JPS61151402A - Differential mutual induction type eddy current measuring sensor - Google Patents
Differential mutual induction type eddy current measuring sensorInfo
- Publication number
- JPS61151402A JPS61151402A JP27316184A JP27316184A JPS61151402A JP S61151402 A JPS61151402 A JP S61151402A JP 27316184 A JP27316184 A JP 27316184A JP 27316184 A JP27316184 A JP 27316184A JP S61151402 A JPS61151402 A JP S61151402A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- secondary coil
- primary coil
- eddy current
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は差動相互誘導量渦流計測用センサに関し、詳し
くは2個の2次コイルを有する差動相互誘導製渦流計測
用センサに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a differential mutual induction eddy current measuring sensor, and more particularly to a differential mutual induction eddy current measuring sensor having two secondary coils.
渦流計測は、例えば渦流計測用のセンサであるコイルか
ら金属板までの距離等の測定に広く実用化されているう
かかる渦流計測は原理的にはコイルと金属板を対向配置
し、該コイルと金属板との距離に対応する大きさとなる
コイルの自己インダクタンスを測定することによって行
なうものである。また、2次コイルを挾んで1次コイル
と金属板とを対向配置し、1次コイルと2次コイルの相
互インダクタンスを測定することによって前記自己イン
ダクタンスの測定よりも高い精度の測定結果が得られる
。さらに、高精度の渦流計測として、1次コイルを挾ん
で第1および第2の2次コイルを対向配置させる方法が
ある。Eddy current measurement is widely put into practical use, for example, to measure the distance between a coil, which is a sensor for eddy current measurement, and a metal plate. This is done by measuring the self-inductance of the coil, whose size corresponds to the distance from the metal plate. Furthermore, by arranging the primary coil and a metal plate facing each other with the secondary coil in between, and measuring the mutual inductance between the primary coil and the secondary coil, a measurement result with higher accuracy than the measurement of self-inductance can be obtained. . Furthermore, as a highly accurate eddy current measurement method, there is a method in which first and second secondary coils are disposed opposite to each other with a primary coil sandwiched therebetween.
第2図はかかる2個の2次コイルを備えた従来の差動相
互誘導量渦流計測用センサの概略図である。巻線数N1
の1次コイルPを挾んで対向配置された第1の2次コイ
ルS1および第2の2次コイルS2は、それぞれ配置方
向の長さ11が等しく、また1次コイルPとの間隔が等
しく、さらに巻線数がN2になっている。したがって、
これらのコイルp、siおよびS2の近くに金属板MP
がないときは、1次コイルPと第1の2次コイルS1と
の相互インダクタンスM1および1次コイルPと第2の
2次コイルS2との相互インダクタンスM2は等しく、
M 1 = M 2 (1)が成
立する。第1の2次コイルS1の近くに金属板MPを置
くと、第1の2次コイルS1は1次コイルよりも金属板
M、Pに近いので、相互インダクタンスM1.M2は、
M 1 < M 2 (2)となる
。このため、相互インダクタンスMl、M2の変位感度
ΔM1.ΔM2は、変位感度ΔM1の方が大きく、
6M1)6M2 (3)となる。また
、第6図に示すように、第1および第2の2次コイルS
1およびS2を差動接続すると、変位感度は
Δ(Ml−M21 =ΔM1−ΔM2 (4)とな
る。FIG. 2 is a schematic diagram of a conventional differential mutual induction eddy current measuring sensor equipped with such two secondary coils. Number of turns N1
The first secondary coil S1 and the second secondary coil S2, which are arranged opposite to each other with the primary coil P in between, have the same length 11 in the arrangement direction, and have the same distance from the primary coil P. Furthermore, the number of windings is N2. therefore,
A metal plate MP is placed near these coils p, si and S2.
When there is no mutual inductance M1 between the primary coil P and the first secondary coil S1 and mutual inductance M2 between the primary coil P and the second secondary coil S2 are equal, M 1 = M 2 (1 ) holds true. When a metal plate MP is placed near the first secondary coil S1, since the first secondary coil S1 is closer to the metal plates M and P than the primary coil, mutual inductance M1. M2 satisfies M 1 < M 2 (2). Therefore, the displacement sensitivity ΔM1. of mutual inductance M1, M2. ΔM2 is larger than the displacement sensitivity ΔM1, and becomes 6M1)6M2 (3). In addition, as shown in FIG. 6, the first and second secondary coils S
1 and S2 are differentially connected, the displacement sensitivity becomes Δ(Ml−M21 =ΔM1−ΔM2 (4).
ところで、第1の2次コイルS1と金属板MPとの距離
h1が大きくなると、 変位感度ΔM1と6M2との差
、すなわち、第(4)式に示した変位感度の値が小さく
なってしまい、相互インダクタンスに−づいて測定され
る第1の2次コイルS1と金属板MPとの距離が大きな
誤差を含んでしまうことになり、問題であった。また、
場合によっては、距離の測定が不可能になってしまうと
いう問題があった。By the way, as the distance h1 between the first secondary coil S1 and the metal plate MP increases, the difference between the displacement sensitivities ΔM1 and 6M2, that is, the value of the displacement sensitivity shown in equation (4), decreases. This was problematic because the distance between the first secondary coil S1 and the metal plate MP measured based on mutual inductance contained a large error. Also,
In some cases, there was a problem in that it became impossible to measure distance.
本発明は上記問題点を解決する目的でなされたもので、
金属板までの距離が離れている場合であっても、該金属
板までの距離を正確に測定できる差□動相互誘導量渦流
計測用センサを提供するものである。The present invention was made for the purpose of solving the above problems.
To provide a differential mutual induction amount eddy current measuring sensor that can accurately measure the distance to a metal plate even if the distance to the metal plate is far.
そこで本発明では、1次コイルを挾んで第1および第2
の2次コイルを対向配置し、1次コイルと第1の2次コ
イルとの間隔を1次コイルと第2の2次コイルとの間隔
よりも大きくするとともに、第1の2次コイルの巻線数
を第2の2次コイルの巻線数よりも多きくした差動相互
誘導量渦流計測用セ/すを構成する。Therefore, in the present invention, the primary coil is sandwiched between the first and second coils.
The secondary coils are arranged to face each other, and the interval between the primary coil and the first secondary coil is made larger than the interval between the primary coil and the second secondary coil, and the winding of the first secondary coil is A differential mutual induction eddy current measurement cell is constructed in which the number of wires is greater than the number of turns of the second secondary coil.
上記構成の差動相互誘導量渦流計測用センナは、第1の
2次コイルと第2の2次コイルとを差動接続し、1次コ
ーイルの一方の端子と第1または第2の2次コイルの一
方の端子とを接続して′1次コイルに交流電流を供給し
、このとき差動接続された第1および第“2の2次コイ
ルに誘起する電圧を測定し、これらの電流、電圧値によ
り相互インダクタンスを求め、この相互インダクタンス
に基づいて第1の2次コイル側に置かれた金属板までの
距離を算出する。The sensor for differential mutual induction eddy current measurement with the above configuration connects the first secondary coil and the second secondary coil differentially, and connects one terminal of the primary coil to the first or second secondary coil. Connect one terminal of the coil to supply an alternating current to the primary coil, measure the voltage induced in the differentially connected first and second secondary coils, and measure these currents. Mutual inductance is determined from the voltage value, and based on this mutual inductance, the distance to the metal plate placed on the first secondary coil side is calculated.
以下、本発明の一実施例を添付図面を参照して詳細に説
明する。Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.
第1図は本発明に係る差動相互誘導屋渦流計測用センサ
の概略図である。第1図において、第1の2次コイルS
1および第2の2次コイルS2は、該第1の2次コイル
S1と1次コイルBとの間隔が該第2の2次コイルS2
と1次コイルPとの間隔よりも大きくなるように、巻線
数N101次コイルPを挾んで対向配置されている。ま
た、第1の2次コイルS1の巻線数N2が第2の2次コ
イルS2の巻線数“N2’よりも多くなっている。この
ため、第1の2次コイルS1側に金属板MPを置くと、
1次コイルPと第1の2次コイルS1との相互インダク
タンスM1の変位感度ΔM1は1次コイルPと第2の2
次コイルS2との相互インダクタンスM2の変位感度Δ
M2よりも大きく、第1の2次コイルS1と金属板MP
との距離h1が大きい場合であっても、
ΔM 1 >>ΔM 2 (5)と
なり、第1の2次コイルS1と第2の2次コイルS2と
を差動接続したときの変位感度が変位感度ΔM2によっ
て減温されることがなくなる。FIG. 1 is a schematic diagram of a differential mutual induction sensor for measuring eddy current according to the present invention. In FIG. 1, the first secondary coil S
The first and second secondary coils S2 are such that the distance between the first secondary coil S1 and the primary coil B is such that the distance between the first secondary coil S1 and the primary coil B is the same as that of the second secondary coil S2.
The number of windings is N10 and the primary coil P is sandwiched between the coils and the primary coil P so that the distance between the coils and the primary coil P is larger than the distance between the coils P and the primary coil P. Further, the number of turns N2 of the first secondary coil S1 is larger than the number of turns "N2'" of the second secondary coil S2. Therefore, the metal plate is attached to the first secondary coil S1 side. When you place MP,
The displacement sensitivity ΔM1 of the mutual inductance M1 between the primary coil P and the first secondary coil S1 is
Displacement sensitivity Δ of mutual inductance M2 with the next coil S2
larger than M2, the first secondary coil S1 and the metal plate MP
Even if the distance h1 from the The temperature will not be lowered due to the sensitivity ΔM2.
次に、第1図に示した差動相互誘導量渦流計測用セ/す
の相互インダクタンスの測定について説明する。相互イ
ンダクタンスを測定するときには、給6図に示すように
まず、第1の2次コイルS1と第2の2次コイルS2と
を差動接続する。すなわち、第1の2次コイルS1の一
方の端子1′を第202次コイルS2の一方の端子2と
を接続する。Next, the measurement of the mutual inductance of the differential mutual induction eddy current measuring cell shown in FIG. 1 will be explained. When measuring mutual inductance, first, the first secondary coil S1 and the second secondary coil S2 are differentially connected as shown in FIG. That is, one terminal 1' of the first secondary coil S1 is connected to one terminal 2 of the 202nd secondary coil S2.
まだ、1次コイルPの一方の端子3を第1の2次コイル
S1の一方の端子1に接続する。このような接続状態で
、1次コイルPの両端子1.1′間に所定周波数fの交
流電流工を流すと、差動接続された第1および第2の2
次コイルS1およびS2は開放状態にあって、端子4−
4′間に誘起電圧Eが誘起され丞。このときf、I、E
および相互インタ′クタンス(M2−Ml)により次式
が得られる。Still, one terminal 3 of the primary coil P is connected to one terminal 1 of the first secondary coil S1. In this connection state, when an alternating current of a predetermined frequency f is applied between both terminals 1 and 1' of the primary coil P, the differentially connected first and second terminals
The secondary coils S1 and S2 are in an open state, and terminal 4-
An induced voltage E is induced between 4' and 4'. At this time f, I, E
The following equation is obtained from the mutual intance (M2-Ml).
E=2πf (M2−M 1 ) I
(6)したがって、相互インダクタンス(M2−Ml)
ハ、(M 2−M 1 ) =E/2πt I
(7)により求められる。E=2πf (M2-M1) I
(6) Therefore, the mutual inductance (M2-Ml)
C, (M 2 - M 1 ) = E/2πt I
It is determined by (7).
上記方法によシ相互インダクタンスを測定する場合、第
(0式が必ずしも成立する必要はない。第(1)式が成
立しないときは、
M 1 < M 2 (8)
が成立している。したがって、相互インダクタンス(M
2−Ml)は金属板MPを第1の2次コイルS1から遠
さけると最小となシ、金属板MPを第1の2次コイルS
1に近づけると最大となるので、変化割合Δ(M2−M
l)/(M2−Ml)を考慮すると有利であることがわ
かる。When measuring mutual inductance using the above method, the equation (0) does not necessarily hold. If the equation (1) does not hold, M 1 < M 2 (8)
has been established. Therefore, the mutual inductance (M
2-Ml) is minimized when the metal plate MP is moved away from the first secondary coil S1, and when the metal plate MP is moved away from the first secondary coil S1.
As it approaches 1, it becomes maximum, so the change rate Δ(M2-M
It turns out that it is advantageous to consider l)/(M2-Ml).
なお、本発明による差動相互誘導量渦流計測用センサは
上記のように差動接続せず、6端子のままで測定装置に
接続して使用する場合がある。この場合、測定装置内に
おいて、第1および第2のコイルの各誘起電圧が作動接
続した場合と同じように作用するようになっている。Note that the differential mutual induction amount eddy current measuring sensor according to the present invention may be used without differential connection as described above, and connected to a measuring device with six terminals as is. In this case, the induced voltages of the first and second coils act in the measuring device in the same way as if they were operatively connected.
また、第2図に示した従来の渦流計測用センサはセンサ
であるコイルの温度変化に対する補償効果を有するが、
本発明による差動相互誘導量渦流計測用センナであって
も、該補償効果が失なわれることがない。Furthermore, the conventional eddy current measurement sensor shown in Fig. 2 has a compensation effect for temperature changes in the coil that is the sensor;
Even with the sensor for measuring the differential mutual induction amount eddy current according to the present invention, the compensation effect is not lost.
また、本実施例では金属板迄の距離測定について説明し
たが、金属板の導電率測定、金属板の探傷(傷の検出)
あるいはメタル検出などに適用でき、特に被測定物迄の
距離が大きいときには効果が大きい。In addition, in this example, distance measurement to a metal plate was explained, but conductivity measurement of a metal plate, flaw detection (flaw detection) of a metal plate, etc.
Alternatively, it can be applied to metal detection, etc., and is particularly effective when the distance to the object to be measured is long.
さらに、測定対象は金属板に限らず、例えば海水であっ
てもよい。ただし、この場合相互インダクタンスの変化
分は複索数になる。したがって、本発明は海水水の厚さ
の推定にも適用できる。すなわち、1次コイルに高周波
電流を流し、2次コイルに誘起される電圧の位相角を検
出することによシ、海氷の厚さを推定するものである。Furthermore, the object to be measured is not limited to a metal plate, but may be seawater, for example. However, in this case, the amount of change in mutual inductance is the number of multiple lines. Therefore, the present invention is also applicable to estimating the thickness of seawater. That is, the thickness of sea ice is estimated by passing a high frequency current through the primary coil and detecting the phase angle of the voltage induced in the secondary coil.
(詳しくは、「海氷の厚さ推定方法」、特開昭58−2
23704参照)
〔発明の効果〕
以上説明したように本発明によれば、1次コイルを挾ん
で第1および第2の2次コイルを対向配置し、1次コイ
ルと第1の2次コイルとの間隔を該1次コイルと第2の
2次コイルとの間隔よりも大きくするとともに、第1の
2次コイルの巻線数を第2の2次コイルの巻線数よ)も
多くしたことによシ、金属板が第1の2次コイルから離
れた位置にあっても、変位感度が小さくならず、高精度
の計測ができる。(For details, see ``Sea Ice Thickness Estimation Method'', JP-A-58-2
23704) [Effects of the Invention] As explained above, according to the present invention, the first and second secondary coils are arranged opposite to each other with the primary coil in between, and the primary coil and the first secondary coil are The interval between the primary coil and the second secondary coil is made larger than the interval between the primary coil and the second secondary coil, and the number of turns of the first secondary coil is also increased (than the number of turns of the second secondary coil). Additionally, even if the metal plate is located away from the first secondary coil, the displacement sensitivity does not decrease, allowing highly accurate measurement.
第1図は本発明に係る差動相互誘導量渦流計測用センサ
の概略図、第2図は従来の差動・相互誘導量渦流計測用
センサの概略図、第6図は相互インダクタンス測定時に
おける2次コイルの差動接続図である。
P・・・・・・1次コイル、 Sl・・・・・・第i
o2次コイル、S2・・・・・・第2の2次コイル。Fig. 1 is a schematic diagram of a differential mutual induction eddy current measurement sensor according to the present invention, Fig. 2 is a schematic diagram of a conventional differential/mutual induction eddy current measurement sensor, and Fig. 6 is a diagram showing a sensor for measuring mutual inductance. It is a differential connection diagram of a secondary coil. P...Primary coil, Sl...ith coil
o Secondary coil, S2... Second secondary coil.
Claims (1)
配置し、1次コイルと第1の2次コイルとの間隔を該1
次コイルと第2の2次コイルとの間隔よりも大きくする
とともに、第1の2次コイルの巻線数を第2の2次コイ
ルの巻線数よりも多くしたことを特徴とする差動相互誘
導量渦流計測用センサ。The first and second secondary coils are arranged opposite to each other with the primary coil in between, and the distance between the primary coil and the first secondary coil is set to 1.
The differential type is characterized in that the distance between the primary coil and the second secondary coil is greater than the distance between the secondary coil and the second secondary coil, and the number of turns in the first secondary coil is greater than the number of turns in the second secondary coil. Sensor for measuring mutual induction amount eddy current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27316184A JPS61151402A (en) | 1984-12-26 | 1984-12-26 | Differential mutual induction type eddy current measuring sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27316184A JPS61151402A (en) | 1984-12-26 | 1984-12-26 | Differential mutual induction type eddy current measuring sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61151402A true JPS61151402A (en) | 1986-07-10 |
JPH0523361B2 JPH0523361B2 (en) | 1993-04-02 |
Family
ID=17523945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27316184A Granted JPS61151402A (en) | 1984-12-26 | 1984-12-26 | Differential mutual induction type eddy current measuring sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61151402A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118303U (en) * | 1988-01-29 | 1989-08-10 | ||
WO2003001144A1 (en) * | 2001-06-20 | 2003-01-03 | Sankyo Seiki Mfg. Co., Ltd. | Equipment for measuring displacement |
JP2004507721A (en) * | 2000-08-24 | 2004-03-11 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Measuring wall thickness of conductive objects |
JP2004507735A (en) * | 2000-08-24 | 2004-03-11 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Detection of cracks in conductive materials |
JP2004507734A (en) * | 2000-08-24 | 2004-03-11 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Inspection of objects made of conductive material |
JP2011064590A (en) * | 2009-09-17 | 2011-03-31 | Ebara Corp | Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method |
JP2012002705A (en) * | 2010-06-17 | 2012-01-05 | Toyota Motor Corp | Eddy current measuring sensor and eddy current measuring method |
WO2017138479A1 (en) * | 2016-02-12 | 2017-08-17 | 株式会社東海理化電機製作所 | Position detection device |
WO2023047548A1 (en) * | 2021-09-24 | 2023-03-30 | 三菱電機株式会社 | Orientation direction detection device |
-
1984
- 1984-12-26 JP JP27316184A patent/JPS61151402A/en active Granted
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118303U (en) * | 1988-01-29 | 1989-08-10 | ||
JP2004507721A (en) * | 2000-08-24 | 2004-03-11 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Measuring wall thickness of conductive objects |
JP2004507735A (en) * | 2000-08-24 | 2004-03-11 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Detection of cracks in conductive materials |
JP2004507734A (en) * | 2000-08-24 | 2004-03-11 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Inspection of objects made of conductive material |
WO2003001144A1 (en) * | 2001-06-20 | 2003-01-03 | Sankyo Seiki Mfg. Co., Ltd. | Equipment for measuring displacement |
US7061231B2 (en) * | 2001-06-20 | 2006-06-13 | Sanko Seiki Mfg. Co., Ltd. | Device for measuring displacement including a displacement sensor with a detection coil and excitation coils |
JP2011064590A (en) * | 2009-09-17 | 2011-03-31 | Ebara Corp | Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method |
JP2012002705A (en) * | 2010-06-17 | 2012-01-05 | Toyota Motor Corp | Eddy current measuring sensor and eddy current measuring method |
US8593137B2 (en) | 2010-06-17 | 2013-11-26 | Toyota Jidosha Kabushiki Kaisha | Eddy current sensor and eddy current measurement method |
WO2017138479A1 (en) * | 2016-02-12 | 2017-08-17 | 株式会社東海理化電機製作所 | Position detection device |
WO2023047548A1 (en) * | 2021-09-24 | 2023-03-30 | 三菱電機株式会社 | Orientation direction detection device |
JP7270860B1 (en) * | 2021-09-24 | 2023-05-10 | 三菱電機株式会社 | Orientation direction detector |
Also Published As
Publication number | Publication date |
---|---|
JPH0523361B2 (en) | 1993-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4559495A (en) | Transducer free of any magnetic core for contactless current measurement | |
JP3445362B2 (en) | AC current sensor | |
US4513273A (en) | Transducer for current measurement | |
US5914593A (en) | Temperature gradient compensation circuit | |
GB2187844A (en) | Process for contact-less measurement in a moving mode of the thickness and temperature of thin metal sheets by means of eddy currents | |
JPS61151402A (en) | Differential mutual induction type eddy current measuring sensor | |
JPH01105178A (en) | Current detector | |
JPS6023738Y2 (en) | magnetic field detector | |
JPH0323872B2 (en) | ||
US3379969A (en) | Magnetic bridge means for detecting the electrical properties of substances | |
JPH0412467Y2 (en) | ||
TW201713955A (en) | Device and method for measuring the power consumption, device and method for contactless measuring power supply status | |
JP2021131355A (en) | Current sensor | |
SU873095A1 (en) | Device for measuring electric conductivity | |
JPS61223502A (en) | Mutual induction type eddy current sensor | |
JPS5821395B2 (en) | How do you know what to do? | |
JPS604084Y2 (en) | displacement transducer | |
JPH0375571A (en) | Measuring method of alternating current | |
JPS5850272Y2 (en) | Eddy current current meter | |
SU1530940A1 (en) | Device for measuring surface temperature of ferromagnetic bodies | |
SU1290095A1 (en) | Device for measuring temperature of conducting objects | |
SU1377788A1 (en) | Device for measuring losses in reversal of magnetization of magnetic materials | |
SU1372183A1 (en) | Device for measuring thickness of ferromagnetic tape | |
JPH01187465A (en) | Electric current detector | |
SU1293473A1 (en) | Superposed eddy current transducer |