WO2017140139A1 - 基于光子晶体t型波导的横向输出磁光调制器 - Google Patents

基于光子晶体t型波导的横向输出磁光调制器 Download PDF

Info

Publication number
WO2017140139A1
WO2017140139A1 PCT/CN2016/106635 CN2016106635W WO2017140139A1 WO 2017140139 A1 WO2017140139 A1 WO 2017140139A1 CN 2016106635 W CN2016106635 W CN 2016106635W WO 2017140139 A1 WO2017140139 A1 WO 2017140139A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
waveguide
optical modulator
column
magneto
Prior art date
Application number
PCT/CN2016/106635
Other languages
English (en)
French (fr)
Inventor
欧阳征标
吴昌义
金鑫
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2017140139A1 publication Critical patent/WO2017140139A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Definitions

  • the present invention relates to a modulator, and more particularly to a lateral output magneto-optical modulator based on a photonic crystal T-waveguide.
  • optical modulators typically use the electro-optic effect of a crystal to modulate light.
  • a microwave modulated signal, an electro-optic crystal, and an interference structure, such as a Mach-Zehnder interference structure, are required. Due to the limitation of the electro-optic coefficient of the electro-optic crystal, it is necessary to adopt an electro-optic crystal with a relatively long geometric length, so that the optical modulator has a large volume and can only be used in a conventional optical device and cannot be integrated into an optical chip.
  • the light modulator is a key device for controlling the light intensity during the light emission, transmission and reception of the overall optical communication, and is one of the most important integrated optical devices.
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a lateral output magneto-optical modulator of a photonic crystal T-waveguide having a small volume, high efficiency and short range for easy integration.
  • a lateral output magneto-optical modulator based on a photonic crystal T-waveguide of the present invention comprises a photonic crystal T-waveguide having a TE forbidden band; the modulator further comprising an input terminal 1, two output terminals 2 and 3, and a background a silicon dielectric column 4, an isosceles right triangle defect dielectric column 5 and a defect dielectric column 6, the modulator further comprising an electromagnet 7 for providing a bias magnetic field, a modulation current source 9 and a modulation signal 10; the photonic crystal
  • the left end of the T-shaped waveguide is the input end 1, and the two output ends 2, 3 are respectively located at the lower end and the upper end of the photonic crystal T-shaped waveguide, and are arranged in a horizontal line; the defective dielectric column 6 is located at the center intersection of the T-shaped waveguide.
  • the four isosceles right triangle defect dielectric columns 5 are respectively located at the intersection of the T-shaped waveguides Four corners; the photonic crystal waveguide inputs TE carrier light from
  • the modulator further includes a wire 8 having one end connected to the negative electrode of the modulation current source 9, and the other end of the electromagnet 7 being connected to the positive electrode of the modulation current source 9 via a wire 8.
  • the modulation current source 9 is connected to a modulation signal 10.
  • the photonic crystal is a two-dimensional square lattice photonic crystal.
  • the photonic crystal is composed of a high refractive index dielectric material and a low refractive index material; the high refractive index dielectric material is silicon or a medium having a refractive index greater than 2; and the low refractive index medium is air or a medium having a refractive index of less than 1.4.
  • the T-shaped waveguide is a structure in which a middle one horizontal row and a vertical dielectric column are removed in a photonic crystal.
  • the four background dielectric columns at the corners of the T-shaped waveguide are each removed by an angle to form an isosceles right-angled triangular defect dielectric column, and the isosceles right-angled triangular defect dielectric column (5) is a triangular prism type.
  • the background silicon dielectric column 4 has a square shape.
  • the photonic crystal square silicon dielectric column is rotated 41 degrees counterclockwise in the z-axis direction of the dielectric column axis.
  • the defective dielectric column 6 is a ferrite square column having a square shape, the ferrite is a magnetic anisotropic material, and the magnetic permeability of the ferrite square column is anisotropic and biased.
  • the port 2 is an amplitude modulation wave output port.
  • the invention has the following advantages:
  • Figure 1 is a schematic view showing the structure of a lateral output magneto-optical modulator based on a photonic crystal T-waveguide of the present invention.
  • FIG. 2 is a schematic view showing another structure of a lateral output magneto-optical modulator based on a photonic crystal T-waveguide according to the present invention.
  • FIG. 3 is a structural parameter distribution diagram of a lateral output magneto-optical modulator based on a photonic crystal T-waveguide according to the present invention.
  • FIG. 4 is a sinusoidal waveform diagram of a bias magnetic field of a lateral output magneto-optical modulator based on a photonic crystal T-waveguide of the present invention.
  • Fig. 5 is a graph showing the relationship between the magnetic permeability ⁇ , k when the bias magnetic field changes in one cycle of the lateral output magneto-optical modulator based on the photonic crystal T-waveguide of the present invention.
  • Figure 6 is a modulation diagram of a lateral output magneto-optical modulator based on a photonic crystal T-waveguide of the present invention.
  • Fig. 7 (a) is a modulation curve of a lateral output magneto-optical modulator of the photonic crystal T-waveguide of the first embodiment.
  • Fig. 7 (b) is a modulation sensitivity diagram of the lateral output magneto-optical modulator of the photonic crystal T-waveguide of the first embodiment.
  • Fig. 8(a) is a modulation diagram of a lateral output magneto-optical modulator of the photonic crystal T-waveguide of the second embodiment.
  • Fig. 8(b) is a modulation sensitivity diagram of the lateral output magneto-optical modulator of the photonic crystal T-waveguide of the second embodiment.
  • Fig. 9 (a) is a modulation curve of a lateral output magneto-optical modulator of the photonic crystal T-waveguide of the third embodiment.
  • Fig. 9 (b) is a modulation sensitivity diagram of the lateral output magneto-optical modulator of the photonic crystal T-waveguide of the third embodiment.
  • Figure 10 is a schematic illustration of the light field distribution of a lateral output magneto-optical modulator of a photonic crystal T-waveguide of the present invention.
  • the schematic diagram of a lateral output magneto-optical modulator based on a photonic crystal T-waveguide includes a photonic crystal T-waveguide with a TE forbidden band.
  • the modulator also includes an input terminal 1, two output terminals 2 and 3, a background silicon dielectric column 4, an isosceles right triangle shaped defect dielectric column 5, and a defective dielectric column 6.
  • the initial signal light of the device is incident from the left port 1, and the ports 2 and 3 are output light waves; the left end of the photonic crystal T-shaped waveguide is the input end 1, and the two output ports 2, 3 are respectively located at the lower end and the upper end of the photonic crystal T-shaped waveguide.
  • the photonic crystal waveguide inputs TE carrier light from port 1, and then outputs amplitude modulated light from port 2;
  • the background silicon dielectric column 4 has a square shape, the optical axis direction is perpendicular to the paper, and the isosceles right triangle defect medium column 5
  • the photonic crystal waveguide inputs TE carrier light from port 1, and then outputs amplitude modulated light from port 2;
  • the background silicon dielectric column 4 has a square shape, the optical axis direction is perpendicular to the paper, and the isosceles right triangle defect medium column 5
  • the photonic crystal waveguide inputs TE carrier light from port 1, and then outputs amplitude modulated light from port 2;
  • the background silicon dielectric column 4 has a square shape, the optical axis direction is perpendicular to the paper, and the isosceles right triangle defect medium column 5
  • the photonic crystal waveguide inputs TE carrier light from port 1, and then outputs amplitude modulated light from port 2;
  • the optical axis direction is the same as the background dielectric column
  • the defective dielectric column 6 is located at the intersection of the center of the T-shaped waveguide
  • the defective dielectric column 6 is a ferrite square column, and the shape thereof is a square.
  • the optical axis direction is perpendicular to the paper;
  • the ferrite square column is a magnetic anisotropic material, the magnetic permeability of the ferrite square column is anisotropic, and is controlled by the bias magnetic field, and the bias magnetic field direction
  • the axial direction of the ferrite side column As shown in FIG.
  • the modulator further comprises an electromagnet 7 (electromagnet coil) providing a bias magnetic field, a modulation current source 9 and a modulation signal 10, the modulator further comprising a wire 8, electromagnetic One end of the iron 7 is connected to the negative electrode of the modulation current source 9, and the other end of the electromagnet 7 is connected to the positive electrode of the modulation current source 9 via a wire 8; the modulation current source 9 is connected to the modulation signal 10.
  • the modulator of the present invention adopts a Cartesian Cartesian coordinate system as shown in FIG. 1 and FIG. 3: the positive direction of the x-axis is horizontal to the right; the positive direction of the y-axis is vertical upward; and the positive direction of the z-axis is perpendicular to the outer side of the paper.
  • the photonic crystal of the present invention has a square lattice with a lattice constant of a and a side length of the dielectric column of 0.3a.
  • plane wave development is employed.
  • the method obtains the TE forbidden band structure in the photonic crystal, and the photonic TE forbidden band is 0.3150 to 0.4548 ( ⁇ a/2 ⁇ c), and the light wave of any frequency between them will be confined in the waveguide, and the square lattice dielectric column refers to the axis direction of the dielectric column ( The z-axis rotates 41 degrees counterclockwise to obtain a larger and wider forbidden band range.
  • the silicon dielectric waveguide used in the present invention needs to delete one row and one column of dielectric pillars to form a T-shaped waveguide.
  • the waveguide plane is perpendicular to the axis of the dielectric column in the photonic crystal.
  • ferrite is a material of magnetic anisotropy, and the magnetic anisotropy of ferrite is induced by an applied DC bias magnetic field.
  • This magnetic field causes the magnetic dipoles in the ferrite to align in the same direction, resulting in a resultant magnetic dipole moment and precession of the magnetic dipole at a frequency controlled by the biasing magnetic field strength.
  • the lateral output magneto-optical modulator of the photonic crystal T-waveguide can be realized by adjusting the bias magnetic field strength to control the interaction with the applied microwave signal.
  • the permeability tensor of ferrite exhibits asymmetry, in which the ferrite tensor permeability [ ⁇ ] is:
  • ⁇ 0 is the magnetic permeability in vacuum
  • is the gyromagnetic ratio
  • H 0 is the applied magnetic field
  • M S is the saturation magnetization
  • Factor, parameters ⁇ and k determine different ferrite materials, materials with this form of magnetic permeability tensor are called gyromagnetic, assuming that the direction of the bias is reversed, H 0 and M S will change the sign, So the direction of rotation will be reversed.
  • the bias magnetic field is generated by a bias electromagnet that is loaded with a bias current; the bias current is Modulated signal.
  • the magnitude of the bias magnetic field H is adjusted by the applied magnetic field in accordance with the sinusoidal waveform change, causing a change in the magnetic permeability, thereby changing the intensity of the light output from the ports 2, 3, thereby realizing modulation of the optical signal.
  • H H 0 + H 1 sin (nt), t ⁇ (0, 2 ⁇ / n), the value of n
  • the sinusoidal waveform is equally divided into 20 segments in a period (called the modulation period) for a total of 21 points.
  • the magnetic permeability value is calculated, as shown in FIG. 5, and the port 2 is calculated.
  • the amplitude of the three-channel optical wave electric field is shown in Fig. 6.
  • the simulation curve is obtained by simulating the amplitude of the electric field of the light wave of the ports 2 and 3 in one cycle with the modulation magnetic field, that is, the modulation curve, see Fig. 7(a).
  • the incident signal port is located at the position of the left port 1 shown in FIG. 1, and the port 1 is a TE carrier optical signal.
  • the carrier optical signal propagates in the waveguide formed by the dielectric column array of the silicon dielectric column 4. After the TE carrier optical signal reaches the defect position of the defective dielectric column 6, the TE carrier optical signal will all pass, and finally the TE carrier optical signal will be at the output port. With 3-position output, the TE carrier optical signal has almost no output at the output position of port 2.
  • the incident signal port is located at the position of the left port 1 shown in Fig.
  • the carrier optical signal propagates in the waveguide formed by the dielectric column array of the silicon dielectric column 4. After the TE carrier optical signal reaches the defect position of the defective dielectric column 6, the TE carrier optical signal will all pass, and finally the TE carrier optical signal will be at the output port. With 2 position output, the TE carrier optical signal will have almost no output at output port 3. Therefore, port 3 is used as the modulation output port, and the amplitude of the optical wave electric field of the port 3 channel under 21 H values is plotted, that is, the curve of the electric field amplitude of the light wave as a function of the modulation magnetic field is obtained as a modulation curve. Referring to Fig. 8(a), if a sinusoidal bias magnetic field is input on the modulation curve, the electric field amplitude of the port 3 changes substantially sinusoidally around the static operating point in the linear range, which indicates that the study has an ideal modulation. effect.
  • the modulation sensitivity can be obtained.
  • Modulation sensitivity the derivative of the amplitude of the optical field in the channel to the amplitude of the modulated magnetic field, that is, the slope of the modulation curve, see Fig. 8(b).
  • the modulation depth is 0.39356.
  • the modulation sensitivity is 0.00181
  • the structure has an ideal modulator function.
  • the selection of the lattice constant and the operating wavelength can be determined in the following manner.
  • the ⁇ value satisfying the wavelength range can be obtained by changing the value of the lattice constant a without changing the dispersion or the dispersion of the material.
  • the operating wavelength can be adjusted by the lattice constant between the dielectric columns without regard to dispersion or negligible dispersion.
  • the function of the lateral output magneto-optical modulator of the photonic crystal T-waveguide of different wavelengths can be realized by a method of changing the lattice constant by a proportional change without considering the dispersion or the dispersion of the material dispersion.
  • the parameter a 6.1772 ⁇ 10 -3 [m]
  • d 2 0.3a
  • d 3 0.2217a
  • d 5 1.2997a
  • Ms 2.39 ⁇ 10 5 [A/m]
  • H 0 4.79925 ⁇ 10 5 [A/m]
  • H 1 225 [A/m].
  • the normalized light wave frequency ⁇ a/2 ⁇ c 0.4121, the other parameters are unchanged, so that it corresponds to the 20 GHz optical wave carrier.
  • the modulation curve of the electric field amplitude of the light wave of the port 3 channel as a function of the modulation magnetic field is obtained by simulation calculation; referring to the modulation sensitivity map shown in Fig. 7(b), the modulator is in a The slope of the modulation curve in port 3 of the cycle, which has an ideal modulator function.
  • the function of the lateral output magneto-optical modulator of the photonic crystal T-waveguide of different wavelengths can be realized by a method of changing the lattice constant by a proportional change without considering the dispersion or the dispersion of the material dispersion.
  • the normalized light wave frequency ⁇ a/2 ⁇ c 0.4121, the other parameters are unchanged, so that it corresponds to the 30 GHz optical wave carrier.
  • the modulation curve of the electric field amplitude of the light wave of the port 3 channel with the modulation magnetic field in one cycle is calculated by simulation.
  • the modulation sensitivity map shown in Fig. 8(b) the slope of the modulation curve in the port 3 channel in one cycle.
  • the function of the lateral output magneto-optical modulator of the photonic crystal T-waveguide of different wavelengths can be realized by a method of changing the lattice constant by a proportional change without considering the dispersion or the dispersion of the material dispersion.
  • the parameter a 3.0886 ⁇ 10 -3 [m]
  • d 2 0.3a
  • d 3 0.2217a
  • d 5 1.2997a
  • Ms 2.39 ⁇ 10 5 [A/m]
  • H 0 10.38505 ⁇ 10 5 [A/m]
  • H 1 135 [A/m].
  • the normalized light wave frequency ⁇ a/2 ⁇ c 0.4121, the other parameters are unchanged, so that it corresponds to the 40 GHz optical wave carrier.
  • the modulation curve of the electric field amplitude of the light wave of the port 3 channel with the modulation magnetic field in one cycle is calculated by simulation; referring to the modulation sensitivity diagram shown in FIG. 9(b), The slope of the modulation curve in the port 3 channel over a period of time, the structure has an ideal modulator function.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于光子晶体T型波导的横向输出磁光调制器,包括一个具有TE禁带的光子晶体T型波导;调制器还包括一个输入端(1)、两个输出端(2、3)、背景硅介质柱(4)、等腰直角三角形缺陷介质柱(5)和缺陷介质柱(6),调制器还包括一个提供偏置磁场的电磁铁(7),一个调制电流源(9)和一个调制信号(10);光子晶体T型波导的左端为输入端(1),输出端(2、3)分别位于光子晶体T型波导的下端、上端,呈一条横线布局;缺陷介质柱(6)位于T型波导中心交叉处;4个等腰直角三角形缺陷介质柱(5)分别位于T型波导交叉的四个拐角处;光子晶体波导由输入端(1)输入TE载波光,再从光子晶体T型波导下端的输出端(2)输出调幅光。该磁光调制器可以高效实现TE载波光波信号调制器。

Description

基于光子晶体T型波导的横向输出磁光调制器 技术领域
本发明涉及一种调制器,更具体地说,尤其涉及一种基于光子晶体T型波导的横向输出磁光调制器。
背景技术
传统的光学调制器一般利用晶体的电光效应来实现对光的调制,需要有一个微波调制信号,一块电光晶体,一个干涉结构,如马赫-曾德干涉结构等。由于电光晶体的电光系数的限制,需要采用几何尺寸比较长的电光晶体,这样使得光学调制器的体积较大,只能用在传统光学器件中,无法集成到光学芯片中。光调制器是在整体光通信的光发射、传输、接收过程中用于控制光强度的关键器件,也是最重要的集成光学器件之一。
发明内容
本发明的目的是克服现有技术中的不足,提供一种结构体积小,高效短程便于集成的光子晶体T型波导的横向输出磁光调制器。
本发明的目的通过下述技术方案予以实现。
本发明的基于光子晶体T型波导的横向输出磁光调制器,包括一个具有TE禁带的光子晶体T型波导;所述调制器还包括一个输入端1、两个输出端2和3、背景硅介质柱4、等腰直角三角形缺陷介质柱5和缺陷介质柱6,所述调制器还包括一个提供偏置磁场的电磁铁7,一个调制电流源9和一个调制信号10;所述光子晶体T型波导的左端为输入端1,所述两个输出端2、3分别位于光子晶体T型波导的下端、上端,呈一条横线布局;所述缺陷介质柱6位于T型波导中心交叉处;所述4个等腰直角三角形缺陷介质柱5分别位于T型波导交叉的 四个拐角处;所述光子晶体波导由端口1输入TE载波光,再从端口2输出调幅光。
所述调制器进一步包括导线8,所述电磁铁7的一端与调制电流源9的负极相连接,电磁铁7的另一端通过导线8与调制电流源9的正极相连接。所述调制电流源9与调制信号10相连接。
所述光子晶体为二维正方晶格光子晶体。
所述光子晶体由高折射率介质材料和低折射率材料组成;所述高折射率介质材料为硅或折射率大于2的介质;所述低折射率介质为空气或折射率小于1.4的介质。
所述T型波导为光子晶体中移除中间一横排和一竖排介质柱后的结构。
所述T型波导交叉拐角处的4个背景介质柱各删除一个角以形成等腰直角三角形缺陷介质柱,该等腰直角三角形缺陷介质柱(5)为三角柱型。
所述背景硅介质柱4的形状为正方形。
所述光子晶体正方形硅介质柱以介质柱轴线z轴方向逆时针旋转41度。
所述缺陷介质柱6为铁氧体方柱,其形状为正方形,该铁氧体为磁各向异性材料,所述的铁氧体方柱的磁导率为各向异性,且受偏置磁场的控制,偏置磁场方向沿着铁氧体方柱的轴线方向。
所述端口2为调幅波输出端口。
本发明与现有技术相比具有以下的优点:
(1)结构体积小,时间响应快,光传输效率高,适合大规模光路集成;
(2)便于集成,可以短程高效地实现TE载波光波信号调制器,具有极大的实用价值;
(3)应用光子晶体可等比例缩放的特性,通过等比例改变晶格常数的方法, 可以实现不同波长光子晶体T型波导的横向输出磁光调制器的功能。
(4)高对比度、高隔离度,同时还具有较宽的工作波长范围,可以允许有一定频谱宽度的脉冲,或高斯光,或不同波长的光工作,或多个波长的光同时工作,具有实用意义。
附图说明
图1是本发明的基于光子晶体T型波导的横向输出磁光调制器的一种结构示意图。
图中:输入端1输出端2输出端3背景硅介质柱4等腰直角三角形缺陷介质柱5缺陷介质柱6
图2是本发明基于光子晶体T型波导的横向输出磁光调制器的另一种结构示意图。
图中:电磁铁7导线8调制电流源9调制信号10
图3是本发明基于光子晶体T型波导的横向输出磁光调制器结构参数分布图。
图4是本发明基于光子晶体T型波导的横向输出磁光调制器的偏置磁场正弦波形图。
图5是本发明基于光子晶体T型波导的横向输出磁光调制器在一个周期内随的偏置磁场变化时磁导率μ,k的值的关系图。
图6是本发明基于光子晶体T型波导的横向输出磁光调制器调制曲线图。
图7(a)是实施例1中光子晶体T型波导的横向输出磁光调制器调制曲线图。
图7(b)是实施例1中光子晶体T型波导的横向输出磁光调制器调制灵敏度图。
图8(a)是实施例2中光子晶体T型波导的横向输出磁光调制器调制曲线图。
图8(b)是实施例2中光子晶体T型波导的横向输出磁光调制器调制灵敏度图。
图9(a)是实施例3中光子晶体T型波导的横向输出磁光调制器调制曲线图。
图9(b)是实施例3中光子晶体T型波导的横向输出磁光调制器调制灵敏度图。
图10是本发明光子晶体T型波导的横向输出磁光调制器的光场分布示意图。
具体实施方式
如图1所示,本发明基于光子晶体T型波导的横向输出磁光调制器的结构示意图(删除了偏置电路和偏置线圈),包括一个具有TE禁带的光子晶体T型波导,该调制器还包括一个输入端1、两个输出端2和3、背景硅介质柱4、等腰直角三角形缺陷介质柱5和缺陷介质柱6。本器件初始信号光从左方端口1入射,端口2、3输出光波;光子晶体T型波导的左端为输入端1,两个输出端口2、3分别位于光子晶体T型波导的下端、上端,呈一条横线布局;光子晶体波导由端口1输入TE载波光,再从端口2输出调幅光;背景硅介质柱4形状为方形,光轴方向垂直纸面向外,等腰直角三角形缺陷介质柱5为,T型波导交叉拐角处的4个背景介质柱各删除一个角以形成等腰直角三角形缺陷介质柱,该等腰直角三角形缺陷介质柱5为三角柱型,4个等腰直角三角形缺陷介质柱5分别位于T型波导交叉的四个拐角处,光轴方向与背景介质柱相同,缺陷介质柱6位于T型波导中心交叉处,缺陷介质柱6为铁氧体方柱,其形状为正方形,光轴方向垂直纸面向外;该铁氧体方柱为磁各向异性材料,铁氧体方柱的磁导率为各向异性,且受偏置磁场的控制,偏置磁场方向沿着铁氧体方柱的轴线方向。如图2所示,本发明的基于光子晶体T型波导的横向输出磁光调制器的结构示 意图(含有偏置电路和偏置线圈),调制器还包括一个提供偏置磁场的电磁铁7(电磁铁线圈),一个调制电流源9和一个调制信号10,调制器进一步包括导线8,电磁铁7的一端与调制电流源9的负极相连接,电磁铁7的另一端通过导线8与调制电流源9的正极相连接;调制电流源9与调制信号10相连接。本发明调制器如图1与图3所示采用笛卡尔直角坐标系:x轴正方向为水平向右;y轴正方向为竖直向上;z轴正方向为垂直于纸面向外。
如图3所示,本器件的相关参数为:
Figure PCTCN2016106635-appb-000001
本发明的光子晶体为正方晶格,晶格常数为a,介质柱边长为0.3a,在光子晶体正方形硅介质柱参考介质柱轴线方向(z轴)逆时针旋转41度时,采用平面波展开法得到光子晶体中TE禁带结构,其光子TE禁带为0.3150至0.4548(ωa/2πc),其中间的任何频率的光波将被限制在波导中,正方晶格介质柱参考介质柱轴线方向(z轴)逆时针旋转41度后,获得了更大更宽的禁带范围。
本发明所使用硅介质波导需要删除一行和一列介质柱而形成T型波导。波导平面垂直于光子晶体中的介质柱的轴线。通过在上述光子晶体T型波导中心交叉处引入一个铁氧体方柱(方形缺陷介质柱6),其边长为0.2217a,4个等腰 直角三角形缺陷介质柱5斜边面分别到铁氧体柱(方形缺陷介质柱6)轴线的距离为1.2997a。铁氧体方柱的光轴与背景介质柱的光轴方向一致。
本发明的原理介绍主要针对磁光介质加以解释。铁氧体是一种磁各向异性的材料,铁氧体的磁各向异性是由外加直流偏置磁场所诱导的。该磁场使铁氧体中的磁偶极子循同一方向排列,从而产生合成的磁偶极距,并使磁偶极子在由偏置磁场强度所控制的频率下做进动。通过调整偏置磁场强度可控制与外加微波信号的相互作用,从而实现光子晶体T型波导的横向输出磁光调制器。在偏置磁场的作用下,铁氧体的磁导率张量表现为非对称性,其中铁氧体张量磁导率[μ]为:
Figure PCTCN2016106635-appb-000002
磁导率张量的矩阵元由以下方程给出:
ω0=μ0γH0   (2)
ωm=μ0γMs   (3)
ω=2πf   (4)
Figure PCTCN2016106635-appb-000003
Figure PCTCN2016106635-appb-000004
其中,μ0为真空中的磁导率,γ为旋磁比,H0为外加磁场,MS为饱和磁化强度,为工作频率,p=k/μ为归一化磁化频率,也叫分离因子,参数μ和k决定不同铁氧体材料,具有这种形式的磁导率张量的材料称为旋磁性的,假定偏置的方向是相反的,则H0和MS将改变符号,所以旋转方向也会相反。
偏置磁场由偏置电磁铁产生,该偏置电磁铁中加载偏置电流;偏置电流为 调制信号。
通过外加磁场按正弦波形变化来调节偏置磁场H的大小,引起磁导率的改变,从而改变端口2、3输出的光的强度,从而实现了对光信号的调制。
设偏置磁场H=H0+H1sin(nt),t∈(0,2π/n),n的取值,我们可以根据需求来确定H按正弦波形规律变化,如图4所示,将正弦波形在一个周期(称为调制周期)内等分为20段,共21个点,对每个点的磁场值,计算出磁导率值,如图5所示,并计算出端口2、3通道的光波电场幅度,如图6所示。
令参数d3=0.2217a,d5=1.2997a,Ms=2.39×105[A/m]。在归一化光波频率ωa/2πc=0.4121时,仿真计算得到在一个周期内端口2、3通道的光波电场幅度随调制磁场变化的调制曲线,即调制曲线图,参照图7(a)。
当在硅介质柱阵列波导中引入上述缺陷后,在磁场H=H0+H1时,入射信号端口位于图1所示左方端口1的位置,该端口1处为TE载波光信号。载波光信号在以硅介质柱4的介质柱阵列形成的波导中传播,TE载波光信号到达缺陷介质柱6的缺陷位置后,TE载波光信号将全部通过,最后TE载波光信号将在输出端口3位置输出,TE载波光信号在端口2输出位置几乎没有输出。在磁场H=H0-H1时,入射信号端口位于图1所示左方端口1的位置,该端口1处为TE载波光信号。载波光信号在以硅介质柱4的介质柱阵列形成的波导中传播,TE载波光信号到达缺陷介质柱6的缺陷位置后,TE载波光信号将全部通过,最后TE载波光信号将在输出端口2位置输出,TE载波光信号将在输出端口3位置几乎没有输出。所以将端口3作为调制输出端口,将21个H值下的端口3通道的光波电场幅度画出,即得通过光波的电场幅度随调制磁场变化的曲线,为调制曲线。参照图8(a)可知,如果在调制曲线上输入一个正弦偏置磁场,则在线性范围内,端口3的电场幅度围绕静态工作点大致按正弦规律变化,这说明 本研究具有较理想的调制作用。
根据调制曲线,可以求出调制灵敏度,调制灵敏度=通道中光波电场的幅度对调制磁场幅度的导数,即是调制曲线的斜率,参照图8(b)。根据调制曲线还可以求出调制深度,调制深度=2(最大电场幅度-最小电场幅度)/(最大电场幅度+最小电场幅度)。
参照图8(a)可知,该调制深度为0.39356。
参照图8(b)可知,调制灵敏度度为0.00181,该结构具有较理想的调制器功能。
对于晶格常数和工作波长的选取,可以采用以下方式确定。通过公式
Figure PCTCN2016106635-appb-000005
其中以及本发明中正方晶格硅结构的的归一化禁带频率范围
fnorm=0.3150~0.4548   (8)
计算出相应的禁带波长范围为:
λ=2.1987a~3.1746a   (9)
由此可见在不考虑色散或材质色散变化很小的情况下,可以通过改变晶格常数a的值得到与其等比例的满足波长范围的λ值。工作波长可以在不考虑色散或色散可忽略的情况下通过介质柱间晶格常数来调节。
实施例1
本实施例中,在不考虑色散或材质色散变化很小的情况下,通过等比例改变晶格常数的方法,可以实现不同波长光子晶体T型波导的横向输出磁光调制器的功能。令参数a=6.1772×10-3[m],d2=0.3a,d3=0.2217a,d5=1.2997a,Ms=2.39×105[A/m],H0=4.79925×105[A/m],H1=225[A/m]。归一化光波频率 ωa/2πc=0.4121,其他参数不变,使其对应到20GHz的光波载波。参照图7(a)所示的调制曲线图,通过仿真计算得到端口3通道的光波的电场幅度随调制磁场变化的调制曲线;参照图7(b)所示的调制灵敏度图,调制器在一个周期内端口3通道中的调制曲线的斜率,该结构具有较理想的调制器功能。
实施例2
本实施例中,在不考虑色散或材质色散变化很小的情况下,通过等比例改变晶格常数的方法,可以实现不同波长光子晶体T型波导的横向输出磁光调制器的功能。令参数a=4.1181×10-3[m],d2=0.3a,d3=0.2217a,d5=1.2997a,Ms=2.39×105[A/m],H0=7.5696×105[A/m],H1=135[A/m]。归一化光波频率ωa/2πc=0.4121,其他参数不变,使其对应到30GHz的光波载波。参照图8(a)所示的调制曲线图,通过仿真计算得到在一个周期内端口3通道的光波的电场幅度随调制磁场变化的调制曲线。参照图8(b)所示的调制灵敏度图,为在一个周期内端口3通道中的调制曲线的斜率。
实施例3
本实施例中,在不考虑色散或材质色散变化很小的情况下,通过等比例改变晶格常数的方法,可以实现不同波长光子晶体T型波导的横向输出磁光调制器的功能。令参数a=3.0886×10-3[m],d2=0.3a,d3=0.2217a,d5=1.2997a,Ms=2.39×105[A/m],H0=10.38505×105[A/m],H1=135[A/m]。归一化光波频率ωa/2πc=0.4121,其他参数不变,使其对应到40GHz的光波载波。参照图9(a)所示的调制曲线图,通过仿真计算得到在一个周期内端口3通道的光波的电场幅度随调制磁场变化的调制曲线;参照图9(b)所示的调制灵敏度图,在一个周期内端口3通道中的调制曲线的斜率,该结构具有较理想的调制器功能。
通过图10为可知,在有限元软件COMSOL进行计算,得到的光场模拟图, 参照图11(a)、11(b),由此可知,TE载波光被调制传播至端口2、端口3,
以上所述本发明在具体实施方式及应用范围均有改进之处,不应当理解为对本发明限制。

Claims (10)

  1. 一种基于光子晶体T型波导的横向输出磁光调制器,其特征在于,包括一个具有TE禁带的光子晶体T型波导;所调制器还包括一个输入端(1)、两个输出端(2、3)、背景硅介质柱(4)、等腰直角三角形缺陷介质柱(5)和缺陷介质柱(6),所述调制器还包括一个提供偏置磁场的电磁铁(7)、一个调制电流源(9)和一个调制信号(10);所述光子晶体T型波导的左端为输入端(1),所述输出端(2、3)分别位于光子晶体T型波导的下端、上端,呈一条横线布局;所述缺陷介质柱(6)位于T型波导中心交叉处;所述4个等腰直角三角形缺陷介质柱(5)分别位于T型波导交叉的四个拐角处;所述光子晶体波导由端口(1)输入TE载波光,再从端口(2)输出调幅光。
  2. 按照权利要求1所述的基于光子晶体T型波导的横向输出磁光调制器,其特征在于:所述调制器进一步包括导线(8);所述电磁铁(7)的一端与调制电流源(9)的负极相连接,所述电磁铁(7)的另一端通过导线(8)与调制电流源(9)的正极相连接;所述调制电流源(9)与调制信号(10)相连接。
  3. 按照权利要求1所述的基于光子晶体T型波导的横向输出磁光调制器,其特征在于:所述光子晶体为二维正方晶格光子晶体。
  4. 按照权利要求1所述的基于光子晶体T型波导的横向输出磁光调制器,其特征在于:所述光子晶体由高折射率介质材料和低折射率材料组成;所述高折射率介质材料为硅或折射率大于2的介质;所述低折射率介质为空气或折射率小于1.4的介质。
  5. 按照权利要求1所述的基于光子晶体T型波导的横向输出磁光调制器,其特征在于:所述T型波导为光子晶体中移除中间一横排和一竖排介质柱后的结构。
  6. 按照权利要求1所述的基于光子晶体T型波导的横向输出磁光调制器,其特征在于:所述T型波导交叉拐角处的4个背景介质柱各删除一个角以形成等腰直角三角形缺陷介质柱,该等腰直角三角形缺陷介质柱(5)为三角柱型。
  7. 按照权利要求1所述的基于光子晶体T型波导的横向输出磁光调制器,其特征在于:所述背景硅介质柱(4)的形状为正方形。
  8. 按照权利要求7所述的基于光子晶体T型波导的横向输出磁光调制器,其特征在于:所述光子晶体正方形硅介质柱以介质柱轴线z轴方向逆时针旋转41度。
  9. 按照权利要求1所述的基于光子晶体T型波导的横向输出磁光调制器,其特征在于:所述缺陷介质柱(6)为铁氧体方柱,其形状为正方形,该铁氧体为磁各向异性材料,所述铁氧体方柱的磁导率为各向异性,且受偏置磁场的控制,偏置磁场方向沿着铁氧体方柱的轴线方向。
  10. 按照权利要求1所述的基于光子晶体T型波导的横向输出磁光调制器,其特征在于:所述端口(2)为调幅波输出端口。
PCT/CN2016/106635 2016-02-15 2016-11-21 基于光子晶体t型波导的横向输出磁光调制器 WO2017140139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610086345.2 2016-02-15
CN201610086345.2A CN105607305B (zh) 2016-02-15 2016-02-15 基于光子晶体t型波导的横向输出磁光调制器

Publications (1)

Publication Number Publication Date
WO2017140139A1 true WO2017140139A1 (zh) 2017-08-24

Family

ID=55987348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106635 WO2017140139A1 (zh) 2016-02-15 2016-11-21 基于光子晶体t型波导的横向输出磁光调制器

Country Status (2)

Country Link
CN (1) CN105607305B (zh)
WO (1) WO2017140139A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607304B (zh) * 2016-02-15 2021-02-19 欧阳征标 基于光子晶体t型波导的横向输出磁控二选一光路开关
CN105607305B (zh) * 2016-02-15 2021-03-02 欧阳征标 基于光子晶体t型波导的横向输出磁光调制器
CN110501821B (zh) * 2019-09-27 2023-06-09 南京林业大学 一种基于pt对称结构与磁光子晶体的可调谐单向交叉波导分配器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969210A (zh) * 2004-02-12 2007-05-23 帕诺拉马实验室有限公司 包括保持边界区域的结构化波导
US20080267557A1 (en) * 2005-12-29 2008-10-30 Zheng Wang Integrated Magneto-Optical Devices for Uni-Directional Optical Resonator Systems
CN102830463A (zh) * 2012-08-29 2012-12-19 深圳大学 光子晶体波导全偏振态整数比功率分配器
CN104101948A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑十字型环行器
CN104101947A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑t字型环行器
CN104698606A (zh) * 2015-03-11 2015-06-10 南京邮电大学 磁光效应的二维三角晶格光子晶体模分复用与解复用器
CN105607305A (zh) * 2016-02-15 2016-05-25 欧阳征标 基于光子晶体t型波导的横向输出磁光调制器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043261B (zh) * 2010-08-31 2013-07-03 深圳大学 光子晶体磁光环行器及其制备方法
CN102565935B (zh) * 2012-01-31 2014-04-16 中国科学院长春光学精密机械与物理研究所 谐振耦合双向传输光子晶体波导及制作方法
CN103064146A (zh) * 2012-11-09 2013-04-24 上海大学 太赫兹波段光子晶体制作方法
JP2014206658A (ja) * 2013-04-13 2014-10-30 国立大学法人豊橋技術科学大学 磁性ガーネットおよび磁性フォトニック結晶ならびにこれらを使用する三次元ホログラム表示用磁気光学空間光変調器
CN103885267B (zh) * 2014-03-26 2016-07-06 南京邮电大学 基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法
CN104965319B (zh) * 2015-06-25 2017-09-29 南京邮电大学 平行磁控等离子体光子晶体太赫兹波调制器及调制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969210A (zh) * 2004-02-12 2007-05-23 帕诺拉马实验室有限公司 包括保持边界区域的结构化波导
US20080267557A1 (en) * 2005-12-29 2008-10-30 Zheng Wang Integrated Magneto-Optical Devices for Uni-Directional Optical Resonator Systems
CN102830463A (zh) * 2012-08-29 2012-12-19 深圳大学 光子晶体波导全偏振态整数比功率分配器
CN104101948A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑十字型环行器
CN104101947A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑t字型环行器
CN104698606A (zh) * 2015-03-11 2015-06-10 南京邮电大学 磁光效应的二维三角晶格光子晶体模分复用与解复用器
CN105607305A (zh) * 2016-02-15 2016-05-25 欧阳征标 基于光子晶体t型波导的横向输出磁光调制器

Also Published As

Publication number Publication date
CN105607305A (zh) 2016-05-25
CN105607305B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2017140141A1 (zh) 基于光子晶体t型波导的直角输出磁光调制器
Liu et al. Valley photonic crystals
Pintus et al. Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics
Huang et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics
WO2017140139A1 (zh) 基于光子晶体t型波导的横向输出磁光调制器
WO2017140140A1 (zh) 基于光子晶体t型波导的横向输出磁控二选一光路开关
JP4878210B2 (ja) 光導波路構造
Achanta Plasmonic quasicrystals
WO2017152653A1 (zh) 基于光子晶体t型波导的磁控二选一直角输出光路开关
WO2017140134A1 (zh) 光子晶体t型波导直角输出双路反相光学时钟信号发生器
WO2017140142A1 (zh) 基于光子晶体十字波导的磁光调制器
CN102759775B (zh) 一种能产生宽带慢光的光子晶体槽波导结构
WO2017140143A1 (zh) 基于光子晶体十字波导的磁控二选一光路开关
Wang et al. T-typed photonic crystal circulator with square lattice Al2O3 rods array and NiZn-ferrite posts
WO2017140144A1 (zh) 基于光子晶体十字波导的双路反相光学时钟信号发生器
WO2017140135A1 (zh) 光子晶体波导双路反相光学时钟信号发生器
Chen et al. Demonstration of broadband topological slow light
Huang Modeling mode characteristics of transverse anisotropic waveguides using a vector pseudospectral approach
CN105182094A (zh) 集成光学二维电场传感器及测量系统
Oh et al. Chiral light-matter interaction in dielectric photonic topological insulators
Jalali et al. The effect of 1D magneto-photonic crystal defect mode on Faraday rotation
CN107797358A (zh) 一种基于波导阵列的孤子全光二极管及其实现方法
Lai et al. Generalized nanoscale electromagnetic boundary conditions and interfacial photonics
Zhang et al. Ultra-compact low-voltage and slow-light MZI electro-optic modulator based on monolithically integrated photonic crystal
Yao et al. Meta-interface enhanced light tunneling effect and related electromagnetic diode action

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16890365

Country of ref document: EP

Kind code of ref document: A1