WO2017139993A1 - Procédé de préparation d'un composite dopé à base de sulfure de lithium revêtu de graphène/carbone et présentant une structure coeur-enveloppe - Google Patents

Procédé de préparation d'un composite dopé à base de sulfure de lithium revêtu de graphène/carbone et présentant une structure coeur-enveloppe Download PDF

Info

Publication number
WO2017139993A1
WO2017139993A1 PCT/CN2016/074192 CN2016074192W WO2017139993A1 WO 2017139993 A1 WO2017139993 A1 WO 2017139993A1 CN 2016074192 W CN2016074192 W CN 2016074192W WO 2017139993 A1 WO2017139993 A1 WO 2017139993A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium sulfide
carbon
graphene
ethanol solution
coated
Prior art date
Application number
PCT/CN2016/074192
Other languages
English (en)
Chinese (zh)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/074192 priority Critical patent/WO2017139993A1/fr
Publication of WO2017139993A1 publication Critical patent/WO2017139993A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the synthesis of nano materials, in particular to a preparation method of a cathode material for a lithium sulfur battery.
  • the lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is used as a positive electrode.
  • Lithium-sulfur batteries have two discharge platforms (about 2.4V and 2.1V), but their electrochemical reaction mechanism is complicated. Lithium-sulfur batteries have the advantages of high specific energy (2600Wh/kg), high specific capacity (1675mAh/g), low cost, etc., and are considered to be promising new generation batteries.
  • problems such as low utilization rate of active materials, low cycle life and poor safety, which seriously restricts the development of lithium-sulfur batteries.
  • Elemental sulfur is an electron and ion insulator, and the room temperature conductivity is low (5 ⁇ 10 -30 S ⁇ cm -1 ). Since there is no ionic sulfur, it is used as The activation of the positive electrode material is difficult; (2) the high polylithium polysulfide Li 2 S n (8>n ⁇ 4) generated during the electrode reaction is easily dissolved in the electrolyte, forming a concentration difference between the positive and negative electrodes. Under the action of the concentration gradient, it migrates to the negative electrode, and the high poly lithium polysulfide is reduced by the lithium metal to the oligomeric lithium polysulfide.
  • the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide. This phenomenon is known as the shuttle effect, which reduces the utilization of sulfur active substances.
  • insoluble Li 2 S and Li 2 S 2 are deposited on the surface of the lithium negative electrode, which further deteriorates the performance of the lithium-sulfur battery; (3) the final product of the reaction, Li 2 S, is also an electronic insulator, which is deposited on the sulfur electrode, and lithium slow ion mobility in the solid state lithium sulfide, the slow electrochemical reaction kinetics; different density (4) sulfur and Li 2 S final product when sulfur is expanded to about 79% of the volume of lithium, Li 2 easily lead The powdering of S causes safety problems in lithium-sulfur batteries.
  • the above-mentioned shortcomings restrict the development of lithium-sulfur batteries, which is also the key issue that needs to be solved in the research of lithium-sulfur batteries.
  • lithium metal is required as the negative electrode to provide the lithium source.
  • the lithium metal negative electrode is liable to form lithium dendrite and powder on the surface, which not only has safety hazards.
  • the consumption of the electrolyte leads to the premature failure of the lithium-sulfur secondary battery, which limits the application of the lithium-sulfur battery.
  • Li 2 S instead of sulfur-based positive electrode, or pre-lithiated sulfur-based positive electrode, using carbon negative electrode or silicon and tin with higher capacity as negative electrode material, in order to eliminate the influence of lithium metal negative electrode, lithium sulfide positive electrode
  • the theoretical capacity is high, 1166 mAh / g, but it is also an insulating material like the sulfur electrode, it needs to add conductive additives, and special coating treatment to improve its electrochemical activity.
  • the technical problem to be solved by the present invention is to provide a method for preparing a graphene/carbon coated doped lithium sulfide composite material having a core-shell structure, the preparation method is simple, and the conductive conductive graphene and the carbon shell provide a conductive network, and at the same time
  • the doped metal ions change the lattice structure of lithium sulfide, improve its conductivity, and further improve its electrochemical activity.
  • the invention provides a preparation method of graphene/carbon coated doped lithium sulfide composite material with core-shell structure:
  • a carbon source is added to ethanol under stirring to dissolve to form an ethanol solution containing a carbon source.
  • Carbon-coated lithium sulfide and graphene are added to tetrahydrofuran, ultrasonically reacted, and then the solvent is evaporated to obtain a graphene/carbon coated doped lithium sulfide composite.
  • the mass ratio of lithium sulfide to metal oxide in the step (1) is 100:0.5-5; the metal oxide may be one or more of magnesium oxide, manganese dioxide, copper oxide, aluminum oxide and nickel oxide; The time is 0.5-3 hours and the ball milling speed is 500-3000 rpm.
  • the organic carbon source in the step (2) is one or more of sucrose, glucose, starch, cellulose; and the mass concentration of the forming solution is 5-10%.
  • Step (3) The lithium sulfide ethanol solution has a mass concentration of 5-10%; the volume ratio of the carbon source ethanol solution to the lithium sulfide ethanol solution is 1:1-10; the room temperature stirring reaction time is 1-5 hours, in the muffle furnace Reaction temperature It is 800-900 ° C; the reaction time is 1-5 hours.
  • the mass ratio of graphene to carbon-coated lithium sulfide in step (4) is 1:10-100; the ultrasonic time is 0.5-3 hours.
  • the invention has the following beneficial effects: (1) both graphene and carbon have ultra-high electrical conductivity, graphene and carbon coating on the surface of lithium sulfide can effectively improve the electrical conductivity of the material; (2) doping metal ions can change The crystal structure of lithium sulfide is beneficial to the improvement of the bulk conductivity of lithium sulfide and the improvement of its electrochemical performance.
  • Figure 1 is an SEM image of a graphene/carbon coated doped lithium sulfide composite prepared in accordance with the present invention.
  • sucrose was added to ethanol under stirring to dissolve to form a sucrose ethanol solution having a mass concentration of 10%.
  • sucrose was added to ethanol under stirring to dissolve to form a sucrose ethanol solution having a mass concentration of 8%.
  • Electrode preparation and performance test electrode material, acetylene black and PVDF were mixed in NMP at a mass ratio of 80:10:10, coated on aluminum foil as electrode film, lithium metal plate as counter electrode, CELGARD 2400 as separator, 1 mol /L LiTFSI/DOL-DME (volume ratio 1:1) is an electrolyte, 1mol/L LiN03 is an additive, assembled into a button-type battery in a filled glove box, and a constant current charge and discharge test is performed using a Land battery test system. .
  • the charge and discharge voltage range is 1-3V
  • the current density is 0.1C
  • performance is shown in Table 1.
  • FIG. 1 is an SEM image of a positive electrode material prepared according to the present invention. It can be seen from the figure that the carbon-coated lithium sulfide particles are uniformly distributed on the surface of the graphene, which is beneficial to improving the electrochemical performance of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé de préparation d'un composite dopé à base de sulfure de lithium revêtu de graphène/carbone et présentant une structure coeur-enveloppe, comprenant : étape (1), mélanger du sulfure de lithium commercial avec une poudre d'oxyde métallique, enfermer hermétiquement le mélange dans un réservoir de broyeur à boulets, placer le réservoir dans un broyeur à boulets pour réaliser le broyage en vue d'obtenir du sulfure de lithium dopé nanométrique ; étape (2), ajouter et dissoudre une source de carbone dans de l'éthanol sous agitation de manière à former un solution d'éthanol contenant la source de carbone ; étape (3), disperser le sulfure de lithium nanométrique obtenu dans une solution d'éthanol et ajouter goutte-à-goutte la solution d'éthanol contenant la source de carbone dans la suspension pour obtenir un sulfure de lithium revêtu de carbone ; étape (4) ajouter le sulfure de lithium revêtu de carbone et de graphène à du tétrahydrofuranne et réaliser une réaction ultrasonore de manière à obtenir le composite dopé à base de sulfure de lithium revêtu de graphène/carbone et présentant la structure cœur-enveloppe. Les ions métalliques de dopage peuvent modifier la structure cristalline du sulfure de lithium et sont avantageux pour améliorer la conductivité volumique du sulfure de lithium et ses performances électrochimiques.
PCT/CN2016/074192 2016-02-21 2016-02-21 Procédé de préparation d'un composite dopé à base de sulfure de lithium revêtu de graphène/carbone et présentant une structure coeur-enveloppe WO2017139993A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074192 WO2017139993A1 (fr) 2016-02-21 2016-02-21 Procédé de préparation d'un composite dopé à base de sulfure de lithium revêtu de graphène/carbone et présentant une structure coeur-enveloppe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074192 WO2017139993A1 (fr) 2016-02-21 2016-02-21 Procédé de préparation d'un composite dopé à base de sulfure de lithium revêtu de graphène/carbone et présentant une structure coeur-enveloppe

Publications (1)

Publication Number Publication Date
WO2017139993A1 true WO2017139993A1 (fr) 2017-08-24

Family

ID=59625541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074192 WO2017139993A1 (fr) 2016-02-21 2016-02-21 Procédé de préparation d'un composite dopé à base de sulfure de lithium revêtu de graphène/carbone et présentant une structure coeur-enveloppe

Country Status (1)

Country Link
WO (1) WO2017139993A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122362A (zh) * 2021-11-25 2022-03-01 皖西学院 一种锂@碳包覆的石墨烯/SnO2复合材料及其制备方法和应用
CN114204214A (zh) * 2021-12-10 2022-03-18 哈尔滨师范大学 一种功能化改性隔膜及制备方法和应用
CN115490266A (zh) * 2022-09-27 2022-12-20 安徽博石高科新材料股份有限公司 一种碳包覆锰酸锂复合材料的制备方法
EP4365993A1 (fr) * 2022-11-04 2024-05-08 Samsung SDI Co., Ltd. Matériau actif de cathode composite, son procédé de préparation, cathode le comprenant et batterie secondaire entièrement solide le comprenant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597838B2 (en) * 2012-05-03 2013-12-03 Ut-Battelle, Llc Lithium sulfide compositions for battery electrolyte and battery electrode coatings
CN104064738A (zh) * 2014-06-27 2014-09-24 哈尔滨工业大学 石墨烯包覆硫/多孔碳复合正极材料的水热制备方法
CN104151588A (zh) * 2014-07-14 2014-11-19 浙江大学 一种锂硫电池隔膜及其锂硫电池的制备方法
WO2015103305A1 (fr) * 2013-12-30 2015-07-09 The Regents Of The University Of California Matériaux à base de sulfure de lithium et composites comportant un ou plusieurs revêtements conducteurs à base de ceux-ci
CN105244476A (zh) * 2014-06-11 2016-01-13 中国科学院苏州纳米技术与纳米仿生研究所 氮掺杂石墨烯包覆纳米硫正极复合材料、其制法及应用
CN105609768A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597838B2 (en) * 2012-05-03 2013-12-03 Ut-Battelle, Llc Lithium sulfide compositions for battery electrolyte and battery electrode coatings
WO2015103305A1 (fr) * 2013-12-30 2015-07-09 The Regents Of The University Of California Matériaux à base de sulfure de lithium et composites comportant un ou plusieurs revêtements conducteurs à base de ceux-ci
CN105244476A (zh) * 2014-06-11 2016-01-13 中国科学院苏州纳米技术与纳米仿生研究所 氮掺杂石墨烯包覆纳米硫正极复合材料、其制法及应用
CN104064738A (zh) * 2014-06-27 2014-09-24 哈尔滨工业大学 石墨烯包覆硫/多孔碳复合正极材料的水热制备方法
CN104151588A (zh) * 2014-07-14 2014-11-19 浙江大学 一种锂硫电池隔膜及其锂硫电池的制备方法
CN105609768A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122362A (zh) * 2021-11-25 2022-03-01 皖西学院 一种锂@碳包覆的石墨烯/SnO2复合材料及其制备方法和应用
CN114204214A (zh) * 2021-12-10 2022-03-18 哈尔滨师范大学 一种功能化改性隔膜及制备方法和应用
CN114204214B (zh) * 2021-12-10 2024-04-02 哈尔滨师范大学 一种功能化改性隔膜及制备方法和应用
CN115490266A (zh) * 2022-09-27 2022-12-20 安徽博石高科新材料股份有限公司 一种碳包覆锰酸锂复合材料的制备方法
EP4365993A1 (fr) * 2022-11-04 2024-05-08 Samsung SDI Co., Ltd. Matériau actif de cathode composite, son procédé de préparation, cathode le comprenant et batterie secondaire entièrement solide le comprenant

Similar Documents

Publication Publication Date Title
Lee et al. Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO 2-embedded polyethylene oxide
US10361451B2 (en) Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material
EP3493303A1 (fr) Matériau d'électrode négative et son procédé de préparation, électrode négative et batterie lithium-ion entièrement solide
WO2017139938A1 (fr) Procédé de préparation de matériau d'électrode positive composite graphène/polypyrrole/soufre
WO2017139983A1 (fr) Procédé pour préparer un matériau d'électrode positive ayant une structure dopée à l'azote tridimensionnelle destiné à être utilisé dans une batterie au lithium-soufre
Wang et al. How to promote the industrial application of SiOx anode prelithiation: capability, accuracy, stability, uniformity, cost, and safety
CN106960954A (zh) 一种普鲁士蓝/石墨烯/硫复合材料的制备方法及应用
WO2017139984A1 (fr) Procédé de préparation d'un matériau de cathode de batterie lithium-soufre dopé au soufre ayant une structure tridimensionnelle
WO2017139993A1 (fr) Procédé de préparation d'un composite dopé à base de sulfure de lithium revêtu de graphène/carbone et présentant une structure coeur-enveloppe
CN105609768A (zh) 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法
WO2017139991A1 (fr) Procédé de préparation de matériau d'électrode positive de batterie lithium-soufre à sphères creuses de dioxyde de manganèse
JP5286516B2 (ja) 全固体リチウム電池用正極材
WO2017139997A1 (fr) Procédé de fabrication de matériau anodique dopé avec une structure de noyau-enveloppe de sulfure de lithium-carbone
CN110931741A (zh) 硫化锡量子点负载的碳化钛复合纳米材料及其制备方法
CN112038591A (zh) 镁硫电池及过渡金属硫化物/硫复合正极材料和复合方法
WO2017139985A1 (fr) Procédé de préparation d'un matériau d'anode de batterie au lithium-soufre dopé au fluor ayant une structure tridimensionnelle
WO2017139995A1 (fr) Procédé de préparation d'un matériau composite de graphène/sulfure de lithium revêtu de titanate de lithium
WO2017139986A1 (fr) Procédé de préparation d'un matériau d'anode de batterie lithium-soufre dopé au phosphore ayant une structure tridimensionnelle
WO2017139982A1 (fr) Procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote
CN110112412A (zh) 一种硒硫固溶体正极材料及其制备方法和应用
CN105609738A (zh) 一种掺杂碳硫化锂核壳结构的正极材料的制备方法
WO2017139941A1 (fr) Procédé de préparation d'un matériau d'anode composite de graphène/polyanthraquinone thioéther/sulfure
WO2023273265A1 (fr) Graphène pré-lithié, procédé de préparation et application associés
Jiang et al. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries
CN108550848A (zh) 富锂碳材料、其制备方法及应用

Legal Events

Date Code Title Description
WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE