WO2017135730A1 - 열교환기 - Google Patents

열교환기 Download PDF

Info

Publication number
WO2017135730A1
WO2017135730A1 PCT/KR2017/001186 KR2017001186W WO2017135730A1 WO 2017135730 A1 WO2017135730 A1 WO 2017135730A1 KR 2017001186 W KR2017001186 W KR 2017001186W WO 2017135730 A1 WO2017135730 A1 WO 2017135730A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
flow path
plate
combustion gas
Prior art date
Application number
PCT/KR2017/001186
Other languages
English (en)
French (fr)
Inventor
정인철
박준길
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to JP2018536145A priority Critical patent/JP6796651B2/ja
Priority to CN201780009911.2A priority patent/CN108603686B/zh
Priority to EP17747775.9A priority patent/EP3412990A4/en
Priority to US16/072,266 priority patent/US11054188B2/en
Publication of WO2017135730A1 publication Critical patent/WO2017135730A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/30Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle being built up from sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/30Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle being built up from sections
    • F24H1/32Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle being built up from sections with vertical sections arranged side by side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/34Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water chamber arranged adjacent to the combustion chamber or chambers, e.g. above or at side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/12Arrangements for connecting heaters to circulation pipes
    • F24H9/13Arrangements for connecting heaters to circulation pipes for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0024Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion apparatus, e.g. for boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat exchanger, and more particularly, to facilitate the circulation of the heat medium flowing along the heat medium flow path formed between the plates to minimize the pressure drop of the heat medium and to prevent local overheating to improve heat exchange efficiency and
  • the present invention relates to a heat exchanger that is easy to manufacture.
  • a boiler used for heating or hot water is a device that heats heating water or direct water (hereinafter referred to as 'heat medium') by a heat source to heat a desired area or to supply hot water.
  • a burner that burns a gas and air mixer.
  • a heat exchanger for transferring the heat of combustion of the combustion gas to the heat medium.
  • Patent No. 10-0813807 discloses a heat exchanger composed of a heat exchanger pipe in which a burner is positioned at the center and wound in a coil form around the burner.
  • the heat exchanger introduced in the prior art document has a problem that the tube is deformed into a round shape when the tube is formed into a flat shape and the pressure is applied to the heat transfer medium, and the thickness is increased because the tube is rolled up and manufactured. .
  • the conventional heat exchanger has a structure in which the heat exchange tube is wound around the combustion chamber in the form of a coil, so that the heat exchange between the combustion gas and the heat medium takes place only in the local space around the heat exchanger in the form of a coil, thereby ensuring a wide heat transfer area.
  • a plate heat exchanger in which a plurality of plates are stacked to form a heat medium flow path and a combustion gas flow path therein, so that heat exchange is performed between the heat medium and the combustion gas.
  • the conventional plate heat exchanger has a problem that the pressure drop and the flow rate is reduced in the process of heating the heat medium between the plurality of plates, which causes the heat medium is locally overheated to cause noise and foreign matters.
  • the heat medium flows only to a part of the heat medium flow path under the influence of gravity, and air remains in the remaining areas, thereby degrading heat exchange efficiency.
  • the present invention has been made to solve the above problems, the circulation of the heat medium flowing along the heat medium flow path formed between the plate is made smoothly to minimize the pressure drop of the heat medium and to prevent local overheating heat exchange efficiency
  • the purpose is to provide a heat exchanger that is easy to manufacture and easy to manufacture.
  • the heat exchanger of the present invention for achieving the above object, the heat medium flow path (P1) through which the heat medium flows in the space between the plurality of plates, and the combustion gas flow path (P2) through which the combustion gas burned in the burner is adjacent to each other.
  • the heat exchange part is surrounded by the outer side of the combustion chamber (C) space of the center is provided with a plurality of laminated structure;
  • Some of the heat medium flow path of the heat medium flow path (P1) provided in each layer is characterized in that the flow direction of the heat medium is formed only in one direction.
  • the heat exchanger by forming the flow direction of the heat medium circulating along the circumference of the combustion chamber in one direction, the heat medium is smoothly circulated, thereby minimizing the pressure drop of the heat medium and preventing local overheating, thereby improving heat exchange efficiency.
  • a plurality of heat exchangers are formed to surround the outer space of the combustion chamber, and a heat medium flow path is formed in series between the plurality of heat exchange parts, and a heat medium flow path is formed in each heat exchange part in parallel, thereby increasing the capacity of the heat exchanger in parallel. By adjusting the number of flow paths, the capacity can be increased without the pressure drop of the heat medium.
  • FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is a front view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 4 is an enlarged perspective view of a part of the unit plate shown in FIG. 3;
  • FIG. 5 is a perspective view showing the flow path of the heat medium
  • FIG. 6 is a cross-sectional view taken along the line A-A of FIG.
  • FIG. 7 is a partially exploded perspective view illustrating a combustion gas passage formed in a lower portion of a heat exchanger
  • FIG. 8 is a cross-sectional perspective view taken along the line B-B of FIG.
  • FIG. 10 is a cross-sectional view taken along the line C-C of FIG. 2 for explaining the action of the heat medium distribution part;
  • FIG. 11 is a cross-sectional perspective view taken along the line D-D of FIG.
  • FIG. 13 is a perspective view of a heat exchanger according to another embodiment of the present invention.
  • FIG. 14 is a cross-sectional perspective view taken along the line F-F of FIG.
  • FIG. 15 is a sectional perspective view taken along the line G-G of FIG. 13;
  • 16 is a perspective view showing the flow path of the heat medium.
  • first projection 122 second projection
  • first shield 124 first heat medium distribution unit
  • A1 first opening
  • A2 second opening
  • H1 ', H2', H3 ', H4' Blockage part P1: Thermal fluid path
  • a heat exchanger 1 according to an embodiment of the present invention includes a plurality of circumferences of a combustion chamber C in which combustion heat and combustion gas are generated by combustion of a burner (not shown).
  • the plate is made of a heat exchanger 100 is made of a stack.
  • the heat exchange part 100 may be configured by stacking a plurality of plates in a vertical direction and stacked from the front to the rear, and stacking a plurality of heat exchange parts 100 -A, 100 -B, and 100-C. have. Therefore, a burner may be inserted into the combustion chamber C in a horizontal direction from the front, thereby assembling and detaching the burner and maintaining convenience of maintenance of the heat exchanger 1.
  • the plurality of plates, the first to 12th unit plate (100-1,100-2,100-3,100-4,100-5,100-6,100-7,100-8,100-9,100-10,100-11,100-12), Each unit plate is located in front of the first plate (100a-1,100a-2,100a-3,100a-4,100a-5,100a-6,100a-7,100a-8,100a-9,100a-10,100a-11,100a-12)
  • second plates (100b-1,100b-2,100b-3,100b-4,100b-5,100b-6,100b-7,100b-8,100b-9,100b-10,100b-11,100b-12) respectively stacked on the rear side thereof.
  • a heat medium flow path (P1) through which the heat medium flows, and the second plate constituting the unit plate located on one side of the unit plates stacked adjacently;
  • the combustion gas flow path P2 through which the combustion gas flows is formed between the first plates of the unit plates located on the other side.
  • the heat medium flow path P1 and the combustion gas flow path P2 are alternately formed adjacent to each other between the plurality of plates, and heat exchange is performed between the heat medium and the combustion gas.
  • the first plate may include a first section 110 having a first opening A1 formed at the center thereof, and a partial section in the circumferential direction from the first planar section 110.
  • the first protrusion 120 is formed to communicate with each other and is convex forward, and the first flange portion 130 extending rearward from the edge of the first flat portion 110.
  • the second plate may include a second opening portion A2 corresponding to the first opening portion A1 in the front-rear direction and formed in the center thereof and in contact with the first flat portion 110.
  • a first recess 150 is formed in the second circumferential portion 140 in a circumferential direction so as to communicate with a portion of the first convex portion 120 to form a convex rearward portion.
  • a second flange portion 160 coupled to the first flange portion 130 of the unit plate which extends rearward from the edge of the second plane portion 140 and is positioned adjacent thereto.
  • FIGS. 3 and 5 show the flow direction of the heat medium.
  • the heat exchange part 100 is formed of a plurality of stacked structures, and in one embodiment, the first heat exchange part 100 -A, the second heat exchange part 100 -B, and the third heat exchange part. It may consist of (100-C).
  • the heat medium flow path P1 in the plurality of heat exchange parts 100 -A, 100 -B, and 100-C is configured such that the flow direction of the heat medium is formed in only one direction. That is, between the heat exchange parts stacked adjacent to each other among the plurality of heat exchange parts 100 -A, 100 -B, and 100-C, the flow direction of the heat medium is formed in one direction, but in opposite directions (clockwise and counterclockwise). It is formed in series.
  • the heat medium flow paths P2 are formed in parallel in the plurality of unit plates constituting the heat exchange parts 100 -A, 100 -B, and 100 -C.
  • a heat medium inlet and a heat medium outlet are formed at adjacent intervals, respectively, respectively.
  • the heat medium inlet is formed in a clogged shape, and among the heat exchange parts 100-A, 100-B, and 100-C stacked adjacent to each other, The heat medium inlet and the heat medium outlet formed in one of the heat exchange parts are formed at positions opposite to the heat medium inlet and the heat medium outlet formed in the other heat exchange part.
  • the heat medium inlet of the third heat exchange part 100-C is a heat medium formed in the second plate 100b-12 of the twelfth unit plate 100-12.
  • the inlet 101, the heat medium outlet of the third heat exchange part 100-C is the second through hole H2 formed in the first plate 100a-9 of the ninth unit plate 100-9, and the second
  • the heat medium inlet of the heat exchange part 100 -B is the fourth through hole H4 formed in the second plate 100b-8 of the eighth unit plate 100-8 and the second heat exchange part 100 -B of the heat exchange part 100 -B.
  • the heat medium outlet is the first through hole H1 formed in the first plate 100a-5 of the fifth unit plate 100-5, and the heat medium inlet of the first heat exchange part 100-A is the fourth unit plate ( The third through hole H3 formed in the second plate 100b-4 of 100-4, and the heat medium outlet of the first heat exchange part 100-A is the first plate of the first unit plate 100-1. It means the heat medium outlet 102 formed in (100a-1).
  • a first through hole H1 and a second through hole H2 are formed adjacent to an upper side of the first plate, and the first side of the second plate is adjacent to the first plate.
  • a third through hole H3 corresponding to the first through hole H1 and a fourth through hole H4 corresponding to the second through hole H2 are formed.
  • the first block portion H1 ′ is formed at a position corresponding to the first through hole H1 at the upper one side of the first plate 100a-1 located at the forefront, and the second through hole H2 is formed.
  • the heat medium outlet 102 is formed at the position corresponding to
  • a heat medium inlet 101 is formed at a position corresponding to the third through hole H3, and the fourth through hole H4.
  • the fourth blocking portion H4 ' is formed at the corresponding position.
  • a fourth blocking portion H4 ′ is formed at a position corresponding to the fourth through hole H4 in the second plate 100b-4 of the fourth unit plate 100-4, and the fifth unit plate (
  • the second block portion H2 ′ is formed at a position corresponding to the second through hole H2 in the first plate 100a-5 of 100-5, and the second portion of the eighth unit plate 100-8 is formed.
  • the third block portion H3 ′ is formed at a position corresponding to the third through hole H3 in the plate 100b-8, and is formed on the first plate 100a-9 of the ninth plate 100-9.
  • the first blocking portion H1 ' is formed at a position corresponding to the first through hole H1.
  • the heat medium flow path P1 of the 12th unit plate 100-12 is provided.
  • the introduced heat medium flows forward through the first through fourth through holes H1, H2, H3, and H4 formed in the twelfth through ninth unit plates 100-12, 100-11, 100-10, and 100-9.
  • the first blocking portion H1 ' is formed on the first plate 100a-9 of the ninth unit plate 100-9, so that the twelfth to ninth unit plates 100-12,100-11,100-10,100-9 are formed.
  • the heat medium flows clockwise.
  • the second through hole H2 formed in the first plate 100a-9 of the ninth unit plate 100-9 and the second plate 100b-8 of the eighth unit plate 100-8 are formed.
  • the heat medium flowing into the heat medium flow path P1 of the eighth unit plate 100-8 through the fourth through hole H4 is formed in the eighth to fifth unit plates 100-8,100-7,100-6,100-5.
  • the first through fourth through holes (H1, H2, H3, H4) to flow forward, and at the same time the second block portion (1) in the first plate (100a-5) of the fifth unit plate (100-5) H2 ') is formed so that the heat medium flows counterclockwise in the heat medium flow path P1 inside the eighth to fifth unit plates 100-8,100-7,100-6,100-5.
  • the first through hole H1 formed in the first plate 100a-5 of the fifth unit plate 100-5 and the second plate 100b-4 of the fourth unit plate 100-4 are formed.
  • the heat medium flowing into the heat medium flow path P1 of the fourth unit plate 100-4 through the third through hole H3 is formed in the fourth to first unit plates 100-4, 100-3, 100-2, and 100-1.
  • the heat medium consists of the heat medium flow path P1 and the first to fourth through holes H1, H2, H3, and H4 so that the heat medium flows in one direction.
  • the circulation of the heat medium flowing along the circumference of the combustion chamber C is smoothly performed, thereby minimizing the pressure drop of the heat medium and preventing local overheating, thereby improving thermal efficiency.
  • the capacity of the heat exchanger by increasing the capacity of the heat exchanger, by adjusting the number of parallel flow paths in each of the heat exchange parts 100 -A, 100 -B, and 100-C, the capacity can be increased without the pressure drop of the heat medium.
  • the combustion gas generated by the combustion of the burner in the combustion chamber C is discharged downward through the lower portion of the heat exchange unit 100.
  • the combustion gas is configured to uniformly discharge the gas through the plurality of combustion gas flow path (P2), when the first plate and the second plate, the first flange portion 130 and the second plate of the first plate A portion of the second flange portion 160 of the combustion gas passage part D through which the combustion gas flowing through the combustion gas flow path P2 is discharged to a part of the edges of the first plate and the second plate. ) Is formed.
  • a plurality of first cutouts 131 are formed at the combustion gas discharge side of the first flange 130, and a plurality of second cutouts 161 are formed at the combustion gas discharge side of the second flange 160.
  • the combustion gas passing part D is formed in a partial region of the first cutout 131 and the second cutout 161.
  • the combustion gas passing part (D) is formed in a plurality of spaced apart at regular intervals in the transverse direction and the longitudinal direction below the heat exchange unit 100, whereby the combustion gas passing through the heat exchange unit 100 is lower than the heat exchange unit (100) It can be dispensed by a uniform flow rate over the entire area of the, thereby reducing the flow resistance of the discharged combustion gas and serves to prevent noise and vibration.
  • a section in which the flow direction of the heat medium is switched in the plurality of heat exchange parts 100 -A, 100 -B, and 100 -C that is, the second heat exchange part 100 -B in the third heat exchange part 100 -C
  • the heat medium flow path formed in each heat exchange section (100-A, 100-B, 100-C) The flow rate of the heat medium flowing in (P1) tends to be unevenly distributed by inertia and pressure.
  • the heat medium from the inlet or the heat medium flow path (P1) in which the heat medium flows into the heat medium flow path (P1) The outflowing portion that flows out is provided with heat dispersing portions 123 and 153 having open portions 123 'and 153' and blocking portions 123 "and 153".
  • the heating medium dispersion parts 123 and 153 are provided in plurality in spaced apart directions in the flow direction of the heating medium, and the opening parts 123 'and 153' and the blocking parts 123 "and 153" are disposed between adjacent heating medium dispersion parts 123 and 153. ) Are provided to cross each other along the flow direction of the heat medium.
  • the heat medium dispersion parts 123 and 153 are alternately formed with the opening parts 123 'and 153' and the blocking parts 123 "and 153" along the circumferential direction.
  • the heat medium passing through the first open part 123 ′ formed in the first heat medium dispersion part 123 is located at the second side of the second heat medium dispersion part 153 located behind the heat medium.
  • the heat medium hit by the blocking part 153 ′′ and passed through the second opening part 153 ′′ formed in the second heat medium dispersing part 153 is located at the first of the first heat medium dispersing part 123 located behind it.
  • the impingement is impinged upon the blocking portion 123 ′′, and by this dispersing action, the inertia of the heat medium can be alleviated to uniformly control the flow rate of the heat medium flowing into the heat medium flow path P1 of each layer.
  • the heat medium so that the flow path is narrowly formed in the portion in which the flow direction of the heat medium is switched in the heat medium flow path P1.
  • Distributors 124 and 154 are provided.
  • the heat medium distributing parts 124 and 154 may be formed in an embossed shape protruding toward the heat medium flow path P1 at the portion where the heat medium flows into the heat medium flow path P1 and the heat medium flows out from the heat medium flow path P1.
  • the cross-sectional area of the flow path formed between the first heat medium distribution part 124 formed on the first plate and the second heat medium distribution part 154 formed on the second plate is a heat medium flow path formed between the first plate and the second plate. It is formed narrower than the cross-sectional area of (P1), it is possible to prevent the phenomenon that the heat medium is concentrated in the heat medium flow path (P1) of some of the heat medium flow path (P1) of each layer through the heat medium flow path (P1) of each layer The flow rate of the flowing heating medium can be adjusted uniformly.
  • the first protrusion 120 formed on the first plate alternates the first protrusion piece 120a and the second protrusion piece 120b having different heights in the front-rear direction along the circumferential direction.
  • the first recessed part 150 formed in the second plate is alternately arranged along the circumferential direction of the first recessed piece 150a and the second recessed piece 150b having different heights in the front-rear direction. It consists of.
  • the heat exchange efficiency may be improved by inducing the active turbulence in the flow of the heat medium and the combustion gas.
  • a plurality of first protrusions 121 protruding toward the heat medium flow path P1 are formed in the first protrusion 120, and the heat medium flow path P1 is formed in the first recess 150.
  • a third protrusion 151 protruding toward the first protrusion 121 and abutting the first protrusion 121 is formed.
  • a plurality of second protrusions 122 protruding toward the combustion gas flow path P2 are formed in the first protrusion 120, and the combustion is formed in the first recess 150.
  • a fourth protrusion 152 protruding toward the gas flow path P2 and contacting the second protrusion 122 is formed.
  • the first protrusion 121 and the third protrusion 151 protrude to the inner side of the heat medium passage P1 to be in contact with each other, and the second protrusion 122 and the fourth protrusion 152 are the combustion gas passage P2.
  • the inner side of the contact it is possible to induce turbulence in the flow of the heat medium and the combustion gas to improve heat exchange efficiency, and to prevent deformation of the plate due to the pressure of the fluid and to improve the pressure resistance performance.
  • the heat exchanger 1 ′ functions as a sensible heat unit 100A in which the heat exchange unit 100 according to the above-described embodiment heats the heat medium using the sensible heat of the combustion gas generated by the combustion of the burner.
  • the combustion gas passing through the latent heat portion heat medium flow path P3 through which the heat medium flows in the space between the plurality of plates, and the combustion gas flow path P2 of the sensible heat portion 100A the combustion gas passing through the latent heat portion heat medium flow path P3 through which the heat medium flows in the space between the plurality of plates, and the combustion gas flow path P2 of the sensible heat portion 100A.
  • the latent heat part 100B which flows in the latent heat part combustion gas flow path P4 adjacent to each other is integrally formed.
  • the sensible heat unit 100A of the present embodiment has a shape in which the heat medium inlet 101 formed in the rearmost second plate 100b-12 is blocked, compared to the heat exchange unit 100 of the above-described embodiment.
  • a second protrusion 170 is formed to be convex forward from the first flat part 110, and the latent heat part 100B is located.
  • the second recessed part 180 is formed at one side of the second plate so as to be convex rearward from the second flat part 140 to form the latent heat part heat medium flow path P3 between the second protrusion part 170. ) Is provided.
  • a second communication portion between the second depression 180 of the unit plate located on one side and the second protrusion 170 of the unit plate located on the other side communicates with the first combustion gas flow path P2 to allow combustion gas to flow.
  • the combustion gas flow path P4 is formed.
  • the second protrusion 170 and the second recess 180 are formed in the shape of a comb bent in opposite directions, and the second protrusion 170 and the second recess 180 intersect with each other, and thus the latent heat transfer medium flow path P3.
  • latent heat combustion gas flow passages (P4) are formed adjacent to each other alternately, it is possible to improve the heat exchange efficiency by promoting the generation of turbulence in the flow of the heat medium and combustion gas.
  • a heat medium inlet 101 ′ and a heat medium introduced into the heat medium inlet 101 ′ are connected to a latent heat medium heat medium flow path P3 formed in each unit plate at a lower side of the latent heat part 100B.
  • Through holes H5 and H7 are formed, and the heat medium passing through the latent heat medium heat medium passage P3 is connected to the third heat exchange part 100C 'of the sensible heat part 100A on the other side of the upper part of the latent heat part 100B.
  • Through-holes H6 and H8 are formed as possible.
  • the through-holes H5, H7, H6, and H8) have a first heat medium dispersion part 123 and 123 and a second heat medium so that the heat medium is uniformly distributed and flows through the latent heat part heat medium flow path P3 formed in each layer.
  • the heat medium dispersion parts 153 and 153, the first heat medium distribution part 124, and the second heat medium distribution part 154 are formed, respectively.
  • the latent heat medium heat medium flow path P3 may be connected in parallel between the heat medium inlet 101 ′ through which the heat medium flows and the connection flow path of the heat medium to reduce the flow resistance of the heat medium.
  • the heat exchanger 1 ′ includes a first heat exchanger 100-A ′, a second heat exchanger 100-B ′, and a third heat exchanger 100-C ′.
  • the latent heat part heat medium paths P3 are formed in parallel to reduce the flow resistance of the heat medium, and in the sensible heat part 100A, some heat exchange parts 100-A 'and 100-B' are applied.
  • the heat medium can be smoothly circulated to minimize the pressure drop of the heat medium and prevent local overheating, thereby improving thermal efficiency.
  • the present embodiment by stacking a plurality of plates to configure the sensible heat unit 100A and the latent heat unit 100B as an integral type, the number of parts of the heat exchanger can be reduced, and the production process is simplified and production automation is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

본 발명은 플레이트 사이에 형성된 열매체유로를 따라 유동하는 열매체의 순환이 원활하게 이루어지도록 하여 열매체의 압력강하를 최소화하고 국부적인 과열을 방지하여 열교환효율을 향상시킴과 아울러 제작이 용이한 열교환기를 제공함에 그 목적이 있다. 본 발명은, 복수의 플레이트 사이의 공간에 열매체가 유동하는 열매체유로와, 버너에서 연소된 연소가스가 유동하는 연소가스유로가 인접하게 교대로 형성된 열교환부를 구비하고; 상기 열교환부는 중앙의 연소실 공간의 외측을 둘러싸되 복수 개가 적층 구조로 구비되며; 상기 각 층에 구비된 열매체유로 중 일부 열매체유로는 열매체의 유동방향이 일방향으로만 형성된 것을 특징으로 한다.

Description

열교환기
본 발명은 열교환기에 관한 것으로서, 더욱 상세하게는 플레이트 사이에 형성된 열매체유로를 따라 유동하는 열매체의 순환이 원활하게 이루어지도록 하여 열매체의 압력강하를 최소화하고 국부적인 과열을 방지하여 열교환효율을 향상시킴과 아울러 제작이 용이한 열교환기에 관한 것이다.
난방용 또는 온수용으로 사용되는 보일러는 난방수 또는 직수(이하, ‘열매체’라 통칭함)를 열원에 의해 가열시켜 원하는 지역을 난방하거나 온수를 공급하는 장치로서, 가스와 공기의 혼합기를 연소시키는 버너와, 연소가스의 연소열을 열매체로 전달하는 열교환기를 포함하여 구성된다.
종래의 열교환기와 관련된 선행기술의 일례로서, 등록특허 제10-0813807호 에는, 중앙에 버너가 위치하고, 버너의 둘레에 코일형태로 감겨진 열교환파이프로 구성된 열교환기가 개시되어 있다.
상기 선행기술 문헌에 소개된 열교환기는, 튜브를 납작한 형태로 성형하여 열전달 매체부에 압력이 가해질 경우 둥근 형태로 변형이 되는 문제를 가지고 있고, 튜브를 말아올려 제작하기 때문에 두께가 두꺼워지는 문제가 있다. 
또한 종래의 열교환기는 열교환관이 연소실의 둘레에 코일형태로 감겨진 구조로 이루어져 있어 연소가스와 열매체 간의 열교환이 코일형태로 형성되는 열교환기 주변의 국부적인 공간에서만 이루어지므로 전열 면적을 넓게 확보할 수 없는 단점이 있다.
이러한 문제를 해결하기 위한 방안으로서 근래에는 다수 개의 플레이트를 적층시켜 그 내부에 열매체유로와 연소가스유로를 형성하여 열매체와 연소가스 간에 열교환이 이루어지도록 구성된 판형 열교환기가 개발되고 있다.
그러나 종래의 판형 열교환기는 열매체가 복수의 플레이트 사이를 유동하는 과정에서 압력 강하 및 유속이 감속되는 현상이 발생하고, 이로 인해 열매체가 국부적으로 과열되어 소음 및 이물질의 발생을 초래하는 문제점이 있다.
특히, 복수의 플레이트를 직립구조로 구성할 경우에는, 중력의 영향에 의해 열매체가 열매체유로의 일부 영역으로만 유동하고 나머지 영역에는 공기가 잔류하게 되어 열교환효율이 저하되는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 플레이트 사이에 형성된 열매체유로를 따라 유동하는 열매체의 순환이 원활하게 이루어지도록 하여 열매체의 압력강하를 최소화하고 국부적인 과열을 방지하여 열교환효율을 향상시킴과 아울러 제작이 용이한 열교환기를 제공함에 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 열교환기는, 복수의 플레이트 사이의 공간에 열매체가 유동하는 열매체유로(P1)와, 버너에서 연소된 연소가스가 유동하는 연소가스유로(P2)가 인접하게 교대로 형성된 열교환부를 구비하고; 상기 열교환부는 중앙의 연소실(C) 공간의 외측을 둘러싸되 복수 개가 적층 구조로 구비되며; 상기 각 층에 구비된 열매체유로(P1) 중 일부 열매체유로는 열매체의 유동방향이 일방향으로만 형성된 것을 특징으로 한다.
본 발명에 따른 열교환기에 의하면, 연소실의 둘레를 따라 순환하는 열매체의 유동방향을 일방향으로 형성함으로써 열매체의 순환이 원활하게 이루어져 열매체의 압력강하를 최소화하고 국부적인 과열을 방지함으로써 열교환효율을 향상시킬 수 있다.
또한 연소실 외측 공간을 둘러싸며 적층되는 복수의 열교환부를 구비하고, 복수의 열교환부 간에는 열매체유로를 직렬로 형성하고, 각각의 열교환부의 내부에는 열매체유로를 병렬로 형성함으로써, 열교환기의 용량 증대 시 병렬 유로의 수를 조절하여 열매체의 압력강하 없이 용량을 증대시킬 수 있다.
또한 복수의 플레이트를 적층시켜 현열부와 잠열부를 일체형으로 제작하므로, 열교환기의 부품수를 줄일 수 있고, 생산 공정이 간소화되어 생산 자동화가 가능하다.
또한 제1돌출부와 제1함몰부의 표면에 단차를 형성하고, 열매체유로 및 연소가스유로의 내부에는 대응되는 위치에 돌기들이 서로 맞닿도록 구성함으로써, 열매체와 연소가스의 난류발생을 유도하여 열교환효율을 향상시키는 동시에 유체의 압력에 의한 플레이트의 변형을 방지하고 내압 성능을 향상시킬 수 있다.
도 1은 본 발명의 일실시예에 따른 열교환기의 사시도,
도 2는 본 발명의 일실시예에 따른 열교환기의 정면도,
도 3은 본 발명의 일실시예에 따른 열교환기의 분해 사시도,
도 4는 도 3에 도시된 단위플레이트의 일부를 확대하여 도시한 사시도,
도 5는 열매체의 유동 경로를 나타낸 사시도,
도 6은 도 2의 A-A 선을 따르는 단면도,
도 7은 열교환기의 하부에 연소가스 통과부가 형성된 모습을 나타낸 부분 분해 사시도,
도 8은 도 2의 B-B 선을 따르는 단면 사시도,
도 9는 열매체 분산부의 작용을 설명하기 위한 부분 사시도,
도 10은 열매체 분배부의 작용을 설명하기 위한 도 2의 C-C 선을 따르는 단면도,
도 11은 도 2의 D-D 선을 따르는 단면 사시도,
도 12는 도 2의 E-E 선을 따르는 단면 사시도,
도 13은 본 발명의 다른 실시예에 따른 열교환기의 사시도,
도 14는 도 13의 F-F 선을 따르는 단면 사시도,
도 15는 도 13의 G-G 선을 따르는 단면 사시도,
도 16은 열매체의 유동 경로를 나타낸 사시도.
** 부호의 설명 **
1,1' : 열교환기 100 : 열교환부
100-A,100-A' : 제1열교환부 100-B,100-B' : 제2열교환부
100-C,100-C' : 제3열교환부 100A : 현열부
100B : 잠열부 100-1~100-12 : 단위플레이트
100a-1~100a-12 : 제1플레이트 100b-1~100b-12 : 제2플레이트
101,101' : 열매체 입구 102 : 열매체 출구
110 : 제1평면부 120 : 제1돌출부
120a : 제1돌출편 120b : 제2돌출편
121 : 제1돌기 122 : 제2돌기
123 : 제1열매체 분산부 123' : 제1개방부
123" : 제1차단부 124 : 제1열매체 분배부
130 : 제1플랜지부 131 : 제1절개부
140 : 제2평면부 150 : 제1함몰부
150a : 제1함몰편 150b : 제2함몰편
151 : 제3돌기 152 : 제4돌기
153 : 제2열매체 분산부 153' : 제2개방부
153" : 제2차단부 154 : 제2열매체 분배부
160 : 제2플랜지부 161 : 제2절개부
170 : 제2돌출부 180 : 제2함몰부
A1 : 제1개방구 A2 : 제2개방구
C : 연소실 H1~H8 : 관통구
H1',H2',H3',H4' : 막힘부 P1 : 열매체유로
P2 : 연소가스유로 P3 : 잠열부 열매체유로
P4 : 잠열부 연소가스유로
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
도 1 내지 도 7을 참조하면, 본 발명의 일실시예에 따른 열교환기(1)는, 버너(미도시됨)의 연소에 의해 연소열과 연소가스가 발생하는 연소실(C)의 둘레에 복수 개의 플레이트가 적층되어 이루어진 열교환부(100)로 이루어진다.
상기 열교환부(100)는, 복수의 플레이트가 종방향으로 직립되며 전방에서 후방으로 적층되어 구성되고, 복수의 열교환부(100-A,100-B,100-C)가 적층된 구조로 이루어질 수 있다. 따라서, 상기 연소실(C)에는 버너가 정면에서부터 수평방향으로 삽입되어 조립될 수 있으며, 이로써 버너의 착탈 및 열교환기(1)의 유지보수의 편의성을 향상시킬 수 있다.
일실시예로서, 상기 복수의 플레이트는, 제1 내지 제12단위플레이트(100-1,100-2,100-3,100-4,100-5,100-6,100-7,100-8,100-9,100-10,100-11,100-12)로 구성되고, 상기 각각의 단위플레이트는 전방에 위치하는 제1플레이트(100a-1,100a-2,100a-3,100a-4,100a-5,100a-6,100a-7,100a-8,100a-9,100a-10,100a-11,100a-12)와, 그 후방에 각각 적층되는 제2플레이트(100b-1,100b-2,100b-3,100b-4,100b-5,100b-6,100b-7,100b-8,100b-9,100b-10,100b-11,100b-12)로 구성될 수 있다.
상기 각각의 단위플레이트를 구성하는 제1플레이트와 제2플레이트 사이에는 열매체가 유동하는 열매체유로(P1)가 형성되고, 인접하게 적층되는 단위플레이트 중 일측에 위치하는 단위플레이트를 구성하는 제2플레이트와, 타측에 위치하는 단위플레이트의 제1플레이트 사이에는 연소가스가 유동하는 연소가스유로(P2)가 형성된다. 상기 열매체유로(P1)와 연소가스유로(P2)는 복수의 플레이트 사이에 인접하게 교대로 형성되어, 열매체와 연소가스 간에 열교환이 이루어진다.
도 3 내지 도 5를 참조하면, 상기 제1플레이트는, 제1개방구(A1)가 중앙에 형성된 제1평면부(110)와, 상기 제1평면부(110)에서 둘레방향으로 일부구간이 연통되며 전방으로 볼록하게 형성된 제1돌출부(120)와, 상기 제1평면부(110)의 테두리부에서 후방으로 연장된 제1플랜지부(130)로 이루어진다.
상기 제2플레이트는, 상기 제1개방구(A1)와 전후방향으로 대응되는 제2개방구(A2)가 중앙에 형성되며 상기 제1평면부(110)와 맞닿는 제2평면부(140)와, 상기 제2평면부(140)에서 둘레방향으로 일부구간이 연통되며 후방으로 볼록하게 형성되어 상기 제1돌출부(120)와의 사이에 상기 열매체유로(P1)를 형성하는 제1함몰부(150)와, 상기 제2평면부(140)의 테두리에서 후방으로 연장되어 인접하게 위치하는 단위플레이트의 제1플랜지부(130)와 결합되는 제2플랜지부(160)로 이루어진다.
도 3과 도 5에서 화살표시는 열매체의 유동방향을 나타낸 것이다.
도 5를 참조하면, 상기 열교환부(100)는 복수 개가 적층된 구조로 이루어지며, 일실시예로 제1열교환부(100-A)와 제2열교환부(100-B) 및 제3열교환부(100-C)로 구성될 수 있다.
상기 복수 개의 열교환부(100-A,100-B,100-C)에서의 열매체유로(P1)는 열매체의 유동방향이 일방향으로만 형성되도록 구성되어 있다. 즉, 상기 복수 개의 열교환부(100-A,100-B,100-C) 중 인접하게 적층되는 열교환부 간에는 열매체의 유동방향이 일방향으로 형성되되 서로 반대방향(시계방향과 반시계방향)이 되도록 직렬로 형성된다.
그리고, 상기 각각의 열교환부(100-A,100-B,100-C)를 구성하는 복수의 단위플레이트에는 열매체유로(P2)가 병렬로 형성되어 있다.
상기와 같은 열매체의 일방향 유동을 위한 구성을 설명하면 다음과 같다.
도 5를 참조하면, 상기 복수 개의 열교환부(100-A,100-B,100-C)의 일측부에는, 각각 열매체 유입구와 열매체 유출구가 인접한 간격을 두고 형성되되, 상기 각각의 열교환부(100-A,100-B,100-C)에서 인접하게 위치하는 열매체 유입구와 열매체 유출구 사이는 막힌 형상으로 이루어지고, 이웃하게 적층되는 열교환부(100-A,100-B,100-C) 중, 어느 하나의 열교환부에 형성된 열매체 유입구 및 열매체 유출구는, 나머지 하나의 열교환부에 형성된 열매체 유입구 및 열매체 유출구와 상반된 위치에 형성되어 있다.
여기서, 상기 ‘열매체 유입구’와 ‘열매체 유출구’를 정의하면, 제3열교환부(100-C)의 열매체 유입구는 제12단위플레이트(100-12)의 제2플레이트(100b-12)에 형성된 열매체 입구(101)이고, 제3열교환부(100-C)의 열매체 유출구는 제9단위플레이트(100-9)의 제1플레이트(100a-9)에 형성된 제2관통구(H2)이며, 제2열교환부(100-B)의 열매체 유입구는 제8단위플레이트(100-8)의 제2플레이트(100b-8)에 형성된 제4관통구(H4)이고, 제2열교환부(100-B)의 열매체 유출구는 제5단위플레이트(100-5)의 제1플레이트(100a-5)에 형성된 제1관통구(H1)이며, 제1열교환부(100-A)의 열매체 유입구는 제4단위플레이트(100-4)의 제2플레이트(100b-4)에 형성된 제3관통구(H3)이고, 제1열교환부(100-A)의 열매체 유출구는 제1단위플레이트(100-1)의 제1플레이트(100a-1)에 형성된 열매체 출구(102)를 의미한다.
도 3과 도 4를 참조하면, 상기 제1플레이트의 상부 일측부에는 제1관통구(H1)와 제2관통구(H2)가 인접하게 형성되고, 상기 제2플레이트의 상부 일측부에는 상기 제1관통구(H1)와 대응되는 제3관통구(H3)와, 상기 제2관통구(H2)와 대응되는 제4관통구(H4)가 형성되어 있다.
최전방에 위치하는 제1플레이트(100a-1)의 상부 일측부에는, 상기 제1관통구(H1)와 대응되는 위치에 제1막힘부(H1')가 형성되고, 상기 제2관통구(H2)와 대응되는 위치에 열매체 출구(102)가 형성되어 있다.
최후방에 위치하는 제2플레이트(100b-12)의 상부 일측부에는, 상기 제3관통구(H3)와 대응되는 위치에 열매체 입구(101)가 형성되고, 상기 제4관통구(H4)와 대응되는 위치에 제4막힘부(H4')가 형성되어 있다.
그리고, 제4단위플레이트(100-4)의 제2플레이트(100b-4)에는 제4관통구(H4)와 대응되는 위치에 제4막힘부(H4')가 형성되고, 제5단위플레이트(100-5)의 제1플레이트(100a-5)에는 제2관통구(H2)와 대응되는 위치에 제2막힘부(H2')가 형성되며, 제8단위플레이트(100-8)의 제2플레이트(100b-8)에는 제3관통구(H3)와 대응되는 위치에 제3막힘부(H3')가 형성되고, 제9플레이트(100-9)의 제1플레이트(100a-9)에는 제1관통구(H1)와 대응되는 위치에 제1막힘부(H1')가 형성되어 있다.
따라서, 최후방에 위치하는 제12단위플레이트(100-12)의 제2플레이트(100b-12)에 형성된 열매체 입구(101)를 통해 제12단위플레이트(100-12)의 열매체유로(P1)로 유입된 열매체는, 제12 내지 제9단위플레이트(100-12,100-11,100-10,100-9)에 형성된 제1 내지 제4관통구(H1,H2,H3,H4)를 통해 전방으로 유동하게 되고, 이와 동시에 제9단위플레이트(100-9)의 제1플레이트(100a-9)에는 제1막힘부(H1')가 형성되어 있어 제12 내지 제9단위플레이트(100-12,100-11,100-10,100-9) 내부의 열매체유로(P1)에서는 열매체가 시계방향으로 유동하게 된다.
그리고, 제9단위플레이트(100-9)의 제1플레이트(100a-9)에 형성된 제2관통구(H2)와 제8단위플레이트(100-8)의 제2플레이트(100b-8)에 형성된 제4관통구(H4)를 통해 제8단위플레이트(100-8)의 열매체유로(P1)로 유입된 열매체는, 제8 내지 제5단위플레이트(100-8,100-7,100-6,100-5)에 형성된 제1 내지 제4관통구(H1,H2,H3,H4)를 통해 전방으로 유동하게 되고, 이와 동시에 제5단위플레이트(100-5)의 제1플레이트(100a-5)에는 제2막힘부(H2')가 형성되어 있어 제8 내지 제5단위플레이트(100-8,100-7,100-6,100-5) 내부의 열매체유로(P1)에서는 열매체가 반시계방향으로 유동하게 된다.
그리고, 제5단위플레이트(100-5)의 제1플레이트(100a-5)에 형성된 제1관통구(H1)와 제4단위플레이트(100-4)의 제2플레이트(100b-4)에 형성된 제3관통구(H3)를 통해 제4단위플레이트(100-4)의 열매체유로(P1)로 유입된 열매체는, 제4 내지 제1단위플레이트(100-4,100-3,100-2,100-1)에 형성된 제1 내지 제4관통구(H1,H2,H3,H4)를 통해 전방으로 유동하게 되고, 이와 동시에 제1단위플레이트(100-1)의 제1플레이트(100a-1)에는 제1막힘부(H1')가 형성되어 있어 제4 내지 제1단위플레이트(100-4,100-3,100-2,100-1) 내부의 열매체유로(P1)에서는 열매체가 시계방향으로 유동하게 된다.
상기와 같이 열교환부(100)가 종방향으로 직립된 구조에서, 열매체가 일방향으로 유동하도록 열매체유로(P1)와, 제1 내지 제4관통구(H1,H2,H3,H4)로 이루어진 열매체의 연결유로를 형성함으로써, 연소실(C)의 둘레를 따라 유동하는 열매체의 순환이 원활하게 이루어져 열매체의 압력강하를 최소화하고 국부적인 과열을 방지함으로써 열효율을 향상시킬 수 있다.
또한 열교환기의 용량 증대 시 각각의 열교환부(100-A,100-B,100-C)에서의 병렬 유로의 수를 조절함으로써 열매체의 압력강하 없이 용량을 증대시킬 수 있다.
도 6과 도 7을 참조하면, 연소실(C)에서 버너의 연소에 의해 발생된 연소가스는 열교환부(100)의 하부를 통해 하방향으로 배출된다.
상기 연소가스가 복수의 연소가스유로(P2)를 통과하여 균일하게 배출되도록 하기 위한 구성으로, 제1플레이트와 제2플레이트의 적층 시, 제1플레이트의 제1플랜지부(130)와 제2플레이트의 제2플랜지부(160)는 일부가 중첩되며, 상기 제1플레이트와 제2플레이트의 가장자리 중 일부 영역에는 연소가스유로(P2)를 통과하여 유동하는 연소가스가 배출되는 연소가스 통과부(D)가 형성된다.
상기 제1플랜지부(130)의 연소가스 배출측에는 복수의 제1절개부(131)가 형성되고, 상기 제2플랜지부(160)의 연소가스 배출측에는 복수의 제2절개부(161)가 형성되며, 상기 제1플레이트와 제2플레이트의 적층시, 상기 제1절개부(131)와 제2절개부(161)의 일부영역에 상기 연소가스 통과부(D)가 형성된다.
상기 연소가스 통과부(D)는 열교환부(100)의 하부에 횡방향과 종방향으로 일정 간격 이격되어 다수로 형성되며, 이로써 열교환부(100)를 통과한 연소가스가 열교환부(100) 하부의 전체 영역에 걸쳐 균일한 유량씩 분배되어 배출될 수 있어, 배출되는 연소가스의 유동 저항을 감소시키고 소음 및 진동을 방지하는 기능을 한다.
한편, 상기 복수의 열교환부(100-A,100-B,100-C)에서 열매체의 유동방향이 전환되는 구간, 즉 제3열교환부(100-C)에서 제2열교환부(100-B)로 연결되는 구간, 또는 제2열교환부(100-B)에서 제1열교환부(100-A)로 연결되는 구간에서는 각 열교환부(100-A,100-B,100-C)에 형성된 열매체유로(P1)로 유동하는 열매체의 유량은 관성과 압력에 의해 불균일하게 분배되는 경향이 있게 된다.
이와 같이 복수의 열매체유로(P1)로 분배되는 유량이 불균일하게 되는 경우에는 열교환 성능이 저하되고, 유량이 적은 영역에서는 국부적인 과열에 의해 열매체의 끓음에 의한 소음 및 이물질이 발생하게 되는 문제가 있다.
이러한 열매체 유량의 불균형한 분배의 문제를 해결하기 위한 수단으로, 도 8과 도 9에 도시된 바와 같이, 상기 열매체유로(P1)에 열매체가 유입되는 유입부 또는 상기 열매체유로(P1)로부터 열매체가 유출되는 유출부에는 개방부(123',153')와 차단부(123",153")가 형성된 열매체분산부(123,153)가 구비된다.
상기 열매체분산부(123,153)는 열매체의 유동방향으로 이격되어 복수로 구비되고, 인접하게 위치하는 열매체분산부(123,153) 간에는 상기 개방부(123',153')와 차단부(123",153")가 열매체의 유동방향을 따라 서로 교차하도록 구비된다.
상기 열매체분산부(123,153)는 상기 개방부(123',153')와 차단부(123",153")가 원주방향을 따라 교대로 형성된다.
따라서, 도 9에서 화살표로 도시된 바와 같이 제1열매체분산부(123)에 형성된 제1개방부(123')를 통과한 열매체는 그 후방에 위치하는 제2열매체분산부(153)의 제2차단부(153")에 부딪혀 분산되고, 제2열매체분산부(153)에 형성된 제2개방부(153")를 통과한 열매체는 그 후방에 위치하는 제1열매체분산부(123)의 제1차단부(123")에 부딪혀 분산되며, 이러한 분산 작용에 의해 열매체의 관성을 완화시켜 각층의 열매체유로(P1)로 유동하는 열매체의 유량을 균일하게 조절할 수 있게 된다.
상기 열매체 유량의 불균형한 분배의 문제를 해결하기 위한 다른 수단으로, 도 8과 도 10에 도시된 바와 같이, 열매체유로(P1) 중 열매체의 유동방향이 전환되는 부분에는 유로가 좁게 형성되도록 하는 열매체분배부(124,154)가 구비된다.
상기 열매체분배부(124,154)는 상기 열매체유로(P1)로 열매체가 유입되는 부분과 열매체유로(P1)로부터 열매체가 유출되는 부분에서 열매체유로(P1)를 향하여 돌출된 엠보 형태로 형성될 수 있다.
따라서, 제1플레이트에 형성된 제1열매체분배부(124)와 제2플레이트에 형성된 제2열매체분배부(154) 사이에 형성되는 유로의 단면적은 제1플레이트와 제2플레이트 사이에 형성되는 열매체유로(P1)의 단면적에 비해 좁게 형성되며, 이에 따라 열매체가 각층의 열매체유로(P1) 중 일부의 열매체유로(P1)에 집중적으로 유입되는 현상을 방지할 수 있어 각층의 열매체유로(P1)를 통해 유동하는 열매체의 유량을 균일하게 조절할 수 있게 된다.
한편, 도 4를 참조하면, 상기 제1플레이트에 형성된 제1돌출부(120)는 전후방향으로 높이를 달리하는 제1돌출편(120a)과 제2돌출편(120b)이 둘레방향을 따라 교대로 배치된 것으로 구성되고, 상기 제2플레이트에 형성된 제1함몰부(150)는 전후방향으로 높이를 달리하는 제1함몰편(150a)와 제2함몰편(150b)이 둘레방향을 따라 교대로 배치된 것으로 구성된다. 이와 같이 제1돌출부(120)와 제1함몰부(150)에 각각 단차를 형성함에 따라 열매체와 연소가스의 유동에 난류 발생이 활발하게 이루어지도록 유도하여 열교환효율을 향상시킬 수 있다.
도 11을 참조하면, 상기 제1돌출부(120)에는 상기 열매체유로(P1)를 향하여 돌출된 복수의 제1돌기(121)가 형성되고, 상기 제1함몰부(150)에는 상기 열매체유로(P1)를 향하여 돌출되며 상기 제1돌기(121)에 맞닿는 제3돌기(151)가 형성된다. 그리고, 도 12를 참조하면, 상기 제1돌출부(120)에는 상기 연소가스유로(P2)를 향하여 돌출된 복수의 제2돌기(122)가 형성되고, 상기 제1함몰부(150)에는 상기 연소가스유로(P2)를 향하여 돌출되며 상기 제2돌기(122)에 맞닿는 제4돌기(152)가 형성된다. 이와 같이 제1돌기(121)와 제3돌기(151)가 열매체유로(P1)의 내측으로 돌출되어 맞닿도록 하고, 제2돌기(122)와 제4돌기(152)가 연소가스유로(P2)의 내측으로 돌출되어 맞닿도록 구성함으로써, 열매체와 연소가스의 유동에 난류발생을 유도하여 열교환효율을 향상시키는 동시에 유체의 압력에 의한 플레이트의 변형을 방지하고 내압 성능을 향상시킬 수 있다.
이하, 도 13 내지 도 16을 참조하여 본 발명의 다른 실시예에 따른 열교환기(1')의 구성 및 작용을 설명한다.
본 실시예에 따른 열교환기(1')는, 전술한 실시예에 따른 열교환부(100)가 버너의 연소에 의해 발생한 연소가스의 현열을 이용하여 열매체를 가열하는 현열부(100A)로서 기능하고, 상기 현열부(100A)의 일측에는, 복수의 플레이트 사이의 공간에 열매체가 유동하는 잠열부 열매체유로(P3)와, 상기 현열부(100A)의 연소가스유로(P2)를 통과한 연소가스가 유동하는 잠열부 연소가스유로(P4)가 인접하게 교대로 형성된 잠열부(100B)가 일체로 형성된다.
다만, 본 실시예의 현열부(100A)는 전술한 실시예의 열교환부(100)와 비교하여, 최후방의 제2플레이트(100b-12)에 형성된 열매체 유입구(101)가 막힌 형상으로 이루어지고, 상기 현열부(100A)의 일측에는 잠열부(100A)와 연결되는 열매체 연결유로가 형성된 점에서 구조적인 차이가 있을 뿐이며, 기타의 구성은 전술한 열교환부(100)와 동일하게 구성될 수 있다.
상기 잠열부(100B)가 위치하는 제1플레이트의 일측부에는, 상기 제1평면부(110)에서 전방으로 볼록하게 형성된 제2돌출부(170)가 구비되고, 상기 잠열부(100B)가 위치하는 제2플레이트의 일측부에는, 상기 제2평면부(140)에서 후방으로 볼록하게 형성되어 상기 제2돌출부(170)와의 사이에 상기 잠열부 열매체유로(P3)를 형성하는 제2함몰부(180)가 구비된다.
그리고, 일측에 위치하는 단위플레이트의 제2함몰부(180)와 타측에 위치하는 단위플레이트의 제2돌출부(170) 사이에는 제1연소가스유로(P2)에 연통되어 연소가스가 유동하는 제2연소가스유로(P4)가 형성된다.
상기 제2돌출부(170)와 제2함몰부(180)는 상반된 방향으로 절곡된 빗살 형태로 이루어져, 제2돌출부(170)와 제2함몰부(180)가 교차하면서 잠열부 열매체유로(P3)와 잠열부 연소가스유로(P4)가 인접하게 교대로 형성되며, 열매체와 연소가스의 유동에 난류발생을 촉진시켜 열교환효율을 향상시킬 수 있다.
도 14를 참조하면, 상기 잠열부(100B)의 하부 일측에는 열매체 유입구(101')와, 열매체 유입구(101')로 유입된 열매체가 각각의 단위플레이트에 형성된 잠열부 열매체유로(P3)로 연결되는 관통구(H5,H7)가 형성되고, 잠열부(100B)의 상부 타측에는 상기 잠열부 열매체유로(P3)를 통과한 열매체가 현열부(100A)의 제3열교환부(100C')로 연결되도록 관통구(H6,H8)가 형성되어 있다.
그리고, 상기 관통구(H5,H7,H6,H8))에는, 각 층에 형성된 잠열부 열매체유로(P3)로 열매체가 균일하게 분배되어 유동할 수 있도록 제1열매체 분산부(123,123)와 제2열매체 분산부(153,153), 제1열매체 분배부(124)와 제2열매체 분배부(154)가 각각 형성되어 있다.
상기 잠열부 열매체유로(P3)는 열매체가 유입되는 열매체 입구(101')와 상기 열매체의 연결유로 사이에 병렬로 연결되어 열매체의 유동저항을 감소시킬 수 있다.
도 16을 참조하면, 본 실시예에 따른 열교환기(1')는 제1열교환부(100-A')와 제2열교환부(100-B') 및 제3열교환부(100-C')가 적층 구조로 이루어지고, 잠열부(100B)를 통과한 열매체는, 제3열교환부(100-C')의 현열부(100A)에서 양방향으로 유동한 후에, 제2열교환부(100-B')에서는 반시계방향으로 유동하고, 제3열교환부(100-C')에서는 시계방향으로 유동하게 된다.
이와 같이 잠열부(100B)에서는 잠열부 열매체유로(P3)가 병렬로 형성되어 열매체의 유동저항을 감소시킬 수 있고, 현열부(100A)에서는 일부 열교환부(100-A',100-B')에서의 유동이 일방향으로만 형성되도록 하여, 전술한 실시예에서와 마찬가지로 열매체의 순환이 원활하게 이루어져 열매체의 압력강하를 최소화하고 국부적인 과열을 방지함으로써 열효율을 향상시킬 수 있다.
또한 본 실시예에 의하면, 복수의 플레이트를 적층시켜 현열부(100A)와 잠열부(100B)를 일체형으로 구성함으로써 열교환기의 부품수를 줄일 수 있고, 생산 공정이 간소화되어 생산 자동화가 가능하다.

Claims (13)

  1. 복수의 플레이트 사이의 공간에 열매체가 유동하는 열매체유로(P1)와, 버너에서 연소된 연소가스가 유동하는 연소가스유로(P2)가 인접하게 교대로 형성된 열교환부를 구비하고;
    상기 열교환부는 중앙의 연소실(C) 공간의 외측을 둘러싸되 복수 개가 적층 구조로 구비되며;
    상기 각 층에 구비된 열매체유로(P1) 중 일부 열매체유로는 열매체의 유동방향이 일방향으로만 형성된 것을 특징으로 하는 열교환기.
  2. 제1항에 있어서,
    상기 열매체유로(P1)는 상기 복수 개의 열교환부 중 인접하게 적층되는 열교환부 간에 열매체의 유동이 일방향으로 연결되되 서로 반대방향을 향하도록 형성된 것을 특징으로 하는 열교환기.
  3. 제1항에 있어서,
    상기 복수의 열교환부의 일측부에는, 각각 열매체 유입구와 열매체 유출구가 인접한 간격을 두고 형성되되,
    상기 각각의 열교환부에서 인접하게 위치하는 열매체 유입구와 열매체 유출구 사이는 막힌 형상으로 이루어지고,
    이웃하게 적층되는 열교환부 중, 어느 하나의 열교환부에 형성된 열매체 유입구 및 열매체 유출구는, 나머지 하나의 열교환부에 형성된 열매체 유입구 및 열매체 유출구와 상반된 위치에 형성된 것을 특징으로 하는 열교환기.
  4. 제1항에 있어서,
    상기 복수 개의 열교환부 간에는 상기 열매체유로(P1)가 직렬로 형성되고,
    상기 각각의 열교환부의 내부에는 상기 열매체유로(P1)가 병렬로 형성된 것을 특징으로 하는 열교환기.
  5. 제1항에 있어서,
    상기 열교환부를 구성하는 복수의 플레이트는 종방향으로 직립되며 전후방향으로 적층되고,
    상기 버너의 연소에 의해 발생된 연소가스는 상기 열교환부의 하부를 통해 배출되는 것을 특징으로 하는 열교환기.
  6. 제5항에 있어서,
    상기 복수의 플레이트는, 제1플레이트와 제2플레이트가 적층된 복수 개의 단위플레이트가 적층되어 이루어지고,
    상기 제1플레이트에는, 제1개방구(A1)가 중앙에 형성된 제1평면부(110)와, 상기 제1평면부(110)에서 둘레방향으로 일부구간이 연통되며 전방으로 볼록하게 형성된 제1돌출부(120)와, 상기 제1평면부(110)의 테두리부에서 후방으로 연장된 제1플랜지부(130)가 형성되며,
    상기 제2플레이트에는, 상기 제1개방구(A1)와 전후방향으로 대응되는 제2개방구(A2)가 중앙에 형성되며 상기 제1평면부(110)와 맞닿는 제2평면부(140)와, 상기 제2평면부(140)에서 둘레방향으로 일부구간이 연통되며 후방으로 볼록하게 형성되어 상기 제1돌출부(120)와의 사이에 상기 열매체유로(P1)를 형성하는 제1함몰부(150)와, 상기 제2평면부(140)의 테두리에서 후방으로 연장되어 인접하게 위치하는 단위플레이트의 제1플랜지부(130)와 결합되는 제2플랜지부(160)가 형성된 것을 특징으로 하는 열교환기.
  7. 제6항에 있어서,
    상기 열교환부의 상부 일측부에는,
    인접하게 적층되는 열교환부 간에 열매체가 일방향으로 유동하도록 열매체의 연결유로를 제공하기 위한 일측의 관통구(H1,H3)와 타측의 관통구(H2,H4),
    상기 일측의 관통구(H1,H3)를 통해 열매체유로(P1)로 유입된 열매체가 상기 연소실(C)의 둘레를 일방향으로 경유하여 상기 타측의 관통구(H2,H4)를 향하여 유동하도록 유도하기 위한 막힘부(H1',H3'), 및
    상기 타측의 관통구(H2,H4)를 통해 열매체유로(P1)로 유입된 열매체가 상기 연소실(C)의 둘레를 반대방향으로 경유하여 상기 일측의 관통구(H1,H3)를 향하여 유동하도록 유도하기 위한 막힘부(H2',H4')가 형성된 것을 특징으로 하는 열교환기.
  8. 제6항에 있어서,
    상기 제1돌출부(120)는 둘레방향을 따라 교대로 배치되며 전후방향으로 높이를 달리하는 제1돌출편(120a)과 제2돌출편(120b)으로 이루어지고,
    상기 제1함몰부(150)는 둘레방향을 따라 교대로 배치되며 전후방향으로 높이를 달리하는 제1함몰편(150a)와 제2함몰편(150b)으로 이루어진 것을 특징으로 하는 열교환기.
  9. 제6항에 있어서,
    상기 제1돌출부(120)에는 상기 열매체유로(P1)를 향하여 돌출된 복수의 제1돌기(121)가 형성되고,
    상기 제1함몰부(150)에는 상기 열매체유로(P1)를 향하여 돌출되며 상기 제1돌기(121)에 맞닿는 제3돌기(151)가 형성된 것을 특징으로 하는 열교환기.
  10. 제6항에 있어서,
    상기 제1돌출부(120)에는 상기 연소가스유로(P2)를 향하여 돌출된 복수의 제2돌기(122)가 형성되고,
    상기 제1함몰부(150)에는 상기 연소가스유로(P2)를 향하여 돌출되며 상기 제2돌기(122)에 맞닿는 제4돌기(152)가 형성된 것을 특징으로 하는 열교환기.
  11. 제1항에 있어서,
    상기 열교환부는, 상기 버너의 연소에 의해 발생한 연소가스의 현열을 이용하여 열매체를 가열하는 현열부(100A)로서 기능하고,
    상기 현열부(100A)의 일측에는, 복수의 플레이트 사이의 공간에 열매체가 유동하는 잠열부 열매체유로(P3)와, 상기 현열부(100A)의 연소가스유로(P2)를 통과한 연소가스가 유동하는 잠열부 연소가스유로(P4)가 인접하게 교대로 형성된 잠열부(100B)가 일체로 형성된 것을 특징으로 하는 열교환기.
  12. 제11항에 있어서,
    상기 현열부(100A)와 잠열부(100B) 사이에는 열매체의 연결유로가 형성되며,
    상기 잠열부 열매체유로(P3)는, 열매체가 유입되는 열매체 입구(101')와 상기 열매체의 연결유로 사이에 병렬로 연결된 것을 특징으로 하는 열교환기.
  13. 제12항에 있어서,
    상기 잠열부(100B)가 위치하는 제1플레이트의 일측부에는, 상기 제1평면부(110)에서 전방으로 볼록하게 형성된 제2돌출부(170)가 구비되고,
    상기 잠열부(100B)가 위치하는 제2플레이트의 일측부에는, 상기 제2평면부(140)에서 후방으로 볼록하게 형성되어 상기 제2돌출부(170)와의 사이에 상기 잠열부 열매체유로(P3)를 형성하는 제2함몰부(180)가 구비되되,
    상기 제2돌출부(170)와 제2함몰부(180)는 상반된 방향으로 절곡된 빗살 형태로 이루어진 것을 특징으로 하는 열교환기.
PCT/KR2017/001186 2016-02-05 2017-02-03 열교환기 WO2017135730A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018536145A JP6796651B2 (ja) 2016-02-05 2017-02-03 熱交換器
CN201780009911.2A CN108603686B (zh) 2016-02-05 2017-02-03 热交换器
EP17747775.9A EP3412990A4 (en) 2016-02-05 2017-02-03 HEAT EXCHANGER
US16/072,266 US11054188B2 (en) 2016-02-05 2017-02-03 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160015064A KR101784367B1 (ko) 2016-02-05 2016-02-05 열교환기
KR10-2016-0015064 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017135730A1 true WO2017135730A1 (ko) 2017-08-10

Family

ID=59499879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001186 WO2017135730A1 (ko) 2016-02-05 2017-02-03 열교환기

Country Status (6)

Country Link
US (1) US11054188B2 (ko)
EP (1) EP3412990A4 (ko)
JP (1) JP6796651B2 (ko)
KR (1) KR101784367B1 (ko)
CN (1) CN108603686B (ko)
WO (1) WO2017135730A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411248A (zh) * 2018-04-27 2019-11-05 马勒国际有限公司 堆叠板式热交换器
CN111406193A (zh) * 2017-12-20 2020-07-10 庆东纳碧安株式会社 热交换器
US11371781B2 (en) * 2017-03-10 2022-06-28 Alfa Laval Corporate Ab Plate package using a heat exchanger plate with integrated draining channel and a heat exchanger including such plate package

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265962B2 (ja) * 2019-08-22 2023-04-27 リンナイ株式会社 プレート式熱交換器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214628A (ja) * 2005-02-02 2006-08-17 Noritz Corp プレート式熱交換器、これを備えた温水装置および暖房装置
KR100813807B1 (ko) 2007-06-13 2008-03-13 린나이코리아 주식회사 콘덴싱보일러의 열교환기 구조
JP2012122663A (ja) * 2010-12-08 2012-06-28 Paloma Co Ltd 熱交換器およびそれを用いた給湯器
KR20130052912A (ko) * 2011-11-14 2013-05-23 주식회사 두발 콘덴싱 보일러용 열교환기
KR20150108540A (ko) * 2014-03-18 2015-09-30 주식회사 경동나비엔 열교환기
KR20150108959A (ko) * 2014-03-18 2015-10-01 주식회사 경동나비엔 열교환기 및 열교환기를 구성하는 단위플레이트의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10348803B4 (de) * 2003-10-21 2024-03-14 Modine Manufacturing Co. Gehäuseloser Plattenwärmetauscher
KR100568779B1 (ko) * 2004-02-16 2006-04-07 주식회사 경동보일러 콘덴싱 기름보일러
KR200464650Y1 (ko) * 2012-11-23 2013-01-14 강성삼 상향 연소식 콘덴싱 보일러
NL2012066C2 (nl) * 2014-01-09 2015-07-13 Intergas Heating Assets B V Warmtewisselaar, werkwijze voor het vormen daarvan en gebruik daarvan.
KR101586646B1 (ko) * 2014-03-17 2016-01-19 주식회사 경동나비엔 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러
KR101576667B1 (ko) * 2014-03-17 2015-12-11 주식회사 경동나비엔 콘덴싱 가스보일러의 열교환기
CN106016718A (zh) * 2016-06-28 2016-10-12 哈尔滨市金京锅炉有限公司 一种节能环保热水锅炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214628A (ja) * 2005-02-02 2006-08-17 Noritz Corp プレート式熱交換器、これを備えた温水装置および暖房装置
KR100813807B1 (ko) 2007-06-13 2008-03-13 린나이코리아 주식회사 콘덴싱보일러의 열교환기 구조
JP2012122663A (ja) * 2010-12-08 2012-06-28 Paloma Co Ltd 熱交換器およびそれを用いた給湯器
KR20130052912A (ko) * 2011-11-14 2013-05-23 주식회사 두발 콘덴싱 보일러용 열교환기
KR20150108540A (ko) * 2014-03-18 2015-09-30 주식회사 경동나비엔 열교환기
KR20150108959A (ko) * 2014-03-18 2015-10-01 주식회사 경동나비엔 열교환기 및 열교환기를 구성하는 단위플레이트의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3412990A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371781B2 (en) * 2017-03-10 2022-06-28 Alfa Laval Corporate Ab Plate package using a heat exchanger plate with integrated draining channel and a heat exchanger including such plate package
CN111406193A (zh) * 2017-12-20 2020-07-10 庆东纳碧安株式会社 热交换器
EP3730888A4 (en) * 2017-12-20 2021-09-08 Kyungdong Navien Co., Ltd. HEAT EXCHANGER
CN110411248A (zh) * 2018-04-27 2019-11-05 马勒国际有限公司 堆叠板式热交换器
CN110411248B (zh) * 2018-04-27 2022-01-18 马勒国际有限公司 堆叠板式热交换器

Also Published As

Publication number Publication date
JP6796651B2 (ja) 2020-12-09
US20190033004A1 (en) 2019-01-31
CN108603686B (zh) 2021-11-23
KR101784367B1 (ko) 2017-10-11
EP3412990A4 (en) 2019-12-04
JP2019504280A (ja) 2019-02-14
US11054188B2 (en) 2021-07-06
CN108603686A (zh) 2018-09-28
EP3412990A1 (en) 2018-12-12
KR20170093533A (ko) 2017-08-16

Similar Documents

Publication Publication Date Title
WO2017135728A1 (ko) 열교환기
WO2017135730A1 (ko) 열교환기
WO2017171276A1 (ko) 관체형 열교환기
WO2017039174A1 (ko) 열교환기
WO2017014499A1 (ko) 열교환기
WO2015141994A1 (ko) 열교환기
WO2015141992A1 (ko) 열교환기
WO2013073814A1 (ko) 급탕열교환기
WO2017039172A1 (ko) 열교환기
WO2019124847A1 (ko) 열교환기
WO2017135729A1 (ko) 열교환기
WO2017052094A1 (ko) 라운드 플레이트 열교환기
WO2017135727A1 (ko) 열교환기
WO2017039346A1 (ko) 굴곡 플레이트 열교환기
WO2017039173A1 (ko) 열교환기
WO2010147288A1 (ko) 열교환기
WO2011071247A2 (ko) 연소실이 구비된 열교환기 및 이를 포함하는 연소기기
WO2017014497A1 (ko) 열교환기
WO2017014498A1 (ko) 열교환기
WO2017014495A1 (ko) 열교환기
KR102057691B1 (ko) 열교환기
WO2019245336A1 (ko) 열교환기
WO2019066388A1 (ko) 관체형의 열교환기
WO2019009527A1 (ko) 관체형 열교환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747775

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747775

Country of ref document: EP

Effective date: 20180905