WO2017135461A1 - Solid electrolyte and all-solid-state battery - Google Patents

Solid electrolyte and all-solid-state battery Download PDF

Info

Publication number
WO2017135461A1
WO2017135461A1 PCT/JP2017/004130 JP2017004130W WO2017135461A1 WO 2017135461 A1 WO2017135461 A1 WO 2017135461A1 JP 2017004130 W JP2017004130 W JP 2017004130W WO 2017135461 A1 WO2017135461 A1 WO 2017135461A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
content
mol
solid
group
Prior art date
Application number
PCT/JP2017/004130
Other languages
French (fr)
Japanese (ja)
Inventor
良平 高野
充 吉岡
武郎 石倉
彰佑 伊藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780005980.6A priority Critical patent/CN108463916A/en
Priority to EP20176902.3A priority patent/EP3719910A1/en
Priority to EP17747612.4A priority patent/EP3413388B1/en
Priority to JP2017565676A priority patent/JP6593459B2/en
Publication of WO2017135461A1 publication Critical patent/WO2017135461A1/en
Priority to US16/007,008 priority patent/US11444316B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte and an all-solid battery.
  • Patent Document 1 discloses lithium (Li), lanthanum (La), zirconium (Zr), and oxygen (O) as ceramic materials that have a density and Li conductivity that can be used as solid electrolyte materials.
  • a ceramic material containing aluminum (Al) and having a garnet-type crystal structure is disclosed.
  • the main object of the present invention is to improve the ionic conductivity of the solid electrolyte and to improve the battery characteristics of the all-solid battery.
  • a solid electrolyte having a garnet-type crystal structure containing Li, La, Zr, O and Ga is at least one selected from the group consisting of Al, Mg, Zn and Sc. It has been found that the ionic conductivity of the solid electrolyte can be improved by adding the above element, and the present invention has been achieved.
  • the solid electrolyte according to the present invention is a solid electrolyte having a garnet-type crystal structure.
  • the solid electrolyte according to the present invention includes Li, La, Zr, O, and Ga, and at least one element selected from the group consisting of Al, Mg, Zn, and Sc.
  • the solid electrolyte according to the present invention is a solid electrolyte having a garnet-type crystal structure and containing Li, La, Zr, O, and Ga, and is selected from the group consisting of Al, Mg, Zn, and Sc. And at least one element. Therefore, the solid electrolyte according to the present invention has high ionic conductivity.
  • the Ga content is preferably more than 0 mol% and less than 13.4 mol% with respect to the La content.
  • the total content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is preferably more than 0 mol% and less than 13.4 mol% with respect to the La content.
  • the total of the Ga content and the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is preferably more than 0.30 mol% and less than 20 mol%.
  • the Ga content is preferably more than 0.66 mol% and less than 6.67 mol% with respect to the La content.
  • the total content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is preferably more than 0 mol% and less than 6.67 mol% with respect to the La content.
  • the total of the Ga content and the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is preferably more than 0.33 mol% and less than 10 mol%.
  • the content of Zr is preferably 50 mol% or more and 80 mol% or less with respect to the content of La.
  • the Li content is preferably 197 mol% or more and 280 mol% or less with respect to the La content.
  • Solid electrolyte of the present invention have the general formula (Li 7- (3x + ay) Ga x M y) La 3 Zr 2 O 12 (M is Al, Mg, at least one selected from the group consisting of Zn and Sc An element, a is the valence of M, and is preferably a solid electrolyte represented by 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.3, 0.4 ⁇ 3x + ay ⁇ 0.9) .
  • Solid electrolyte of the present invention have the general formula (Li 7- (3x + 3y) Ga x M y) La 3 Zr 2 O 12 (M is Al, 0 ⁇ x ⁇ 0.3,0 ⁇ y ⁇ 0.3 0.1 ⁇ x / y ⁇ 1, 0.6 ⁇ 3x + 3y ⁇ 0.9).
  • the all solid state battery according to the present invention includes a solid electrolyte layer containing the solid electrolyte according to the present invention, a positive electrode joined by sintering to one side of the solid electrolyte layer, and a other side of the solid electrolyte layer joined by sintering.
  • a negative electrode is a solid electrolyte layer containing the solid electrolyte according to the present invention, a positive electrode joined by sintering to one side of the solid electrolyte layer, and a other side of the solid electrolyte layer joined by sintering.
  • the solid electrolyte according to the present invention has high ionic conductivity. Therefore, the solid electrolyte layer containing the solid electrolyte also has high ionic conductivity. Therefore, the all solid state battery according to the present invention is excellent in battery characteristics such as output density.
  • the ionic conductivity of the solid electrolyte can be improved, and the battery characteristics of the all-solid battery can be improved.
  • FIG. 1 is a schematic cross-sectional view of an all solid state battery 1 according to the present embodiment. As shown in FIG. 1, a negative electrode 12, a positive electrode 11, and a solid electrolyte layer 13 are provided.
  • the positive electrode 11 includes positive electrode active material particles.
  • the positive electrode active material particles preferably used include, for example, lithium-containing phosphate compound particles having a NASICON type structure, lithium-containing phosphate compound particles having an olivine type structure, lithium-containing layered oxide particles, and lithium containing a spinel type structure. Examples thereof include oxide particles.
  • Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like.
  • Specific examples of the lithium-containing phosphate compound having an olivine type structure preferably used include Li 3 Fe 2 (PO 4 ) 3 and LiMnPO 4 .
  • lithium-containing layered oxide particles preferably used include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and the like.
  • lithium-containing oxide having a spinel structure preferably used include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12 and the like. Only 1 type in these positive electrode active material particles may be used, and multiple types may be mixed and used.
  • the positive electrode 11 may further contain a solid electrolyte.
  • the kind of solid electrolyte contained in the positive electrode 11 is not particularly limited, it is preferable that the same kind of solid electrolyte as the solid electrolyte contained in the solid electrolyte layer 13 is included.
  • the negative electrode 12 includes negative electrode active material particles.
  • the negative electrode active material particles include, for example, MO X (M is at least one selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo. 0.9 ⁇ Compound particles represented by X ⁇ 2.0), graphite-lithium compound particles, lithium metal, lithium alloy particles, lithium-containing phosphate compound particles having a NASICON type structure, lithium-containing phosphate compound particles having an olivine type structure, Examples thereof include lithium-containing oxide particles having a spinel structure.
  • Specific examples of the lithium alloy preferably used include a Li—Al alloy.
  • lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like.
  • lithium-containing phosphate compound having an olivine structure that is preferably used include Li 3 Fe 2 (PO 4 ) 3 and the like.
  • lithium-containing oxides having a spinel structure that are preferably used include Li 4 Ti 5 O 12 . Only 1 type in these negative electrode active material particles may be used, and multiple types may be mixed and used.
  • the negative electrode 12 may further contain a solid electrolyte.
  • the kind of solid electrolyte contained in the negative electrode 12 is not particularly limited, it is preferable that the same kind of solid electrolyte as the solid electrolyte contained in the solid electrolyte layer 13 is included.
  • a solid electrolyte layer 13 is disposed between the positive electrode 11 and the negative electrode 12. That is, the positive electrode 11 is disposed on one side of the solid electrolyte layer 13 and the negative electrode 12 is disposed on the other side. Each of the positive electrode 11 and the negative electrode 12 is joined to the solid electrolyte layer 13 by sintering. That is, the positive electrode 11, the solid electrolyte layer 13, and the negative electrode 12 are an integral sintered body.
  • the solid electrolyte contained in the solid electrolyte layer 13 has a garnet-type crystal structure.
  • the garnet-type crystal structure includes not only the crystal structure represented by A 3 B 2 C 3 O 12 but also Li in the C site and also occupied by Li in the interstitial site, That is, A 3 B 2 (C 3 ⁇ x Li x ) Li y O 12, provided that the crystal structure represented by 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 6 is included.
  • the solid electrolyte layer 13 has a garnet-type crystal structure, and includes Li, La, Zr, O, and Ga, and at least one element selected from the group consisting of Al, Mg, Zn, and Sc. .
  • the solid electrolyte layer 13 has high ionic conductivity. Therefore, the all solid state battery 1 having the solid electrolyte layer 13 is excellent in battery characteristics such as output density. The reason for this is not clear, but it is considered that at least one selected from the group consisting of Al, Mg, Zn, and Sc is located at the Li site, the Zr site, or the La site, so that high ionic conductivity can be obtained. It is done.
  • At least one selected from the group consisting of Al, Mg, Zn and Sc is mainly located at the Li site, it is considered that the effect of improving the ionic conductivity is the highest, but some elements are at the Zr site or La site. Even when it is located, it is considered that the effect of improving the ionic conductivity is obtained.
  • a part of at least one element selected from the group consisting of Li, La, Zr, O, and Ga and Al, Mg, Zn, and Sc is a composite oxide of Li salt or a constituent element at the grain boundary. May exist as
  • the basic crystal structure of the solid electrolyte contained in the solid electrolyte layer 13 is preferably a garnet type represented by Li 7 La 3 Zr 2 O 12 .
  • the Li: La: Zr: O ratio in this oxide is not necessarily a stoichiometric composition such as 7: 3: 2: 12, and each element may be partially missing.
  • the sum of the Ga content and the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is more than 0.30 mol%. Preferably less than 20 mol%.
  • the total content of Ga and the content of at least one element selected from the group consisting of Al, Mg, Zn, and Sc is from 3.33 mol%. More than 10 mol% is preferable.
  • the Ga content is preferably more than 0 mol% and less than 13.4 mol% with respect to the La content.
  • the Ga content is preferably more than 0.66 mol% and less than 6.67 mol% with respect to the La content.
  • the total content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is more than 0.30 mol% with respect to the La content. Preferably less than 20 mol%.
  • the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc within the above range, cubic crystals which are high ion conductive phases can be stabilized, and Al, Mg, Zn
  • an impurity layer is formed by reacting Li and La, Zr, and O, which are constituent elements of Sc and a garnet structure, higher ionic conductivity can be realized. From the viewpoint of realizing higher ionic conductivity, the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is more than 0 mol% with respect to the La content. Less than .67 mol% is preferred.
  • the Zr content is preferably 50 mol% or more and 80 mol% or less with respect to the La content.
  • the Zr content is 60 mol% or more and 70 mol% with respect to the La content. The following is more preferable.
  • the Li content is preferably 197 mol% or more and 280 mol% or less with respect to the La content.
  • the Li content is 203 mol% or more and 220 mol% or less with respect to the La content. It is more preferable that
  • the solid electrolyte contained in the solid electrolyte layer 13 has the general formula (Li 7- (3x + ay) Ga x M y) La 3 Zr 2 O 12 (M is Al, Mg, At least one element selected from the group consisting of Zn and Sc, a is the valence of M, 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.3, 0.4 ⁇ 3x + ay ⁇ 0 .9) is preferably a solid electrolyte represented by the general formula (Li 7- (3x + 3y) Ga x M y ) La 3 Zr 2 O 12 (M is Al, 0 ⁇ x ⁇ 0.3, A solid electrolyte represented by 0 ⁇ y ⁇ 0.3, 0.1 ⁇ x / y ⁇ 1, 0.6 ⁇ 3x + 3y ⁇ 0.9) is more preferable.
  • the reason why the Ga / Al ratio affects the ionic conductivity is not necessarily clear, but is considered as follows.
  • the garnet-type Li site has two sites, an Li1 site and an Li2 site.
  • the Ga and Al added this time are considered to occupy the Li site, but the occupancy to these two sites is presumed to be different between Ga and Al.
  • the occupation balance of the two Li sites changes, and this causes a difference in the conduction path of Li and the site occupation of Li, which is considered to change the conductivity. .
  • x / y and 3x + 3y in the above ranges, it is considered that the Li conduction path advantageous for Li conduction and the site occupation of Li are achieved, and the conductivity is improved.
  • the stoichiometric ratio of Li in the solid electrolyte is preferably 7 ⁇ (3x + ay).
  • it is strictly because of the influence of Li deficiency during sintering and a small amount of impurities generated at the grain boundary. It is difficult to control the amount of Li.
  • it has been found that when the amount of Li contained in the solid electrolyte is within a certain range with respect to the stoichiometric ratio, the ionic conductivity is not significantly reduced.
  • the general formula (Li 7- (3x + ay) Ga x M y ) La 3 Zr 2 O 12 (M is at least one element selected from the group consisting of Al, Mg, Zn and Sc) A is a valence of M, and is preferably a solid electrolyte represented by 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.3, 0.4 ⁇ 3x + ay ⁇ 0.9),
  • the obtained mixed powder is temporarily fired to prepare a temporarily fired body.
  • a solid electrolyte can be obtained by baking the obtained temporary fired body.
  • a raw material of at least one element selected from the group consisting of Ga and Al, Mg, Zn and Sc may be added before sintering. . By doing so, the addition amount of at least one element selected from the group consisting of Ga and Al, Mg, Zn and Sc can be accurately controlled.
  • a paste is prepared by appropriately mixing a solvent, a resin, and the like with the active material particles and the solid electrolyte.
  • the paste is applied on the sheet and dried to form a first green sheet for constituting the positive electrode 11.
  • a second green sheet for forming the negative electrode 12 is formed.
  • a paste is prepared by appropriately mixing a solvent, a resin and the like with the solid electrolyte.
  • the paste is applied and dried to produce a third green sheet for constituting the solid electrolyte layer 13.
  • a laminate is produced by appropriately laminating the first to third green sheets. You may press the produced laminated body. As a preferable pressing method, an isostatic pressing or the like can be mentioned.
  • the all-solid-state battery 1 can be obtained by sintering the laminate.
  • the obtained slurry was dried and calcined at 900 ° C. for 5 hours in a mixed gas of nitrogen gas and air.
  • the solid electrolyte powder coated with butyral resin was pressed at 90 MPa using a tablet molding machine to form a tablet.
  • the obtained solid electrolyte tablet is sufficiently covered with mother powder, sandwiched between two ZrO 2 setters, and then baked at a temperature of 500 ° C. in an oxygen atmosphere to remove the butyral resin, and then an oxygen atmosphere. Then, the temperature was raised to about 1100 ° C. and calcined at 1100 ° C. for 3 hours. Thereafter, the temperature was lowered to obtain a sintered body (solid electrolyte layer) of the solid electrolyte.
  • the bulk density of 4.8g / cm 3 ⁇ 5.0g / cm 3 of about dense sintered body was possible to produce.
  • Example 1 lithium hydroxide monohydrate LiOH.H 2 O, gallium oxide (Ga 2 O 3 ), magnesium oxide (MgO), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (ZrO 2 ) are included.
  • a solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials were weighed so as to have the composition shown in Table 1 below.
  • Example 2 As raw materials, lithium hydroxide monohydrate LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (ZrO) A solid electrolyte layer was prepared in the same manner as in Comparative Example 1 except that the raw material containing 2 ) was weighed so as to have the composition shown in Table 1 below.
  • Example 3 lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), scandium oxide (Sc 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw material containing ZrO 2 ) was weighed so as to have the composition shown in Table 1 below.
  • a platinum (Pt) layer serving as a current collector layer was formed on both surfaces of a sintered tablet (solid electrolyte layer) by sputtering, and then sandwiched and fixed by a current collector made of SUS. Thereafter, AC impedance was measured at room temperature (25 ° C.) in the range of 0.1 MHz to 1 MHz ( ⁇ 50 mV) to evaluate ion conductivity. The results are shown in Table 1.
  • FIG. 2 shows a graph (Nyquist plot) showing the measurement results of the AC impedance of the solid electrolyte produced in each of Comparative Example 1 and Example 2.
  • Example 4 As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (A solid electrolyte layer was prepared in the same manner as in Comparative Example 1 except that the raw material containing ZrO 2 ) was weighed so as to have the composition shown in Table 2 below, and the ionic conductivity was measured by the above method. The results are shown in Table 2.
  • Example 5 lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was prepared in the same manner as in Comparative Example 1 except that the raw material containing ZrO 2 ) was weighed so as to have the composition shown in Table 2 below, and the ionic conductivity was measured by the above method. The results are shown in Table 2.
  • Example 6 lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (A solid electrolyte layer was prepared in the same manner as in Comparative Example 1 except that the raw material containing ZrO 2 ) was weighed so as to have the composition shown in Table 2 below, and the ionic conductivity was measured by the above method. The results are shown in Table 2.
  • the ionic conductivity changes when the total content of Ga and Al is constant and the Ga content and the Al content are changed. From the results shown in Table 2, it can be seen that the ionic conductivity can be greatly improved by increasing the Al content to more than 0.66 mol% with respect to the La content. It can also be seen that the conductivity decreases when the Ga content is less than 0.67 mol% with respect to the La content. Accordingly, the Ga content is preferably more than 0.66 mol%. It can be seen that in the region where the content ratio of Ga to Al is more than 0.1 and less than 1, the conductivity becomes almost maximum, which is more preferable.
  • Example 7 As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials containing ZrO 2 ) were weighed so as to have the composition shown in Table 3 below, and the ionic conductivity was measured by the above method. The results are shown in Table 3.
  • Example 8 As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials containing ZrO 2 ) were weighed so as to have the composition shown in Table 3 below, and the ionic conductivity was measured by the above method. The results are shown in Table 3.
  • Example 9 As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials containing ZrO 2 ) were weighed so as to have the composition shown in Table 3 below, and the ionic conductivity was measured by the above method. The results are shown in Table 3.
  • Example 10 As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials containing ZrO 2 ) were weighed so as to have the composition shown in Table 3 below, and the ionic conductivity was measured by the above method. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To improve the ion conductivity of a solid electrolyte and to improve the battery characteristics of an all-solid-state battery. A solid electrolyte according to the present invention has a garnet crystal structure. This solid electrolyte contains Li, La, Zr, O and Ga, and also contains at least one element selected from the group consisting of Al, Mg, Zn and Sc.

Description

固体電解質及び全固体電池Solid electrolyte and all-solid battery
本発明は、固体電解質及び全固体電池に関する。 The present invention relates to a solid electrolyte and an all-solid battery.
 従来、信頼性及び安全性に優れる二次電池として、全固体電池が知られている。例えば、特許文献1には、固体電解質材料等として使用可能な程度の緻密度やLi伝導率を示すセラミック材料として、リチウム(Li)とランタン(La)とジルコニウム(Zr)と酸素(O)とアルミニウム(Al)とを含有し、ガーネット型の結晶構造を有するセラミック材料が開示されている。 Conventionally, an all-solid battery is known as a secondary battery excellent in reliability and safety. For example, Patent Document 1 discloses lithium (Li), lanthanum (La), zirconium (Zr), and oxygen (O) as ceramic materials that have a density and Li conductivity that can be used as solid electrolyte materials. A ceramic material containing aluminum (Al) and having a garnet-type crystal structure is disclosed.
特開2011-51800号公報JP 2011-51800 A
 全固体電池には、固体電解質のイオン伝導度を向上し、全固体電池の電池特性を向上したいという要望がある。 There is a demand for an all-solid-state battery to improve the ionic conductivity of the solid electrolyte and to improve the battery characteristics of the all-solid-state battery.
 本発明の主な目的は、固体電解質のイオン伝導度を向上し、全固体電池の電池特性を向上することにある。 The main object of the present invention is to improve the ionic conductivity of the solid electrolyte and to improve the battery characteristics of the all-solid battery.
 本発明者らは、鋭意研究の結果、Li,La,Zr,O及びGaを含むガーネット型の結晶構造を有する固体電解質に、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素を添加することにより固体電解質のイオン伝導度を向上できることを見出し、本発明を成すに至った。 As a result of intensive studies, the inventors have found that a solid electrolyte having a garnet-type crystal structure containing Li, La, Zr, O and Ga is at least one selected from the group consisting of Al, Mg, Zn and Sc. It has been found that the ionic conductivity of the solid electrolyte can be improved by adding the above element, and the present invention has been achieved.
 すなわち、本発明に係る固体電解質は、ガーネット型の結晶構造を有する固体電解質である。本発明に係る固体電解質は、Li,La,Zr,O及びGaと、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素とを含む。 That is, the solid electrolyte according to the present invention is a solid electrolyte having a garnet-type crystal structure. The solid electrolyte according to the present invention includes Li, La, Zr, O, and Ga, and at least one element selected from the group consisting of Al, Mg, Zn, and Sc.
 本発明に係る固体電解質は、ガーネット型の結晶構造を有し、かつ、Li,La,Zr,O及びGaを含む固体電解質であり、かつ、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素を含む。従って、本発明に係る固体電解質は、高いイオン伝導度を有する。 The solid electrolyte according to the present invention is a solid electrolyte having a garnet-type crystal structure and containing Li, La, Zr, O, and Ga, and is selected from the group consisting of Al, Mg, Zn, and Sc. And at least one element. Therefore, the solid electrolyte according to the present invention has high ionic conductivity.
 本発明に係る固体電解質において、Gaの含有量が、Laの含有量に対して0モル%よりも多く13.4モル%より少ないことが好ましい。Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量の合計が、Laの含有量に対して0モル%よりも多く13.4モル%より少ないことが好ましい。Gaの含有量と、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量との合計が0.30モル%より多く20モル%より少ないことが好ましい。 In the solid electrolyte according to the present invention, the Ga content is preferably more than 0 mol% and less than 13.4 mol% with respect to the La content. The total content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is preferably more than 0 mol% and less than 13.4 mol% with respect to the La content. The total of the Ga content and the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is preferably more than 0.30 mol% and less than 20 mol%.
 本発明に係る固体電解質において、Gaの含有量が、Laの含有量に対して0.66モル%よりも多く6.67モル%より少ないことが好ましい。Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量の合計が、Laの含有量に対して0モル%よりも多く6.67モル%より少ないことが好ましい。Gaの含有量と、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量との合計が0.33モル%より多く10モル%より少ないことが好ましい。 In the solid electrolyte according to the present invention, the Ga content is preferably more than 0.66 mol% and less than 6.67 mol% with respect to the La content. The total content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is preferably more than 0 mol% and less than 6.67 mol% with respect to the La content. The total of the Ga content and the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is preferably more than 0.33 mol% and less than 10 mol%.
 本発明に係る固体電解質において、Zrの含有量が、Laの含有量に対して50モル%以上80モル%以下であることが好ましい。Liの含有量が、Laの含有量に対して197モル%以上280モル%以下であることが好ましい。 In the solid electrolyte according to the present invention, the content of Zr is preferably 50 mol% or more and 80 mol% or less with respect to the content of La. The Li content is preferably 197 mol% or more and 280 mol% or less with respect to the La content.
 本発明に係る固体電解質は、一般式(Li7-(3x+ay)Ga)LaZr12(Mは、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素であり、aはMの価数であり、0<x<0.3、0<y<0.3、0.4<3x+ay<0.9)で表される固体電解質であることが好ましい。 Solid electrolyte of the present invention have the general formula (Li 7- (3x + ay) Ga x M y) La 3 Zr 2 O 12 (M is Al, Mg, at least one selected from the group consisting of Zn and Sc An element, a is the valence of M, and is preferably a solid electrolyte represented by 0 <x <0.3, 0 <y <0.3, 0.4 <3x + ay <0.9) .
 本発明に係る固体電解質は、一般式(Li7-(3x+3y)Ga)LaZr12(MはAlであり、0<x<0.3、0<y<0.3、0.1<x/y<1、0.6<3x+3y<0.9)で表される固体電解質であることが好ましい。 Solid electrolyte of the present invention have the general formula (Li 7- (3x + 3y) Ga x M y) La 3 Zr 2 O 12 (M is Al, 0 <x <0.3,0 < y <0.3 0.1 <x / y <1, 0.6 <3x + 3y <0.9).
 本発明に係る全固体電池は、本発明に係る固体電解質を含む固体電解質層と、固体電解質層の一方面に焼結によって接合されている正極と、固体電解質層の他方面に焼結によって接合されている負極とを備える。 The all solid state battery according to the present invention includes a solid electrolyte layer containing the solid electrolyte according to the present invention, a positive electrode joined by sintering to one side of the solid electrolyte layer, and a other side of the solid electrolyte layer joined by sintering. A negative electrode.
 上述のように、本発明に係る固体電解質は、高いイオン伝導度を有する。従って、その固体電解質を含む固体電解質層も高いイオン伝導度を有する。従って、本発明に係る全固体電池は、出力密度などの電池特性に優れている。 As described above, the solid electrolyte according to the present invention has high ionic conductivity. Therefore, the solid electrolyte layer containing the solid electrolyte also has high ionic conductivity. Therefore, the all solid state battery according to the present invention is excellent in battery characteristics such as output density.
 本発明によれば、固体電解質のイオン伝導度を向上し、全固体電池の電池特性を向上することができる。 According to the present invention, the ionic conductivity of the solid electrolyte can be improved, and the battery characteristics of the all-solid battery can be improved.
本発明の一実施形態に係る全固体電池の模式的断面図である。It is typical sectional drawing of the all-solid-state battery which concerns on one Embodiment of this invention. 比較例1及び実施例2のそれぞれにおいて作製した固体電解質の交流インピーダンスの測定結果を示すグラフである。It is a graph which shows the measurement result of the alternating current impedance of the solid electrolyte produced in each of the comparative example 1 and Example 2. FIG.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 図1は、本実施形態に係る全固体電池1の模式的断面図である。図1に示されるように、負極12と、正極11と、固体電解質層13とを備えている。 FIG. 1 is a schematic cross-sectional view of an all solid state battery 1 according to the present embodiment. As shown in FIG. 1, a negative electrode 12, a positive electrode 11, and a solid electrolyte layer 13 are provided.
 正極11は、正極活物質粒子を含んでいる。好ましく用いられる正極活物質粒子としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物粒子、オリビン型構造を有するリチウム含有リン酸化合物粒子、リチウム含有層状酸化物粒子、スピネル型構造を有するリチウム含有酸化物粒子等が挙げられる。好ましく用いられるナシコン型構造を有するリチウム含有リン酸化合物の具体例としては、Li(PO等が挙げられる。好ましく用いられるオリビン型構造を有するリチウム含有リン酸化合物の具体例としては、LiFe(PO、LiMnPO等が挙げられる。好ましく用いられるリチウム含有層状酸化物粒子の具体例としては、LiCoO,LiCo1/3Ni1/3Mn1/3等が挙げられる。好ましく用いられるスピネル型構造を有するリチウム含有酸化物の具体例としては、LiMn,LiNi0.5Mn1.5、LiTi12等が挙げられる。これらの正極活物質粒子のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。 The positive electrode 11 includes positive electrode active material particles. The positive electrode active material particles preferably used include, for example, lithium-containing phosphate compound particles having a NASICON type structure, lithium-containing phosphate compound particles having an olivine type structure, lithium-containing layered oxide particles, and lithium containing a spinel type structure. Examples thereof include oxide particles. Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like. Specific examples of the lithium-containing phosphate compound having an olivine type structure preferably used include Li 3 Fe 2 (PO 4 ) 3 and LiMnPO 4 . Specific examples of the lithium-containing layered oxide particles preferably used include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and the like. Specific examples of the lithium-containing oxide having a spinel structure preferably used include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12 and the like. Only 1 type in these positive electrode active material particles may be used, and multiple types may be mixed and used.
 正極11は、固体電解質をさらに含んでいてもよい。正極11に含まれる固体電解質の種類は特に限定されないが、固体電解質層13に含まれる固体電解質と同種の固体電解質を含むことが好ましい。 The positive electrode 11 may further contain a solid electrolyte. Although the kind of solid electrolyte contained in the positive electrode 11 is not particularly limited, it is preferable that the same kind of solid electrolyte as the solid electrolyte contained in the solid electrolyte layer 13 is included.
 負極12は、負極活物質粒子を含んでいる。好ましく用いられる負極活物質粒子の具体例としては、例えば、MO(Mは、Ti,Si,Sn,Cr,Fe,Nb及びMoからなる群より選ばれた少なくとも一種である。0.9≦X≦2.0)で表される化合物粒子、黒鉛-リチウム化合物粒子、リチウム金属、リチウム合金粒子、ナシコン型構造を有するリチウム含有リン酸化合物粒子、オリビン型構造を有するリチウム含有リン酸化合物粒子、スピネル型構造を有するリチウム含有酸化物粒子等が挙げられる。好ましく用いられるリチウム合金の具体例としては、Li-Al合金等が挙げられる。好ましく用いられるナシコン型構造を有するリチウム含有リン酸化合物の具体例としては、Li(PO等が挙げられる。好ましく用いられるオリビン型構造を有するリチウム含有リン酸化合物の具体例としては、LiFe(PO等が挙げられる。好ましく用いられるスピネル型構造を有するリチウム含有酸化物の具体例としては、LiTi12等が挙げられる。これらの負極活物質粒子のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。 The negative electrode 12 includes negative electrode active material particles. Specific examples of the negative electrode active material particles preferably used include, for example, MO X (M is at least one selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo. 0.9 ≦ Compound particles represented by X ≦ 2.0), graphite-lithium compound particles, lithium metal, lithium alloy particles, lithium-containing phosphate compound particles having a NASICON type structure, lithium-containing phosphate compound particles having an olivine type structure, Examples thereof include lithium-containing oxide particles having a spinel structure. Specific examples of the lithium alloy preferably used include a Li—Al alloy. Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like. Specific examples of the lithium-containing phosphate compound having an olivine structure that is preferably used include Li 3 Fe 2 (PO 4 ) 3 and the like. Specific examples of lithium-containing oxides having a spinel structure that are preferably used include Li 4 Ti 5 O 12 . Only 1 type in these negative electrode active material particles may be used, and multiple types may be mixed and used.
 負極12は、固体電解質をさらに含んでいてもよい。負極12に含まれる固体電解質の種類は特に限定されないが、固体電解質層13に含まれる固体電解質と同種の固体電解質を含むことが好ましい。 The negative electrode 12 may further contain a solid electrolyte. Although the kind of solid electrolyte contained in the negative electrode 12 is not particularly limited, it is preferable that the same kind of solid electrolyte as the solid electrolyte contained in the solid electrolyte layer 13 is included.
 正極11と負極12との間には、固体電解質層13が配されている。すなわち、固体電解質層13の一方側に正極11が配されており、他方側に負極12が配されている。正極11及び負極12のそれぞれは、固体電解質層13と焼結によって接合されている。すなわち、正極11、固体電解質層13及び負極12は、一体焼結体である。 A solid electrolyte layer 13 is disposed between the positive electrode 11 and the negative electrode 12. That is, the positive electrode 11 is disposed on one side of the solid electrolyte layer 13 and the negative electrode 12 is disposed on the other side. Each of the positive electrode 11 and the negative electrode 12 is joined to the solid electrolyte layer 13 by sintering. That is, the positive electrode 11, the solid electrolyte layer 13, and the negative electrode 12 are an integral sintered body.
 固体電解質層13に含まれる固体電解質は、ガーネット型の結晶構造を有する。本発明において、ガーネット型の結晶構造は、A12で表される結晶構造のみならず、CサイトにLiを含み、かつ格子間サイトにもLiが占有しているもの、すなわち、A(C3-xLi)Li12、ただし、0≦x≦3,0≦y≦6で表される結晶構造を含むものとする。 The solid electrolyte contained in the solid electrolyte layer 13 has a garnet-type crystal structure. In the present invention, the garnet-type crystal structure includes not only the crystal structure represented by A 3 B 2 C 3 O 12 but also Li in the C site and also occupied by Li in the interstitial site, That is, A 3 B 2 (C 3−x Li x ) Li y O 12, provided that the crystal structure represented by 0 ≦ x ≦ 3, 0 ≦ y ≦ 6 is included.
 固体電解質層13は、ガーネット型の結晶構造を有し、かつ、Li,La,Zr,O及びGaと、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素とを含む。このため、固体電解質層13は、高いイオン伝導度を有する。従って、固体電解質層13を有する全固体電池1は、出力密度などの電池特性に優れている。この理由は定かではないが、Al,Mg,Zn及びScからなる群から選ばれた少なくとも一種が、Liサイト、Zrサイト又はLaサイトに位置することにより、高いイオン伝導度が得られるものと考えられる。Al,Mg,Zn及びScからなる群から選ばれた少なくとも一種が主としてLiサイトに位置したときにイオン伝導度の向上効果が最も高くなると考えられるが、一部の元素がZrサイトやLaサイトに位置している場合にもイオン伝導度の向上効果が得られるものと考えられる。また、Li,La,Zr,O及びGaと、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の一部は、粒界にLi塩や構成元素との複合酸化物として存在してもよい。 The solid electrolyte layer 13 has a garnet-type crystal structure, and includes Li, La, Zr, O, and Ga, and at least one element selected from the group consisting of Al, Mg, Zn, and Sc. . For this reason, the solid electrolyte layer 13 has high ionic conductivity. Therefore, the all solid state battery 1 having the solid electrolyte layer 13 is excellent in battery characteristics such as output density. The reason for this is not clear, but it is considered that at least one selected from the group consisting of Al, Mg, Zn, and Sc is located at the Li site, the Zr site, or the La site, so that high ionic conductivity can be obtained. It is done. When at least one selected from the group consisting of Al, Mg, Zn and Sc is mainly located at the Li site, it is considered that the effect of improving the ionic conductivity is the highest, but some elements are at the Zr site or La site. Even when it is located, it is considered that the effect of improving the ionic conductivity is obtained. In addition, a part of at least one element selected from the group consisting of Li, La, Zr, O, and Ga and Al, Mg, Zn, and Sc is a composite oxide of Li salt or a constituent element at the grain boundary. May exist as
 固体電解質層13に含まれる固体電解質の基本結晶構造は、LiLaZr12で表されるガーネット型であることが好ましい。但し、この酸化物におけるLi:La:Zr:O比は必ずしも7:3:2:12であるように量論組成である必要はなく、各元素が一部欠損していてもよい。 The basic crystal structure of the solid electrolyte contained in the solid electrolyte layer 13 is preferably a garnet type represented by Li 7 La 3 Zr 2 O 12 . However, the Li: La: Zr: O ratio in this oxide is not necessarily a stoichiometric composition such as 7: 3: 2: 12, and each element may be partially missing.
 固体電解質層13に含まれる固体電解質において、Gaの含有量と、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量との合計が0.30モル%より多く20モル%より少ないことが好ましい。これらの元素の含有量を上記範囲とすることにより、ガーネット型結晶構造における高イオン伝導相である立方晶が好適に保持され、かつ、Liのイオンパスが好適に形成されるため、より高いイオン伝導度を実現することができる。これらの元素の含有量が低すぎると、ガーネット型結晶構造における高イオン伝導相である立方晶が好適に保持されなくなるため、イオン伝導度が低くなる場合がある。これらの元素の含有量が高すぎると、LiサイトにGaが存在することで、Liイオンパスが妨害されることとなり、イオン伝導度が低下する場合がある。より高いイオン伝導度を実現する観点からは、Gaの含有量と、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量との合計が3.33モル%より多く10モル%より少ないことが好ましい。 In the solid electrolyte contained in the solid electrolyte layer 13, the sum of the Ga content and the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is more than 0.30 mol%. Preferably less than 20 mol%. By setting the content of these elements in the above range, the cubic crystal, which is a high ion conduction phase in the garnet-type crystal structure, is suitably retained, and the Li ion path is suitably formed, so that higher ion conduction is achieved. Degrees can be realized. If the content of these elements is too low, cubic crystals, which are high ion conduction phases in the garnet-type crystal structure, are not suitably retained, so that the ionic conductivity may be lowered. If the content of these elements is too high, the presence of Ga at the Li site will interfere with the Li ion path, which may reduce the ionic conductivity. From the viewpoint of realizing higher ionic conductivity, the total content of Ga and the content of at least one element selected from the group consisting of Al, Mg, Zn, and Sc is from 3.33 mol%. More than 10 mol% is preferable.
 固体電解質層13に含まれる固体電解質において、Gaの含有量が、Laの含有量に対して0モル%よりも多く13.4モル%より少ないことが好ましい。Gaの含有量を上記範囲とすることにより、高イオン伝導相である立方晶を安定化でき、かつ、Gaとガーネット型構造を構成元素であるLi,La,Zr,Oとが反応して生成する不純物層を低減できるため、より高いイオン伝導度を実現することができる。より高いイオン伝導度を実現する観点からは、Gaの含有量が、Laの含有量に対して0.66モル%よりも多く6.67モル%より少ないことが好ましい。 In the solid electrolyte contained in the solid electrolyte layer 13, the Ga content is preferably more than 0 mol% and less than 13.4 mol% with respect to the La content. By making the Ga content in the above range, cubic crystals which are high ion conduction phases can be stabilized, and Ga and garnet structure are formed by reaction of Li, La, Zr and O which are constituent elements. Since the impurity layer to be reduced can be reduced, higher ionic conductivity can be realized. From the viewpoint of realizing higher ionic conductivity, the Ga content is preferably more than 0.66 mol% and less than 6.67 mol% with respect to the La content.
 固体電解質層13に含まれる固体電解質において、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量の合計が、Laの含有量に対し0.30モル%より多く20モル%より少ないことが好ましい。Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量を上記範囲とすることにより、高イオン伝導相である立方晶を安定化でき、かつ、Al,Mg、Zn及びScとガーネット型構造を構成元素であるLi,La,Zr,Oとが反応して生成する不純物層が生成するため、より高いイオン伝導度を実現することができる。より高いイオン伝導度を実現する観点からは、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量が、Laの含有量に対して0モル%よりも多く6.67モル%より少ないことが好ましい。 In the solid electrolyte contained in the solid electrolyte layer 13, the total content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is more than 0.30 mol% with respect to the La content. Preferably less than 20 mol%. By setting the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc within the above range, cubic crystals which are high ion conductive phases can be stabilized, and Al, Mg, Zn In addition, since an impurity layer is formed by reacting Li and La, Zr, and O, which are constituent elements of Sc and a garnet structure, higher ionic conductivity can be realized. From the viewpoint of realizing higher ionic conductivity, the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is more than 0 mol% with respect to the La content. Less than .67 mol% is preferred.
 固体電解質層13に含まれる固体電解質において、Zrの含有量が、Laの含有量に対し50モル%以上80モル%以下であることが好ましい。Zrの含有量を上記範囲とすることにより、ガーネット型構造をとりやすくなり、より高いイオン伝導度を実現する観点から、Zrの含有量は、Laの含有量に対し60モル%以上70モル%以下であることがより好ましい。 In the solid electrolyte contained in the solid electrolyte layer 13, the Zr content is preferably 50 mol% or more and 80 mol% or less with respect to the La content. By making the Zr content in the above range, it becomes easy to take a garnet structure, and from the viewpoint of realizing higher ionic conductivity, the Zr content is 60 mol% or more and 70 mol% with respect to the La content. The following is more preferable.
 固体電解質層13に含まれる固体電解質において、Liの含有量が、Laの含有量に対し197モル%以上280モル%以下である、ことが好ましい。また、LiLaZr12である場合は、5.9≦x≦8.4であることが好ましい。Liの含有量を上記範囲とすることにより、ガーネット型構造をとりやすくなり、より高いイオン伝導度実現する観点から、Liの含有量は、Laの含有量に対し203モル%以上220モル%以下であることがより好ましい。 In the solid electrolyte contained in the solid electrolyte layer 13, the Li content is preferably 197 mol% or more and 280 mol% or less with respect to the La content. In the case of Li x La 3 Zr 2 O 12 , it is preferable that 5.9 ≦ x ≦ 8.4. By making the Li content in the above range, it becomes easy to take a garnet structure, and from the viewpoint of realizing higher ionic conductivity, the Li content is 203 mol% or more and 220 mol% or less with respect to the La content. It is more preferable that
 さらに高い伝導度を実現する観点からは、固体電解質層13に含まれる固体電解質は、一般式(Li7-(3x+ay)Ga)LaZr12(Mは、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素であり、aはMの価数であり、0<x<0.3、0<y<0.3、0.4<3x+ay<0.9)で表される固体電解質であることが好ましく、一般式(Li7-(3x+3y)Ga)LaZr12(MはAlであり、0<x<0.3、0<y<0.3、0.1<x/y<1、0.6<3x+3y<0.9)で表される固体電解質であることがより好ましい。 From the viewpoint of realizing a higher conductivity, the solid electrolyte contained in the solid electrolyte layer 13 has the general formula (Li 7- (3x + ay) Ga x M y) La 3 Zr 2 O 12 (M is Al, Mg, At least one element selected from the group consisting of Zn and Sc, a is the valence of M, 0 <x <0.3, 0 <y <0.3, 0.4 <3x + ay <0 .9) is preferably a solid electrolyte represented by the general formula (Li 7- (3x + 3y) Ga x M y ) La 3 Zr 2 O 12 (M is Al, 0 <x <0.3, A solid electrolyte represented by 0 <y <0.3, 0.1 <x / y <1, 0.6 <3x + 3y <0.9) is more preferable.
 Ga/Al比がイオン伝導度に影響を与える理由は必ずしも明らかではないが、以下のように考えられる。ガーネット型のLiサイトには2つのサイト、Li1サイト、Li2サイトが存在する。今回添加したGa,AlはLiサイトを占有しているものと考えられるが、これら2つのサイトへの占有性はGa、Alで異なっていると推定される。Ga、Alの添加比が変化すると、2つのLiサイトの占有バランスが変化し、これがLiの伝導パスや、Liのサイト占有性に差異が生じさせることで、伝導度が変化するものと考えられる。x/y及び3x+3yを上記範囲とすることにより、Li伝導に有利なLiの伝導パスや、Liのサイト占有性が達成され、伝導度が向上したものと考えられる。 The reason why the Ga / Al ratio affects the ionic conductivity is not necessarily clear, but is considered as follows. The garnet-type Li site has two sites, an Li1 site and an Li2 site. The Ga and Al added this time are considered to occupy the Li site, but the occupancy to these two sites is presumed to be different between Ga and Al. When the addition ratio of Ga and Al changes, the occupation balance of the two Li sites changes, and this causes a difference in the conduction path of Li and the site occupation of Li, which is considered to change the conductivity. . By setting x / y and 3x + 3y in the above ranges, it is considered that the Li conduction path advantageous for Li conduction and the site occupation of Li are achieved, and the conductivity is improved.
 なお、固体電解質においてLiの量論比は、7-(3x+ay)であることが好ましいが、ガーネット型化合物では、焼結時におけるLi欠損や、粒界に生成する微量の不純物の影響から、厳密にLi量を制御するのは困難である。本発明者らが鋭意研究した結果、固体電解質に含まれるLi量が量論比に対して、ある一定の範囲内にある場合、イオン伝導度が大幅に低下しないことが見出された。具体的には、固体電解質においてLiの量論比7-(3x+ay)に対して、±10mol%程度の範囲にあることが好ましく、さらに±3mol%程度であることがさらに好ましい。従って、本発明においては、一般式(Li7-(3x+ay)Ga)LaZr12(Mは、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素であり、aはMの価数であり、0<x<0.3、0<y<0.3、0.4<3x+ay<0.9)で表される固体電解質であることが好ましく、一般式(Li7-(3x+3y)Ga)LaZr12(MはAlであり、0<x<0.3、0<y<0.3、0.1<x/y<1、0.6<3x+3y<0.9)で表される固体電解質には、Liの量論比が7-(3x+ay)に対して、±10mol%程度の範囲にある固体電解質が含まれるものとする。 The stoichiometric ratio of Li in the solid electrolyte is preferably 7− (3x + ay). However, in the case of a garnet type compound, it is strictly because of the influence of Li deficiency during sintering and a small amount of impurities generated at the grain boundary. It is difficult to control the amount of Li. As a result of intensive studies by the present inventors, it has been found that when the amount of Li contained in the solid electrolyte is within a certain range with respect to the stoichiometric ratio, the ionic conductivity is not significantly reduced. Specifically, it is preferably in the range of about ± 10 mol%, more preferably about ± 3 mol% with respect to the Li stoichiometric ratio of 7− (3x + ay) in the solid electrolyte. Therefore, in the present invention, the general formula (Li 7- (3x + ay) Ga x M y ) La 3 Zr 2 O 12 (M is at least one element selected from the group consisting of Al, Mg, Zn and Sc) A is a valence of M, and is preferably a solid electrolyte represented by 0 <x <0.3, 0 <y <0.3, 0.4 <3x + ay <0.9), General formula (Li 7- (3x + 3y) Ga x M y ) La 3 Zr 2 O 12 (M is Al, 0 <x <0.3, 0 <y <0.3, 0.1 <x / y The solid electrolyte represented by <1, 0.6 <3x + 3y <0.9) includes a solid electrolyte having a Li stoichiometric ratio in the range of about ± 10 mol% with respect to 7− (3x + ay). Shall.
 (固体電解質の製造方法)
 次に、固体電解質の製造方法の一例について説明する。
(Method for producing solid electrolyte)
Next, an example of a method for producing a solid electrolyte will be described.
 まず、Li源となる原料、Zr源となる原料、La源となる原料、およびGa及びAl,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の原料を、所望の割合で秤量し、混合する。得られた混合粉末を仮焼成することにより、仮焼成体を作製する。得られた仮焼成体を焼成することにより固体電解質を得ることができる。なお、まず、ガーネット型の結晶相を作製した後に、焼結前の段階で、Ga及びAl,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の原料を添加してもよい。そうすることにより、Ga及びAl,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の添加量を正確に制御することができる。 First, a raw material to be a Li source, a raw material to be a Zr source, a raw material to be a La source, and a raw material of at least one element selected from the group consisting of Ga, Al, Mg, Zn and Sc, in a desired ratio Weigh and mix. The obtained mixed powder is temporarily fired to prepare a temporarily fired body. A solid electrolyte can be obtained by baking the obtained temporary fired body. First, after preparing a garnet-type crystal phase, a raw material of at least one element selected from the group consisting of Ga and Al, Mg, Zn and Sc may be added before sintering. . By doing so, the addition amount of at least one element selected from the group consisting of Ga and Al, Mg, Zn and Sc can be accurately controlled.
 (全固体電池1の製造方法)
 次に、全固体電池1の製造方法の一例について説明する。
(Manufacturing method of all solid state battery 1)
Next, an example of a method for manufacturing the all solid state battery 1 will be described.
 まず、活物質粒子と固体電解質とに対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストをシートの上に塗布し、乾燥させることにより正極11を構成するための第1のグリーンシートを形成する。同様に、負極12を構成するための第2のグリーンシートを形成する。 First, a paste is prepared by appropriately mixing a solvent, a resin, and the like with the active material particles and the solid electrolyte. The paste is applied on the sheet and dried to form a first green sheet for constituting the positive electrode 11. Similarly, a second green sheet for forming the negative electrode 12 is formed.
 固体電解質に対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストを塗布し、乾燥させることにより、固体電解質層13を構成するための第3のグリーンシートを作製する。 A paste is prepared by appropriately mixing a solvent, a resin and the like with the solid electrolyte. The paste is applied and dried to produce a third green sheet for constituting the solid electrolyte layer 13.
 次に、第1~第3のグリーンシートを適宜積層することにより積層体を作製する。作製した積層体をプレスしてもよい。好ましいプレス方法としては、静水圧プレス等が挙げられる。 Next, a laminate is produced by appropriately laminating the first to third green sheets. You may press the produced laminated body. As a preferable pressing method, an isostatic pressing or the like can be mentioned.
 その後、積層体を焼結することにより全固体電池1を得ることができる。 Thereafter, the all-solid-state battery 1 can be obtained by sintering the laminate.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.
 (比較例1)
 水酸化リチウム一水和物(LiOH・HO)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表1に示す組成となるように秤量した。次に、水を添加し、100mlのポリエチレン製ポリポットに封入して、ポット架上で150rpm、16時間回転させ、原料を混合した。なお、また、Li源である水酸化リチウム一水和物LiOH・HOは焼結時のLi欠損を考慮し、狙い組成に対し、5質量%過剰に仕込んだ。
(Comparative Example 1)
The raw materials containing lithium hydroxide monohydrate (LiOH.H 2 O), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ) and zirconium oxide (ZrO 2 ) are shown in Table 1 below. It weighed so that it might become the composition shown. Next, water was added, sealed in a 100 ml polyethylene polypot, and rotated on a pot rack at 150 rpm for 16 hours to mix the raw materials. In addition, lithium hydroxide monohydrate LiOH.H 2 O as a Li source was charged in excess of 5% by mass with respect to the target composition in consideration of Li deficiency during sintering.
 次に、得られたスラリーを乾燥させた後に、窒素ガスと空気との混合ガス中で900℃で5時間仮焼した。 Next, the obtained slurry was dried and calcined at 900 ° C. for 5 hours in a mixed gas of nitrogen gas and air.
 次に、得られた仮焼成物にトルエン-アセトンの混合溶媒を添加し、遊星ボールミルにて6時間粉砕し、固体電解質を得た。 Next, a toluene-acetone mixed solvent was added to the obtained calcined product, and the mixture was pulverized with a planetary ball mill for 6 hours to obtain a solid electrolyte.
 次に、固体電解質、ブチラール樹脂、アルコールを、200:15:140の質量比率で混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるブチラール樹脂で被覆された固体電解質粉末を得た。 Next, after the solid electrolyte, butyral resin, and alcohol are mixed at a mass ratio of 200: 15: 140, the alcohol is removed on a hot plate at 80 ° C., and the solid electrolyte powder coated with the butyral resin as a binder is obtained. Obtained.
 次に、ブチラール樹脂で被覆された固体電解質粉末を錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。得られた固体電解質のタブレットを、マザーパウダーで十分に覆い、2枚のZrOセッターで挟持した後、酸素雰囲気下、500℃の温度で焼成することにより、ブチラール樹脂を除去した後、酸素雰囲気下で約1100℃まで昇温し、1100℃で3時間焼成した。その後、降温することで固体電解質の焼結体(固体電解質層)を得た。以上の手法によって固体電解質の焼結体を作製することで、かさ密度が4.8g/cm~5.0g/cm程度の緻密な焼結体が作製可能であった。 Next, the solid electrolyte powder coated with butyral resin was pressed at 90 MPa using a tablet molding machine to form a tablet. The obtained solid electrolyte tablet is sufficiently covered with mother powder, sandwiched between two ZrO 2 setters, and then baked at a temperature of 500 ° C. in an oxygen atmosphere to remove the butyral resin, and then an oxygen atmosphere. Then, the temperature was raised to about 1100 ° C. and calcined at 1100 ° C. for 3 hours. Thereafter, the temperature was lowered to obtain a sintered body (solid electrolyte layer) of the solid electrolyte. By making a sintered body of the solid electrolyte by the above method, the bulk density of 4.8g / cm 3 ~ 5.0g / cm 3 of about dense sintered body was possible to produce.
 (実施例1)
 原料として、水酸化リチウム一水和物LiOH・HO、酸化ガリウム(Ga)、酸化マグネシウム(MgO)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表1に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製した。
Example 1
As raw materials, lithium hydroxide monohydrate LiOH.H 2 O, gallium oxide (Ga 2 O 3 ), magnesium oxide (MgO), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (ZrO 2 ) are included. A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials were weighed so as to have the composition shown in Table 1 below.
 (実施例2)
 原料として、水酸化リチウム一水和物LiOH・HO)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表1に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製した。
(Example 2)
As raw materials, lithium hydroxide monohydrate LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide (ZrO) A solid electrolyte layer was prepared in the same manner as in Comparative Example 1 except that the raw material containing 2 ) was weighed so as to have the composition shown in Table 1 below.
 (実施例3)
 原料として、水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化スカンジウム(Sc)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表1に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製した。
(Example 3)
As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), scandium oxide (Sc 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw material containing ZrO 2 ) was weighed so as to have the composition shown in Table 1 below.
 (固体電解質層のイオン伝導度の測定)
 比較例及び実施例1~3のそれぞれにおいて作製した固体電解質層のイオン伝導度を以下の要領で測定した。
(Measurement of ionic conductivity of solid electrolyte layer)
The ionic conductivity of the solid electrolyte layer produced in each of the comparative example and Examples 1 to 3 was measured as follows.
 まず、焼結タブレット(固体電解質層)の両面にスパッタリングによって、集電体層となる白金(Pt)層を形成した後、SUS製の集電体で挟持し、固定した。その後、0.1MHz~1MHz(±50mV)の範囲で室温(25℃)にて交流インピーダンス測定を行い、イオン伝導度を評価した。結果を表1に示す。 First, a platinum (Pt) layer serving as a current collector layer was formed on both surfaces of a sintered tablet (solid electrolyte layer) by sputtering, and then sandwiched and fixed by a current collector made of SUS. Thereafter, AC impedance was measured at room temperature (25 ° C.) in the range of 0.1 MHz to 1 MHz (± 50 mV) to evaluate ion conductivity. The results are shown in Table 1.
 また、図2に、比較例1及び実施例2のそれぞれにおいて作製した固体電解質の交流インピーダンスの測定結果を示すグラフ(ナイキストプロット)を示す。 FIG. 2 shows a graph (Nyquist plot) showing the measurement results of the AC impedance of the solid electrolyte produced in each of Comparative Example 1 and Example 2.
Figure JPOXMLDOC01-appb-T000001
  表1に示す結果から、Gaと、Al,Mg又はScとを含有させることにより、イオン伝導度を高めることができることが分かる。なお、Mgと同じ価数で、同程度のイオン半径を有するZnを含有させた場合にも同様の効果が期待できる。
Figure JPOXMLDOC01-appb-T000001
From the results shown in Table 1, it can be seen that the ionic conductivity can be increased by containing Ga and Al, Mg or Sc. In addition, the same effect can be expected when Zn having the same valence as Mg and the same ionic radius is contained.
 (実施例4)
 原料として、水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表2に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製し、上記の方法でイオン伝導度を測定した。結果を表2に示す。
(Example 4)
As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was prepared in the same manner as in Comparative Example 1 except that the raw material containing ZrO 2 ) was weighed so as to have the composition shown in Table 2 below, and the ionic conductivity was measured by the above method. The results are shown in Table 2.
 (実施例5)
 原料として、水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表2に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製し、上記の方法でイオン伝導度を測定した。結果を表2に示す。
(Example 5)
As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was prepared in the same manner as in Comparative Example 1 except that the raw material containing ZrO 2 ) was weighed so as to have the composition shown in Table 2 below, and the ionic conductivity was measured by the above method. The results are shown in Table 2.
 (実施例6)
 原料として、水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表2に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製し、上記の方法でイオン伝導度を測定した。結果を表2に示す。
(Example 6)
As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was prepared in the same manner as in Comparative Example 1 except that the raw material containing ZrO 2 ) was weighed so as to have the composition shown in Table 2 below, and the ionic conductivity was measured by the above method. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、GaとAlとの含有量の総量を一定として、Gaの含有量とAlの含有量とを変化させた場合のイオン伝導度の変化が分かる。表2に示す結果から、Alの含有量をLaの含有量に対して0.66モル%より多くすることでイオン伝導度を大きく向上できることが分かる。また、Gaの量がLaの含有量に対し、0.67モル%より少なくなることで伝導度が減少することが分かる。従って、Gaの含有量は0.66モル%より多いことが好ましい。Alに対するGaの含有比が0.1より多く1より少ない領域において、伝導度がほぼ極大となり、より好ましいことがわかる。
Figure JPOXMLDOC01-appb-T000002
From the results shown in Table 2, it can be seen that the ionic conductivity changes when the total content of Ga and Al is constant and the Ga content and the Al content are changed. From the results shown in Table 2, it can be seen that the ionic conductivity can be greatly improved by increasing the Al content to more than 0.66 mol% with respect to the La content. It can also be seen that the conductivity decreases when the Ga content is less than 0.67 mol% with respect to the La content. Accordingly, the Ga content is preferably more than 0.66 mol%. It can be seen that in the region where the content ratio of Ga to Al is more than 0.1 and less than 1, the conductivity becomes almost maximum, which is more preferable.
 (実施例7)
 原料として、水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表3に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製し、上記の方法でイオン伝導度を測定した。結果を表3に示す。
(Example 7)
As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials containing ZrO 2 ) were weighed so as to have the composition shown in Table 3 below, and the ionic conductivity was measured by the above method. The results are shown in Table 3.
 (実施例8)
 原料として、水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表3に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製し、上記の方法でイオン伝導度を測定した。結果を表3に示す。
(Example 8)
As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials containing ZrO 2 ) were weighed so as to have the composition shown in Table 3 below, and the ionic conductivity was measured by the above method. The results are shown in Table 3.
 (実施例9)
 原料として、水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表3に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製し、上記の方法でイオン伝導度を測定した。結果を表3に示す。
Example 9
As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials containing ZrO 2 ) were weighed so as to have the composition shown in Table 3 below, and the ionic conductivity was measured by the above method. The results are shown in Table 3.
 (実施例10)
 原料として、水酸化リチウム一水和物(LiOH・HO)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、水酸化ランタン(La(OH))、酸化ジルコニウム(ZrO)を含む原料を下記の表3に示す組成となるように秤量したこと以外は、比較例1と同様にして固体電解質層を作製し、上記の方法でイオン伝導度を測定した。結果を表3に示す。
(Example 10)
As raw materials, lithium hydroxide monohydrate (LiOH.H 2 O), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum hydroxide (La (OH) 3 ), zirconium oxide ( A solid electrolyte layer was produced in the same manner as in Comparative Example 1 except that the raw materials containing ZrO 2 ) were weighed so as to have the composition shown in Table 3 below, and the ionic conductivity was measured by the above method. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、Ga:Alを、大凡1:3として、GaとAlとの含有量の総量を変化させた場合のイオン伝導度の変化が分かる。表3に示す結果から、Liの含有量が6.1より多く6.6よりも少ない場合(すなわち、0.4<3x+ay<0.9)に高いイオン伝導度が得られることが分かる。0.6<3x+ay<0.9のときにより高いイオン伝導度が得られることが分かる。
Figure JPOXMLDOC01-appb-T000003
From the results shown in Table 3, the change in ionic conductivity when Ga: Al is approximately 1: 3 and the total content of Ga and Al is changed can be seen. From the results shown in Table 3, it can be seen that high ionic conductivity is obtained when the Li content is more than 6.1 and less than 6.6 (that is, 0.4 <3x + ay <0.9). It can be seen that higher ionic conductivity is obtained when 0.6 <3x + ay <0.9.
1 全固体電池
11 正極
12 負極
13 固体電解質層 
 
 
DESCRIPTION OF SYMBOLS 1 All-solid-state battery 11 Positive electrode 12 Negative electrode 13 Solid electrolyte layer

Claims (7)

  1.  ガーネット型の結晶構造を有する固体電解質であって、
     Li,La,Zr,O及びGaと、
     Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素と、
     を含む、固体電解質。
    A solid electrolyte having a garnet-type crystal structure,
    Li, La, Zr, O and Ga;
    At least one element selected from the group consisting of Al, Mg, Zn and Sc;
    Including a solid electrolyte.
  2.  Gaの含有量が、Laの含有量に対して0モル%よりも多く13.4モル%より少なく、
     Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量の合計が、Laの含有量に対して0モル%よりも多く13.4モル%より少なく、
     Gaの含有量と、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量との合計が0.30モル%より多く20モル%より少ない、請求項1に記載の固体電解質。
    Ga content is more than 0 mol% and less than 13.4 mol% with respect to La content,
    The total content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is greater than 0 mol% and less than 13.4 mol% with respect to the La content;
    The sum of the Ga content and the content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is more than 0.30 mol% and less than 20 mol%. Solid electrolyte.
  3.  Gaの含有量が、Laの含有量に対して0.66モル%よりも多く6.67モル%より少なく、
     Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量の合計が、Laの含有量に対して0モル%よりも多く6.67モル%より少なく、
     Gaの含有量と、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素の含有量との合計が0.33モル%より多く10モル%より少ない、請求項2に記載の固体電解質。
    Ga content is more than 0.66 mol% and less than 6.67 mol% with respect to La content,
    The total content of at least one element selected from the group consisting of Al, Mg, Zn and Sc is greater than 0 mol% and less than 6.67 mol% with respect to the La content;
    The sum of the Ga content and the content of at least one element selected from the group consisting of Al, Mg, Zn, and Sc is greater than 0.33 mol% and less than 10 mol%. Solid electrolyte.
  4.  Zrの含有量が、Laの含有量に対して50モル%以上80モル%以下であり、
     Liの含有量が、Laの含有量に対して197モル%以上280モル%以下である、請求項1~3のいずれか一項に記載の固体電解質。
    The Zr content is 50 mol% or more and 80 mol% or less with respect to the La content,
    The solid electrolyte according to any one of claims 1 to 3, wherein the Li content is 197 mol% or more and 280 mol% or less with respect to the La content.
  5.  一般式(Li7-(3x+ay)Ga)LaZr12(Mは、Al,Mg,Zn及びScからなる群から選ばれた少なくとも1種の元素であり、aはMの価数であり、0<x<0.3、0<y<0.3、0.4<3x+ay<0.9)で表される、請求項1~4のいずれか一項に記載の固体電解質。 General formula (Li 7- (3x + ay) Ga x M y ) La 3 Zr 2 O 12 (M is at least one element selected from the group consisting of Al, Mg, Zn and Sc; The solid according to any one of claims 1 to 4, which is a valence and is represented by 0 <x <0.3, 0 <y <0.3, 0.4 <3x + ay <0.9). Electrolytes.
  6.  一般式(Li7-(3x+3y)Ga)LaZr12(MはAlであり、0<x<0.3、0<y<0.3、0.1<x/y<1、0.6<3x+3y<0.9)で表される、請求項5に記載の固体電解質。 General formula (Li 7- (3x + 3y) Ga x M y ) La 3 Zr 2 O 12 (M is Al, 0 <x <0.3, 0 <y <0.3, 0.1 <x / y The solid electrolyte according to claim 5, represented by <1, 0.6 <3x + 3y <0.9).
  7.  請求項1~6のいずれか一項に記載の固体電解質を含む固体電解質層と、
     前記固体電解質層の一方面に焼結によって接合されている正極と、
     前記固体電解質層の他方面に焼結によって接合されている負極と、
     を備える、全固体電池。 
     
    A solid electrolyte layer comprising the solid electrolyte according to any one of claims 1 to 6;
    A positive electrode joined by sintering to one side of the solid electrolyte layer;
    A negative electrode joined by sintering to the other surface of the solid electrolyte layer;
    An all solid state battery.
PCT/JP2017/004130 2016-02-05 2017-02-03 Solid electrolyte and all-solid-state battery WO2017135461A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780005980.6A CN108463916A (en) 2016-02-05 2017-02-03 Solid electrolyte and all-solid-state battery
EP20176902.3A EP3719910A1 (en) 2016-02-05 2017-02-03 Solid electrolyte and all-solid-state battery
EP17747612.4A EP3413388B1 (en) 2016-02-05 2017-02-03 Solid electrolyte and all-solid-state battery
JP2017565676A JP6593459B2 (en) 2016-02-05 2017-02-03 Solid electrolyte and all-solid battery
US16/007,008 US11444316B2 (en) 2016-02-05 2018-06-13 Solid electrolyte and all-solid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016021323 2016-02-05
JP2016-021323 2016-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/007,008 Continuation US11444316B2 (en) 2016-02-05 2018-06-13 Solid electrolyte and all-solid battery

Publications (1)

Publication Number Publication Date
WO2017135461A1 true WO2017135461A1 (en) 2017-08-10

Family

ID=59500777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004130 WO2017135461A1 (en) 2016-02-05 2017-02-03 Solid electrolyte and all-solid-state battery

Country Status (5)

Country Link
US (1) US11444316B2 (en)
EP (2) EP3413388B1 (en)
JP (2) JP6593459B2 (en)
CN (1) CN108463916A (en)
WO (1) WO2017135461A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145261A (en) * 2018-02-19 2019-08-29 セイコーエプソン株式会社 Electrolyte, battery, electronic apparatus, electrolyte and method for producing battery
KR20200029227A (en) * 2018-09-10 2020-03-18 한국생산기술연구원 Aluminum-galium doped solid electrolyte material for all-solid-state lithium secondary battery and method for preparing the same
EP3518251A4 (en) * 2016-09-21 2020-05-06 Murata Manufacturing Co., Ltd. Solid electrolyte and all-solid battery
WO2021059939A1 (en) * 2019-09-27 2021-04-01 株式会社カネカ Oxide, solid electrolyte and all-solid-state lithium ion secondary battery
CN113078295A (en) * 2021-04-09 2021-07-06 湖南科技大学 All-solid-state zinc-sulfur battery and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10593475B2 (en) * 2017-09-22 2020-03-17 Taiyo Yuden Co., Ltd. Multi-layer ceramic capacitor
JP7243146B2 (en) * 2018-11-28 2023-03-22 セイコーエプソン株式会社 Method for producing solid electrolyte, solid electrolyte, secondary battery, electronic device
JP7155944B2 (en) * 2018-11-28 2022-10-19 セイコーエプソン株式会社 Solid electrolyte, method for producing solid electrolyte, secondary battery, electronic device
CN110176628B (en) * 2019-06-18 2022-07-26 济宁克莱泰格新能源科技有限公司 Surface-stable lithium lanthanum zirconium oxygen-based solid electrolyte material and preparation method and application thereof
JP7361299B2 (en) * 2019-09-19 2023-10-16 国立研究開発法人産業技術総合研究所 Gallium-substituted solid electrolyte material and all-solid-state lithium-ion secondary battery
CN112397776B (en) * 2020-10-27 2021-10-19 广东东邦科技有限公司 Ga and Al co-doped LLZO solid electrolyte, multi-element solid battery and preparation method thereof
CN115259216B (en) * 2022-08-17 2024-02-02 武汉理工大学深圳研究院 Lithium lanthanum zirconium oxygen solid electrolyte with micron/nano powder grading and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051800A (en) 2008-08-21 2011-03-17 Ngk Insulators Ltd Ceramic material and process for producing the same
JP2012238545A (en) * 2011-05-13 2012-12-06 Toyota Motor Corp Method for manufacturing all-solid battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147875A (en) * 2010-01-21 2011-08-04 Toyota Central R&D Labs Inc Carbon dioxide-absorbing material
JPWO2011132627A1 (en) * 2010-04-23 2013-07-18 株式会社村田製作所 All-solid secondary battery and manufacturing method thereof
US9093717B2 (en) * 2011-05-20 2015-07-28 Board Of Trustees Of Michigan State University Methods of making and using oxide ceramic solids and products and devices related thereto
US20150180001A1 (en) * 2011-12-05 2015-06-25 Johnson Ip Holding, Llc Amorphous ionically-conductive metal oxides, method of preparation, and battery
CN104159869B (en) * 2012-03-02 2016-09-21 日本碍子株式会社 Solid electrolyte ceramic material and manufacture method thereof
JP5905076B2 (en) * 2012-03-23 2016-04-20 株式会社東芝 Battery and battery pack
US10388975B2 (en) * 2013-01-31 2019-08-20 Board Of Trustees Of Michigan State University Template-based methods of making and using ceramic solids
WO2015173114A1 (en) * 2014-05-16 2015-11-19 Evonik Degussa Gmbh Method for producing mixed oxide powder comprising lithium, lanthanum and zirconium
CN104124467B (en) * 2014-07-22 2016-06-01 武汉理工大学 A kind of method utilizing lithium lanthanum zirconium oxygen presoma coated powder to prepare solid electrolyte
US20160308244A1 (en) * 2015-04-14 2016-10-20 Corning Incorporated Lithium-oxide garnet batch composition and solid electrolyte membrane thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051800A (en) 2008-08-21 2011-03-17 Ngk Insulators Ltd Ceramic material and process for producing the same
JP2012238545A (en) * 2011-05-13 2012-12-06 Toyota Motor Corp Method for manufacturing all-solid battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RETTENWANDER, DANIEL ET AL.: "Site Occupation of Ga and Al in Stabilized Cubic Li7-3(x+y)GaxAly La3Zr2O12 Garnets As Deduced from 27Al and 71Ga MAS NMR at Ultrahigh Magnetic Fields", CHEMISTRY OF MATERIALS, vol. 27, no. 8, 2 April 2015 (2015-04-02), pages 3135 - 3142, XP055487633 *
See also references of EP3413388A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3518251A4 (en) * 2016-09-21 2020-05-06 Murata Manufacturing Co., Ltd. Solid electrolyte and all-solid battery
US11011778B2 (en) 2016-09-21 2021-05-18 Murata Manufacturing Co., Ltd. Solid-state electrolyte and all-solid-state battery
JP2019145261A (en) * 2018-02-19 2019-08-29 セイコーエプソン株式会社 Electrolyte, battery, electronic apparatus, electrolyte and method for producing battery
KR20200029227A (en) * 2018-09-10 2020-03-18 한국생산기술연구원 Aluminum-galium doped solid electrolyte material for all-solid-state lithium secondary battery and method for preparing the same
KR102102212B1 (en) * 2018-09-10 2020-04-20 한국생산기술연구원 Aluminum-galium doped solid electrolyte material for all-solid-state lithium secondary battery and method for preparing the same
WO2021059939A1 (en) * 2019-09-27 2021-04-01 株式会社カネカ Oxide, solid electrolyte and all-solid-state lithium ion secondary battery
CN114466822A (en) * 2019-09-27 2022-05-10 株式会社钟化 Oxide, solid electrolyte, and all-solid-state lithium ion secondary battery
CN113078295A (en) * 2021-04-09 2021-07-06 湖南科技大学 All-solid-state zinc-sulfur battery and manufacturing method thereof
CN113078295B (en) * 2021-04-09 2022-05-17 湖南科技大学 All-solid-state zinc-sulfur battery and manufacturing method thereof

Also Published As

Publication number Publication date
EP3413388A1 (en) 2018-12-12
EP3413388B1 (en) 2023-05-31
US20180294520A1 (en) 2018-10-11
JP2019149374A (en) 2019-09-05
US11444316B2 (en) 2022-09-13
CN108463916A (en) 2018-08-28
EP3413388A4 (en) 2019-10-30
JP6593459B2 (en) 2019-10-23
JPWO2017135461A1 (en) 2018-07-19
EP3719910A1 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP6593459B2 (en) Solid electrolyte and all-solid battery
US10601073B2 (en) Solid electrolyte, all solid state battery, method for producing solid electrolyte, and method for producing all solid state battery
JP6992818B2 (en) All solid state battery
US11955596B2 (en) Solid electrolyte and all solid state battery
JP6904423B2 (en) Co-firing type all-solid-state battery
US11011778B2 (en) Solid-state electrolyte and all-solid-state battery
WO2017141742A1 (en) Solid electrolyte and all-solid-state battery
US11942596B2 (en) Solid electrolyte material, solid electrolyte layer, and all solid state battery
WO2017183255A1 (en) Solid electrolyte and all-solid-state battery
WO2017138465A1 (en) Production method for solid electrolytes, production method for all-solid-state batteries, solid electrolyte, and all-solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE