WO2017135348A1 - 標的dnaの測定方法 - Google Patents

標的dnaの測定方法 Download PDF

Info

Publication number
WO2017135348A1
WO2017135348A1 PCT/JP2017/003707 JP2017003707W WO2017135348A1 WO 2017135348 A1 WO2017135348 A1 WO 2017135348A1 JP 2017003707 W JP2017003707 W JP 2017003707W WO 2017135348 A1 WO2017135348 A1 WO 2017135348A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
target dna
nucleic acid
acid probe
target
Prior art date
Application number
PCT/JP2017/003707
Other languages
English (en)
French (fr)
Inventor
達樹 松野
公一 阿部
Original Assignee
富士レビオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士レビオ株式会社 filed Critical 富士レビオ株式会社
Priority to EP17747499.6A priority Critical patent/EP3412777A4/en
Priority to JP2017565617A priority patent/JP6933373B2/ja
Priority to US16/074,863 priority patent/US20190040452A1/en
Publication of WO2017135348A1 publication Critical patent/WO2017135348A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6872Methods for sequencing involving mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a method for measuring target DNA.
  • Patent Document 1 discloses removing non-target nucleic acids from a mixed solution containing target nucleic acids and non-target nucleic acids.
  • Patent Document 2 discloses isolating or purifying a target nucleic acid from a mixed solution containing a target nucleic acid and a non-target nucleic acid.
  • the present inventors have found that there is a problem that the target DNA may not be analyzed properly if the genomic DNA is not completely cleaved. .
  • the target DNA may not be analyzed properly if the genomic DNA is not completely cleaved.
  • detecting a modified nucleobase present in the target DNA after a genomic DNA cleavage reaction by a restriction enzyme not only the modified nucleobase present in the target DNA but also the 5 ′ or 3 ′ terminal side of the target DNA in the genomic DNA Modified nucleobases present in non-target DNA linked to the target DNA via one or more uncut sites in can also be detected.
  • the non-target DNA can efficiently complementarily bind to the target DNA in a single strand. There is a risk of disturbing the analysis.
  • an object of the present invention is to provide a method capable of appropriately analyzing a target DNA after a genomic DNA cleavage reaction with a restriction enzyme.
  • Patent Documents 1 and 2 describe increasing the purity or concentration of the target nucleic acid, but after removing the incompletely cleaved DNA fragment containing the target DNA and after removing the incompletely cleaved DNA fragment containing the target DNA There is no description or suggestion about analyzing the target DNA.
  • a method for measuring target DNA including: (1) A genomic DNA is cleaved with a restriction enzyme in a solution, (a) a completely cleaved DNA fragment consisting of the target DNA, (b) an incompletely cleaved DNA fragment containing the target DNA, and (c) not containing the target DNA Obtaining a mixture containing DNA fragments; (2) (b) An incompletely cleaved DNA fragment containing the target DNA is removed from the mixture, and (a) a completely cleaved DNA fragment comprising the target DNA and (c) a DNA fragment not containing the target DNA are contained. Obtaining a solution; and (3) analyzing the target DNA in the solution obtained in (2) above.
  • nucleic acid probe specific for non-target DNA is the following nucleic acid probe: (1) a nucleic acid probe specific for 5 ′ adjacent DNA; (2) a nucleic acid probe specific for 3 ′ adjacent DNA; or (3) a combination of a nucleic acid probe specific for 5 ′ adjacent DNA and a nucleic acid probe specific for 3 ′ adjacent DNA.
  • the analysis is performed using a nucleic acid probe specific for the target DNA.
  • [5] The method according to any one of [1] to [4], wherein the modified nucleobase in the target DNA is analyzed.
  • [6] The method according to [5], wherein the modified nucleobase is methylcytosine.
  • [7] The method according to any one of [1] to [6], wherein the analysis is performed by immunoassay, mass spectrometry, electrochemical analysis, high performance liquid chromatography analysis, or nanopore analysis.
  • the method of the present invention can appropriately analyze a target DNA after a genomic DNA cleavage reaction with a restriction enzyme.
  • the method of the present invention is particularly useful when a restriction enzyme with low cleavage efficiency is used for cleavage of genomic DNA.
  • the method of the present invention is particularly useful when it is necessary to reduce the time for the genomic DNA cleavage reaction with a restriction enzyme in order to shorten the total time required for measuring the target DNA.
  • FIG. 1 is a diagram showing an outline of the method of the present invention.
  • FIG. 2 is a diagram showing the amount of uncleaved DNA after genomic DNA cleavage reaction with restriction enzymes at various reaction times.
  • FIG. 3 is a diagram showing the amount of uncleaved DNA captured by a nucleic acid probe specific to the target DNA.
  • FIG. 4 is a diagram showing the removal efficiency (relative evaluation of the uncut rate) of incompletely cut DNA fragments containing the target DNA using a nucleic acid probe specific for non-target DNA.
  • the method of the present invention is carried out by the following (1) to (3): (1) A genomic DNA is cleaved with a restriction enzyme in a solution, (a) a completely cleaved DNA fragment consisting of the target DNA, (b) an incompletely cleaved DNA fragment containing the target DNA, and (c) not containing the target DNA Obtaining a mixture containing DNA fragments; (2) (b) An incompletely cleaved DNA fragment containing the target DNA is removed from the mixture, and (a) a completely cleaved DNA fragment comprising the target DNA and (c) a DNA fragment not containing the target DNA are contained. Obtaining a solution; and (3) analyzing the target DNA in the solution obtained in (2) above.
  • genomic DNA used in the present invention is obtained from an arbitrary biological sample.
  • organisms from which such biological samples are derived include mammals (eg, humans, monkeys, mice, rats, rabbits, cows, pigs, horses, goats, sheep), birds (eg, chickens) and the like.
  • mammals eg, humans, monkeys, mice, rats, rabbits, cows, pigs, horses, goats, sheep
  • birds eg, chickens
  • Examples include animals, insects, microorganisms, plants, fungi, fish, and viruses.
  • a biological sample can also be a blood-related sample (eg, whole blood, serum, plasma), saliva, urine, milk, tissue or cell extract, or a mixture thereof, which is the blood itself or a sample derived from blood. Also good.
  • the biological sample may further be derived from a mammal suffering from a disease (eg, cancer, leukemia), or a mammal potentially having a disease.
  • a disease eg, cancer, leukemia
  • Genomic DNA can be appropriately obtained from such a biological sample by any method (eg, genomic DNA extraction method).
  • a mixture containing the following DNA fragments is obtained (eg, see FIG. 1): (A) a completely cleaved DNA fragment comprising target DNA; (B) an incompletely cut DNA fragment containing the target DNA; and (c) various DNA fragments not containing the target DNA.
  • Cleavage of genomic DNA with a restriction enzyme can be performed at an appropriate temperature and reaction time depending on the type of restriction enzyme.
  • the restriction enzyme used in the present invention is an enzyme having the ability to cleave double-stranded DNA, and may produce either a blunt end or a sticky end by cleaving the double-stranded DNA.
  • restriction enzymes include AatII, AccI, AccII, AccIII, AclI, AfaI, AflII, AluI, Aor13HI, Aor51HI, ApaI, ApaLI, AsuII, BalI, BamHI, BanII, BciTg, BciT130I, Bcn, BlnI, BmeT110I, BmgT120I, Bpu1102I, Bsp1286I, Bsp1407I, BspT104I, BspT107I, BssHII, Bst1107I, BstPI, BstXI, Cfr10I, ClaI, CpoI, DdeI, DraI, DpnE EcoRII, EcoRV, Eco 14, EcoT22I, FbaI, FokI, HaeII, HaeIII, HapII, HhaI, Hin1I, HincII, HindIII, HinfI
  • the genomic DNA cleavage reaction time by the restriction enzyme may be shortened. This is because the method of the present invention can appropriately analyze the target DNA in the genomic DNA even if the digestion of the genomic DNA with the restriction enzyme is incomplete.
  • Removal of incompletely cleaved DNA fragment containing target DNA can be performed using non-target DNA in the incompletely cleaved DNA fragment. For example, such removal can be achieved by removing incompletely cleaved DNA fragments using nucleic acid probes specific for non-target DNA, or by fractionation based on the total molecular weight of target DNA and non-target DNA. This can be done by removal.
  • the removal can be performed using a nucleic acid probe specific for the non-target DNA.
  • Nucleic acid probe specific for non-target DNA is one or more (for example, 1 to 3, preferably 1 or 2, more preferably 1) recognition of restriction enzyme at the 5 'or 3' end of target DNA in genomic DNA It means a nucleic acid probe that is complementary to part or all of a non-target DNA (eg, see FIG. 1) linked to a target DNA via a site (uncut site).
  • the nucleic acid probe specific for non-target DNA may be a DNA probe or a heterologous nucleic acid probe.
  • the heterologous nucleic acid probe means a nucleic acid probe having a main chain structure different from the main chain structure of the target DNA (structure composed of a sugar moiety and a phosphate moiety) as a part or the whole of the main chain structure.
  • heterologous nucleic acid probes include RNA probes (eg, normal RNA probes composed of natural ribonucleotides having a hydroxyl group at the 2 ′ position, and hydroxyl groups at the 2 ′ position modified with an alkyl group such as a methyl group).
  • RNA probes composed of ribonucleotides
  • PNA peptide nucleic acid
  • LNA locked nucleic acid
  • BNA bridged nucleic acid
  • S phosphorothioate nucleic acid probes
  • two or more such Examples include chimeric nucleic acid probes in which nucleic acid probes are linked, and chimeric nucleic acid probes in which one or more such nucleic acid probes and DNA probes are linked.
  • the nucleic acid probe specific to the non-target DNA may be a DNA probe.
  • the number of nucleotide residues constituting the nucleic acid probe specific to the non-target DNA should be long enough to hybridize with the non-target DNA. Although not particularly limited as long as it is present, for example, it may be 12 or more, preferably 15 or more, preferably 18 or more, more preferably 20 or more.
  • the number of nucleotides constituting a nucleic acid probe specific for non-target DNA may also be, for example, 100 or less, 80 or less, 60 or less, or 50 or less. Nucleic acid probes specific for non-target DNA can be prepared by probe synthesis methods known in the art.
  • the nucleic acid probe specific for non-target DNA can be used in a free form or a form immobilized on a solid phase.
  • Nucleic acid probes specific for non-target DNA may be labeled with a substance or group that allows immobilization to a solid phase. Labeling can be performed, for example, at the 5 'end or 3' end of a nucleic acid probe specific for non-target DNA.
  • Examples of the group or substance that can be immobilized on a solid phase include a group or substance that enables covalent binding to a solid phase, and an affinity substance.
  • groups or substances that enable covalent binding to a solid phase include, for example, thiol groups or substances having thiol groups (such thiol groups introduced into nucleic acid probes specific for non-target DNA are Can bind to maleimide groups on the solid phase), amino groups or substances with amino groups (such amino groups introduced into nucleic acid probes specific for non-target DNA can bind to maleic anhydride on the solid phase ).
  • the affinity substance examples include streptavidin, biotin, digoxigenin, dinitrophenol, fluorescein, fluorescein isothiocyanate, and a pair of single-stranded nucleic acids complementary to each other and capable of forming a double-stranded nucleic acid (eg, poly A sequence) And a single-stranded nucleic acid pair having a poly-T sequence).
  • the solid phase one coated with another affinity substance having affinity with the affinity substance possessed by the nucleic acid probe specific for the non-target DNA can be used.
  • a nucleic acid probe specific for non-target DNA may be immobilized on a solid phase after hybridization with an incompletely-cut DNA fragment containing the target DNA.
  • solid phase examples include particles (eg, magnetic particles); membranes (eg, nitrocellulose membrane), supports such as glass, plastic and metal; and containers such as plates (eg, multiwell plates) and tubes. It is done.
  • particles eg, magnetic particles
  • membranes eg, nitrocellulose membrane
  • supports such as glass, plastic and metal
  • containers such as plates (eg, multiwell plates) and tubes. It is done.
  • the nucleic acid probe specific for non-target DNA is: (I) a nucleic acid probe specific for 5 ′ flanking DNA; (Ii) a nucleic acid probe specific for 3 ′ flanking DNA; (Iii) A combination of a nucleic acid probe specific for 5 ′ adjacent DNA and a nucleic acid probe specific for 3 ′ adjacent DNA.
  • the 5 ′ flanking DNA means a non-target DNA (restriction enzyme cleavage unit) adjacent to the target DNA via a restriction enzyme recognition site (uncut site) on the 5 ′ end side of the target DNA in genomic DNA (example) , See FIG.
  • a nucleic acid probe specific for 5 ′ adjacent DNA means a nucleic acid probe complementary to a part or all of such 5 ′ adjacent DNA.
  • the 3 ′ adjacent DNA means a non-target DNA (restriction enzyme cleavage unit) adjacent to the target DNA via a restriction enzyme recognition site (uncut site) on the 3 ′ end side of the target DNA in the genomic DNA (example) , See FIG.
  • a nucleic acid probe specific for 3 ′ adjacent DNA means a nucleic acid probe complementary to a part or all of such 3 ′ adjacent DNA.
  • step (2) may be performed by: (2-1) combining a nucleic acid probe specific for non-target DNA with the mixture; (2-2) Incubating the mixed solution to obtain a hybridization complex containing the nucleic acid probe and the DNA fragment of (b); (2-3) Separating the hybridization complex from or in the mixed solution to obtain a solution containing the DNA fragments of (a) and (c) above.
  • step (2-1) an appropriate amount of the nucleic acid probe is combined with the mixed solution.
  • the nucleic acid probe may be added to the mixed solution.
  • the mixed solution may be transferred to a solid phase on which the nucleic acid probe is fixed.
  • the nucleic acid probe may be used in an excess amount with respect to its target site (1 equivalent) in genomic DNA in order to efficiently remove incompletely cleaved DNA fragments including the target DNA.
  • a hybridization complex is obtained by incubation of the mixed solution.
  • Incubations can be performed under any conditions that can form a hybridization complex.
  • Such conditions eg, salt concentration of solution, incubation temperature, incubation time
  • the separation can be performed using, for example, a solid phase.
  • the magnetic particles in the mixed solution can be collected by manipulating the magnetic force, so by collecting the supernatant of the mixed solution not containing the magnetic particles, A target solution containing the DNA fragments of (a) and (c), wherein the amount of the DNA fragment of (b) is reduced, can be obtained.
  • the target solution can be obtained by transferring the mixed solution from the support or container.
  • the nucleic acid probe Even if the nucleic acid probe is not immobilized on a solid phase, it may be immobilized on the solid phase after hybridization complex formation if it is labeled with a substance or group that allows immobilization on the solid phase. Since it is possible, the target solution can be obtained in the same manner as described above.
  • Target DNA Analysis of target DNA can be performed by any method (for example, International Publication No. 2015/025862; International Publication No. 2015/025863; International Publication No. 2015/025864; International Publication) No. 2015/108177; DNA Research 13, 37-42 (2006); Analytical Chemistry 77 (2), 504-510 (2005); Analytical Chemistry 83, 7595-7599 (2011); Nucleic Acids 34 (8) e61 (2006); Scientific Reports 501 (2), srep00501 (2012)).
  • the target DNA may be analyzed after capturing the target nucleic acid using a nucleic acid probe specific to the target DNA.
  • the nucleic acid probe specific to the target DNA means a nucleic acid probe complementary to a part or all of the target DNA found in the genomic DNA (a restriction enzyme cleavage unit; see FIG. 1).
  • the nucleic acid probe specific to the target DNA is a DNA probe or a heterologous nucleic acid probe as described above, but may be a heterologous nucleic acid probe from the viewpoint of high specificity or the like.
  • the number of nucleotide residues constituting the nucleic acid probe specific for the target DNA is the same as that described for the nucleic acid probe specific for the non-target DNA.
  • the nucleic acid probe specific to the target DNA can be used in a free form or a form fixed on a solid phase.
  • the nucleic acid probe specific for the target DNA may be labeled with a substance or group that allows immobilization to the solid phase.
  • the details of the label, the solid phase, the group that enables immobilization to the solid phase, and the substance that enables immobilization to the solid phase are the same as those described for the nucleic acid probe specific to the non-target DNA.
  • a specific region in the target DNA for example, a modified nucleobase in the region may be analyzed.
  • a modified nucleobase refers to a nucleobase having a structure modified with respect to the nucleobase.
  • the term “nucleobase” includes, for example, adenine (A), guanine (G), cytosine (C) and thymine (T).
  • the nucleobase is preferably cytosine (C).
  • Examples of the modification include introduction of a substituent into the nucleobase, elimination of a group (eg, amino group, oxo group, methyl group) possessed by the nucleobase, and exchange of the group possessed by the nucleobase with a substituent. .
  • the substituent is not particularly limited as long as it can be possessed by a naturally occurring nucleobase.
  • Administrative Instructions under the Patent Cooperative Treaty (enforced on January 1, 2009), Annex C, Appendix 2, Examples include substituents possessed by modified nucleobases in modified nucleotides described in Table 2: List of Modified Nucleotides.
  • the modified nucleotides described in this document are the “Guidelines (July 2002) or (December 2009) for preparation of a description including a base sequence or amino acid sequence” published by the Japan Patent Office. ) ", Annex 2, Table 2: Can be the same as the modified nucleotide described in the modified base table. Accordingly, reference can also be made to the above guidelines for modified nucleobases.
  • the substituent is preferably methyl, hydroxymethyl or carboxyl, more preferably methyl or hydroxymethyl, and even more preferably methyl.
  • the position of modification such as substitution is not particularly limited, but in the case of a nucleobase (C or T) having a pyrimidine ring, it is, for example, in the 2nd, 4th to 6th position, preferably in the 5th position, and the purine ring In the case of a nucleobase having A (G), it is, for example, the 2nd, 6th, or 8th position.
  • the modified nucleobase is not particularly limited as long as it can exist in nature.
  • Administrative Instructions under the Patent Cooperation Treaty (enforced on January 1, 2009), Annex C, Appendix 2, Table 2: Examples thereof include modified nucleobases possessed by modified nucleotides described in Modified Nucleotides.
  • the modified nucleotides described in this document may be the same as the modified nucleotides described in Appendix 2, Table 2: Modified Base Table of the above guidelines. Accordingly, reference can also be made to the above guidelines for modified nucleobases.
  • the modified nucleobase is preferably methylcytosine (eg, 5-methylcytosine), hydroxymethylcytosine (eg, 5-hydroxymethylcytosine), carboxyl cytosine (eg, 5-carboxyl cytosine), more preferably methyl Cytosine and hydroxymethylcytosine, even more preferably methylcytosine.
  • a modified nucleobase is known to cause a change in the function of the nucleic acid (eg, a change in the transcriptional regulatory ability of a given gene).
  • modified nucleobases can be analyzed by immunoassay (eg, International Publication No. 2015/025862; International Publication No. 2015/025863; International Publication No. 2015/025864; International Publication No.
  • the analysis may be performed after capturing the target DNA on the solid phase.
  • the modified nucleobase when a modified nucleobase is analyzed by mass spectrometry, electrochemical analysis, or high performance liquid chromatography analysis, the target DNA captured on the solid phase is decomposed by endonuclease or / and exonuclease, and the DNA fragment becomes a monomer. After recovering the solution decomposed into bases (nucleotides), the modified nucleobase can be analyzed by subjecting this solution to such a technique.
  • the modified nucleobase when the modified nucleobase is analyzed by nanopore analysis, the target DNA captured on the solid phase is dissociated from the solid phase by treatment with an alkaline aqueous solution or heat treatment to obtain a solution containing DNA fragments,
  • the modified nucleobase can be analyzed by subjecting this solution to nanopore analysis.
  • the modification frequency of the target DNA by the modified nucleobase may be evaluated in consideration of the amount of genomic DNA or target DNA used.
  • the reaction solution having the above composition was subjected to an amplification reaction according to the following protocol. (1) 98 ° C, 2 minutes (2) 98 ° C, 10 seconds (3) 68 ° C, 1 minute
  • reaction steps (2) to (3) were repeated 50 cycles. The results are shown in Table 1.
  • nucleotide sequence of probe nucleic acid (nucleic acid probe specific to target DNA) for capturing target DNA is 5 ′ -UGC AGG ACC ACU CGA GGC UGC CAC-3 '(SEQ ID NO: 3; nucleic acid main chain is 2'-O-methylated RNA, 5' end is biotin-labeled), artificially synthesized by Hokkaido System Science I used something.
  • the magnetic particles were washed twice with 250 ⁇ L of TBS-T, suspended by adding 20 ⁇ L of distilled water, and then the Primer set designed in the region sandwiching the cleavage site of the restriction enzyme XspI and the cleavage site were not sandwiched.
  • the amount of DNA trapped in the magnetic particles and the amount of uncut DNA by the restriction enzyme XspI were measured by real-time PCR amplification using a primer set designed in the region.
  • Primer set designed in the region sandwiching the cleavage site of restriction enzyme XspI is: Forward Primer sequence is 5'-TCT AGA CCC CGC CCC ACG-3 '(SEQ ID NO: 1), Reverse Primer sequence is 5'-CTG CAG CAC CAC TCG AGG CTG-3 ′ (SEQ ID NO: 2), which was artificially synthesized by Hokkaido System Science, was used.
  • the Primer set designed in the region that does not sandwich the cleavage site is 5'-TAG AAC GCT TTG CGT CCC GAC-3 '(SEQ ID NO: 4) for the Forward Primer sequence, 5'-GAG AGC TCC GTC CTC for the Reverse Primer sequence.
  • C-3 ′ (SEQ ID NO: 5), which was artificially synthesized by Hokkaido System Science, was used.
  • reaction steps (2) to (3) were repeated 50 cycles. The results are shown in Table 2.
  • nucleotide sequence of the probe nucleic acid (nucleic acid probe specific for the target DNA) for capturing the target DNA is 5′-UGC AGG ACC ACU CGA GGC UGC CAC -3 ′ (SEQ ID NO: 3; the main chain of the nucleic acid is 2′-O-methylated RNA, and the 5 ′ end is labeled with biotin), which was artificially synthesized by Hokkaido System Science Co., Ltd. was used.
  • the nucleotide sequence of a probe nucleic acid (a nucleic acid probe specific to a non-target DNA having polyadenine) for capturing an uncut target DNA by a restriction enzyme is 5′-GTG GGG CGG GGT CTA AAA AAA AAA AAA AAA AAA AAA AAA-3 ′ (SEQ ID NO: 6), which was artificially synthesized by Hokkaido System Science Co., Ltd., was used.
  • the magnetic particles were washed twice with 250 ⁇ L of TBS-T, suspended by adding 20 ⁇ L of distilled water, and then the Primer set designed in the region sandwiching the cleavage site of the restriction enzyme XspI and the cleavage site were not sandwiched.
  • the amount of DNA trapped in the magnetic particles and the amount of uncut DNA by the restriction enzyme XspI were measured by real-time PCR amplification using a primer set designed in the region.
  • Primer set designed in the region sandwiching the cleavage site of restriction enzyme XspI is: Forward Primer sequence is 5'-TCT AGA CCC CGC CCC ACG-3 '(SEQ ID NO: 1), Reverse Primer sequence is 5'-CTG CAG CAC CAC TCG AGG CTG-3 ′ (SEQ ID NO: 2), which was artificially synthesized by Hokkaido System Science, was used.
  • the Primer set designed in the region that does not sandwich the cleavage site is 5'-TAG AAC GCT TTG CGT CCC GAC-3 '(SEQ ID NO: 4) for the Forward Primer sequence, 5'-GAG AGC TCC GTC CTC for the Reverse Primer sequence.
  • C-3 ′ (SEQ ID NO: 5), which was artificially synthesized by Hokkaido System Science, was used.
  • reaction steps (2) to (3) were repeated 50 cycles. The results are shown in Table 3.
  • Example 1 Analysis of methylcytosine in target DNA by immunoassay (1) Cleavage of genomic DNA Genomic DNA is cleaved with a restriction enzyme in a solution to obtain a mixed solution containing the following DNA fragments (eg, FIG. 1). See).
  • Example 2 Analysis of methylcytosine in target DNA by mass spectrometry, electrochemical analysis, or high performance liquid chromatography analysis (1) Cleavage of genomic DNA This is carried out in the same manner as in Example 1 (1). (2) Removal of DNA fragment of (b) The method is the same as in Example 1 (2). (3) Analysis of target DNA (3-1) Perform the same method as in Example 1 (3-1). (3-2) Decompose the target DNA captured on the solid phase with endonuclease or / and exonuclease. Then, a solution in which the DNA fragment (a) is decomposed into monomer bases (nucleotides) can be collected.
  • Methylcytosine contained in the target DNA decomposed into monomer bases is analyzed by mass spectrometry (eg, Analytical Chemistry 77 (2), 504-510 (2005)), electrochemical analysis (eg, Analytical Chemistry 83). , 7595-7599 (2011)), or high performance liquid chromatography analysis (eg, Nucleic Acids Research 34 (8), e61 (2006)).
  • Example 3 Analysis of methylcytosine in target DNA by nanopore analysis (1) Cleavage of genomic DNA This is carried out in the same manner as in Example 1 (1). (2) Removal of DNA fragment of (b) The method is the same as in Example 1 (2). (3) Analysis of target DNA (3-1) Perform the same method as in Example 1 (3-1). (3-2) The target DNA captured on the solid phase is dissociated from the solid phase by treatment with an alkaline aqueous solution (eg, 50 mM NaOH aqueous solution) or heat treatment (eg, 95 ° C., 2 minutes). A solution containing the DNA fragment of a) can be obtained. (3-3) Methylcytosine contained in the target DNA dissociated from the solid phase is analyzed by nanopore analysis (eg, Scientific Reports 501 (2), srep00501 (2012)).
  • the method of the present invention is useful for measuring target DNA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、制限酵素によるゲノムDNA切断反応後に標的DNAを適切に解析できる方法を提供する。より具体的には、本発明は、以下を含む、標的DNAの測定方法を提供する: (1)溶液中においてゲノムDNAを制限酵素で切断して、(a)標的DNAからなる完全切断DNA断片、(b)標的DNAを含む不完全切断DNA断片、及び(c)標的DNAを含まないDNA断片を含有する混合液を得ること; (2)(b)のDNA断片を前記混合液から除去して、(a)のDNA断片、及び(c)のDNA断片を含有する溶液を得ること;並びに (3)前記(2)で得られた溶液において標的DNAを解析すること。

Description

標的DNAの測定方法
 本発明は、標的DNAの測定方法に関する。
 標的核酸の解析前に、標的核酸の純度又は濃度がしばしば高められている。例えば、特許文献1は、標的核酸及び非標的核酸を含有する混合液から非標的核酸を除去することを開示している。特許文献2は、標的核酸及び非標的核酸を含有する混合液から標的核酸を単離又は精製することを開示している。
国際公開第2010/091870号 国際公開第2006/121888号
 本発明者らは、制限酵素によるゲノムDNA切断反応を要する標的DNAの解析において、ゲノムDNAが完全に切断されていない場合、標的DNAを適切に解析できないおそれがあるという課題があることを見出した。
 例えば、制限酵素によるゲノムDNA切断反応後に標的DNA中に存在する修飾核酸塩基を検出する場合、標的DNA中に存在する修飾核酸塩基のみならず、ゲノムDNAにおいて標的DNAの5’又は3’末端側にある1以上の未切断部位を介して標的DNAに連結する非標的DNA中に存在する修飾核酸塩基もまた検出されるおそれがある。
 また、当該非標的DNAの少なくとも一部の領域が標的DNAと対合し得る場合、単一鎖内において非標的DNAが標的DNAと効率良く相補結合し得ることから、核酸プローブを用いた標的DNAの解析に支障をきたすおそれがある。
 すなわち、本発明の課題は、制限酵素によるゲノムDNA切断反応後に標的DNAを適切に解析できる方法を提供することである。
 本発明者らは、鋭意検討した結果、制限酵素によるゲノムDNA切断反応後に標的DNAを解析する場合、標的DNAを含む不完全切断DNA断片の除去後に標的DNAを解析すればよいことを着想し(例、図1を参照)、本発明を完成するに至った。特許文献1及び2は、標的核酸の純度又は濃度を高めることについて記載しているが、標的DNAを含む不完全切断DNA断片を除去すること、及び標的DNAを含む不完全切断DNA断片の除去後に標的DNAを解析することについては記載も示唆もしていない。
 すなわち、本発明は、以下のとおりである。
〔1〕以下を含む、標的DNAの測定方法:
(1)溶液中においてゲノムDNAを制限酵素で切断して、(a)標的DNAからなる完全切断DNA断片、(b)標的DNAを含む不完全切断DNA断片、及び(c)標的DNAを含まないDNA断片を含有する混合液を得ること;
(2)(b)標的DNAを含む不完全切断DNA断片を前記混合液から除去して、(a)標的DNAからなる完全切断DNA断片、及び(c)標的DNAを含まないDNA断片を含有する溶液を得ること;並びに
(3)前記(2)で得られた溶液において標的DNAを解析すること。
〔2〕前記除去が非標的DNAに特異的な核酸プローブを用いて行われる、〔1〕の方法。
〔3〕非標的DNAに特異的な核酸プローブが以下の核酸プローブである、〔2〕の方法:
(1)5’隣接DNAに特異的な核酸プローブ;
(2)3’隣接DNAに特異的な核酸プローブ;又は
(3)5’隣接DNAに特異的な核酸プローブ、及び3’隣接DNAに特異的な核酸プローブの組み合わせ。
〔4〕前記解析が標的DNAに特異的な核酸プローブを用いて行われる、〔1〕~〔3〕のいずれかの方法。
〔5〕標的DNA中の修飾核酸塩基が解析される、〔1〕~〔4〕のいずれかの方法。
〔6〕修飾核酸塩基がメチルシトシンである、〔5〕の方法。
〔7〕前記解析が、イムノアッセイ、質量分析、電気化学分析、高速液体クロマトグラフィー分析、又はナノポア分析により行われる、〔1〕~〔6〕のいずれかの方法。
 本発明の方法は、制限酵素によるゲノムDNA切断反応後に標的DNAを適切に解析することができる。切断効率の低い制限酵素をゲノムDNAの切断に用いる場合、本発明の方法は特に有用である。また、標的DNAの測定に要する総時間の短縮のため、制限酵素によるゲノムDNA切断反応の時間を短縮する必要がある場合、本発明の方法は特に有用である。
図1は、本発明の方法の概要を示す図である。 図2は、種々の反応時間における制限酵素によるゲノムDNA切断反応後の未切断DNA量を示す図である。 図3は、標的DNAに特異的な核酸プローブにより捕捉された未切断DNA量を示す図である。 図4は、非標的DNAに特異的な核酸プローブを用いた、標的DNAを含む不完全切断DNA断片の除去効率(未切断率の相対評価)を示す図である。
 本発明の方法は、下記(1)~(3)により行われる:
(1)溶液中においてゲノムDNAを制限酵素で切断して、(a)標的DNAからなる完全切断DNA断片、(b)標的DNAを含む不完全切断DNA断片、及び(c)標的DNAを含まないDNA断片を含有する混合液を得ること;
(2)(b)標的DNAを含む不完全切断DNA断片を前記混合液から除去して、(a)標的DNAからなる完全切断DNA断片、及び(c)標的DNAを含まないDNA断片を含有する溶液を得ること;並びに
(3)前記(2)で得られた溶液において標的DNAを解析すること。
(1)ゲノムDNAの切断
 本発明で用いられるゲノムDNAは、任意の生物学的サンプルから得られるものである。このような生物学的サンプルが由来する生物としては、例えば、哺乳動物(例、ヒト、サル、マウス、ラット、ウサギ、ウシ、ブタ、ウマ、ヤギ、ヒツジ)、鳥類(例、ニワトリ)等の動物、昆虫、微生物、植物、菌類、魚類、ウイルスが挙げられる。生物学的サンプルはまた、血液自体又は血液に由来するサンプルである血液関連サンプル(例、全血、血清、血漿)、唾液、尿、乳汁、組織又は細胞抽出液、あるいはこれらの混合物であってもよい。生物学的サンプルはさらに、疾患(例、癌、白血病)に罹患している哺乳動物、又は疾患に罹患している可能性がある哺乳動物に由来するものであってもよい。ゲノムDNAは、このような生物学的サンプルから、任意の方法(例、ゲノムDNA抽出法)により適宜入手することができる。
 溶液中においてゲノムDNAを制限酵素で切断することにより、以下のDNA断片を含有する混合液が得られる(例、図1を参照):
(a)標的DNAからなる完全切断DNA断片;
(b)標的DNAを含む不完全切断DNA断片;及び
(c)標的DNAを含まない種々のDNA断片。
 制限酵素によるゲノムDNAの切断は、制限酵素の種類に応じた適切な温度及び反応時間で行うことができる。本発明で用いられる制限酵素は、2本鎖DNAを切断する能力を有する酵素であり、2本鎖DNAの切断により平滑末端又は粘着末端のいずれを生じるものであってもよい。このような制限酵素としては、例えば、AatII、AccI、AccII、AccIII、AclI、AfaI、AflII、AluI、Aor13HI、Aor51HI、ApaI、ApaLI、AsuII、BalI、BamHI、BanII、BciT130I、BcnI、BglI、BglII、BlnI、BmeT110I、BmgT120I、Bpu1102I、Bsp1286I、Bsp1407I、BspT104I、BspT107I、BssHII、Bst1107I、BstPI、BstXI、Cfr10I、ClaI、CpoI、DdeI、DraI、DpnI、EaeI、Eam1105I、Eco52I、Eco81I、Eco065I、Eco0109I、EcoRI、EcoRII、EcoRV、EcoT14、EcoT22I、FbaI、FokI、HaeII、HaeIII、HapII、HhaI、Hin1I、HincII、HindIII、HinfI、HpaI、KpnI、MboI、MboII、MflI、MluI、MspI、MunI、NaeI、NcoI、NdeI、NheI、NotI、NruI、NsbI、PmaCI、PshAI、PshBI、Psp1406I、PstI、PvuI、PvuII、RspRSII、SacI、SacII、SalI、Sau3AI、ScaI、SfiI、SmaI、SmiI、SnaBI、SpeI、SphI、Sse8387I、SspI、StuI、TaqI、Tth111I、Van91I、VpaK11BI、XbaI、XhoI、及びXspIが挙げられる。標的DNAの測定に要する総時間の短縮のため、制限酵素によるゲノムDNAの切断反応時間は短縮されてもよい。本発明の方法は、制限酵素によるゲノムDNAの切断が不完全であっても、ゲノムDNA中の標的DNAを適切に解析できるためである。
(2)標的DNAを含む不完全切断DNA断片の除去
 標的DNAを含む不完全切断DNA断片の除去は、不完全切断DNA断片中の非標的DNAを利用して行うことができる。例えば、このような除去は、非標的DNAに特異的な核酸プローブを用いた不完全切断DNA断片の除去、又は標的DNA及び非標的DNAの総和の分子量に基づく分画による不完全切断DNA断片の除去により行うことができる。
 好ましくは、除去は、非標的DNAに特異的な核酸プローブを用いて行うことができる。非標的DNAに特異的な核酸プローブとは、ゲノムDNAにおいて標的DNAの5’又は3’末端側にある1以上(例えば1~3、好ましくは1または2、より好ましくは1)の制限酵素認識部位(未切断部位)を介して標的DNAに連結する非標的DNA(例、図1を参照)の一部又は全部に相補的な核酸プローブを意味する。
 非標的DNAに特異的な核酸プローブは、DNAプローブ又は異種核酸プローブであってもよい。
 異種核酸プローブとは、標的DNAの主鎖構造(糖部分及びリン酸部分から構成される構造)と異なる主鎖構造を、主鎖構造の一部又は全体として有する核酸プローブを意味する。異種核酸プローブとしては、例えば、RNAプローブ(例、2’位にヒドロキシル基を有する天然リボヌクレオチドから構成されるノーマルRNAプローブ、及び2’位のヒドロキシル基がメチル基等のアルキル基で修飾されているリボヌクレオチドから構成される修飾RNAプローブ)、ペプチド核酸(PNA)プローブ、ロック型核酸(LNA)プローブ又は架橋型核酸(BNA)プローブ、ホスホロチオエート(S化)核酸プローブ、並びにこのような2以上の核酸プローブが連結したキメラ型核酸プローブ、このような1以上の核酸プローブとDNAプローブが連結したキメラ型核酸プローブが挙げられる。
 低コストの観点から、非標的DNAに特異的な核酸プローブは、DNAプローブであってもよい。
 非標的DNAに特異的な核酸プローブを構成するヌクレオチド残基の個数(即ち、非標的DNAに特異的な核酸プローブの長さ)は、非標的DNAとハイブリダイズし得る程度に十分な長さである限り特に限定されないが、例えば12個以上、好ましくは15個以上、好ましくは18個以上、より好ましくは20個以上であってもよい。非標的DNAに特異的な核酸プローブを構成するヌクレオチドの個数はまた、例えば、100個以下、80個以下、60個以下又は50個以下であってもよい。非標的DNAに特異的な核酸プローブは、当該分野で公知のプローブ合成法により調製できる。
 非標的DNAに特異的な核酸プローブは、遊離の形態、又は固相に固定された形態で用いることができる。非標的DNAに特異的な核酸プローブは、固相への固定を可能にする物質又は基で標識されていてもよい。標識は、例えば、非標的DNAに特異的な核酸プローブの5’末端又は3’末端にて行うことができる。固相への固定を可能にする基又は物質としては、例えば、共有結合的な固相への結合を可能にする基又は物質、及び親和性物質が挙げられる。共有結合的な固相への結合を可能にする基又は物質としては、例えば、チオール基又はチオール基を有する物質(非標的DNAに特異的な核酸プローブに導入されたこのようなチオール基は、固相上のマレイミド基と結合できる)、アミノ基又はアミノ基を有する物質(非標的DNAに特異的な核酸プローブに導入されたこのようなアミノ基は、固相上の無水マレイン酸と結合できる)が挙げられる。親和性物質としては、例えば、ストレプトアビジン、ビオチン、ジゴキシゲニン、ジニトロフェノール、フルオレセイン、フルオレセインイソチオシアネート、及び二本鎖核酸の形成能を有する互いに相補的な一本鎖核酸の対(例、ポリA配列を有する一本鎖核酸とポリT配列を有する一本鎖核酸の対)が挙げられる。この場合、固相としては、非標的DNAに特異的な核酸プローブが有する親和性物質と親和性を有する別の親和性物質でコーティングされたものを用いることができる。非標的DNAに特異的な核酸プローブは、遊離の形態で用いられる場合、標的DNAを含む不完全切断DNA断片とのハイブリッド形成後に、固相に固定されてもよい。
 固相としては、例えば、粒子(例、磁性粒子);メンブレン(例、ニトロセルロース膜)、ガラス、プラスチック及び金属等の支持体;並びにプレート(例、マルチウェルプレート)、チューブ等の容器が挙げられる。
 より好ましくは、非標的DNAに特異的な核酸プローブは、以下である:
(i)5’隣接DNAに特異的な核酸プローブ;
(ii)3’隣接DNAに特異的な核酸プローブ;
(iii)5’隣接DNAに特異的な核酸プローブ、及び3’隣接DNAに特異的な核酸プローブの組み合わせ。
 5’隣接DNAとは、ゲノムDNAにおいて標的DNAの5’末端側にある制限酵素認識部位(未切断部位)を介して標的DNAに隣接する非標的DNA(制限酵素切断単位)を意味する(例、図1を参照)。したがって、5’隣接DNAに特異的な核酸プローブとは、このような5’隣接DNAの一部又は全部に相補的な核酸プローブを意味する。
 3’隣接DNAとは、ゲノムDNAにおいて標的DNAの3’末端側にある制限酵素認識部位(未切断部位)を介して標的DNAに隣接する非標的DNA(制限酵素切断単位)を意味する(例、図1を参照)。したがって、3’隣接DNAに特異的な核酸プローブとは、このような3’隣接DNAの一部又は全部に相補的な核酸プローブを意味する。
 このような5’隣接DNA及び/又は3’隣接DNAを用いることで、標的DNAを含む不完全切断DNA断片を効率良く除去することができる。
 5’隣接DNA及び3’隣接DNAは、DNAプローブ又は異種核酸プローブであるが、低コストの観点から、DNAプローブであってもよい。
 より詳細には、工程(2)は、以下により行われてもよい:
(2-1)非標的DNAに特異的な核酸プローブを混合液に合わせること;
(2-2)混合液をインキュベートして、上記核酸プローブ及び上記(b)のDNA断片を含むハイブリダイゼーション複合体を得ること;
(2-3)混合液から又は混合液中でハイブリダイゼーション複合体を分離して、上記(a)及び(c)のDNA断片を含む溶液を得ること。
 工程(2-1)では、適量の上記核酸プローブが混合液と合わせられる。例えば、上記核酸プローブが混合液に添加されてもよい。あるいは、上記核酸プローブが固定された固相に混合液が移されてもよい。上記核酸プローブは、標的DNAを含む不完全切断DNA断片を効率良く除去するため、ゲノムDNAにおけるその標的部位(1当量)に対して過剰量で用いられてもよい。
 工程(2-2)では、混合液のインキュベーションによりハイブリダイゼーション複合体が得られる。インキュベーションは、ハイブリダイゼーション複合体を形成し得る任意の条件下で行うことができる。このような条件(例、溶液の塩濃度、インキュベーション温度、インキュベーション時間)は周知である(例、国際公開第2010/091870号、国際公開第2006/121888号、国際公開第2015/025862号;国際公開第2015/025863号;国際公開第2015/025864号;国際公開第2015/108177号を参照)。
 工程(2-3)では、分離は、例えば、固相を利用して行うことができる。上記核酸プローブが固相として磁性粒子に固定されている場合、磁力操作することにより混合液中の磁性粒子を収集することができるので、磁性粒子を含まない混合液上清を回収することで、上記(b)のDNA断片の量が低減された、上記(a)及び(c)のDNA断片を含む目的の溶液を得ることができる。上記核酸プローブが固相として支持体又は容器に固定されている場合、混合液を支持体又は容器から移すことで、目的の溶液を得ることができる。上記核酸プローブは、固相に固定されていない場合であっても、固相への固定を可能にする物質又は基で標識されているときには、ハイブリダイゼーション複合体形成後に固相に固定することが可能であるので、上記と同様にして、目的の溶液を得ることができる。
(3)標的DNAの解析
 標的DNAの解析は、任意の方法により行うことができる(例、国際公開第2015/025862号;国際公開第2015/025863号;国際公開第2015/025864号;国際公開第2015/108177号;DNA Research 13,37-42(2006);Analytical Chemistry 77(2),504-510(2005);Analytical Chemistry 83,7595-7599(2011);Nucleic Acids Research 34(8),e61(2006);Scientific Reports 501(2),srep00501(2012))。例えば、標的DNAに特異的な核酸プローブを用いて、標的核酸を捕捉した後に、標的DNAが解析されてもよい。
 標的DNAに特異的な核酸プローブとは、ゲノムDNA中に見出される標的DNA(制限酵素による切断単位。図1を参照)の一部又は全部に相補的な核酸プローブを意味する。標的DNAに特異的な核酸プローブは、上述したようなDNAプローブ又は異種核酸プローブであるが、高特異性等の観点から、異種核酸プローブであってもよい。
 標的DNAに特異的な核酸プローブを構成するヌクレオチド残基の個数は、非標的DNAに特異的な核酸プローブについて述べたものと同様である。
 標的DNAに特異的な核酸プローブは、遊離の形態、又は固相に固定された形態で用いることができる。標的DNAに特異的な核酸プローブは、固相への固定を可能にする物質又は基で標識されていてもよい。標識、固相、固相への固定を可能にする基、固相への固定を可能にする物質の詳細は、非標的DNAに特異的な核酸プローブについて述べたものと同様である。
 本発明の方法では、標的DNA中の特定の領域、例えば、当該領域中の修飾核酸塩基が解析されてもよい。修飾核酸塩基とは、核酸塩基に対して修飾された構造を有する核酸塩基をいう。用語「核酸塩基」としては、例えば、アデニン(A)、グアニン(G)、シトシン(C)及びチミン(T)が挙げられる。核酸塩基は、好ましくはシトシン(C)である。修飾としては、例えば、核酸塩基への置換基の導入、核酸塩基が有する基(例、アミノ基、オキソ基、メチル基)の脱離、核酸塩基が有する基の置換基への交換が挙げられる。置換基としては、天然に存在する核酸塩基が保有し得るものである限り特に限定されないが、例えば、Administrative Instructions under the Patent Cooperation Treaty(2009年1月1日施行版),Annex C,Appendix 2,Table 2:List of Modified Nucleotidesに記載される修飾ヌクレオチド中の修飾核酸塩基が保有する置換基が挙げられる。本資料中に記載される修飾ヌクレオチドは、日本特許庁により公開されている「塩基配列又はアミノ酸配列を含む明細書等の作成のためのガイドライン(平成14年7月)又は(平成21年12月)」の附属書2,表2:修飾塩基表に記載される修飾ヌクレオチドと同一であり得る。したがって、修飾核酸塩基については、上記ガイドラインもまた参照できる。置換基は、好ましくは、メチル、ヒドロキシメチル、カルボキシルであり、より好ましくは、メチル、ヒドロキシメチルであり、さらにより好ましくはメチルである。置換等の修飾の位置は、特に限定されないが、ピリミジン環を有する核酸塩基(C又はT)の場合には、例えば、2位、4~6位であり、好ましくは5位であり、プリン環を有する核酸塩基(A又はG)の場合には、例えば、2位、6位、8位である。
 修飾核酸塩基は、天然に存在し得るものである限り特に限定されないが、例えば、Administrative Instructions under the Patent Cooperation Treaty(2009年1月1日施行版),Annex C,Appendix 2,Table 2:List of Modified Nucleotidesに記載される修飾ヌクレオチドが保有する修飾核酸塩基が挙げられる。本資料中に記載される修飾ヌクレオチドは、上記ガイドラインの附属書2,表2:修飾塩基表に記載される修飾ヌクレオチドと同一であり得る。したがって、修飾核酸塩基については、上記ガイドラインもまた参照できる。修飾核酸塩基は、好ましくは、メチルシトシン(例、5-メチルシトシン)、ヒドロキシメチルシトシン(例、5-ヒドロキシメチルシトシン)、カルボキシルシトシン(例、5-カルボキシルシトシン)であり、より好ましくは、メチルシトシン及びヒドロキシメチルシトシンであり、さらにより好ましくはメチルシトシンである。修飾核酸塩基は、核酸の機能の変化をもたらすこと(例、所定の遺伝子の転写調節能の変化)が知られている。
 上述したような修飾核酸塩基の解析は、当該分野で公知である任意の方法により行うことができる。例えば、修飾核酸塩基の解析は、イムノアッセイ(例、国際公開第2015/025862号;国際公開第2015/025863号;国際公開第2015/025864号;国際公開第2015/108177号;DNA Research 13,37-42(2006))、質量分析(例、Analytical Chemistry 77(2),504-510(2005))、電気化学分析(例、Analytical Chemistry 83,7595-7599(2011))、高速液体クロマトグラフィー分析(例、Nucleic Acids Research 34(8),e61(2006))、またはナノポア分析(例、Scientific Reports 501(2),srep00501(2012))により行うことができる。例えば、標的DNAを固相に捕捉した後、解析が行われてもよい。例えば、質量分析、電気化学分析、または高速液体クロマトグラフィー分析により修飾核酸塩基が解析される場合、固相に捕捉された標的DNAをエンドヌクレアーゼまたは/およびエキソヌクレアーゼにより分解して、DNA断片がモノマー塩基(ヌクレオチド)に分解された溶液を回収した後、この溶液をこのような技術に付すことで、修飾核酸塩基を解析できる。また、ナノポア分析により修飾核酸塩基が解析される場合、固相に捕捉された標的DNAをアルカリ性水溶液による処理、または加熱処理により固相上から解離して、DNA断片を含む溶液を得た後、この溶液をナノポア分析に付すことで、修飾核酸塩基を解析できる。本発明では、用いたゲノムDNA量又は標的DNA量を考慮して、修飾核酸塩基による標的DNAの修飾頻度を評価してもよい。
 以下、実施例を参照して本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
参考例1:制限酵素によるゲノムDNA切断反応後の未切断率の評価(1)
(1-1)ゲノムDNAの切断
 1.8μgのヒトゲノムDNA(Clontech社製)と3unitsの制限酵素XspI(タカラバイオ社製)を、反応Buffer(20mM Tris-HCl(pH=8.5)、10mM MgCl、1mM DTT、100mM KCl)20μL中に溶解させ、37℃で0分、又は20分、40分、60分反応させることで、制限酵素XspIにより切断されたゲノムDNAを得た。
(1-2)ゲノムDNAの未切断率の評価
 上記で得られた制限酵素切断ゲノムDNAを、制限酵素XspIの切断部位を挟む領域に設計されたPrimerセットを使用したリアルタイムPCR増幅により、制限酵素によって切断された割合を測定した。
 リアルタイムPCR増幅を以下に示す。
Premix PCR試薬(KOD SYBR qPCR Mix:TOYOBO社製):12.5μL
Forward Primer(10μM):0.5μL
Reverse Primer(10μM):0.5μL
50x ROX reference dye:0.05μL
25倍希釈した制限酵素切断ゲノムDNA:2μL
Total:25μL
Forward Primer配列は5’-TCT AGA CCC CGC CCC ACG-3’(配列番号1)、Reverse Primer配列は5’-CTG CAG GAC CAC TCG AGG CTG-3’(配列番号2)であり、北海道システムサイエンス社により人工合成されたものを使用した。
 上記組成の反応溶液を、以下のプロトコールに従って、増幅反応を行った。
(1)98℃、2分
(2)98℃、10秒
(3)68℃、1分
 反応ステップ(1)を行ってから、反応ステップ(2)~(3)を50サイクル繰り返した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 その結果、ヒトゲノムDNAを制限酵素XspIでの切断処理をしても、反応時間60分では完全に切断できないことが確認できた(表1、図2)。
参考例2:制限酵素によるゲノムDNA切断反応後の未切断率の評価(2)
(2-1)ゲノムDNAの切断
 1.8μgのヒトゲノムDNA(Clontech社製)と3unitsの制限酵素XspI(タカラバイオ社製)を、反応Buffer(20mM Tris-HCl(pH=8.5)、10mM MgCl、1mM DTT、100mM KCl)20μL中に溶解させ、37℃で20分反応させることで、制限酵素XspIにより切断されたゲノムDNAを得た。
(2-2)標的DNAに特異的な核酸プローブにより捕捉されたDNAの未切断率の評価
 標的DNAを捕捉するためのプローブ核酸(標的DNAに特異的な核酸プローブ)のヌクレオチド配列は、5’-UGC AGG ACC ACU CGA GGC UGC CAC-3’(配列番号3;核酸の主鎖は2’-O-メチル化RNA、5’末端はビオチン標識)であり、北海道システムサイエンス社により人工合成されたものを使用した。
 上記で得た制限酵素XspIにより切断されたゲノムDNAの10μLを、標的DNAに特異的な核酸プローブ(1pmol)を含む緩衝液(100mM Tris-Cl、1.5Mイミダゾール、50mMEDTA・2Na)90μLに溶解させた。95℃で5分間反応させた後、37℃で1時間反応させることで、ゲノムDNA内の標的DNAと標的DNAに特異的な核酸プローブのハイブリッドを形成させた。ハイブリダイゼーション反応後の溶液に、375μg/mLのストレプトアビジンでコートされた磁性粒子(JSR社製Magnosphere MS300/Streptavidin)を50μL加え、37℃で30分反応させることで、磁性粒子上に核酸のハイブリッドを固定化した。この磁性粒子を、250μLのTBS-Tで2回洗浄し、20μLの蒸留水を加えて懸濁させた後、制限酵素XspIの切断部位を挟む領域に設計されたPrimerセット及び切断部位を挟まない領域に設計されたPrimerセットを使用したリアルタイムPCR増幅により、磁性粒子に捕捉されたDNA量及び制限酵素XspIにより未切断のDNA量を測定した。
 リアルタイムPCR増幅を以下に示す。
Premix PCR試薬(KOD SYBR qPCR Mix:TOYOBO社製):12.5μL
Forward Primer(10μM):0.5μL
Reverse Primer(10μM):0.5μL
50x ROX reference dye:0.05μL
磁性粒子に捕捉したDNAサンプル:2μL
Total:25μL
 制限酵素XspIの切断部位を挟む領域に設計されたPrimerセットは、Forward Primer配列は5’-TCT AGA CCC CGC CCC ACG-3’(配列番号1)、Reverse Primer配列は5’-CTG CAG GAC CAC TCG AGG CTG-3’(配列番号2)であり、北海道システムサイエンス社により人工合成されたものを使用した。
 切断部位を挟まない領域に設計されたPrimerセットは、Forward Primer配列は5’-TAG AAC GCT TTG CGT CCC GAC-3’(配列番号4)、Reverse Primer配列は5’-GAG AGC TCC GCA CTC TTC C-3’(配列番号5)であり、北海道システムサイエンス社により人工合成されたものを使用した。
 上記組成の反応溶液を以下のプロトコールに従って、増幅反応を行った。
(1)98℃、2分
(2)98℃、10秒
(3)68℃、1分
 反応ステップ(1)を行ってから、反応ステップ(2)~(3)を50サイクル繰り返した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 その結果、制限酵素XspIにより切断されていないDNAが、磁性粒子に捕捉された標的DNAのうち3.9%を占めることが確認された(表2、図3)。
参考例3:非標的DNAに特異的な核酸プローブを用いた、標的DNAを含む不完全切断DNA断片の除去効率の評価
(3-1)ゲノムDNAの切断
 1.8μgのヒトゲノムDNA(Clontech社製)と3unitsの制限酵素XspI(タカラバイオ社製)を、反応Buffer(20mM Tris-HCl(pH=8.5)、10mM MgCl、1mM DTT、100mM KCl)20μL中に溶解させ、37℃で20分反応させることで、制限酵素XspIにより処理したゲノムDNAを得た。
(3-2)標的DNAを含む不完全切断DNA断片の除去
 標的DNAを捕捉するためのプローブ核酸(標的DNAに特異的な核酸プローブ)のヌクレオチド配列は5’-UGC AGG ACC ACU CGA GGC UGC CAC-3’(配列番号3;核酸の主鎖は2’-O-メチル化RNA、5’末端はビオチン標識)であり、北海道システムサイエンス社により人工合成されたものを使用した。制限酵素により未切断の標的DNAを捕捉するためのプローブ核酸(ポリアデニンを有する、非標的DNAに特異的な核酸プローブ)のヌクレオチド配列は5’-GTG GGG CGG GGT CTA GAG AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA-3’(配列番号6)であり、北海道システムサイエンス社により人工合成されたものを使用した。
 上記で得た制限酵素XspIにより処理したゲノムDNAの10μLを、標的DNAに特異的な核酸プローブ(1pmol)、非標的DNAに特異的な核酸プローブ(1pmol)、37.5μgのポリチミンでコートされた磁性粒子(インビトロジェン社製Dynabeads Oligo(dT)25;粒子1)を含む緩衝液(100mM Tris-Cl、1.5M イミダゾール、50mM EDTA・2Na)90μLに溶解させた。
 また、粒子1の代わりに、37.5μgのポリチミンでコートされた磁性粒子(サーモフィッシャー社製Sera-Mag Magnetic Oligo(dT) Microparticles;粒子2)を使用した以外は、上記と同じ組成の溶液を調製した。
 さらに、非標的DNAに特異的な核酸プローブ、及びポリチミンでコートされた磁性粒子を添加してない溶液を調製した。
 これらの溶液を、95℃で5分間反応させた後、37℃で1時間反応させることで、ゲノムDNA内の標的DNAと標的DNAに特異的な核酸プローブのハイブリッドを形成させた。同時に標的DNAを含む不完全切断DNA断片と、非標的DNAに特異的な核酸プローブ、ポリチミンでコートされた磁性粒子の3者のハイブリットも形成させた。ハイブリダイゼーション反応後の溶液を磁石上で3分間集磁操作を行って、標的DNAを含む不完全切断DNA断片を溶液中で沈殿させ、分離した。
(3-3)標的DNAを含む不完全切断DNA断片の除去効率の評価
 上記で得られた溶液の上清(標的DNAを含む不完全切断DNA断片が除去)に375μg/mLのストレプトアビジンでコートされた磁性粒子(JSR社製Magnosphere MS300/Streptavidin)を50μL加え、37℃で30分反応させることで、磁性粒子上に核酸のハイブリッドを固定化した。この磁性粒子を、250μLのTBS-Tで2回洗浄し、20μLの蒸留水を加えて懸濁させた後、制限酵素XspIの切断部位を挟む領域に設計されたPrimerセット及び切断部位を挟まない領域に設計されたPrimerセットを使用したリアルタイムPCR増幅により、磁性粒子に捕捉されたDNA量及び制限酵素XspIにより未切断のDNA量を測定した。
 リアルタイムPCR増幅を以下に示す。
Premix PCR試薬(KOD SYBR qPCR Mix:TOYOBO社製):12.5μL
Forward Primer(10μM):0.5μL
Reverse Primer(10μM):0.5μL
50x ROX reference dye:0.05μL
磁性粒子に捕捉したDNAサンプル:2μL
Total:25μL
 制限酵素XspIの切断部位を挟む領域に設計されたPrimerセットは、Forward Primer配列は5’-TCT AGA CCC CGC CCC ACG-3’(配列番号1)、Reverse Primer配列は5’-CTG CAG GAC CAC TCG AGG CTG-3’(配列番号2)であり、北海道システムサイエンス社により人工合成されたものを使用した。
 切断部位を挟まない領域に設計されたPrimerセットは、Forward Primer配列は5’-TAG AAC GCT TTG CGT CCC GAC-3’(配列番号4)、Reverse Primer配列は5’-GAG AGC TCC GCA CTC TTC C-3’(配列番号5)であり、北海道システムサイエンス社により人工合成されたものを使用した。
 上記組成の反応溶液を以下のプロトコールに従って、増幅反応を行った。
(1)98℃、2分
(2)98℃、10秒
(3)68℃、1分
 反応ステップ(1)を行ってから、反応ステップ(2)~(3)を50サイクル繰り返した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 その結果、非標的DNAに特異的な核酸プローブを用いることにより、標的DNAを含む不完全切断DNA断片が効率良く除去できることが明らかとなった(表3、図4)。よって、本方法論により、標的DNAからなる完全切断DNA断片を特異的に捕捉することができると考えられる。
実施例1:イムノアッセイによる標的DNA中のメチルシトシンの解析
(1)ゲノムDNAの切断
 溶液中においてゲノムDNAを制限酵素で切断して、以下のDNA断片を含有する混合液を得る(例、図1を参照)。
(a)標的DNAからなる完全切断DNA断片
(b)標的DNAを含む不完全切断DNA断片
(c)標的DNAを含まない種々のDNA断片
(2)上記(b)のDNA断片の除去
(2-1)非標的DNAに特異的な核酸プローブとして5’隣接DNAプローブ及び/又は3’隣接DNAプローブ(磁性粒子に固定)、標的DNAに特異的な核酸プローブとして2’-O-メチル化RNAプローブ(5’末端はビオチン標識)を混合液に添加する。
(2-2)混合液をインキュベートして、ハイブリダイゼーション複合体を形成する。
(2-3)混合液中の磁性粒子を集磁した後、混合液の上清(磁性粒子を含まない)を回収する。本上清を、上記(b)のDNA断片の量が低減された、上記(a)及び(c)のDNA断片を含む溶液として用いる。本溶液中では、上記(a)のDNA断片は、2’-O-メチル化RNAプローブとハイブリダイゼーション複合体を形成している。
(3)標的DNAの解析
(3-1)上記(2)で得られた溶液を、ビオチンと親和性を有するストレプトアビジンが固定されたマルチウェルプレートに移す。そうすると、上記(a)のDNA断片及び2’-O-メチル化RNAプローブを含むハイブリダイゼーション複合体がマルチウェルプレートに固定されるので、標的DNAを固相に捕捉することができる。
(3-2)固相に捕捉された標的DNA中のメチルシトシンを、イムノアッセイ(例、国際公開第2015/025862号;国際公開第2015/025863号;国際公開第2015/025864号;国際公開第2015/108177号;DNA Research 13,37-42(2006))により解析する。
実施例2:質量分析、電気化学分析、または高速液体クロマトグラフィー分析による標的DNA中のメチルシトシンの解析
(1)ゲノムDNAの切断
 実施例1(1)と同様の方法により行う。
(2)上記(b)のDNA断片の除去
 実施例1(2)と同様の方法により行う。
(3)標的DNAの解析
(3-1)実施例1(3-1)と同様の方法により行う。
(3-2)固相に捕捉された標的DNAをエンドヌクレアーゼまたは/およびエキソヌクレアーゼにより分解する。そうすると、上記(a)のDNA断片がモノマー塩基(ヌクレオチド)に分解された溶液を回収することができる。
(3-3)モノマー塩基に分解された標的DNA中に含まれるメチルシトシンを、質量分析(例、Analytical Chemistry 77(2),504-510(2005))、電気化学分析(例、Analytical Chemistry 83,7595-7599(2011))、または高速液体クロマトグラフィー分析(例、Nucleic Acids Research 34(8),e61(2006))により解析する。
実施例3:ナノポア分析による標的DNA中のメチルシトシンの解析
(1)ゲノムDNAの切断
 実施例1(1)と同様の方法により行う。
(2)上記(b)のDNA断片の除去
 実施例1(2)と同様の方法により行う。
(3)標的DNAの解析
(3-1)実施例1(3-1)と同様の方法により行う。
(3-2)固相に捕捉された標的DNAをアルカリ性水溶液(例、50mM NaOH水溶液)による処理、または加熱処理(例、95℃、2分間)により固相上から解離することで、上記(a)のDNA断片を含む溶液を得ることができる。
(3-3)固相上から解離された標的DNA中に含まれるメチルシトシンを、ナノポア分析(例、Scientific Reports 501(2),srep00501(2012))により解析する。
 本発明の方法は、標的DNAの測定に有用である。

Claims (7)

  1.  以下を含む、標的DNAの測定方法:
    (1)溶液中においてゲノムDNAを制限酵素で切断して、(a)標的DNAからなる完全切断DNA断片、(b)標的DNAを含む不完全切断DNA断片、及び(c)標的DNAを含まないDNA断片を含有する混合液を得ること;
    (2)(b)標的DNAを含む不完全切断DNA断片を前記混合液から除去して、(a)標的DNAからなる完全切断DNA断片、及び(c)標的DNAを含まないDNA断片を含有する溶液を得ること;並びに
    (3)前記(2)で得られた溶液において標的DNAを解析すること。
  2.  前記除去が非標的DNAに特異的な核酸プローブを用いて行われる、請求項1記載の方法。
  3.  非標的DNAに特異的な核酸プローブが以下の核酸プローブである、請求項2記載の方法:
    (1)5’隣接DNAに特異的な核酸プローブ;
    (2)3’隣接DNAに特異的な核酸プローブ;又は
    (3)5’隣接DNAに特異的な核酸プローブ、及び3’隣接DNAに特異的な核酸プローブの組み合わせ。
  4.  前記解析が標的DNAに特異的な核酸プローブを用いて行われる、請求項1~3のいずれか一項記載の方法。
  5.  標的DNA中の修飾核酸塩基が解析される、請求項1~4のいずれか一項記載の方法。
  6.  修飾核酸塩基がメチルシトシンである、請求項5記載の方法。
  7.  前記解析が、イムノアッセイ、質量分析、電気化学分析、高速液体クロマトグラフィー分析、又はナノポア分析により行われる、請求項1~6のいずれか一項記載の方法。
PCT/JP2017/003707 2016-02-03 2017-02-02 標的dnaの測定方法 WO2017135348A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17747499.6A EP3412777A4 (en) 2016-02-03 2017-02-02 TARGET DNA MEASURING METHOD
JP2017565617A JP6933373B2 (ja) 2016-02-03 2017-02-02 標的dnaの測定方法
US16/074,863 US20190040452A1 (en) 2016-02-03 2017-02-02 Method for measuring target dna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016019137 2016-02-03
JP2016-019137 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017135348A1 true WO2017135348A1 (ja) 2017-08-10

Family

ID=59499882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003707 WO2017135348A1 (ja) 2016-02-03 2017-02-02 標的dnaの測定方法

Country Status (4)

Country Link
US (1) US20190040452A1 (ja)
EP (1) EP3412777A4 (ja)
JP (1) JP6933373B2 (ja)
WO (1) WO2017135348A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055028A (ja) * 2004-08-18 2006-03-02 Canon Inc 核酸調製方法、並びに、それを用いた核酸増幅方法、核酸標識方法及び核酸検出方法
JP2012517231A (ja) * 2009-02-13 2012-08-02 エフ.ホフマン−ラ ロシュ アーゲー 標的ゲノム配列の富化のための方法およびシステム
WO2014046198A1 (ja) * 2012-09-19 2014-03-27 シスメックス株式会社 肝細胞癌に関する情報の取得方法、ならびに肝細胞癌に関する情報を取得するためのマーカーおよびキット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108864A1 (en) * 2011-02-08 2012-08-16 Illumina, Inc. Selective enrichment of nucleic acids
EP2976435B1 (en) * 2013-03-19 2017-10-25 Directed Genomics, LLC Enrichment of target sequences

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055028A (ja) * 2004-08-18 2006-03-02 Canon Inc 核酸調製方法、並びに、それを用いた核酸増幅方法、核酸標識方法及び核酸検出方法
JP2012517231A (ja) * 2009-02-13 2012-08-02 エフ.ホフマン−ラ ロシュ アーゲー 標的ゲノム配列の富化のための方法およびシステム
WO2014046198A1 (ja) * 2012-09-19 2014-03-27 シスメックス株式会社 肝細胞癌に関する情報の取得方法、ならびに肝細胞癌に関する情報を取得するためのマーカーおよびキット

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CLARKE, J. ET AL.: "Continuous base identification for single-molecule nanopore DNA sequencing", NAT. NANOTECHNOL., vol. 4, no. 4, 2009, pages 265 - 270, XP055028415 *
PROLL, J. ET AL.: "Ultra-sensitive immunodetection of 5'methyl cytosine for DNA methylation analysis on oligonucleotide microarrays", DNA RES., vol. 13, no. 1, 2006, pages 37 - 42, XP055405765, ISSN: 1340-2838 *
See also references of EP3412777A4 *

Also Published As

Publication number Publication date
EP3412777A1 (en) 2018-12-12
EP3412777A4 (en) 2019-08-07
US20190040452A1 (en) 2019-02-07
JP6933373B2 (ja) 2021-09-08
JPWO2017135348A1 (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
AU2015294354B2 (en) Polynucleotide enrichment using CRISPR-Cas systems
US8034568B2 (en) Isothermal nucleic acid amplification methods and compositions
CN115927538A (zh) 使用含接头的经固定化的转座体进行的标签片段化
JP7058502B2 (ja) ゲノム適用および治療適用のための、核酸分子のクローン複製および増幅のためのシステムおよび方法
US20070009913A1 (en) Method of treatment of RNA sample
KR20130113447A (ko) 고정된 프라이머들을 이용하여 표적 dna의 직접적인 캡쳐, 증폭 및 서열화
JP6896620B2 (ja) ロックされた核酸を有する配列変換およびシグナル増幅dnaならびにそれを用いた検出方法
EP2250283A2 (en) Isothermal nucleic acid amplification methods and compositions
US11401543B2 (en) Methods and compositions for improving removal of ribosomal RNA from biological samples
KR20210114918A (ko) 복합체 표면-결합 트랜스포좀 복합체
CA3168144A1 (en) Methods of targeted sequencing
JP2010514452A (ja) ヘテロ二重鎖による濃縮
WO2012037531A1 (en) Capture probes immobilizable via l-nucleotide tail
EP3388532B1 (en) Integrated capture and amplification of target nucleic acid for sequencing
JP6089012B2 (ja) Dnaメチル化分析方法
JP2023536085A (ja) スルホン化dnaの精製
WO2017135348A1 (ja) 標的dnaの測定方法
CN113957125B (zh) 适用于重亚硫酸盐测序的Cot DNA、其制备方法及其应用
US6017739A (en) Method and nucleic acid-concentratiing assay kit for concentrating mutant nucleic acid
WO2017217530A1 (ja) 修飾核酸塩基を含む標的核酸の測定方法
CA2393874C (en) Method for selectively isolating a nucleic acid
CN117305466B (zh) 一种能够识别单碱基甲基化状态的检测方法
JP2024506277A (ja) 脱塩基核酸を有する配列変換及びシグナル増幅dna、並びにそれを使用する検出方法
CN113454235A (zh) 经改进的核酸靶标富集和相关方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017565617

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747499

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747499

Country of ref document: EP

Effective date: 20180903