WO2020211631A1 - 一种储能充电系统 - Google Patents

一种储能充电系统 Download PDF

Info

Publication number
WO2020211631A1
WO2020211631A1 PCT/CN2020/082282 CN2020082282W WO2020211631A1 WO 2020211631 A1 WO2020211631 A1 WO 2020211631A1 CN 2020082282 W CN2020082282 W CN 2020082282W WO 2020211631 A1 WO2020211631 A1 WO 2020211631A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion
energy storage
bus
power
frequency isolation
Prior art date
Application number
PCT/CN2020/082282
Other languages
English (en)
French (fr)
Inventor
王渭渭
朱春辉
岳兴
Original Assignee
深圳英飞源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳英飞源技术有限公司 filed Critical 深圳英飞源技术有限公司
Publication of WO2020211631A1 publication Critical patent/WO2020211631A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a charging system, in particular to an energy storage charging system.
  • the electric vehicle charging system draws power from the AC grid, but due to the power supply limitation of the AC grid, especially the limited capacity of a single box transformer, it is impossible to connect to a charging system that exceeds its capacity.
  • the electricity costs of the AC power grid at different periods of time and the charging of electric vehicles is a random electricity consumption, so there are cases where the peak electricity fee is used or the full power cannot be charged.
  • the technical problem to be solved by the present invention is an energy storage charging system, which treats different energy storage devices differently and performs charging and discharging separately.
  • the energy storage device and the DC bus are isolated by a high-frequency transformer, and the energy storage device is restricted when a short circuit occurs. , Effectively prevent the risk of accident expansion and effectively solve many deficiencies in the existing technology.
  • an energy storage charging system A: A bidirectional DC/DC converter including high frequency isolation conversion and a DC bus; the first connection point of the bidirectional DC/DC device is connected to the energy storage device; the second connection point is connected to the DC bus, and the bidirectional DC/DC device will store energy The electrical energy of the device undergoes bidirectional communication with the DC bus after high-frequency isolation and transformation;
  • AC/DC converter and DC bus including high-frequency isolation conversion the first connection point of the AC/DC device is connected to the AC grid; the second connection point is connected to the DC bus, the AC/DC device isolates the grid power through high frequency Supplement the DC bus with electrical energy after conversion;
  • the C Contains a device for charging electric vehicles.
  • the first connection point of this device is the DC bus, and the second connection point is the charging port of the electric vehicle. According to the voltage and current required by the electric vehicle, the bus voltage and the charging of the electric vehicle are dynamically adjusted Current.
  • a bidirectional DC/DC converter including high-frequency isolation conversion includes a first-level conversion, a high-frequency isolation transformer, and a second-level conversion.
  • the first-level conversion is connected to the energy storage device, and the second-level conversion is connected to the DC bus.
  • the high-frequency isolation transformer connects the first-stage transformation and the second-stage transformation.
  • the high-frequency isolation bidirectional DC/DC conversion has two-direction conversion, the first direction conversion: the DC power of the energy storage unit is converted into high-frequency power through the first-stage conversion, and the high-frequency isolation transformer The conversion is converted into high-frequency electric energy of different voltages, which is converted into DC after the second-stage conversion, and output to the DC bus;
  • the DC bus converts the input DC power to the second stage, which is converted into high-frequency power through the second-stage conversion, and then converted into high-frequency power of different voltages through the high-frequency isolation transformer, and converted into DC power from the first stage , Enter the energy storage device.
  • the electric energy on both sides of the high-frequency isolation transformer is isolated by the high-frequency isolation transformer, and the conductors on both sides are not directly conducted; the high-frequency electric energy is transmitted from one side to the other through electromagnetic induction.
  • the bidirectional DC/DC conversion device includes a DC/DC conversion control unit.
  • the DC/DC control unit internally controls the first-level conversion, the second-level conversion, and the operation of the high-frequency isolation transformer, and has 1 or Multiple communication buses: the first communication bus is connected to the system main control unit, the second communication bus can be directly connected to the energy storage device, or not connected, it is to directly connect the energy storage device to the system main control unit, through the system control The unit communicates with the DC/DC to control the charging or discharging of the energy storage device.
  • the DC/DC converter control unit obtains energy storage information according to the communication between the first communication bus and the energy storage device, the second communication bus obtains the energy storage system control request information, and the information collected through the internal sampling circuit
  • the DC bus voltage information controls the conversion direction, conversion power and conversion energy of the bidirectional DC/DC conversion device.
  • the DC/DC converter control unit obtains energy storage information according to the communication between the second communication bus and the energy storage device, and the DC bus information collected through the internal sampling circuit, and at the same time according to the current electric vehicle charging Demand, and current grid conditions, to control the conversion direction and conversion power of the bidirectional DC/DC converter;
  • the DC/DC converter control unit communicates with the system main control unit according to the first communication bus, and adjusts the conversion direction and conversion power of the two-way DC/DC converter according to the command of the main control.
  • the system main control obtains information through communication with the energy storage device. According to the information of energy storage, and according to the current electric vehicle charging demand and the current grid situation, a reasonable conversion direction and conversion power of the two-way DC/DC converter can be obtained.
  • the DC bus includes a positive bus and a negative bus.
  • the positive and negative buses are respectively connected to one or more of the high-frequency isolated bidirectional DC/DC converters, and at the same time, they are connected to other devices through the input and output access points. Device.
  • the energy storage device inputs and stores the electric energy of the bus through the DC bus and through the bidirectional DCDC, or releases the stored electric energy to the bus.
  • the voltage and current of the electric energy change; or ,
  • Two-way DC/DC conversion device connecting multiple energy storage devices, different types of energy storage devices or multiple same energy storage devices, by connecting the two-way DC/DC conversion device, connected to the same bus for electrical energy exchange.
  • different energy storage devices connected to the DC bus have different powers in the first and second conversion directions, and the converted power is controlled by the system control main control unit.
  • the system main control unit is based on the first conversion direction and the second conversion direction.
  • the power requirement of the change direction, and the characteristics of the energy storage device, control the conversion power according to the preset optimal control mode.
  • the AC/DC conversion device including high-frequency isolation conversion includes a first-level conversion, a high-frequency isolation transformer, and a second-level conversion.
  • the first-level conversion is connected to the AC power grid, and the second-level conversion is connected to the DC bus.
  • the frequency isolation transformer connects the first-stage transformation and the second-stage transformation.
  • the electric energy on both sides of the high-frequency isolation transformer is isolated by the high-frequency isolation transformer, and the conductors on both sides are not directly conducted; the high-frequency electric energy is transmitted from one side to the other through electromagnetic induction.
  • the AC/DC conversion device includes an AC/DC conversion control unit.
  • the AC/DC control unit internally controls the first-level conversion, the second-level conversion, and the operation of the high-frequency isolation transformer, and has a communication bus externally: communication
  • the bus is connected to the main control unit of the system and communicates with the AC/DC through the main control unit of the system to control the power conversion from the grid to the DC bus.
  • the system master control obtains the current electric vehicle charging demand, energy storage device information and current grid conditions through communication, and controls the conversion power of the AC/DC converter to meet the optimal conditions.
  • the power conversion value is the power conversion value.
  • the DC bus includes a positive bus and a negative bus.
  • the positive and negative bus bars are respectively connected to one or more of the high-frequency isolation AC/DC conversion devices, and at the same time, are connected to other devices through the input and output access points. .
  • the AC/DC device connected to the DC bus is controlled by the main control unit of the system.
  • the main control unit of the system is based on the current charging demand of electric vehicles, the power and cost of the current grid, and the rest of the current grid.
  • the power requirements of the charging equipment and the characteristics of the energy storage device control the conversion power according to the preset optimal control mode.
  • the main control system of the system is based on the charging of electric vehicles. Demand, through the control of AC/DC, two-way DC/DC, to achieve the voltage and current control of the DC bus.
  • the system main control is a single integrated integrated main control, or a distributed main control composed of a combination of multiple control units with a layered architecture.
  • the beneficial effects of the present invention are: the multiple energy storage devices of the present invention are isolated from the high-frequency isolation transformer of the DC bus through the high-frequency isolation bidirectional conversion device to limit the electrical energy passing through the transformer, thereby reducing the fault current of the DC bus, and achieving the purpose of safety protection. , Multiple groups of energy storage devices are connected to the bus through their independent two-way isolation conversion devices, the differences between different energy storage devices no longer affect each other, and even energy storage devices of different properties can be used in combination.
  • the DC bus and the AC grid are also supplemented by high-frequency isolated ACDC converters, and the DC bus is directly connected to the electric vehicle charging interface.
  • the system master controls the electric energy storage status of the energy storage device according to the current electric vehicle charging requirements. The state of the AC power grid enables optimal charging control.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • FIG. 2 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Fig. 3 is a schematic structural diagram of the second embodiment of the present invention.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms such as “upper”, “above”, “below”, “below” and the like used in the present invention to indicate a relative position in space are for the purpose of facilitating explanation to describe one unit or feature as shown in the drawings relative to another The relationship of a unit or feature.
  • the term of the relative position in space may be intended to include different orientations of the device in use or operation other than those shown in the figures. For example, if the device in the figure is turned over, the unit described as being “below” or “below” other units or features will be “above” the other units or features. Therefore, the exemplary term “below” can encompass both above and below orientations.
  • the device can be oriented in other ways (rotated by 90 degrees or other orientations), and the space-related descriptors used herein are explained accordingly.
  • the terms “set”, “socket”, “connection”, “through”, “plug” and other terms should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two components or the interaction of two components Relationship, unless otherwise clearly defined.
  • an intermediate medium which can be the internal communication of two components or the interaction of two components Relationship, unless otherwise clearly defined.
  • a bidirectional DC/DC converter device 1 containing high-frequency isolation conversion and a DC bus 11; the first connection point of the bidirectional DC/DC device is connected to the energy storage device 8; the second connection point is connected to the DC bus 11,
  • the bidirectional DC/DC device converts the electric energy of the energy storage device 8 into a high-frequency isolation and performs bidirectional communication with the DC bus 11.
  • the bidirectional DC/DC converter 1 including high-frequency isolation conversion includes a first-level conversion 2, a high-frequency isolation transformer 4, and a second-level conversion 3.
  • the first-level conversion 2 is connected to the energy storage device 8, and the second-level conversion 2 is connected to DC
  • the bus 11 and the high-frequency isolation transformer 4 are connected to the first-stage transformation 2 and the second-stage transformation 3.
  • the high-frequency isolation bidirectional DC/DC conversion has two directional conversions, the first direction conversion: the DC power of the energy storage unit is converted into high-frequency power through the first-stage conversion, and the high-frequency isolation transformer Transform, transform into high-frequency electric energy of different voltages, after the second-stage transformation, become DC, and output to the DC bus;
  • the DC bus 11 inputs DC power to the second conversion 3, which is converted into high frequency power through the second conversion 3, and then converted into high frequency power of different voltages through the high frequency isolation transformer, which is converted from the first conversion It is DC electric energy, which is input into energy storage device.
  • the electric energy on both sides of the high-frequency isolation transformer 4 is isolated by the high-frequency isolation transformer, and the conductors on both sides are not directly conducted; the high-frequency electric energy is transmitted from one side to the other through electromagnetic induction.
  • the bidirectional DC/DC conversion device includes a DC/DC conversion device control unit 5,
  • the DC/DC control unit internally controls the operation of the first-level conversion 2, the second-level conversion 3, and the high-frequency isolation transformer 4, and has one or more communication buses externally: the first communication bus 6 is connected to the main control of the system, and the second communication The bus 9 can also be directly connected to the energy storage device 8.
  • the DC/DC converter control unit 5 obtains energy storage information according to the communication between the first communication bus 6 and the system master, and the second communication bus 9 can also directly communicate with the energy storage system to obtain energy storage system information.
  • the DC bus voltage information collected by the internal sampling circuit is used to control the conversion direction, conversion power and conversion energy of the bidirectional DC/DC conversion device.
  • the DC bus 11 includes a positive bus and a negative bus.
  • the positive and negative bus bars are respectively connected to one or more of the high-frequency isolated bidirectional DC/DC converters, and at the same time, are connected to other Device.
  • the energy storage device 8 stores external input electric energy through DC input, or discharges electric energy through DC output. During the input and output of electric energy, the voltage and current of the electric energy change; or, a bidirectional DC/DC conversion device , Connecting multiple energy storage devices, different types of energy storage devices or multiple identical energy storage devices, by connecting the two-way DC/DC conversion device, connected to the same bus, for power exchange.
  • the different energy storage devices connected to the DC bus have different powers in the first and second conversion directions, and the converted power is controlled by the system control unit.
  • the system control unit is based on the first conversion direction and the second conversion direction. Directional power requirements, as well as the characteristics of the energy storage device, control the conversion power according to the preset optimal control mode.
  • the AC power grid 12 converts AC power into DC power to the DC bus 11 through the high-frequency isolation AC/DC conversion device 20, and the high-frequency isolation AC/DC conversion device is completed by the high-frequency isolation shown in 15 and 16.
  • Electric energy conversion, 14 is an ACDC control unit, communicates with the system master through the communication bus 13, receives the control of the system master, and controls the conversion power according to the preset optimal control mode.
  • the DC bus 11 is connected to the electric vehicle charging interface 17, and the charging demand voltage and current of the electric vehicle communicate with the system master through the bus 18.
  • the system master communicates with the charging demand information of the electric vehicle through AC/DC and
  • the optimal control of DC/DC adjusts the DC bus voltage and current to meet the optimal use of electric energy and the charging requirements of electric vehicles.
  • the system main control 10 collects energy storage device information and electric vehicle charging information through the communication bus, combined with the state of the AC grid and the power state of other charging systems in the network, and obtains by controlling the AC/DC AC power , And through two-way DC/DC to control the power direction and power size of the energy storage device, adjust the DC bus voltage and current to meet the optimal use of electric energy and the charging needs of electric vehicles.
  • a high-frequency isolation bidirectional conversion energy storage charging system including a high-frequency isolation conversion bidirectional DC/DC conversion device, a DC bus, a battery pack, and a bidirectional AC/DC inverter device 20.
  • the high-frequency isolation two-way conversion energy storage system includes multiple battery packs, and multiple sets of high-frequency isolation two-way conversion devices connected to the batteries, connected to the DC bus.
  • the two-way inverter device connects the DC bus and the AC grid.
  • the energy of the multiple batteries is discharged to the power grid through the bidirectional DC/DC conversion and the bidirectional DC/AC conversion, and at the same time, the power grid charges the battery packs through the conversion device.
  • the solution can also be used to realize the V2G function, that is, the energy stored in the battery of the electric vehicle is fed back to the grid 12 through the DC bus 11 and the bidirectional AC/DC conversion device 20.
  • This embodiment is applied to energy exchange between the battery and the grid or V2G applications.
  • the photovoltaic array A is connected to the DC bus through the MPPT maximum power tracking conversion device B.
  • the high-frequency isolation bidirectional conversion energy storage system connects multiple battery packs to the DC bus, and the DC bus is connected to the electric vehicle charging port. Charge the electric car.
  • the above embodiment is a photovoltaic energy storage charging system. Electric energy can be supplemented by a photovoltaic array.
  • the DC bus is powered by maximum power tracking, and the DC charging device is powered by the bus. The excess energy is stored in the battery pack through the energy storage system. When there is no solar energy or solar energy is not enough, then use AC power or battery pack to discharge to provide electrical energy to the bus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种储能充电系统,包含高频隔离变换的双向DC/DC变换装置以及直流母线,包含高频隔离变换的AC/DC变换装置以及直流母线,包含电动车充电系统。双向DC/DC装置第一连接点连接到储能装置;第二连接点连接到直流母线,双向DC/DC装置将储能装置的电能经过高频隔离变换后与直流母线进行双向交流;AC/DC装置第一连接点连接到电网;第二连接点连接到相同直流母线。本发明的储能装置与直流母线经过高频隔离的双向变换装置的高频隔离变压器隔离,调节通过变压器的电能,从而调节直流母线对储能装置的充电电压和电流,以及调节储能装置对直流母线的的放电电压和电流,达到给电动车充电的目的。

Description

一种储能充电系统 技术领域
本发明涉及一种充电系统,具体涉及一种储能充电系统。
背景技术
一般电动车充电系统从交流电网取电,但由于交流电网在功率提供上的限制,特别是单一箱变的容量有限,不可能接入超过其容量的充电系统。同时交流电网在不同时段的用电费用上存在差别,而电动车充电又是一个随机性的用电,所以存在使用波峰电费,或无法满功率充电的情况。
另外,在多个储能设备接入系统时,由于单个储能装置的电压不同,内部单元的电压不均衡,可能导致多个储能装置无法直接并联,或并联长期使用存在隐患。特别是锂离子电池,组成大型储能系统时,串并联电池太多,电池的不均衡成为其大规模储能使用的技术瓶颈。
更为突出的是,退役电池用作储能时,不同电池组的差异更大,无法直接并联使用,其充放电过程需要区别对待。
在目前在使用的储能系统中,储能装置与直流母线连接时,存在一个短路保护的问题。也即当直流母线发生短路,或变换装置与直流母线连接一侧发生短路,储能装置的电能也通过回路释放到短路点,这就引发事故扩大的风险。传统的解决方法是在逆变系统的交流侧增加隔离变压器,由于频率较低,穿过变压器的电能仍然很大,而在直流母线,没有有效的方法限制储能装置释放的电能。
对具有冲击性特征的充放电应用,直接采用一种储能方式都有限制。例如作为能量回收的大电流充电,直接采用一种电池的成本或体积较大,解决方法是采用不同的储能方式组合,大倍率短时间储能采用超级电容或者大倍率储能电池,长时间储能采用一般锂离子电池结合,不能灵活进行能量转换。
技术问题
本发明所要解决的技术问题是一种储能充电系统,将不同储能装置区别对待,分别进行充放电处理,储能装置与直流母线之间通过高频变压器隔离,短路时储能装置被限制,有效防范事故扩大的风险,有效解决现有技术中的诸多不足。
技术解决方案
本发明是通过以下技术方案来实现的:一种储能充电系统, A:包含高频隔离变换的双向DC/DC变换装置以及直流母线;双向DC/DC装置第一连接点连接到储能装置;第二连接点连接到直流母线,双向DC/DC装置将储能装置的电能经过高频隔离变换后与直流母线进行双向交流;
B: 包含高频隔离变换的AC/DC变换装置以及直流母线;AC/DC装置第一连接点连接到交流电网;第二连接点连接到直流母线,AC/DC装置将电网电能经过高频隔离变换后对直流母线进行电能补充;
C: 包含对电动车进行充电的装置,该装置第一连接点为此直流母线,第二连接点为电动车充电端口,根据电动车需求电压和电流,动态调节该母线电压和电动车的充电电流。
作为优选的技术方案,包含高频隔离变换的双向DC/DC变换装置包括第一级变换、高频隔离变压器、第二级变换,第一级变换连接储能装置,第二级变换连接直流母线,高频隔离变压器连接第一级变换和第二级变换。
作为优选的技术方案,高频隔离双向DC/DC变换具有两个方向变换,第一方向变换:储能单元的直流电能经过第一级变换变为高频电能,通过所述的高频隔离变压器的变换,变换为不同电压的高频电能,经过第二级变换变为直流,输出到直流母线;
第二方向变换:直流母线向第二级变换输入直流电能,经过第二级变换变为高频电能,通过高频隔离变压器变为不同电压的高频电能,由第一级变换变为直流电能,输入储能装置。
作为优选的技术方案,高频隔离变压器两侧的电能通过高频隔离变压器隔离,两侧导电体不直接导通;高频电能通过电磁感应从一侧传输到另一侧。
作为优选的技术方案,双向DC/DC变换装置,包含DC/DC变换控制单元, DC/DC控制单元对内控制第一级变换、第二级变换、高频隔离变压器工作,对外具有1个或多个通信总线:第一通信总线连接所述的系统主控单元,第二通信总线可以直接连接储能装置,或者不连接,其是将储能装置直接连接至系统主控单元,通过系统控制单元与该DC/DC通信,来控制对储能装置的充电或放电。
作为优选的技术方案,DC/DC变换装置控制单元根据第一通信总线与储能装置的通信获取的储能的信息,第二通信总线获得储能系统控制要求信息,以及通过内部采样电路采集的所述直流母线电压信息,控制双向DC/DC变换装置的变换方向、变换功率和变换能量。
作为优选的技术方案,DC/DC变换装置控制单元根据第二通信总线与储能装置的通信获取的储能的信息,以及通过内部采样电路采集的所述直流母线信息,同时根据当前电动车充电需求,以及当前电网情况,控制所述双向DC/DC变换装置的变换方向、变换功率;
或者,DC/DC变换装置控制单元根据第一通信总线与系统主控单元通信,听从主控命令调节双向DC/DC变换装置的变换方向、变换功率,系统主控通过和储能装置通信获取的储能的信息,以及根据当前电动车充电需求,以及当前电网情况,综合得出合理的双向DC/DC变换装置的变换方向、变换功率。
作为优选的技术方案,直流母线包含正极母线和负极母线,正负极母线分别连接到一个或多个所述的高频隔离双向DC/DC变换装置,同时通过输入输出接入点,连接到其它装置。
作为优选的技术方案,储能装置通过直流母线并通过双向DCDC,输入并储存母线的电能,或者放出储存的电能到母线,在电能的输入输出过程中,电能的电压和电流有所变化;或者,双向DC/DC变换装置,连接多种储能装置,不同种类的储能装置或多个相同的储能装置,通过连接所述的双向DC/DC变换装置,连接到同一个母线,进行电能交换。
作为优选的技术方案,连接到直流母线的不同储能装置,第一和第二变换方向的功率不同,变换的功率接受系统控主控单元控制,系统主控单元根据第一变换方向和第二变换方向的功率要求,以及储能装置的特性,根据预先设定的最优的控制方式控制变换功率。
作为优选的技术方案,包含高频隔离变换的AC/DC变换装置包括第一级变换、高频隔离变压器、第二级变换,第一级变换连接交流电网,第二级变换连接直流母线,高频隔离变压器连接第一级变换和第二级变换。
作为优选的技术方案,高频隔离变压器两侧的电能通过高频隔离变压器隔离,两侧导电体不直接导通;高频电能通过电磁感应从一侧传输到另一侧。
作为优选的技术方案,AC/DC变换装置,包含AC/DC变换控制单元,AC/DC控制单元对内控制第一级变换、第二级变换、高频隔离变压器工作,对外具有通信总线:通信总线连接系统主控单元,通过系统主控单元与该AC/DC通信,来控制从电网对直流母线的电能转换。
作为优选的技术方案,系统主控通过通信获取当前电动车充电需求、储能装置的信息以及当前电网情况,网内其它充电系统工作情况,控制该AC/DC变换装置的变换功率,满足最佳的功率变换值。
作为优选的技术方案,直流母线包含正极母线和负极母线,正负极母线分别连接到一个或多个所述的高频隔离AC/DC变换装置,同时通过输入输出接入点,连接到其它装置。
作为优选的技术方案,连接到直流母线的AC/DC装置,变换的功率接受系统主控单元控制,系统主控单元根据当前电动车的充电需求、当前电网的功率及费用情况、当前电网内其余充电设备功率需求情况以及储能装置的特性,根据预先设定的最优的控制方式控制变换功率。
作为优选的技术方案,包含给电动车充电的相关器件和逻辑,充电接口数量为一个以上,每个充电口所连接的不同直流母线之间进行功率调配及切换,系统主控根据电动车的充电需求,通过对AC/DC,双向DC/DC的控制,来达到对直流母线的电压电流控制。
作为优选的技术方案,系统主控是单一集成的一个集成式主控,或者是分层架构的多控制单元相结合构成的集散式主控。
有益效果
本发明的有益效果是:本发明多个储能装置与直流母线经过高频隔离的双向变换装置的高频隔离变压器隔离,限制通过变压器的电能,从而降低直流母线的故障电流,达到安全保护目的,多组储能装置通过各自独立的双向隔离变换装置接入母线,不同储能装置之间的差异不再相互影响,甚至不同性质的储能装置可以组合使用。同时直流母线与交流电网也通过高频隔离的ACDC变换装置进行电能补充,以及直流母线直接与电动车充电接口相连接,系统主控根据当前的电动车充电需求,储能装置的电能存储状态,交流电网的状态,进行最优的充电控制。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的整体结构示意图;
图2是本发明的实施例一的结构示意图;
图3是本发明的实施例二的结构示意图。
本发明的实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
在本发明的描述中,需要理解的是,术语“一端”、“另一端”、“外侧”、“上”、“内侧”、“水平”、“同轴”、“中央”、“端部”、“长度”、“外端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本发明使用的例如“上”、“上方”、“下”、“下方”等表示空间相对位置的术语是出于便于说明的目的来描述如附图中所示的一个单元或特征相对于另一个单元或特征的关系。空间相对位置的术语可以旨在包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的设备翻转,则被描述为位于其他单元或特征“下方”或“之下”的单元将位于其他单元或特征“上方”。因此,示例性术语“下方”可以囊括上方和下方这两种方位。设备可以以其他方式被定向(旋转90度或其他朝向),并相应地解释本文使用的与空间相关的描述语。
在本发明中,除非另有明确的规定和限定,术语“设置”、“套接”、“连接”、“贯穿”、“插接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,包含高频隔离变换的双向DC/DC变换装置1以及直流母线11;双向DC/DC装置第一连接点连接到储能装置8;第二连接点连接到直流母线11,双向DC/DC装置将储能装置8的电能经过高频隔离变换后与直流母线11进行双向交流。
包含高频隔离变换的双向DC/DC变换装置1包括第一级变换2、高频隔离变压器4、第二级变换3,第一级变换2连接储能装置8,第二级变换2连接直流母线11,高频隔离变压器4连接第一级变换2和第二级变换3。
本实施例中,高频隔离双向DC/DC变换具有两个方向变换,第一方向变换:储能单元的直流电能经过第一级变换变为高频电能,通过所述的高频隔离变压器的变换,变换为不同电压的高频电能,经过第二级变换变为直流,输出到直流母线;
第二方向变换:直流母线11向第二级变换3输入直流电能,经过第二级变换3变为高频电能,通过高频隔离变压器变为不同电压的高频电能,由第一级变换变为直流电能,输入储能装置。
本实施例中,高频隔离变压器4两侧的电能通过高频隔离变压器隔离,两侧导电体不直接导通;高频电能通过电磁感应从一侧传输到另一侧。
本实施例中,双向DC/DC变换装置,包含DC/DC变换装置控制单元5, DC/DC控制单元对内控制第一级变换2、第二级变换3、高频隔离变压器4工作,对外具有1个或多个通信总线:第一通信总线6连接系统主控,第二通信总线9也可直接连接到的储能装置8。
本实施例中,DC/DC变换装置控制单元5根据第一通信总线6与系统主控的通信获取的储能的信息,第二通信总线9也可直接与储能系统通信获得储能系统信息,同时通过内部采样电路采集的所述直流母线电压信息,控制双向DC/DC变换装置的变换方向、变换功率和变换能量。
本实施例中,直流母线11包含正极母线和负极母线,正负极母线分别连接到一个或多个所述的高频隔离双向DC/DC变换装置,同时通过输入输出接入点,连接到其它装置。
本实施例中,储能装置8通过直流输入储存外界输入的电能,或者通过直流输出放出电能,在电能的输入输出过程中,电能的电压和电流有所变化;或者,双向DC/DC变换装置,连接多种储能装置,不同种类的储能装置或多个相同的储能装置,通过连接所述的双向DC/DC变换装置,连接到同一个个母线,进行电能交换。
本实施例中,连接到直流母线的所述的不同储能装置,第一和第二变换方向的功率不同,变换的功率接受系统控制单元控制,系统控制单元根据第一变换方向和第二变换方向的功率要求,以及储能装置的特性,根据预先设定的最优的控制方式控制变换功率。
本实施例中,交流电网12通过高频隔离AC/DC变换装置20,将交流电能转换为直流电能到直流母线11,高频隔离AC/DC变换装置通过15和16所示的高频隔离完成电能转换,14为ACDC控制单元,通过通信总线13与系统主控通信,接收系统主控的控制,根据预先设定的最优的控制方式控制变换功率。
本实施例中,直流母线11与电动车充电接口17相连接,电动车的充电需求电压和电流通过总线18与系统主控通信,系统主控通过电动车的充电需求信息,通过AC/DC和DC/DC的最优控制,调节直流母线电压和电流,满足最优的电能利用及电动车的充电需求。
本实施例中,系统主控10通过通信总线采集到储能装置信息,电动车充电信息,并结合交流电网的状态,以及网内其他充电系统的功率状态,通过控制AC/DC的交流功率获取,以及通过双向DC/DC来控制储能装置的功率方向和功率大小,调节直流母线电压和电流,满足最优的电能利用及电动车的充电需求。
实施方式1:
如附图2,一种高频隔离双向变换储能充电系统,含高频隔离变换的双向DC/DC变换装置、直流母线、电池组、双向AC/DC逆变装置20。
高频隔离双向变换储能系统包含多组电池组,和电池连接的多组高频隔离双向变换装置,连接到直流母线。双向逆变装置连接直流母线和交流电网连。
多组电池的能量通过双向DC/DC变换、双向DC/AC变换向电网放电,同时电网通过所述的变换装置给电池组充电。
同时,该方案亦可用来实现V2G功能,即将电动车电池储存的能量,通过直流母线11,和双向AC/DC变换装置20,回馈到电网12。
本实施方式应用于电池与电网进行能量交换或V2G应用。
实施方式2:
如附图3,光伏阵列A通过MPPT最大功率跟踪变换装置B连接至直流母线,同时高频隔离双向变换储能系统将多组电池组接入直流母线,同时直流母线连接至电动车充电口,给电动车充电。
上述实施方式是一种光伏储能充电系统,电能可以通过光伏阵列来进行补充,通过最大功率跟踪给直流母线供电,通过母线给直流充电设备供电,多余电能通过储能系统储存在电池组。当没有太阳能或太阳能不够时,再利用交流电或电池组放电,给母线提供电能。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (18)

  1. 一种储能充电系统,其特征在于:
    A:包含高频隔离变换的双向DC/DC变换装置以及直流母线;双向DC/DC装置第一连接点连接到储能装置;第二连接点连接到直流母线,双向DC/DC装置将储能装置的电能经过高频隔离变换后与直流母线进行双向交流;
    B: 包含高频隔离变换的AC/DC变换装置以及直流母线;AC/DC装置第一连接点连接到交流电网;第二连接点连接到直流母线,AC/DC装置将电网电能经过高频隔离变换后对直流母线进行电能补充;
    C: 包含对电动车进行充电的装置,该装置第一连接点为此直流母线,第二连接点为电动车充电端口,根据电动车需求电压和电流,动态调节该母线电压和电动车的充电电流。
  2. 如权利要求1所述的储能充电系统,其特征在于:包含高频隔离变换的双向DC/DC变换装置包括第一级变换、高频隔离变压器、第二级变换,第一级变换连接储能装置,第二级变换连接直流母线,高频隔离变压器连接第一级变换和第二级变换。
  3. 如权利要求1所述的储能充电系统,其特征在于:高频隔离双向DC/DC变换具有两个方向变换,第一方向变换:储能单元的直流电能经过第一级变换变为高频电能,通过所述的高频隔离变压器的变换,变换为不同电压的高频电能,经过第二级变换变为直流,输出到直流母线;
    第二方向变换:直流母线向第二级变换输入直流电能,经过第二级变换变为高频电能,通过高频隔离变压器变为不同电压的高频电能,由第一级变换变为直流电能,输入储能装置。
  4. 如权利要求1所述的储能充电系统,其特征在于:高频隔离变压器两侧的电能通过高频隔离变压器隔离,两侧导电体不直接导通;高频电能通过电磁感应从一侧传输到另一侧。
  5. 如权利要求1所述的储能充电系统,其特征在于:双向DC/DC变换装置,包含DC/DC变换控制单元, DC/DC控制单元对内控制第一级变换、第二级变换、高频隔离变压器工作,对外具有1个或多个通信总线:第一通信总线连接所述的系统主控单元,第二通信总线可以直接连接储能装置,或者不连接,其是将储能装置直接连接至系统主控单元,通过系统控制单元与该DC/DC通信,来控制对储能装置的充电或放电。
  6. 如权利要求1所述的储能充电系统,其特征在于:DC/DC变换装置控制单元根据第一通信总线与储能装置的通信获取的储能的信息,第二通信总线获得储能系统控制要求信息,以及通过内部采样电路采集的所述直流母线电压信息,控制双向DC/DC变换装置的变换方向、变换功率和变换能量。
  7. 如权利要求1所述的储能充电系统,其特征在于:DC/DC变换装置控制单元根据第二通信总线与储能装置的通信获取的储能的信息,以及通过内部采样电路采集的所述直流母线信息,同时根据当前电动车充电需求,以及当前电网情况,控制所述双向DC/DC变换装置的变换方向、变换功率;
    或者,DC/DC变换装置控制单元根据第一通信总线与系统主控单元通信,听从主控命令调节双向DC/DC变换装置的变换方向、变换功率,系统主控通过和储能装置通信获取的储能的信息,以及根据当前电动车充电需求,以及当前电网情况,综合得出合理的双向DC/DC变换装置的变换方向、变换功率。
  8. 如权利要求1所述的储能充电系统,其特征在于:直流母线包含正极母线和负极母线,正负极母线分别连接到一个或多个所述的高频隔离双向DC/DC变换装置,同时通过输入输出接入点,连接到其它装置。
  9. 如权利要求1所述的储能充电系统,其特征在于:储能装置通过直流母线并通过双向DCDC,输入并储存母线的电能,或者放出储存的电能到母线,在电能的输入输出过程中,电能的电压和电流有所变化;或者,双向DC/DC变换装置,连接多种储能装置,不同种类的储能装置或多个相同的储能装置,通过连接所述的双向DC/DC变换装置,连接到同一个母线,进行电能交换。
  10. 如权利要求1所述的储能充电系统,其特征在于:连接到直流母线的不同储能装置,第一和第二变换方向的功率不同,变换的功率接受系统控主控单元控制,系统主控单元根据第一变换方向和第二变换方向的功率要求,以及储能装置的特性,根据预先设定的最优的控制方式控制变换功率。
  11. 如权利要求1所述的储能充电系统,其特征在于:包含高频隔离变换的AC/DC变换装置包括第一级变换、高频隔离变压器、第二级变换,第一级变换连接交流电网,第二级变换连接直流母线,高频隔离变压器连接第一级变换和第二级变换。
  12. 如权利要求1所述的储能充电系统,其特征在于:高频隔离变压器两侧的电能通过高频隔离变压器隔离,两侧导电体不直接导通;高频电能通过电磁感应从一侧传输到另一侧。
  13. 如权利要求1所述的储能充电系统,其特征在于:AC/DC变换装置,包含AC/DC变换控制单元,AC/DC控制单元对内控制第一级变换、第二级变换、高频隔离变压器工作,对外具有通信总线:通信总线连接系统主控单元,通过系统主控单元与该AC/DC通信,来控制从电网对直流母线的电能转换。
  14. 如权利要求1所述的储能充电系统,其特征在于:系统主控通过通信获取当前电动车充电需求、储能装置的信息以及当前电网情况,网内其它充电系统工作情况,控制该AC/DC变换装置的变换功率,满足最佳的功率变换值。
  15. 如权利要求1所述的储能充电系统,其特征在于:直流母线包含正极母线和负极母线,正负极母线分别连接到一个或多个所述的高频隔离AC/DC变换装置,同时通过输入输出接入点,连接到其它装置。
  16. 如权利要求1所述的储能充电系统,其特征在于:连接到直流母线的AC/DC装置,变换的功率接受系统主控单元控制,系统主控单元根据当前电动车的充电需求、当前电网的功率及费用情况、当前电网内其余充电设备功率需求情况以及储能装置的特性,根据预先设定的最优的控制方式控制变换功率。
  17. 如权利要求1所述的储能充电系统,其特征在于:包含给电动车充电的相关器件和逻辑,充电接口数量为一个以上,每个充电口所连接的不同直流母线之间进行功率调配及切换,系统主控根据电动车的充电需求,通过对AC/DC,双向DC/DC的控制,来达到对直流母线的电压电流控制。
  18. 如权利要求1所述的储能充电系统,其特征在于:系统主控是单一集成的一个集成式主控,或者是分层架构的多控制单元相结合构成的集散式主控。
PCT/CN2020/082282 2019-04-17 2020-03-31 一种储能充电系统 WO2020211631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910307939.5 2019-04-17
CN201910307939.5A CN109904909A (zh) 2019-04-17 2019-04-17 一种储能充电系统

Publications (1)

Publication Number Publication Date
WO2020211631A1 true WO2020211631A1 (zh) 2020-10-22

Family

ID=66955950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082282 WO2020211631A1 (zh) 2019-04-17 2020-03-31 一种储能充电系统

Country Status (2)

Country Link
CN (1) CN109904909A (zh)
WO (1) WO2020211631A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904909A (zh) * 2019-04-17 2019-06-18 深圳英飞源技术有限公司 一种储能充电系统
CN110450667A (zh) * 2019-07-29 2019-11-15 深圳英飞源技术有限公司 一种储能充电桩
CN110626203A (zh) * 2019-10-18 2019-12-31 深圳英飞源技术有限公司 一种集中式储能充电桩
CN110729910A (zh) * 2019-11-26 2020-01-24 贵州电网物资有限公司 一种适用于v2g行为的隔离型双向ac/dc换流器
CN113178912A (zh) * 2021-04-28 2021-07-27 华南理工大学 用于储能电站的退役动力电池充放电系统及其控制方法
CN113794218B (zh) * 2021-10-13 2023-06-13 王勇 一种基于升降压电路的电动车退役电池二次利用系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070126377A1 (en) * 2005-10-07 2007-06-07 Alstom Transport Sa Method and system for supplying electrical power to a supply bus for an electric vehicle, recording medium, and vehicle for this method
CN107465205A (zh) * 2017-09-20 2017-12-12 重庆聚陆新能源有限公司 一种基于dc/dc变换器分时复用的直流微网系统
CN108695874A (zh) * 2018-06-26 2018-10-23 易事特集团股份有限公司 一种复合储能型双向功率变换装置
CN109904909A (zh) * 2019-04-17 2019-06-18 深圳英飞源技术有限公司 一种储能充电系统
CN209545204U (zh) * 2019-04-17 2019-10-25 深圳英飞源技术有限公司 一种储能充电系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100461601C (zh) * 2007-03-16 2009-02-11 华为技术有限公司 一种实现隔离高频开关dc-dc变换的系统及方法
KR101541960B1 (ko) * 2013-08-29 2015-08-05 공주대학교 산학협력단 고주파 링크형 직류-직류 컨버터를 이용한 에너지 저장 장치
KR101587333B1 (ko) * 2013-12-31 2016-01-21 공주대학교 산학협력단 고신뢰성 배터리 에너지 저장 장치
CN103929064B (zh) * 2014-03-24 2016-09-28 江苏固德威电源科技股份有限公司 一种隔离双向dc/dc变换器及其控制方法
CN108631357B (zh) * 2018-04-03 2020-08-28 阳光电源股份有限公司 一种中高压能量变换系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070126377A1 (en) * 2005-10-07 2007-06-07 Alstom Transport Sa Method and system for supplying electrical power to a supply bus for an electric vehicle, recording medium, and vehicle for this method
CN107465205A (zh) * 2017-09-20 2017-12-12 重庆聚陆新能源有限公司 一种基于dc/dc变换器分时复用的直流微网系统
CN108695874A (zh) * 2018-06-26 2018-10-23 易事特集团股份有限公司 一种复合储能型双向功率变换装置
CN109904909A (zh) * 2019-04-17 2019-06-18 深圳英飞源技术有限公司 一种储能充电系统
CN209545204U (zh) * 2019-04-17 2019-10-25 深圳英飞源技术有限公司 一种储能充电系统

Also Published As

Publication number Publication date
CN109904909A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2020211631A1 (zh) 一种储能充电系统
WO2020216016A1 (zh) 一种储能充电系统
WO2021017508A1 (zh) 一种储能充电桩
WO2021073049A1 (zh) 一种集中式储能充电桩
CN102709981A (zh) 一种串联锂离子电池组能量无损均衡充电装置
CN107968446B (zh) 分布式电池包供电系统及充放电控制方法
TWM554864U (zh) 模組化充電車
CN109786866B (zh) 一种即插即用电池模块及电池储能系统
WO2022213338A1 (zh) 一种储能系统、储能系统的控制方法及光伏发电系统
US10284115B2 (en) Inverter system
WO2023093057A1 (zh) 一种充电模块及充电系统
CN108768201A (zh) 一种双向变换器组成的储能系统及其控制方法
CN102891519A (zh) 一种电池组均衡电路
CN115313457B (zh) 电池储能系统
CN104993506A (zh) 一种分布式发电系统的混合储能装置
CN209545204U (zh) 一种储能充电系统
CN209948772U (zh) 一种高频隔离变换的储能系统
CN209929995U (zh) 一种储能充电系统
CN210309975U (zh) 一种储能充电桩
CN212304790U (zh) 带有太阳能电池板的车载微电网及其聚合而成的发电厂
CN211480938U (zh) 一种rack模组及其应用系统
CN202888901U (zh) 一种电池组均衡电路
CN219227263U (zh) 一种充电架构及充电系统
CN109672260A (zh) 一种高频隔离变换的储能系统
US11750016B2 (en) Charging system utilizing energy storage multiplication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790432

Country of ref document: EP

Kind code of ref document: A1