WO2017140016A1 - 液晶面板及其制造方法 - Google Patents

液晶面板及其制造方法 Download PDF

Info

Publication number
WO2017140016A1
WO2017140016A1 PCT/CN2016/078025 CN2016078025W WO2017140016A1 WO 2017140016 A1 WO2017140016 A1 WO 2017140016A1 CN 2016078025 W CN2016078025 W CN 2016078025W WO 2017140016 A1 WO2017140016 A1 WO 2017140016A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
alignment layer
substrate
crystal molecules
Prior art date
Application number
PCT/CN2016/078025
Other languages
English (en)
French (fr)
Inventor
陈兴武
马小龙
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/113,734 priority Critical patent/US20170371188A1/en
Publication of WO2017140016A1 publication Critical patent/WO2017140016A1/zh
Priority to US16/407,903 priority patent/US20190265525A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133773Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers the alignment material or treatment being different for the two opposite substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to a display structure and a method of fabricating the same, and more particularly to a liquid crystal panel and a method of fabricating the same.
  • Nano-Phase-Separated Liquid Crystals The LCs technology means that a liquid crystal composition layer contains a plurality of liquid crystal molecules and a plurality of polymerizable monomers, and the plurality of polymerizable monomers are irradiated by ultraviolet light at a voltage input to form a plurality of polymer networks. These polymer networks can cause the response speed of the plurality of liquid crystal molecules to reach within 1 millisecond.
  • nanophase-separated liquid crystal technology has the disadvantage of low light transmittance, because nanophase-separated liquid crystal technology usually uses a completely transparent conductive film (Full) The technology of ITO), that is, forming a complete transparent conductive film on both the upper substrate and the lower substrate.
  • a transparent conductive film cannot produce a pretilt angle of the plurality of liquid crystal molecules by a prior art method (for example, making a plurality of bumps or etching a plurality of slits, etc.). Therefore, when the step of irradiating the plurality of polymerizable monomers by ultraviolet light when the input voltage is applied, if the tilting directions of adjacent liquid crystal molecules do not coincide, the light transmittance may be lowered.
  • the present invention provides a liquid crystal panel and a method of fabricating the same to solve the problem of reduced light transmittance in the prior art.
  • a main object of the present invention is to provide a liquid crystal panel and a method of fabricating the same that can optically align a first photo alignment layer and a second photo alignment layer to cause a plurality of liquid crystal molecules to be poured during a polymerization step. The directions will be the same to solve the problem of reduced light transmittance in the prior art.
  • an embodiment of the present invention provides a liquid crystal panel comprising: a first substrate, a second transparent conductive film, a first photo alignment layer, a liquid crystal composition layer, and a second a light alignment layer, a second transparent conductive layer and a second substrate.
  • the first transparent conductive film is disposed on the first substrate.
  • the first optical alignment layer is disposed on the first transparent conductive film.
  • the liquid crystal composition layer is disposed on the first photo alignment layer and comprises: a plurality of liquid crystal molecules; and a plurality of polymer networks formed by polymerization of a plurality of reactive monomers, wherein the plurality of liquid crystal molecules The plurality of polymer networks are separated into two phases.
  • the second photoalignment layer is disposed on the liquid crystal composition layer.
  • the second transparent conductive layer is disposed on the second optical alignment layer.
  • the second substrate is disposed on the second transparent conductive layer, wherein the first substrate is a thin film transistor array substrate; and wherein the second substrate is a color film substrate.
  • the plurality of liquid crystal molecules are a plurality of negative liquid crystal molecules; and the first light alignment layer and the second light alignment layer are vertical light irradiated by polarized ultraviolet light. Alignment material.
  • the plurality of liquid crystal molecules are a plurality of positive liquid crystal molecules; and the first light alignment layer and the second light alignment layer are horizontal light irradiated by polarized ultraviolet light. Alignment material.
  • a liquid crystal panel comprising: a first substrate, a second transparent conductive film, a first photoalignment layer, a liquid crystal composition layer, and a first a light-aligning layer, a second transparent conductive layer and a second substrate.
  • the first transparent conductive film is disposed on the first substrate.
  • the first optical alignment layer is disposed on the first transparent conductive film.
  • the liquid crystal composition layer is disposed on the first photo alignment layer and comprises: a plurality of liquid crystal molecules; and a plurality of polymer networks formed by polymerization of a plurality of reactive monomers, wherein the plurality of liquid crystal molecules The plurality of polymer networks are separated into two phases.
  • the second photoalignment layer is disposed on the liquid crystal composition layer.
  • the second transparent conductive layer is disposed on the second optical alignment layer.
  • the second substrate is disposed on the second transparent conductive layer.
  • the first substrate is a thin film transistor array substrate.
  • the second substrate is a color film substrate.
  • the plurality of liquid crystal molecules are a plurality of negative liquid crystal molecules; and the first light alignment layer and the second light alignment layer are vertical light irradiated by polarized ultraviolet light. Alignment material.
  • the plurality of liquid crystal molecules are a plurality of positive liquid crystal molecules; and the first light alignment layer and the second light alignment layer are horizontal light irradiated by polarized ultraviolet light. Alignment material.
  • another embodiment of the present invention provides a method of fabricating a liquid crystal panel, comprising the steps of: providing a first substrate and a second substrate; forming a first transparent conductive film on the first substrate, and forming a second transparent conductive film on the second substrate; forming a first photoalignment layer on the first transparent conductive film, and forming a second photoalignment layer on the second transparent conductive film; a photo-alignment step of providing a first polarized ultraviolet light to the first photo-alignment layer, wherein a first pre-tilt angle of the first polarized ultraviolet light with respect to a vertical direction of the first photo-alignment layer is 0 Between 90 degrees and providing a second polarized ultraviolet light to the second optical alignment layer, wherein a second pre-tilt angle of the second polarized ultraviolet light with respect to a vertical direction of the second optical alignment layer Between 0 and 90 degrees; providing a mixture layer interposed between the first photo alignment layer and the second photo alignment layer, wherein the mixture layer comprises
  • a main reaction wavelength of the ultraviolet light is 313 nm or 365 nm
  • a reaction temperature of the polymerization step is 30 degrees Celsius to 60 degrees Celsius.
  • the performing the photo-alignment step further includes providing a first photomask between the first polarized ultraviolet light and the first photo-alignment layer; and a second A photomask is between the second polarized ultraviolet light and the second photo alignment layer.
  • the slit width of the first photomask is greater than 0 micrometers and less than or equal to 50 micrometers; and the slit width of the second photomask is greater than 0 micrometers and less than or equal to 50 Micron.
  • the first polarized ultraviolet light has a main reaction wavelength of 250 nm to 370 nm; and the second polarized ultraviolet light has a main reaction wavelength of 250 nm to 370 nm.
  • the plurality of liquid crystal molecules are a plurality of negative liquid crystal molecules; and the first light alignment layer and the second light alignment layer are vertical light alignment materials.
  • the plurality of liquid crystal molecules are a plurality of positive liquid crystal molecules; and the first light alignment layer and the second light alignment layer are horizontal light alignment materials.
  • the liquid crystal panel of the present invention and the method of manufacturing the same are characterized in that the first optical alignment layer and the second optical alignment layer are optically aligned so that the tilting direction of the plurality of liquid crystal molecules is performed when the polymerization step is performed. The same is to solve the problem of the reduction of light transmittance in the prior art.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal panel according to an embodiment of the present invention.
  • FIGS. 2A to 2D are schematic cross-sectional views showing respective manufacturing stages of a liquid crystal panel according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a method of manufacturing a liquid crystal panel according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a liquid crystal panel 10 according to an embodiment of the present invention.
  • the liquid crystal panel 10 includes a first substrate 11 , a second transparent conductive film 12 , a first optical alignment layer 13 , a liquid crystal composition layer 14 , a second optical alignment layer 15 , and a second transparent conductive layer 16 .
  • a second substrate 17 In an embodiment, the first substrate 11 is a thin film transistor array substrate.
  • the first transparent conductive film 12 is provided on the first substrate 11.
  • the first transparent conductive film 12 is deposited on the first substrate 11 in a planar manner.
  • the material of the first transparent conductive film 12 is indium tin oxide.
  • the first photo alignment layer 13 is provided on the first transparent conductive film.
  • the first photo alignment layer 13 is deposited on the first transparent conductive film 12.
  • the first optical alignment layer 13 may be a vertical light alignment material or a horizontal light alignment material that is irradiated with polarized ultraviolet light (tilted).
  • the liquid crystal composition layer 14 is provided on the first photo alignment layer 13.
  • the liquid crystal composition layer 14 includes a plurality of liquid crystal molecules 141 and a plurality of polymer networks 143 formed by polymerization of a plurality of reactive monomers 142, wherein the plurality of liquid crystal molecules 141 are separated from the plurality of polymer networks 143 The two phases.
  • the plurality of liquid crystal molecules 141 may be a plurality of positive liquid crystal molecules or a plurality of negative liquid crystal molecules.
  • the second photo alignment layer 15 is provided on the liquid crystal composition layer 14.
  • the second optical alignment layer 15 may be a vertical light alignment material or a horizontal light alignment material that is irradiated with polarized ultraviolet light (tilted).
  • the materials of the plurality of liquid crystal molecules 141, the first optical alignment layer 13 and the second optical alignment layer 15 have a pairing relationship, for example, if the plurality of liquid crystal molecules 141 are multiple For the negative liquid crystal molecules, the first optical alignment layer 13 and the second optical alignment layer 15 both use a vertical light alignment material that is irradiated with polarized ultraviolet light (inclination); if the plurality of liquid crystal molecules 141 are used For each of the positive liquid crystal molecules, the first optical alignment layer 13 and the second optical alignment layer 15 each employ a horizontal light alignment material that is irradiated with polarized ultraviolet light (inclination).
  • the second transparent conductive layer 16 is provided on the second optical alignment layer 15.
  • the second transparent conductive film 16 is made of indium tin oxide.
  • the second substrate 17 is provided on the second transparent conductive layer 16.
  • the second substrate 17 is a color film substrate.
  • the liquid crystal panel 10 is fabricated by nano phase separation liquid crystal technology, so that the liquid crystal response speed is excellent, and the color image can be output by using the field sequential display mode, so that no additional color filter is required.
  • FIGS. 2A to 2D are schematic cross-sectional views showing respective manufacturing stages of the liquid crystal panel 10 of the embodiment of the present invention.
  • a first substrate 11 and a second substrate 17 are provided.
  • a first transparent conductive film 12 is formed on the first substrate 11, and a second transparent conductive film 16 is formed on the second substrate 17.
  • the first transparent conductive film 12 and the second transparent conductive film 16 are made of indium tin oxide.
  • the first transparent conductive film 12 is deposited on the first substrate 11 and the second transparent conductive film 16 is deposited on the second substrate 17.
  • a first photo alignment layer 13 is formed on the first transparent conductive film 12, and a second photo alignment layer 15 is formed on the second transparent conductive film 16.
  • the first photo alignment layer 13 is deposited on the first transparent conductive film 12, and the second photo alignment layer 15 is deposited on the second transparent conductive film 16.
  • a photo-alignment step is performed to provide a first polarized ultraviolet light 131 to the first photo-alignment layer 13, wherein the first polarized ultraviolet light 131 is perpendicular to the first photo-alignment layer 13
  • a first pretilt angle A1 of the direction 132 is between 0 and 90 degrees
  • provides a second polarized ultraviolet light 151 to the second optical alignment layer 15, wherein the second polarized ultraviolet light 151 is opposite to the A second pretilt angle A2 of the second optical alignment layer 15 in the vertical direction 152 is between 0 and 90 degrees.
  • the first pretilt angle A1 and the second pretilt angle A2 are, for example, 0.5 degrees, 1 degree, 3 degrees, 5 degrees, 8 degrees, 10 degrees, 12 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, respectively. 45 degrees, 60 degrees, 75 degrees, 80 degrees, 85 degrees, 89 degrees, 89.5 degrees, and the like.
  • when performing the photo-alignment step further comprising providing a first photomask 133 between the first polarized ultraviolet light 131 and the first photo-alignment layer 13; and a second The photomask 153 is between the second polarized ultraviolet light 151 and the second photo alignment layer 15.
  • the first photomask 133 and the second photomask 153 are mainly designed to divide pixels (not shown) of the liquid crystal panel 10 into a plurality of domains (domains, not shown).
  • the slit width of the first photomask 133 is greater than 0 micrometers and less than or equal to 50 micrometers; and the slit width of the second photomask 153 is greater than 0 micrometers and less than or equal to 50 micrometers.
  • the primary reaction wavelength of the first polarized ultraviolet light 131 is from 250 nanometers to 370 nanometers; and the primary reaction wavelength of the second polarized ultraviolet light 151 is from 250 nanometers to 370 nanometers.
  • a mixture layer 18 is disposed between the first photo alignment layer 13 and the second photo alignment layer 15, wherein the mixture layer 18 includes a plurality of liquid crystal molecules 141 and a plurality of reactions.
  • Monomer 142 the materials of the plurality of liquid crystal molecules 141, the first optical alignment layer 13 and the second optical alignment layer 15 have a pairing relationship, for example, if the plurality of liquid crystal molecules 141 adopt a plurality of negative a liquid crystal molecule, wherein the first photo alignment layer 13 and the second photo alignment layer 15 are both vertical alignment materials; if the plurality of liquid crystal molecules 141 are a plurality of positive liquid crystal molecules, the first Both the light alignment layer 13 and the second optical alignment layer 15 employ a horizontal light alignment material.
  • a polymerization step is performed to provide an ultraviolet ray 144 to the mixture layer 18 to form a liquid crystal composition layer 14, wherein the liquid crystal composition layer 14 includes the plurality of liquid crystal molecules 141 and A plurality of polymer networks 143 formed by polymerization of a plurality of reactive monomers 142, and the plurality of liquid crystal molecules 141 and the plurality of polymer networks 143 are separated from each other.
  • a primary reaction wavelength of the ultraviolet light is 313 nanometers or 365 nanometers
  • a reaction temperature of the polymerization step is 30 degrees Celsius to 60 degrees Celsius.
  • FIG. 3 is a flow chart showing a method 30 of manufacturing a liquid crystal panel according to an embodiment of the present invention.
  • the present invention provides a method for manufacturing a liquid crystal panel, comprising: providing a first substrate and a second substrate (step 31); forming a first transparent conductive film on the first substrate and forming a second transparent a conductive film on the second substrate (step 32); forming a first photoalignment layer on the first transparent conductive film, and forming a second photoalignment layer on the second transparent conductive film (step 33) performing a photo-alignment step of providing a first polarized ultraviolet light to the first photo-alignment layer, wherein the first polarized ultraviolet light is a first pre-preparation with respect to a vertical direction of the first photo-alignment layer Pivoting angle between 0 and 90 degrees, and providing a second polarized ultraviolet light to the second photoalignment layer, wherein the second polarized ultraviolet light is opposite to a vertical direction of the second optical alignment layer a pre
  • the liquid crystal panel of the present invention and the method of fabricating the same are by optically aligning the first photo alignment layer and the second photo alignment layer, due to the vertical alignment of the first photo alignment layer and the second photo alignment layer.
  • the horizontal light alignment material has been optically aligned in advance to have a pretilt angle (0 to 90 degrees) of the material molecules, so that when the polymerization step is performed, a plurality of liquid crystal molecules are caused to have the same inclination tendency, and a plurality of liquid crystals are increased after the polymerization.
  • the consistency of the tilting direction of the molecules thereby solving the problem of the reduction of light transmittance in the prior art.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶面板(10)及其制造方法,所述液晶面板(10)通过对光配向层(13,15)预先进行偏振紫外光照射的光配向处理,以便在进行聚合步骤时,使多个液晶分子的倾倒方向会相同,从而解决现有技术所存在的光线穿透率降低的问题。

Description

液晶面板及其制造方法 技术领域
本发明是有关于一种显示器结构及其制造方法,特别是有关于一种液晶面板及其制造方法。
背景技术
纳米相分离液晶(Nano-Phase-Separated Liquid Crystals,NPS LCs)技术,是指一液晶组合物层包含多个液晶分子及多个可聚合单体,在输入电压时通过紫外光照射所述多个可聚合单体,以形成多个聚合物网络。这些聚合物网络可以促使所述多个液晶分子的响应速度达到1毫秒内。
然而,纳米相分离液晶技术具有光线穿透率较低的缺点,这是因为纳米相分离液晶技术通常采用完全透明导电膜(Full ITO)的技术,亦即在上基板及下基板上皆形成一个完整的透明导电膜。这种透明导电膜无法利用现有技术的方式(例如制作多个凸起物(Bump)或蚀刻多个沟槽(slit)等)来使所述多个液晶分子产生一预倾角。所以,在进行输入电压时通过紫外光照射所述多个可聚合单体的步骤时,若是相邻的液晶分子的倾倒方向不一致时,光线穿透率会降低。
故,有必要提供一种液晶面板及其制造方法,以解决现有技术所存在的问题。
技术问题
有鉴于此,本发明提供一种液晶面板及其制造方法,以解决现有技术所存在的光线穿透率降低的问题。本发明的主要目的在于提供一种液晶面板及其制造方法,其可以透过对第一光配向层及第二光配向层进行光配向,以便在进行聚合步骤时,使多个液晶分子的倾倒方向会相同,从而解决现有技术所存在的光线穿透率降低的问题。
技术解决方案
为达成本发明的前述目的,本发明一实施例提供一种液晶面板,其包含:一第一基板、一第二透明导电膜、一第一光配向层、一液晶组合物层、一第二光配向层、一第二透明导电层及一第二基板。所述第一透明导电膜设在所述第一基板上。所述第一光配向层设在所述第一透明导电膜上。所述液晶组合物层设在所述第一光配向层上,并包含:多个液晶分子;及由多个反应单体聚合形成的多个聚合物网络,其中所述多个液晶分子与所述多个聚合物网络是分离的二个相。所述第二光配向层设在所述液晶组合物层上。所述第二透明导电层设在所述第二光配向层上。所述第二基板设在所述第二透明导电层上,其中所述第一基板是一薄膜晶体管阵列基板;及其中所述第二基板是一彩膜基板。
在本发明的一实施例中,所述多个液晶分子是多个负型液晶分子;及所述第一光配向层及所述第二光配向层皆是受偏振紫外光照射过的垂直光配向材料。
在本发明的一实施例中,所述多个液晶分子是多个正型液晶分子;及所述第一光配向层及所述第二光配向层皆是受偏振紫外光照射过的水平光配向材料。
为达成本发明的前述目的,本发明另一实施例提供一种液晶面板,其包含:一第一基板、一第二透明导电膜、一第一光配向层、一液晶组合物层、一第二光配向层、一第二透明导电层及一第二基板。所述第一透明导电膜设在所述第一基板上。所述第一光配向层设在所述第一透明导电膜上。所述液晶组合物层设在所述第一光配向层上,并包含:多个液晶分子;及由多个反应单体聚合形成的多个聚合物网络,其中所述多个液晶分子与所述多个聚合物网络是分离的二个相。所述第二光配向层设在所述液晶组合物层上。所述第二透明导电层设在所述第二光配向层上。所述第二基板设在所述第二透明导电层上。
在本发明的一实施例中,所述第一基板是一薄膜晶体管阵列基板。
在本发明的一实施例中,所述第二基板是一彩膜基板。
在本发明的一实施例中,所述多个液晶分子是多个负型液晶分子;及所述第一光配向层及所述第二光配向层皆是受偏振紫外光照射过的垂直光配向材料。
在本发明的一实施例中,所述多个液晶分子是多个正型液晶分子;及所述第一光配向层及所述第二光配向层皆是受偏振紫外光照射过的水平光配向材料。
再者,本发明另一实施例提供一种液晶面板的制造方法,其包含步骤:提供一第一基板及一第二基板;形成一第一透明导电膜在所述第一基板上,并形成一第二透明导电膜在所述第二基板上;形成一第一光配向层在所述第一透明导电膜上,并形成一第二光配向层在所述第二透明导电膜上;进行一光配向步骤,提供一第一偏振紫外光予所述第一光配向层,其中所述第一偏振紫外光相对于所述第一光配向层的垂直方向的一第一预倾角度在0至90度之间,并提供一第二偏振紫外光予所述第二光配向层,其中所述第二偏振紫外光相对于所述第二光配向层的垂直方向的一第二预倾角度在0至90度之间;提供一混合物层,夹设在所述第一光配向层及所述第二光配向层之间,其中所述混合物层包含多个液晶分子及多个反应单体;及进行一聚合步骤,提供一紫外光予所述混合物层以形成一液晶组合物层,其中所述液晶组合物层包含所述多个液晶分子及由所述多个反应单体聚合形成的多个聚合物网络,及所述多个液晶分子与所述多个聚合物网络是分离的二个相。
在本发明的一实施例中,在进行所述聚合步骤中,所述紫外光的一主反应波长是313纳米或365纳米,及所述聚合步骤的一反应温度是摄氏30度至摄氏60度。
在本发明的一实施例中,在进行所述光配向步骤中,更包含提供一第一光掩膜在所述第一偏振紫外光及所述第一光配向层之间;及一第二光掩膜在所述第二偏振紫外光及所述第二光配向层之间。
在本发明的一实施例中,所述第一光掩膜的狭缝宽度是大于0微米且小于等于50微米;及所述第二光掩膜的狭缝宽度是大于0微米且小于等于50微米。
在本发明的一实施例中,所述第一偏振紫外光的主反应波长是250纳米至370纳米;及所述第二偏振紫外光的主反应波长是250纳米至370纳米。
在本发明的一实施例中,所述多个液晶分子是多个负型液晶分子;及所述第一光配向层及所述第二光配向层皆是垂直光配向材料。
在本发明的一实施例中,所述多个液晶分子是多个正型液晶分子;及所述第一光配向层及所述第二光配向层皆是水平光配向材料。
有益效果
与现有技术相比较,本发明的液晶面板及其制造方法是通过对第一光配向层及第二光配向层进行光配向,以便在进行聚合步骤时,使多个液晶分子的倾倒方向会相同,从而解决现有技术所存在的光线穿透率降低的问题。
附图说明
图1是本发明实施例的液晶面板的剖面示意图。
图2A至2D是本发明实施例的液晶面板的各个制造阶段的剖面示意图。
图3是本发明实施例的液晶面板的制造方法的流程图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。再者,本发明所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧面、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图1,图1是本发明实施例的液晶面板10的剖面示意图。所述液晶面板10包含一第一基板11、一第二透明导电膜12、一第一光配向层13、一液晶组合物层14、一第二光配向层15、一第二透明导电层16及一第二基板17。在一实施例中,第一基板11是一薄膜晶体管阵列基板。
在液晶面板10中,所述第一透明导电膜12设在所述第一基板11上。在一实施例中,所述第一透明导电膜12是整面式的沉积在所述第一基板11上。在又一实施例中,所述第一透明导电膜12的材质是氧化铟锡。
在液晶面板10中,所述第一光配向层13设在所述第一透明导电膜上。在一实施例中,所述第一光配向层13沉积在所述第一透明导电膜12上。在另一实施例中,所述第一光配向层13可以是受偏振紫外光(倾斜)照射过的垂直光配向材料或水平光配向材料。
在液晶面板10中,所述液晶组合物层14设在所述第一光配向层13上。所述液晶组合物层14包含多个液晶分子141及由多个反应单体142聚合形成的多个聚合物网络143,其中所述多个液晶分子141与所述多个聚合物网络143是分离的二个相。在一实施例中,所述多个液晶分子141可以是多个正型液晶分子或多个负型液晶分子。
在液晶面板10中,所述第二光配向层15设在所述液晶组合物层14上。在一实施例中,所述第二光配向层15可以是受偏振紫外光(倾斜)照射过的垂直光配向材料或水平光配向材料。在一具体实施例中,所述多个液晶分子141、所述第一光配向层13及所述第二光配向层15的材质具有配对关系,例如若所述多个液晶分子141采用多个负型液晶分子,则所述第一光配向层13及所述第二光配向层15皆采用受偏振紫外光(倾斜)照射过的垂直光配向材料;若所述多个液晶分子141采用多个正型液晶分子,则所述第一光配向层13及所述第二光配向层15皆采用受偏振紫外光(倾斜)照射过的水平光配向材料。
在液晶面板10中,所述第二透明导电层16设在所述第二光配向层15上。在一实施例中,所述第二透明导电膜16的材质是氧化铟锡。
在液晶面板10中,所述第二基板17设在所述第二透明导电层16上。在一实施例中,所述第二基板17是一彩膜基板。
在一实施例中,所述液晶面板10采用纳米相分离液晶技术制得,所以具有优良的液晶响应速度,可采用场序显示模式输出彩色影像,故不需额外制作一彩色滤光片。
请参照图2A至2D,图2A至2D是本发明实施例的液晶面板10的各个制造阶段的剖面示意图。首先请参照图2A,提供一第一基板11及一第二基板17。接着,形成一第一透明导电膜12在所述第一基板11上,并形成一第二透明导电膜16在所述第二基板17上。在一实施例中,所述第一透明导电膜12及第二透明导电膜16的材质是氧化铟锡。在另一实施例中,沉积所述第一透明导电膜12在所述第一基板11上,并沉积所述第二透明导电膜16在所述第二基板17上。之后,形成一第一光配向层13在所述第一透明导电膜12上,并形成一第二光配向层15在所述第二透明导电膜16上。在一实施例中,沉积所述第一光配向层13在所述第一透明导电膜12上,并沉积所述第二光配向层15在所述第二透明导电膜16上。
请参照图2B,进行一光配向步骤,提供一第一偏振紫外光131予所述第一光配向层13,其中所述第一偏振紫外光131相对于所述第一光配向层13的垂直方向132的一第一预倾角度A1在0至90度之间,并提供一第二偏振紫外光151予所述第二光配向层15,其中所述第二偏振紫外光151相对于所述第二光配向层15的垂直方向152的一第二预倾角度A2在0至90度之间。所述第一预倾角度A1及第二预倾角度A2例如分别为0.5度、1度、3度、5度、8度、10度、12度、15度、20度、25度、30度、45度、60度、75度、80度、85度、89度、89.5度等。在一实施例中,在进行所述光配向步骤时,更包含提供一第一光掩膜133在所述第一偏振紫外光131及所述第一光配向层13之间;及一第二光掩膜153在所述第二偏振紫外光151及所述第二光配向层15之间。所述第一光掩膜133及所述第二光掩膜153主要设计来将所述液晶面板10的像素(pixel,未绘示)区分成多个畴(domain,未绘示)。在一实施例中,所述第一光掩膜133的狭缝宽度是大于0微米且小于等于50微米;及所述第二光掩膜153的狭缝宽度是大于0微米且小于等于50微米。在另一实施例中,所述第一偏振紫外光131的主反应波长是250纳米至370纳米;及所述第二偏振紫外光151的主反应波长是250纳米至370纳米。
请参照图2C,提供一混合物层18,夹设在所述第一光配向层13及所述第二光配向层15之间,其中所述混合物层18包含多个液晶分子141及多个反应单体142。在一实施例中,所述多个液晶分子141、所述第一光配向层13及所述第二光配向层15的材质具有配对关系,例如若所述多个液晶分子141采用多个负型液晶分子,则所述第一光配向层13及所述第二光配向层15皆采用垂直光配向材料;若所述多个液晶分子141采用多个正型液晶分子,则所述第一光配向层13及所述第二光配向层15皆采用水平光配向材料。
请参照图2D,进行一聚合步骤,提供一紫外光144予所述混合物层18以形成一液晶组合物层14,其中所述液晶组合物层14包含所述多个液晶分子141及由所述多个反应单体142聚合形成的多个聚合物网络143,及所述多个液晶分子141与所述多个聚合物网络143是分离的二个相。在一实施例中,所述紫外光的一主反应波长是313纳米或365纳米,及所述聚合步骤的一反应温度是摄氏30度至摄氏60度。
图3是本发明实施例的液晶面板的制造方法30的流程图。本发明提出一种液晶面板的制造方法30,包含:提供一第一基板及一第二基板(步骤31);形成一第一透明导电膜在所述第一基板上,并形成一第二透明导电膜在所述第二基板上(步骤32);形成一第一光配向层在所述第一透明导电膜上,并形成一第二光配向层在所述第二透明导电膜上(步骤33);进行一光配向步骤,提供一第一偏振紫外光予所述第一光配向层,其中所述第一偏振紫外光相对于所述第一光配向层的垂直方向的一第一预倾角度在0至90度之间,并提供一第二偏振紫外光予所述第二光配向层,其中所述第二偏振紫外光相对于所述第二光配向层的垂直方向的一第二预倾角度在0至90度之间(步骤34);提供一混合物层,夹设在所述第一光配向层及所述第二光配向层之间,其中所述混合物层包含多个液晶分子及多个反应单体(步骤35);及进行一聚合步骤,提供一紫外光予所述混合物层以形成一液晶组合物层,其中所述液晶组合物层包含所述多个液晶分子及由所述多个反应单体聚合形成的多个聚合物网络,及所述多个液晶分子与所述多个聚合物网络是分离的二个相(步骤36)。
要提到的是,本发明的液晶面板及其制造方法是通过对第一光配向层及第二光配向层进行光配向,由于所述第一光配向层及第二光配向层的垂直或水平光配向材料已预先进行光配向使其材料分子具有预倾角(0~90度),因此在进行聚合步骤时,可促使多个液晶分子具有相同倾斜的倾向,并在聚合之后提高多个液晶分子的倾倒方向的一致性,从而解决现有技术所存在的光线穿透率降低的问题。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。

Claims (15)

  1. 一种液晶面板,其包含:
    一第一基板;
    一第一透明导电膜,设在所述第一基板上;
    一第一光配向层,设在所述第一透明导电膜上;
    一液晶组合物层,设在所述第一光配向层上,并包含:多个液晶分子;及由多个反应单体聚合形成的多个聚合物网络,其中所述多个液晶分子与所述多个聚合物网络是分离的二个相;
    一第二光配向层,设在所述液晶组合物层上;
    一第二透明导电层,设在所述第二光配向层上;及
    一第二基板,设在所述第二透明导电层上;
    其中所述第一基板是一薄膜晶体管阵列基板;及
    其中所述第二基板是一彩膜基板。
  2. 如权利要求1所述的液晶面板,其中所述多个液晶分子是多个负型液晶分子;及所述第一光配向层及所述第二光配向层皆是受偏振紫外光照射过的垂直光配向材料。
  3. 如权利要求1所述的液晶面板,其中所述多个液晶分子是多个正型液晶分子;及所述第一光配向层及所述第二光配向层皆是受偏振紫外光照射过的水平光配向材料。
  4. 一种液晶面板,其包含:
    一第一基板;
    一第一透明导电膜,设在所述第一基板上;
    一第一光配向层,设在所述第一透明导电膜上;
    一液晶组合物层,设在所述第一光配向层上,并包含:多个液晶分子;及由多个反应单体聚合形成的多个聚合物网络,其中所述多个液晶分子与所述多个聚合物网络是分离的二个相;
    一第二光配向层,设在所述液晶组合物层上;
    一第二透明导电层,设在所述第二光配向层上;及
    一第二基板,设在所述第二透明导电层上。
  5. 如权利要求4所述的液晶面板,其中所述第一基板是一薄膜晶体管阵列基板。
  6. 如权利要求4所述的液晶面板,其中所述第二基板是一彩膜基板。
  7. 如权利要求4所述的液晶面板,其中所述多个液晶分子是多个负型液晶分子;及所述第一光配向层及所述第二光配向层皆是受偏振紫外光照射过的垂直光配向材料。
  8. 如权利要求4所述的液晶面板,其中所述多个液晶分子是多个正型液晶分子;及所述第一光配向层及所述第二光配向层皆是受偏振紫外光照射过的水平光配向材料。
  9. 一种液晶面板的制造方法,其包含步骤:
    提供一第一基板及一第二基板;
    形成一第一透明导电膜在所述第一基板上,并形成一第二透明导电膜在所述第二基板上;
    形成一第一光配向层在所述第一透明导电膜上,并形成一第二光配向层在所述第二透明导电膜上;
    进行一光配向步骤,提供一第一偏振紫外光予所述第一光配向层,其中所述第一偏振紫外光相对于所述第一光配向层的垂直方向的一第一预倾角度在0至90度之间,并提供一第二偏振紫外光予所述第二光配向层,其中所述第二偏振紫外光相对于所述第二光配向层的垂直方向的一第二预倾角度在0至90度之间;
    提供一混合物层,夹设在所述第一光配向层及所述第二光配向层之间,其中所述混合物层包含多个液晶分子及多个反应单体;及
    进行一聚合步骤,提供一紫外光予所述混合物层以形成一液晶组合物层,其中所述液晶组合物层包含所述多个液晶分子及由所述多个反应单体聚合形成的多个聚合物网络,及所述多个液晶分子与所述多个聚合物网络是分离的二个相。
  10. 如权利要求9所述的液晶面板的制造方法,其中在进行所述聚合步骤中,所述紫外光的一主反应波长是313纳米或365纳米,及所述聚合步骤的一反应温度是摄氏30度至摄氏60度。
  11. 如权利要求9所述的液晶面板的制造方法,其中在进行所述光配向步骤中,更包含提供一第一光掩膜在所述第一偏振紫外光及所述第一光配向层之间;及一第二光掩膜在所述第二偏振紫外光及所述第二光配向层之间。
  12. 如权利要求11所述的液晶面板的制造方法,其中所述第一光掩膜的狭缝宽度是大于0微米且小于等于50微米;及所述第二光掩膜的狭缝宽度是大于0微米且小于等于50微米。
  13. 如权利要求11所述的液晶面板的制造方法,其中所述第一偏振紫外光的主反应波长是250纳米至370纳米;及所述第二偏振紫外光的主反应波长是250纳米至370纳米。
  14. 如权利要求9所述的液晶面板的制造方法,其中所述多个液晶分子是多个负型液晶分子;及所述第一光配向层及所述第二光配向层皆是垂直光配向材料。
  15. 如权利要求9所述的液晶面板的制造方法,其中所述多个液晶分子是多个正型液晶分子;及所述第一光配向层及所述第二光配向层皆是水平光配向材料。
PCT/CN2016/078025 2016-02-18 2016-03-31 液晶面板及其制造方法 WO2017140016A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/113,734 US20170371188A1 (en) 2016-02-18 2016-03-31 Liquid crystal panel and fabricating method thereof
US16/407,903 US20190265525A1 (en) 2016-02-18 2019-05-09 Liquid crystal panel and fabricating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610090348.3 2016-02-18
CN201610090348.3A CN105549254B (zh) 2016-02-18 2016-02-18 液晶面板及其制造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/113,734 A-371-Of-International US20170371188A1 (en) 2016-02-18 2016-03-31 Liquid crystal panel and fabricating method thereof
US16/407,903 Division US20190265525A1 (en) 2016-02-18 2019-05-09 Liquid crystal panel and fabricating method thereof

Publications (1)

Publication Number Publication Date
WO2017140016A1 true WO2017140016A1 (zh) 2017-08-24

Family

ID=55828534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078025 WO2017140016A1 (zh) 2016-02-18 2016-03-31 液晶面板及其制造方法

Country Status (3)

Country Link
US (2) US20170371188A1 (zh)
CN (1) CN105549254B (zh)
WO (1) WO2017140016A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873489A (zh) * 2018-08-16 2018-11-23 惠科股份有限公司 显示面板的制造方法及制造装置
TWI668505B (zh) * 2018-08-28 2019-08-11 國立清華大學 液晶光電裝置及液晶光電裝置的製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020001052A1 (en) * 2000-04-05 2002-01-03 Kornfield Julia A. Polymers for control of orientation and stability of liquid crystals
CN1564962A (zh) * 2001-10-02 2005-01-12 富士通显示技术株式会社 液晶显示器件及其制造方法
US20060109414A1 (en) * 2004-11-19 2006-05-25 Chi-Chang Liao Flexible liquid crystal display panel device and manufacturing method therefor
CN103842712A (zh) * 2011-10-05 2014-06-04 索尼公司 照明单元、显示器以及电子设备
CN104317093A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 液晶显示装置及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI368645B (en) * 2007-10-24 2012-07-21 Au Optronics Corp Liquid crystal medium for psa process and liquid crystal display device
KR101725342B1 (ko) * 2009-10-12 2017-04-11 삼성디스플레이 주식회사 광배향용 마스크, 이를 이용한 광배향 방법 및 액정 표시 장치
CN103154809B (zh) * 2010-10-14 2016-06-29 夏普株式会社 液晶显示装置和液晶显示装置的制造方法
WO2013002084A1 (ja) * 2011-06-27 2013-01-03 シャープ株式会社 液晶表示装置及び液晶表示装置の製造方法
CN103113900B (zh) * 2013-02-01 2015-02-04 江苏和成显示科技股份有限公司 一种聚合物稳定配向型液晶组合物及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020001052A1 (en) * 2000-04-05 2002-01-03 Kornfield Julia A. Polymers for control of orientation and stability of liquid crystals
CN1564962A (zh) * 2001-10-02 2005-01-12 富士通显示技术株式会社 液晶显示器件及其制造方法
US20060109414A1 (en) * 2004-11-19 2006-05-25 Chi-Chang Liao Flexible liquid crystal display panel device and manufacturing method therefor
CN103842712A (zh) * 2011-10-05 2014-06-04 索尼公司 照明单元、显示器以及电子设备
CN104317093A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 液晶显示装置及其制造方法

Also Published As

Publication number Publication date
CN105549254A (zh) 2016-05-04
US20170371188A1 (en) 2017-12-28
US20190265525A1 (en) 2019-08-29
CN105549254B (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
CN104620169B (zh) 液晶显示装置
WO2012068759A1 (zh) 液晶盒及显示装置的制造方法
CN100476543C (zh) 液晶显示器件
US20080151145A1 (en) Liquid crystal display element and method of manufacturing same
JP2001066617A (ja) 液晶表示装置およびその製造方法
WO2017197693A1 (zh) 3t像素结构及液晶显示装置
KR20150114395A (ko) 곡면 표시 장치
WO2013010482A1 (zh) 液晶面板及其制备方法、液晶显示装置
TW201009436A (en) Liquid crystal display and method for manufacturing the same
CN102681272A (zh) 液晶显示面板及其应用的显示装置
CN102681270A (zh) 液晶显示面板及其应用的显示装置
CN102707520A (zh) 液晶显示面板及其应用的显示装置
WO2013177893A1 (zh) 反式高分子分散液晶膜、液晶面板及液晶显示器
CN102707518B (zh) 液晶显示面板及其应用的显示装置
WO2015100759A1 (zh) 一种液晶显示装置及其制造方法
KR102409741B1 (ko) 액정표시장치 및 이의 제조방법
KR102431192B1 (ko) 배향막 조성물, 이를 포함하는 액정표시장치 및 액정표시장치의 제조방법
CN108897175A (zh) 一种显示面板及其制作方法、显示装置
CN102707519A (zh) 液晶显示面板及其应用的显示装置
CN102681271A (zh) 液晶显示面板及其应用的显示装置
WO2017140016A1 (zh) 液晶面板及其制造方法
WO2017092079A1 (zh) 液晶显示装置及其液晶显示面板
US20130293819A1 (en) Liquid Crystal Display Device and Manufacturing Method Thereof
WO2021093002A1 (zh) 阵列基板、显示面板及制备方法
CN102707517A (zh) 液晶显示面板及其应用的显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15113734

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890249

Country of ref document: EP

Kind code of ref document: A1