WO2017140134A1 - 光子晶体t型波导直角输出双路反相光学时钟信号发生器 - Google Patents

光子晶体t型波导直角输出双路反相光学时钟信号发生器 Download PDF

Info

Publication number
WO2017140134A1
WO2017140134A1 PCT/CN2016/106584 CN2016106584W WO2017140134A1 WO 2017140134 A1 WO2017140134 A1 WO 2017140134A1 CN 2016106584 W CN2016106584 W CN 2016106584W WO 2017140134 A1 WO2017140134 A1 WO 2017140134A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
waveguide
clock signal
signal generator
optical clock
Prior art date
Application number
PCT/CN2016/106584
Other languages
English (en)
French (fr)
Inventor
欧阳征标
吴昌义
金鑫
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2017140134A1 publication Critical patent/WO2017140134A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the invention relates to a dual-channel inverse optical clock signal generator, in particular to a photonic crystal T-waveguide right angle output dual reverse phase optical clock signal generator.
  • the traditional two-way optical clock signal generator with adjustable duty cycle and mutual logic is applied by the principle of geometric optics, so it is relatively large in size and cannot be used in optical path integration.
  • the combination of magneto-optical materials and novel photonic crystals has proposed many photonic devices.
  • the most important property is the gyromagnetic non-reciprocity of electromagnetic waves under bias magnetic field, which makes magnetic photonic crystals not only have optical rotation characteristics, but also have larger Transmission bandwidth and higher propagation efficiency.
  • Tiny devices can be fabricated based on photonic crystals, including dual inverted optical clock signal generators.
  • the photonic crystal waveguide optical path of the dual inverting optical clock signal generator is typically constructed by introducing line defects into the photonic crystal.
  • the optical clock is an important component of optical communication, optical logic devices, optical information processing systems, and optical computing. It has a wide range of applications.
  • the compact optical clock generator is an important component of the integrated wide chip.
  • the object of the present invention is to overcome the deficiencies in the prior art, and to provide a photonic crystal T-waveguide right angle output dual reverse phase optical clock signal generator with small structure, high efficiency and short range, and convenient integration.
  • the photonic crystal T-waveguide right angle output double reverse phase optical clock signal generator comprises a photonic crystal T-shaped waveguide with a TE forbidden band; the generator further comprises an input terminal 1, two output terminals 2 and 3 a background silicon dielectric column 4, an isosceles right triangle shaped defect dielectric column 5 and a defective dielectric column 6, the generator further comprising an electromagnet 7 for providing a bias magnetic field and a rectangular wave current source 9; said photonic crystal T-shaped waveguide The left end is the input end 1; the output end 2 and the output end 3 are respectively located at the right end and the upper end of the photonic crystal T-shaped waveguide; the defective dielectric column 6 is located at the center intersection of the T-shaped waveguide; the four isosceles right triangles The defective dielectric columns 5 are respectively located at four corners of the intersection of the T-shaped waveguides; the photonic crystal waveguides input TE light from the port 1, and then output two optical clock signals of opposite phases from the ports 2 and 3.
  • the generator further includes a wire 8 having one end connected to one end of a rectangular wave current source 9 via a wire 8; the direction of the bias magnetic field provided by the electromagnet 7 varies periodically with time.
  • the photonic crystal is a two-dimensional square lattice photonic crystal.
  • the photonic crystal is composed of a high refractive index dielectric material that is silicon or a medium having a refractive index greater than two, and a low refractive index medium that is air or a medium having a refractive index of less than 1.4.
  • the T-shaped waveguide is a structure in which a middle one horizontal row and a middle vertical vertical dielectric column are removed from the photonic crystal.
  • the four background dielectric columns 4 at the corners of the T-shaped waveguide respectively delete one corner to form an isosceles right triangle defect dielectric column, and the isosceles right triangle defect dielectric column 5 is Triangular column type.
  • the background silicon dielectric column 4 has a square shape.
  • the square silicon dielectric column is rotated 41 degrees counterclockwise in the z-axis direction of the dielectric column axis.
  • the defect dielectric column 6 is a ferrite square column having a square shape, the magnetic permeability of the ferrite square column is anisotropic, and is controlled by a bias magnetic field, and the bias magnetic field direction is along the ferrite.
  • the axial direction of the body square is a ferrite square column having a square shape, the magnetic permeability of the ferrite square column is anisotropic, and is controlled by a bias magnetic field, and the bias magnetic field direction is along the ferrite.
  • the axial direction of the body square is a ferrite square column having a square shape, the magnetic permeability of the ferrite square column is anisotropic, and is controlled by a bias magnetic field, and the bias magnetic field direction is along the ferrite.
  • the axial direction of the body square is a ferrite square column having a square shape, the magnetic permeability of the ferrite square column is anisotropic, and is controlled by a bias magnetic field, and the bias magnetic field direction is along the fer
  • the port 2 is arranged at right angles to the port 3.
  • the invention has the following advantages:
  • FIG. 1 is a schematic view showing the structure of a photonic crystal T-waveguide right angle output dual-channel inverse optical clock signal generator of the present invention.
  • FIG. 2 is a schematic view showing another structure of a photonic crystal T-waveguide right angle output dual-channel inverse optical clock signal generator of the present invention.
  • FIG. 3 is a structural parameter distribution diagram of a photonic crystal T-waveguide right angle output dual reverse phase optical clock signal generator of the present invention.
  • FIG. 4 is a waveform diagram of an optical clock signal of a photonic crystal T-waveguide right angle output dual reverse phase optical clock signal generator of the present invention.
  • FIG. 5 is a logical contrast diagram of the forbidden band frequency of the photonic crystal T-waveguide right angle output dual-channel inverse optical clock signal generator in the first embodiment.
  • FIG. 6 is a logic contrast diagram of the forbidden band frequency of the photonic crystal T-waveguide right angle output dual reverse phase optical clock signal generator in the second embodiment.
  • FIG. 7 is a logical contrast diagram of the forbidden band frequency of the photonic crystal T-waveguide right angle output dual inverting optical clock signal generator in the third embodiment.
  • Figure 8 is a schematic diagram showing the light field distribution of a photonic crystal T-waveguide right angle output dual reverse phase optical clock signal generator of the present invention.
  • the structure diagram of the photonic crystal T-waveguide right angle output double-channel inverse optical clock signal generator includes a photonic crystal T-type with TE forbidden band
  • the waveguide further comprises an input terminal 1, two output terminals 2 and 3, a background silicon dielectric column 4, an isosceles right triangle shaped defect dielectric column 5 and a defective dielectric column 6;
  • the initial signal light of the device is from the left port 1 Incident, port 2 outputs light waves, port 3 isolates light waves;
  • ports 2 and 3 are located in photonic crystal T-waveguides At the right end and the upper end, the port 2 and the port 3 are arranged at right angles;
  • the photonic crystal waveguide inputs TE light from the port 1, and outputs two optical clock signals of opposite phases from the ports 2 and 3.
  • the background silicon dielectric column 4 has a square shape, the optical axis direction is perpendicular to the paper surface, and the isosceles right triangle shape defective dielectric column 5 has a shape, and the background dielectric column 4 at the corner of the T-shaped waveguide crosses the corner to form a triangular column.
  • Type four isosceles right triangle defect dielectric columns 5 are respectively located at the four corners of the T-shaped waveguide intersection, the optical axis direction is the same as the background dielectric column, and the defect dielectric column 6 is square in shape, which is located at the center intersection of the T-shaped waveguide.
  • the direction of the optical axis is perpendicular to the paper facing outward.
  • the defect dielectric column 6 is a ferrite square column.
  • the magnetic permeability of the ferrite square column is anisotropic and controlled by a bias magnetic field, and the bias magnetic field direction is along the axis direction of the ferrite square column.
  • the structure diagram (including a bias circuit and a bias coil) of the photonic crystal T-waveguide right-angle output body double-channel inverse optical clock signal generator of the present invention includes an electromagnetic field providing a bias magnetic field.
  • Iron 7 electromagnet coil
  • a rectangular wave current source 9 the generator further comprising a wire (8), one end of which is connected to one end of the rectangular wave current source 9 via a wire 8; the other end of the electromagnet 7 Connected to the other end of the rectangular wave current source 9, the direction of the bias magnetic field provided by the electromagnet 7 changes periodically with time;
  • the schematic diagram of the generator of the present invention adopts a Cartesian Cartesian coordinate system: the positive direction of the x-axis is horizontal Right; the positive direction of the y-axis is vertically upward in the plane of the paper; the positive direction of the z-axis is perpendicular to the outside of the paper.
  • d 5 1.2997a (the distance from the oblique side of the isosceles right triangle defect column to the center of the square defect column)
  • the photonic crystal of the invention has a square lattice, a lattice constant of a, a side length of the dielectric column of 0.3a, and a plane wave expansion method when the photonic crystal square silicon dielectric column rotates 41 degrees counterclockwise in the axial direction of the reference medium column (z axis).
  • the TE forbidden band structure in the photonic crystal is obtained.
  • the photonic TE forbidden band is 0.3150 to 0.4548 ( ⁇ a/2 ⁇ c), and the light wave of any frequency between them will be confined in the waveguide.
  • the square lattice dielectric column refers to the axis direction of the dielectric column (z axis) After rotating 41 degrees counterclockwise, a larger and wider forbidden band range was obtained.
  • the silicon dielectric waveguide used in the present invention needs to delete one row and one column of dielectric pillars to form a waveguide waveguide.
  • the waveguide plane is perpendicular to the axis of the dielectric column in the photonic crystal.
  • Ferrite is a material of magnetic anisotropy, and the magnetic anisotropy of ferrite is induced by an applied DC bias magnetic field. This magnetic field causes the magnetic dipoles in the ferrite to align in the same direction, resulting in a resultant magnetic dipole moment and causing the magnetic dipole to move at a frequency controlled by the biasing magnetic field strength.
  • the interaction with the external microwave signal can be controlled, thereby realizing the photonic crystal T-waveguide right angle output double reverse phase optical clock signal generator.
  • the permeability tensor of the ferrite exhibits asymmetry, in which the ferrite tensor permeability [ ⁇ ] is:
  • ⁇ 0 is the magnetic permeability in vacuum
  • is the gyromagnetic ratio
  • H 0 is the applied magnetic field
  • M S is the saturation magnetization
  • Factor, parameters ⁇ and k determine different ferrite materials, materials with this form of magnetic permeability tensor are called gyromagnetic, assuming that the direction of the bias is reversed, H 0 and M S will change the sign, So the direction of rotation will be reversed.
  • the selection of the lattice constant and the operating wavelength can be determined in the following manner.
  • the ⁇ value satisfying the wavelength range can be obtained by changing the value of the lattice constant a without changing the dispersion or the dispersion of the material.
  • the operating wavelength can be adjusted by the lattice constant between the dielectric columns without regard to dispersion or negligible dispersion.
  • the bias magnetic field is generated by a bias electromagnet, and a bias current is applied to the bias electromagnet.
  • the bias current is a modulated signal, and the modulated signal is a time-varying periodic signal.
  • the two-way inverting optical clock signal generator under the cyclically varying bias magnetic field, uses the Faraday rotation effect to make the angle required for the rotation of the light alternately output by two ports, that is, output two optical clock signals of opposite phases.
  • the incident signal port is located at the position of the left port 1 shown in FIG. 1, and the port 1 is a TE optical signal.
  • the optical signal propagates in a waveguide formed by an array of dielectric columns of a silicon dielectric column 4, and the TE optical signal reaches the defective medium.
  • the TE optical signal will all pass, and finally the TE optical signal is output at the output port 2 position; the TE optical signal has almost no output at the output port 3.
  • the insertion loss in the waveguide is small.
  • port 2 is in the on state and port 3 is in the off state.
  • the incident signal port is located at the position of the left port 1 shown in FIG. 1, which is a TE optical signal.
  • the optical signal propagates in the waveguide formed by the dielectric column array of the silicon dielectric column 4, and after the TE optical signal reaches the defect position of the defective dielectric column 6, the TE optical signal will all pass, and finally the TE optical signal is output at the output port 3 position; TE The optical signal has almost no output at the output port 2 position.
  • the insertion loss in the waveguide is small.
  • port 3 is in the on state and port 2 is in the off state.
  • an optical power output waveform is obtained by controlling the voltage, wherein the T 1 period magnetic field is -H, which is output from the port 2; and the T 2 period magnetic field is H, which is output from the port 3.
  • Pulse rise time the time required for a rectangular pulse edge to rise from 0 to 90% of the maximum output power. The pulse rise time of this structure depends on the rate of change of the magnetic field.
  • the duty cycle of the output clock signal can be adjusted, which is equal to the ratio of the time at which the modulated signal is positive to the time at which the modulated signal is negative.
  • Pulse rise time time required for the rectangular pulse edge to rise from 0 to 90% of the maximum output power, and the pulse rise time of the structure depends on the rate of change of the magnetic field.
  • the function of the dual-channel inverted optical clock signal generator at different wavelengths can be realized by a method of changing the lattice constant in a proportional manner without considering the dispersion or the variation of the material dispersion.
  • the logic contrast in the frequency range of the forbidden band light wave is obtained by simulation, and the structure has a high logic contrast and a dual reverse phase optical clock signal generator function.
  • the function of the dual-channel inverted optical clock signal generator at different wavelengths can be realized by a method of changing the lattice constant in a proportional manner without considering the dispersion or the variation of the material dispersion.
  • the function of the dual-channel inverted optical clock signal generator at different wavelength duty ratios can be realized by a method of changing the lattice constants in a proportional manner without considering the dispersion or the variation of the material dispersion.
  • the logic contrast in the band frequency of the forbidden band is obtained by simulation, and the structure has a high logic contrast and a dual inverted optical clock signal generator function.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于光子晶体T型波导直角输出双路反相光学时钟信号发生器,包括一个具有TE禁带的光子晶体T型波导。光子晶体T型波导包括一个输入端(1)、两个输出端(2、3)、背景硅介质柱(4)、等腰直角三角形缺陷介质柱(5)和缺陷介质柱(6)。时钟信号发生器还包括一个提供偏置磁场的电磁铁(7)和一个矩形波电流源(9)。光子晶体T型波导的左端为输入端(1),输出端(2、3)分别位于光子晶体T型波导的右端、上端。缺陷介质柱(6)位于T型波导中心交叉处。4个等腰直角三角形缺陷介质柱(5)分别位于T型波导交叉的四个拐角处。光子晶体T型波导由端口(1)输入TE载波光,再从端口(2、3)输出两路相位相反的光学时钟信号。

Description

光子晶体T型波导直角输出双路反相光学时钟信号发生器 技术领域
本发明涉及双路反相光学时钟信号发生器,尤其涉及一种光子晶体T型波导直角输出双路反相光学时钟信号发生器。
背景技术
传统的占空比可调及互为逻辑非的双路光学时钟信号发生器应用的是几何光学原理,因此体积都比较大,无法用于光路集成中。磁光材料与新型光子晶体的结合提出了许多光子器件,其最主要的性质是电磁波在偏置磁场下表现的旋磁非互易性,使磁性光子晶体不仅具有旋光特性,还有着更大的传输带宽和更高的传播效率。以光子晶体为基础可以制作微小的器件,包括双路反相光学时钟信号发生器。双路反相光学时钟信号发生器的光子晶体波导光路一般在光子晶体中引入线缺陷来构建。光学时钟是光通信、光学逻辑器件、光学信息处理系统、光学计算的重要部件,具有广泛应用价值,紧凑型光学时钟发生器是集成广利芯片的重要部件。
发明内容
本发明的目的是克服现有技术中的不足,提供一种结构体积小,高效短程,便于集成的光子晶体T型波导直角输出双路反相光学时钟信号发生器。
本发明的目的通过下述技术方案予以实现。
本发明光子晶体T型波导直角输出双路反相光学时钟信号发生器,包括一个具有TE禁带的光子晶体T型波导;所述发生器还包括一个输入端1、两个输出端2和3、背景硅介质柱4、等腰直角三角形缺陷介质柱5和缺陷介质柱6,该发生器还包括一个提供偏置磁场的电磁铁7和一个矩形波电流源9;所述光子晶体T型波导的左端为输入端1;所述输出端2和输出端3分别位于光子晶体T型波导的右端和上端;所述缺陷介质柱6位于T型波导中心交叉处;所述4个等腰直角三角形缺陷介质柱5分别位于T型波导交叉的四个拐角处;所述光子晶体波导由端口1输入TE光,再从端口2和端口3输出两路相位相反的光学时钟信号。
所述发生器进一步包括导线8,所述电磁铁7的一端通过导线8与矩形波电流源9的一端相连接;所述电磁铁7提供的偏置磁场的方向随时间做周期变化。
所述光子晶体为二维正方晶格光子晶体。
所述光子晶体由高折射率介质材料和低折射率材料组成,所述高折射率介质材料为硅或折射率大于2的介质;所述低折射率介质为空气或折射率小于1.4的介质。
所述T型波导为光子晶体中移除中间一横排和中间一竖排介质柱后的结构。
所述T型波导交叉拐角处的4个背景介质柱4分别删除一个角以形成等腰直角三角形缺陷介质柱,该等腰直角三角形缺陷介质柱5为 三角柱型。
所述背景硅介质柱4的形状为正方形。
所述正方形硅介质柱以介质柱轴线z轴方向逆时针旋转41度。
所述缺陷介质柱6为铁氧体方柱,其形状为正方形,所述铁氧体方柱的磁导率为各向异性,且受偏置磁场的控制,偏置磁场方向沿着铁氧体方柱的轴线方向。
所述端口2与端口3成直角布局。
本发明与现有技术相比具有以下的优点:
(1)结构体积小,时间响应快,光传输效率高,适合大规模光路集成;
(2)可以短程高效地实现TE光双路反相光学时钟信号发生器的功能,便于集成,具有极大的实用价值;
(3)应用光子晶体可等比例缩放的特性,通过等比例改变晶格常数的方法,可以实现不同波长双路反相时钟信号的产生;
(4)高对比度、高隔离度,同时还具有较宽的工作波长范围,可以允许有一定频谱宽度的脉冲,或高斯光,或不同波长的光工作,或多个波长的光同时工作,具有实用意义。
附图说明
图1是本发明的光子晶体T型波导直角输出双路反相光学时钟信号发生器的一种结构示意图。
图中:输入端1输出端2输出端3背景硅介质柱4等腰直角三角形缺陷介质柱5缺陷介质柱6
图2是本发明的光子晶体T型波导直角输出双路反相光学时钟信号发生器另一种结构示意图。
图中:电磁铁线圈7导线8矩形波电流源9
图3是本发明光子晶体T型波导直角输出双路反相光学时钟信号发生器的结构参数分布图。
图4是本发明光子晶体T型波导直角输出双路反相光学时钟信号发生器的光学时钟信号波形图。
图5是实施例1中光子晶体T型波导直角输出双路反相光学时钟信号发生器禁带频率的逻辑对比度图.
图6是实施例2中光子晶体T型波导直角输出双路反相光学时钟信号发生器禁带频率的逻辑对比度图。
图7是实施例3中光子晶体T型波导直角输出双路反相光学时钟信号发生器禁带频率的逻辑对比度图。
图8是本发明光子晶体T型波导直角输出双路反相光学时钟信号发生器的光场分布示意图。
具体实施方式
如图1所示,本发明光子晶体T型波导直角输出双路反相光学时钟信号发生器的结构示意图(删除了偏置电路和偏置线圈),包括一个具有TE禁带的光子晶体T型波导,该发生器还包括一个输入端1、两个输出端2和3、背景硅介质柱4、等腰直角三角形缺陷介质柱5和缺陷介质柱6;本器件初始信号光从左方端口1入射,端口2输出光波,端口3隔离光波;端口2和端口3分别位于光子晶体T型波导 的右端和上端,该端口2和端口3成直角布局;光子晶体波导由端口1输入TE光,再从端口2、3输出两路相位相反的光学时钟信号。背景硅介质柱4,其形状为方形,光轴方向垂直纸面向外,等腰直角三角形缺陷介质柱5形状为,T型波导交叉拐角处的背景介质柱4删除一个角后所形成,为三角柱型,4个等腰直角三角形缺陷介质柱5分别位于T型波导交叉的四个拐角处,光轴方向与背景介质柱相同,缺陷介质柱6的形状为正方形,其位于T型波导中心交叉处,光轴方向垂直纸面向外。缺陷介质柱6为铁氧体方柱,)该铁氧体方柱的磁导率为各向异性,且受偏置磁场的控制,偏置磁场方向沿着铁氧体方柱的轴线方向。如图2所示,本发明的光子晶体T型波导直角输出体双路反相光学时钟信号发生器的结构示意图(含有偏置电路和偏置线圈),发生器包括一个提供偏置磁场的电磁铁7(电磁铁线圈)和一个矩形波电流源9,该发生器还包括导线(8),电磁铁7的一端通过导线8与矩形波电流源9的一端相连接;电磁铁7的另一端与矩形波电流源9的另一端相连接,该电磁铁7提供的偏置磁场的方向随时间做周期变化;本发明发生器的结构示意图采用笛卡尔直角坐标系:x轴正方向为水平向右;y轴正方向为在纸面内竖直向上;z轴正方向为垂直于纸面向外。
如图3所示,本器件的相关参数为:
d1=a         (晶格常数)
d2=0.3a      (方形硅柱边长)
d3=0.2817a   (方形缺陷柱边长)
d4=0.3a      (等腰直角三角形缺陷柱腰长)
d5=1.2997a   (等腰直角三角形缺陷柱斜边到方形缺陷柱中心的距离)
d6=1.577a    (波导宽长)
本发明光子晶体为正方晶格,晶格常数为a,介质柱边长为0.3a,在光子晶体正方形硅介质柱参考介质柱轴线方向(z轴)逆时针旋转41度时,采用平面波展开法得到光子晶体中TE禁带结构,光子TE禁带为0.3150至0.4548(ωa/2πc),其中间的任何频率的光波将被限制在波导中,正方晶格介质柱参考介质柱轴线方向(z轴)逆时针旋转41度后,获得了更大更宽的禁带范围。
本发明所使用硅介质波导需要删除一行和一列介质柱而形成导波波导。波导平面垂直于光子晶体中的介质柱的轴线。通过在上述T型波导中心交叉处引入一个铁氧体方柱(方形缺陷介质柱6),其边长为0.28a,4个等腰直角三角形缺陷介质柱5斜边面分别到铁氧体柱轴线(方形缺陷介质柱6)的距离为1.2997a。铁氧体方柱的光轴与背景介质柱的光轴方向一致。
本发明的原理介绍主要针对磁光介质加以解释。铁氧体是一种磁各向异性的材料,铁氧体的磁各向异性是由外加直流偏置磁场所诱导的。该磁场使铁氧体中的磁偶极子循同一方向排列,从而产生合成的磁偶极距,并使磁偶极子在由偏置磁场强度所控制的频率下做运动。
通过调整偏置磁场强度可控制与外加微波信号的相互作用,从而实现光子晶体T型波导直角输出双路反相光学时钟信号发生器。在偏 置磁场的作用下,铁氧体的磁导率张量表现为非对称性,其中铁氧体张量磁导率[μ]为:
Figure PCTCN2016106584-appb-000001
磁导率张量的矩阵元中的有关参量由以下式子给出:
ω0=μ0γH0                     (2)
ωm=μ0γMs                     (3)
ω=2πf                         (4)
Figure PCTCN2016106584-appb-000002
Figure PCTCN2016106584-appb-000003
其中,μ0为真空中的磁导率,γ为旋磁比,H0为外加磁场,MS为饱和磁化强度,为工作频率,p=k/μ为归一化磁化频率,也叫分离因子,参数μ和k决定不同铁氧体材料,具有这种形式的磁导率张量的材料称为旋磁性的,假定偏置的方向是相反的,则H0和MS将改变符号,所以旋转方向也会相反。
对于晶格常数和工作波长的选取,可以采用以下方式确定。通过公式
Figure PCTCN2016106584-appb-000004
其中以本发明中正方晶格硅结构的的归一化禁带频率范围
fnorm=0.3150~0.4548             (8) 计算出相应的禁带波长范围为:
λ=2.1987a~3.1746a              (9)
由此可见在不考虑色散或材质色散变化很小的情况下,可以通过改变晶格常数a的值得到与其等比例的满足波长范围的λ值。工作波长可以在不考虑色散或色散可忽略的情况下通过介质柱间晶格常数来调节。
通过数值扫描计算得到,d2=0.3a,d3=0.2817a,d5=1.2997a,归一化光波频率f=0.4121,相对介电常数εr=12.9,光信号从端口2输出最大值,且从端口3输出最小。当偏置磁场方向改变时,H0和MS的符号改变,使光信号的环形方向应改变。因此,光信号从端口3输出最大值,且从端口2输出最小。
偏置磁场由偏置电磁铁产生,偏置电磁铁中加载偏置电流,该偏置电流为调制信号,调制信号为时变周期信号。
双路反相光学时钟信号发生器,在周期变化偏置磁场下,利用法拉第旋转效应,使光旋转所需要的角度,由两个端口交替输出,即输出两路相位相反的光学时钟信号。
通过调节偏置磁场H的大小来确定符合H=H0时,光从端口3输出,H=-H0时,光从端口2输出。从而实现双路反相光学时钟信号发生器。
当在硅介质柱阵列波导中引入上述缺陷后,入射信号端口位于图1所示左方端口1的位置,该端口1处为TE光信号。光信号在以硅介质柱4的介质柱阵列形成的波导中传播,TE光信号到达缺陷介质 柱6的缺陷位置后,TE光信号将全部通过,最后TE光信号在输出端口2位置输出;TE光信号在输出端口3位置几乎没有输出。同时,在波导中插入损失很小。此时,端口2处于导通状态,端口3处于关闭状态。当偏置磁场方向改变时,入射信号端口位于图1所示左方端口1的位置,该端口1处为TE光信号。光信号在以硅介质柱4的介质柱阵列形成的波导中传播,TE光信号到达缺陷介质柱6的缺陷位置后,TE光信号将全部通过,最后TE光信号在输出端口3位置输出;TE光信号在输出端口2位置几乎没有输出。同时,在波导中插入损失很小。此时,端口3处于导通状态,端口2处于关闭状态。
如图4所示,通过控制电压,得到光功率输出波形,其中T1时段磁场为-H,从端口2输出;T2时段磁场为H,从端口3输出。光学时钟信号占空比=信号为1的时间/信号为0的时间=T1/T2。脉冲上升时间=矩形脉冲边沿从0上升到最高输出功率的90%时所需要的时间,该结构的脉冲上升时间取决于磁场的变化速度。
通过调节调制信号的正负取值时间比例,可调节输出时钟信号的占空比,它等于调制信号为正值的时间与调制信号为负的时间之比。
光学时钟参数:
(1)脉冲上升时间=矩形脉冲边沿从0上升到最高输出功率的90%时所需要的时间,该结构的脉冲上升时间取决于磁场的变化速度。
(2)时钟频率=磁场的变化频率
(3)逻辑对比度定义为:
对于端口2导通:10log(导通时端口2的输出功率/断开时端口2的输出功率)=10log(P/P)
对于端口3导通:10log(导通时端口3的输出功率/断开时端口3的输出功率)=10log(P/P)
隔离度定义为:隔离度=10log(输入功率/隔离端输出功率)=10log(P/P)
实施例1
本实施例中,在不考虑色散或材质色散变化很小的情况下,通过等比例改变晶格常数的方法,可以实现不同波长下双路反相光学时钟信号发生器的功能。令参数a=6.1772×10-3[m],d2=0.3a,d3=0.2817a,d5=1.2997a,μ=9.6125,p=0.7792,归一化光波频率ωa/2πc=0.4121,其他参数不变,使其对应到20GHz的光波。参照图5,通过仿真计算得到在禁带光波频率范围内的逻辑对比度,该结构具有高逻辑对比度、双路反相光学时钟信号发生器功能。
实施例2
本实施例中,在不考虑色散或材质色散变化很小的情况下,通过等比例改变晶格常数的方法,可以实现不同波长下双路反相光学时钟信号发生器的功能。令参数a=4.1181×10-3[m],d2=0.3a,d3=0.2817a,d5=1.2997a,μ=9.6125,p=0.7792,归一化光波频率ωa/2πc=0.4121,其他参数不变,使其对应到30GHz的光波。参照图6,通过仿真计算得到在禁带光波频率范围内的逻辑对比度,该结构具有高逻辑对比度、双路反相光学时钟信号发生器功能。通过图6可 知,在归一化光波频率ωa/2πc=0.4121时,其逻辑对比度可达到48dB。
实施例3
本实施例中,在不考虑色散或材质色散变化很小的情况下,通过等比例改变晶格常数的方法,可以实现不同波长占空比下双路反相光学时钟信号发生器的功能。令参数a=3.0886×10-3[m],d2=0.3a,d3=0.2817a,d5=1.2997a,μ=9.6125,p=0.7792,归一化光波频率ωa/2πc=0.4121,其他参数不变,使其对应到40GHz的光波。参照图7,通过仿真计算得到在禁带光波频率范围内的逻辑对比度,该结构具有高逻辑对比度、双路反相光学时钟信号发生器功能。
通过图8可知,在归一化光波频率ωa/2πc=0.4121时,由有限元软件COMSOL进行计算,得到的光场模拟图。可以观察到,TE光分别高效地传播至端口2和端口3。
以上所述本发明在具体实施方式及应用范围均有改进之处,不应当理解为对本发明限制。

Claims (10)

  1. 一种光子晶体T型波导直角输出双路反相光学时钟信号发生器,包括一个具有TE禁带的光子晶体T型波导;所述发生器还包括一个输入端(1)、两个输出端(2、3)、背景硅介质柱(4)、等腰直角三角形缺陷介质柱(5)和缺陷介质柱(6),该发生器还包括一个提供偏置磁场的电磁铁(7)和一个矩形波电流源(9);所述光子晶体T型波导的左端为输入端(1);所述输出端(2、3)分别位于光子晶体T型波导的右端、上端;所述缺陷介质柱(6)位于T型波导中心交叉处;所述4个等腰直角三角形缺陷介质柱(5)分别位于T型波导交叉的四个拐角处;所述光子晶体波导由端口(1)输入TE载波光,再从端口(2、3)输出两路相位相反的光学时钟信号。
  2. 按照权利要求1所述的光子晶体T型波导直角输出双路反相光学时钟信号发生器,其特征在于:所述发生器进一步包括导线(8),所述电磁铁(7)的一端通过导线(8)与矩形波电流源(9)的一端相连接;所述电磁铁(7)提供的偏置磁场的方向随时间做周期变化。
  3. 按照权利要求1所述的光子晶体T型波导直角输出双路反相光学时钟信号发生器,其特征在于:所述光子晶体为二维正方晶格光子晶体。
  4. 按照权利要求1所述的光子晶体T型波导直角输出双路反相光学时钟信号发生器,其特征在于:所述光子晶体由高折射率介质材料和低折射率材料组成,所述高折射率介质材料为硅或折射率大于2的介质;所述低折射率介质为空气或折射率小于1.4的介质。
  5. 按照权利要求1所述的光子晶体T型波导直角输出双路反相 光学时钟信号发生器,其特征在于:所述T型波导为光子晶体中移除中间一横排和中间一竖排介质柱后的结构。
  6. 按照权利要求1所述的光子晶体T型波导直角输出双路反相光学时钟信号发生器,其特征在于:所述T型波导交叉拐角处的4个背景介质柱(4)分别删除一个角以形成等腰直角三角形缺陷介质柱,该等腰直角三角形缺陷介质柱(5)为三角柱型。
  7. 按照权利要求1所述的光子晶体T型波导直角输出双路反相光学时钟信号发生器,其特征在于:所述背景硅介质柱(4)的形状为正方形。
  8. 按照权利要7所述的光子晶体T型波导直角输出双路反相光学时钟信号发生器,其特征在于:所述正方形硅介质柱以介质柱轴线z轴方向逆时针旋转41度。
  9. 按照权利要求1所述的光子晶体T型波导直角输出双路反相光学时钟信号发生器,其特征在于:所述缺陷介质柱(6)为铁氧体方柱,其形状为正方形,所述铁氧体方柱的磁导率为各向异性,且受偏置磁场的控制,偏置磁场方向沿着铁氧体方柱的轴线方向。
  10. 按照权利要求1所述的光子晶体T型波导直角输出双路反相光学时钟信号发生器,其特征在于:所述端口(2)与端口(3)成直角布局。
PCT/CN2016/106584 2016-02-15 2016-11-21 光子晶体t型波导直角输出双路反相光学时钟信号发生器 WO2017140134A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610086380.4 2016-02-15
CN201610086380.4A CN105572922B (zh) 2016-02-15 2016-02-15 光子晶体t型波导直角输出双路反相光学时钟信号发生器

Publications (1)

Publication Number Publication Date
WO2017140134A1 true WO2017140134A1 (zh) 2017-08-24

Family

ID=55883235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106584 WO2017140134A1 (zh) 2016-02-15 2016-11-21 光子晶体t型波导直角输出双路反相光学时钟信号发生器

Country Status (2)

Country Link
CN (1) CN105572922B (zh)
WO (1) WO2017140134A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572922B (zh) * 2016-02-15 2021-02-19 深圳大学 光子晶体t型波导直角输出双路反相光学时钟信号发生器
CN105572917B (zh) * 2016-02-15 2021-02-19 深圳大学 光子晶体波导双路反相光学时钟信号发生器
CN105572921B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体t型波导的磁控二选一直角输出光路开关

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436907A (zh) * 2008-12-15 2009-05-20 电子科技大学 一种光时钟提取装置及其方法
US20110002581A1 (en) * 2008-02-07 2011-01-06 Masatoshi Tokushima Optical switch and method of manufacturing the same
CN102043261A (zh) * 2010-08-31 2011-05-04 深圳大学 光子晶体磁光环行器及其制备方法
CN104101947A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑t字型环行器
CN105572922A (zh) * 2016-02-15 2016-05-11 欧阳征标 光子晶体t型波导直角输出双路反相光学时钟信号发生器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343059B2 (en) * 2003-10-11 2008-03-11 Hewlett-Packard Development Company, L.P. Photonic interconnect system
CN103885267B (zh) * 2014-03-26 2016-07-06 南京邮电大学 基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法
CN104536239B (zh) * 2014-12-19 2018-03-16 深圳市至佳生活网络科技有限公司 光学时钟发生器
CN104965319B (zh) * 2015-06-25 2017-09-29 南京邮电大学 平行磁控等离子体光子晶体太赫兹波调制器及调制方法
CN105137539A (zh) * 2015-09-18 2015-12-09 浙江工业大学 基于光子晶体的超宽带光二极管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002581A1 (en) * 2008-02-07 2011-01-06 Masatoshi Tokushima Optical switch and method of manufacturing the same
CN101436907A (zh) * 2008-12-15 2009-05-20 电子科技大学 一种光时钟提取装置及其方法
CN102043261A (zh) * 2010-08-31 2011-05-04 深圳大学 光子晶体磁光环行器及其制备方法
CN104101947A (zh) * 2014-07-28 2014-10-15 欧阳征标 基于光子晶体波导的超高效紧凑t字型环行器
CN105572922A (zh) * 2016-02-15 2016-05-11 欧阳征标 光子晶体t型波导直角输出双路反相光学时钟信号发生器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN, X. ET AL.: "Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides", PLOS ONE, vol. 9, no. 11, 21 November 2014 (2014-11-21), pages 2 - 7, XP055410235 *

Also Published As

Publication number Publication date
CN105572922A (zh) 2016-05-11
CN105572922B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2017140141A1 (zh) 基于光子晶体t型波导的直角输出磁光调制器
KR100819142B1 (ko) 강한 스핀파 발생 방법 및 스핀파를 이용한 초고속 정보처리 스핀파 소자
Gertz et al. Magnonic holographic memory
WO2017020792A1 (zh) 一种左旋圆偏振转换的超材料薄膜
WO2017020791A1 (zh) 一种右旋圆偏振转换的超材料薄膜
Davies et al. Mapping the magnonic landscape in patterned magnetic structures
WO2017140140A1 (zh) 基于光子晶体t型波导的横向输出磁控二选一光路开关
WO2017140134A1 (zh) 光子晶体t型波导直角输出双路反相光学时钟信号发生器
CN104101948B (zh) 基于光子晶体波导的十字型环行器
Mirmoosa et al. Polarizabilities of nonreciprocal bianisotropic particles
Dmytriiev et al. Static and dynamic magnetic properties of densely packed magnetic nanowire arrays
Gubbiotti et al. Magnonic band structure in vertical meander-shaped Co 40 Fe 40 B 20 thin films
Lindell et al. Losses in the PEMC boundary
Gruszecki et al. The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns
CN110098451B (zh) 一种基于极化电流调控的自旋波移相器
WO2017152653A1 (zh) 基于光子晶体t型波导的磁控二选一直角输出光路开关
WO2017140139A1 (zh) 基于光子晶体t型波导的横向输出磁光调制器
CN104820298B (zh) 一种基于BiLuIG薄膜的TM‑TE磁光调制器
Sadovnikov et al. Nonreciprocal propagation of hybrid electromagnetic waves in a layered ferrite–ferroelectric structure with a finite width
WO2017140143A1 (zh) 基于光子晶体十字波导的磁控二选一光路开关
WO2017140135A1 (zh) 光子晶体波导双路反相光学时钟信号发生器
WO2017140144A1 (zh) 基于光子晶体十字波导的双路反相光学时钟信号发生器
WO2017140142A1 (zh) 基于光子晶体十字波导的磁光调制器
CN210401903U (zh) 一种可调谐单向交叉波导分配器
Gruszecki et al. The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16890360

Country of ref document: EP

Kind code of ref document: A1