WO2017140120A1 - 一种由带导流层的预织件制成的电木檩条及其制造方法 - Google Patents

一种由带导流层的预织件制成的电木檩条及其制造方法 Download PDF

Info

Publication number
WO2017140120A1
WO2017140120A1 PCT/CN2016/103669 CN2016103669W WO2017140120A1 WO 2017140120 A1 WO2017140120 A1 WO 2017140120A1 CN 2016103669 W CN2016103669 W CN 2016103669W WO 2017140120 A1 WO2017140120 A1 WO 2017140120A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
bakelite
woven fabric
layer
fiber
Prior art date
Application number
PCT/CN2016/103669
Other languages
English (en)
French (fr)
Inventor
梅天诚
Original Assignee
苏州振瑞昌材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州振瑞昌材料科技有限公司 filed Critical 苏州振瑞昌材料科技有限公司
Publication of WO2017140120A1 publication Critical patent/WO2017140120A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition

Definitions

  • the invention relates to the field of architecture, in particular to an electric bakelite made of a pre-woven fabric with a guide layer applied to a large steel structure roof or wall surface and a manufacturing method thereof.
  • steel structure has the advantages of steel saving, economical cost, fast supply, simple installation and simple shape, it has been rapidly developed and widely used as a commodity at home and abroad. It has been widely used in the 1960s.
  • Light steel structure building systems have dominated the non-residential low-rise building market. They are widely used, including cold-formed thin-walled steel residential structures (1 to 3 storey villa houses).
  • commercial buildings such as warehouses, small office buildings, garages, supermarkets; including manufacturing and processing-type buildings such as factories, material recycling stations, automobile production plants and chemical plants; also include community and public buildings such as schools and city halls. , stadiums, etc.
  • the first line of defense against the outside world consists of wall and roofing materials. They are also subjected to structural loads such as wind and snow, and these loads are transmitted to the secondary support structure. As the most important substructure of steel roofing, roofing rafts not only occupy a large proportion in the cost of roofing system, but also play a major role. The loads transmitted by the walls and roofs will be received and transmitted evenly to the main structure of the columns and beams, subjected to wind loads, snow loads and other loads and transmitted to the building foundation.
  • the purlins used for roofing in China were mainly hot-rolled sections, but it was self-contained and consumed a lot of steel. Most commonly used simply supported rafters are controlled by deflection, and the strength is often not fully effective.
  • the cold-formed thin-walled steel developed later has the advantages of high material saving, low steel consumption, light weight, easy manufacturing and transportation, and is widely used as a purlin for steel structure roofing.
  • metal material purlins are easily corroded, which brings great impact to steel structure roofing construction. Troubled.
  • the invention aims at the above-mentioned deficiencies of the prior art, and provides a Class A fireproof high-strength corrosion-resistant stringer which is light in weight, safe and reliable, economical and reasonable, fast in construction speed, high in industrial manufacturing degree, fireproof and corrosion resistant.
  • the present invention provides a bakelite strand made of a pre-woven fabric with a flow guiding layer, the phenolic resin as a matrix resin, the pre-woven fabric with a flow guiding layer comprising a layer of paved glass felt and a drainage layer fiber Cloth and inter-layer continuous fibers, wherein the baffle fiber cloth is located at an intermediate layer position of the layered glass mat, and the layered glass mat and the baffle fiber cloth pass through the layer The continuous fibers are stitched together.
  • a pultrusion process from a component comprising the following parts by weight, wherein the phenolic resin: 20 to 30 parts, the halogen-free flame retardant: 0.5 to 2 parts, the carbon fiber: 1 to 3 parts, and the glass fiber yarn: 50 to 70 parts, polyester surface felt: 4 to 7 parts, diluent: 2 to 8 parts, mold release agent: 0.5 to 1.5 parts, pigment: 0.5 to 1.5 parts.
  • phenolic resin 25 parts
  • halogen-free flame retardant 1 part
  • carbon fiber 1.5 parts
  • glass fiber yarn 60 parts
  • polyester surface Felt 5.5 parts
  • diluent 5 parts
  • release agent 1 part
  • pigment 1 part
  • the temperature of the pultrusion die in the pultrusion process is 140 to 280 °C.
  • the pigment is ferric oxide having a particle diameter of 5 to 15 ⁇ m or titanium dioxide having a particle diameter of 1 to 5 ⁇ m.
  • halogen-free flame retardant is one or more of aluminum hydroxide, magnesium hydroxide or polyphosphoric acid.
  • the present invention also provides a method of manufacturing the above-described bakelite strip, comprising the steps of:
  • Step 1) Preparation of resin system material: blending phenolic resin, halogen-free flame retardant, diluent, pigment, and release agent, and keeping the blending tank at a constant temperature to obtain a resin system material;
  • Step 2) Fabrication of the pre-woven fabric: firstly laminating the glass fiber mat, then adding the drainage fabric fiber cloth to the intermediate layer of the layered glass mat, and then applying the sewing technique through the high-strength continuous carbon fiber yarn Laying the layered glass fiber mat and the drainage layer fiber cloth together to obtain a carbon fiber interlayer reinforced glass fiber mat pre-woven member; the obtained glass fiber mat pre-impregnation member is soaked in the step 1) The resin system obtained in the above, after which the polyester surface felt is wrapped and shaped into the pre-woven fabric by a preforming mold;
  • Step 3) Curing molding The pre-woven fabric is pulled into the metal mold cavity to perform three-stage temperature-controlled curing.
  • step 1) the blending tank is maintained at 85 degrees Celsius.
  • the temperature of the three stages in the step 3) is 140 to 170 ° C, 180 to 240 ° C, and 160 to 190 ° C, respectively.
  • temperatures of the three stages are preferably 160 ° C, 210 ° C, and 180 ° C, respectively.
  • the pre-woven fabric of the invention adopts a reinforcing fiber cloth as a flow guiding layer, can uniformly penetrate the fiber mat during the resin impregnation process, and stabilizes the obtained composite material.
  • the phenolic glass fiber reinforced plastic adopts ordinary alkali-free glass fiber.
  • the phenolic glass steel of the invention adopts ultrafine magnesium hydroxide as a filler, and the resin mixed with the filler acts as a binder, and the combustion heat value is lower than 3 MJ/kg; the smoke toxicity reaches ZA1; the oxygen index reaches 80 or more; The product can meet the requirements of flame retardancy of steel structure.
  • FIG. 1 is a structural view showing a fiber pre-woven member of a bakelite board in the present invention.
  • the bakelite strip provided by the present invention is made of a pre-woven fabric with a flow guiding layer comprising a layered glass mat 1, a baffle fiber cloth 2 and an interlayer a continuous fiber 3, wherein the baffle fiber cloth 2 is located at an intermediate layer position of the layered glass mat 1, the layered glass mat 1 and the baffle fiber cloth 2 are The continuous fibers 3 are stitched together.
  • the wind guide fiber cloth 2 may be a carbon fiber unidirectional cloth, which means a carbon fiber yarn having a large amount in one direction (usually a warp direction) and a small amount and usually a fine carbon fiber yarn in the other direction.
  • the bakelite strand is made by a pultrusion process comprising the following parts by weight, and the pultrusion die temperature is 140-280 ° C:
  • the phenolic resin is a conventional thermoplastic phenolic resin.
  • the halogen-free flame retardant may be ultrafine aluminum hydroxide powder or magnesium hydroxide powder, or polyphosphoric acid; or a composite system of these flame retardants.
  • the carbon fiber is a common T300 series carbon fiber, which can be domestic carbon fiber, such as Jiangsu Hengshen, Zhongfu Shenying T300 series; or imported T300 series carbon fiber, such as Japan Toray, Toho, etc. Production of products. Place
  • Place The glass fiber yarn is a common alkali-free glass fiber yarn.
  • the polyester continuous felt is a commercially available polyester continuous felt.
  • the diluent is a conventional diluent in the industry, such as ethanol.
  • the phenolic resin is a commercially available phenolic resin such as phenolic resin of Model NR9450 of Changshu Southeast Plastics Co., Ltd. (brown viscous liquid is suitable for pultrusion).
  • the release agent is a conventional release agent in the industry, such as industrial paraffin.
  • the pigment is ferric oxide having a particle diameter of 5 to 15 ⁇ m, or titanium dioxide having a particle diameter of 1 to 5 ⁇ m, that is, titanium dioxide or the like.
  • the present invention also provides a method of manufacturing the above-described bakelite strip:
  • Preparation of resin system firstly blend phenolic resin, halogen-free flame retardant, diluent, pigment and mold release agent, the blending tank is kept at a constant temperature, and the temperature is maintained at 85 degrees, so that the resin material is kept very good. Liquidity does not cross-link reaction.
  • Pre-woven parts manufacturing firstly layer the glass fiber mat, then add the drainage layer fiber cloth to the middle layer of the layered glass mat, and then use the sewing technique to spread the layer through high-strength continuous carbon fiber yarn. a good glass fiber mat and the drainage layer fiber cloth are sewn together to obtain a carbon fiber interlayer reinforced glass fiber mat pre-woven member; the obtained glass fiber mat pre-woven member is impregnated in the step 1) The resin system material is then wrapped with a polyester surface felt and shaped into the pre-wovens by a preforming mold.
  • a bakelite strand made by a pultrusion process comprising the following parts by weight, the pultrusion die temperature being 140-280 ° C:
  • the preparation method comprises the following steps: firstly, phenolic resin, ultrafine magnesium hydroxide, diluent, mold release agent and titanium dioxide are poured into a stirring reaction kettle to be blended, mixed uniformly, and then transferred to a blending tank.
  • the blending tank is kept at a constant temperature and the temperature is maintained at about 85 °C. At this temperature, the resin system has good fluidity, and the cross-linking curing temperature of the resin system is about 190 ° C, which is much lower than the reaction cross-linking, and its pot life is long.
  • the carbon fiber and the glass fiber are woven into a cylindrical pre-woven fabric having a thickness of 4.5 mm by a loom, and the pre-woven fabric is passed through a thermostatic blending tank containing a resin, impregnated with a resin, and then passed through a pressing device to remove excess Resin extrusion.
  • the polyester surface felt is then wrapped over the resin impregnated pre-woven and then shaped by a preforming mold.
  • the pre-woven piece after the above shaping is pulled into the metal mold cavity to perform three-stage temperature-controlled curing.
  • the temperatures of the three stages were 140 ° C, 180 ° C, and 160 ° C, respectively, and the curing times were 1 minute, 2 minutes, and 1 minute, respectively.
  • the crawler is used to pull the profile and cool it to produce the bakelite stringer.
  • a bakelite strand made by a pultrusion process comprising the following parts by weight, the pultrusion die temperature being 140-280 ° C:
  • the preparation method comprises the following steps: firstly, phenolic resin, ultrafine magnesium hydroxide, diluent, mold release agent and titanium dioxide are poured into a stirring reaction kettle to be blended, mixed uniformly, and then transferred to a blending tank.
  • the blending tank is kept at a constant temperature and the temperature is maintained at about 85 °C. At this temperature, the resin system has good fluidity, and the cross-linking curing temperature of the resin system is about 190 ° C, which is much lower than the reaction cross-linking. Its useful period is long.
  • the carbon fiber and the glass fiber are woven into a cylindrical pre-woven fabric having a thickness of 4.5 mm by a loom, and the pre-woven fabric is passed through a thermostatic blending tank containing a resin, impregnated with a resin, and then passed through a pressing device to remove excess Resin extrusion.
  • the polyester surface felt is then wrapped over the resin impregnated pre-woven and then shaped by a preforming mold.
  • the pre-woven piece after the above shaping is pulled into the metal mold cavity to perform three-stage temperature-controlled curing.
  • the temperatures of the three stages were 170 ° C, 240 ° C, and 190 ° C, respectively, and the curing times were 1 minute, 2 minutes, and 1 minute, respectively.
  • the crawler is used to pull the profile and cool it to produce the bakelite stringer.
  • a bakelite strand made by a pultrusion process comprising the following parts by weight, the pultrusion die temperature being 140-280 ° C:
  • the preparation method comprises the following steps: firstly, phenolic resin, ultrafine magnesium hydroxide, diluent, mold release agent and titanium dioxide are poured into a stirring reaction kettle to be blended, mixed uniformly, and then transferred to a blending tank.
  • the blending tank is kept at a constant temperature and the temperature is maintained at about 85 °C. At this temperature, the resin system has good fluidity, and the cross-linking curing temperature of the resin system is about 190 ° C, which is much lower than the reaction cross-linking, and its pot life is long.
  • the carbon fiber and the glass fiber are woven into a cylindrical pre-woven fabric having a thickness of 4.5 mm by a loom, and the pre-woven fabric is passed through a thermostatic blending tank containing a resin, impregnated with a resin, and then passed through a pressing device to remove excess Resin extrusion.
  • the polyester surface felt is then wrapped over the resin impregnated pre-woven and then shaped by a preforming mold.
  • the pre-woven piece after the above shaping is pulled into the metal mold cavity to perform three-stage temperature-controlled curing.
  • the temperatures of the three stages were 160 ° C, 210 ° C, and 180 ° C, respectively, and the curing times were 1 minute, 2 minutes, and 1 minute, respectively.
  • the crawler is used to pull the profile and cool it to produce the bakelite stringer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明提供一种由带导流层的预织件制成的电木檩条,以酚醛树脂为基体树脂,所述带导流层的预织件包含层铺好的玻璃毡、导流层纤维布和层间连续纤维,其中,所述导流层纤维布位于所述层铺好的玻璃毡的中间层位置,所述层铺好的玻璃毡和所述导流层纤维布通过所述层间连续纤维缝合在一起。该电木檩条具有重量轻、安全可靠、经济合理、施工速度快、工业化制造程度高且防火、耐腐蚀的性能。

Description

一种由带导流层的预织件制成的电木檩条及其制造方法 技术领域
本发明涉及建筑领域,具体涉及一种应用于大型钢结构屋面或墙面的由带导流层的预织件制成的电木檩条及其制造方法。
背景技术
由于钢结构建筑具有用钢省、造价经济、供货迅速、安装简便及外形简洁等优点,已作为一种商品在国内外得到迅速发展和广泛采用。国外六十年代开始大量应用,如今,轻钢结构建筑系统在非居住性的低层建筑市场上已占主导地位,其用途极为广泛,其中包括冷弯薄壁型钢住宅结构(1~3层别墅房屋),商业用途的建筑如仓库、小型办公楼、车库、超市;包括制造及加工业类型建筑如厂房、材料回收站、汽车生产厂房及化工厂等;还包括社区及公共建筑如学校、市政厅、体育场馆等。
建筑对外界防御的第一线由墙面和屋面材料组成,它们同时也承受如风、雪载等结构荷载作用,并将这些荷载传到次要支承结构上。屋面檩条作为钢结构屋面中最重要的次结构,不仅在屋面体系的造价中占有很大的比例,而且发挥重大的作用。将接收由墙面及屋面传递来的荷载,并将其均匀地传到柱及横梁构成的主结构上去,承受风载、雪载及其它荷载并将其传递到建筑基础。
在早期,我国用于屋面的檩条主要是热轧型钢,但它自重大,耗钢量多。常用的简支檩条大都为挠度控制,强度往往不能充分发挥作用。后来开发的冷弯薄壁型钢具有节材高效、耗钢少、自重轻、制造运输简便等优点,大量用做钢结构屋面的檩条。但是对于一些临海建筑、轧钢厂、冶炼厂、化肥厂、铝业氧化车间、化学品车间、海产养殖等腐蚀环境中的工业建筑,金属材料檩条容易腐蚀,给钢结构屋面建筑带来极大的困扰。
传统的玻璃钢在防腐领域的成功应用已超过80年,如化工储罐,地下给排水管道,海上游船,风电设施等,其卓越的防腐蚀、耐老化性能得到了广泛认同。这种复合材料制作的檩条虽然耐腐蚀性能优异,重量轻,但是,在高温条件下很容易燃烧,导致断裂、坍塌,而且制作成本高。
因此,如何提升屋面或墙面檩条的耐腐蚀性、阻燃性和力学性能是当前建筑结构系统的迫切需求。
发明内容
本发明针对现有技术的上述不足,提供了一种具有重量轻、安全可靠、经济合理、施工速度快、工业化制造程度高且防火、耐腐蚀的A级防火高强度耐腐蚀檩条。
为解决上述技术问题,本发明采取的技术方案如下。
本发明提供一种由带导流层的预织件制成的电木檩条,以酚醛树脂为基体树脂,所述带导流层的预织件包含层铺好的玻璃毡、导流层纤维布和层间连续纤维,其中,所述导流层纤维布位于所述层铺好的玻璃毡的中间层位置,所述层铺好的玻璃毡和所述导流层纤维布通过所述层间连续纤维缝合在一起。
进一步地,由包含以下重量份的组分通过拉挤工艺制成,其中,酚醛树脂:20~30份,无卤阻燃剂:0.5~2份,碳纤维:1~3份,玻璃纤维纱:50~70份,聚酯表面毡:4~7份,稀释剂:2~8份,脱模剂:0.5~1.5份,颜料:0.5~1.5份。
进一步地,由包含以下重量份的组分通过拉挤工艺制成,其中,酚醛树脂:25份,无卤阻燃剂:1份,碳纤维:1.5份,玻璃纤维纱:60份,聚酯表面毡:5.5份,稀释剂:5份,脱模剂:1份,颜料:1份。
进一步地,所述拉挤工艺中拉挤模具的温度为140~280℃。
进一步地,所述颜料为粒径5~15微米的三氧化二铁,或者为粒径1~5微米的二氧化钛。
进一步地,所述无卤阻燃剂为氢氧化铝、氢氧化镁或多聚磷铵酸中的一种或几种。
此外,本发明还提供一种制造上述电木檩条的方法,包含以下步骤:
步骤1)树脂体系料的制备:将酚醛树脂、无卤阻燃剂、稀释剂、颜料、脱模剂进行共混,并保持共混槽为恒温以得到树脂体系料;
步骤2)预织件的制造:先将玻璃纤维毡进行层铺,再将导流层纤维布加入层铺好的玻璃毡中间层位置,然后运用缝纫技术,通过高强度连续碳纤维丝将所述层铺好的玻璃纤维毡和所述导流层纤维布缝和在一起,制得碳纤维层间增强的玻璃纤维毡预织件;将制得的所述玻璃纤维毡预织件浸透步骤1)中得到的所述树脂体系料,之后包裹聚酯表面毡并通过预成型模具定型为所述预织件;以及
步骤3)固化成型:将所述预织件拉进金属模腔,进行三段温控固化。
进一步地,步骤1)中,将所述共混槽保持为85摄氏度。
进一步地,步骤3)中三段的温度分别为140~170℃,180~240℃,,160~190℃。
进一步地,所述三段的温度分别优选为160℃,210℃,180℃。
本发明与现有技术相比具有以下优点:
1.本发明预织件采用了具有增强作用的纤维布作为导流层,在树脂浸渍过程中,能够均匀浸透纤维毡,使获得的复合材料性能稳定,此外,酚醛玻璃钢采用普通无碱玻璃纤维纱,用碳纤维进行了层间增强,并使用聚酯表面毡进行包裹,其重量远低于同体积的金属檩条,且力学性能已达到钢材的强度,承重达到620kg以上;通过对纤维织物构造的设计达到各方应力均匀的目的,解决了截面面积大的拉挤型材横向强度高,而纵向强度低的问题,同时在织物中混入碳纤维使得拉伸强度提高了50%以上。
2.本发明的酚醛玻璃钢采用超细的氢氧化镁作为填料,树脂混入填料起到了粘结剂的作用,其燃烧热值低于3MJ/kg;产烟毒性达到ZA1;氧指数达到80以上;使产品能很好的满足钢结构阻燃的要求。
附图说明
图1为本发明中电木浪板的纤维预织件的结构图。
附图标记说明:
1、玻璃毡,    2、导流层纤维布,
3、层间连续纤维。
具体实施方式
为充分公开的目的,以下将结合实施例对本发明做进一步详细说明。应当理解,以下所述的具体实施例仅用于解释本发明,并非用于限定本发明的保护范围。
本发明提供的电木檩条,是由带导流层的预织件制成的,所述带导流层的预织件包含层铺好的玻璃毡1、导流层纤维布2和层间连续纤维3,其中,所述导流层纤维布2位于所述层铺好的玻璃毡1的中间层位置,所述层铺好的玻璃毡1和所述导流层纤维布2通过所述层间连续纤维3缝合在一起。其中,导流层纤维布2可以采用碳纤维单向布,碳纤维单向布是指在一个方向(通常是经向)具有大量的碳纤维丝,在另一方向只有少量并且通常是细的碳纤维丝。
所述电木檩条由包含以下重量份的组分通过拉挤工艺制成,拉挤模具温度为140~280℃:
Figure PCTCN2016103669-appb-000001
在本发明的实施例中,所述酚醛树脂为普通的热塑性酚醛树脂。所述无卤阻燃剂可以为超细的氢氧化铝粉或氢氧化镁粉末,也可以为多聚磷铵酸;或者这些阻燃剂的复合体系。所述碳纤维为普通T300系列级的碳纤维,可以为国产的碳纤维,如江苏恒神、中复神鹰产的T300级系列;也可以为进口的T300级系列碳纤维,如日本东丽、东邦等生产的产品。所 述玻璃纤维纱为普通无碱玻璃纤维纱。所述聚酯连续毡为市售的聚酯连续毡。所述稀释剂为行业常规稀释剂,如乙醇。所述酚醛树脂为市售成规的酚醛树脂,如常熟东南塑料有限公司型号NR9450的酚醛树脂(棕色粘稠液体适用拉挤成型)。所述脱模剂为行业常规脱模剂,如工业石蜡。所述颜料为粒径5~15微米的三氧化二铁,或者粒径1~5微米的二氧化钛即钛白粉等。
此外,本发明还提供一种制造上述电木檩条的方法:
1.树脂体系的制备:先将酚醛树脂、无卤阻燃剂、稀释剂、颜料、脱模剂进行共混,共混槽为恒温,温度保持在85度,使树脂料既保持很好的流动性又不会反生反应交联。
2.预织件制造:先将玻璃纤维毡进行层铺,再将导流层纤维布加入层铺好的玻璃毡中间层位置,然后运用缝纫技术,通过高强度连续碳纤维丝将所述层铺好的玻璃纤维毡和所述导流层纤维布缝和在一起,制得碳纤维层间增强的玻璃纤维毡预织件;将制得的所述玻璃纤维毡预织件浸透步骤1)中得到的所述树脂体系料,之后包裹聚酯表面毡并通过预成型模具定型为所述预织件。
3.固化成型:将上述的预织件拉进金属模腔,进行三段温控固化,三段的温度分别为140~170℃,180~240℃,160~190℃。金属模具尾部采取履带牵引机对型材进行拖拽。
实施例1
一种电木檩条,由包含以下重量份的组分通过拉挤工艺制成,拉挤模具温度为140~280℃:
Figure PCTCN2016103669-appb-000002
Figure PCTCN2016103669-appb-000003
其制备方法为:按上述比例先将酚醛树脂、超细的氢氧化镁、稀释剂、脱模剂、钛白粉倒入搅拌反应釜中进行共混,混合均匀后,转入到共混槽。共混槽为恒温,温度保持在85℃左右。在此温度下,树脂体系具有很好的流动性,同时树脂体系的交联固化温度在190℃左右,远低于其反应交联,其适用期长。
将上述的碳纤维、玻璃纤维通过织机织成厚度为4.5毫米厚的筒状预织件,将该预织件通过装有树脂的恒温共混槽,浸透树脂之后通过挤压装置,将多余的树脂挤出。然后在浸透树脂的预织件上包裹聚酯表面毡,再通过预成型模具定型。
将上述定型后的预织件拉进金属模腔,进行三段温控固化。三段的温度分别为140℃、180℃、160℃,固化时间分别为1分钟、2分钟和1分钟。金属模具尾部采取履带牵引机对型材进行牵引,并进行冷却,从而制得电木檩条。
实施例2
一种电木檩条,由包含以下重量份的组分通过拉挤工艺制成,拉挤模具温度为140~280℃:
Figure PCTCN2016103669-appb-000004
其制备方法为:按上述比例先将酚醛树脂、超细的氢氧化镁、稀释剂、脱模剂、钛白粉倒入搅拌反应釜中进行共混,混合均匀后,转入到共混槽。共混槽为恒温,温度保持在85℃左右。在此温度下,树脂体系具有很好的流动性,同时树脂体系的交联固化温度在190℃左右,远低于其反应交联, 其适用期长。
将上述的碳纤维、玻璃纤维通过织机织成厚度为4.5毫米厚的筒状预织件,将该预织件通过装有树脂的恒温共混槽,浸透树脂之后通过挤压装置,将多余的树脂挤出。然后在浸透树脂的预织件上包裹聚酯表面毡,再通过预成型模具定型。
将上述定型后的预织件拉进金属模腔,进行三段温控固化。三段的温度分别为170℃、240℃、190℃,固化时间分别为1分钟、2分钟和1分钟。金属模具尾部采取履带牵引机对型材进行牵引,并进行冷却,从而制得电木檩条。
实施例3
一种电木檩条,由包含以下重量份的组分通过拉挤工艺制成,拉挤模具温度为140~280℃:
Figure PCTCN2016103669-appb-000005
其制备方法为:按上述比例先将酚醛树脂、超细的氢氧化镁、稀释剂、脱模剂、钛白粉倒入搅拌反应釜中进行共混,混合均匀后,转入到共混槽。共混槽为恒温,温度保持在85℃左右。在此温度下,树脂体系具有很好的流动性,同时树脂体系的交联固化温度在190℃左右,远低于其反应交联,其适用期长。
将上述的碳纤维、玻璃纤维通过织机织成厚度为4.5毫米厚的筒状预织件,将该预织件通过装有树脂的恒温共混槽,浸透树脂之后通过挤压装置,将多余的树脂挤出。然后在浸透树脂的预织件上包裹聚酯表面毡,再通过预成型模具定型。
将上述定型后的预织件拉进金属模腔,进行三段温控固化。三段的温度分别为160℃、210℃、180℃,固化时间分别为1分钟、2分钟和1分钟。金属模具尾部采取履带牵引机对型材进行牵引,并进行冷却,从而制得电木檩条。
经试验证明,本发明提供的酚醛树脂玻璃钢电木檩条,其性能和规格如下:
承载性能:(跨距6000mm,载荷6000N下的扰度)31.6mm;外观:日字形截面;纵向弯曲强度:1098MPa;纵向弯曲弹性模量4.03×104MPa;横向弯曲强度:147.8MPa;巴氏硬度:67.2;防火等级:A级防火。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Figure PCTCN2016103669-appb-000006

Claims (10)

  1. 一种由带导流层的预织件制成的电木檩条,以酚醛树脂为基体树脂,其特征在于,所述带导流层的预织件包含层铺好的玻璃毡、导流层纤维布和层间连续纤维,其中,所述导流层纤维布位于所述层铺好的玻璃毡的中间层位置,所述层铺好的玻璃毡和所述导流层纤维布通过所述层间连续纤维缝合在一起。
  2. 根据权利要求1所述的由带导流层的预织件制成的电木檩条,其特征在于由包含以下重量份的组分通过拉挤工艺制成,其中,酚醛树脂:20~30份,无卤阻燃剂:0.5~2份,碳纤维:1~3份,玻璃纤维纱:50~70份,聚酯表面毡:4~7份,稀释剂:2~8份,脱模剂:0.5~1.5份,颜料:0.5~1.5份。
  3. 根据权利要求2所述的由带导流层的预织件制成的电木檩条,其特征在于由包含以下重量份的组分通过拉挤工艺制成,其中,酚醛树脂:25份,无卤阻燃剂:1份,碳纤维:1.5份,玻璃纤维纱:60份,聚酯表面毡:5.5份,稀释剂:5份,脱模剂:1份,颜料:1份。
  4. 根据权利要求1或2所述的由带导流层的预织件制成的电木檩条,其特征在于,所述拉挤工艺中拉挤模具的温度为140~280℃。
  5. 根据权利要求1或2所述的由带导流层的预织件制成的电木檩条,其特征在于,所述颜料为粒径5~15微米的三氧化二铁,或者为粒径1~5微米的二氧化钛。
  6. 根据权利要求1或2所述的由带导流层的预织件制成的电木檩条,其特征在于,所述无卤阻燃剂为氢氧化铝、氢氧化镁或多聚磷铵酸中的一种或几种。
  7. 一种制造如权利要求1所述的由带导流层的预织件制成的电木檩条的方法,其特征在于,包含以下步骤:
    步骤1)树脂体系料的制备:将酚醛树脂、无卤阻燃剂、稀释剂、颜料、脱模剂进行共混,并保持共混槽为恒温以得到树脂体系料;
    步骤2)预织件的制造:先将玻璃纤维毡进行层铺,再将导流层纤维 布加入层铺好的玻璃毡中间层位置,然后运用缝纫技术,通过高强度连续碳纤维丝将所述层铺好的玻璃纤维毡和所述导流层纤维布缝和在一起,制得碳纤维层间增强的玻璃纤维毡预织件;将制得的所述玻璃纤维毡预织件浸透步骤1)中得到的所述树脂体系料,之后包裹聚酯表面毡并通过预成型模具定型为所述预织件;以及
    步骤3)固化成型:将所述预织件拉进金属模腔,进行三段温控固化。
  8. 根据权利要求7所述的方法,其特征在于,步骤1)中,将所述共混槽保持为85摄氏度。
  9. 根据权利要求7所述的方法,其特征在于,步骤3)中三段的温度分别为140~170℃,180~240℃,,160~190℃。
  10. 根据权利要求9所述的方法,其特征在于,所述三段的温度分别优选为160℃,210℃,180℃。
PCT/CN2016/103669 2016-02-19 2016-10-28 一种由带导流层的预织件制成的电木檩条及其制造方法 WO2017140120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610093761.5 2016-02-19
CN201610093761.5A CN105733175A (zh) 2016-02-19 2016-02-19 一种由带导流层的预织件制成的电木檩条及其制造方法

Publications (1)

Publication Number Publication Date
WO2017140120A1 true WO2017140120A1 (zh) 2017-08-24

Family

ID=56245401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103669 WO2017140120A1 (zh) 2016-02-19 2016-10-28 一种由带导流层的预织件制成的电木檩条及其制造方法

Country Status (2)

Country Link
CN (1) CN105733175A (zh)
WO (1) WO2017140120A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230970A (zh) * 2021-12-20 2022-03-25 南通盛瑞复合材料有限公司 一种高强度防火防爆型玻璃钢型材的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105711214A (zh) * 2016-02-19 2016-06-29 苏州振瑞昌材料科技有限公司 一种带导流层的层间增强纤维复合材料及其制造方法
CN105733175A (zh) * 2016-02-19 2016-07-06 苏州振瑞昌材料科技有限公司 一种由带导流层的预织件制成的电木檩条及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007443A (zh) * 2007-01-26 2007-08-01 北京化工大学 纳米纤维增韧碳纤维树脂基复合材料的制备方法
CN102683844A (zh) * 2012-04-27 2012-09-19 深圳光启创新技术有限公司 一种美化天线罩及其制备方法
CN102694257A (zh) * 2012-04-27 2012-09-26 深圳光启创新技术有限公司 一种美化天线罩及其制备方法
CN103589127A (zh) * 2012-08-15 2014-02-19 上海杰事杰新材料(集团)股份有限公司 一种高横向强度拉挤结构板材及其制作方法
CN104760299A (zh) * 2015-03-17 2015-07-08 哈尔滨工程大学 一种纤维毡增强复合材料太阳能组件边框及其制备方法
CN105733175A (zh) * 2016-02-19 2016-07-06 苏州振瑞昌材料科技有限公司 一种由带导流层的预织件制成的电木檩条及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102490378A (zh) * 2011-12-19 2012-06-13 中格复合材料(南通)有限公司 酚醛玻璃钢型材的生产方法
CN102632663A (zh) * 2012-04-01 2012-08-15 常州市华乐玻纤新材料有限公司 可用于rtm和真空导流制造工艺的纤维复合材料
CN102777708B (zh) * 2012-07-25 2014-09-24 广东宝通玻璃钢有限公司 纤维编织拉挤管道和生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007443A (zh) * 2007-01-26 2007-08-01 北京化工大学 纳米纤维增韧碳纤维树脂基复合材料的制备方法
CN102683844A (zh) * 2012-04-27 2012-09-19 深圳光启创新技术有限公司 一种美化天线罩及其制备方法
CN102694257A (zh) * 2012-04-27 2012-09-26 深圳光启创新技术有限公司 一种美化天线罩及其制备方法
CN103589127A (zh) * 2012-08-15 2014-02-19 上海杰事杰新材料(集团)股份有限公司 一种高横向强度拉挤结构板材及其制作方法
CN104760299A (zh) * 2015-03-17 2015-07-08 哈尔滨工程大学 一种纤维毡增强复合材料太阳能组件边框及其制备方法
CN105733175A (zh) * 2016-02-19 2016-07-06 苏州振瑞昌材料科技有限公司 一种由带导流层的预织件制成的电木檩条及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230970A (zh) * 2021-12-20 2022-03-25 南通盛瑞复合材料有限公司 一种高强度防火防爆型玻璃钢型材的制备方法

Also Published As

Publication number Publication date
CN105733175A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2017140121A1 (zh) 一种由带导流层的预织件制成的电木浪板及其制造方法
WO2017140120A1 (zh) 一种由带导流层的预织件制成的电木檩条及其制造方法
WO2015172691A1 (zh) 带功能层的钢结构防火卷材及其制备方法
CN106917456A (zh) 一种用于保温墙体的螺纹式玻璃纤维连接件、保温墙体及制作工艺
Agarwal et al. The use of thermosets in the building and construction industry
WO2017140125A1 (zh) 一种由带导流层的预织件制成的非金属防腐采光板的制造方法
WO2016004769A1 (zh) 双层空心等腰梯形的多功能树脂屋盖板
CN202882214U (zh) 一种轻质节能墙板
CN202895861U (zh) 新型复合板材及用其制备的防火门
CN112279525A (zh) 增强聚氨酯用玻璃纤维浸润剂及其制备方法和用途
CN201649333U (zh) 建筑用frp和osb面绝热夹芯组合板
CN102518287B (zh) 一种玻岩风管的制作方法及制成品
CN206752715U (zh) 一种用于保温墙体的螺纹式玻璃纤维连接件及保温墙体
CN109023937A (zh) 一种防水耐腐蚀玻璃纤维布及其制备方法
CN104831814A (zh) 一种外挂墙板剪力键
CN208918127U (zh) 一种企口式净化手工彩钢板
CN204876293U (zh) 玻纤聚酯树脂复合拉挤瓦
CN1421310A (zh) 用玄武岩纤维作为增强材料制造门窗的方法
CN203174940U (zh) 一种复合板材
CN203320719U (zh) 金属夹心防火板
CN105835479A (zh) 一种非金属防腐采光板及其制造方法
CN109138281A (zh) 一种增强纤维合成树脂瓦及其制备方法
CN109401257B (zh) 纤维增强复合材料及其制备方法和应用
CN105838018A (zh) 一种电木檩条及其制造方法
CN105838020A (zh) 一种电木浪板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890346

Country of ref document: EP

Kind code of ref document: A1