WO2015173114A1 - Method for producing mixed oxide powder comprising lithium, lanthanum and zirconium - Google Patents

Method for producing mixed oxide powder comprising lithium, lanthanum and zirconium Download PDF

Info

Publication number
WO2015173114A1
WO2015173114A1 PCT/EP2015/060068 EP2015060068W WO2015173114A1 WO 2015173114 A1 WO2015173114 A1 WO 2015173114A1 EP 2015060068 W EP2015060068 W EP 2015060068W WO 2015173114 A1 WO2015173114 A1 WO 2015173114A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed oxide
oxide powder
oxygen
lithium
reaction
Prior art date
Application number
PCT/EP2015/060068
Other languages
German (de)
French (fr)
Inventor
Stipan Katusic
Peter Kress
Armin Wiegand
Tobias RENGER
Michael Hagemann
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP14168678.2A external-priority patent/EP2944611A1/en
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of WO2015173114A1 publication Critical patent/WO2015173114A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to processes for preparing lithium, lanthanum and zirconium-containing mixed oxide powder, the mixed oxide powder itself and their use in lithium-ion batteries.
  • DE-A-102007030604 discloses a process for producing a mixed oxide powder containing lithium, lanthanum and zirconium by a solid phase reaction.
  • the nitrates, carbonates and hydroxides of the metals are mixed in a first step, for example by means of a ball mill in 2-propanol.
  • the resulting mixture is then heated to 400-1000 ° C for several hours in air over a period of 4-8 hours.
  • Solid State Ionics 185 (201 1) 42-46, a sol-gel process for producing lithium,
  • Lanthanum and zirconium containing mixed oxides disclosed in which one dissolves Li 2 C0 3 and La 2 0 3 in HN0 3 and Zr (OC 2 H 5 ) 4 in ethanol. Both solutions are mixed and subsequently mixed with citric acid and ethylene glycol. The solution is stirred for 3 hours at 323K and then the solvent is distilled off. The resulting gel is treated at 473K for 24 hours. The resulting powder is ground and calcined in air at temperatures of 923 to 1173K for 5 hours. A similar process is also disclosed in Solid State Ionics 183 (201 1) 48-53.
  • Lithium, lanthanum and zirconium-containing mixed oxides have hitherto been produced by classical, wet-chemical processes. These include sol-gel methods, precipitation methods and solid-phase reactions. Often these processes require several process steps, and the processes often leave much to be desired in terms of control and reproducibility of the reaction.
  • the object of the present invention was to provide a process which does not have the disadvantages mentioned and with which it is possible in a short time to produce relatively large amounts of lithium oxide, lanthanum and zirconium-containing mixed oxide powders.
  • the object of the invention was in particular to produce mixed oxide powder with garnet structure.
  • the invention relates to a method for producing a mixed oxide powder of the composition Li x La 3 Zr 2 M y 08.5 + o, 5x + z with
  • a solution containing in each case one or more compounds of lithium, lanthanum and zirconium and optionally metal compounds MX in a concentration corresponding to stoichiometry and in the form of fine droplets is introduced into a flame burning in a reaction space, which is formed by reacting an oxygen containing gas and a in the reaction with oxygen forming water fuel gas into the reaction chamber and there ignites and subsequently separates the solid from vapor or gaseous substances.
  • the mixed oxide powder thus prepared is intended in the context of the present invention as
  • Mixed oxide powder A are called.
  • Mixed oxide is the intimate mixing of all mixed oxide components to understand. It is therefore largely a mixture at the atomic level, not a physical mixture of oxides.
  • the mixed oxide powder prepared by the process of the present invention contains Li, La and Zr as essential metals and may further contain one or more metals M.
  • zirconium compounds contain up to 2% by weight of hafnium compounds
  • the mixed oxide powder produced therefrom also contains hafnium.
  • this compulsory proportion of hafnium should not be considered as a mixed oxide component.
  • An additionally introduced hafnium compound, on the other hand, should be regarded as a mixed oxide component.
  • the solution or solutions are introduced into the reaction space in the form of fine droplets.
  • the fine droplets preferably have an average droplet size of 1 to 120 ⁇ m, more preferably of 30 to 100 ⁇ m.
  • One or more nozzles are usually used to generate the droplets.
  • the metal compounds are in solution.
  • the solution can be heated. In principle, all are soluble
  • alkoxides may preferably be ethylates, n-propylates, isopropylates, n-butylates and / or tert-butylates.
  • carboxylates those of acetic acid, propionic acid, butanoic acid, hexanoic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, octanoic acid, 2-ethyl Hexanoic acid, valeric acid, capric acid and / or lauric acid underlying
  • the solution may contain one or more inorganic metal compounds, one or more organic metal compounds, or mixtures of inorganic and organic metal compounds.
  • the nitrates of lithium, lanthanum, and zirconium and M are used.
  • the solvents may preferably be selected from the group consisting of water, C 5 -C 2 o alkanes, C 1 -C 6 alkane carboxylic acids and / or C 1 -C 6 alkanols. Particular preference may be given to using water or a mixture of water and an organic solvent.
  • organic solvents or as part of organic
  • Solvent mixtures may preferably alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol, diols such as ethanediol, pentanediol, 2-methyl-2,4-pentanediol, Ci-Ci2-carboxylic acids such as Acetic acid, propionic acid, butanoic acid, hexanoic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, octanoic acid, 2-ethylhexanoic acid, valeric acid, capric acid, lauric acid can be used. Furthermore, benzene, toluene, naphtha and / or gasoline can be used.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert
  • aqueous solutions are used, wherein an aqueous solution is to be understood as a solution in which water is the main constituent of a
  • Solvent mixture is or in which only water is the solvent.
  • the concentration of the solutions used is not particularly limited. If only one solution is present, which contains all the mixed oxide components, the concentration is generally from 1 to 50% by weight, preferably from 3 to 30% by weight, very particularly preferably from 5 to 20% by weight, based in each case on the sum of oxides.
  • hydrogen methane, ethane, propane, butane and mixtures thereof can be used. Preference is given to using hydrogen.
  • the flame-forming, oxygen-containing gas is usually air.
  • the amount of oxygen is to be selected in the inventive method so that it is sufficient at least for complete conversion of the fuel gas and all metal compounds. It is usually advantageous to use an excess of oxygen. This excess is conveniently expressed as the ratio of existing Oxygen / combustion of the fuel gas necessary oxygen and referred to as lambda. Lambda is preferably 1.5 to 6.0, particularly preferably 2.0 to 4.0.
  • additional oxygen-containing gas can be introduced into the reaction space.
  • the solution is preferably introduced by means of a nebulizer gas into the reaction space.
  • a nebulizer gas for example, nitrogen or air are suitable as nebulizer gases. If air is used, it will not be taken into account when calculating lambda.
  • a particular embodiment provides for ammonia and / or an ammonia-forming substance to be introduced into the reaction space. This can be done, for example, by adding an ammonia-forming substance, such as ammonium carbonate,
  • Ammonium bicarbonate or urea in which solution is introduced which is introduced into the flame.
  • Another embodiment provides ammonia gas directly into the
  • Reaction space preferably in the flame to bring.
  • Yet another embodiment provides for mixing ammonia gas into the nebulizer gas.
  • the concentration of the ammonia gas is preferably 0.01 to 1 kg / Nm 3 Zerstäubergas, more preferably 0.05 to 0.3 kg / Nm 3 Zerstäubergas or 0.001 to 0.05 kg / Nm 3 (fuel gas + oxygen-containing gas) for the Case that the ammonia gas is introduced directly into the flame.
  • mixed oxide powder A can be produced by this measure, which have an improved sintering behavior in a subsequent step. At present it is assumed that with the addition of ammonia smaller particles are formed than without ammonia.
  • the average residence time of the reaction mixture in the reaction space is preferably 0.5-2.5 s, more preferably 0.5-1 s.
  • the average velocity in the reaction space is preferably 1-20 Nm / s, more preferably 3-10 Nm / s.
  • the speed information is standardized speed. They are obtained by dividing the volume flow with the unit Nm 3 / h and the cross-sectional area.
  • Another object of the invention is a special mixed oxide powder A * , which can be prepared by the method according to the invention. This is a
  • the BET surface area is determined according to DIN ISO 9277.
  • the d 50 value results from the cumulative volume distribution curve of the volume-averaged large distribution. This is determined in the usual way by laser diffraction. In the context of the present invention, a Cilas 1064 device from Cilas is used for this purpose.
  • a d 50 value is understood to mean that 50% of the mixed oxide particles A * are within the stated size range.
  • a d 50 value of 5 ⁇ m therefore means that 50% of the particle diameters are smaller than 5 ⁇ m.
  • a d 90 value of 8 ⁇ means that 90% of the particle diameters are smaller than 8 ⁇ .
  • a d io value of 0.3 ⁇ means that 10% of the particle diameter is smaller than 0.3 ⁇ .
  • the d 50 value of the mixed oxide particles A according to the invention may preferably be from 1 to 15 ⁇ m, more preferably from 8 to 10 ⁇ m.
  • the d 10 value of the mixed oxide particles A according to the invention may preferably be from 3 to 25 ⁇ m, more preferably from 0.2 to 1 ⁇ m.
  • Another object of the invention is a method for producing a
  • the same product is obtained by containing a solution containing one or more compounds of lithium, lanthanum and zirconium and optionally
  • thermal treatment in a vacuum, for example at a pressure of ⁇ 300 mbar.
  • it may be provided to rinse the apparatus one or more times with an inert gas in order to minimize the proportion of oxygen.
  • a thermal treatment in a vacuum with a faster Kristallwachstun is expected.
  • the solids density is determined by gas pycnometry according to DIN 66137-2 (2004). For the determination, a Heliumpyknometer AccuPyc II 1340, Fa. Micromeritics ® is suitable. The theoretical solids density of cubic Li 7 La 3 Zr 2 0i 2 is 5.100 g / cm 3 .
  • the mixed oxide powders B produced in this way can have a tetragonal and / or cubic structure, and can easily be distinguished from the X-ray diffractograms. Usually, both structures are found, with the ratio of the teragonal / cubic being 5:95 to 95: 5.
  • Another object of the invention is the use of the invention
  • Solution used 5.91% by weight of lithium nitrate, 15.90% by weight of lanthanum nitrate, 10.41% by weight of zirconium nitrate, balance water.
  • concentration based on the oxides Li 2 0, La 2 0 3 and Zr0 2 , is 10.28 wt .-%.
  • Mixed oxide powder A 7000 g / h of the solution are atomized with a Zerstäubergas consisting of 15 Nm 3 / h of air and 1 kg ammonia gas / Nm 3 air by means of a two-fluid nozzle in a burning in a reaction chamber flame.
  • the average droplet diameter is about 93 ⁇ .
  • the flame is formed by the reaction of 1 1 Nm 3 / h of hydrogen, 70 Nm 3 / h of air.
  • 20 Nm 3 / h of additional air, so-called secondary air are brought into the reaction space. Lambda is 4.01.
  • the average residence time in the reaction space is 0.71 s, the average velocity in the reaction space is 5.7 m / s.
  • the mixed oxide powder A is separated on a filter of gaseous substances.
  • the mixed oxide powder A has a composition Li 7 La 3 Zr 2 0i 2 on.
  • the BET surface area is 7.3 m 2 / g.
  • the d 50 value is 2.28 ⁇ , the dio value 0.33 ⁇ and the d 90 value 7.25 ⁇ .
  • the X-ray diffractogram shows the reflexes of a tetragonal and a cubic
  • the mixed oxide powder A In a rotary kiln, the mixed oxide powder A is thermally treated at a temperature of 800 ° C for a period of 8 hours.
  • the mixed oxide powder B has a BET surface area of 2.3 m 2 / g and a solids density of 4.872 g / cm 3 , corresponding to 95.5% of the theoretical solids density of cubic Li 7 La 3 Zr 2 0i 2 -Das
  • X-ray diffractogram shows the reflexes of a tetragonal and a cubic
  • the calculated composition of the mixed oxides from Examples 1 to 4 is Li 7 La 3 Zr 2 O 2 , that of the mixed oxide powder from Example 5 and the mixed oxide powder of Example 6
  • Solution 7 5.21% by weight of lithium nitrate, 15.58% by weight of lanthanum nitrate, 10.30% by weight of zirconium nitrate,
  • Oxide Li 6 , 3La 3 Zr 2 Alo, 290i 2 is 10.13 wt .-%.
  • Solution 8 4.93% by weight of lithium nitrate, 15.62% by weight of lanthanum nitrate, 10.32% by weight of zirconium nitrate,
  • Oxide Li 5i 95La3Zr2Alo, 350i2 is 10, 15 wt .-%.
  • Solution 9 5.40% by weight of lithium nitrate, 15.68% by weight of lanthanum nitrate, 10.36% by weight of zirconium nitrate,
  • Solution 10 5.21% by weight of lithium nitrate, 15.66% by weight of lanthanum nitrate, 10.35% by weight of zirconium nitrate,
  • Oxide Li 6 , 27La3Zr 2 Alo, 240i2 is 10.26 wt .-%.
  • Mixed oxide powder A 8000 g / h of the solution 7 are atomized with a Zerstäubergas consisting of 15 Nm 3 / h of air and 0.05 kg ammonia gas / Nm 3 air by means of a two-fluid nozzle in a burning in a reaction chamber flame.
  • the average droplet diameter is 91, 76 ⁇ .
  • the flame is formed by the reaction of 12 Nm 3 / h of hydrogen, 70 Nm 3 / h of air and 20 NnrVh of secondary air. Lambda is 3.68.
  • the average residence time in the reaction space is 0.69 s.
  • the average velocity in the reaction space is 5.8 Nm / s.
  • the mixed oxide powder A is separated on a filter of gaseous substances.
  • the mixed oxide powder A has a composition Li 6i 3La 3 Zr2Alo, 290i2.
  • the BET surface area is 3.7 m 2 / g.
  • the d 50 value is 2.76 ⁇ , the d 10 value 0.33 ⁇ and the d 90 - value 7.30 ⁇ .
  • Mixed oxide powder B :
  • the mixed oxide powder A is thermally treated at a temperature of 1000 ° C over a period of 12 hours.
  • the mixed oxide powder B has a composition Li 6i 3La 3 Zr 2 Al 2 O, 290i 2 has a BET surface area of 0.30 m 2 / g and a density of 4.881 g / cm 3 , corresponding to 95.7% of the theoretical density.
  • the X-ray diffractogram shows the signals of a cubic garnet.
  • Examples 8 to 10 are carried out analogously. Starting materials, reaction conditions and the material properties of the resulting mixed oxide powders are reproduced in Tables 3 and 4.

Abstract

Method for producing a mixed oxide powder whose composition is LixLa3Zr2MyO8.5+0.5x+z where 6.5 ≤ x ≤ 8, 0 ≤ y ≤ 0.5, z = 2y for M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta and Ti, z = 1.5y for M = Al, Sc, V and Y, z = y for M = Ba, Ca, Mg and Zn, and for M= Al it holds that 6 ≤ x ≤ 7 und 0.2 ≤ y ≤ 0.5, wherein one or more solutions each comprising one or more compounds of lithium, lanthanum and zirconium and optionally metal compounds MX, in a concentration conforming to the stoichiometry, and in the form of fine droplets, are introduced into a flame, burning in a reaction chamber, that is formed by introducing into said reaction chamber an oxygen-containing gas and a combustion gas that forms water on reaction with oxygen and igniting it there, and thereafter the solid material is separated from matter in gas or vapour form.

Description

Verfahren zur Herstellung von Lithium, Lanthan und Zirkon enthaltender Mischoxidpulver Process for the preparation of lithium, lanthanum and zirconium-containing mixed oxide powder
Die Erfindung betrifft Verfahren zur Herstellung Lithium, Lanthan und Zirkon enthaltender Mischoxidpulver, die Mischoxidpulver selbst und deren Verwendung in Lithiumionenbatterien.The invention relates to processes for preparing lithium, lanthanum and zirconium-containing mixed oxide powder, the mixed oxide powder itself and their use in lithium-ion batteries.
In DE-A-102007030604 wird ein Verfahren zur Herstellung eines Lithium, Lanthan und Zirkon enthaltenden Mischoxidpulver durch eine Festphasenreaktion offenbart. Dabei werden die Nitrate, Carbonate und Hydroxide der Metalle in einem ersten Schritt gemischt, beispielsweise mittels einer Kugelmühle in 2-Propanol. Das so erhaltene Gemisch wird anschließend für mehrere Stunden an Luft über einen Zeitraum von 4-8 Stunden auf 400-1000°C erhitzt. DE-A-102007030604 discloses a process for producing a mixed oxide powder containing lithium, lanthanum and zirconium by a solid phase reaction. The nitrates, carbonates and hydroxides of the metals are mixed in a first step, for example by means of a ball mill in 2-propanol. The resulting mixture is then heated to 400-1000 ° C for several hours in air over a period of 4-8 hours.
Anschließend wird erneut ein Mahlvorgang durchgeführt. Das Reaktionsprodukt wird anschließend bei uniaxialem oder isostatischem Druck in Formstücke gepresst. Diese werden dann für mehrere Stunden bei Temperaturen von 700-1200°C gesintert. Man erhält ein Subsequently, a grinding process is performed again. The reaction product is then pressed at uniaxial or isostatic pressure in fittings. These are then sintered for several hours at temperatures of 700-1200 ° C. You get one
Mischoxid mit Granatstruktur. Mixed oxide with garnet structure.
Weitere Festphasenreaktionen zur Herstellung Lithium, Lanthan und Zirkon enthaltender Mischoxide werden in EP-A-2159867 oder WO2010/090301 offenbart.  Further solid phase reactions for preparing lithium, lanthanum and zirconium-containing mixed oxides are disclosed in EP-A-2159867 or WO2010 / 090301.
In Solid State lonics 185 (201 1 ) 42-46 wird ein Sol-Gelverfahren zur Herstellung Lithium,In Solid State Ionics 185 (201 1) 42-46, a sol-gel process for producing lithium,
Lanthan und Zirkon enthaltender Mischoxide offenbart, bei dem man Li2C03 und La203 in HN03 und Zr(OC2H5)4 in Ethanol löst. Beide Lösungen werden gemischt und nachfolgend mit Zitronensäure und Ethylenglykol gemischt. Die Lösung wird 3 Stunden bei 323K gerührt und nachfolgend das Lösungsmittel abdestilliert. Das so erhaltene Gel wird 24 Stunden bei 473K behandelt. Das erhaltene Pulver wird vermählen und an Luft bei Temperaturen von 923 bis 1 173K für 5 Stunden calciniert. Ein ähnliches Verfahren wird auch in Solid State lonics 183 (201 1 ) 48-53 offenbart. Lanthanum and zirconium containing mixed oxides disclosed in which one dissolves Li 2 C0 3 and La 2 0 3 in HN0 3 and Zr (OC 2 H 5 ) 4 in ethanol. Both solutions are mixed and subsequently mixed with citric acid and ethylene glycol. The solution is stirred for 3 hours at 323K and then the solvent is distilled off. The resulting gel is treated at 473K for 24 hours. The resulting powder is ground and calcined in air at temperatures of 923 to 1173K for 5 hours. A similar process is also disclosed in Solid State Ionics 183 (201 1) 48-53.
Lithium, Lanthan und Zirkon enthaltende Mischoxide werden bislang durch klassische, nasschemische Verfahren hergestellt. Diese umfassen Sol-Gel-Verfahren, Fällungsverfahren und Festphasenreaktionen. Oft sind bei diesen Verfahren mehrere Prozessschritte nötig, die Verfahren lassen oft bezüglich der Kontrolle und der Reproduzierbarkeit der Reaktion zu wünschen übrig.  Lithium, lanthanum and zirconium-containing mixed oxides have hitherto been produced by classical, wet-chemical processes. These include sol-gel methods, precipitation methods and solid-phase reactions. Often these processes require several process steps, and the processes often leave much to be desired in terms of control and reproducibility of the reaction.
Aufgabe der vorliegenden Erfindung war es ein Verfahren bereitzustellen, welches die genannten Nachteile nicht aufweist und mit dem man in kurzer Zeit größere Mengen an Lithium, Lanthan und Zirkon enthaltende Mischoxidpulvern herstellen kann. Aufgabe der Erfindung war es insbesondere Mischoxidpulver mit Granat-Struktur herzustellen.  The object of the present invention was to provide a process which does not have the disadvantages mentioned and with which it is possible in a short time to produce relatively large amounts of lithium oxide, lanthanum and zirconium-containing mixed oxide powders. The object of the invention was in particular to produce mixed oxide powder with garnet structure.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Mischoxidpulvers der Zusammensetzung LixLa3Zr2My08,5+o,5x+z mit The invention relates to a method for producing a mixed oxide powder of the composition Li x La 3 Zr 2 M y 08.5 + o, 5x + z with
6,5 < x < 8, bevorzugt 7 < x < 7,5, 6.5 <x <8, preferably 7 <x <7.5,
0 < y < 0,5, bevorzugt 0 < y < 0,2 0 <y <0.5, preferably 0 <y <0.2
z = 2y für M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta und Ti, z = 1 ,5y für M = AI, Sc, V und Y, z = 2y for M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta and Ti, z = 1.5y for M = Al, Sc, V and Y,
z = y für M = Ba, Ca, Mg und Zn, wobei z = y for M = Ba, Ca, Mg and Zn, where
für M = AI gilt dass 6 < x < 7 und 0,2 < y < 0,5, for M = AI it holds that 6 <x <7 and 0.2 <y <0.5,
bei dem man eine Lösung enthaltend jeweils ein oder mehrere Verbindungen des Lithiums, Lanthans und des Zirkons und gegebenenfalls Metallverbindungen MX in einer Konzentration entsprechend der Stöchiometrie und in Form feiner Tröpfchen in eine in einem Reaktionsraum brennende Flamme einbringt, die gebildet wird, indem man ein Sauerstoff enthaltendes Gas und ein bei der Reaktion mit Sauerstoff Wasser bildendes Brenngas in den Reaktionsraum einbringt und dort zündet und nachfolgend den Feststoff von dampf- oder gasförmigen Stoffen abtrennt. in which a solution containing in each case one or more compounds of lithium, lanthanum and zirconium and optionally metal compounds MX in a concentration corresponding to stoichiometry and in the form of fine droplets is introduced into a flame burning in a reaction space, which is formed by reacting an oxygen containing gas and a in the reaction with oxygen forming water fuel gas into the reaction chamber and there ignites and subsequently separates the solid from vapor or gaseous substances.
Das so hergestellte Mischoxidpulver soll im Rahmen der vorliegenden Erfindung als  The mixed oxide powder thus prepared is intended in the context of the present invention as
Mischoxidpulver A bezeichnet werden. Unter Mischoxid ist die innige Vermischung aller Mischoxidkomponenten zu verstehen. Es handelt sich demnach weitestgehend um eine Mischung auf atomarer Ebene, nicht um eine physikalische Mischung von Oxiden. Mixed oxide powder A are called. Mixed oxide is the intimate mixing of all mixed oxide components to understand. It is therefore largely a mixture at the atomic level, not a physical mixture of oxides.
Das nach dem erfindungsgemäßen Verfahren hergestellte Mischoxidpulver enthält Li, La und Zr als essentielle Metalle und kann darüber hinaus ein oder mehrere Metalle M enthalten. The mixed oxide powder prepared by the process of the present invention contains Li, La and Zr as essential metals and may further contain one or more metals M.
Gewöhnlich enthalten Zirkonverbindungen bis zu 2 Gew.-% Hafniumverbindungen als Usually, zirconium compounds contain up to 2% by weight of hafnium compounds
Verunreinigung, so dass das daraus hergestellte Mischoxidpulver ebenfalls Hafnium enthält. Im Rahmen der vorliegenden Erfindung soll dieser zwangsweise Anteil an Hafnium nicht als Mischoxidkomponente betrachtet werden. Eine zusätzlich eingebrachte Hafniumverbindung hingegen soll als Mischoxidkomponente betrachtet werden. Contamination, so that the mixed oxide powder produced therefrom also contains hafnium. In the context of the present invention, this compulsory proportion of hafnium should not be considered as a mixed oxide component. An additionally introduced hafnium compound, on the other hand, should be regarded as a mixed oxide component.
Eingesetzte Lösungen  Used solutions
Bei dem erfindungsgemäßen Verfahren werden die Lösung oder die Lösungen in Form feiner Tröpfchen in den Reaktionsraum eingebracht. Bevorzugt weisen die feinen Tröpfchen eine mittlere Tröpfchengröße 1 - 120 μιη, besonders bevorzugt von 30 - 100 μιη auf. Zur Erzeugung der Tröpfchen werden üblicherweise Ein- oder Mehrdüsen eingesetzt.  In the method according to the invention, the solution or solutions are introduced into the reaction space in the form of fine droplets. The fine droplets preferably have an average droplet size of 1 to 120 μm, more preferably of 30 to 100 μm. One or more nozzles are usually used to generate the droplets.
Die besten Ergebnisse werden erhalten, wenn die Metallverbindungen in einer Lösung vorliegen. Um die Löslichkeit zu Erreichen und um eine geeignete Viskosität für das Zerstäuben der Lösung zu erzielen kann die Lösung erwärmt werden. Prinzipiell sind alle löslichen  The best results are obtained when the metal compounds are in solution. In order to achieve solubility and to achieve a suitable viscosity for sputtering the solution, the solution can be heated. In principle, all are soluble
Metallverbindungen einsetzbar, die oxidierbar sind. Usable metal compounds that are oxidizable.
Dabei kann es sich um anorganische Metallverbindungen, wie Nitrate, Chloride, Bromide, oder organische Metallverbindungen, wie Alkoxide oder Carboxylate handeln. Als Alkoxide können bevorzugt Ethylate, n-Propylate, iso-Propylate, n-Butylate und/oder tert.-Butylate eingesetzt werden. Als Carboxylate können die der Essigsäure, Propionsäure, Butansäure, Hexansäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Octansäure, 2-Ethyl- Hexansäure, Valeriansäure, Caprinsäure und/oder Laurinsäure zugrundeliegenden These may be inorganic metal compounds, such as nitrates, chlorides, bromides, or organic metal compounds, such as alkoxides or carboxylates. The alkoxides used may preferably be ethylates, n-propylates, isopropylates, n-butylates and / or tert-butylates. As carboxylates, those of acetic acid, propionic acid, butanoic acid, hexanoic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, octanoic acid, 2-ethyl Hexanoic acid, valeric acid, capric acid and / or lauric acid underlying
Verbindungen eingesetzt werden. Connections are used.
Besonders vorteilhaft können 2-Ethlyhexanoate oder Laurate eingesetzt werden. Die Lösung kann ein oder mehrere anorganische Metallverbindungen, ein oder mehrere organische Metallverbindungen oder Mischungen von anorganischen und organischen Metallverbindungen enthalten.  2-ethylhexanoates or laurates can be used with particular advantage. The solution may contain one or more inorganic metal compounds, one or more organic metal compounds, or mixtures of inorganic and organic metal compounds.
Vorzugsweise werden die Nitrate von Lithiums, Lanthans, und Zirkon und M eingesetzt.  Preferably, the nitrates of lithium, lanthanum, and zirconium and M are used.
Bei den Lösungsmitteln kann bevorzugt aus der Gruppe bestehend aus Wasser, C5-C2o- Alkanen, Ci-Cis-Alkancarbonsäuren und/oder Ci-Cis-Alkanolen ausgewählt werden. Besonders bevorzugt kann Wasser oder ein Mischung aus Wasser und einem organischen Lösungsmittel eingesetzt werden. The solvents may preferably be selected from the group consisting of water, C 5 -C 2 o alkanes, C 1 -C 6 alkane carboxylic acids and / or C 1 -C 6 alkanols. Particular preference may be given to using water or a mixture of water and an organic solvent.
Als organische Lösungsmittel, beziehungsweise als Bestandteil von organischen  As organic solvents, or as part of organic
Lösungsmittelgemischen, können bevorzugt Alkohole wie Methanol, Ethanol, n-Propanol, iso- Propanol, n-Butanol oder tert.-Butanol, Diole wie Ethandiol, Pentandiol, 2-Methyl-2,4- pentandiol, Ci-Ci2-Carbonsäuren wie beispielsweise Essigsäure, Propionsäure, Butansäure, Hexansäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Octansäure, 2-Ethyl-Hexansäure, Valeriansäure, Caprinsäure, Laurinsäure eingesetzt werden. Weiterhin können Benzol, Toluol, Naphtha und/oder Benzin eingesetzt werden. Solvent mixtures, may preferably alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol, diols such as ethanediol, pentanediol, 2-methyl-2,4-pentanediol, Ci-Ci2-carboxylic acids such as Acetic acid, propionic acid, butanoic acid, hexanoic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, octanoic acid, 2-ethylhexanoic acid, valeric acid, capric acid, lauric acid can be used. Furthermore, benzene, toluene, naphtha and / or gasoline can be used.
Vorzugsweise werden wässerige Lösungen eingesetzt, wobei unter einer wässerige Lösung eine Lösung zu verstehen ist, bei der Wasser der Hauptbestandteil eines Preferably, aqueous solutions are used, wherein an aqueous solution is to be understood as a solution in which water is the main constituent of a
Lösungsmittelgemisches ist oder bei der allein Wasser das Lösungsmittel ist.  Solvent mixture is or in which only water is the solvent.
Die Konzentration der eingesetzten Lösungen ist nicht besonders limitiert. Liegt nur eine Lösung vor, die alle Mischoxidkomponenten enthält, beträgt die Konzentration in der Regel 1 bis 50 Gew.-%, bevorzugt 3 bis 30 Gew.-%, ganz besonders bevorzugt 5 - 20 Gew.%, jeweils bezogen auf die Summe der Oxide.  The concentration of the solutions used is not particularly limited. If only one solution is present, which contains all the mixed oxide components, the concentration is generally from 1 to 50% by weight, preferably from 3 to 30% by weight, very particularly preferably from 5 to 20% by weight, based in each case on the sum of oxides.
Eingesetzte Gase  Used gases
Als Brenngase, die bei der Reaktion mit Sauerstoff Wasser bilden, können Wasserstoff, Methan, Ethan, Propan, Butan und deren Gemische eingesetzt werden. Bevorzugt wird Wasserstoff eingesetzt.  As fuel gases that form water in the reaction with oxygen, hydrogen, methane, ethane, propane, butane and mixtures thereof can be used. Preference is given to using hydrogen.
Das flammenbildende, Sauerstoff enthaltende Gas ist in der Regel Luft. The flame-forming, oxygen-containing gas is usually air.
Die Menge an Sauerstoff ist bei dem erfindungsgemäßen Verfahren so zu wählen, dass sie mindestens zur vollständigen Umsetzung des Brenngases und aller Metallverbindungen ausreicht. Es ist in der Regel vorteilhaft einen Überschuß an Sauerstoff einzusetzen. Dieser Überschuß wird zweckmäßigerweise ausgedrückt als das Verhältnis von vorhandenem Sauerstoff / Verbrennung des Brenngases notwendiger Sauerstoff und als lambda bezeichnet. Lambda beträgt bevorzugt 1 ,5 bis 6,0, besonders bevorzugt 2,0 bis 4,0. The amount of oxygen is to be selected in the inventive method so that it is sufficient at least for complete conversion of the fuel gas and all metal compounds. It is usually advantageous to use an excess of oxygen. This excess is conveniently expressed as the ratio of existing Oxygen / combustion of the fuel gas necessary oxygen and referred to as lambda. Lambda is preferably 1.5 to 6.0, particularly preferably 2.0 to 4.0.
Darüber hinaus kann zusätzliches Sauerstoff enthaltende Gas in den Reaktionsraum eingebracht werden.  In addition, additional oxygen-containing gas can be introduced into the reaction space.
Die Lösung wird bevorzugt mittels eines Zerstäubergases in den Reaktionsraum eingebracht. Als Zerstäubergase eigenen sich beispielsweise Stickstoff oder Luft. Wird Luft eingesetzt, so wird diese nicht bei der Berechnung von lambda berücksichtigt. The solution is preferably introduced by means of a nebulizer gas into the reaction space. For example, nitrogen or air are suitable as nebulizer gases. If air is used, it will not be taken into account when calculating lambda.
Eine besondere Ausführungsform sieht vor, Ammoniak und/oder eine Ammoniak bildende Substanz in den Reaktionsraum einzubringen. Dies kann beispielsweise erfolgen, indem man eine Ammoniak bildende Substanz, beispielsweise Ammoniumcarbonat,  A particular embodiment provides for ammonia and / or an ammonia-forming substance to be introduced into the reaction space. This can be done, for example, by adding an ammonia-forming substance, such as ammonium carbonate,
Ammoniumhydrogencarbonat oder Harnstoff, in der Lösung vorlegt, die in die Flamme eingebracht wird. Eine andere Ausführungsform sieht vor, Ammoniakgas direkt in den  Ammonium bicarbonate or urea in which solution is introduced which is introduced into the flame. Another embodiment provides ammonia gas directly into the
Reaktionsraum, bevorzugt in die Flamme, einzubringen. Wieder eine andere Ausführungsform sieht vor Ammoniakgas dem Zerstäubergas zuzumischen. Reaction space, preferably in the flame to bring. Yet another embodiment provides for mixing ammonia gas into the nebulizer gas.
Die Konzentration des Ammoniakgases beträgt bevorzugt 0,01 - 1 kg/Nm3 Zerstäubergas, besonders bevorzugt 0,05 - 0,3 kg/Nm3 Zerstäubergas oder 0,001 - 0,05 kg/Nm3 (Brenngas + Sauerstoff enthaltendes Gas) für den Fall dass das Ammoniakgas in direkt in die Flamme eingebracht wird. The concentration of the ammonia gas is preferably 0.01 to 1 kg / Nm 3 Zerstäubergas, more preferably 0.05 to 0.3 kg / Nm 3 Zerstäubergas or 0.001 to 0.05 kg / Nm 3 (fuel gas + oxygen-containing gas) for the Case that the ammonia gas is introduced directly into the flame.
Es hat sich gezeigt, dass sich durch diese Massnahme Mischoxidpulver A herstellen lassen, die in einem Nachfolgeschritt ein verbessertes Sinterverhalten aufweisen. Gegenwärtig wird davon ausgegangen, dass bei Zugabe von Ammoniak kleinere Partikel gebildet werden als ohne Ammoniak.  It has been shown that mixed oxide powder A can be produced by this measure, which have an improved sintering behavior in a subsequent step. At present it is assumed that with the addition of ammonia smaller particles are formed than without ammonia.
Weiterhin beträgt die mittlere Verweilzeit des Reaktionsgemisches im Reaktionsraum bevorzugt 0,5 - 2,5 s, besonders bevorzugt 0,5 - 1 s.  Furthermore, the average residence time of the reaction mixture in the reaction space is preferably 0.5-2.5 s, more preferably 0.5-1 s.
Die mittlere Geschwindigkeit im Reaktionsraum beträgt bevorzugt 1 - 20 Nm/s, besonders bevorzugt 3 - 10 Nm/s. Bei den Angaben zur Geschwindigkeit handelt es sich um normierte Geschwindigkeiten. Sie ergeben sich durch Division des Volumenstromes mit der Einheit Nm3/h und der Querschnittsfläche. The average velocity in the reaction space is preferably 1-20 Nm / s, more preferably 3-10 Nm / s. The speed information is standardized speed. They are obtained by dividing the volume flow with the unit Nm 3 / h and the cross-sectional area.
Ein weiterer Gegenstand der Erfindung ist ein spezielles Mischoxidpulver A*, welches mittels des erfindungsgemäßen Verfahrens hergestellt werden kann. Dabei handelt es sich um einAnother object of the invention is a special mixed oxide powder A * , which can be prepared by the method according to the invention. This is a
Mischoxidpulver der Zusammensetzung LixLa3Zr2My08,5+o,5x+z mit Mixed oxide powder of composition Li x La 3 Zr 2 M y 08.5 + o, 5x + z with
6,5 < x < 8, bevorzugt 7 < x < 7,5  6.5 <x <8, preferably 7 <x <7.5
0 < y < 0,5, bevorzugt 0 < y < 0,2,  0 <y <0.5, preferably 0 <y <0.2,
z = 2y für M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta und Ti, z = 2y for M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta and Ti,
z = 1 ,5y für M = AI, Sc, V und Y, wobei für M= AI gilt, dass 6 < x < 7 und 0,2 < y < 0,5 z = y für M = Ba, Ca, Mg und Zn, welches eine BET-Oberfläche von 3 bis 20 m2/g und einen d50-Wert von kleiner oder gleich 5 [im aufweist. z = 1.5y for M = Al, Sc, V and Y, where for M = Al it holds that 6 <x <7 and 0.2 <y <0.5 z = y for M = Ba, Ca, Mg and Zn, which has a BET surface area of 3 to 20 m 2 / g and a d 50 value of less than or equal to 5 [im.
Die BET-Oberfläche wird bestimmt nach DIN ISO 9277. Der d50-Wert resultiert aus der Summendurchgangsverteilungskurve der volumengemittelten Grossenverteilung. Diese wird in üblicher Weise durch Laserbeugung ermittelt. Im Rahmen der vorliegenden Erfindung wird hierzu ein Gerät Cilas 1064 der Firma Cilas eingesetzt. Unter einem d50-Wert wird verstanden, dass 50% der Mischoxidpartikel A* innerhalb des angegebenen Grössenbereichs liegen. Ein d50-Wert von 5 μιη bedeutet demnach, dass 50% der Partikeldurchmesser kleiner als 5 μιη sind. Ein d90-Wert von 8 μιη bedeutet, dass 90% der Partikeldurchmesser kleiner als 8 μιη sind. Ein d-io-Wert von 0,3 μιη bedeutet, dass 10% der Partikeldurchmesser kleiner als 0,3 μιη sind.The BET surface area is determined according to DIN ISO 9277. The d 50 value results from the cumulative volume distribution curve of the volume-averaged large distribution. This is determined in the usual way by laser diffraction. In the context of the present invention, a Cilas 1064 device from Cilas is used for this purpose. A d 50 value is understood to mean that 50% of the mixed oxide particles A * are within the stated size range. A d 50 value of 5 μm therefore means that 50% of the particle diameters are smaller than 5 μm. A d 90 value of 8 μιη means that 90% of the particle diameters are smaller than 8 μιη. A d io value of 0.3 μιη means that 10% of the particle diameter is smaller than 0.3 μιη.
Der dgo-Wert der erfindungsgemäßen Mischoxidpartikel A kann bevorzugt 1 bis 15 μιη, besonders bevorzugt 8 bis 10 μιη betragen. The d 50 value of the mixed oxide particles A according to the invention may preferably be from 1 to 15 μm, more preferably from 8 to 10 μm.
Der d-io-Wert der erfindungsgemäßen Mischoxidpartikel A kann bevorzugt 3 bis 25 μιη, besonders bevorzugt 0,2 bis 1 μιη betragen.  The d 10 value of the mixed oxide particles A according to the invention may preferably be from 3 to 25 μm, more preferably from 0.2 to 1 μm.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Another object of the invention is a method for producing a
Mischoxidpulvers B der allgemeinen Zusammensetzung LixLa3Zr2My08i5+o,5x+z mit Mischoxidpulvers B of the general composition Li x La 3 Zr 2 M y 0 8i 5 + o, 5x + z with
6,5 < x < 8, bevorzugt 7 < x < 7,5,  6.5 <x <8, preferably 7 <x <7.5,
0 < y < 0,5, bevorzugt 0 < y < 0,2,  0 <y <0.5, preferably 0 <y <0.2,
z = 2y für M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta und Ti z = 2y for M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta and Ti
z = 1 ,5y für M = AI, Sc, V und Y, , wobei für M= AI gilt, dass 6 < x < 7 und 0,2 < y < 0,5 z = y für M = Ba, Ca Mg, und Zn mit z = 1.5y for M = Al, Sc, V and Y, where for M = Al it holds that 6 <x <7 and 0.2 <y <0.5 z = y for M = Ba, Ca Mg , and Zn with
a) Granat-Kristallstruktur, a) garnet crystal structure,
b) einer BET-Oberfläche von < 3 m2/g, bevorzugt < 1 m2/g und b) a BET surface area of <3 m 2 / g, preferably <1 m 2 / g and
c) wenigstens 75%, bevorzugt wenigstens 90%, bevorzugt wenigstens 95%, der theoretischen Feststoffdichte von kubischem Li7La3Zr20i2, , für M= AI und 6 < x < 7 und 0,2 < y < 0,5 wenigstens 95% der theoretischen Dichte, c) at least 75%, preferably at least 90%, preferably at least 95%, of the theoretical solids density of cubic Li 7 La 3 Zr 2 0i 2 ,, for M = Al and 6 <x <7 and 0.2 <y <0, 5 at least 95% of the theoretical density,
bei dem man das nach dem erfindungsgemäßen Verfahren erhältliche Mischoxid A oder das erfindungsgemäße Mischoxid A* bei Temperaturen von 700°C bis 1200°C über einen Zeitraum von 3 bis 24 Stunden, bevorzugt 6 bis 12 Stunden, bevorzugt unter Durchleiten eines inerten Gases wie beispielsweise Stickstoff oder Argon, thermisch behandelt. in which the obtainable by the process according to the invention mixed oxide A or the inventive mixed oxide A * at temperatures of 700 ° C to 1200 ° C over a period of 3 to 24 hours, preferably 6 to 12 hours, preferably while passing an inert gas such as Nitrogen or argon, thermally treated.
Zum gleichen Produkt gelangt man, indem man eine Lösung enthaltend jeweils ein oder mehrere Verbindungen des Lithiums, Lanthans und des Zirkons und gegebenenfalls  The same product is obtained by containing a solution containing one or more compounds of lithium, lanthanum and zirconium and optionally
Metallverbindungen MX in einer Konzentration entsprechend der Stöchiometrie und in Form feiner Tröpfchen in eine in einem Reaktionsraum brennende Flamme einbringt, die gebildet wird, indem man ein Sauerstoff enthaltendes Gas und ein bei der Reaktion mit SauerstoffMetal compounds MX in a concentration corresponding to the stoichiometry and in the form of fine droplets in a flame burning in a reaction chamber, which is formed by forming an oxygen-containing gas and in the reaction with oxygen
Wasser bildendes Brenngas in den Reaktionsraum einbringt und dort zündet und nachfolgend den Feststoff von dampf- oder gasförmigen Stoffen abtrennt und den Feststoff bei Temperaturen von 700°C bis 1200°C über einen Zeitraum von 3 bis 24 Stunden, bevorzugt 6 bis 12 Stunden, bevorzugt unter Durchleiten eines inerten Gases wie beispielsweise Stickstoff oder Argon, thermisch behandelt. Introducing water-forming fuel gas into the reaction chamber and there ignites and subsequently separates the solid from vapor or gaseous substances and the solid at Temperatures of 700 ° C to 1200 ° C over a period of 3 to 24 hours, preferably 6 to 12 hours, preferably while passing an inert gas such as nitrogen or argon, thermally treated.
Es ist auch möglich die thermische Behandlung in einem Vakuum, beispielsweise bei einem Druck von < 300 mbar, durchzuführen. Hierbei kann vorgesehen sein die Apparatur ein oder mehrere Male mit einem inerten Gas zu spülen um den Anteil an Sauerstoff zu minimieren. Bei einer thermischen Behandlung im Vakuum ist mit einem rascheren Kristallwachstun zu rechnen. It is also possible to carry out the thermal treatment in a vacuum, for example at a pressure of <300 mbar. In this case, it may be provided to rinse the apparatus one or more times with an inert gas in order to minimize the proportion of oxygen. In a thermal treatment in a vacuum with a faster Kristallwachstun is expected.
Die Feststoffdichte wird durch Gaspyknometrie nach DIN 66137-2 (2004) bestimmt. Zur Bestimmung eignet sich ein Heliumpyknometer AccuPyc II 1340, Fa. Micromeritics®. Die theoretische Feststoffdichte von kubischem Li7La3Zr20i2 beträgt 5, 100 g/cm3. The solids density is determined by gas pycnometry according to DIN 66137-2 (2004). For the determination, a Heliumpyknometer AccuPyc II 1340, Fa. Micromeritics ® is suitable. The theoretical solids density of cubic Li 7 La 3 Zr 2 0i 2 is 5.100 g / cm 3 .
Die so hergestellten Mischoxidpulver B können eine tetragonale und/oder kubische Struktur aufweisen, und sind leicht anhand der Röntgendiffraktogramme zu unterscheiden. Gewöhnlich werden beide Strukturen gefunden, wobei das Verhältnis teragonal/kubisch 5:95 bis 95:5 betragen kann.  The mixed oxide powders B produced in this way can have a tetragonal and / or cubic structure, and can easily be distinguished from the X-ray diffractograms. Usually, both structures are found, with the ratio of the teragonal / cubic being 5:95 to 95: 5.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Another object of the invention is the use of the invention
Mischoxidpulver oder der nach den erfindungsgemäßen Verfahren hergestellten Mixed oxide powder or produced by the novel processes
Mischoxidpulver als Festoffelektrolyt in Lithiumionenbatterien. Mixed oxide powder as a solid electrolyte in lithium ion batteries.
Beispiele  Examples
Beispiel 1 :  Example 1 :
Eingesetzte Lösung: 5,91 Gew.-% Lithiumnitrat, 15,90 Gew.-% Lanthannitrat, 10,41 Gew.-% Zirkonnitrat, Rest Wasser. Die Konzentration, bezogen auf die Oxide Li20, La203 und Zr02, beträgt 10,28 Gew.-%. Solution used: 5.91% by weight of lithium nitrate, 15.90% by weight of lanthanum nitrate, 10.41% by weight of zirconium nitrate, balance water. The concentration, based on the oxides Li 2 0, La 2 0 3 and Zr0 2 , is 10.28 wt .-%.
Mischoxidpulver A: 7000 g/h der Lösung werden mit einem Zerstäubergas bestehend aus 15 Nm3/h Luft und 1 kg Ammoniakgas/Nm3 Luft mittels einer Zweistoffdüse in eine in einem Reaktionsraum hinein brennende Flamme zerstäubt. Der mittlere Tröpfchendurchmesser beträgt ca. 93 μιη. Die Flamme wird gebildet durch die Reaktion von 1 1 Nm3/h Wasserstoff, 70 Nm3/h Luft. Zusätzlich werden noch 20 Nm3/h zusätzliche Luft, sogenannte Sekundärluft, in den Reaktionsraum gebracht. Lambda beträgt 4,01. Die mittlere Verweilzeit im Reaktionsraum beträgt 0,71 s, die mittlere Geschwindigkeit im Reaktionsraum beträgt 5,7 m/s. Nach Abkühlung wird das Mischoxidpulver A an einem Filter von gasförmigen Stoffen abgetrennt. Mixed oxide powder A: 7000 g / h of the solution are atomized with a Zerstäubergas consisting of 15 Nm 3 / h of air and 1 kg ammonia gas / Nm 3 air by means of a two-fluid nozzle in a burning in a reaction chamber flame. The average droplet diameter is about 93 μιη. The flame is formed by the reaction of 1 1 Nm 3 / h of hydrogen, 70 Nm 3 / h of air. In addition, 20 Nm 3 / h of additional air, so-called secondary air, are brought into the reaction space. Lambda is 4.01. The average residence time in the reaction space is 0.71 s, the average velocity in the reaction space is 5.7 m / s. After cooling, the mixed oxide powder A is separated on a filter of gaseous substances.
Das Mischoxidpulver A weist eine Zusammensetzung Li7La3Zr20i2 auf. Die BET-Oberfläche beträgt 7,3 m2/g. Der d50-Wert beträgt 2,28 μιη, der dio-Wert 0,33 μιη und der d90-Wert 7,25 μιη. Das Röntgendiffaraktogramm zeigt die Reflexe einer tetragonalen und einer kubischen The mixed oxide powder A has a composition Li 7 La 3 Zr 2 0i 2 on. The BET surface area is 7.3 m 2 / g. The d 50 value is 2.28 μιη, the dio value 0.33 μιη and the d 90 value 7.25 μιη. The X-ray diffractogram shows the reflexes of a tetragonal and a cubic
Granatstruktur. Garnet structure.
Mischoxidpulver B: In einem Drehrohrofen wird das Mischoxidpulver A bei einer Temperatur von 800°C über einen Zeitraum von 8 Stunden thermisch behandelt. Das Mischoxidpulver B hat eine BET-Oberfläche von 2,3 m2/g und eine Feststoffdichte von 4,872 g/cm3, entsprechend 95,5% der theoretischen Feststoffdichte von kubischem Li7La3Zr20i2- Das Mixed Oxide Powder B: In a rotary kiln, the mixed oxide powder A is thermally treated at a temperature of 800 ° C for a period of 8 hours. The mixed oxide powder B has a BET surface area of 2.3 m 2 / g and a solids density of 4.872 g / cm 3 , corresponding to 95.5% of the theoretical solids density of cubic Li 7 La 3 Zr 2 0i 2 -Das
Röntgendiffaraktogramm zeigt die Reflexe einer tetragonalen und einer kubischen X-ray diffractogram shows the reflexes of a tetragonal and a cubic
Granatstruktur. Garnet structure.
Die Beispiele 2 bis 6 werden analog durchgeführt. Einsatzstoffe, Reaktionsbedingungen sowie die Stoffeigenschaften der erhaltenen Mischoxidpulver sind in den Tabellen 1 und 2 Examples 2 to 6 are carried out analogously. Starting materials, reaction conditions and the material properties of the resulting mixed oxide powders are shown in Tables 1 and 2
wiedergegeben. played.
Die berechnete Zusammensetzung der Mischoxide aus den Beispielen 1 bis 4 ist Li7La3Zr20i2, die des Mischoxidpulvers aus Beispiel 5
Figure imgf000008_0001
und die des Mischoxidpulvers aus Beispiel 6
Figure imgf000008_0002
The calculated composition of the mixed oxides from Examples 1 to 4 is Li 7 La 3 Zr 2 O 2 , that of the mixed oxide powder from Example 5
Figure imgf000008_0001
and the mixed oxide powder of Example 6
Figure imgf000008_0002
Eingesetzte Lösungen  Used solutions
Lösung 7: 5,21 Gew.-% Lithiumnitrat, 15,58 Gew.-% Lanthannitrat, 10,30 Gew.-% Zirkonnitrat,  Solution 7: 5.21% by weight of lithium nitrate, 15.58% by weight of lanthanum nitrate, 10.30% by weight of zirconium nitrate,
1 ,31 Gew.-% Aluminiumnitrat, Rest Wasser. Die Konzentration bezogen auf das 1, 31 wt .-% aluminum nitrate, balance water. Concentration on the
Oxid Li6,3La3Zr2Alo,290i2 beträgt 10,13 Gew.-%. Oxide Li 6 , 3La 3 Zr 2 Alo, 290i 2 is 10.13 wt .-%.
Lösung 8: 4,93 Gew.-% Lithiumnitrat, 15,62 Gew.-% Lanthannitrat, 10,32 Gew.-% Zirkonnitrat, Solution 8: 4.93% by weight of lithium nitrate, 15.62% by weight of lanthanum nitrate, 10.32% by weight of zirconium nitrate,
1 ,58 Gew.-% Aluminiumnitrat, Rest Wasser. Die Konzentration bezogen auf das 1, 58 wt .-% aluminum nitrate, balance water. Concentration on the
Oxid Li5i95La3Zr2Alo,350i2 beträgt 10, 15 Gew.-%. Oxide Li 5i 95La3Zr2Alo, 350i2 is 10, 15 wt .-%.
Lösung 9: 5,40 Gew.-% Lithiumnitrat, 15,68 Gew.-% Lanthannitrat, 10,36 Gew.-% Zirkonnitrat, Solution 9: 5.40% by weight of lithium nitrate, 15.68% by weight of lanthanum nitrate, 10.36% by weight of zirconium nitrate,
0,77 Gew.-% Aluminiumnitrat, Rest Wasser. Die Konzentration bezogen auf das Oxid Li6i49La3Zr2Alo,i70i2 beträgt 10,17 Gew.-%. 0.77 wt .-% aluminum nitrate, balance water. The concentration based on the oxide Li 6i 49La 3 Zr2Alo, i70i2 is 10.17 wt .-%.
Lösung 10: 5,21 Gew.-% Lithiumnitrat, 15,66 Gew.-% Lanthannitrat, 10,35 Gew.-% Zirkonnitrat,  Solution 10: 5.21% by weight of lithium nitrate, 15.66% by weight of lanthanum nitrate, 10.35% by weight of zirconium nitrate,
1 ,09 Gew.-% Aluminiumnitrat, Rest Wasser. Die Konzentration bezogen auf das 1, 09 wt .-% aluminum nitrate, balance water. Concentration on the
Oxid Li6,27La3Zr2Alo,240i2 beträgt 10,26 Gew.-%. Oxide Li 6 , 27La3Zr 2 Alo, 240i2 is 10.26 wt .-%.
Beispiel 7:  Example 7:
Mischoxidpulver A: 8000 g/h der Lösung 7 werden mit einem Zerstäubergas bestehend aus 15 Nm3/h Luft und 0,05 kg Ammoniakgas/Nm3 Luft mittels einer Zweistoffdüse in eine in einem Reaktionsraum hinein brennende Flamme zerstäubt. Der mittlere Tröpfchendurchmesser beträgt 91 ,76 μιη. Die Flamme wird gebildet durch die Reaktion von 12 Nm3/h Wasserstoff, 70 Nm3/h Luft und 20 NnrVh Sekundärluft. Lambda beträgt 3,68. Die mittlere Verweilzeit im Reaktionsraum beträgt 0,69 s. die mittlere Geschwindigkeit im Reaktionsraum beträgt 5,8 Nm/s. Nach Abkühlung wird das Mischoxidpulver A an einem Filter von gasförmigen Stoffen abgetrennt. Mixed oxide powder A: 8000 g / h of the solution 7 are atomized with a Zerstäubergas consisting of 15 Nm 3 / h of air and 0.05 kg ammonia gas / Nm 3 air by means of a two-fluid nozzle in a burning in a reaction chamber flame. The average droplet diameter is 91, 76 μιη. The flame is formed by the reaction of 12 Nm 3 / h of hydrogen, 70 Nm 3 / h of air and 20 NnrVh of secondary air. Lambda is 3.68. The average residence time in the reaction space is 0.69 s. the average velocity in the reaction space is 5.8 Nm / s. After cooling, the mixed oxide powder A is separated on a filter of gaseous substances.
Das Mischoxidpulver A weist eine Zusammensetzung Li6i3La3Zr2Alo,290i2 auf. Die BET- Oberfläche beträgt 3,7 m2/g. Der d50-Wert beträgt 2,76 μιη, der d10-Wert 0,33 μιη und der d90- Wert 7,30 μιη . Mischoxidpulver B: The mixed oxide powder A has a composition Li 6i 3La 3 Zr2Alo, 290i2. The BET surface area is 3.7 m 2 / g. The d 50 value is 2.76 μιη, the d 10 value 0.33 μιη and the d 90 - value 7.30 μιη. Mixed oxide powder B:
In einem Drehrohrofen wird das Mischoxidpulver A bei einer Temperatur von 1000°C über einen Zeitraum von 12 Stunden thermisch behandelt.  In a rotary kiln, the mixed oxide powder A is thermally treated at a temperature of 1000 ° C over a period of 12 hours.
Das Mischoxidpulver B hat eine Zusammensetzung Li6i3La3Zr2Alo,290i2 eine BET-Oberfläche von 0,30 m2/g und eine Dichte von 4,881 g/cm3, entsprechend 95,7 % der theoretischen Dichte. Das Röntgen-Diffraktogramm zeigt die Signale eines kubischen Granates. The mixed oxide powder B has a composition Li 6i 3La 3 Zr 2 Al 2 O, 290i 2 has a BET surface area of 0.30 m 2 / g and a density of 4.881 g / cm 3 , corresponding to 95.7% of the theoretical density. The X-ray diffractogram shows the signals of a cubic garnet.
Die Beispiele 8 bis 10 werden analog durchgeführt. Einsatzstoffe, Reaktionsbedingungen sowie die Stoffeigenschaften der erhaltenen Mischoxidpulver sind in den Tabellen 3 und 4 wiedergegeben. Examples 8 to 10 are carried out analogously. Starting materials, reaction conditions and the material properties of the resulting mixed oxide powders are reproduced in Tables 3 and 4.
Tabelle 1 : Mischoxid A Table 1: Mixed oxide A
Figure imgf000010_0001
Figure imgf000010_0001
1 ) vR = mittl. Geschwindigkeit im Reaktor; 2 )tR = mittlere Verweilzeit im Reaktor; 3) k = kubisch, t = tetragonal 1) v R = avg. Speed in the reactor; 2) t R = average residence time in the reactor; 3) k = cubic, t = tetragonal
Tabelle 2: Mischoxid B Table 2: Mixed oxide B
Figure imgf000010_0002
Figure imgf000010_0002
1 ) M=Muffel; D = Drehrohr; 2) Argon; 1001/h; 3) 200 mbar Tabelle 3: Mischoxide A LixLa3Zr2Aly08,5+o,5x+i,5y mit 6 < x < 7, 0,2 < y < 0,5 1) M = muffle; D = rotary tube; 2) argon; 1001 / h; 3) 200 mbar Table 3: Mixed oxides A Li x La 3 Zr 2 Al y 08.5 + o, 5x + i, 5y with 6 <x <7, 0.2 <y <0.5
Figure imgf000011_0002
Figure imgf000011_0002
1 ) mittl. Geschwindigkeit im Reaktor; 2) mittlere Verweilzeit im Reaktor; 3) k=kubisch a) Li6i3La3Zr2Alo,29012; b)
Figure imgf000011_0001
1) med. Speed in the reactor; 2) average residence time in the reactor; 3) k = cubic a) Li 6i 3 La 3 Zr 2 Al, 290 12 ; b)
Figure imgf000011_0001
Tabelle 4: Mischoxid B LixLa3Zr2Aly08i5+o,5x+i,5y mit 6 Table 4: Mixed oxide B Li x La 3 Zr 2 Al y O 8i 5 + o, 5x + i, 5y with 6
Beispiel 7a 7b 8a 8b 9a 9b Example 7a 7b 8a 8b 9a 9b
Ofentemperatur °C 1000 800 1000 800 10.00 800Oven temperature ° C 1000 800 1000 800 10.00 800
Temperierungszeit h 12 6 12 6 12 6Tempering time h 12 6 12 6 12 6
BET-Oberfläche m2/g 0,30 0,84 0,43 0,96 0,50 0,80BET surface area m 2 / g 0.30 0.84 0.43 0.96 0.50 0.80
XRD-Phase k k K k k kXRD phase k k K k k k
Feststoffdichte g/cm3 4,881 4,899 4,929 4,900 4,900 4,905Solid density g / cm 3 4,881 4,899 4,929 4,900 4,900 4,905
Feststoffdichte /Theor. % 95,7 96,0 96,6 96,07 96,07 96,17 Feststoffdichte Solid density / Theor. % 95.7 96.0 96.6 96.07 96.07 96.17 Solid density

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Mischoxidpulvers der Zusammensetzung  A process for producing a composite oxide powder of the composition
LixLa3Zr2My08,5+o,5x+z mit Li x La 3 Zr 2 M y 08.5 + o, 5x + z with
6,5 < x < 8,  6.5 <x <8,
0 < y < 0,5,  0 <y <0.5,
z = 2y für M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta und Ti  z = 2y for M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta and Ti
z = 1 ,5y für M = AI, Sc, V und Y,  z = 1.5y for M = Al, Sc, V and Y,
z = y für M = Ba, Ca, Mg, und Zn, wobei  z = y for M = Ba, Ca, Mg, and Zn, where
für M= AI gilt, dass 6 < x < 7 und 0,2 < y < 0,5,  for M = Al it holds that 6 <x <7 and 0.2 <y <0.5,
bei dem man eine Lösung oder mehrere Lösungen enthaltend jeweils ein oder mehrere Verbindungen des Lithiums, Lanthans und des Zirkons und gegebenenfalls  in which one or more solutions containing in each case one or more compounds of lithium, lanthanum and zirconium and optionally
Metallverbindungen MX in einer Konzentration entsprechend der Stöchiometrie und in Form feiner Tröpfchen in eine in einem Reaktionsraum brennende Flamme einbringt, die gebildet wird, indem man ein Sauerstoff enthaltendes Gas und ein bei der Reaktion mit Sauerstoff Wasser bildendes Brenngas in den Reaktionsraum einbringt und dort zündet und nachfolgend den Feststoff von dampf- oder gasförmigen Stoffen abtrennt.  Metal compounds MX in a concentration corresponding to the stoichiometry and in the form of fine droplets in a burning in a reaction chamber flame, which is formed by introducing an oxygen-containing gas and in the reaction with oxygen water forming fuel gas into the reaction chamber and there ignites and subsequently separates the solid from vapor or gaseous substances.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass  2. The method according to claim 1, characterized in that
die mittlere Tröpfchengröße 1 - 120 μιη beträgt.  the mean droplet size is 1 to 120 μιη.
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass  3. Process according to claims 1 or 2, characterized in that
die Metallverbindungen des Lithiums, Lanthans, des Zirkons und M als Nitrate eingesetzt werden.  the metal compounds of lithium, lanthanum, zirconium and M are used as nitrates.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass  4. Process according to claims 1 to 3, characterized in that
wässerige Lösungen eingesetzt werden.  aqueous solutions are used.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass  5. Process according to claims 1 to 4, characterized in that
die Konzentration der Lösung 1 bis 50 Gew.-%, bezogen auf die Summe der Oxide, beträgt.  the concentration of the solution is 1 to 50% by weight, based on the sum of the oxides.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass  6. Process according to claims 1 to 5, characterized in that
Lambda, definiert als das Verhältnis vorhandener Sauerstoff aus der eingesetzten Luft / Verbrennung des Brenngases notwendiger Sauerstoff, 1 ,5 bis 6,0 beträgt,  Lambda, defined as the ratio of oxygen present from the air used / combustion of the fuel gas necessary oxygen, is 1, 5 to 6.0,
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass  7. Process according to claims 1 to 6, characterized in that
Ammoniak und/oder eine Ammoniak bildende Substanz in den Reaktionsraum einbringt. Ammonia and / or an ammonia-forming substance in the reaction chamber brings.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass 8. The method according to claim 7, characterized in that
Ammoniakgas in einer Konzentration von 0,01 - 1 kg/Nm3 Zerstäubergas oder Ammonia gas in a concentration of 0.01 - 1 kg / Nm 3 nebulizer gas or
0,001 - 0,05 kg/Nm3 (Brenngas + Sauerstoff enthaltendes Gas) in die Flamme einbringt. 0.001-0.05 kg / Nm 3 (fuel gas + oxygen-containing gas) into the flame.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass die mittlere Verweilzeit des Reaktionsgemisches im Reaktionsraum 0,25 bis 2,5 Sekunden ist.9. Process according to claims 1 to 8, characterized in that the mean residence time of the reaction mixture in the reaction space is 0.25 to 2.5 seconds.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass 10. The method according to claims 1 to 9, characterized in that
die mittlere Geschwindigkeit im Reaktionsraum 1 - 20 Nm/s ist.  the average velocity in the reaction space is 1 - 20 Nm / s.
1 1. Mischoxidpulver der Zusammensetzung LixLa3Zr2My08,5+o,5x+z mit 1 1. Mixed oxide powder of composition Li x La 3 Zr 2 M y 08.5 + o, 5x + z with
6,5 < x < 8, 0 < y < 0,5;  6.5 <x <8, 0 <y <0.5;
z = 2y für M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta und Ti  z = 2y for M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta and Ti
z = 1 ,5y für M = AI, Sc, V und Y, wobei für M= AI gilt, dass 6 < x < 7 und 0,2 < y < 0,5 z = y für M = Ba, Ca Mg, und Zn  z = 1.5y for M = Al, Sc, V and Y, where for M = Al it holds that 6 <x <7 and 0.2 <y <0.5 z = y for M = Ba, Ca Mg, and Zn
dadurch gekennzeichnet, dass  characterized in that
es eine BET-Oberfläche von 3 bis 20 m2/g und einen d50-Wert von kleiner oder gleich 5 μιη aufweist. it has a BET surface area of 3 to 20 m 2 / g and a d 50 value of less than or equal to 5 μm.
12. Verfahren zur Herstellung eines Mischoxidpulvers der allgemeinen LixLa3Zr2My08i5+o,5x+z mit 6,5 < x < 8, 0 < y < 0,5, 12. A process for producing a mixed oxide powder of the general Li x La 3 Zr 2 M y O 8i 5 + o, 5x + z with 6.5 <x <8, 0 <y <0.5,
z = 2y für M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta und Ti  z = 2y for M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta and Ti
z = 1 ,5y für M = AI, Sc, V und Y, , wobei für M= AI gilt, dass 6 < x < 7 und 0,2 < y < 0,5 z = y für M = Ba, Ca, Mg, und Zn, mit  z = 1.5y for M = Al, Sc, V and Y, where for M = Al it holds that 6 <x <7 and 0.2 <y <0.5 z = y for M = Ba, Ca, Mg, and Zn, with
a) Granat-Kristallstruktur,  a) garnet crystal structure,
b) einer BET-Oberfläche von < 3 m2/g und b) a BET surface area of <3 m 2 / g and
c) wenigstens 75% der theoretischen Feststoffdichte von kubischem Li7La3Zr20i2, für M=c) at least 75% of the theoretical solids density of cubic Li 7 La 3 Zr 2 Oi 2 , for M =
AI und 6 < x < 7 und 0,2 < y < 0,5 wenigstens 95% der theoretischen Dichte, dadurch gekennzeichnet, AI and 6 <x <7 and 0.2 <y <0.5 at least 95% of the theoretical density, characterized
dass man das Mischoxid erhältlich nach dem Verfahren gemäß der Ansprüche 1 bis 10 oder das Mischoxid gemäß des Anspruches 1 1 bei Temperaturen von 700 bis 1200°C über einen Zeitraum von 3 bis 24 Stunden thermisch behandelt.  that the mixed oxide obtainable by the process according to claims 1 to 10 or the mixed oxide according to claim 1 1 at temperatures of 700 to 1200 ° C over a period of 3 to 24 hours thermally treated.
13. Verfahren zur Herstellung eines Mischoxidpulvers der Zusammensetzung  13. A process for producing a composite oxide powder of the composition
LixLa3Zr2My08,5+o,5x+z Li x La3Zr2M y 08.5 + o, 5x + z
mit 6,5 < x < 8, 0 < y < 0,5,  with 6.5 <x <8, 0 <y <0.5,
z = 2y für M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta und Ti  z = 2y for M = Hf, Ga, Ge, Nb, Si, Sn, Sr, Ta and Ti
z = 1 ,5y für M = AI, Sc, V und Y, wobei für M= AI gilt, dass 6 < x < 7 und 0,2 < y < 0,5, z = y für M = Ba, Ca, Mg, und Zn mit  z = 1.5y for M = Al, Sc, V and Y, where for M = Al it holds that 6 <x <7 and 0.2 <y <0.5, z = y for M = Ba, Ca, Mg, and Zn with
a) Granat-Kristallstruktur,  a) garnet crystal structure,
b) einer BET-Oberfläche von < 3 m2/gund b) a BET surface area of <3 m 2 / g and
c) wenigstens 75% der theoretischen Feststoffdichte von kubischem Li7La3Zr20i2, für M= AI und 6 < x < 7 und 0,2 < y < 0,5 wenigstens 95% der theoretischen Dichte, bei dem man eine Lösung enthaltend jeweils ein oder mehrere Verbindungen des Lithiums, Lanthans und des Zirkons und gegebenenfalls Metallverbindungen M in einer Konzentration entsprechend der Stöchiometrie und in Form feiner Tröpfchen in eine in einem Reaktionsraum brennende Flamme einbringt, die gebildet wird, indem man ein Sauerstoff enthaltendes Gas und ein bei der Reaktion mit Sauerstoff Wasser bildendes Brenngas in den Reaktionsraum einbringt und dort zündet und nachfolgend den Feststoff von dampf- oder gasförmigen Stoffen abtrennt und c) at least 75% of the theoretical solids density of cubic Li 7 La 3 Zr 2 0i2 , for M = Al and 6 <x <7 and 0.2 <y <0.5 at least 95% of the theoretical density, wherein a solution containing in each case one or more compounds of lithium, lanthanum and zirconium and optionally metal compounds M in one Concentration according to the stoichiometry and in the form of fine droplets in a burning in a reaction chamber flame, which is formed by introducing an oxygen-containing gas and an oxygen in the reaction with oxygen forming fuel gas into the reaction space and ignites there, and subsequently the solid from separates off steam or gaseous substances and
bei Temperaturen von 700 bis 1200°C über einen Zeitraum von 3 bis 24 Stunden thermisch behandelt.  thermally treated at temperatures of 700 to 1200 ° C over a period of 3 to 24 hours.
14. Verwendung der Mischoxidpulver gemäß Anspruch 1 1 oder der nach dem Verfahren gemäß der Ansprüche 12 oder 13 hergestellten Mischoxidpulver als Feststoffelektrolyt in Lithiumionenbatterien.  14. Use of the mixed oxide powder according to claim 1 1 or the mixed oxide powder prepared by the process according to claims 12 or 13 as a solid electrolyte in lithium-ion batteries.
PCT/EP2015/060068 2014-05-16 2015-05-07 Method for producing mixed oxide powder comprising lithium, lanthanum and zirconium WO2015173114A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102014209344 2014-05-16
EP14168678.2A EP2944611A1 (en) 2014-05-16 2014-05-16 Method for producing a mixed oxide having a garnet structure containing cubic crystalline aluminium, lithium, lanthanum and zirconium
EP14168678.2 2014-05-16
DE102014209344.9 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015173114A1 true WO2015173114A1 (en) 2015-11-19

Family

ID=53177476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/060068 WO2015173114A1 (en) 2014-05-16 2015-05-07 Method for producing mixed oxide powder comprising lithium, lanthanum and zirconium

Country Status (1)

Country Link
WO (1) WO2015173114A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413388A4 (en) * 2016-02-05 2019-10-30 Murata Manufacturing Co., Ltd. Solid electrolyte and all-solid-state battery
WO2021037900A1 (en) 2019-08-27 2021-03-04 Evonik Operations Gmbh Mixed lithium transition metal oxide coated with pyrogenically produced zirconium-containing oxides
WO2021037904A1 (en) 2019-08-27 2021-03-04 Evonik Operations Gmbh Mixed lithium transition metal oxide containing pyrogenically produced zirconium-containing oxides
WO2021048249A1 (en) 2019-09-13 2021-03-18 Evonik Operations Gmbh Preparation of nanostructured mixed lithium zirconium oxides by means of spray pyrolysis
WO2021048251A1 (en) 2019-09-13 2021-03-18 Evonik Operations Gmbh Preparation of nanostructured mixed lithium zirconium oxides by means of spray pyrolysis
WO2021089886A2 (en) 2020-09-07 2021-05-14 Evonik Operations Gmbh Synthesis of nanostructured lithium zirconium phosphate
CN114605152A (en) * 2022-04-27 2022-06-10 佛山(华南)新材料研究院 Cubic-phase lithium lanthanum zirconium oxide and preparation method thereof
WO2023078790A1 (en) 2021-11-02 2023-05-11 Evonik Operations Gmbh Solid electrolyte materials, process for production and uses thereof
WO2023232593A1 (en) 2022-06-03 2023-12-07 Evonik Operations Gmbh Anode active material particles encapsulated in pyrogenic, nanostructured magnesium oxide, and methods of making and using the same
WO2023232596A1 (en) 2022-06-03 2023-12-07 Evonik Operations Gmbh Cathode active material particles encapsulated in pyrogenic, nanostructured magnesium oxide, and methods of making and using the same
WO2023232587A1 (en) 2022-06-03 2023-12-07 Evonik Operations Gmbh Pyrogenically prepared surface modified magnesium oxide
WO2024008556A1 (en) 2022-07-07 2024-01-11 Evonik Operations Gmbh Synthesis of nanostructured zirconium phosphate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159867A1 (en) * 2008-08-21 2010-03-03 Ngk Insulator, Ltd. Aluminium-doped Li7La3Zr2O12 solid electrolyte and process for producing the same
WO2010090301A1 (en) * 2009-02-04 2010-08-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159867A1 (en) * 2008-08-21 2010-03-03 Ngk Insulator, Ltd. Aluminium-doped Li7La3Zr2O12 solid electrolyte and process for producing the same
WO2010090301A1 (en) * 2009-02-04 2010-08-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EZHIYL RANGASAMY ET AL: "The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition LiLaZrO", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM; NL, NL, vol. 206, 14 October 2011 (2011-10-14), pages 28 - 32, XP028342282, ISSN: 0167-2738, [retrieved on 20111031], DOI: 10.1016/J.SSI.2011.10.022 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413388A4 (en) * 2016-02-05 2019-10-30 Murata Manufacturing Co., Ltd. Solid electrolyte and all-solid-state battery
CN114342114A (en) * 2019-08-27 2022-04-12 赢创运营有限公司 Mixed lithium transition metal oxides coated with pyrogenically produced zirconium-containing oxides
WO2021037900A1 (en) 2019-08-27 2021-03-04 Evonik Operations Gmbh Mixed lithium transition metal oxide coated with pyrogenically produced zirconium-containing oxides
WO2021037904A1 (en) 2019-08-27 2021-03-04 Evonik Operations Gmbh Mixed lithium transition metal oxide containing pyrogenically produced zirconium-containing oxides
WO2021048249A1 (en) 2019-09-13 2021-03-18 Evonik Operations Gmbh Preparation of nanostructured mixed lithium zirconium oxides by means of spray pyrolysis
WO2021048251A1 (en) 2019-09-13 2021-03-18 Evonik Operations Gmbh Preparation of nanostructured mixed lithium zirconium oxides by means of spray pyrolysis
WO2021089886A2 (en) 2020-09-07 2021-05-14 Evonik Operations Gmbh Synthesis of nanostructured lithium zirconium phosphate
WO2023078790A1 (en) 2021-11-02 2023-05-11 Evonik Operations Gmbh Solid electrolyte materials, process for production and uses thereof
CN114605152A (en) * 2022-04-27 2022-06-10 佛山(华南)新材料研究院 Cubic-phase lithium lanthanum zirconium oxide and preparation method thereof
CN114605152B (en) * 2022-04-27 2022-11-29 佛山(华南)新材料研究院 Cubic-phase lithium lanthanum zirconium oxide and preparation method thereof
WO2023232593A1 (en) 2022-06-03 2023-12-07 Evonik Operations Gmbh Anode active material particles encapsulated in pyrogenic, nanostructured magnesium oxide, and methods of making and using the same
WO2023232596A1 (en) 2022-06-03 2023-12-07 Evonik Operations Gmbh Cathode active material particles encapsulated in pyrogenic, nanostructured magnesium oxide, and methods of making and using the same
WO2023232587A1 (en) 2022-06-03 2023-12-07 Evonik Operations Gmbh Pyrogenically prepared surface modified magnesium oxide
WO2024008556A1 (en) 2022-07-07 2024-01-11 Evonik Operations Gmbh Synthesis of nanostructured zirconium phosphate

Similar Documents

Publication Publication Date Title
WO2015173114A1 (en) Method for producing mixed oxide powder comprising lithium, lanthanum and zirconium
EP2399867B1 (en) Method for producing mixed oxides containing lithium
EP2399869B1 (en) Mixed oxide powder containing the elements lithium, manganese, nickel and cobalt and method for producing same
EP2303780B1 (en) Process for producing lithium titanium spinel
EP3224200B1 (en) Method for producing metal oxides by means of spray pyrolysis
DE102006027335A1 (en) Process for the preparation of mixed metal oxide powders
DE102006027302A1 (en) Process for the preparation of mixed oxide powders
DE102006027334A1 (en) Process for the preparation of metal oxide powders
EP3337764B1 (en) Lithium-nickel-manganese-based transition metal oxide particles, production thereof, and use thereof as an electrode material
EP2944611A1 (en) Method for producing a mixed oxide having a garnet structure containing cubic crystalline aluminium, lithium, lanthanum and zirconium
DE112014004983T5 (en) Solid electrolyte precursors, production process therefor, process for producing a solid electrolyte and process for producing a complex of solid electrolyte and electrode active material
DE102005061897A1 (en) Process for the preparation of powdered solids
EP3408227A1 (en) Process for producing tungsten oxide and tungsten mixed oxides
US8821771B2 (en) Flame spray pyrolysis method for forming nanoscale lithium metal phosphate powders
WO2016083142A1 (en) Method for producing a cathode material and special cathode material
WO2018024661A1 (en) Method for producing a cathode material having a low bet surface area and a high tapped density, and a special cathode material
WO2007023033A1 (en) Stabilised aluminium zirconium mixed oxide powder
EP3565784B1 (en) Method for producing metal oxides by means of spray pyrolysis
US20200392014A1 (en) Method of tuning the conversion temperature of cubic phase of aluminum-doped lithium lanthanum zirconium oxide
WO2013023949A2 (en) Powder comprising calcium oxide, and production and use thereof
DE102005017372A1 (en) Aqueous cerium oxide dispersion
DE102004039139A1 (en) Yttrium-zirconium mixed oxide powder
WO2016169842A1 (en) Method for producing a cathode material having a low bet surface area and a high tamped density
WO2017037179A1 (en) Mixed oxide surrounded by a shell and containing manganese and lithium
WO2013092110A1 (en) Mixed oxide containing the elements lithium, nickel, cobalt, and manganese and method for the production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15722511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15722511

Country of ref document: EP

Kind code of ref document: A1