WO2017138479A1 - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
WO2017138479A1
WO2017138479A1 PCT/JP2017/004168 JP2017004168W WO2017138479A1 WO 2017138479 A1 WO2017138479 A1 WO 2017138479A1 JP 2017004168 W JP2017004168 W JP 2017004168W WO 2017138479 A1 WO2017138479 A1 WO 2017138479A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
detection coil
coil
output
target
Prior art date
Application number
PCT/JP2017/004168
Other languages
French (fr)
Japanese (ja)
Inventor
健一 古賀
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2017138479A1 publication Critical patent/WO2017138479A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature

Definitions

  • the present invention relates to a position detection device that detects the position of a detection target.
  • a position detection device detects a position of a detection target by disposing a metal part as a detection target to face a detection coil and detecting a change in inductance of the detection coil when the metal part moves. (See Patent Document 1).
  • the objective of this invention is providing the position detection apparatus which can ensure the precision of a position detection.
  • One aspect of the present invention is a position detection device, and includes a plurality of detection coils including a first detection coil and a second detection coil arranged farther from the detection target than the first detection coil.
  • Each of the first detection coil and the second detection coil is supplied with an AC voltage from a power source, and generates an output signal according to a distance from the detection target, and the plurality of detection coils and the first detection coil
  • a position calculator that calculates the position of the detection target based on output signals of the coil and the second detection coil, and the first detection coil and the second detection coil can detect the position of the detection target.
  • the output waveform of the first detection coil and the output waveform of the second detection coil generated over a wide detection range have different shapes.
  • the shapes of these coils were set so that the waveform of the output of the first detection coil and the waveform of the output of the second detection coil were equal. For this reason, it becomes possible to make the dynamic range of the detection circuit which detects the output of a 1st detection coil and a 2nd detection coil low. Therefore, when the outputs of the first detection coil and the second detection coil are detected by the detection circuit, it is possible to suppress an error in the value to be detected, so that the accuracy of position detection can be improved.
  • the position detection accuracy can be ensured in the position detection device.
  • the block diagram of the position detection apparatus of one Embodiment The side view of the board
  • the position detection device 1 is a type of eddy current sensor that detects the position of the detected portion 2 (the distance to the detected portion 2).
  • the eddy current sensor detects the position of the detected portion 2 based on a change in eddy current generated in the metal (in this example, the detection target 3).
  • the position detection device 1 of this example includes a power source 4, a first detection coil 5 and a second detection coil 6 to which an AC voltage Vc is applied from the power source 4, and the first detection coil 5 in accordance with the movement of the detected portion 2. And a detection object 3 that changes the magnetic field generated in the second detection coil 6.
  • the detection object 3 is made of, for example, a plate-like member (conductor plate) made of metal.
  • the detection target 3 in this example is interlocked with the detected portion 2 by being attached and fixed to the detected portion 2.
  • the detection target 3 is moved along the axial direction (coil axis direction: arrow Z direction in FIG. 1) of the coil axis La of the first detection coil 5 (second detection coil 6) along with the movement of the detected portion 2.
  • a linear reciprocation that approaches or separates from the first detection coil 5 is possible.
  • the first detection coil 5 and the second detection coil 6 are arranged side by side along the moving direction of the detection target 3 (the axial direction of the coil axis La).
  • the first detection coil 5 is disposed closer to the detection target 3 than the second detection coil 6. This is because the output voltage (inductance) of the first detection coil 5 is used as a signal for position detection, and the second detection coil 6 is used as a reference coil of the first detection coil 5.
  • the first detection coil 5 and the second detection coil 6 are connected in series to the power supply 4.
  • the winding directions of the first detection coil 5 and the second detection coil 6 are reversed so that the directions of current flow are opposite to each other. That is, when the winding directions of the first detection coil 5 and the second detection coil 6 are opposite to each other, the first detection coil 5 and the second detection coil 6 generate magnetic fields in opposite directions.
  • the first detection coil 5 and the second detection coil 6 have a maximum value V1max (illustrated in FIG. 2) of the output (output signal V1) of the first detection coil 5 in the position detection range K of the detection target 3 (illustrated in FIG. 2). ) Have different shapes so as to have the same value (including the vicinity) as the maximum value V2max (shown in FIG. 2) of the output (output signal V2) of the second detection coil 6.
  • the second detection coil 6 is formed smaller than the first detection coil 5.
  • the small size means that the winding diameter of the first detection coil 5 is X1 and the winding diameter of the second detection coil 6 is X2, and the winding diameter (coil size) is small (X1> X2). .
  • the number of turns of the first detection coil 5 and the second detection coil 6 may be the same or different.
  • a detection circuit 7 for detecting voltages (output signals V1, V2) generated in the first detection coil 5 and the second detection coil 6 is connected to the first detection coil 5 and the second detection coil 6.
  • the detection circuit 7 of this example includes a voltage detection unit 7 a that detects the voltage of the first detection coil 5 and a voltage detection unit 7 b that detects the voltage of the second detection coil 6.
  • the voltage detector 7 a is connected between the input and output ends of the first detection coil 5, and the voltage detector 7 b is connected between the input and output ends of the second detection coil 6.
  • the position detection device 1 includes a position calculation unit 8 that calculates the position of the detection target 3 based on the outputs of the first detection coil 5 and the second detection coil 6.
  • the position calculation unit 8 detects the detection target 3 (detected unit) based on the output signal (output voltage) V1 supplied from the voltage detection unit 7a and the output signal (output voltage) V2 supplied from the voltage detection unit 7b.
  • the position of 2) is calculated. Specifically, the position calculation unit 8 obtains a value (V1 / V2) obtained by dividing the output signal V1 of the voltage detection unit 7a by the output signal V2 of the voltage detection unit 7b, and from this value, the first detection coil 5 is obtained. And the position of the detection target 3, that is, the position of the detected portion 2 is calculated.
  • the first detection coil 5 and the second detection coil 6 of this example the first detection coil 5 is provided on the first layer 10 a (for example, the surface) of the substrate 10, and the second detection coil 6 is By being provided on the second layer 10 b (for example, the back surface) of the substrate 10, they are arranged on the same substrate in a plan view.
  • the first detection coil 5 is formed only on the first layer 10 a of the substrate 10, and the second detection coil 6 is formed only on the second layer 10 b of the substrate 10.
  • the detection target 3 is a position detection range of the position detection device 1 from a point P1 where the detection target 3 is closest to the first detection coil 5 to a point P2 which is farthest from the first detection coil 5. It is possible to move at K.
  • the detection target 3 moves linearly from the point P1 to the point P2 as the detection target 3 moves away from the first detection coil 5, the inductance of the first detection coil 5 gradually increases, and the first detection coil 5 Output signal V1 rises in a curved line from V1min to V1max.
  • the inductance of the second detection coil 6 gradually decreases, and the output signal V2 of the second detection coil 6 decreases in a curved manner from V2max to V2min.
  • the maximum value V1max of the output of the first detection coil 5 is the same as the maximum value V2max of the output of the second detection coil 6.
  • FIG. 4 shows a configuration of a conventional position detection device 31.
  • the second detection coil 6 has the same size as the first detection coil 5 as compared with the configuration of the position detection device 1 of this example. That is, the first detection coil 5 and the second detection coil 6 have the same winding diameter and number of coil turns.
  • the output signal V1 rises in a curved line from V1min ′ to V1max ′. That is, the voltage of the first detection coil 5 increases from V1min ′ to V1max ′.
  • the output signal V2 of the second detection coil 6 falls in a curve from a high value V2max 'to V2min'. That is, the output voltage of the second detection coil 6 drops from the maximum value V2max ′ to a voltage V2min ′ that is slightly higher than the maximum value of the first detection coil 5.
  • the detection circuit 7 has a predetermined input voltage range (dynamic range of detection voltage), and is set to the maximum value of the output of the detection coil (the first detection coil 5 or the second detection coil 6).
  • the maximum value V2max ′ of the second detection coil 6 is higher than the maximum value V1max ′ of the first detection coil 5, so that the dynamic range (full scale) of the detection circuit 7 is the second.
  • the maximum value V2max ′ of the detection coil 6 is set.
  • the dynamic range of the detection circuit 7 is set to “V2max ′” which is the maximum value of the second detection coil 6. That is, in the case of the conventional position detection device 1, since the dynamic range is as large as “V2max ′”, the detection error generated in the detection circuit 7 increases accordingly.
  • the waveform of the output of the first detection coil 5 at a predetermined point in the position detection range K (see FIG. 5) by making the second detection coil 6 smaller than the first detection coil 5. 3) and the waveform of the output of the second detection coil 6 (downward curve in FIG. 3) are set to intersect each other. That is, the first detection coil 5 and the second detection coil 6 have different shapes so that the output waveform of the first detection coil 5 and the output waveform of the second detection coil 6 intersect within the position detection range K.
  • the maximum value of the detection voltage in the detection circuit 7 is lowered and the dynamic range of the detection circuit 7 is lowered, an error generated in the detection circuit 7 is reduced accordingly. Therefore, it is advantageous to ensure the position detection accuracy of the position detection device 1.
  • the first detection coil 5 and the second detection coil 6 make the second detection coil 6 smaller than the first detection coil 5, so that the maximum value V1max of the output of the first detection coil 5 2
  • the maximum value V2max of the output of the detection coil 6 is equal. Therefore, the dynamic range of the detection circuit 7 can be reduced as much as possible, which is further advantageous for improving the position accuracy of the position detection device 1.
  • the first detection coil 5 and the second detection coil 6 are arranged side by side along the moving direction of the detection target 3 (the arrow Z direction in FIG. 1).
  • the maximum value V1max of the output of the first detection coil 5 and the maximum value V2max of the output of the second detection coil 6 are the same. It can be made easier to match.
  • the winding direction of the first detection coil 5 and the second detection coil 6 is reversed so that the directions of current flow are opposite to each other.
  • the increase / decrease in the inductance of the first detection coil 5 and the second detection coil 6 changes in opposite directions. That is, if the inductance of the first detection coil 5 increases, the inductance of the second detection coil 6 decreases. Conversely, if the inductance of the first detection coil 5 decreases, the inductance of the second detection coil 6 increases. .
  • the position of the detection target 3 is calculated, the fluctuation range of the calculation result increases. Therefore, it is advantageous to more accurately detect the position of the detection target 3 (detected portion 2).
  • the second detection coil 6 When the maximum value V1max of the output of the first detection coil 5 and the maximum value V2max of the output of the second detection coil 6 are set equal, the second detection coil 6 has a smaller winding diameter than the first detection coil 5. It is formed as follows. Therefore, the maximum value V1max of the output of the first detection coil 5 and the maximum value V2max of the output of the second detection coil 6 are set to be the same with a simple configuration in which the winding diameter of the second detection coil 6 is reduced. Can do. In addition, since the size of the second detection coil 6 can be reduced, it contributes to a reduction in the size of the position detection device 1.
  • the embodiment is not limited to the configuration described so far, and may be modified as follows.
  • the first detection coil 5 and the second detection coil instead of changing the size of 6, for example, the second detection coil 6 may be formed by forming fewer turns than the first detection coil 5.
  • the outputs of the first detection coil 5 and the second detection coil can be made the same with a simple configuration in which the number of turns of the second detection coil 6 is reduced.
  • the second detection coil 6 may have a coil shape in which the coil diameter decreases (stepwise decreases) toward the inner diameter direction of the coil.
  • the arrangement pattern in which the first detection coil 5 and the second detection coil 6 are not arranged on the same axis may be used.
  • the coil shape (winding shape) of the 1st detection coil 5 and the 2nd detection coil 6 is not restricted to square shape, For example, it can change into other shapes, such as circular shape.
  • the first detection coil 5 and the second detection coil 6 may have the same direction of flowing current.
  • the connection between the first detection coil 5 and the second detection coil 6 and the voltage detection unit (the voltage detection units 7a and 7b in this example) is time-division controlled by a switch so that the first detection coil 5 and the second detection coil are detected.
  • a configuration in which the output of the coil 6 is selectively detected by one voltage detector may be employed. In this way, the voltage detection unit required for the position detection device 1 can be reduced, which is advantageous in reducing the size of the device.
  • the detection target 3 is not limited to the conductor plate (metal plate) but can be changed to other members such as a coil. That is, any member that can generate an eddy current may be used.
  • the substrate 10 may be a multilayer substrate, and the first detection coil 5 and the second detection coil 6 may be disposed on a predetermined layer of the multilayer substrate.
  • the first detection coil 5 and the second detection coil 6 may be formed across a plurality of layers of the substrate 10.
  • the first detection coil 5 and the second detection coil 6 are not limited to being connected in series.
  • the first detection coil 5 and the second detection coil 6 can be appropriately changed to other configurations such as a circuit in which a dedicated power source is connected to each of the first detection coil 5 and the second detection coil 6.
  • the voltage of the 2nd detection coil 6 may be detected, and the position of the detection target 3 may be calculated
  • the calculation performed at the time of detecting the position of the detected part 2 is not limited to division, and may be changed to another calculation method.
  • the coil output used for the position detection calculation is not limited to the voltage value, and may be another parameter such as a current value.
  • the small winding diameter of the coil includes a small outer diameter of the winding and a small inner diameter of the winding.
  • the detection target 3 is not limited to a linear reciprocating movement in the vertical direction of the first detection coil 5, but may be moved in a direction orthogonal to the vertical direction (coil axis direction) of the first detection coil 5, for example. Good. That is, the position detection device 1 may detect the position of the detection target 3 that reciprocates in a direction orthogonal to the coil axis La.
  • the position detection device 1 can be applied to various devices and apparatuses. It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the technical concept thereof. For example, some of the parts described in the embodiment (or one or more aspects thereof) may be omitted, or some parts may be combined. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

This position detection device is provided with: a plurality of detection coils (5, 6) which include a first detection coil (5), and a second detection coil (6) disposed further away from an object (2) to be detected than the first detection coil (5), and which respectively have AC voltage supplied thereto from a power supply (4), and respectively generate an output signal in accordance with the distance to the object (2) to be detected; and a position calculation unit (8) which, on the basis of the output signals of the first and second detection coils (5, 6), calculates the position of the object (2) to be detected. The first and second detection coils (5, 6) are provided with different shapes such that the output waveforms of the first and second detection coils (5, 6) intersect, said output waveforms being generated over a detection range in which the position of the object (2) to be detected can be detected.

Description

位置検出装置Position detection device
 本発明は、検出対象の位置を検出する位置検出装置に関する。 The present invention relates to a position detection device that detects the position of a detection target.
 従来、位置検出装置は、検出対象としての金属部を検出コイルに対向配置させ、この金属部が移動したときの検出コイルのインダクタンスの変化を検出することにより、検出対象の位置を検出している(特許文献1参照)。 Conventionally, a position detection device detects a position of a detection target by disposing a metal part as a detection target to face a detection coil and detecting a change in inductance of the detection coil when the metal part moves. (See Patent Document 1).
特表2007-505534号公報Special table 2007-505534
 この種の位置検出装置においては、検出対象の位置を精度よく行いたいニーズがあった。
 本発明の目的は、位置検出の精度を確保することができる位置検出装置を提供することにある。
In this type of position detection device, there has been a need to accurately position the detection target.
The objective of this invention is providing the position detection apparatus which can ensure the precision of a position detection.
 本発明の一側面は、位置検出装置であって、第1検出コイルと、該第1検出コイルよりも検出対象に対して遠くに配置された第2検出コイルと、を含む複数の検出コイルであって、前記第1検出コイル及び第2検出コイルの各々は、電源から交流電圧を供給され、検出対象との距離に応じて出力信号を生成する、前記複数の検出コイルと、前記第1検出コイル及び第2検出コイルの出力信号に基づいて、前記検出対象の位置を演算する位置演算部と、を備え、前記第1検出コイル及び前記第2検出コイルは、前記検出対象の位置を検出可能な検出範囲にわたって生成される前記第1検出コイルの出力波形と前記第2検出コイルの出力波形とが交差するような異なる形状を有する。 One aspect of the present invention is a position detection device, and includes a plurality of detection coils including a first detection coil and a second detection coil arranged farther from the detection target than the first detection coil. Each of the first detection coil and the second detection coil is supplied with an AC voltage from a power source, and generates an output signal according to a distance from the detection target, and the plurality of detection coils and the first detection coil A position calculator that calculates the position of the detection target based on output signals of the coil and the second detection coil, and the first detection coil and the second detection coil can detect the position of the detection target. The output waveform of the first detection coil and the output waveform of the second detection coil generated over a wide detection range have different shapes.
 本構成によれば、第1検出コイルの出力の波形と第2検出コイルの出力の波形とが等しくなるように、これらコイルの形状を設定した。このため、第1検出コイル及び第2検出コイルの出力を検出する検出回路のダイナミックレンジを低くすることが可能となる。よって、第1検出コイル及び第2検出コイルの出力を検出回路で検出するにあたり、検出する値の誤差を低く抑えることが可能となるので、位置検出の精度を向上することが可能となる。 According to this configuration, the shapes of these coils were set so that the waveform of the output of the first detection coil and the waveform of the output of the second detection coil were equal. For this reason, it becomes possible to make the dynamic range of the detection circuit which detects the output of a 1st detection coil and a 2nd detection coil low. Therefore, when the outputs of the first detection coil and the second detection coil are detected by the detection circuit, it is possible to suppress an error in the value to be detected, so that the accuracy of position detection can be improved.
 本発明によれば、位置検出装置において、位置検出の精度を確保することができる。本発明の他の形態及び利点は、本発明の技術的思想の例を示している図面と共に以下の記載から明らかである。 According to the present invention, the position detection accuracy can be ensured in the position detection device. Other aspects and advantages of the present invention will become apparent from the following description taken in conjunction with the drawings, which illustrate examples of the technical spirit of the present invention.
一実施形態の位置検出装置の構成図。The block diagram of the position detection apparatus of one Embodiment. 位置検出装置の基板の側面図。The side view of the board | substrate of a position detection apparatus. 検出対象の距離変化に対するコイル出力の特性図。The characteristic view of the coil output with respect to the distance change of a detection target. 従来位置付けの位置検出装置の構成図。The block diagram of the conventional position detection apparatus. 検出対象の距離変化に対するコイル出力の特性図。The characteristic view of the coil output with respect to the distance change of a detection target. 別例の第2検出コイルの形状を示す概略図。Schematic which shows the shape of the 2nd detection coil of another example. 他の別例の第2検出コイルの形状を示す概略図。Schematic which shows the shape of the 2nd detection coil of another example.
 以下、位置検出装置の一実施形態を図1~図5に従って説明する。
 図1に示すように、位置検出装置1は、被検出部2の位置(被検出部2との間の距離)を検出する渦電流センサの一種である。渦電流センサは、金属(本例は検出対象3)に発生する渦電流の変化を基に被検出部2の位置を検出する。本例の位置検出装置1は、電源4と、電源4から交流電圧Vcが印加される第1検出コイル5及び第2検出コイル6と、被検出部2の動きに応じて第1検出コイル5及び第2検出コイル6に発生する磁界を変化させる検出対象3とを備える。
Hereinafter, an embodiment of the position detection device will be described with reference to FIGS.
As shown in FIG. 1, the position detection device 1 is a type of eddy current sensor that detects the position of the detected portion 2 (the distance to the detected portion 2). The eddy current sensor detects the position of the detected portion 2 based on a change in eddy current generated in the metal (in this example, the detection target 3). The position detection device 1 of this example includes a power source 4, a first detection coil 5 and a second detection coil 6 to which an AC voltage Vc is applied from the power source 4, and the first detection coil 5 in accordance with the movement of the detected portion 2. And a detection object 3 that changes the magnetic field generated in the second detection coil 6.
 検出対象3は、例えば金属から形成された板状の部材(導体板)からなる。本例の検出対象3は、被検出部2に取り付け固定されることにより、被検出部2と連動する。検出対象3は、被検出部2の動きに伴って、第1検出コイル5(第2検出コイル6)のコイル軸Laの軸方向(コイル軸方向:図1の矢印Z方向)に沿って、第1検出コイル5に接近又は離間する直線往復動が可能である。 The detection object 3 is made of, for example, a plate-like member (conductor plate) made of metal. The detection target 3 in this example is interlocked with the detected portion 2 by being attached and fixed to the detected portion 2. The detection target 3 is moved along the axial direction (coil axis direction: arrow Z direction in FIG. 1) of the coil axis La of the first detection coil 5 (second detection coil 6) along with the movement of the detected portion 2. A linear reciprocation that approaches or separates from the first detection coil 5 is possible.
 第1検出コイル5及び第2検出コイル6は、検出対象3の移動方向(コイル軸Laの軸方向)に沿って並び配置されている。本例の場合、第1検出コイル5は、第2検出コイル6よりも検出対象3の近くに配置されている。これは、第1検出コイル5の出力電圧(インダクタンス)を位置検出のための信号として用い、第2検出コイル6を第1検出コイル5の基準コイル(reference coil)とするためである。 The first detection coil 5 and the second detection coil 6 are arranged side by side along the moving direction of the detection target 3 (the axial direction of the coil axis La). In the case of this example, the first detection coil 5 is disposed closer to the detection target 3 than the second detection coil 6. This is because the output voltage (inductance) of the first detection coil 5 is used as a signal for position detection, and the second detection coil 6 is used as a reference coil of the first detection coil 5.
 第1検出コイル5及び第2検出コイル6は、電源4に対して直列接続されている。第1検出コイル5及び第2検出コイル6の巻き方向は、電流が流れる方向が互いに逆となるように逆となっている。すなわち、第1検出コイル5及び第2検出コイル6の巻き方向が互いに逆であることにより、第1検出コイル5及び第2検出コイル6は互いに逆方向の磁界を生成する。 The first detection coil 5 and the second detection coil 6 are connected in series to the power supply 4. The winding directions of the first detection coil 5 and the second detection coil 6 are reversed so that the directions of current flow are opposite to each other. That is, when the winding directions of the first detection coil 5 and the second detection coil 6 are opposite to each other, the first detection coil 5 and the second detection coil 6 generate magnetic fields in opposite directions.
 第1検出コイル5及び第2検出コイル6は、検出対象3の位置検出範囲K(図2に図示)において、第1検出コイル5の出力(出力信号V1)の最大値V1max(図2に図示)が、第2検出コイル6の出力(出力信号V2)の最大値V2max(図2に図示)と同じ値(近傍も含む)を有するような互いに異なる形状を有する。本例の場合、第2検出コイル6は、第1検出コイル5よりも小型に形成されている。なお、小型とは、第1検出コイル5の巻線径をX1とし、第2検出コイル6の巻線径をX2とすると、巻線径(コイルサイズ)が小さいこと(X1>X2)をいう。なお、第1検出コイル5及び第2検出コイル6の巻数は、同一又は異なる巻数のいずれでもよい。 The first detection coil 5 and the second detection coil 6 have a maximum value V1max (illustrated in FIG. 2) of the output (output signal V1) of the first detection coil 5 in the position detection range K of the detection target 3 (illustrated in FIG. 2). ) Have different shapes so as to have the same value (including the vicinity) as the maximum value V2max (shown in FIG. 2) of the output (output signal V2) of the second detection coil 6. In the case of this example, the second detection coil 6 is formed smaller than the first detection coil 5. The small size means that the winding diameter of the first detection coil 5 is X1 and the winding diameter of the second detection coil 6 is X2, and the winding diameter (coil size) is small (X1> X2). . The number of turns of the first detection coil 5 and the second detection coil 6 may be the same or different.
 第1検出コイル5及び第2検出コイル6には、第1検出コイル5及び第2検出コイル6に発生する電圧(出力信号V1,V2)を検出する検出回路7が接続されている。本例の検出回路7は、第1検出コイル5の電圧を検出する電圧検出部7aと、第2検出コイル6の電圧を検出する電圧検出部7bとを備える。電圧検出部7aは、第1検出コイル5の入出力端の間に接続され、電圧検出部7bは、第2検出コイル6の入出力端の間に接続されている。 A detection circuit 7 for detecting voltages (output signals V1, V2) generated in the first detection coil 5 and the second detection coil 6 is connected to the first detection coil 5 and the second detection coil 6. The detection circuit 7 of this example includes a voltage detection unit 7 a that detects the voltage of the first detection coil 5 and a voltage detection unit 7 b that detects the voltage of the second detection coil 6. The voltage detector 7 a is connected between the input and output ends of the first detection coil 5, and the voltage detector 7 b is connected between the input and output ends of the second detection coil 6.
 位置検出装置1は、第1検出コイル5及び第2検出コイル6の出力を基に検出対象3の位置を演算する位置演算部8を備える。位置演算部8は、電圧検出部7aから供給される出力信号(出力電圧)V1と、電圧検出部7bから供給される出力信号(出力電圧)V2とを基に、検出対象3(被検出部2)の位置を演算する。具体的にいうと、位置演算部8は、電圧検出部7aの出力信号V1を、電圧検出部7bの出力信号V2で除算した値(V1/V2)を求め、この値から第1検出コイル5と検出対象3の位置、すなわち被検出部2の位置を演算する。 The position detection device 1 includes a position calculation unit 8 that calculates the position of the detection target 3 based on the outputs of the first detection coil 5 and the second detection coil 6. The position calculation unit 8 detects the detection target 3 (detected unit) based on the output signal (output voltage) V1 supplied from the voltage detection unit 7a and the output signal (output voltage) V2 supplied from the voltage detection unit 7b. The position of 2) is calculated. Specifically, the position calculation unit 8 obtains a value (V1 / V2) obtained by dividing the output signal V1 of the voltage detection unit 7a by the output signal V2 of the voltage detection unit 7b, and from this value, the first detection coil 5 is obtained. And the position of the detection target 3, that is, the position of the detected portion 2 is calculated.
 図2に示すように、本例の第1検出コイル5及び第2検出コイル6は、第1検出コイル5が基板10の第1層10a(例えば表面)に設けられ、第2検出コイル6が基板10の第2層10b(例えば裏面)に設けられることにより、平面視で同一基板上に重ね配置されている。第1検出コイル5は、基板10の第1層10aのみに形成され、第2検出コイル6は、基板10の第2層10bのみに形成されている。 As shown in FIG. 2, in the first detection coil 5 and the second detection coil 6 of this example, the first detection coil 5 is provided on the first layer 10 a (for example, the surface) of the substrate 10, and the second detection coil 6 is By being provided on the second layer 10 b (for example, the back surface) of the substrate 10, they are arranged on the same substrate in a plan view. The first detection coil 5 is formed only on the first layer 10 a of the substrate 10, and the second detection coil 6 is formed only on the second layer 10 b of the substrate 10.
 次に、図3~図5を用いて、位置検出装置1の作用及び効果を説明する。
 図3に示すように、検出対象3は、検出対象3が第1検出コイル5に最も近づいた地点P1から、第1検出コイル5から最も離れた地点P2までの位置検出装置1の位置検出範囲Kにおいて移動可能である。検出対象3が地点P1から地点P2まで直線移動したとき、検出対象3が第1検出コイル5から離れていくに従って、第1検出コイル5のインダクタンスが徐々に増加していき、第1検出コイル5の出力信号V1は、V1minからV1maxに曲線状に上昇していく。一方、第2検出コイル6のインダクタンスは徐々に低下していき、第2検出コイル6の出力信号V2は、V2maxからV2minに曲線状に下降していく。この場合、第1検出コイル5の出力の最大値V1maxは、第2検出コイル6の出力の最大値V2maxと同じになっている。
Next, the operation and effect of the position detection apparatus 1 will be described with reference to FIGS.
As shown in FIG. 3, the detection target 3 is a position detection range of the position detection device 1 from a point P1 where the detection target 3 is closest to the first detection coil 5 to a point P2 which is farthest from the first detection coil 5. It is possible to move at K. When the detection target 3 moves linearly from the point P1 to the point P2, as the detection target 3 moves away from the first detection coil 5, the inductance of the first detection coil 5 gradually increases, and the first detection coil 5 Output signal V1 rises in a curved line from V1min to V1max. On the other hand, the inductance of the second detection coil 6 gradually decreases, and the output signal V2 of the second detection coil 6 decreases in a curved manner from V2max to V2min. In this case, the maximum value V1max of the output of the first detection coil 5 is the same as the maximum value V2max of the output of the second detection coil 6.
 図4は、従来の位置検出装置31の構成を示す。位置検出装置31では、本例の位置検出装置1の構成と比較すると、第2検出コイル6が、第1検出コイル5と同じサイズとなっている。すなわち、第1検出コイル5及び第2検出コイル6が、互いに同じ巻線径及びコイル巻数を有する。 FIG. 4 shows a configuration of a conventional position detection device 31. In the position detection device 31, the second detection coil 6 has the same size as the first detection coil 5 as compared with the configuration of the position detection device 1 of this example. That is, the first detection coil 5 and the second detection coil 6 have the same winding diameter and number of coil turns.
 図5に示すように、従来の位置検出装置31の場合、位置検出範囲Kにおいて被検出部2が地点P1から地点P2に移動したとき、検出対象3が第1検出コイル5から離れていくに従い、出力信号V1は、V1min’からV1max’に曲線状に上昇していく。すなわち、第1検出コイル5の電圧は、V1min’からV1max’に上昇する。一方、第2検出コイル6の出力信号V2は、高い値のV2max’からV2min’に曲線状に下降していく。すなわち、第2検出コイル6の出力電圧は、最大値のV2max’から、第1検出コイル5の最大値より少し高い電圧のV2min’まで下降する。 As shown in FIG. 5, in the case of the conventional position detection device 31, when the detected part 2 moves from the point P <b> 1 to the point P <b> 2 in the position detection range K, as the detection target 3 moves away from the first detection coil 5. The output signal V1 rises in a curved line from V1min ′ to V1max ′. That is, the voltage of the first detection coil 5 increases from V1min ′ to V1max ′. On the other hand, the output signal V2 of the second detection coil 6 falls in a curve from a high value V2max 'to V2min'. That is, the output voltage of the second detection coil 6 drops from the maximum value V2max ′ to a voltage V2min ′ that is slightly higher than the maximum value of the first detection coil 5.
 ところで、検出回路7には、入力電圧範囲(検出電圧のダイナミックレンジ)が決まっており、検出コイル(第1検出コイル5又は第2検出コイル6)の出力の最大値に設定される。例えば、従来の位置検出装置31の場合、第1検出コイル5の最大値V1max’よりも第2検出コイル6の最大値V2max’が高いので、検出回路7のダイナミックレンジ(フルスケール)は第2検出コイル6の最大値V2max’に設定される。 Incidentally, the detection circuit 7 has a predetermined input voltage range (dynamic range of detection voltage), and is set to the maximum value of the output of the detection coil (the first detection coil 5 or the second detection coil 6). For example, in the case of the conventional position detection device 31, the maximum value V2max ′ of the second detection coil 6 is higher than the maximum value V1max ′ of the first detection coil 5, so that the dynamic range (full scale) of the detection circuit 7 is the second. The maximum value V2max ′ of the detection coil 6 is set.
 一般的に、検出回路7には検出誤差が生じ、誤差は検出回路7のダイナミックレンジに対し、そのダイナミックレンジの何%の値で発生する。よって、検出回路7のダイナミックレンジが高いと、その分だけ位置検出の誤差が大きくなってしまう。従来の位置検出装置31では、検出回路7のダイナミックレンジが、第2検出コイル6の最大値である「V2max’」に設定されている。すなわち、従来の位置検出装置1の場合、ダイナミックレンジが「V2max’」と大きいので、その分、検出回路7において発生する検出誤差が大きくなる。 Generally, a detection error occurs in the detection circuit 7, and the error occurs at a value of what percentage of the dynamic range with respect to the dynamic range of the detection circuit 7. Therefore, if the dynamic range of the detection circuit 7 is high, the position detection error increases accordingly. In the conventional position detection device 31, the dynamic range of the detection circuit 7 is set to “V2max ′” which is the maximum value of the second detection coil 6. That is, in the case of the conventional position detection device 1, since the dynamic range is as large as “V2max ′”, the detection error generated in the detection circuit 7 increases accordingly.
 一方、本例の位置検出装置1の場合、第2検出コイル6を第1検出コイル5よりも小型にすることにより、位置検出範囲Kの所定地点において第1検出コイル5の出力の波形(図3の右上がり曲線)と第2検出コイル6の出力の波形(図3の右下がり曲線)とが交差するように設定されている。すなわち、第1検出コイル5及び第2検出コイル6は、位置検出範囲Kの範囲内において第1検出コイル5の出力波形と第2検出コイル6の出力波形とが交差するように、互いに異なる形状を有する。このため、検出回路7における検出電圧の最大値が低くなって、検出回路7のダイナミックレンジが低くなるので、その分、検出回路7において発生する誤差が小さくなる。よって、位置検出装置1の位置検出精度を確保するのに有利となる。 On the other hand, in the case of the position detection device 1 of this example, the waveform of the output of the first detection coil 5 at a predetermined point in the position detection range K (see FIG. 5) by making the second detection coil 6 smaller than the first detection coil 5. 3) and the waveform of the output of the second detection coil 6 (downward curve in FIG. 3) are set to intersect each other. That is, the first detection coil 5 and the second detection coil 6 have different shapes so that the output waveform of the first detection coil 5 and the output waveform of the second detection coil 6 intersect within the position detection range K. Have For this reason, since the maximum value of the detection voltage in the detection circuit 7 is lowered and the dynamic range of the detection circuit 7 is lowered, an error generated in the detection circuit 7 is reduced accordingly. Therefore, it is advantageous to ensure the position detection accuracy of the position detection device 1.
 本例の場合、第1検出コイル5及び第2検出コイル6は、第2検出コイル6を第1検出コイル5よりも小型にすることにより、第1検出コイル5の出力の最大値V1maxと第2検出コイル6の出力の最大値V2maxとが等しくなっている。よって、検出回路7のダイナミックレンジを極力低くすることが可能となるので、位置検出装置1の位置精度の向上に一層有利となる。 In the case of this example, the first detection coil 5 and the second detection coil 6 make the second detection coil 6 smaller than the first detection coil 5, so that the maximum value V1max of the output of the first detection coil 5 2 The maximum value V2max of the output of the detection coil 6 is equal. Therefore, the dynamic range of the detection circuit 7 can be reduced as much as possible, which is further advantageous for improving the position accuracy of the position detection device 1.
 第1検出コイル5及び第2検出コイル6は、検出対象3の移動方向(図1の矢印Z方向)に沿って並んで配置されている。このように、第1検出コイル5及び第2検出コイル6をバランスよく配置するので、第1検出コイル5の出力の最大値V1maxと第2検出コイル6の出力の最大値V2maxとを、同一に合わせ易くすることができる。 The first detection coil 5 and the second detection coil 6 are arranged side by side along the moving direction of the detection target 3 (the arrow Z direction in FIG. 1). Thus, since the first detection coil 5 and the second detection coil 6 are arranged in a balanced manner, the maximum value V1max of the output of the first detection coil 5 and the maximum value V2max of the output of the second detection coil 6 are the same. It can be made easier to match.
 第1検出コイル5及び第2検出コイル6の巻き方向は、電流が流れる方向が互いに逆となるように、逆となっている。これにより、検出対象3が第1検出コイル5に対して接近又は離隔するとき、第1検出コイル5及び第2検出コイル6のインダクタンスの増減が、互いに逆方向に変化する。すなわち、第1検出コイル5のインダクタンスが増加すれば、第2検出コイル6のインダクタンスが減少し、逆に、第1検出コイル5のインダクタンスが減少すれば、第2検出コイル6のインダクタンスが増加する。このため、検出対象3の位置を演算した場合に、演算結果の変動幅が大きくなる。よって、検出対象3(被検出部2)の位置を、より正しく検出するのに有利となる。 The winding direction of the first detection coil 5 and the second detection coil 6 is reversed so that the directions of current flow are opposite to each other. Thereby, when the detection target 3 approaches or separates from the first detection coil 5, the increase / decrease in the inductance of the first detection coil 5 and the second detection coil 6 changes in opposite directions. That is, if the inductance of the first detection coil 5 increases, the inductance of the second detection coil 6 decreases. Conversely, if the inductance of the first detection coil 5 decreases, the inductance of the second detection coil 6 increases. . For this reason, when the position of the detection target 3 is calculated, the fluctuation range of the calculation result increases. Therefore, it is advantageous to more accurately detect the position of the detection target 3 (detected portion 2).
 第1検出コイル5の出力の最大値V1maxと第2検出コイル6の出力の最大値V2maxとを等しく設定するにあたり、第2検出コイル6は、第1検出コイル5よりも巻線径が小さくなるように形成されている。よって、第2検出コイル6の巻線径を小さくするという簡素な構成で、第1検出コイル5の出力の最大値V1maxと第2検出コイル6の出力の最大値V2maxとを同一に設定することができる。また、第2検出コイル6のサイズが小さく済むので、位置検出装置1の装置サイズの小型化にも寄与する。 When the maximum value V1max of the output of the first detection coil 5 and the maximum value V2max of the output of the second detection coil 6 are set equal, the second detection coil 6 has a smaller winding diameter than the first detection coil 5. It is formed as follows. Therefore, the maximum value V1max of the output of the first detection coil 5 and the maximum value V2max of the output of the second detection coil 6 are set to be the same with a simple configuration in which the winding diameter of the second detection coil 6 is reduced. Can do. In addition, since the size of the second detection coil 6 can be reduced, it contributes to a reduction in the size of the position detection device 1.
 なお、実施形態はこれまでに述べた構成に限らず、以下の態様に変更してもよい。
 ・図6に示すように、第1検出コイル5の出力の最大値V1maxと第2検出コイル6の出力の最大値V2maxとを等しく設定するにあたっては、例えば第1検出コイル5及び第2検出コイル6のサイズを変えるのではなく、例えば第2検出コイル6を第1検出コイル5よりも巻数を少なく形成することで実現してもよい。この場合、第2検出コイル6の巻数を少なくするという簡素な構成で、第1検出コイル5及び第2検出コイルの出力を同一にすることができる。
Note that the embodiment is not limited to the configuration described so far, and may be modified as follows.
As shown in FIG. 6, in setting the maximum value V1max of the output of the first detection coil 5 and the maximum value V2max of the output of the second detection coil 6, for example, the first detection coil 5 and the second detection coil Instead of changing the size of 6, for example, the second detection coil 6 may be formed by forming fewer turns than the first detection coil 5. In this case, the outputs of the first detection coil 5 and the second detection coil can be made the same with a simple configuration in which the number of turns of the second detection coil 6 is reduced.
 ・図7に示すように、第2検出コイル6は、コイルの内径方向に向かうに従ってコイル径が小さく(段階的に小さく)なっていくコイル形状としてもよい。
 ・第1検出コイル5及び第2検出コイル6は、同一軸心上に配置されない配置パターンでもよい。
As shown in FIG. 7, the second detection coil 6 may have a coil shape in which the coil diameter decreases (stepwise decreases) toward the inner diameter direction of the coil.
The arrangement pattern in which the first detection coil 5 and the second detection coil 6 are not arranged on the same axis may be used.
 ・第1検出コイル5及び第2検出コイル6のコイル形状(巻線形状)は、四角形状に限らず、例えば円形状などの他の形状に変更可能である。
 ・第1検出コイル5及び第2検出コイル6は、流れる電流の方向が同じでもよい。
-The coil shape (winding shape) of the 1st detection coil 5 and the 2nd detection coil 6 is not restricted to square shape, For example, it can change into other shapes, such as circular shape.
The first detection coil 5 and the second detection coil 6 may have the same direction of flowing current.
 ・第1検出コイル5及び第2検出コイル6と電圧検出部(本例でいう電圧検出部7a,7b)との接続を、スイッチにより時分割制御して、第1検出コイル5及び第2検出コイル6の出力を、1つの電圧検出部によって選択的に検出する構成でもよい。こうすれば、位置検出装置1に必要となる電圧検出部が少なく済むので、装置サイズの小型化に有利となる。 The connection between the first detection coil 5 and the second detection coil 6 and the voltage detection unit (the voltage detection units 7a and 7b in this example) is time-division controlled by a switch so that the first detection coil 5 and the second detection coil are detected. A configuration in which the output of the coil 6 is selectively detected by one voltage detector may be employed. In this way, the voltage detection unit required for the position detection device 1 can be reduced, which is advantageous in reducing the size of the device.
 ・検出対象3は、導体板(金属板)に限らず、例えばコイルなどの他の部材に変更可能である。すなわち、渦電流を発生できる部材であればよい。
 ・基板10は、多層基板でもよく、多層基板の所定層に第1検出コイル5及び第2検出コイル6が配置されてもよい。
The detection target 3 is not limited to the conductor plate (metal plate) but can be changed to other members such as a coil. That is, any member that can generate an eddy current may be used.
The substrate 10 may be a multilayer substrate, and the first detection coil 5 and the second detection coil 6 may be disposed on a predetermined layer of the multilayer substrate.
 ・第1検出コイル5及び第2検出コイル6は、基板10の複数層に横断して形成されてもよい。
 ・第1検出コイル5及び第2検出コイル6は、直列接続されることに限定されない。例えば、第1検出コイル5及び第2検出コイル6の各々に専用の電源を接続した回路とするなど、他の構成に適宜変更することができる。
The first detection coil 5 and the second detection coil 6 may be formed across a plurality of layers of the substrate 10.
The first detection coil 5 and the second detection coil 6 are not limited to being connected in series. For example, the first detection coil 5 and the second detection coil 6 can be appropriately changed to other configurations such as a circuit in which a dedicated power source is connected to each of the first detection coil 5 and the second detection coil 6.
 ・第1検出コイル5及び第2検出コイル6の間の電圧を検出するとともに、第2検出コイル6の電圧を検出し、これらを除算した結果から検出対象3の位置を求めてもよい。
 ・被検出部2の位置検出時に行う演算は、除算に限定されず、他の計算方法に変更してもよい。
-While detecting the voltage between the 1st detection coil 5 and the 2nd detection coil 6, the voltage of the 2nd detection coil 6 may be detected, and the position of the detection target 3 may be calculated | required from the result of dividing these.
The calculation performed at the time of detecting the position of the detected part 2 is not limited to division, and may be changed to another calculation method.
 ・位置検出の演算に用いるコイル出力は、電圧値に限らず、例えば電流値などの他のパラメータとしてもよい。
 ・コイルの巻線径が小さいとは、巻線の外径が小さいことや、巻線の内径が小さいことなどを含む。
The coil output used for the position detection calculation is not limited to the voltage value, and may be another parameter such as a current value.
The small winding diameter of the coil includes a small outer diameter of the winding and a small inner diameter of the winding.
 ・検出対象3は、第1検出コイル5の鉛直方向に直線往復動するものに限らず、例えば第1検出コイル5の鉛直方向(コイル軸方向)に対して直交する方向に移動する動きをとってもよい。すなわち、位置検出装置1は、コイル軸Laに対して直交する方向に往復動する検出対象3の位置を検出するものでもよい。 The detection target 3 is not limited to a linear reciprocating movement in the vertical direction of the first detection coil 5, but may be moved in a direction orthogonal to the vertical direction (coil axis direction) of the first detection coil 5, for example. Good. That is, the position detection device 1 may detect the position of the detection target 3 that reciprocates in a direction orthogonal to the coil axis La.
 ・第1検出コイル5の出力波形と第2検出コイル6の出力波形とを交差させるにあたり、これは各コイルの最大値を等しくすることで実現することに限定されない。要は、最大値が一致していなくても、これらコイル出力が位置検出範囲Kの所定の地点で交差する波形をとっていればよい。 When crossing the output waveform of the first detection coil 5 and the output waveform of the second detection coil 6, this is not limited to being realized by equalizing the maximum value of each coil. In short, even if the maximum values do not match, it is sufficient that the coil outputs have a waveform that intersects at a predetermined point in the position detection range K.
 ・位置検出装置1は、種々の機器や装置に適用可能である。
 本発明がその技術的思想から逸脱しない範囲で他の特有の形態で具体化されてもよいということは当業者であって明らかであろう。例えば、実施形態(あるいはその1つ又は複数の態様)において説明した部品のうちの一部を省略したり、いくつかの部品を組合わせてもよい。本発明の範囲は、添付の請求の範囲を参照して、請求の範囲が権利を与えられる均等物の全範囲と共に確定されるべきである。
The position detection device 1 can be applied to various devices and apparatuses.
It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the technical concept thereof. For example, some of the parts described in the embodiment (or one or more aspects thereof) may be omitted, or some parts may be combined. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims (6)

  1.  位置検出装置であって、
     第1検出コイルと、該第1検出コイルよりも検出対象に対して遠くに配置された第2検出コイルと、を含む複数の検出コイルであって、前記第1検出コイル及び第2検出コイルの各々は、電源から交流電圧を供給され、検出対象との距離に応じて出力信号を生成する、前記複数の検出コイルと、
     前記第1検出コイル及び第2検出コイルの出力信号に基づいて、前記検出対象の位置を演算する位置演算部と、を備え、
     前記第1検出コイル及び前記第2検出コイルは、
     前記検出対象の位置を検出可能な検出範囲にわたって生成される前記第1検出コイルの出力波形と前記第2検出コイルの出力波形とが交差するような異なる形状を有する、位置検出装置。
    A position detecting device,
    A plurality of detection coils including a first detection coil and a second detection coil disposed farther to the detection object than the first detection coil, wherein the first detection coil and the second detection coil Each of the plurality of detection coils is supplied with an AC voltage from a power source and generates an output signal in accordance with the distance to the detection target.
    A position calculation unit that calculates the position of the detection target based on output signals of the first detection coil and the second detection coil;
    The first detection coil and the second detection coil are:
    A position detection device having different shapes such that an output waveform of the first detection coil and an output waveform of the second detection coil generated over a detection range in which the position of the detection target can be detected intersect.
  2.  前記検出範囲にわたって生成される前記第1検出コイルの出力信号と前記第2検出コイルの出力信号とは、互いに同じ最大値を有する、請求項1に記載の位置検出装置。 The position detection device according to claim 1, wherein an output signal of the first detection coil and an output signal of the second detection coil generated over the detection range have the same maximum value.
  3.  前記第1検出コイル及び第2検出コイルは、前記検出対象の移動方向に沿って並んで配置されている、請求項1又は2に記載の位置検出装置。 The position detection device according to claim 1 or 2, wherein the first detection coil and the second detection coil are arranged side by side along a moving direction of the detection target.
  4.  前記第1検出コイル及び第2検出コイルの巻き方向は、電流が流れる方向が互いに逆となるように逆となっている、請求項1~3のうちいずれか一項に記載の位置検出装置。 The position detection device according to any one of claims 1 to 3, wherein winding directions of the first detection coil and the second detection coil are reversed so that currents flow in opposite directions.
  5.  前記第2検出コイルの巻線径は、前記第1検出コイルの巻線径よりも小さい、請求項1~4のうちいずれか一項に記載の位置検出装置。 The position detection device according to any one of claims 1 to 4, wherein a winding diameter of the second detection coil is smaller than a winding diameter of the first detection coil.
  6.  前記第2検出コイルの巻数は、前記第1検出コイルの巻数よりも少ない、請求項1~4のうちいずれか一項に記載の位置検出装置。 The position detection device according to any one of claims 1 to 4, wherein the number of turns of the second detection coil is smaller than the number of turns of the first detection coil.
PCT/JP2017/004168 2016-02-12 2017-02-06 Position detection device WO2017138479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016024695A JP2017142200A (en) 2016-02-12 2016-02-12 Position detector
JP2016-024695 2016-02-12

Publications (1)

Publication Number Publication Date
WO2017138479A1 true WO2017138479A1 (en) 2017-08-17

Family

ID=59563073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004168 WO2017138479A1 (en) 2016-02-12 2017-02-06 Position detection device

Country Status (2)

Country Link
JP (1) JP2017142200A (en)
WO (1) WO2017138479A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456377B (en) * 2019-08-15 2021-07-30 中国人民解放军63921部队 Satellite foreign matter attack detection method and system based on three-dimensional laser radar

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151402A (en) * 1984-12-26 1986-07-10 Nippon Kokan Kk <Nkk> Differential mutual induction type eddy current measuring sensor
JPS62225986A (en) * 1986-03-12 1987-10-03 エルデツク コ−ポレイシヨン Induction partial pressure sensor
JPH0658705A (en) * 1992-08-12 1994-03-04 Mishima Kosan Co Ltd Distance detector of metal object
JPH10288535A (en) * 1997-04-16 1998-10-27 Sakae Tsushin Kogyo Kk Signal generator
JP2003130605A (en) * 2001-10-26 2003-05-08 Sankyo Seiki Mfg Co Ltd Magnetic type displacement sensor device
JP2011137748A (en) * 2009-12-28 2011-07-14 Jtekt Corp Displacement sensor device and roller bearing apparatus
JP2013246051A (en) * 2012-05-25 2013-12-09 Panasonic Corp Displacement detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151402A (en) * 1984-12-26 1986-07-10 Nippon Kokan Kk <Nkk> Differential mutual induction type eddy current measuring sensor
JPS62225986A (en) * 1986-03-12 1987-10-03 エルデツク コ−ポレイシヨン Induction partial pressure sensor
JPH0658705A (en) * 1992-08-12 1994-03-04 Mishima Kosan Co Ltd Distance detector of metal object
JPH10288535A (en) * 1997-04-16 1998-10-27 Sakae Tsushin Kogyo Kk Signal generator
JP2003130605A (en) * 2001-10-26 2003-05-08 Sankyo Seiki Mfg Co Ltd Magnetic type displacement sensor device
JP2011137748A (en) * 2009-12-28 2011-07-14 Jtekt Corp Displacement sensor device and roller bearing apparatus
JP2013246051A (en) * 2012-05-25 2013-12-09 Panasonic Corp Displacement detector

Also Published As

Publication number Publication date
JP2017142200A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6713511B2 (en) Position detection system
US11226211B2 (en) Inductive position detection
US10704930B2 (en) Electromagnetic induction type displacement detection apparatus and measuring instrument using the same
CN105190250A (en) Linear encoder device and reference position detection method
WO2017138479A1 (en) Position detection device
KR101921700B1 (en) Method for canceling leaked magnetic field
JP2018527576A (en) Non-contact distance and / or position measuring device and sensor of measurement object
JP6395942B2 (en) Position sensor
US10684385B2 (en) Sensor having rotationally offset coil pairs and differently formed receiving coils for locating metal or magnetic objects
JP2017142202A (en) Position detector
JP6145467B2 (en) Position detection device
JP2016125940A (en) Position sensing device
JP2015224922A (en) Position detecting device
JP2015227826A (en) Position detecting device
JP2017075919A (en) Position detector
JP2017142201A (en) Position detector
JP2015224923A (en) Position detecting device
JP2015224925A (en) Position detecting device
JP2017020934A (en) Position detector
CN107211210A (en) For the sensor for the motion for detecting speaker diaphragm
JP2016125866A (en) Position detection device
JP2016125941A (en) Position sensing device
JP2016090398A (en) Position detection device
JP2014167440A (en) Displacement sensor
JP2016090397A (en) Position detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750202

Country of ref document: EP

Kind code of ref document: A1