JPH0523361B2 - - Google Patents

Info

Publication number
JPH0523361B2
JPH0523361B2 JP27316184A JP27316184A JPH0523361B2 JP H0523361 B2 JPH0523361 B2 JP H0523361B2 JP 27316184 A JP27316184 A JP 27316184A JP 27316184 A JP27316184 A JP 27316184A JP H0523361 B2 JPH0523361 B2 JP H0523361B2
Authority
JP
Japan
Prior art keywords
secondary coil
coil
eddy current
metal plate
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27316184A
Other languages
Japanese (ja)
Other versions
JPS61151402A (en
Inventor
Toshihiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP27316184A priority Critical patent/JPS61151402A/en
Publication of JPS61151402A publication Critical patent/JPS61151402A/en
Publication of JPH0523361B2 publication Critical patent/JPH0523361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は差動相互誘導型渦流計測用センサに関
し、詳しくは2個の2次コイルを有する差動相互
誘導型渦流計測用センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a differential mutual induction type eddy current measurement sensor, and more particularly to a differential mutual induction type eddy current measurement sensor having two secondary coils.

〔従来の技術〕[Conventional technology]

渦流計測は、例えば渦流計測用のセンサである
コイルから金属板までの距離等の測定に広く実用
化されている。かかる渦流計測は原理的にはコイ
ルと金属板を対向配置し、該コイルと金属板との
距離に対応する大きさとなるコイルの自己インダ
クタンスを測定することによつて行なうものであ
る。また、2次コイルを挾んで1次コイルと金属
板とを対向配置し、1次コイルと2次コイルの相
互インダクタンスを測定することによつて前記自
己インダクタンスの測定よりも高い精度の測定結
果が得られる。さらに、高精度の渦流計測とし
て、1次コイルを挾んで第1および第2の2次コ
イルを対向配置させる方法がある。
Eddy current measurement is widely put into practical use, for example, to measure the distance from a coil, which is a sensor for eddy current measurement, to a metal plate. In principle, such eddy current measurement is performed by arranging a coil and a metal plate facing each other and measuring the self-inductance of the coil, which has a size corresponding to the distance between the coil and the metal plate. Furthermore, by arranging the primary coil and a metal plate facing each other with the secondary coil in between, and measuring the mutual inductance between the primary and secondary coils, a measurement result with higher accuracy than the self-inductance measurement can be obtained. can get. Furthermore, as a highly accurate eddy current measurement method, there is a method in which first and second secondary coils are disposed opposite to each other with a primary coil sandwiched therebetween.

第2図はかかる2個の2次コイルを備えた従来
の差動相互誘導型渦流計測用センサの概略図であ
る。巻線数N1の1次コイルPを挾んで対向配置
された第1の2次コイルS1および第2の2次コ
イルS2は、それぞれ配置方向の長さl1が等し
く、また1次コイルPとの間隔が等しく、さらに
巻線数がN2になつている。したがつて、これら
のコイルP,S1およびS2の近くに金属板MP
がないときは、1次コイルPと第1の2次コイル
SP1との相互インダクタンスM1および1次コイ
ルPと第2の2次コイルS2との相互インダクタ
ンスM2は等しく、 M1=M2 (1) が成立する。第1の2次コイルS1の近くに金属
板MPを置くと、第1の2次コイルS1は1次コ
イルよりも金属板MPに近いので、相互インダク
タンスM1、M2は、 M1<M2 (2) となる。このため、相互インダクタンスM1、M2
の変位感度△M1、△M2は、変位感度△M1の方
が大きく、 △M1>△M2 (3) となる。また、第3図に示すように、第1および
第2の2次コイルS1およびS2を差動接続する
と、変位感度は △(M1−M2)=△M1−△M2 (4) となる。
FIG. 2 is a schematic diagram of a conventional differential mutual induction type eddy current measurement sensor equipped with such two secondary coils. The first secondary coil S1 and the second secondary coil S2, which are arranged opposite to each other with the primary coil P having the number of windings N1 in between, have the same length l1 in the arrangement direction, and have the same length l1 as the primary coil P. The spacing is equal, and the number of windings is N2. Therefore, a metal plate MP is placed near these coils P, S1 and S2.
If not, the primary coil P and the first secondary coil
Mutual inductance M1 with SP1 and mutual inductance M2 between primary coil P and second secondary coil S2 are equal, and M1=M2 (1) holds true. When a metal plate MP is placed near the first secondary coil S1, the first secondary coil S1 is closer to the metal plate MP than the primary coil, so the mutual inductance M1 and M2 is M1<M2 (2) becomes. For this reason, the mutual inductance M1, M2
The displacement sensitivity △M1 and △M2 are larger, and △M1>△M2 (3). Further, as shown in FIG. 3, when the first and second secondary coils S1 and S2 are differentially connected, the displacement sensitivity becomes Δ(M1-M2)=ΔM1-ΔM2 (4).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、第1の2次コイルS1と金属板MP
との距離h1が大きくなると、変位感度△M1と△
M2との差、すなわち、第(4)式に示した変位感度
の値が小さくなつてしまい、相互インダクタンス
に基づいて測定される第1の2次コイルS1と金
属板MPとの距離が大きな誤差を含んでしまうこ
とになり、問題であつた。また、場合によつて
は、距離の測定が不可能になつてしまうという問
題があつた。
By the way, the first secondary coil S1 and the metal plate MP
As the distance h 1 increases, the displacement sensitivities △M1 and △
M2, that is, the displacement sensitivity value shown in equation (4) becomes small, and the distance between the first secondary coil S1 and the metal plate MP measured based on mutual inductance has a large error. This was a problem. Additionally, there is a problem in that distance measurement becomes impossible in some cases.

本発明は上記問題点を解決する目的でなされた
もので、金属板までの距離が離れている場合であ
つても、該金属板までの距離を正確に測定できる
差動相互誘導型渦流計測用センサを提供するもの
である。
The present invention was made for the purpose of solving the above problems, and is a differential mutual induction type eddy current measurement device that can accurately measure the distance to a metal plate even if the distance to the metal plate is far. It provides a sensor.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は、被測定物に対して近い第1の
2次コイルと、被測定物に対して第1の2次コイ
ルより遠い第2の2次コイルを1次コイルを挟ん
で対向配置し、1次コイルと第1の2次コイルと
の間隔を該1次コイルと第2の2次コイルとの間
隔よりも大きくするとともに、第1の2次コイル
の巻線数を第2の2次コイルの巻線数よりも多き
くした差動相互誘導型渦流計測用センサを構成す
る。
Therefore, in the present invention, a first secondary coil that is close to the object to be measured and a second secondary coil that is farther from the object to be measured than the first secondary coil are arranged facing each other with the primary coil in between. , the distance between the primary coil and the first secondary coil is made larger than the distance between the primary coil and the second secondary coil, and the number of turns of the first secondary coil is increased from the second A differential mutual induction type eddy current measurement sensor is constructed in which the number of turns is greater than that of the secondary coil.

〔作用〕[Effect]

上記構成の差動相互誘導型渦流計測用センサ
は、被測定物に対して近い第1の2次コイルと被
測定物に対して遠い第2の2次コイルとを差動接
続し、1次コイルの一方の端子と第1または第2
の2次コイルの一方の端子とを接続して1次コイ
ルに交流電流を供給し、このとき差動接続された
第1および第2の2次コイルに誘起する電或を測
定し、これらの電流、電圧値により相互インダク
タンスを求め、この相互インダクタンスに基づい
て第1の2次コイル側に置かれた金属板までの距
離を算出する。
The differential mutual induction type eddy current measurement sensor having the above configuration differentially connects a first secondary coil close to the object to be measured and a second secondary coil far from the object to be measured, and one terminal of the coil and the first or second
An alternating current is supplied to the primary coil by connecting it to one terminal of the secondary coil, and at this time, the electric current induced in the first and second secondary coils which are differentially connected is measured, and these Mutual inductance is determined from the current and voltage values, and based on this mutual inductance, the distance to the metal plate placed on the first secondary coil side is calculated.

〔実施例〕〔Example〕

以下、本発明の一実施例を添付図面を参照して
詳細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係る差動相互誘導型渦流計測
用センサの概略図である。第1図において、第1
の2次コイルS1および第2の2次コイルS2
は、該第1の2次コイルS1と1次コイルBとの
間隔が該第2の2次コイルS2と1次コイルPと
の間隔よりも大きくなるように、巻線数N1の1
次コイルPを挾んで対向配置されている。また、
第1の2次コイルS1の巻線数N2が第2の2次
コイルS2の巻線数N2′よりも多くなつている。
このため、第1の2次コイルS1側に金属板MP
を置くと、1次コイルPと第1の2次コイルS1
との相互インダクタンスM1の変位感度△M1は1
次コイルPと第2の2次コイルS2との相互イン
ダクタンスM2の変位感度△M2よりも大きく、第
1の2次コイルS1と金属板MPとの距離h1が大
きい場合であつても、 △M1≫△M2 (5) となり、第1の2次コイルS1と第2の2次コイ
ルS2とを差動接続したときの変位感度が変位感
度△M2によつて減弱されることがなくなる。
FIG. 1 is a schematic diagram of a differential mutual induction type eddy current measurement sensor according to the present invention. In Figure 1, the first
secondary coil S1 and second secondary coil S2
is 1 of the number of turns N1 so that the distance between the first secondary coil S1 and the primary coil B is larger than the distance between the second secondary coil S2 and the primary coil P.
They are arranged opposite to each other with the next coil P in between. Also,
The number of turns N2 of the first secondary coil S1 is greater than the number N2' of turns of the second secondary coil S2.
Therefore, the metal plate MP is placed on the first secondary coil S1 side.
, the primary coil P and the first secondary coil S1
The displacement sensitivity △M1 of the mutual inductance M1 is 1
Even if the displacement sensitivity of the mutual inductance M2 between the primary coil P and the second secondary coil S2 is larger than △M2, and the distance h1 between the first secondary coil S1 and the metal plate MP is large, △ M1≫ΔM2 (5) Therefore, the displacement sensitivity when the first secondary coil S1 and the second secondary coil S2 are differentially connected is not weakened by the displacement sensitivity ΔM2.

次に、第1図に示した差動相互誘導型渦流計測
用センサの相互インダクタンスの測定について説
明する。相互インダクタンスを測定するときに
は、第3図に示すようにまず、第1の2次コイル
S1と第2の2次コイルS2とを差動接続する。
すなわち、第1の2次コイルS1の一方の端子
1′を第2の2次コイルS2の一方の端子2とを
接続する。また、1次コイルPの一方の端子3を
第1の2次コイルS1の一方の端子1に接続す
る。このような接続状態で、1次コイルPの両端
子1,1′間に所定周波数fの交流電流Iを流す
と、差動接続された第1および第2の2次コイル
S1およびS2は開放状態にあつて、端子4−
4′間に誘起電圧Eが誘起される。このとき、f、
I、Eおよび相互インダクタンス(M2−M1)に
より次式が得られる。
Next, measurement of mutual inductance of the differential mutual induction type eddy current measuring sensor shown in FIG. 1 will be explained. When measuring mutual inductance, first, as shown in FIG. 3, the first secondary coil S1 and the second secondary coil S2 are differentially connected.
That is, one terminal 1' of the first secondary coil S1 is connected to one terminal 2 of the second secondary coil S2. Further, one terminal 3 of the primary coil P is connected to one terminal 1 of the first secondary coil S1. In this connected state, when an alternating current I of a predetermined frequency f is passed between both terminals 1 and 1' of the primary coil P, the differentially connected first and second secondary coils S1 and S2 are opened. condition, terminal 4-
An induced voltage E is induced between 4' and 4'. At this time, f,
The following equation is obtained by I, E and mutual inductance (M2-M1).

E=2πf(M2−M1)I (6) したがつて、相互インダクタンス(M2−M1)
は、 (M2−M1)=E/2πfI (7) により求められる。
E=2πf(M2−M1)I (6) Therefore, mutual inductance (M2−M1)
is obtained by (M2−M1)=E/2πfI (7).

上記方法により相互インダクタンスを測定する
場合、第(1)式が必ずしも成立する必要はない。第
(1)式が成立しないときは、 M1<M2 (8) が成立している。したがつて、相互インダクタン
ス(M2−M1)は金属板MPを第1の2次コイル
S1から遠ざけると最小となり、金属板MPを第
1の2次コイルS1に近づけると最大となるの
で、変化割合△(M2−M1)/(M2−M1)を考
慮すると有利であることがわかる。
When measuring mutual inductance by the above method, equation (1) does not necessarily have to hold true. No.
When equation (1) does not hold, M1<M2 (8) holds. Therefore, the mutual inductance (M2-M1) becomes minimum when the metal plate MP is moved away from the first secondary coil S1, and maximum when the metal plate MP is brought closer to the first secondary coil S1, so the rate of change is It can be seen that it is advantageous to consider Δ(M2-M1)/(M2-M1).

なお、本発明による差動相互誘導型渦流計測用
センサは上記のように差動接続せず、6端子のま
まで測定装置に接続して使用する場合がある。こ
の場合、測定装置内において、第1および第2の
コイルの各誘起電圧が差動接続した場合と同じよ
うに作用するようになつている。
Note that the differential mutual induction type eddy current measurement sensor according to the present invention may be used without differential connection as described above, and connected to a measuring device with six terminals as is. In this case, within the measuring device, the induced voltages of the first and second coils act in the same way as if they were differentially connected.

また、第2図に示した従来の渦流計測用センサ
はセンサであるコイルの温度変化に対する補償効
果を有するが、本発明による差動相互誘導型渦流
計測用センサであつても、該補償効果が失なわれ
ることがない。
Further, although the conventional eddy current measurement sensor shown in FIG. 2 has a compensation effect for temperature changes in the coil that is the sensor, even the differential mutual induction type eddy current measurement sensor according to the present invention does not have this compensation effect. It will never be lost.

また、本実施例では金属板迄の距離測定につい
て説明したが、金属板の誘電率測定、金属板の探
傷(傷の検出)あるいはメタル検出などに適用で
き、特に被測定物迄の距離が大きいときには効果
が大きい。
In addition, although this example describes distance measurement to a metal plate, it can also be applied to dielectric constant measurement of metal plates, flaw detection (flaw detection) of metal plates, metal detection, etc., especially when the distance to the object to be measured is large. Sometimes the effect is great.

さらに、測定対象は金属板に限らず、後えば海
水であつてもよい。ただし、この場合相互インダ
クタンスの変化分は複素数になる。したがつて、
本発明は海水氷の厚さの推定にも適用できる。す
なわち、1次コイルに高周波電流を流し、2次コ
イルに誘起される電圧の位相角を検出することに
より、海氷の厚さを推定するものである。(詳し
くは、「海氷の厚さ推定方法」、特開昭58−223704
参照) 〔発明の効果〕 以上説明したように本発明によれば、被測定物
に対して近い第1の2次コイルと、被測定物に対
して第1の2次コイルより遠い第2の2次コイル
を1次コイルを挟んで対向配置し、1次コイルと
第1の2次コイルとの間隔を該1次コイルと第2
の2次コイルとの間隔よりも大きくするととも
に、第1の2次コイルの巻線数を第2の2次コイ
ルの巻線数よりも多くしたことにより、被測定物
である例えば、金属板が第1の2次コイルから離
れた位置にあつても、変位感度が小さくならず、
高精度の計測ができる。
Furthermore, the object to be measured is not limited to a metal plate, but may also be seawater. However, in this case, the amount of change in mutual inductance becomes a complex number. Therefore,
The present invention can also be applied to estimation of seawater ice thickness. That is, the thickness of sea ice is estimated by passing a high frequency current through the primary coil and detecting the phase angle of the voltage induced in the secondary coil. (For details, see ``Sea Ice Thickness Estimation Method,'' JP-A-58-223704.
(See) [Effects of the Invention] As explained above, according to the present invention, the first secondary coil is closer to the object to be measured, and the second secondary coil is farther from the object to be measured than the first secondary coil. The secondary coils are arranged opposite to each other with the primary coil in between, and the interval between the primary coil and the first secondary coil is set so that the distance between the primary coil and the second
By making the distance between the first secondary coil and the second secondary coil larger and the number of turns of the first secondary coil larger than the number of turns of the second secondary coil, the object to be measured, such as a metal plate, Even if the coil is located away from the first secondary coil, the displacement sensitivity does not become small;
Capable of high-precision measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る差動相互誘導型渦流計測
用センサの概略図、第2図は従来の差動相互誘導
型渦流計測用センサの概略図、第3図は相互イン
ダクタンス測定時における2次コイルの差動接続
図である。 P……1次コイル、S1……第1の2次コイ
ル、S2……第2の2次コイル。
Fig. 1 is a schematic diagram of a differential mutual induction type eddy current measurement sensor according to the present invention, Fig. 2 is a schematic diagram of a conventional differential mutual induction type eddy current measurement sensor, and Fig. 3 is a schematic diagram of a differential mutual induction type eddy current measurement sensor according to the present invention. It is a differential connection diagram of the next coil. P...Primary coil, S1...First secondary coil, S2...Second secondary coil.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物に対して近い第1の2次コイルと、
被測定物に対して第1の2次コイルより遠い第2
の2次コイルを1次コイルを挟んで対向配置し、
1次コイルと第1の2次コイルトの間隔を該1次
コイルと第2の2次コイルとの間隔よりも大きく
するとともに、第1の2次コイルの巻線数を第2
の2次コイルの巻線数よりも多くしたことを特徴
とする差動相互誘導型渦流計測用センサ。
1 a first secondary coil close to the object to be measured;
The second secondary coil, which is further away from the first secondary coil with respect to the object to be measured,
The secondary coils are arranged opposite to each other with the primary coil in between,
The interval between the primary coil and the first secondary coil is made larger than the interval between the primary coil and the second secondary coil, and the number of turns of the first secondary coil is
A differential mutual induction type eddy current measurement sensor characterized in that the number of turns is greater than that of the secondary coil.
JP27316184A 1984-12-26 1984-12-26 Differential mutual induction type eddy current measuring sensor Granted JPS61151402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27316184A JPS61151402A (en) 1984-12-26 1984-12-26 Differential mutual induction type eddy current measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27316184A JPS61151402A (en) 1984-12-26 1984-12-26 Differential mutual induction type eddy current measuring sensor

Publications (2)

Publication Number Publication Date
JPS61151402A JPS61151402A (en) 1986-07-10
JPH0523361B2 true JPH0523361B2 (en) 1993-04-02

Family

ID=17523945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27316184A Granted JPS61151402A (en) 1984-12-26 1984-12-26 Differential mutual induction type eddy current measuring sensor

Country Status (1)

Country Link
JP (1) JPS61151402A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118303U (en) * 1988-01-29 1989-08-10
US6570379B2 (en) * 2000-08-24 2003-05-27 Shell Oil Company Method for inspecting an object of electrically conducting material
US6707296B2 (en) * 2000-08-24 2004-03-16 Shell Oil Company Method for detecting cracks in electrically conducting material
US6593737B2 (en) * 2000-08-24 2003-07-15 Shell Oil Company Method for measuring the wall thickness of an electrically conductive object
JP2003004407A (en) * 2001-06-20 2003-01-08 Sankyo Seiki Mfg Co Ltd Displacement measuring device
JP5513821B2 (en) * 2009-09-17 2014-06-04 株式会社荏原製作所 Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method
JP4975142B2 (en) * 2010-06-17 2012-07-11 トヨタ自動車株式会社 Eddy current measuring sensor and eddy current measuring method
JP2017142200A (en) * 2016-02-12 2017-08-17 株式会社東海理化電機製作所 Position detector
CN117940769A (en) * 2021-09-24 2024-04-26 三菱电机株式会社 Orientation direction detecting device

Also Published As

Publication number Publication date
JPS61151402A (en) 1986-07-10

Similar Documents

Publication Publication Date Title
US4757259A (en) Method for measuring the thickness and temperature of a moving metal sheet by means of eddy currents
JP3445362B2 (en) AC current sensor
US5914593A (en) Temperature gradient compensation circuit
US3890564A (en) Apparatus for inducing eddy current in a semiconductor wafer for measuring the electric conductivity or resistivity thereof
US20170167893A1 (en) Electronic absolute position encoder
JPH0523361B2 (en)
US4725778A (en) Detecting resistance faults
US5416408A (en) Current sensor employing a mutually inductive current sensing scheme with a magnetic field substantially uniform in angular direction
JPH01105178A (en) Current detector
CN218219943U (en) Cooking device
JPH0124266B2 (en)
JPH0323872B2 (en)
US3379969A (en) Magnetic bridge means for detecting the electrical properties of substances
SU1530940A1 (en) Device for measuring surface temperature of ferromagnetic bodies
JPH04296627A (en) Temperature compensator for torque measuring device
JPS61223502A (en) Mutual induction type eddy current sensor
JPS5821395B2 (en) How do you know what to do?
JPS59151030A (en) Vortex type axial force measuring method
JPS604084Y2 (en) displacement transducer
JPS61167828A (en) Detection system for torque of induction motor
JPH0375571A (en) Measuring method of alternating current
SU1627820A1 (en) Differential-transformer displacement transducer with phase output
CN114112092A (en) Sensor ambient temperature measuring circuit and sensor
JPH0549946B2 (en)
JPH0222529B2 (en)