes
  • the power of the block including:
  • the power supplied to the DC-DC charging module is proportionally reduced;
  • the corresponding DC-DC charging module power with a long charging time is preferentially supplied.
  • the multiple DC-DC charging modules send a charging demand signal to the overall controller, including:
  • the DC-DC charging module connected to the electric vehicle sends a charging demand signal to the overall controller, and the DC-DC charging module that is not connected to the electric vehicle does not issue a charging demand signal.
  • the AC-DC module is an isolation module.
  • the DC-DC charging module is a non-isolated charging module.
  • the AC-DC module is a non-isolated module.
  • the DC-DC charging module is an isolated charging module.
  • the embodiment of the present application provides a charging system for a new energy vehicle, which provides power to the DC-DC charging module through the output of a centralized AC-DC module as a DC bus, and rationally distributes each DC-DC charging module through the total controller.
  • the charging power thus, by the method of centralized control of power, the problem of low utilization rate of the charger and high cost caused by compatibility with high-power charging in the prior art is solved.
  • the charging system of the embodiment of the present application is directly charged by the DC bus, and the electric vehicle is straight.
  • the connected DC-DC charging module is small in size and low in cost, and can be flexibly placed in a suitable place according to requirements, and the power can be configured according to a high-power module, which is suitable for large and small vehicles or future power requirements, and avoids the prior art.
  • the problem that the configuration of the charger is difficult to expand is suitable for the rapid development of new energy vehicles.
  • FIG. 1 is a schematic diagram of a charging system in the prior art
  • FIG. 2 is a schematic diagram of an embodiment of a charging system provided by an embodiment of the present application.
  • the embodiment of the present application provides a charging system for an electric vehicle for charging an electric vehicle to solve the problem of cost waste caused by the charging system in the prior art being compatible with high-power charging.
  • the charging system provided by the embodiment of the present application, as shown in FIG. 2, includes: an AC-DC module 100, a plurality of DC-DC charging modules 200, a DC bus 400, and a total controller 300, where
  • the output of the AC-DC module 100 is connected to a DC bus 400, and the AC-DC module 100 provides electrical power to all DC-DC charging modules through the DC bus 400;
  • the input ends of the plurality of DC-DC charging modules 200 are connected to the DC bus 400, and the output ends of the plurality of DC-DC charging modules 200 are used to connect the electric vehicle, and send a charging demand signal to the overall controller.
  • the plurality of DC-DC charging modules 200 are respectively non-isolated charging modules;
  • the plurality of DC-DC charging modules 200 output a charging demand signal, which is an input signal of the overall controller 300;
  • the total controller 300 appropriately allocates the power of the plurality of DC-DC charging modules 200 according to different charging demand signals in combination with the maximum output power that the AC-DC module 100 can output.
  • the AC-DC module 100 is an isolation module, that is, the AC-DC module 100 is implemented by an isolation circuit;
  • the DC-DC charging module 200 is a non-isolated charging module, that is, the DC-DC charging.
  • Module 200 is implemented by a non-isolated circuit.
  • the AC-DC module 100 is a non-isolated module, that is, the AC-DC module 100 is implemented by a non-isolated circuit;
  • the DC-DC charging module 200 is an isolated charging module, that is, the DC-DC charging module. 200 is implemented by an isolation circuit.
  • the embodiment of the present application provides a charging system for a new energy vehicle, which uses a centralized AC-DC module output as a DC bus, and the DC bus provides power for the DC-DC charging module, and the respective controllers are appropriately allocated through the total controller.
  • the charging power of the DC-DC charging module thus, the method of DC bus power supply solves the low utilization rate and cost of the charger in order to be compatible with high-power charging in the independent distributed AC-DC charger solution in the prior art. High problem.
  • the DC-DC charging module directly connected to the electric vehicle is small in size and low in cost due to centralized power supply through the DC bus, the DC-DC charging module can be flexibly placed in a suitable place as needed. With the change in charging demand after the development of electric vehicles, the cost of updating the DC-DC charging module is not Often low, it can adapt to the current situation of the rapid development of new energy vehicles.
  • the maximum output power of each charger is often much larger than the average power of each charging, and the probability that all the chargers simultaneously charge the large-capacity battery car is Very small, even if the large-capacity car is simultaneously charged, it is difficult to be in the maximum power state at the same time, which causes the actual normal use power of the charger to be much lower than the sum of the maximum output power of the charger, and the utilization rate is very low.
  • all the chargers share a centralized AC-DC module, and the maximum output power of the centralized AC-DC module can be configured according to the actual normal used charging power, and the DC bus 400 is used for multiple DCs.
  • the DC charging module 200 is powered, and the total power output by the AC-DC module 100 is reasonably distributed to the plurality of DC-DC charging modules 200 through the overall controller 300. Since the charging system supplies power to the same AC-DC module 100, the cost waste caused by the low utilization rate of the charging device in the charging station in the prior art is avoided, and the DC-DC charging module can be low-cost and small-sized non-isolated. Module.
  • the existing charger is composed of independent AC-DC modules, as shown in Figure 1.
  • Each charger is set to a large volume, occupying a considerable space in the charging parking space of the electric vehicle.
  • the AC-DC module 100 as a high-power power supply and the plurality of DC-DC charging modules 200 can be respectively disposed in different spaces. Therefore, the AC-DC module 100 does not have to be disposed in the electric system.
  • the charging place of the car can be set in a remote or remote area, and only a small-sized DC-DC charging module is placed near the parking space, which greatly reduces the footprint of the electric car parking space.
  • the AC-DC module 100 and the DC-DC charging module 200 are separate modules.
  • the AC-DC module 100 can be disposed in a different space from the DC-DC charging module 200, so that the space of the electric vehicle charging place can be reasonably utilized.
  • the plurality of the DC-DC charging modules 200 are separate modules.
  • each DC-DC charging module is respectively connected to a different electric vehicle to charge different electric vehicles, when each DC-DC charging module 200 is separately packaged separately, and its cost is small and small, the charging is further reduced. The footprint of the machine in the charging parking space.
  • the sum of the maximum output powers of all the DC-DC charging modules 200 is greater than the maximum output power of the AC-DC module 100.
  • the maximum output power of 100 may be less than the sum of the maximum output powers of all DC-DC charging modules 200. For example, a total of 10 DC-DC charging modules each having a maximum output power of 50 kW, and the maximum output power of the AC-DC module 100 may be less than 500 kW. This is because the probability that all DC-DC charging modules need to output 50 kW at the same time is very low.
  • the AC-DC module 100 does not need to be designed as a module of 500 kW, so that the charging system of the embodiment of the present application can effectively reduce
  • the cost and volume of the AC-DC module 100 are also compatible with the charging power of different electric vehicles.
  • the total controller can allocate and limit the power of the DC-DC charging module according to a preset algorithm, for example, according to the remaining capacity of the car. Or adjust the charging priority level.
  • the charging demand signal mentioned in the embodiment of the present application does not necessarily mean that each DC-DC charging module sends the signal at the same time.
  • the DC-DC charging module connected to the electric vehicle can send a charging demand signal to the overall controller, and the DC-DC charging module not connected to the electric vehicle can not issue a charging demand signal.
  • the total controller 300 appropriately allocates the power of the plurality of DC-DC charging modules 200 according to different charging demand signals in combination with the maximum output power that the AC-DC module 100 can output.
  • the total output power corresponding to all the charging demand signals received by the controller 300 is smaller than the maximum output power of the AC-DC module 100, the reasonable allocation of the power of the plurality of DC-DC charging modules 200 may be And supplying power corresponding to the corresponding DC-DC charging module according to the requirement of the charging demand signal.
  • the reasonable allocation of power of the plurality of DC-DC charging modules is based on:
  • the power of 200 may refer to: according to the charging power corresponding to the charging demand signal received by the total controller, proportionally reduce the power of all the DC-DC charging modules; or: refer to the charging The order of sending the demand signal is preferentially supplied to the DC-DC charging module power corresponding to the charging demand signal received first; and referring to the priority of the charging demand signal, preferentially supplying the DC-DC charging module corresponding to the charging demand signal with high priority
  • the power may be: refer to the length of the charging time for charging the electric vehicle by each of the DC-DC charging modules, and preferentially supply the corresponding DC-DC charging module power with a long charging time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

一种新能源汽车的充电系统,包括一个AC-DC模块(100),多个DC-DC充电模块(200),直流母线(400)和总控制器(300)。该AC-DC模块输出直流电压为DC-DC充电模块提供功率,并通过总控制器合理分配各个DC-DC充电模块的充电功率。该充电系统通过直流电压供电的方式,解决了现有独立的分布式AC-DC充电机中为了兼容大功率充电而引起的充电机利用率低,成本高的问题。该充电系统中,和电动汽车直接连接的DC-DC充电模块体积小、成本低,可根据需要灵活放置在合适的地方,其功率可按照大功率模块配置,适合大、小车或未来更大功率需求,避免了充电机配置固定难扩容的问题,可以适应新能源汽车快速发展的现状。

Description

一种新能源汽车的充电系统
本申请要求于2016年02月19日提交中国专利局、申请号为201620131169.5、专利名称为“一种新能源汽车的充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电池充电技术领域,特别涉及一种电动汽车的充电系统。
背景技术
随着电动汽车的发展,对电动汽车充电的需求也越来越大,人们普遍期望电动汽车续航里程长而且充电时间短,并且充电机常常要兼容不同充电需求,这就意味着单一充电机功率越来越大,成本也比较高。大多数的充电站配备的充电系统由若干个充电机组成。这些充电机之间相互独立,各自从配电网进行取电,并独立地为电动汽车充电。该充电系统的结构如图1所示,由多个充电机构成,每个充电机由AC-DC模块实现。如前所述,每个独立的充电机都要兼容功率较大的充电需求,而充电站所有充电机同时处于最大功率充电状态的概率极其微小,这样所有充电机的总功率大大超出实际需要,造成了充电机成本的巨大浪费,而电网的容量也往往按所有充电机的总功率配置,同样造成巨大浪费。随着电动汽车发展,充电需求会发生变化,充电规格会发生变化,早期建设的充电机配置固定,功率很难扩大,也只能面临淘汰报废,很难进行低成本的升级。
发明内容
本申请实施例提供一种新能源汽车的充电系统,以解决现有技术中的充电系统利用率不足而引起的成本浪费问题,并且便于未来对充电系统的升级改造。
为实现所述目的,本申请提供的技术方案如下:
本申请实施例提供一种新能源汽车的充电系统,包括一个AC-DC模块,多个DC-DC充电模块,直流母线和总控制器,其中,
所述AC-DC模块的输出端连接所述直流母线,通过所述直流母线为所有的DC-DC充电模块提供电功率;
所述多个DC-DC充电模块的输入端均连接在所述直流母线上,所述多个DC-DC充电模块的输出端用于连接电动汽车,并发出充电需求信号给所述总控制器;
所述DC-DC充电模块输出充电需求信号,所述充电需求信号作为所述总控制器的输入信号;
所述总控制器根据不同的所述充电需求信号,结合所述AC-DC模块能够输出的最大输出功率,合理分配多个DC-DC充电模块的功率。
可选的,所述AC-DC模块与所述DC-DC充电模块为分别独立的模块。
可选的,所述AC-DC模块与所述DC-DC充电模块设置在不同的空间。
可选的,多个所述DC-DC充电模块为分别独立的模块。可选的,所有DC-DC充电模块的最大输出功率之和大于所述AC-DC模块的最大输出功率。
可选的,所述AC-DC模块的最大输出功率按照所述DC-DC充电模块实 际正常使用的充电功率来配置。可选的,所有DC-DC充电模块的最大输出功率之和等于所述AC-DC模块的最大输出功率。
可选的,所述的合理分配多个DC-DC充电模块的功率,其依据包括:
所述充电需求信号对应的充电功率大小;
所述充电需求信号的发送次序;
所述充电需求信号的优先级;
所述各个DC-DC充电模块为电动汽车充电的充电时间长短;
以上一种或多种。
可选的,当所述总控制器收到的所有充电需求信号对应的输出总功率,小于所述AC-DC模块的最大输出功率时,所述的合理分配多个DC-DC充电模块的功率,包括:
按照所述充电需求信号的要求,供给对应的DC-DC充电模块对应的功率。
可选的,当所述总控制器收到的所有充电需求信号对应的输出总功率,大于所述AC-DC模块的最大输出功率时,所述的合理分配多个DC-DC充电模块的功率,包括:
按照预设的算法分配和限制所述DC-DC充电模块的功率。
可选的,所述按照预设的算法分配和限制所述DC-DC充电模块的功率包括:
根据汽车剩余电量的多少或充电价格高低调整充电优先等级,以分配和限制所述DC-DC充电模块的功率。
可选的,当所述总控制器收到的所有充电需求信号对应的输出总功率,大于所述AC-DC模块的最大输出功率时,所述的合理分配多个DC-DC充电模 块的功率,包括:
参照总控制器收到的充电需求信号对应的充电功率大小,成比例降低所有供给DC-DC充电模块的功率;或者,
参照所述充电需求信号的发送次序,优先供给先收到的充电需求信号对应的DC-DC充电模块功率;或者
参照所述充电需求信号的优先级,优先供给优先等级高的充电需求信号对应的DC-DC充电模块功率;或者,
参照所述各个DC-DC充电模块为电动汽车充电的充电时间长短,优先供给充电时间长的对应的DC-DC充电模块功率。
可选的,所述多个DC-DC充电模块发出充电需求信号给所述总控制器,包括:
连接电动汽车的DC-DC充电模块发出充电需求信号给总控制器,而不连接电动汽车的DC-DC充电模块不发出充电需求信号。
可选的,所述AC-DC模块为隔离模块。
可选的,所述DC-DC充电模块为非隔离的充电模块。
可选的,所述AC-DC模块为非隔离模块。
可选的,所述DC-DC充电模块为隔离的充电模块。
本申请实施例提供一种新能源汽车的充电系统,通过一个集中的AC-DC模块的输出作为直流母线为DC-DC充电模块提供功率,并通过总控制器合理分配各个DC-DC充电模块的充电功率;这样,通过集中控制功率的方式,解决了现有技术中为了兼容大功率充电而引起的充电机利用率低,成本高问题。并且,本申请实施例的充电系统,由于通过直流母线集中供电,和电动汽车直 接连接的所述DC-DC充电模块体积小、成本低,可根据需要灵活放置在合适的地方,其功率可按照大功率模块配置,适合大小车或未来更大功率需求,避免了现有技术中充电机配置固定难扩容的问题,可以适应新能源汽车快速发展的现状。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对本申请实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些示意性的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的充电系统示意图;
图2是本申请实施例提供的充电系统的一种实施例的示意图。
具体实施方式
为使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请实施例的具体实施方式做详细的说明。
本申请实施例提供一种电动汽车的充电系统,用于为电动汽车充电,以解决现有技术中的充电系统为兼容大功率充电而引起的成本浪费的问题。
具体的,本申请实施例提供的所述充电系统如图2所示,包括:一个AC-DC模块100,多个DC-DC充电模块200,直流母线400和总控制器300,其中,
所述AC-DC模块100的输出端连接直流母线400,AC-DC模块100通过所述直流母线400为所有的DC-DC充电模块提供电功率;
所述多个DC-DC充电模块200的输入端均连接在直流母线400,所述多个DC-DC充电模块200的输出端用于连接电动汽车,并发出充电需求信号给所述总控制器300,所述多个DC-DC充电模块200分别为非隔离的充电模块;
所述多个DC-DC充电模块200输出充电需求信号,所述充电需求信号作为所述总控制器300的输入信号;
所述总控制器300根据不同的所述充电需求信号,结合所述AC-DC模块100能够输出的最大输出功率,合理分配多个DC-DC充电模块200的功率。
其中,可选的,所述AC-DC模块100为隔离模块,即该AC-DC模块100通过隔离电路实现;所述DC-DC充电模块200为非隔离的充电模块,即该DC-DC充电模块200通过非隔离电路实现。
可选的,所述AC-DC模块100为非隔离模块,即该AC-DC模块100通过非隔离电路实现;所述DC-DC充电模块200为隔离的充电模块,即该DC-DC充电模块200通过隔离电路实现。
本申请实施例提供一种新能源汽车的充电系统,通过一个集中的AC-DC模块的输出作为直流母线,并且所述直流母线为DC-DC充电模块提供功率,并通过总控制器合理分配各个DC-DC充电模块的充电功率;这样,通过直流母线供电的方式,解决了现有技术中独立的分布式AC-DC充电机方案中为了兼容大功率充电而引起的充电机利用率低,成本高问题。并且,本申请实施例的充电系统,由于通过直流母线集中供电,和电动汽车直接连接的所述DC-DC充电模块体积小、成本低,DC-DC充电模块可根据需要灵活放置在合适的地方,随着电动汽车发展后的充电需求变化,更新DC-DC充电模块的成本也非 常低,可以适应新能源汽车快速发展的现状。
现有技术的充电系统为了兼容不同功率的充电需求,每个充电机的最大输出功率往往是远大于每次充电的平均功率,而实际上所有充电机都同时为大容量电池汽车充电的概率是非常小的,即便同时为大容量汽车同时充电,也很难同时都处于最大功率充电状态,这样就造成了充电机实际正常使用功率远低于充电机的最大输出功率之和,利用率很低。而本申请实施例的充电系统,所有的充电机共用一个集中AC-DC模块,集中AC-DC模块的最大输出功率可以按照实际正常使用的充电功率来配置,通过直流母线400为多个DC-DC充电模块200供电,并通过总控制器300将AC-DC模块100输出的总功率合理分配给多个DC-DC充电模块200。由于该充电系统为同一个AC-DC模块100供电,因此,避免了现有技术中充电站中充电机利用率低造成的成本浪费,而DC-DC充电模块可以是低成本小体积的非隔离模块。
同时,现有的充电机为独立的AC-DC模块构成,如图1所示。每个充电机都设置体积很大,在电动汽车的充电停车位占据相当的空间。而本申请提供的充电系统中,作为大功率供电的AC-DC模块100,与多个DC-DC充电模块200可以分别设置在不同空间,因此,所述AC-DC模块100可以不必设置在电动汽车的充电场所,而是可以设置在较远或偏僻的区域,而仅把很小体积的DC-DC充电模块放置在停车位附近,这样大大减小了电动汽车停车位的占地面积。
可选的,所述AC-DC模块100与所述DC-DC充电模块200为分别独立的模块。
这样在实际应用中,所述AC-DC模块100可以与所述DC-DC充电模块200设置在不同的空间,以便电动汽车充电场所的空间合理利用。
可选的,多个所述DC-DC充电模块200,为分别独立的模块。
由于每个DC-DC充电模块分别与不同的电动汽车连接,为不同的电动汽车充电,因此,当每个DC-DC充电模块200分别独立封装时,且其成本低体积小,进一步减小充电机在充电停车位的占地面积。
可选的,所有DC-DC充电模块200的最大输出功率之和大于所述AC-DC模块100的最大输出功率。
考虑到所有DC-DC充电模块200同时输出最大功率的概率极其微小,同时,所有DC-DC充电模块200同时输出最大功率对配电网的瞬时功率需求过高,因此,在设计AC-DC模块100的最大输出功率时,可以小于所有DC-DC充电模块200输出的最大输出功率之和。例如,共10个DC-DC充电模块,每个DC-DC充电模块的最大输出功率均为50kw,所述AC-DC模块100的最大输出功率可以小于500kw。这是因为所有DC-DC充电模块同时均需要输出50kw的概率很低,因此,所述AC-DC模块100也不需要设计为500kw的模块,这样,本申请实施例的充电系统,可有效降低AC-DC模块100的成本和体积,还能兼容不同电动汽车的充电功率。对于偶然出现的DC-DC充电模块总功率需求大于AC-DC模块最大输出功率的情况,总控制器可以按照预设的算法分配和限制DC-DC充电模块的功率,例如根据汽车剩余电量的多少或充电价格高低调整充电优先等级。
需要说明的是,本申请实施例中提到的所述充电需求信号,并不一定是每个DC-DC充电模块同一时间都发送该信号,当对应的DC-DC充电模块连接电动汽车时,连接电动汽车的DC-DC充电模块可以发出充电需求信号给总控制器,而不连接电动汽车的DC-DC充电模块可以不发出充电需求信号。
本申请实施例的充电系统中,所述总控制器300根据不同的充电需求信号,结合所述AC-DC模块100能够输出的最大输出功率,合理分配多个DC-DC充电模块200的功率。当总控制器300收到的所有充电需求信号对应的输出总功率,小于所述AC-DC模块100的最大输出功率时,所述的合理分配多个DC-DC充电模块200的功率,可以为:按照所述充电需求信号的要求,供给对应的DC-DC充电模块对应的功率。
可选的,所述的合理分配多个DC-DC充电模块的功率,其依据包括:
所述充电需求信号对应的充电功率大小;
所述充电需求信号的发送次序;
所述充电需求信号的优先级;以及,
所述各个DC-DC充电模块为电动汽车充电的充电时间长短;
以上一种或多种。
当总控制器300收到的所有充电需求信号对应的输出总功率,大于所述AC-DC模块100的最大输出功率时,所述的合理分配多个DC-DC充电模块 200的功率,按照上述依据,例如,可以为:参照总控制器收到的充电需求信号对应的充电功率大小,成比例降低所有供给DC-DC充电模块的功率;也可以为:参照所述充电需求信号的发送次序,优先供给先收到的充电需求信号对应的DC-DC充电模块功率;参照所述充电需求信号的优先级,优先供给优先等级高的充电需求信号对应的DC-DC充电模块功率;还可以为:参照所述各个DC-DC充电模块为电动汽车充电的充电时间长短,优先供给充电时间长的对应的DC-DC充电模块功率。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制。虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请。任何熟悉本领域的技术人员,在不脱离本申请技术方案范围情况下,都可利用上述揭示的方法和技术内容对本申请技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (17)

  1. 一种新能源汽车的充电系统,其特征在于,包括一个AC-DC模块,多个DC-DC充电模块,直流母线和总控制器,其中,
    所述AC-DC模块的输出端连接所述直流母线,通过所述直流母线为所有的DC-DC充电模块提供电功率;
    所述多个DC-DC充电模块的输入端均连接在所述直流母线上,所述多个DC-DC充电模块的输出端用于连接电动汽车,并发出充电需求信号给所述总控制器;
    所述DC-DC充电模块输出充电需求信号,所述充电需求信号作为所述总控制器的输入信号;
    所述总控制器根据不同的所述充电需求信号,结合所述AC-DC模块能够输出的最大输出功率,合理分配多个DC-DC充电模块的功率。
  2. 根据权利要求1所述的充电系统,其特征在于,所述AC-DC模块与所述DC-DC充电模块为分别独立的模块。
  3. 根据权利要求2所述的充电系统,其特征在于,所述AC-DC模块与所述DC-DC充电模块设置在不同的空间。
  4. 根据权利要求1所述的充电系统,其特征在于,多个所述DC-DC充电模块为分别独立的模块。
  5. 根据权利要求1所述的充电系统,其特征在于,所有DC-DC充电模块的最大输出功率之和大于所述AC-DC模块的最大输出功率。
  6. 根据权利要求5所述的充电系统,其特征在于,所述AC-DC模块的最大输出功率按照所述DC-DC充电模块实际正常使用的充电功率来配置。
  7. 根据权利要求1所述的充电系统,其特征在于,所有DC-DC充电模块的最大输出功率之和等于所述AC-DC模块的最大输出功率。
  8. 根据权利要求1所述的充电系统,其特征在于,所述的合理分配多个DC-DC充电模块的功率,其依据包括:
    所述充电需求信号对应的充电功率大小;
    所述充电需求信号的发送次序;
    所述充电需求信号的优先级;
    所述各个DC-DC充电模块为电动汽车充电的充电时间长短;
    以上一种或多种。
  9. 根据权利要求1或8所述的充电系统,其特征在于,当所述总控制器收到的所有充电需求信号对应的输出总功率,小于所述AC-DC模块的最大输出功率时,所述的合理分配多个DC-DC充电模块的功率,包括:
    按照所述充电需求信号的要求,供给对应的DC-DC充电模块对应的功率。
  10. 根据权利要求1所述的充电系统,其特征在于,当所述总控制器收到的所有充电需求信号对应的输出总功率,大于所述AC-DC模块的最大输出功率时,所述的合理分配多个DC-DC充电模块的功率,包括:
    按照预设的算法分配和限制所述DC-DC充电模块的功率。
  11. 根据权利要求10所述的充电系统,其特征在于,所述按照预设的算法分配和限制所述DC-DC充电模块的功率包括:
    根据汽车剩余电量的多少或充电价格高低调整充电优先等级,以分配和限制所述DC-DC充电模块的功率。
  12. 根据权利要求1或8所述的充电系统,其特征在于,当所述总控制器 收到的所有充电需求信号对应的输出总功率,大于所述AC-DC模块的最大输出功率时,所述的合理分配多个DC-DC充电模块的功率,包括:
    参照总控制器收到的充电需求信号对应的充电功率大小,成比例降低所有供给DC-DC充电模块的功率;或者,
    参照所述充电需求信号的发送次序,优先供给先收到的充电需求信号对应的DC-DC充电模块功率;或者
    参照所述充电需求信号的优先级,优先供给优先等级高的充电需求信号对应的DC-DC充电模块功率;或者,
    参照所述各个DC-DC充电模块为电动汽车充电的充电时间长短,优先供给充电时间长的对应的DC-DC充电模块功率。
  13. 根据权利要求1所述的充电系统,其特征在于,所述多个DC-DC充电模块发出充电需求信号给所述总控制器,包括:
    连接电动汽车的DC-DC充电模块发出充电需求信号给总控制器,而不连接电动汽车的DC-DC充电模块不发出充电需求信号。
  14. 根据权利要求1所述的充电系统,其特征在于,所述AC-DC模块为隔离模块。
  15. 根据权利要求1所述的充电系统,其特征在于,所述DC-DC充电模块为非隔离的充电模块。
  16. 根据权利要求1所述的充电系统,其特征在于,所述AC-DC模块为非隔离模块。
  17. 根据权利要求1所述的充电系统,其特征在于,所述DC-DC充电模块为隔离的充电模块。
PCT/CN2017/074082 2016-02-19 2017-02-20 一种新能源汽车的充电系统 WO2017140270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620131169.5U CN205489720U (zh) 2016-02-19 2016-02-19 一种新能源汽车的充电系统
CN201620131169.5 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017140270A1 true WO2017140270A1 (zh) 2017-08-24

Family

ID=56677733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074082 WO2017140270A1 (zh) 2016-02-19 2017-02-20 一种新能源汽车的充电系统

Country Status (2)

Country Link
CN (1) CN205489720U (zh)
WO (1) WO2017140270A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309004A1 (en) * 2016-10-12 2018-04-18 Toyota Jidosha Kabushiki Kaisha Charging system for electrically driven vehicles
CN109484229A (zh) * 2018-12-21 2019-03-19 西安特锐德智能充电科技有限公司 一种充电机
CN113315213A (zh) * 2021-06-04 2021-08-27 上汽通用五菱汽车股份有限公司 一种可为新能源汽车和充电宝充电的电单车换电柜及电路

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205489720U (zh) * 2016-02-19 2016-08-17 英飞特电子(杭州)股份有限公司 一种新能源汽车的充电系统
CN108248405B (zh) * 2016-12-28 2021-08-17 湖南中车时代电动汽车股份有限公司 一种电动车充电控制方法及系统
CN107150604A (zh) * 2017-05-11 2017-09-12 山东鲁能智能技术有限公司 一种电动汽车的充电系统和充电桩
CN107017692A (zh) * 2017-06-02 2017-08-04 广东万城万充电动车运营股份有限公司 一种大功率直流充电机
CN108899946A (zh) * 2018-06-21 2018-11-27 北京车和家信息技术有限公司 电池充电装置、控制方法、电动汽车以及电动充电车
CN111277028B (zh) * 2020-02-10 2022-05-24 阳光电源股份有限公司 一种充电系统、控制方法以及控制装置
CN113135109B (zh) * 2020-07-31 2022-10-25 清华大学 一种电动汽车大功率充电装置拓扑结构
CN115782667B (zh) * 2023-02-08 2023-04-28 云南丁旺科技有限公司 充电堆用电容量分配方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257146A1 (en) * 2012-04-03 2013-10-03 Geraldo Nojima Electric vehicle supply equipment for electric vehicles
CN103633717A (zh) * 2012-08-24 2014-03-12 国家电网公司 电动汽车充电站的充电系统
CN105207326A (zh) * 2015-09-22 2015-12-30 青岛派克能源有限公司 一种新能源汽车电池更换充电模式共直流母线的新型结构
CN205489720U (zh) * 2016-02-19 2016-08-17 英飞特电子(杭州)股份有限公司 一种新能源汽车的充电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257146A1 (en) * 2012-04-03 2013-10-03 Geraldo Nojima Electric vehicle supply equipment for electric vehicles
CN103633717A (zh) * 2012-08-24 2014-03-12 国家电网公司 电动汽车充电站的充电系统
CN105207326A (zh) * 2015-09-22 2015-12-30 青岛派克能源有限公司 一种新能源汽车电池更换充电模式共直流母线的新型结构
CN205489720U (zh) * 2016-02-19 2016-08-17 英飞特电子(杭州)股份有限公司 一种新能源汽车的充电系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309004A1 (en) * 2016-10-12 2018-04-18 Toyota Jidosha Kabushiki Kaisha Charging system for electrically driven vehicles
CN109484229A (zh) * 2018-12-21 2019-03-19 西安特锐德智能充电科技有限公司 一种充电机
CN113315213A (zh) * 2021-06-04 2021-08-27 上汽通用五菱汽车股份有限公司 一种可为新能源汽车和充电宝充电的电单车换电柜及电路

Also Published As

Publication number Publication date
CN205489720U (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017140270A1 (zh) 一种新能源汽车的充电系统
US11260763B2 (en) Charging pile system of parallel charging piles and method
CN106585413B (zh) 多直流充电桩并联自动充电的方法
KR101998411B1 (ko) 전력 시스템을 제어하는 제어기 및 방법
WO2017148408A1 (zh) 一种储能式充电系统
US10800279B2 (en) Portable charging system and charging method
WO2018028561A1 (zh) 一种充电系统及充电控制方法
JP2016539051A (ja) 航空機の動力系統に対する電力供給の制御方法
CN106415976A (zh) 用于电动车辆的双向充电系统
US20220209545A1 (en) Energy storage charging system
CN106114270B (zh) 一种充电系统及充电控制方法
CN207819447U (zh) 一种直流电力系统
CN107303825A (zh) 用于电动车辆的充电系统及用于对电动车辆充电的方法
CN101931252A (zh) 一种电动汽车充电系统
WO2021017508A1 (zh) 一种储能充电桩
WO2020211631A1 (zh) 一种储能充电系统
CN110626203A (zh) 一种集中式储能充电桩
CN104410126A (zh) 电动汽车车载充电机及车载dc/dc一体化集成系统
WO2017148407A1 (zh) 一种储能式充电系统
EP4112362A1 (en) Terminal for charging electric vehicles with electrochemical energy storage
CN109624776B (zh) 一种功率共享调配充电站群
CN209072142U (zh) 一种电动汽车充电系统
GB2556524A (en) Device and method for inductively transmitting electrical energy to movable electrical consumers
CN112959914A (zh) 一种功率分配及控制系统、及其应用的充电系统
CN205951740U (zh) 一种充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752702

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17752702

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17752702

Country of ref document: EP

Kind code of ref document: A1