WO2017135227A1 - Organic el display device - Google Patents

Organic el display device Download PDF

Info

Publication number
WO2017135227A1
WO2017135227A1 PCT/JP2017/003335 JP2017003335W WO2017135227A1 WO 2017135227 A1 WO2017135227 A1 WO 2017135227A1 JP 2017003335 W JP2017003335 W JP 2017003335W WO 2017135227 A1 WO2017135227 A1 WO 2017135227A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
display device
thickness
hard coat
Prior art date
Application number
PCT/JP2017/003335
Other languages
French (fr)
Japanese (ja)
Inventor
通 園田
剛 平瀬
亨 妹尾
越智 貴志
石田 守
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017135227A1 publication Critical patent/WO2017135227A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to an organic EL display device.
  • a self-luminous organic EL display device using an organic EL (electroluminescence) element has attracted attention as a display device that replaces a liquid crystal display device.
  • organic EL display device there has been proposed an organic EL display device that can be bent repeatedly by adopting a structure in which an organic EL element and various films are laminated on a flexible resin substrate.
  • a hard coat layer is provided so that permanent plastic deformation (scratches) does not easily occur on the display screen even when a pencil or the like is pressed on the display screen.
  • a structure provided on the outermost surface has been proposed.
  • a hard coat layer having a pencil hardness of 3H to 5H is formed on at least one surface of a plastic substrate film having a pencil hardness of HB to 2H, and the entire film has a pencil hardness of 4H to 8H.
  • a film is disclosed.
  • the present invention has been made in view of such a point, and an object thereof is to suppress plastic deformation of the hard coat layer in the organic EL display device provided with the hard coat layer on the surface.
  • an organic EL display device includes a base resin substrate layer, an organic EL element layer provided on the base resin substrate layer, and a bottom provided on the organic EL element layer.
  • An organic EL display device comprising a base layer and a hard coat layer provided on the base layer, wherein the base resin substrate layer has a residual strain ratio ⁇ 1 , a thickness d 1 ( ⁇ m), and a Young's modulus E 1 (Pa) and a stress dispersion coefficient ⁇ 1 , and the organic EL element layer has a residual strain ratio ⁇ 2 , a thickness d 2 ( ⁇ m), a Young's modulus E 2 (Pa), and a stress dispersion coefficient ⁇ 2 .
  • the underlayer has a residual strain ratio ⁇ 3 , a thickness d 3 ( ⁇ m), a Young's modulus E 3 (Pa), and a stress dispersion coefficient ⁇ 3
  • the hard coat layer has a residual strain ratio ⁇ 4 , Having a thickness d 4 ( ⁇ m), a Young's modulus E 4 (Pa) and a stress dispersion coefficient ⁇ 4 , Assuming that the pressure applied to the surface of the hard coat layer opposite to the base layer is ⁇ (Pa), ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 ) ⁇ 0.4 ⁇ m is satisfied.
  • the total plastic deformation amount of each layer constituting the organic EL display device is 0.4 ⁇ m or less, in the organic EL display device provided with the hard coat layer on the surface, the plastic deformation of the hard coat layer is performed. Can be suppressed.
  • FIG. 1 is a plan view showing a pixel structure of an organic EL display device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the organic EL display device taken along line II-II in FIG. 1 is an equivalent circuit diagram of an organic EL element layer constituting an organic EL display device according to a first embodiment of the present invention.
  • It is sectional drawing of the organic electroluminescent layer which comprises the organic electroluminescent display apparatus which concerns on the 1st Embodiment of this invention.
  • the organic electroluminescence display which concerns on the 1st Embodiment of this invention, it is a schematic diagram for demonstrating the distance from the surface of the hard-coat layer at the time of calculating
  • Example 5 is a table showing the contents of Example 1 specifically performed in the organic EL display device according to the first embodiment of the present invention. It is sectional drawing of the modification of the organic electroluminescence display which concerns on the 1st Embodiment of this invention.
  • 6 is a table showing the contents of Example 2 specifically performed in the organic EL display device of the modification according to the first embodiment of the present invention. It is sectional drawing of the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. It is a table
  • FIG. 1 is a plan view showing a pixel structure of the organic EL display device 100aa of the present embodiment.
  • FIG. 2 is a cross-sectional view of the organic EL display device 100aa along the line II-II in FIG.
  • FIG. 3 is an equivalent circuit diagram of the organic EL element layer 20 constituting the organic EL display device 100aa.
  • FIG. 4 is a cross-sectional view of the organic EL layer 17 constituting the organic EL display device 100aa.
  • FIG. 5 is a schematic diagram for explaining the distance from the surface of the hard coat layer 29 when the stress dispersion coefficient ⁇ is obtained in the organic EL display device 100aa.
  • FIG. 6 is a table showing the contents of Example 1 specifically performed in the organic EL display device 100aa.
  • FIG. 7 is a cross-sectional view of an organic EL display device 100ab which is a modification of the organic EL display device 100aa.
  • FIG. 8 is a table showing the contents of Example 2 specifically performed in the organic EL display device 100ab.
  • the organic EL display device 100aa includes, for example, a base resin substrate layer 10 made of polyimide resin, a stress adjustment layer 8 provided on the lower surface of the base resin substrate layer 10 in the figure, a base An organic EL element layer 20 provided on the upper surface of the resin substrate layer 10 in the figure, a base layer 28 provided on the organic EL element layer 20, and a hard coat layer 29 provided on the base layer 28.
  • a base resin substrate layer 10 made of polyimide resin for example, a base resin substrate layer 10 made of polyimide resin, a stress adjustment layer 8 provided on the lower surface of the base resin substrate layer 10 in the figure, a base An organic EL element layer 20 provided on the upper surface of the resin substrate layer 10 in the figure, a base layer 28 provided on the organic EL element layer 20, and a hard coat layer 29 provided on the base layer 28.
  • a plurality of sub-pixels P are arranged in a matrix.
  • the display area of the organic EL display device 100aa as shown in FIG.
  • the sub-pixel P having a red light emitting area Lr for performing red gradation display, and the green light emitting area for performing green gradation display are provided adjacent to each other.
  • a sub pixel P having Lg and a sub pixel P having a blue light emitting region Lb for performing blue gradation display are provided adjacent to each other. Note that, in the display area of the organic EL display device 100aa, one pixel is configured by three adjacent sub-pixels P each having a red light emitting area Lr, a green light emitting area Lg, and a blue light emitting area Lb.
  • the stress adjustment layer 8 is configured to control the position of the neutral surface of the bending stress in the organic EL display device 100aa.
  • the stress adjustment layer 8 is made of, for example, a plastic film such as polyethylene terephthalate, polyethylene naphthalate, (meth) acrylate, or triacetyl cellulose.
  • a photocurable adhesive sheet for example, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, a cyanoacrylate instantaneous adhesive, and the like.
  • a back side adhesive layer 9 is provided.
  • the organic EL element layer 20 includes a plurality of gate lines 11 provided on the base resin substrate layer 10 so as to extend parallel to each other in the horizontal direction in the drawing, and in the vertical direction in the drawing.
  • a plurality of source lines 12a provided so as to extend in parallel to each other, and a plurality of power supply lines 12b provided adjacent to each source line 12a in the vertical direction in the drawing so as to extend in parallel with each other.
  • a moisture-proof layer made of a single layer film or a laminated film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film is provided between the base resin substrate layer 10 and the gate layer such as each gate line 11. It has been.
  • the organic EL element layer 20 includes a plurality of first TFTs 13 a provided for each sub-pixel P, a plurality of second TFTs 13 b provided for each sub-pixel P, and each sub-pixel P. And a plurality of capacitors 13c provided for each pixel P.
  • the first TFT 13a is connected to the corresponding gate line 11 and source line 12a.
  • the second TFT 13b is connected to the corresponding first TFT 13a and the power supply line 12b.
  • the first TFT 13a and the second TFT 13b are, for example, a gate electrode provided on the base resin substrate layer 10 through the moisture-proof layer, a gate insulating film provided to cover the gate electrode, and a gate insulating film.
  • a semiconductor layer is provided so as to overlap with the gate electrode, and a source electrode and a drain electrode provided on the semiconductor layer so as to face each other.
  • the capacitor 13c is connected to the corresponding first TFT 13a and the power supply line 12b.
  • the capacitor 13c includes, for example, one electrode formed in the same layer with the same material as the gate line 11, the other electrode formed in the same layer with the same material as the source line 12a, and a pair of these electrodes. And a gate insulating film provided therebetween.
  • the bottom gate type first TFT 13a and the second TFT 13b are illustrated, but the first TFT 13a and the second TFT 13b may be top gate type TFTs.
  • the organic EL element layer 20 is an interlayer insulating film provided so as to substantially cover each first TFT 13a (see FIG. 3), each second TFT 13b and each capacitor 13c (see FIG. 3). 14 and a plurality of first electrodes 15 provided as an anode for each sub-pixel P on the interlayer insulating film 14 and connected to the corresponding second TFT 13b.
  • the interlayer insulating film 14 is provided so as to cover a portion other than a part of the drain electrode of each second TFT 13b.
  • the interlayer insulating film 14 is made of, for example, a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin, or the like.
  • the plurality of first electrodes 15 are provided in a matrix on the interlayer insulating film 14 so as to correspond to the plurality of subpixels P.
  • the first electrode 15 is connected to the drain electrode of the second TFT 13b through a contact hole formed in the interlayer insulating film 14, as shown in FIG.
  • the first electrode 15 has a function of injecting holes into the organic EL layer 17 described later.
  • the first electrode 15 is more preferably formed of a material having a high work function in order to improve the efficiency of hole injection into the organic EL layer 17.
  • Examples of the material constituting the first electrode 15 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au), Calcium (Ca), Titanium (Ti), Yttrium (Y), Sodium (Na), Ruthenium (Ru), Manganese (Mn), Indium (In), Magnesium (Mg), Lithium (Li), Ytterbium (Yb), etc.
  • the metal material is mentioned.
  • the material constituting the first electrode 15 is, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidation.
  • the material constituting the first electrode 15 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. There may be.
  • the first electrode 15 may be formed by laminating a plurality of layers made of the above materials, such as ITO / Ag, IZO / Ag, and IZO / Al. Examples of materials having a high work function among conductive oxides include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the organic EL element layer 20 includes an edge cover 16 provided in a lattice shape so as to cover the edge of each first electrode 15, and the first electrode 15 exposed from the edge cover 16. And an organic EL layer 17 provided so as to cover the surface.
  • a material constituting the edge cover 16 for example, silicon oxide (SiO 2 ), silicon nitride such as trisilicon tetranitride (Si 3 N 4 ) (SiNx (x is a positive number)), silicon oxynite
  • examples thereof include inorganic films such as ride (SiNO), or organic films such as (photosensitive) polyimide resin, (photosensitive) acrylic resin, (photosensitive) polysiloxane resin, and novolak resin.
  • the organic EL layer 17 includes a hole injection layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4, and an electron injection layer 5 that are sequentially provided on the first electrode 15. It has.
  • the hole injection layer 1 is also called an anode buffer layer, and has a function of improving the efficiency of hole injection from the first electrode 15 to the organic EL layer 17 by bringing the energy levels of the first electrode 15 and the organic EL layer 17 closer to each other.
  • a material constituting the hole injection layer for example, a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a phenylenediamine derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, Examples include hydrazone derivatives and stilbene derivatives.
  • the hole transport layer 2 has a function of improving the hole transport efficiency from the first electrode 15 to the organic EL layer 17.
  • examples of the material constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, oxadiazole.
  • Derivatives imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, Examples include hydrogenated amorphous silicon carbide, zinc sulfide, and zinc selenide.
  • the light emitting layer 3 is injected with holes and electrons from the first electrode 15 and the second electrode 18 when a voltage is applied by the first electrode 15 and the second electrode 18 described later, and the holes and electrons are regenerated. This is the area to be joined.
  • the light emitting layer 3 is formed of a material having high light emission efficiency. Examples of the material constituting the light emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complexes], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, and coumarin derivatives.
  • the electron transport layer 4 has a function of efficiently moving electrons to the light emitting layer 3.
  • examples of the material constituting the electron transport layer 4 include organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , Silole derivatives, metal oxinoid compounds and the like.
  • the electron injection layer 5 has a function of bringing the energy levels of the second electrode 18 and the organic EL layer 17 closer to each other, and improving the efficiency with which electrons are injected from the second electrode 18 to the organic EL layer 17.
  • the drive voltage of the organic EL element layer 20 can be lowered.
  • the electron injection layer 5 is also called a cathode buffer layer.
  • a material constituting the electron injection layer 5 for example, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), barium fluoride.
  • Inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO), and the like can be given.
  • the organic EL element layer 20 is provided so as to cover the second electrode 18 provided as a cathode so as to cover the organic EL layer 17 and the edge cover 16, and the second electrode 18. And a sealing film 19.
  • the second electrode 18 has a function of injecting electrons into the organic EL layer 17.
  • the second electrode 18 is more preferably composed of a material having a small work function in order to improve the efficiency of electron injection into the organic EL layer 17.
  • Examples of the material constituting the second electrode 18 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au), Calcium (Ca), Titanium (Ti), Yttrium (Y), Sodium (Na), Ruthenium (Ru), Manganese (Mn), Indium (In), Magnesium (Mg), Lithium (Li), Ytterbium (Yb), etc. Is mentioned.
  • the second electrode 18 is formed of, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidized astatine (AtO 2).
  • the second electrode 18 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. .
  • the second electrode 18 may be formed by laminating a plurality of layers made of the above materials, for example, ITO / Ag.
  • Examples of materials having a small work function include magnesium (Mg), lithium (Li), magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), and sodium (Na) / potassium (K). ), Lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al), and the like. Further, the sealing film 19 has a function of protecting the organic EL layer 17 from moisture and oxygen.
  • the material constituting the sealing film 19 is, for example, silicon nitride (SiNx (x)) such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), or trisilicon tetranitride (Si 3 N 4 ). Are positive numbers)), inorganic materials such as silicon carbonitride (SiCN), and organic materials such as acrylate, polyurea, parylene, polyimide, and polyamide.
  • SiNx (x) silicon oxide
  • Al 2 O 3 aluminum oxide
  • Si 3 N 4 trisilicon tetranitride
  • SiCN silicon carbonitride
  • organic materials such as acrylate, polyurea, parylene, polyimide, and polyamide.
  • the base layer 28 includes a front-side first adhesive layer 21, a counter resin substrate layer 22, a front-side second adhesive layer 23, a polarizing plate 24, and a front-side third adhesive that are sequentially provided on the sealing film 19.
  • the front-side first adhesive layer 21 is composed of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
  • the counter resin substrate layer 22 is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
  • the front side second adhesive layer 23, the front side third adhesive layer 25, and the front side fourth adhesive layer 27 are, for example, a photocurable adhesive sheet, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, and a cyanoacrylate type.
  • the instant adhesive is used.
  • the polarizing plate 24 includes a polarizer layer obtained by uniaxially stretching a polyvinyl alcohol film on which iodine is adsorbed, and a pair of protective films sandwiching the polarizer layer, and constitutes the pair of protective films. Is the main component.
  • the touch panel 26 includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film.
  • the plastic film is the main component.
  • the touch panel layer has metal wiring patterned in a lattice shape, but is excluded from the calculation of the amount of plastic deformation because the Young's modulus of the metal wiring is high and the film thickness is as thin as 1 ⁇ m or less.
  • the hard coat layer 29 includes a first hard coat layer 29a provided on the front-side fourth adhesive layer 27 and a second hard coat provided on the first hard coat layer 29a. Layer 29b.
  • the first hard coat layer 29a is made of a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
  • the second hard coat layer 29b is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, a polysiloxane resin, or the like.
  • a gate signal is input to the first TFT 13a via the gate line 11 to turn on the first TFT 13a, and the gate of the second TFT 13b via the source line 12a.
  • a predetermined voltage corresponding to the source signal is written into the electrode and capacitor 13c, the magnitude of the current from the power supply line 12b is defined based on the gate voltage of the second TFT 13b, and the defined current is supplied to the light emitting layer 3
  • the light emitting layer 3 emits light and is configured to display an image.
  • the gate voltage of the second TFT 13b is held by the capacitor 13c, so that the light emitting layer 3 emits light until the gate signal of the next frame is input. Maintained.
  • the organic EL display device 100aa of the present embodiment forms, for example, the organic EL element layer 20 on the surface of the base resin substrate layer 10 formed on the glass substrate by using a well-known method.
  • the back side adhesive layer 9 and the stress adjustment layer 8 are formed on the back surface of the base resin substrate layer 10 from which the glass substrate has been peeled off. it can.
  • the organic EL display device 100aa provided with the stress adjustment layer 8 is illustrated, but as shown in FIG. 7, the organic EL display in which the stress adjustment layer 8 (and the back side adhesive layer 9) is omitted.
  • the apparatus 100ab may be used.
  • the total amount of plastic deformation of each layer constituting the layer is 0.4 ⁇ m or less, that is, ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 + ⁇ 5 ⁇ 5 d 5 / E 5 ) ⁇ 0 .4 ⁇ m It is comprised so that the relational expression may be satisfied.
  • the base resin substrate layer 10 has a residual strain ratio ⁇ 1 , a thickness d 1 ( ⁇ m), a Young's modulus E 1 (Pa), and a stress dispersion coefficient ⁇ 1
  • the organic EL element layer 20 has a residual strain. It has a ratio ⁇ 2 , a thickness d 2 ( ⁇ m), a Young's modulus E 2 (Pa), and a stress dispersion coefficient ⁇ 2
  • the underlayer 28 has a residual strain ratio ⁇ 3 , a thickness d 3 ( ⁇ m), and a Young's modulus.
  • the hard coat layer 29 has a residual strain ratio ⁇ 4 , a thickness d 4 ( ⁇ m), a Young's modulus E 4 (Pa), and a stress dispersion coefficient ⁇ 4 .
  • the stress adjustment layer 8 has a residual strain ratio ⁇ 5 , a thickness d 5 ( ⁇ m), a Young's modulus E 5 (Pa), and a stress dispersion coefficient ⁇ 5 , and the hard coat layer 29 (second hard coat layer 29b). ) Is a pressure applied to the surface (upper surface) on the opposite side to the underlayer 28.
  • the residual strain ratio ⁇ of each layer is determined by the change ⁇ h max in the maximum indentation depth h max when the load is changed in the range of 1 mN to 10 mN by the nanoindentation method (ISO 14577) and the depth of the permanent depression h p and measuring the amount of change Delta] h p, defined by the ratio ⁇ h p / ⁇ h max variation Delta] h p of the depth h p depressions permanently against variation Delta] h max of the maximum indentation depth h max.
  • the Young's modulus E of each layer is defined by the indentation elastic modulus measured by the nanoindentation method.
  • the total amount of plastic deformation of each layer constituting the layer is 0.4 ⁇ m or less. ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 ) ⁇ 0.4 ⁇ m It is comprised so that the relational expression may be satisfied.
  • an organic EL display device 100aa having the following configuration was manufactured (see the table in FIG. 6).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Stress adjusting layer 8 Polyethylene terephthalate film with a thickness of 10.0 ⁇ m
  • Back side adhesive layer 9 Photocurable adhesive sheet with a thickness of 10.0 ⁇ m (UVP series manufactured by Toagosei Co., Ltd.)
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 10.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed
  • the pressure ⁇ applied to the upper surface of the second hard coat layer 29b was 90 MPa.
  • the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc. about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 6, it is omitted because it hardly affects the total amount of plastic deformation.
  • the manufactured organic EL display device 100aa has a total plastic deformation amount of 0.394 ⁇ m, and even after the upper surface of the second hard coat layer 29b is pressed with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) on the device surface (the surface of the second hard coat layer 29b) was hardly visually recognized.
  • an organic EL display device 100ab having the following configuration was manufactured (see the table in FIG. 8).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 10.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • Edge cover 16 1.5 ⁇ m thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
  • Organic EL layer 17 Configuration of a general organic EL element having a total thickness
  • the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc.
  • the 1st electrode 15 the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 8, it is omitted because it hardly affects the total amount of plastic deformation.
  • the manufactured organic EL display device 100ab has a total plastic deformation amount of 0.366 ⁇ m, and even after pressing the upper surface of the second hard coat layer 29b with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) on the device surface (the surface of the second hard coat layer 29b) was hardly visually recognized.
  • the organic EL display device 100aa of the present embodiment As described above, according to the organic EL display device 100aa of the present embodiment, the following effects can be obtained.
  • the base resin substrate layer 10, the organic EL element layer 20, the base layer 28, the hard coat layer 29, and the stress adjustment layer 8 have residual strain ratios ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 5 , respectively.
  • d 1 , d 2 , d 3 , d 4 and d 5 respectively, Young's modulus E 1, E 2, E 3 , E 4 and E 5 respectively, and stress distribution coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4, and ⁇ 5 respectively, and ⁇ is a pressure applied to the surface of the hard coat layer 29, ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 + ⁇ 5 ⁇ 5 d 5 / E 5 ) ⁇ 0 .4 ⁇ m Therefore, the plastic deformation of the hard coat layer 29 can be suppressed in the organic
  • the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100aa and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 29 is suppressed, so that the organic EL display device 100aa Display quality can be maintained.
  • the organic EL display device 100ab of the present embodiment the following effects can be obtained.
  • the base resin substrate layer 10, the organic EL element layer 20, the base layer 28, and the hard coat layer 29 have residual strain ratios ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 , respectively, and have thicknesses d 1 , d 2 , d.
  • FIG. 9 is a cross-sectional view of the organic EL display device 100ba of the present embodiment.
  • FIG. 10 is a table showing the contents of Example 3 specifically performed in the organic EL display device 100ba.
  • FIG. 11 is a cross-sectional view of an organic EL display device 100bb which is a modification of the organic EL display device 100ba.
  • FIG. 12 is a table showing the contents of Example 4 specifically performed in the organic EL display device 100bb.
  • FIGS. 13 to 16 are tables showing the contents of Comparative Examples 1 to 4 specifically performed in the organic EL display device 100ba.
  • the same parts as those in FIGS. 1 to 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the organic EL display device 100aa including the polarizing plate 24 is illustrated.
  • the organic EL display device 100ba including the color filter 32 is illustrated instead of the polarizing plate 24.
  • the organic EL display device 100 ba includes a base resin substrate layer 10, a stress adjustment layer 8 provided on the lower surface of the base resin substrate layer 10, and a diagram of the base resin substrate layer 10.
  • An organic EL element layer 20 provided on the middle upper surface, a base layer 37 provided on the organic EL element layer 20, and a hard coat layer 38 provided on the base layer 37 are provided.
  • the structure of the pixels arranged in the display area of the organic EL display device 100ba is substantially the same as the structure of the pixels arranged in the display area of the organic EL display device 100aa of the first embodiment.
  • the base layer 37 includes a front-side first adhesive layer 31, a color filter 32, a counter resin substrate layer 33, a front-side second adhesive layer 34, a touch panel 35, and a front-side provided on the sealing film 19 in order.
  • a third adhesive layer 36 is provided.
  • the front side first adhesive layer 31 is made of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
  • the color filter 32 includes, for example, a black matrix layer provided in a lattice shape, a plurality of color resist layers of a red layer, a green layer, and a blue layer provided so as to correspond to each sub-pixel P, and a black matrix layer And an overcoat layer provided so as to cover each color resist layer, and a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin or the like is a main component.
  • the color filter 32 is formed on the counter resin substrate layer 33.
  • the counter resin substrate layer 33 is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
  • the front side second adhesive layer 34 and the front side third adhesive layer 36 are composed of, for example, a photocurable adhesive sheet, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, a cyanoacrylate instantaneous adhesive, or the like. Has been.
  • the touch panel 35 includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film.
  • the plastic film is the main component.
  • the hard coat layer 38 includes a first hard coat layer provided on the front side third adhesive layer 36 and a second hard coat layer provided on the first hard coat layer.
  • the first hard coat layer is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
  • the second hard coat layer is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, or a polysiloxane resin.
  • the organic EL display device 100ba having the above configuration is configured to display an image by appropriately emitting light from the light emitting layer 3 in each sub-pixel P. .
  • each of the sub-pixels P includes the light emitting layer 3 that emits three colors that are separately applied to three colors of RGB.
  • the organic EL display device 100ba of this embodiment includes the light emitting layer 3 that emits white light in all the subpixels P because the color filter 32 is disposed.
  • the organic EL display device 100ba of the present embodiment can be manufactured by appropriately changing the manufacturing method of the organic EL display device 100aa of the first embodiment.
  • the organic EL display device 100ba provided with the stress adjustment layer 8 is exemplified.
  • the total amount of plastic deformation of each layer constituting the layer is 0.4 ⁇ m or less, that is, ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 + ⁇ 5 ⁇ 5 d 5 / E 5 ) ⁇ 0 .4 ⁇ m It is comprised so that the relational expression may be satisfied.
  • the base resin substrate layer 10 has a residual strain ratio ⁇ 1 , a thickness d 1 ( ⁇ m), a Young's modulus E 1 (Pa), and a stress dispersion coefficient ⁇ 1
  • the organic EL element layer 20 has a residual strain. It has a ratio ⁇ 2 , a thickness d 2 ( ⁇ m), a Young's modulus E 2 (Pa), and a stress dispersion coefficient ⁇ 2.
  • the underlayer 37 has a residual strain ratio ⁇ 3 , a thickness d 3 ( ⁇ m), and a Young's modulus.
  • the stress adjusting layer 8 has a residual strain ratio ⁇ 5 , a thickness d 5 ( ⁇ m), a Young's modulus E 5 (Pa), and a stress dispersion coefficient ⁇ 5 , and is opposite to the base layer 37 of the hard coat layer 38.
  • ⁇ (Pa) be the pressure applied to the surface (upper surface).
  • the residual strain ratio (kappa), thickness d, Young's modulus E, and stress of each structure layer which comprises it The dispersion coefficient ⁇ is obtained, and the amount of plastic deformation is calculated from these values and combined.
  • the total amount of plastic deformation of each layer constituting the layer is 0.4 ⁇ m or less. ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 ) ⁇ 0.4 ⁇ m It is comprised so that the relational expression may be satisfied.
  • an organic EL display device 100ba having the following configuration was manufactured (see the table in FIG. 10).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Stress adjustment layer 8 Polyethylene terephthalate film with a thickness of 10.0 ⁇ m
  • Back side adhesive layer 9 Epoxy resin adhesive with a thickness of 10.0 ⁇ m (manufactured by Arteco)
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 10.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • the manufactured organic EL display device 100ba has a total plastic deformation amount of 0.361 ⁇ m, and even after the upper surface of the hard coat layer 38 is pressed with a pressure of 90 MPa, the surface of the device Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 38) was hardly visually recognized.
  • an organic EL display device 100bb having the following configuration was manufactured (see the table in FIG. 12).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 10.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • Edge cover 16 1.5 ⁇ m thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
  • Organic EL layer 17 Configuration of a general organic EL element having a total thickness
  • the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc. about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 12, it is omitted because it hardly affects the total amount of plastic deformation.
  • the manufactured organic EL display device 100bb had a total plastic deformation amount of 0.318 ⁇ m, and even after the upper surface of the hard coat layer 38 was pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 38) was hardly visually recognized.
  • Comparative Example 1 of the present embodiment an organic EL display device having the following configuration corresponding to the organic EL display device 100ba was manufactured (see the table in FIG. 13).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Stress adjustment layer Polyethylene terephthalate film with a thickness of 40.0 ⁇ m
  • Back side adhesive layer Pressure sensitive adhesive with a thickness of 15.0 ⁇ m
  • Base resin substrate layer Non-photosensitive coating type polyimide resin with a thickness of 10.0 ⁇ m (Hitachi Kasei DuPont Micro PIQ (registered trademark) series manufactured by Systems Co., Ltd.)
  • Moisture-proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT, etc .: Including a wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film Photosensitive acrylic resin with a thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 0.1 ⁇ m thick ITO / Ag multilayer film formed by a general TFT process
  • Edge cover 1.5 ⁇ m thick photosensitive acrylic resin (
  • the first TFT, etc. constituting the organic EL element layer, the first electrode, the organic EL layer, the second electrode, and the sealing film have a plastic deformation amount due to the film thickness, Young's modulus, etc. Since the sum is hardly affected, it is omitted in the table of FIG.
  • the produced organic EL display device has a total plastic deformation amount of 4.010 ⁇ m.
  • the surface of the device (the surface of the hard coat layer) Semi-permanent plastic deformation (scratches) was observed.
  • Comparative Example 2 of the present embodiment an organic EL display device having the following configuration corresponding to the organic EL display device 100ba was manufactured (see the table in FIG. 14).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Stress adjustment layer Polyethylene terephthalate film with a thickness of 40.0 ⁇ m
  • Back side adhesive layer UV curable adhesive with a thickness of 15.0 ⁇ m (Aronix (registered trademark) series manufactured by Toagosei Co., Ltd.)
  • Base resin substrate layer 10.0 ⁇ m thick non-photosensitive coated polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture-proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT, etc .: Including a wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film Photosensitive acrylic resin with a thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 0.1 ⁇ m thick ITO / Ag multilayer film formed by a general TFT process
  • the first TFT, etc. constituting the organic EL element layer, the first electrode, the organic EL layer, the second electrode, and the sealing film have a plastic deformation amount due to the film thickness, Young's modulus, etc. Since the total is hardly affected, it is omitted in the table of FIG.
  • the produced organic EL display device has a total plastic deformation amount of 0.800 ⁇ m as shown in the table of FIG. 14, and when the upper surface of the hard coat layer is pressed with a pressure of 90 MPa, the surface of the device (the surface of the hard coat layer) Semi-permanent plastic deformation (scratches) was observed.
  • Comparative Example 3 of the present embodiment an organic EL display device having the following configuration corresponding to the organic EL display device 100ba was manufactured (see the table in FIG. 15).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Stress adjustment layer Polyethylene terephthalate film with a thickness of 40.0 ⁇ m
  • Back side adhesive layer UV curable adhesive with a thickness of 15.0 ⁇ m (Aronix (registered trademark) series manufactured by Toagosei Co., Ltd.)
  • Base resin substrate layer 10.0 ⁇ m thick non-photosensitive coated polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture-proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT, etc .: Including a wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film Photosensitive acrylic resin with a thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 0.1 ⁇ m thick ITO / Ag multilayer film formed by a general TFT process
  • the first TFT, etc. constituting the organic EL element layer, the first electrode, the organic EL layer, the second electrode, and the sealing film have a plastic deformation amount due to the film thickness, Young's modulus, etc. Since the total is hardly affected, it is omitted in the table of FIG.
  • the produced organic EL display device has a total plastic deformation amount of 0.602 ⁇ m.
  • the surface of the device (the surface of the hard coat layer) Semi-permanent plastic deformation (scratches) was observed.
  • Comparative Example 4 of the present embodiment an organic EL display device having the following configuration corresponding to the organic EL display device 100ba was produced (see the table in FIG. 16).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • the moisture-proof layer, the first TFT, etc. constituting the organic EL element layer, the first electrode, the organic EL layer, the second electrode, and the sealing film have a plastic deformation amount due to the film thickness, Young's modulus, etc. Since the sum is hardly affected, it is omitted in the table of FIG.
  • the produced organic EL display device has a total plastic deformation amount of 0.441 ⁇ m as shown in the table of FIG. 16, and when the upper surface of the hard coat layer is pressed with a pressure of 90 MPa, the surface of the device (the surface of the hard coat layer) Semi-permanent plastic deformation (scratches) was observed.
  • the organic EL display device 100ba of the present embodiment As described above, according to the organic EL display device 100ba of the present embodiment, the following effects can be obtained.
  • the base resin substrate layer 10, the organic EL element layer 20, the base layer 37, the hard coat layer 38, and the stress adjustment layer 8 have residual strain ratios ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 5 , respectively.
  • d 1 , d 2 , d 3 , d 4 and d 5 respectively, Young's modulus E 1, E 2, E 3 , E 4 and E 5 respectively, and stress distribution coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4, and ⁇ 5 respectively, and ⁇ is a pressure applied to the surface of the hard coat layer 38, ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 + ⁇ 5 ⁇ 5 d 5 / E 5 ) ⁇ 0 .4 ⁇ m Therefore, in the organic EL display device 100ba having the hard coat layer
  • the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100ba and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 38 is suppressed, so that the organic EL display device 100ba Display quality can be maintained.
  • the organic EL display device 100bb of the present embodiment the following effects can be obtained.
  • the base resin substrate layer 10, the organic EL element layer 20, the base layer 37, and the hard coat layer 38 have residual strain ratios ⁇ 1 , ⁇ 2 , ⁇ 3, and ⁇ 4 , respectively, and have thicknesses d 1 , d 2 , d 3 and d 4 respectively, Young's modulus E 1, E 2, E 3 and E 4 respectively, stress dispersion coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 respectively, and hard coat layer 29
  • the pressure applied to the surface of ⁇ is ⁇ , ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 +) ⁇ 0.4 ⁇ m Therefore, in the organic EL display device 100bb having the hard coat layer 38 provided on the surface, plastic deformation of the hard coat layer 38 can be suppressed.
  • the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100bb and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 38 is suppressed, so that the organic EL display device 100bb Display quality can be maintained.
  • FIG. 17 is a cross-sectional view of the organic EL display device 100ca of the present embodiment.
  • FIG. 18 is a table showing the contents of Example 5 specifically performed in the organic EL display device 100ca.
  • FIG. 19 is a cross-sectional view of an organic EL display device 100cb which is a modification of the organic EL display device 100ca.
  • FIG. 20 is a table showing the contents of Example 6 specifically performed in the organic EL display device 100cb.
  • the organic EL display devices 100aa (100ab) and 100ba (100bb) including the counter resin substrate layers 22 and 33 are illustrated.
  • the organic resin in which the counter resin substrate layer is omitted is illustrated.
  • An EL display device 100ca is illustrated.
  • the organic EL display device 100 ca includes a base resin substrate layer 10, a stress adjustment layer 8 provided on the lower surface of the base resin substrate layer 10 in the drawing, and a diagram of the base resin substrate layer 10.
  • An organic EL element layer 20 provided on the middle upper surface, a base layer 45 provided on the organic EL element layer 20, and a hard coat layer 46 provided on the base layer 45 are provided.
  • the structure of the pixels arranged in the display area of the organic EL display device 100ca is substantially the same as the structure of the pixels arranged in the display area of the organic EL display device 100aa of the first embodiment.
  • the base layer 45 includes a front-side first adhesive layer 41, a color filter 42, a touch panel 43, and a front-side second adhesive layer 44 that are sequentially provided on the sealing film 19.
  • the front-side first adhesive layer 41 is made of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
  • the color filter 42 includes, for example, a black matrix layer provided in a lattice shape, a plurality of color resist layers of a red layer, a green layer, and a blue layer provided so as to correspond to each subpixel P, and a black matrix layer And an overcoat layer provided so as to cover each color resist layer, and a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin or the like is a main component.
  • the color filter 42 is formed on the touch panel 43.
  • the touch panel 43 includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film.
  • the plastic film is the main component.
  • the front-side second adhesive layer 44 is made of, for example, a photocurable adhesive sheet, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, a cyanoacrylate instantaneous adhesive, or the like.
  • the hard coat layer 46 includes a first hard coat layer provided on the third adhesive layer 44 and a second hard coat layer provided on the first hard coat layer.
  • the first hard coat layer is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
  • the second hard coat layer is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, or a polysiloxane resin.
  • the organic EL display device 100ca having the above configuration is configured to display an image by appropriately emitting light from the light emitting layer 3 in each sub-pixel P. .
  • the organic EL display device 100ca of the present embodiment can be manufactured by appropriately changing the manufacturing method of the organic EL display device 100aa of the first embodiment.
  • the organic EL display device 100ca provided with the stress adjustment layer 8 is exemplified. However, as shown in FIG. 19, the organic EL display in which the stress adjustment layer 8 (and the back side adhesive layer 9) is omitted.
  • the device 100cb may be used.
  • the total amount of plastic deformation of each layer constituting the organic EL display device 100ca is 0.4 ⁇ m or less.
  • the base resin substrate layer 10 has a residual strain ratio ⁇ 1 , a thickness d 1 ( ⁇ m), a Young's modulus E 1 (Pa), and a stress dispersion coefficient ⁇ 1
  • the organic EL element layer 20 has a residual strain. It has a ratio ⁇ 2 , a thickness d 2 ( ⁇ m), a Young's modulus E 2 (Pa), and a stress dispersion coefficient ⁇ 2.
  • the underlayer 45 has a residual strain ratio ⁇ 3 , a thickness d 3 ( ⁇ m), and a Young's modulus.
  • the stress adjusting layer 8 has a residual strain ratio ⁇ 5 , a thickness d 5 ( ⁇ m), a Young's modulus E 5 (Pa), and a stress dispersion coefficient ⁇ 5 , and is opposite to the base layer 45 of the hard coat layer 46.
  • ⁇ (Pa) be the pressure applied to the surface (upper surface).
  • the total amount of plastic deformation of each constituent layer is 0.4 ⁇ m or less. ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 ) ⁇ 0.4 ⁇ m It is comprised so that the relational expression may be satisfied.
  • an organic EL display device 100ca having the following configuration was manufactured (see the table in FIG. 18).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Stress adjustment layer 8 Polyethylene terephthalate film with a thickness of 10.0 ⁇ m
  • Back side adhesive layer 9 Epoxy resin adhesive with a thickness of 10.0 ⁇ m (manufactured by Arteco)
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 10.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc. about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 18, it is omitted because it hardly affects the total amount of plastic deformation.
  • the manufactured organic EL display device 100ca has a total plastic deformation amount of 0.313 ⁇ m, and even after the upper surface of the hard coat layer 46 is pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 46) was hardly visually recognized.
  • an organic EL display device 100cb having the following configuration was manufactured (see the table in FIG. 20).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 10.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • Edge cover 16 1.5 ⁇ m thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
  • Organic EL layer 17 Configuration of a general organic EL element having a total thickness
  • the manufactured organic EL display device 100cb has a total plastic deformation amount of 0.256 ⁇ m, and even after the upper surface of the hard coat layer 46 is pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 46) was hardly visually recognized.
  • the organic EL display device 100ca of the present embodiment As described above, according to the organic EL display device 100ca of the present embodiment, the following effects can be obtained.
  • the base resin substrate layer 10, the organic EL element layer 20, the underlayer 45, the hard coat layer 46, and the stress adjustment layer 8 have residual strain ratios ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 5 , respectively.
  • d 1 , d 2 , d 3 , d 4 and d 5 respectively, Young's modulus E 1, E 2, E 3 , E 4 and E 5 respectively, and stress distribution coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4, and ⁇ 5 respectively, and ⁇ is a pressure applied to the surface of the hard coat layer 46, ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 + ⁇ 5 ⁇ 5 d 5 / E 5 ) ⁇ 0 .4 ⁇ m Therefore, in the organic EL display device 100ca having the hard coat layer 46
  • the organic EL display device 100cb of the present embodiment the following effects can be obtained.
  • the base resin substrate layer 10, the organic EL element layer 20, the underlayer 45, and the hard coat layer 46 have residual strain ratios ⁇ 1 , ⁇ 2 , ⁇ 3, and ⁇ 4 , respectively, and have thicknesses d 1 , d 2 , d 3 and d 4 respectively, Young's modulus E 1, E 2, E 3 and E 4 respectively, stress dispersion coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 respectively, and hard coat layer 46 If the pressure applied to the surface of ⁇ is ⁇ , ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 +) ⁇ 0.4 ⁇ m Therefore, the plastic deformation of the hard coat layer 46 can be suppressed in the organic EL display device 100cb provided with the hard coat layer 46 on the surface.
  • the touch panel 43 also serves as the counter resin substrate layers 22 and 33 of the first and second embodiments, so that the organic EL display devices 100ca and 100cb can be thinned.
  • the member cost and the manufacturing cost can be reduced.
  • FIG. 21 is a cross-sectional view of the organic EL display device 100da of the present embodiment.
  • FIG. 22 is a table showing the contents of Example 7 specifically performed in the organic EL display device 100da.
  • FIG. 23 is a cross-sectional view of an organic EL display device 100db which is a modification of the organic EL display device 100da.
  • FIG. 24 is a table showing the contents of Example 8 specifically performed in the organic EL display device 100db.
  • the organic EL display device 100ba (100bb) in which the touch panel 35 is provided on the opposite side to the base resin substrate layer 10 of the counter resin substrate layer 33 is exemplified.
  • the touch panel 52 is the base resin.
  • the organic EL display device 100da provided between the substrate layer 10 and the counter resin substrate layer 54 is illustrated.
  • the organic EL display device 100 da includes a base resin substrate layer 10, a stress adjustment layer 8 provided on the lower surface of the base resin substrate layer 10 in the drawing, and a diagram of the base resin substrate layer 10.
  • An organic EL element layer 20 provided on the middle upper surface, a base layer 56 provided on the organic EL element layer 20, and a hard coat layer 57 provided on the base layer 56 are provided.
  • the structure of the pixels arranged in the display area of the organic EL display device 100da is substantially the same as the structure of the pixels arranged in the display area of the organic EL display device 100aa of the first embodiment.
  • the base layer 56 includes a front-side first adhesive layer 51, a touch panel 52, a color filter 53, a counter resin substrate layer 54, and a front-side second adhesive layer 55 that are sequentially provided on the sealing film 19. ing.
  • the front-side first adhesive layer 51 is composed of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
  • the touch panel 52 includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film.
  • the plastic film is the main component.
  • the color filter 53 includes, for example, a black matrix layer provided in a lattice shape, a plurality of color resist layers of a red layer, a green layer, and a blue layer provided so as to correspond to each sub-pixel P, and a black matrix layer And an overcoat layer provided so as to cover each color resist layer, and a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin or the like is a main component.
  • the counter resin substrate layer 54 is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
  • the front-side second adhesive layer 55 is made of, for example, a photocurable adhesive sheet, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, a cyanoacrylate instantaneous adhesive, or the like.
  • the hard coat layer 57 includes a first hard coat layer provided on the third adhesive layer 55 and a second hard coat layer provided on the first hard coat layer.
  • the first hard coat layer is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
  • the second hard coat layer is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, or a polysiloxane resin.
  • the organic EL display device 100da having the above configuration is configured to display an image by appropriately emitting light from the light emitting layer 3 in each sub-pixel P. .
  • the organic EL display device 100da of the present embodiment can be manufactured by appropriately changing the manufacturing method of the organic EL display device 100aa of the first embodiment.
  • the organic EL display device 100da provided with the stress adjustment layer 8 is illustrated, but as shown in FIG. 23, the organic EL display in which the stress adjustment layer 8 (and the back side adhesive layer 9) is omitted.
  • the device 100db may be used.
  • the total amount of plastic deformation of each layer constituting the layer is 0.4 ⁇ m or less, that is, ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 + ⁇ 5 ⁇ 5 d 5 / E 5 ) ⁇ 0 .4 ⁇ m It is comprised so that the relational expression may be satisfied.
  • the base resin substrate layer 10 has a residual strain ratio ⁇ 1 , a thickness d 1 ( ⁇ m), a Young's modulus E 1 (Pa), and a stress dispersion coefficient ⁇ 1
  • the organic EL element layer 20 has a residual strain. It has a ratio ⁇ 2 , a thickness d 2 ( ⁇ m), a Young's modulus E 2 (Pa), and a stress dispersion coefficient ⁇ 2
  • the underlayer 56 has a residual strain ratio ⁇ 3 , a thickness d 3 ( ⁇ m), and a Young's modulus.
  • the stress adjusting layer 8 has a residual strain ratio ⁇ 5 , a thickness d 5 ( ⁇ m), a Young's modulus E 5 (Pa), and a stress dispersion coefficient ⁇ 5 , and is opposite to the base layer 56 of the hard coat layer 57.
  • ⁇ (Pa) be the pressure applied to the surface (upper surface).
  • the residual strain ratio (kappa), thickness d, Young's modulus E, and stress of each structure layer which comprises it The dispersion coefficient ⁇ is obtained, and the amount of plastic deformation is calculated from these values and combined.
  • the total amount of plastic deformation of each layer constituting the layer is 0.4 ⁇ m or less. ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 ) ⁇ 0.4 ⁇ m It is comprised so that the relational expression may be satisfied.
  • an organic EL display device 100da having the following configuration was manufactured (see the table in FIG. 22).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Stress adjustment layer 8 Polyethylene terephthalate film with a thickness of 10.0 ⁇ m
  • Back side adhesive layer 9 Epoxy resin adhesive with a thickness of 10.0 ⁇ m (manufactured by Arteco)
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 10.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • the manufactured organic EL display device 100da has a total plastic deformation amount of 0.345 ⁇ m, and even after the upper surface of the hard coat layer 57 is pressed with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 57) was hardly visually recognized.
  • an organic EL display device 100db having the following configuration was manufactured (see the table in FIG. 24).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 10.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • Edge cover 16 1.5 ⁇ m thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
  • Organic EL layer 17 Configuration of a general organic EL element having a total thickness
  • the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc. about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 24, it is omitted because it hardly affects the total amount of plastic deformation.
  • the manufactured organic EL display device 100db had a total plastic deformation amount of 0.295 ⁇ m, and even after the upper surface of the hard coat layer 57 was pressed with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 57) was hardly visually recognized.
  • the organic EL display device 100da of the present embodiment As described above, according to the organic EL display device 100da of the present embodiment, the following effects can be obtained.
  • the base resin substrate layer 10, the organic EL element layer 20, the base layer 56, the hard coat layer 57 and the stress adjustment layer 8 have residual strain ratios ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 5 , respectively.
  • d 1 , d 2 , d 3 , d 4 and d 5 respectively, Young's modulus E 1, E 2, E 3 , E 4 and E 5 respectively, and stress distribution coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4, and ⁇ 5 respectively, and ⁇ is a pressure applied to the surface of the hard coat layer 57, ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 + ⁇ 5 ⁇ 5 d 5 / E 5 ) ⁇ 0 .4 ⁇ m Therefore, in the organic EL display device 100da having the hard coat
  • the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100da and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 57 is suppressed, so that the organic EL display device 100da Display quality can be maintained.
  • the organic EL display device 100db of the present embodiment the following effects can be obtained.
  • the base resin substrate layer 10, the organic EL element layer 20, the base layer 56 and the hard coat layer 57 have residual strain ratios ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 , respectively, and have thicknesses d 1 , d 2 , d 3 and d 4 respectively, Young's modulus E 1, E 2, E 3 and E 4 respectively, stress dispersion coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 respectively, and hard coat layer 57
  • the pressure applied to the surface of ⁇ is ⁇ , ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 +) ⁇ 0.4 ⁇ m Therefore, in the organic EL display device 100db provided with the hard coat layer 57 on the surface, plastic deformation of the hard coat layer 57 can be suppressed.
  • the display of the organic EL display device 100db is performed. The quality can be maintained.
  • the touch panel 52 is provided between the base resin substrate layer 10 and the counter resin substrate layer 54, the touch panel 52 is formed on the counter resin substrate layer 54 together with the color filter 53. Manufacturing cost can be reduced.
  • FIG. 25 is a sectional view of the organic EL display device 100ea of the present embodiment.
  • FIG. 26 is a table showing the contents of Example 9 specifically performed in the organic EL display device 100ea.
  • FIG. 27 is a cross-sectional view of an organic EL display device 100eb which is a modification of the organic EL display device 100ea.
  • FIG. 28 and FIG. 29 are tables showing the contents of Example 10 and Example 11 specifically performed in the organic EL display device 100eb.
  • the organic EL display devices 100aa to 100da in which the stress adjusting layer 8 is provided on the back surface side of the base resin substrate layer 10 are basically exemplified. However, in this embodiment, the stress adjusting layer is omitted. An example of the organic EL display device 100ea is illustrated.
  • the organic EL display device 100ea includes a base resin substrate layer 10, an organic EL element layer 20 provided on the upper surface of the base resin substrate layer 10, and an organic EL element layer 20 on the surface.
  • the base layer 64a provided and the hard coat layer 65 provided on the base layer 64a are provided.
  • the structure of the pixels arranged in the display area of the organic EL display device 100ea is substantially the same as the structure of the pixels arranged in the display area of the organic EL display device 100aa of the first embodiment.
  • the base layer 64a includes an adhesive layer 61, a color filter 62, and a touch panel 63a provided in this order on the sealing film 19.
  • the adhesive layer 61 is made of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
  • the color filter 62 includes, for example, a black matrix layer provided in a lattice shape, a plurality of color resist layers of a red layer, a green layer, and a blue layer provided so as to correspond to each subpixel P, and a black matrix layer And an overcoat layer provided so as to cover each color resist layer, and a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin or the like is a main component.
  • the color filter 62 is formed on the touch panel 63a.
  • the touch panel 63a includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film.
  • the plastic film is the main component.
  • the hard coat layer 65 is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, a polysiloxane resin, a silicon nitride film, or the like.
  • the organic EL display device 100ea having the above configuration is configured to display an image by appropriately emitting light from the light emitting layer 3 in each sub-pixel P. .
  • the organic EL display device 100ea according to the present embodiment can be manufactured by appropriately changing the manufacturing method of the organic EL display device 100aa according to the first embodiment.
  • the organic EL display device 100ea provided with the base layer 64a including the touch panel 63a is illustrated, but as shown in FIG. 27, the organic layer provided with the base layer 64b including the counter resin substrate layer 63b. It may be an EL display device 100eb.
  • the color filter 62 is formed on the counter resin substrate layer 63b.
  • the total amount of plastic deformation of each layer constituting the layer is 0.4 ⁇ m or less, that is, ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 ) ⁇ 0.4 ⁇ m It is comprised so that the relational expression may be satisfied.
  • the base resin substrate layer 10 has a residual strain ratio ⁇ 1 , a thickness d 1 ( ⁇ m), a Young's modulus E 1 (Pa), and a stress dispersion coefficient ⁇ 1
  • the organic EL element layer 20 has a residual strain. It has a ratio ⁇ 2 , a thickness d 2 ( ⁇ m), a Young's modulus E 2 (Pa), and a stress dispersion coefficient ⁇ 2
  • the underlayer 64a (64b) has a residual strain ratio ⁇ 3 and a thickness d 3 ( ⁇ m).
  • the hard coat layer 65 has a residual strain ratio ⁇ 4 , thickness d 4 ( ⁇ m), Young's modulus E 4 (Pa), and stress dispersion coefficient ⁇ . 4 and the pressure applied to the surface (upper surface) of the hard coat layer 65 opposite to the base layer 64 is ⁇ (Pa).
  • the residual strain ratio (kappa), thickness d, Young's modulus E, and stress dispersion coefficient of each structure layer which comprises it ⁇ is obtained, and the plastic deformation amount is calculated from these values and added together.
  • an organic EL display device 100ea having the following configuration was manufactured (see the table in FIG. 26).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 10.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • Edge cover 16 1.5 ⁇ m thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
  • Organic EL layer 17 Configuration of a general organic EL element having a total thickness
  • the manufactured organic EL display device 100ea has a total plastic deformation amount of 0.169 ⁇ m, and even after the upper surface of the hard coat layer 65 is pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 65) was hardly visually recognized.
  • an organic EL display device 100eb having the following configuration was manufactured (see the table in FIG. 28).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 12.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • Edge cover 16 1.5 ⁇ m thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
  • Organic EL layer 17 Configuration of a general organic EL element having a total thickness
  • the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc.
  • the 1st electrode 15 the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. Since it hardly affects the total amount of plastic deformation, it is omitted in the table of FIG.
  • the manufactured organic EL display device 100eb had a total plastic deformation amount of 0.189 ⁇ m, and even after the upper surface of the hard coat layer 65 was pressed with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 65) was hardly visually recognized.
  • an organic EL display device 100eb having the following configuration was manufactured (see the table in FIG. 29).
  • the following material names are the names of materials used when determining the actual residual strain ratio ⁇ , thickness d, Young's modulus E, and stress dispersion coefficient ⁇ .
  • Base resin substrate layer 10 Non-photosensitive coating type polyimide resin having a thickness of 12.0 ⁇ m (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
  • Moisture proof layer 1.0 ⁇ m thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method
  • First TFT 13a, etc . including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 ⁇ m
  • General Bottom Gate TFT Interlayer Insulating Film 14 Photosensitive Acrylic Resin with a Thickness of 2.5 ⁇ m (Optomer (registered trademark) series manufactured by JSR Corporation)
  • First electrode 15 0.1 ⁇ m thick ITO / Ag laminated film formed by a general TFT process
  • Edge cover 16 1.5 ⁇ m thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
  • Organic EL layer 17 Configuration of a general organic EL element having a total thickness
  • the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc.
  • the 1st electrode 15 the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. Since it hardly affects the total amount of plastic deformation, it is omitted in the table of FIG.
  • the manufactured organic EL display device 100eb had a total plastic deformation amount of 0.179 ⁇ m, and even after the upper surface of the hard coat layer 65 was pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 65) was hardly visually recognized.
  • the organic EL display device 100ea (100eb) of the present embodiment the following effects can be obtained.
  • the base resin substrate layer 10, the organic EL element layer 20, the base layer 64 a (64 b), and the hard coat layer 65 have residual strain ratios ⁇ 1 , ⁇ 2 , ⁇ 3, and ⁇ 4 , respectively, and have thicknesses d 1 , d 2 , d 3 and d 4 , respectively, Young's modulus E 1, E 2, E 3 and E 4 respectively, stress dispersion coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 respectively,
  • the pressure applied to the surface of the coat layer 65 is ⁇ , ⁇ ( ⁇ 1 ⁇ 1 d 1 / E 1 + ⁇ 2 ⁇ 2 d 2 / E 2 + ⁇ 3 ⁇ 3 d 3 / E 3 + ⁇ 4 ⁇ 4 d 4 / E 4 ) ⁇ 0.4 ⁇ m Therefore, in the organic EL display device 100ea (100eb) having the hard coat layer 65 provided on the surface, plastic deformation of the hard coat layer 65 can be suppressed.
  • the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100ea (100eb) and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 65 is suppressed, so that the organic EL display
  • the display quality of the device 100ea (100eb) can be maintained.
  • the organic EL display device 100ea (100eb) the counter resin substrate layer and the stress adjustment layer are omitted, and the hard coat layer 65 is formed as a single layer. Therefore, the organic EL display device 100ea (100eb) is thinned. In addition, the member cost and the manufacturing cost can be reduced.
  • an organic EL layer having a five-layer structure of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer has been exemplified.
  • a three-layer structure of a layer / hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer may be employed.
  • the organic EL display device using the first electrode as an anode and the second electrode as a cathode has been exemplified.
  • the present invention reverses the stacked structure of the organic EL layers and uses the first electrode as a cathode.
  • the present invention can also be applied to an organic EL display device using the second electrode as an anode.
  • the organic EL display device using the TFT electrode connected to the first electrode as the drain electrode has been exemplified.
  • the TFT electrode connected to the first electrode is used as the source electrode. It can also be applied to an organic EL display device called.
  • the organic EL display devices 100aa (100ab) to 100ea (100eb) have been exemplified, but the present invention has a stacked structure of the exemplified organic EL display devices 100aa (100ab) to 100ea (100eb). Combinations can also be applied freely.
  • the present invention is useful for flexible organic EL display devices.

Abstract

A base resin substrate layer (10), an organic EL element layer (20), a ground layer (28), and a hard coat layer (29) constituting part of an organic EL display device (100aa) have residual strain ratios κ1, κ2, κ3, and κ4 respectively, have thickness d1, d2, d3, and d4 respectively, have Young's modulus E1, E2, E3, E4 respectively, and have stress distribution coefficient α1, α2, α3, and α4,respectively. The relational expression (κ1α1d1/E1 + κ2α2d2/E2 + κ3α3d3/E3 + κ4α4d4/E4) ≤ 0.4 µm is satisfied, where σ is the pressure applied to the surface of the hard coat layer (29).

Description

有機EL表示装置Organic EL display device
 本発明は、有機EL表示装置に関するものである。 The present invention relates to an organic EL display device.
 近年、液晶表示装置に代わる表示装置として、有機EL(electroluminescence)素子を用いた自発光型の有機EL表示装置が注目されている。この有機EL表示装置では、可撓性を有する樹脂基板上に有機EL素子や種々のフィルム等が積層された構造を採用して、繰り返し屈曲可能な有機EL表示装置が提案されている。このような繰り返し屈曲可能な有機EL表示装置では、例えば、鉛筆等による押圧が表示画面に加えられても、永久的な塑性変形(傷)が表示画面に生じ難くなるように、ハードコート層を最表面に設けた構造が提案されている。 In recent years, a self-luminous organic EL display device using an organic EL (electroluminescence) element has attracted attention as a display device that replaces a liquid crystal display device. In this organic EL display device, there has been proposed an organic EL display device that can be bent repeatedly by adopting a structure in which an organic EL element and various films are laminated on a flexible resin substrate. In such an organic EL display device that can be bent repeatedly, for example, a hard coat layer is provided so that permanent plastic deformation (scratches) does not easily occur on the display screen even when a pencil or the like is pressed on the display screen. A structure provided on the outermost surface has been proposed.
 例えば、特許文献1には、鉛筆硬度HB~2Hのプラスチック基材フィルムの少なくとも一方の面に鉛筆硬度3H~5Hのハードコート層を形成して、フィルム全体として鉛筆硬度4H~8Hを有するハードコートフィルムが開示されている。 For example, in Patent Document 1, a hard coat layer having a pencil hardness of 3H to 5H is formed on at least one surface of a plastic substrate film having a pencil hardness of HB to 2H, and the entire film has a pencil hardness of 4H to 8H. A film is disclosed.
特開2000-326447号公報JP 2000-326447 A
 ところで、ハードコート層が最表面(表面)に設けられた有機EL表示装置であっても、ハードコート層に加えられる押圧が高くなると、ハードコート層の下側の下地層に生じる塑性変形等に起因して、最表面のハードコート層に永久的な塑性変形(傷)が生じるおそれがある。そうなると、表示画面に入射する外光の反射光や有機EL素子で発光する光がハードコート層の表面に生じた傷で散乱してしまうので、有機EL表示装置の表示品位を低下してしまう。 By the way, even in the organic EL display device in which the hard coat layer is provided on the outermost surface (surface), if the pressure applied to the hard coat layer is increased, plastic deformation generated in the underlying layer below the hard coat layer is caused. This may cause permanent plastic deformation (scratches) in the outermost hard coat layer. In this case, reflected light of external light incident on the display screen and light emitted from the organic EL element are scattered by scratches generated on the surface of the hard coat layer, so that the display quality of the organic EL display device is deteriorated.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、ハードコート層が表面に設けられた有機EL表示装置において、ハードコート層の塑性変形を抑制することにある。 The present invention has been made in view of such a point, and an object thereof is to suppress plastic deformation of the hard coat layer in the organic EL display device provided with the hard coat layer on the surface.
 上記目的を達成するために、本発明に係る有機EL表示装置は、ベース樹脂基板層と、前記ベース樹脂基板層に設けられた有機EL素子層と、前記有機EL素子層上に設けられた下地層と、前記下地層上に設けられたハードコート層とを備えた有機EL表示装置であって、前記ベース樹脂基板層は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、前記有機EL素子層は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、前記下地層は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、前記ハードコート層は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、前記ハードコート層の前記下地層と反対側の表面に印加する圧力をσ(Pa)とすると、σ(κα/E+κα/E+κα/E+κα/E)≦0.4μmという関係式を満たすことを特徴とする。 In order to achieve the above object, an organic EL display device according to the present invention includes a base resin substrate layer, an organic EL element layer provided on the base resin substrate layer, and a bottom provided on the organic EL element layer. An organic EL display device comprising a base layer and a hard coat layer provided on the base layer, wherein the base resin substrate layer has a residual strain ratio κ 1 , a thickness d 1 (μm), and a Young's modulus E 1 (Pa) and a stress dispersion coefficient α 1 , and the organic EL element layer has a residual strain ratio κ 2 , a thickness d 2 (μm), a Young's modulus E 2 (Pa), and a stress dispersion coefficient α 2 . The underlayer has a residual strain ratio κ 3 , a thickness d 3 (μm), a Young's modulus E 3 (Pa), and a stress dispersion coefficient α 3 , and the hard coat layer has a residual strain ratio κ 4 , Having a thickness d 4 (μm), a Young's modulus E 4 (Pa) and a stress dispersion coefficient α 4 , Assuming that the pressure applied to the surface of the hard coat layer opposite to the base layer is σ (Pa), σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 ) ≦ 0.4 μm is satisfied.
 本発明によれば、有機EL表示装置を構成する各層の塑性変形量の総和が0.4μm以下であるので、ハードコート層が表面に設けられた有機EL表示装置において、ハードコート層の塑性変形を抑制することができる。 According to the present invention, since the total plastic deformation amount of each layer constituting the organic EL display device is 0.4 μm or less, in the organic EL display device provided with the hard coat layer on the surface, the plastic deformation of the hard coat layer is performed. Can be suppressed.
本発明の第1の実施形態に係る有機EL表示装置の画素構造を示す平面図である。1 is a plan view showing a pixel structure of an organic EL display device according to a first embodiment of the present invention. 図1中のII-II線に沿った有機EL表示装置の断面図である。FIG. 2 is a cross-sectional view of the organic EL display device taken along line II-II in FIG. 本発明の第1の実施形態に係る有機EL表示装置を構成する有機EL素子層の等価回路図である。1 is an equivalent circuit diagram of an organic EL element layer constituting an organic EL display device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る有機EL表示装置を構成する有機EL層の断面図である。It is sectional drawing of the organic electroluminescent layer which comprises the organic electroluminescent display apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置において、応力分散係数を求める際のハードコート層の表面からの距離を説明するための模式図である。In the organic electroluminescence display which concerns on the 1st Embodiment of this invention, it is a schematic diagram for demonstrating the distance from the surface of the hard-coat layer at the time of calculating | requiring a stress dispersion coefficient. 本発明の第1の実施形態に係る有機EL表示装置において、具体的に行った実施例1の内容を示す表である。5 is a table showing the contents of Example 1 specifically performed in the organic EL display device according to the first embodiment of the present invention. 本発明の第1の実施形態に係る有機EL表示装置の変形例の断面図である。It is sectional drawing of the modification of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る変形例の有機EL表示装置において、具体的に行った実施例2の内容を示す表である。6 is a table showing the contents of Example 2 specifically performed in the organic EL display device of the modification according to the first embodiment of the present invention. 本発明の第2の実施形態に係る有機EL表示装置の断面図である。It is sectional drawing of the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る有機EL表示装置において、具体的に行った実施例3の内容を示す表である。It is a table | surface which shows the content of Example 3 specifically performed in the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る有機EL表示装置の変形例の断面図である。It is sectional drawing of the modification of the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る変形例の有機EL表示装置において、具体的に行った実施例4の内容を示す表である。It is a table | surface which shows the content of Example 4 specifically performed in the organic electroluminescence display of the modification which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る有機EL表示装置において、具体的に行った比較例1の内容を示す表である。It is a table | surface which shows the content of the comparative example 1 performed concretely in the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る有機EL表示装置において、具体的に行った比較例2の内容を示す表である。It is a table | surface which shows the content of the comparative example 2 performed concretely in the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る有機EL表示装置において、具体的に行った比較例3の内容を示す表である。It is a table | surface which shows the content of the comparative example 3 performed concretely in the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る有機EL表示装置において、具体的に行った比較例4の内容を示す表である。It is a table | surface which shows the content of the comparative example 4 performed concretely in the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る有機EL表示装置の断面図である。It is sectional drawing of the organic electroluminescence display which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る有機EL表示装置において、具体的に行った実施例5の内容を示す表である。It is a table | surface which shows the content of Example 5 specifically performed in the organic electroluminescence display which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る有機EL表示装置の変形例の断面図である。It is sectional drawing of the modification of the organic electroluminescence display which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る変形例の有機EL表示装置において、具体的に行った実施例6の内容を示す表である。It is a table | surface which shows the content of Example 6 specifically performed in the organic electroluminescence display of the modification which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る有機EL表示装置の断面図である。It is sectional drawing of the organic electroluminescence display which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る有機EL表示装置において、具体的に行った実施例7の内容を示す表である。It is a table | surface which shows the content of Example 7 specifically performed in the organic electroluminescence display which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る有機EL表示装置の変形例の断面図である。It is sectional drawing of the modification of the organic electroluminescence display which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る変形例の有機EL表示装置において、具体的に行った実施例8の内容を示す表である。It is a table | surface which shows the content of Example 8 specifically performed in the organic electroluminescence display of the modification which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る有機EL表示装置の断面図である。It is sectional drawing of the organic electroluminescence display which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る有機EL表示装置において、具体的に行った実施例9の内容を示す表である。It is a table | surface which shows the content of Example 9 specifically performed in the organic electroluminescence display which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る有機EL表示装置の変形例の断面図である。It is sectional drawing of the modification of the organic electroluminescence display which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る変形例の有機EL表示装置において、具体的に行った実施例10の内容を示す表である。It is a table | surface which shows the content of Example 10 specifically performed in the organic electroluminescence display of the modification which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る変形例の有機EL表示装置において、具体的に行った実施例11の内容を示す表である。It is a table | surface which shows the content of Example 11 specifically performed in the organic electroluminescence display of the modification which concerns on the 5th Embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
 《第1の実施形態》
 図1~図8は、本発明に係る有機EL表示装置の第1の実施形態を示している。ここで、図1は、本実施形態の有機EL表示装置100aaの画素構造を示す平面図である。また、図2は、図1中のII-II線に沿った有機EL表示装置100aaの断面図である。また、図3は、有機EL表示装置100aaを構成する有機EL素子層20の等価回路図である。また、図4は、有機EL表示装置100aaを構成する有機EL層17の断面図である。また、図5は、有機EL表示装置100aaにおいて、応力分散係数αを求める際のハードコート層29の表面からの距離を説明するための模式図である。また、図6は、有機EL表示装置100aaにおいて、具体的に行った実施例1の内容を示す表である。また、図7は、有機EL表示装置100aaの変形例の有機EL表示装置100abの断面図である。また、図8は、有機EL表示装置100abにおいて、具体的に行った実施例2の内容を示す表である。
<< First Embodiment >>
1 to 8 show a first embodiment of an organic EL display device according to the present invention. Here, FIG. 1 is a plan view showing a pixel structure of the organic EL display device 100aa of the present embodiment. FIG. 2 is a cross-sectional view of the organic EL display device 100aa along the line II-II in FIG. FIG. 3 is an equivalent circuit diagram of the organic EL element layer 20 constituting the organic EL display device 100aa. FIG. 4 is a cross-sectional view of the organic EL layer 17 constituting the organic EL display device 100aa. FIG. 5 is a schematic diagram for explaining the distance from the surface of the hard coat layer 29 when the stress dispersion coefficient α is obtained in the organic EL display device 100aa. FIG. 6 is a table showing the contents of Example 1 specifically performed in the organic EL display device 100aa. FIG. 7 is a cross-sectional view of an organic EL display device 100ab which is a modification of the organic EL display device 100aa. FIG. 8 is a table showing the contents of Example 2 specifically performed in the organic EL display device 100ab.
 有機EL表示装置100aaは、図2に示すように、例えば、ポリイミド樹脂製のベース樹脂基板層10と、ベース樹脂基板層10の図中下側の表面に設けられた応力調整層8と、ベース樹脂基板層10の図中上側の表面に設けられた有機EL素子層20と、有機EL素子層20上に設けられた下地層28と、下地層28上に設けられたハードコート層29とを備えている。ここで、有機EL表示装置100aaの表示領域(不図示)には、図1に示すように、複数のサブ画素Pがマトリクス状に配置されている。また、有機EL表示装置100aaの表示領域では、図1に示すように、赤色の階調表示を行うための赤色発光領域Lrを有するサブ画素P、緑色の階調表示を行うための緑色発光領域Lgを有するサブ画素P、及び青色の階調表示を行うための青色発光領域Lbを有するサブ画素Pが互いに隣り合うように設けられている。なお、有機EL表示装置100aaの表示領域では、赤色発光領域Lr、緑色発光領域Lg及び青色発光領域Lbを有する隣り合う3つのサブ画素Pにより1つの画素が構成されている。 As shown in FIG. 2, the organic EL display device 100aa includes, for example, a base resin substrate layer 10 made of polyimide resin, a stress adjustment layer 8 provided on the lower surface of the base resin substrate layer 10 in the figure, a base An organic EL element layer 20 provided on the upper surface of the resin substrate layer 10 in the figure, a base layer 28 provided on the organic EL element layer 20, and a hard coat layer 29 provided on the base layer 28. I have. Here, in the display area (not shown) of the organic EL display device 100aa, as shown in FIG. 1, a plurality of sub-pixels P are arranged in a matrix. Further, in the display area of the organic EL display device 100aa, as shown in FIG. 1, the sub-pixel P having a red light emitting area Lr for performing red gradation display, and the green light emitting area for performing green gradation display. A sub pixel P having Lg and a sub pixel P having a blue light emitting region Lb for performing blue gradation display are provided adjacent to each other. Note that, in the display area of the organic EL display device 100aa, one pixel is configured by three adjacent sub-pixels P each having a red light emitting area Lr, a green light emitting area Lg, and a blue light emitting area Lb.
 応力調整層8は、有機EL表示装置100aaにおける曲げ応力の中立面の位置を制御するように構成されている。ここで、応力調整層8は、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、(メタ)アクリレート、トリアセチルセルロース等のプラスチックフィルムにより構成されている。なお、ベース樹脂基板層10及び応力調整層8の層間には、例えば、光硬化型接着シート、UV硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、シアノアクリレート系の瞬間接着剤等からなる裏側接着層9が設けられている。 The stress adjustment layer 8 is configured to control the position of the neutral surface of the bending stress in the organic EL display device 100aa. Here, the stress adjustment layer 8 is made of, for example, a plastic film such as polyethylene terephthalate, polyethylene naphthalate, (meth) acrylate, or triacetyl cellulose. In addition, between the base resin substrate layer 10 and the stress adjustment layer 8, for example, a photocurable adhesive sheet, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, a cyanoacrylate instantaneous adhesive, and the like. A back side adhesive layer 9 is provided.
 有機EL素子層20は、図1及び図3に示すように、ベース樹脂基板層10上に図中横方向に互いに平行に延びるように設けられた複数のゲート線11と、図中縦方向に互いに平行に延びるように設けられた複数のソース線12aと、図中縦方向に各ソース線12aと隣り合って互いに平行に延びるように設けられた複数の電源線12bとを備えている。なお、ベース樹脂基板層10と各ゲート線11等のゲート層との層間には、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜などの単層膜又は積層膜からなる防湿層が設けられている。 As shown in FIGS. 1 and 3, the organic EL element layer 20 includes a plurality of gate lines 11 provided on the base resin substrate layer 10 so as to extend parallel to each other in the horizontal direction in the drawing, and in the vertical direction in the drawing. A plurality of source lines 12a provided so as to extend in parallel to each other, and a plurality of power supply lines 12b provided adjacent to each source line 12a in the vertical direction in the drawing so as to extend in parallel with each other. In addition, a moisture-proof layer made of a single layer film or a laminated film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film is provided between the base resin substrate layer 10 and the gate layer such as each gate line 11. It has been.
 さらに、有機EL素子層20は、図3に示すように、各サブ画素P毎にそれぞれ設けられた複数の第1TFT13aと、各サブ画素P毎にそれぞれ設けられた複数の第2TFT13bと、各サブ画素P毎にそれぞれ設けられた複数のキャパシタ13cとを備えている。ここで、第1TFT13aは、図3に示すように、対応するゲート線11及びソース線12aに接続されている。また、第2TFT13bは、図3に示すように、対応する第1TFT13a及び電源線12bに接続されている。そして、第1TFT13a及び第2TFT13bは、例えば、ベース樹脂基板層10上に上記防湿層を介して設けられたゲート電極と、ゲート電極を覆うように設けられたゲート絶縁膜と、ゲート絶縁膜上にゲート電極と重なるように設けられた半導体層と、半導体層上に互いに対峙するように設けられたソース電極及びドレイン電極とを備えている。また、キャパシタ13cは、図3に示すように、対応する第1TFT13a及び電源線12bに接続されている。そして、キャパシタ13cは、例えば、ゲート線11と同一材料により同一層に形成された一方の電極と、ソース線12aと同一材料により同一層に形成された他方の電極と、それらの一対の電極の間に設けられたゲート絶縁膜とにより構成されている。なお、本実施形態では、ボトムゲート型の第1TFT13a及び第2TFT13bを例示したが、第1TFT13a及び第2TFT13bは、トップゲート型のTFTであってもよい。 Further, as shown in FIG. 3, the organic EL element layer 20 includes a plurality of first TFTs 13 a provided for each sub-pixel P, a plurality of second TFTs 13 b provided for each sub-pixel P, and each sub-pixel P. And a plurality of capacitors 13c provided for each pixel P. Here, as shown in FIG. 3, the first TFT 13a is connected to the corresponding gate line 11 and source line 12a. Further, as shown in FIG. 3, the second TFT 13b is connected to the corresponding first TFT 13a and the power supply line 12b. The first TFT 13a and the second TFT 13b are, for example, a gate electrode provided on the base resin substrate layer 10 through the moisture-proof layer, a gate insulating film provided to cover the gate electrode, and a gate insulating film. A semiconductor layer is provided so as to overlap with the gate electrode, and a source electrode and a drain electrode provided on the semiconductor layer so as to face each other. Further, as shown in FIG. 3, the capacitor 13c is connected to the corresponding first TFT 13a and the power supply line 12b. The capacitor 13c includes, for example, one electrode formed in the same layer with the same material as the gate line 11, the other electrode formed in the same layer with the same material as the source line 12a, and a pair of these electrodes. And a gate insulating film provided therebetween. In this embodiment, the bottom gate type first TFT 13a and the second TFT 13b are illustrated, but the first TFT 13a and the second TFT 13b may be top gate type TFTs.
 さらに、有機EL素子層20は、図2に示すように、各第1TFT13a(図3参照)、各第2TFT13b及び各キャパシタ13c(図3参照)を実質的に覆うように設けられた層間絶縁膜14と、層間絶縁膜14上に各サブ画素P毎に陽極としてそれぞれ設けられ、対応する第2TFT13bに接続された複数の第1電極15とを備えている。ここで、層間絶縁膜14は、図2に示すように、各第2TFT13bのドレイン電極の一部以外を覆うように設けられている。なお、層間絶縁膜14は、例えば、感光性アクリル樹脂、感光性ポリイミド樹脂、感光性ポリシロキサン樹脂等により構成されている。また、複数の第1電極15は、複数のサブ画素Pに対応するように、層間絶縁膜14上にマトリクス状に設けられている。また、各サブ画素Pにおいて、第1電極15は、図2に示すように、層間絶縁膜14に形成されたコンタクトホールを介して、第2TFT13bのドレイン電極に接続されている。また、第1電極15は、後述する有機EL層17にホール(正孔)を注入する機能を有している。また、第1電極15は、有機EL層17への正孔注入効率を向上させるために、仕事関数の大きな材料で形成するのがより好ましい。なお、第1電極15を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)等の金属材料が挙げられる。また、第1電極15を構成する材料は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、又はフッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金であっても構わない。さらに、第1電極15を構成する材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物等であってもよい。また、第1電極15は、例えば、ITO/Ag、IZO/Ag、IZO/Alのように、上記材料からなる層を複数積層して形成されていてもよい。なお、導電性酸化物等の中で仕事関数の大きな材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。 Further, as shown in FIG. 2, the organic EL element layer 20 is an interlayer insulating film provided so as to substantially cover each first TFT 13a (see FIG. 3), each second TFT 13b and each capacitor 13c (see FIG. 3). 14 and a plurality of first electrodes 15 provided as an anode for each sub-pixel P on the interlayer insulating film 14 and connected to the corresponding second TFT 13b. Here, as shown in FIG. 2, the interlayer insulating film 14 is provided so as to cover a portion other than a part of the drain electrode of each second TFT 13b. The interlayer insulating film 14 is made of, for example, a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin, or the like. The plurality of first electrodes 15 are provided in a matrix on the interlayer insulating film 14 so as to correspond to the plurality of subpixels P. In each sub-pixel P, the first electrode 15 is connected to the drain electrode of the second TFT 13b through a contact hole formed in the interlayer insulating film 14, as shown in FIG. The first electrode 15 has a function of injecting holes into the organic EL layer 17 described later. The first electrode 15 is more preferably formed of a material having a high work function in order to improve the efficiency of hole injection into the organic EL layer 17. Examples of the material constituting the first electrode 15 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au), Calcium (Ca), Titanium (Ti), Yttrium (Y), Sodium (Na), Ruthenium (Ru), Manganese (Mn), Indium (In), Magnesium (Mg), Lithium (Li), Ytterbium (Yb), etc. The metal material is mentioned. The material constituting the first electrode 15 is, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidation. Astatine (AtO 2 ), lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al), etc. An alloy may be used. Further, the material constituting the first electrode 15 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. There may be. The first electrode 15 may be formed by laminating a plurality of layers made of the above materials, such as ITO / Ag, IZO / Ag, and IZO / Al. Examples of materials having a high work function among conductive oxides include indium tin oxide (ITO) and indium zinc oxide (IZO).
 さらに、有機EL素子層20は、図2に示すように、各第1電極15の端縁部を覆うように格子状に設けられたエッジカバー16と、エッジカバー16から露出する第1電極15を覆うように設けられた有機EL層17とを備えている。ここで、エッジカバー16を構成する材料としては、例えば、酸化シリコン(SiO)、四窒化三ケイ素(Si)のような窒化シリコン(SiNx(xは正数))、シリコンオキシナイトライド(SiNO)等の無機膜、又は(感光性)ポリイミド樹脂、(感光性)アクリル樹脂、(感光性)ポリシロキサン樹脂、ノボラック樹脂等の有機膜が挙げられる。また、有機EL層17は、図4に示すように、第1電極15上に順に設けられた正孔注入層1、正孔輸送層2、発光層3、電子輸送層4及び電子注入層5を備えている。 Further, as shown in FIG. 2, the organic EL element layer 20 includes an edge cover 16 provided in a lattice shape so as to cover the edge of each first electrode 15, and the first electrode 15 exposed from the edge cover 16. And an organic EL layer 17 provided so as to cover the surface. Here, as a material constituting the edge cover 16, for example, silicon oxide (SiO 2 ), silicon nitride such as trisilicon tetranitride (Si 3 N 4 ) (SiNx (x is a positive number)), silicon oxynite Examples thereof include inorganic films such as ride (SiNO), or organic films such as (photosensitive) polyimide resin, (photosensitive) acrylic resin, (photosensitive) polysiloxane resin, and novolak resin. Further, as shown in FIG. 4, the organic EL layer 17 includes a hole injection layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4, and an electron injection layer 5 that are sequentially provided on the first electrode 15. It has.
 正孔注入層1は、陽極バッファ層とも呼ばれ、第1電極15と有機EL層17とのエネルギーレベルを近づけ、第1電極15から有機EL層17への正孔注入効率を改善する機能を有している。ここで、正孔注入層1を構成する材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体等が挙げられる。 The hole injection layer 1 is also called an anode buffer layer, and has a function of improving the efficiency of hole injection from the first electrode 15 to the organic EL layer 17 by bringing the energy levels of the first electrode 15 and the organic EL layer 17 closer to each other. Have. Here, as a material constituting the hole injection layer 1, for example, a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a phenylenediamine derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, Examples include hydrazone derivatives and stilbene derivatives.
 正孔輸送層2は、第1電極15から有機EL層17への正孔の輸送効率を向上させる機能を有している。ここで、正孔輸送層2を構成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等が挙げられる。 The hole transport layer 2 has a function of improving the hole transport efficiency from the first electrode 15 to the organic EL layer 17. Here, examples of the material constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, oxadiazole. Derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, Examples include hydrogenated amorphous silicon carbide, zinc sulfide, and zinc selenide.
 発光層3は、第1電極15及び後述する第2電極18による電圧印加の際に、第1電極15及び第2電極18から正孔及び電子がそれぞれ注入されると共に、正孔及び電子が再結合する領域である。ここで、発光層3は、発光効率が高い材料により形成されている。そして、発光層3を構成する材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンズチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシラン等が挙げられる。 The light emitting layer 3 is injected with holes and electrons from the first electrode 15 and the second electrode 18 when a voltage is applied by the first electrode 15 and the second electrode 18 described later, and the holes and electrons are regenerated. This is the area to be joined. Here, the light emitting layer 3 is formed of a material having high light emission efficiency. Examples of the material constituting the light emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complexes], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, and coumarin derivatives. Benzoxazole derivatives, oxadiazole derivatives, oxazole derivatives, benzimidazole derivatives, thiadiazole derivatives, benzthiazole derivatives, styryl derivatives, styrylamine derivatives, bisstyrylbenzene derivatives, tristyrylbenzene derivatives, perylene derivatives, perinone derivatives, aminopyrene derivatives, Pyridine derivatives, rhodamine derivatives, acuidine derivatives, phenoxazone, quinacridone derivatives, rubrene, poly-p-phenylene vinyle , Polysilane, and the like.
 電子輸送層4は、電子を発光層3まで効率良く移動させる機能を有している。ここで、電子輸送層4を構成する材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。 The electron transport layer 4 has a function of efficiently moving electrons to the light emitting layer 3. Here, examples of the material constituting the electron transport layer 4 include organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , Silole derivatives, metal oxinoid compounds and the like.
 電子注入層5は、第2電極18と有機EL層17とのエネルギーレベルを近づけ、第2電極18から有機EL層17へ電子が注入される効率を向上させる機能を有し、この機能により、有機EL素子層20の駆動電圧を下げることができる。なお、電子注入層5は、陰極バッファ層とも呼ばれる。ここで、電子注入層5を構成する材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)のような無機アルカリ化合物、酸化アルミニウム(Al)、酸化ストロンチウム(SrO)等が挙げられる。 The electron injection layer 5 has a function of bringing the energy levels of the second electrode 18 and the organic EL layer 17 closer to each other, and improving the efficiency with which electrons are injected from the second electrode 18 to the organic EL layer 17. The drive voltage of the organic EL element layer 20 can be lowered. The electron injection layer 5 is also called a cathode buffer layer. Here, as a material constituting the electron injection layer 5, for example, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), barium fluoride. Inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO), and the like can be given.
 さらに、有機EL素子層20は、図2に示すように、有機EL層17及びエッジカバー16を覆うように陰極として設けられた第2電極18と、第2電極18を覆うように設けられた封止膜19とを備えている。ここで、第2電極18は、有機EL層17に電子を注入する機能を有している。また、第2電極18は、有機EL層17への電子注入効率を向上させるために、仕事関数の小さな材料で構成するのがより好ましい。なお、第2電極18を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)等が挙げられる。また、第2電極18は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金により形成されていてもよい。また、第2電極18は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の導電性酸化物により形成されていてもよい。また、第2電極18は、例えば、ITO/Agのように、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数が小さい材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等が挙げられる。また、封止膜19は、有機EL層17を水分や酸素から保護する機能を有している。なお、封止膜19を構成する材料としては、例えば、酸化シリコン(SiO)や酸化アルミニウム(Al)、四窒化三ケイ素(Si)のような窒化シリコン(SiNx(xは正数))、炭窒化ケイ素(SiCN)等の無機材料、アクリレート、ポリ尿素、パリレン、ポリイミド、ポリアミド等の有機材料が挙げられる。 Further, as shown in FIG. 2, the organic EL element layer 20 is provided so as to cover the second electrode 18 provided as a cathode so as to cover the organic EL layer 17 and the edge cover 16, and the second electrode 18. And a sealing film 19. Here, the second electrode 18 has a function of injecting electrons into the organic EL layer 17. The second electrode 18 is more preferably composed of a material having a small work function in order to improve the efficiency of electron injection into the organic EL layer 17. Examples of the material constituting the second electrode 18 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au), Calcium (Ca), Titanium (Ti), Yttrium (Y), Sodium (Na), Ruthenium (Ru), Manganese (Mn), Indium (In), Magnesium (Mg), Lithium (Li), Ytterbium (Yb), etc. Is mentioned. The second electrode 18 is formed of, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidized astatine (AtO 2). ), Lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al), etc. May be. The second electrode 18 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. . The second electrode 18 may be formed by laminating a plurality of layers made of the above materials, for example, ITO / Ag. Examples of materials having a small work function include magnesium (Mg), lithium (Li), magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), and sodium (Na) / potassium (K). ), Lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al), and the like. Further, the sealing film 19 has a function of protecting the organic EL layer 17 from moisture and oxygen. The material constituting the sealing film 19 is, for example, silicon nitride (SiNx (x)) such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), or trisilicon tetranitride (Si 3 N 4 ). Are positive numbers)), inorganic materials such as silicon carbonitride (SiCN), and organic materials such as acrylate, polyurea, parylene, polyimide, and polyamide.
 下地層28は、図2に示すように、封止膜19上に順に設けられた表側第1接着層21、対向樹脂基板層22、表側第2接着層23、偏光板24、表側第3接着層25、タッチパネル26及び表側第4接着層27を備えている。 As shown in FIG. 2, the base layer 28 includes a front-side first adhesive layer 21, a counter resin substrate layer 22, a front-side second adhesive layer 23, a polarizing plate 24, and a front-side third adhesive that are sequentially provided on the sealing film 19. A layer 25, a touch panel 26, and a front-side fourth adhesive layer 27.
 表側第1接着層21は、例えば、UV遅延硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、アクリル系接着剤、ポリオレフィン系接着剤等により構成されている。 The front-side first adhesive layer 21 is composed of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
 対向樹脂基板層22は、例えば、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムにより構成されている。 The counter resin substrate layer 22 is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
 表側第2接着層23、表側第3接着層25及び表側第4接着層27は、例えば、光硬化型接着シート、UV硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、シアノアクリレート系の瞬間接着剤等により構成されている。 The front side second adhesive layer 23, the front side third adhesive layer 25, and the front side fourth adhesive layer 27 are, for example, a photocurable adhesive sheet, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, and a cyanoacrylate type. The instant adhesive is used.
 偏光板24は、ヨウ素を吸着させたポリビニルアルコールフィルムを一軸延伸させた偏光子層と、その偏光子層を挟持する一対の保護フィルムとを備え、それらの一対の保護フィルムを構成するトリアセチルセルロースが主成分になっている。 The polarizing plate 24 includes a polarizer layer obtained by uniaxially stretching a polyvinyl alcohol film on which iodine is adsorbed, and a pair of protective films sandwiching the polarizer layer, and constitutes the pair of protective films. Is the main component.
 タッチパネル26は、例えば、ベースフィルムと、そのベースフィルム上に設けられた静電容量方式のタッチパネル層とを備え、ベースフィルムを構成するポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムが主成分となっている。ここで、タッチパネル層は、格子状にパターニングされた金属配線を有しているものの、金属配線のヤング率が高く、膜厚が1μm以下と薄いので、塑性変形量の計算から除外される。 The touch panel 26 includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film. The plastic film is the main component. Here, the touch panel layer has metal wiring patterned in a lattice shape, but is excluded from the calculation of the amount of plastic deformation because the Young's modulus of the metal wiring is high and the film thickness is as thin as 1 μm or less.
 ハードコート層29は、図2及び図5に示すように、表側第4接着層27上に設けられた第1ハードコート層29aと、第1ハードコート層29a上に設けられた第2ハードコート層29bとを備えている。 2 and 5, the hard coat layer 29 includes a first hard coat layer 29a provided on the front-side fourth adhesive layer 27 and a second hard coat provided on the first hard coat layer 29a. Layer 29b.
 第1ハードコート層29aは、例えば、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムにより構成されている。 The first hard coat layer 29a is made of a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
 第2ハードコート層29bは、例えば、UV硬化型のオルガノシリコン樹脂、熱硬化型樹脂、アクリル樹脂、ウレタン樹脂、ポリシロキサン樹脂等により構成されている。 The second hard coat layer 29b is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, a polysiloxane resin, or the like.
 上記構成の有機EL表示装置100aaは、各サブ画素Pにおいて、ゲート線11を介して第1TFT13aにゲート信号を入力することにより、第1TFT13aをオン状態にし、ソース線12aを介して第2TFT13bのゲート電極及びキャパシタ13cにソース信号に対応する所定の電圧を書き込み、第2TFT13bのゲート電圧に基づいて電源線12bからの電流の大きさが規定され、その規定された電流が発光層3に供給されることにより、発光層3が発光して、画像表示を行うように構成されている。なお、有機EL表示装置100aaでは、第1TFT13aがオフ状態になっても、第2TFT13bのゲート電圧がキャパシタ13cによって保持されるので、次のフレームのゲート信号が入力されるまで発光層3による発光が維持される。 In the organic EL display device 100aa configured as described above, in each sub-pixel P, a gate signal is input to the first TFT 13a via the gate line 11 to turn on the first TFT 13a, and the gate of the second TFT 13b via the source line 12a. A predetermined voltage corresponding to the source signal is written into the electrode and capacitor 13c, the magnitude of the current from the power supply line 12b is defined based on the gate voltage of the second TFT 13b, and the defined current is supplied to the light emitting layer 3 Thus, the light emitting layer 3 emits light and is configured to display an image. In the organic EL display device 100aa, even when the first TFT 13a is turned off, the gate voltage of the second TFT 13b is held by the capacitor 13c, so that the light emitting layer 3 emits light until the gate signal of the next frame is input. Maintained.
 また、本実施形態の有機EL表示装置100aaは、例えば、ガラス基板上に形成したベース樹脂基板層10の表面に、周知の方法を用いて、有機EL素子層20を形成し、有機EL素子層20上に下地層28及びハードコート層29を積層した後に、ガラス基板を剥離させたベース樹脂基板層10の裏面に、裏側接着層9及び応力調整層8を形成することにより、製造することができる。 Moreover, the organic EL display device 100aa of the present embodiment forms, for example, the organic EL element layer 20 on the surface of the base resin substrate layer 10 formed on the glass substrate by using a well-known method. After the base layer 28 and the hard coat layer 29 are laminated on the substrate 20, the back side adhesive layer 9 and the stress adjustment layer 8 are formed on the back surface of the base resin substrate layer 10 from which the glass substrate has been peeled off. it can.
 なお、本実施形態では、応力調整層8が設けられた有機EL表示装置100aaを例示したが、図7に示すように、応力調整層8(及び裏側接着層9)が省略された有機EL表示装置100abであってもよい。 In the present embodiment, the organic EL display device 100aa provided with the stress adjustment layer 8 is illustrated, but as shown in FIG. 7, the organic EL display in which the stress adjustment layer 8 (and the back side adhesive layer 9) is omitted. The apparatus 100ab may be used.
 また、本実施形態の有機EL表示装置100aaは、構成する各層の塑性変形量の総和が0.4μm以下である、すなわち、
σ(κα/E+κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすように構成されている。ここで、ベース樹脂基板層10は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、有機EL素子層20は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、下地層28は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層29は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、応力調整層8は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層29(第2ハードコート層29b)の下地層28と反対側の表面(上面)に印加する圧力をσ(Pa)とする。なお、σ(κα/E+κα/E+κα/E+κα/E+κα/E)>0.4μmの場合には、第2ハードコート層29bの表面における半永久的な塑性変形(傷)が視認され易くなる。
Further, in the organic EL display device 100aa of the present embodiment, the total amount of plastic deformation of each layer constituting the layer is 0.4 μm or less, that is,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5 ) ≦ 0 .4 μm
It is comprised so that the relational expression may be satisfied. Here, the base resin substrate layer 10 has a residual strain ratio κ 1 , a thickness d 1 (μm), a Young's modulus E 1 (Pa), and a stress dispersion coefficient α 1 , and the organic EL element layer 20 has a residual strain. It has a ratio κ 2 , a thickness d 2 (μm), a Young's modulus E 2 (Pa), and a stress dispersion coefficient α 2 , and the underlayer 28 has a residual strain ratio κ 3 , a thickness d 3 (μm), and a Young's modulus. E 3 (Pa) and a stress dispersion coefficient α 3 , and the hard coat layer 29 has a residual strain ratio κ 4 , a thickness d 4 (μm), a Young's modulus E 4 (Pa), and a stress dispersion coefficient α 4 . The stress adjustment layer 8 has a residual strain ratio κ 5 , a thickness d 5 (μm), a Young's modulus E 5 (Pa), and a stress dispersion coefficient α 5 , and the hard coat layer 29 (second hard coat layer 29b). ) Is a pressure applied to the surface (upper surface) on the opposite side to the underlayer 28. Incidentally, σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5) In the case of> 0.4 μm, semi-permanent plastic deformation (scratches) on the surface of the second hard coat layer 29b is easily visible.
 各層の残留歪比率κは、ナノインデンテーション法(ISO 14577)により荷重を1mN~10mNの範囲で変化させたときの最大押し込み深さhmaxの変化量Δhmaxと、永久くぼみ深さhの変化量Δhとを測定し、最大押し込み深さhmaxの変化量Δhmaxに対する永久くぼみ深さhの変化量Δhの比率Δh/Δhmaxで規定される。 The residual strain ratio κ of each layer is determined by the change Δh max in the maximum indentation depth h max when the load is changed in the range of 1 mN to 10 mN by the nanoindentation method (ISO 14577) and the depth of the permanent depression h p and measuring the amount of change Delta] h p, defined by the ratio Δh p / Δh max variation Delta] h p of the depth h p depressions permanently against variation Delta] h max of the maximum indentation depth h max.
 各層のヤング率Eは、ナノインデンテーション法により測定された押し込み弾性率で規定される。 The Young's modulus E of each layer is defined by the indentation elastic modulus measured by the nanoindentation method.
 各層の応力分散係数αは、ハードコート層29の下地層28と反対側の表面(上面)から当該層の厚さ方向の中心位置までの距離をx(μm)とすると、
x≦300の場合、
α=-1.5×10-7+8.6×10-5-1.7×10-2x+1.45
x>300の場合、
α=0
の式で規定される。ここで、ハードコート層29の上面から当該層の厚さ方向の中心位置までの距離xについて、例えば、図5を用いて説明すると、厚さdを有する第2ハードコート層29bでは、x=d/2となり、厚さdを有する第1ハードコート層29aでは、x=d+d/2となる。
The stress dispersion coefficient α of each layer is defined as x (μm) when the distance from the surface (upper surface) opposite to the base layer 28 of the hard coat layer 29 to the center position in the thickness direction of the layer is
When x ≦ 300,
α = −1.5 × 10 −7 x 3 + 8.6 × 10 −5 x 2 −1.7 × 10 −2 x + 1.45
If x> 300,
α = 0
It is prescribed by the formula of Here, the distance x from the upper surface of the hard coat layer 29 to the center position in the thickness direction of the layer, for example, will be described with reference to FIG. 5, the second hard coat layer 29b having a thickness d b, x b = d b / 2, and in the first hard coat layer 29a having the thickness d a , x b = d b + d a / 2.
 なお、有機EL素子層20、下地層28、ハードコート層29のような積層構造を有する構成物については、それを構成する各構成層の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求め、それらの値から塑性変形量をそれぞれ算出して合算する。 In addition, about the structure which has laminated structures, such as the organic EL element layer 20, the base layer 28, and the hard-coat layer 29, residual-strain ratio (kappa), thickness d, Young's modulus E, and stress of each structure layer which comprises it The dispersion coefficient α is obtained, and the amount of plastic deformation is calculated from these values and combined.
 一方、本実施形態の有機EL表示装置100abは、構成する各層の塑性変形量の総和が0.4μm以下である、すなわち、
σ(κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすように構成されている。なお、σ(κα/E+κα/E+κα/E+κα/E)>0.4μmの場合には、第2ハードコート層29bの表面における半永久的な塑性変形(傷)が視認され易くなる。
On the other hand, in the organic EL display device 100ab of the present embodiment, the total amount of plastic deformation of each layer constituting the layer is 0.4 μm or less.
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 ) ≦ 0.4 μm
It is comprised so that the relational expression may be satisfied. If σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 )> 0.4 μm, Semi-permanent plastic deformation (scratches) on the surface of the second hard coat layer 29b is easily visually recognized.
 次に、具体的に行った実験について説明する。 Next, a specific experiment will be described.
 本実施形態の実施例(実施例1)として、以下の構成の有機EL表示装置100aaを作製した(図6の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 As an example (Example 1) of the present embodiment, an organic EL display device 100aa having the following configuration was manufactured (see the table in FIG. 6). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 応力調整層8:厚さ10.0μmのポリエチレンテレフタレートフィルム
 裏側接着層9:厚さ10.0μmの光硬化型接着シート(東亞合成株式会社製のUVPシリーズ)
 ベース樹脂基板層10:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層21:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 対向樹脂基板層22:厚さ25.0μmのアラミドフィルム
 表側第2接着層23:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 偏光板24:厚さ35.0μmのトリアセチルセルロース
 表側第3接着層25:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 タッチパネル26:厚さ25.0μmのアラミドフィルム
 表側第4接着層27:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 第1ハードコート層29a:厚さ25.0μmのアラミドフィルム
 第2ハードコート層29b:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、上記最大押し込み深さhmaxの変化量Δhmax、永久くぼみ深さhの変化量Δh及び押し込み弾性率のナノインデンテーション法による測定は、フィルム物については、ガラス基板上に10μm以上のものを貼り付け、塗布物については、ガラス基板上に10μm以上の厚さで形成して行った。また、第2ハードコート層29bの上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図6の表では、省略されている。
Stress adjusting layer 8: Polyethylene terephthalate film with a thickness of 10.0 μm Back side adhesive layer 9: Photocurable adhesive sheet with a thickness of 10.0 μm (UVP series manufactured by Toagosei Co., Ltd.)
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film, front side first adhesive layer 21: 5.0 μm thick UV delayed curable adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Opposite resin substrate layer 22: aramid film having a thickness of 25.0 μm Front side second adhesive layer 23: epoxy resin adhesive having a thickness of 5.0 μm (manufactured by Arteco)
Polarizing plate 24: Triacetyl cellulose having a thickness of 35.0 μm Front side third adhesive layer 25: Epoxy resin adhesive having a thickness of 5.0 μm (manufactured by Arteco)
Touch panel 26: Aramid film with a thickness of 25.0 μm Front side fourth adhesive layer 27: Epoxy resin adhesive with a thickness of 5.0 μm (manufactured by Arteco)
The first hard coat layer 29a: aramid film second hard coat layer having a thickness of 25.0 29 b: thickness 10.0μm organosilicon resin wherein the UV-curable, the variation of the maximum indentation depth h max Delta] h max , measured by the nanoindentation method variation Delta] h p and indentation modulus of the permanent indentation depth h p, for the film was stuck to more than 10μm onto a glass substrate, for coating object is a glass substrate And a thickness of 10 μm or more. The pressure σ applied to the upper surface of the second hard coat layer 29b was 90 MPa. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 6, it is omitted because it hardly affects the total amount of plastic deformation.
 作製された有機EL表示装置100aaは、図6の表に示すように、塑性変形量の総和0.394μmとなり、第2ハードコート層29bの上面を90MPaの圧力で押圧した後であっても、装置表面(第2ハードコート層29bの表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 6, the manufactured organic EL display device 100aa has a total plastic deformation amount of 0.394 μm, and even after the upper surface of the second hard coat layer 29b is pressed with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) on the device surface (the surface of the second hard coat layer 29b) was hardly visually recognized.
 また、本実施形態の実施例(実施例2)として、以下の構成の有機EL表示装置100abを作製した(図8の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 In addition, as an example (Example 2) of the present embodiment, an organic EL display device 100ab having the following configuration was manufactured (see the table in FIG. 8). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 ベース樹脂基板層10:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層21:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 対向樹脂基板層22:厚さ25.0μmのアラミドフィルム
 表側第2接着層23:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 偏光板24:厚さ35.0μmのトリアセチルセルロース
 表側第3接着層25:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 タッチパネル26:厚さ25.0μmのアラミドフィルム
 表側第4接着層27:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 第1ハードコート層29a:厚さ25.0μmのアラミドフィルム
 第2ハードコート層29b:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層29bの上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図8の表では、省略されている。
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film, front side first adhesive layer 21: 5.0 μm thick UV delayed curable adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Opposite resin substrate layer 22: aramid film having a thickness of 25.0 μm Front side second adhesive layer 23: epoxy resin adhesive having a thickness of 5.0 μm (manufactured by Arteco)
Polarizing plate 24: Triacetyl cellulose having a thickness of 35.0 μm Front side third adhesive layer 25: Epoxy resin adhesive having a thickness of 5.0 μm (manufactured by Arteco)
Touch panel 26: Aramid film with a thickness of 25.0 μm Front side fourth adhesive layer 27: Epoxy resin adhesive with a thickness of 5.0 μm (manufactured by Arteco)
First hard coat layer 29a: aramid film with a thickness of 25.0 μm Second hard coat layer 29b: a UV curable organosilicon resin with a thickness of 10.0 μm Here, the pressure applied to the upper surface of the second hard coat layer 29b σ was set to 90 MPa. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 8, it is omitted because it hardly affects the total amount of plastic deformation.
 作製された有機EL表示装置100abは、図8の表に示すように、塑性変形量の総和0.366μmとなり、第2ハードコート層29bの上面を90MPaの圧力で押圧した後であっても、装置表面(第2ハードコート層29bの表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 8, the manufactured organic EL display device 100ab has a total plastic deformation amount of 0.366 μm, and even after pressing the upper surface of the second hard coat layer 29b with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) on the device surface (the surface of the second hard coat layer 29b) was hardly visually recognized.
 以上説明したように、本実施形態の有機EL表示装置100aaによれば、以下の効果を得ることができる。 As described above, according to the organic EL display device 100aa of the present embodiment, the following effects can be obtained.
 ベース樹脂基板層10、有機EL素子層20、下地層28、ハードコート層29及び応力調整層8が、残留歪比率κ、κ、κ、κ及びκをそれぞれ有し、厚さd、d、d、d及びdをそれぞれ有し、ヤング率E1、2、、E及びEをそれぞれ有し、応力分散係数α、α、α、α及びαをそれぞれ有し、ハードコート層29の表面に印加する圧力をσとすると、
σ(κα/E+κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすので、ハードコート層29が表面に設けられた有機EL表示装置100aaにおいて、ハードコート層29の塑性変形を抑制することができる。これにより、有機EL表示装置100aaの表示画面に入射する外光の反射光や有機EL素子層20で発光する光のハードコート層29の表面における散乱が抑制されるので、有機EL表示装置100aaの表示品位を保持することができる。
The base resin substrate layer 10, the organic EL element layer 20, the base layer 28, the hard coat layer 29, and the stress adjustment layer 8 have residual strain ratios κ 1 , κ 2 , κ 3 , κ 4 and κ 5 , respectively. And d 1 , d 2 , d 3 , d 4 and d 5 respectively, Young's modulus E 1, E 2, E 3 , E 4 and E 5 respectively, and stress distribution coefficients α 1 , α 2 , α 3 , α 4, and α 5 respectively, and σ is a pressure applied to the surface of the hard coat layer 29,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5 ) ≦ 0 .4 μm
Therefore, the plastic deformation of the hard coat layer 29 can be suppressed in the organic EL display device 100aa provided with the hard coat layer 29 on the surface. Thereby, the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100aa and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 29 is suppressed, so that the organic EL display device 100aa Display quality can be maintained.
 また、本実施形態の有機EL表示装置100abによれば、以下の効果を得ることができる。 Further, according to the organic EL display device 100ab of the present embodiment, the following effects can be obtained.
 ベース樹脂基板層10、有機EL素子層20、下地層28及びハードコート層29が、残留歪比率κ、κ、κ及びκをそれぞれ有し、厚さd、d、d及びdをそれぞれ有し、ヤング率E1、2、及びEをそれぞれ有し、応力分散係数α、α、α及びαをそれぞれ有し、ハードコート層29の表面に印加する圧力をσとすると、
σ(κα/E+κα/E+κα/E+κα/E+)≦0.4μm
という関係式を満たすので、ハードコート層29が表面に設けられた有機EL表示装置100abにおいて、ハードコート層29の塑性変形を抑制することができる。これにより、有機EL表示装置100abの表示画面に入射する外光の反射光や有機EL素子層20で発光する光のハードコート層29の表面における散乱が抑制されるので、有機EL表示装置100abの表示品位を保持することができる。
The base resin substrate layer 10, the organic EL element layer 20, the base layer 28, and the hard coat layer 29 have residual strain ratios κ 1 , κ 2 , κ 3 and κ 4 , respectively, and have thicknesses d 1 , d 2 , d. 3 and d 4 respectively, Young's modulus E 1, E 2, E 3 and E 4 respectively, stress dispersion coefficients α 1 , α 2 , α 3 and α 4 respectively, and hard coat layer 29 If the pressure applied to the surface of σ is σ,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 +) ≦ 0.4 μm
Therefore, in the organic EL display device 100ab provided with the hard coat layer 29 on the surface, plastic deformation of the hard coat layer 29 can be suppressed. Thereby, the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100ab and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 29 is suppressed. Display quality can be maintained.
 《第2の実施形態》
 図9~図16は、本発明に係る有機EL表示装置の第2の実施形態を示している。ここで、図9は、本実施形態の有機EL表示装置100baの断面図である。また、図10は、有機EL表示装置100baにおいて、具体的に行った実施例3の内容を示す表である。また、図11は、有機EL表示装置100baの変形例の有機EL表示装置100bbの断面図である。また、図12は、有機EL表示装置100bbにおいて、具体的に行った実施例4の内容を示す表である。また、図13~図16は、有機EL表示装置100baにおいて、具体的に行った比較例1~4の内容を示す表である。なお、以下の各実施形態において、図1~図8と同じ部分については同じ符号を付して、その詳細な説明を省略する。
<< Second Embodiment >>
9 to 16 show a second embodiment of the organic EL display device according to the present invention. Here, FIG. 9 is a cross-sectional view of the organic EL display device 100ba of the present embodiment. FIG. 10 is a table showing the contents of Example 3 specifically performed in the organic EL display device 100ba. FIG. 11 is a cross-sectional view of an organic EL display device 100bb which is a modification of the organic EL display device 100ba. FIG. 12 is a table showing the contents of Example 4 specifically performed in the organic EL display device 100bb. FIGS. 13 to 16 are tables showing the contents of Comparative Examples 1 to 4 specifically performed in the organic EL display device 100ba. In the following embodiments, the same parts as those in FIGS. 1 to 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 上記実施形態1では、偏光板24を備えた有機EL表示装置100aaを例示したが、本実施形態では、偏光板24の代わりにカラーフィルター32を備えた有機EL表示装置100baを例示する。 In the first embodiment, the organic EL display device 100aa including the polarizing plate 24 is illustrated. However, in the present embodiment, the organic EL display device 100ba including the color filter 32 is illustrated instead of the polarizing plate 24.
 有機EL表示装置100baは、図9に示すように、ベース樹脂基板層10と、ベース樹脂基板層10の図中下側の表面に設けられた応力調整層8と、ベース樹脂基板層10の図中上側の表面に設けられた有機EL素子層20と、有機EL素子層20上に設けられた下地層37と、下地層37上に設けられたハードコート層38とを備えている。なお、有機EL表示装置100baの表示領域に配列された画素の構造は、上記実施形態1の有機EL表示装置100aaの表示領域に配列された画素の構造と実質的に同じである。 As shown in FIG. 9, the organic EL display device 100 ba includes a base resin substrate layer 10, a stress adjustment layer 8 provided on the lower surface of the base resin substrate layer 10, and a diagram of the base resin substrate layer 10. An organic EL element layer 20 provided on the middle upper surface, a base layer 37 provided on the organic EL element layer 20, and a hard coat layer 38 provided on the base layer 37 are provided. The structure of the pixels arranged in the display area of the organic EL display device 100ba is substantially the same as the structure of the pixels arranged in the display area of the organic EL display device 100aa of the first embodiment.
 下地層37は、図7に示すように、封止膜19上に順に設けられた表側第1接着層31、カラーフィルター32、対向樹脂基板層33、表側第2接着層34、タッチパネル35及び表側第3接着層36を備えている。 As shown in FIG. 7, the base layer 37 includes a front-side first adhesive layer 31, a color filter 32, a counter resin substrate layer 33, a front-side second adhesive layer 34, a touch panel 35, and a front-side provided on the sealing film 19 in order. A third adhesive layer 36 is provided.
 表側第1接着層31は、例えば、UV遅延硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、アクリル系接着剤、ポリオレフィン系接着剤等により構成されている。 The front side first adhesive layer 31 is made of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
 カラーフィルター32は、例えば、格子状に設けられたブラックマトリクス層と、各サブ画素Pに対応するようにそれぞれ設けられた赤色層、緑色層及び青色層の複数のカラーレジスト層と、ブラックマトリクス層及び各カラーレジスト層を覆うように設けられたオーバーコート層とを備え、感光性アクリル樹脂、感光性ポリイミド樹脂、感光性ポリシロキサン樹脂等が主成分になっている。なお、カラーフィルター32は、対向樹脂基板層33上に形成されている。 The color filter 32 includes, for example, a black matrix layer provided in a lattice shape, a plurality of color resist layers of a red layer, a green layer, and a blue layer provided so as to correspond to each sub-pixel P, and a black matrix layer And an overcoat layer provided so as to cover each color resist layer, and a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin or the like is a main component. The color filter 32 is formed on the counter resin substrate layer 33.
 対向樹脂基板層33は、例えば、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムにより構成されている。 The counter resin substrate layer 33 is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
 表側第2接着層34及び表側第3接着層36は、例えば、光硬化型接着シート、UV硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、シアノアクリレート系の瞬間接着剤等により構成されている。 The front side second adhesive layer 34 and the front side third adhesive layer 36 are composed of, for example, a photocurable adhesive sheet, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, a cyanoacrylate instantaneous adhesive, or the like. Has been.
 タッチパネル35は、例えば、ベースフィルムと、そのベースフィルム上に設けられた静電容量方式のタッチパネル層とを備え、ベースフィルムを構成するポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムが主成分となっている。 The touch panel 35 includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film. The plastic film is the main component.
 ハードコート層38は、表側第3接着層36上に設けられた第1ハードコート層と、その第1ハードコート層上に設けられた第2ハードコート層とを備えている。ここで、第1ハードコート層は、例えば、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムにより構成されている。また、第2ハードコート層は、例えば、UV硬化型のオルガノシリコン樹脂、熱硬化型樹脂、アクリル樹脂、ウレタン樹脂、ポリシロキサン樹脂等により構成されている。 The hard coat layer 38 includes a first hard coat layer provided on the front side third adhesive layer 36 and a second hard coat layer provided on the first hard coat layer. Here, the first hard coat layer is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate. The second hard coat layer is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, or a polysiloxane resin.
 上記構成の有機EL表示装置100baは、上記実施形態1の有機EL表示装置100aaと同様に、各サブ画素Pにおいて、発光層3を適宜発光させることにより、画像表示を行うように構成されている。なお、上記実施形態1の有機EL表示装置100aaでは、カラーフィルター(32)が配置されていないので、サブ画素P毎にRGBの3色に塗り分けられた3色発光の発光層3を備えていたが、本実施形態の有機EL表示装置100baは、カラーフィルター32が配置されているので、全てのサブ画素Pで白色発光の発光層3を備えている。 Similar to the organic EL display device 100aa of the first embodiment, the organic EL display device 100ba having the above configuration is configured to display an image by appropriately emitting light from the light emitting layer 3 in each sub-pixel P. . In the organic EL display device 100aa of the first embodiment, since the color filter (32) is not disposed, each of the sub-pixels P includes the light emitting layer 3 that emits three colors that are separately applied to three colors of RGB. However, the organic EL display device 100ba of this embodiment includes the light emitting layer 3 that emits white light in all the subpixels P because the color filter 32 is disposed.
 また、本実施形態の有機EL表示装置100baは、上記実施形態1の有機EL表示装置100aaの製造方法を適宜変更することにより、製造することができる。 Further, the organic EL display device 100ba of the present embodiment can be manufactured by appropriately changing the manufacturing method of the organic EL display device 100aa of the first embodiment.
 なお、本実施形態では、応力調整層8が設けられた有機EL表示装置100baを例示したが、図11に示すように、応力調整層8(及び裏側接着層9)が省略された有機EL表示装置100bbであってもよい。 In the present embodiment, the organic EL display device 100ba provided with the stress adjustment layer 8 is exemplified. However, as shown in FIG. 11, the organic EL display in which the stress adjustment layer 8 (and the back side adhesive layer 9) is omitted. It may be the device 100bb.
 また、本実施形態の有機EL表示装置100baは、構成する各層の塑性変形量の総和が0.4μm以下である、すなわち、
σ(κα/E+κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすように構成されている。ここで、ベース樹脂基板層10は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、有機EL素子層20は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、下地層37は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層38は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、応力調整層8は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層38の下地層37と反対側の表面(上面)に印加する圧力をσ(Pa)とする。なお、σ(κα/E+κα/E+κα/E+κα/E+κα/E)>0.4μmの場合には、ハードコート層38の表面における半永久的な塑性変形(傷)が視認され易くなる。
Further, in the organic EL display device 100ba of the present embodiment, the total amount of plastic deformation of each layer constituting the layer is 0.4 μm or less, that is,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5 ) ≦ 0 .4 μm
It is comprised so that the relational expression may be satisfied. Here, the base resin substrate layer 10 has a residual strain ratio κ 1 , a thickness d 1 (μm), a Young's modulus E 1 (Pa), and a stress dispersion coefficient α 1 , and the organic EL element layer 20 has a residual strain. It has a ratio κ 2 , a thickness d 2 (μm), a Young's modulus E 2 (Pa), and a stress dispersion coefficient α 2. The underlayer 37 has a residual strain ratio κ 3 , a thickness d 3 (μm), and a Young's modulus. E 3 (Pa) and a stress dispersion coefficient α 3 , and the hard coat layer 38 has a residual strain ratio κ 4 , a thickness d 4 (μm), a Young's modulus E 4 (Pa), and a stress dispersion coefficient α 4 . The stress adjusting layer 8 has a residual strain ratio κ 5 , a thickness d 5 (μm), a Young's modulus E 5 (Pa), and a stress dispersion coefficient α 5 , and is opposite to the base layer 37 of the hard coat layer 38. Let σ (Pa) be the pressure applied to the surface (upper surface). Incidentally, σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5) When> 0.4 μm, semi-permanent plastic deformation (scratches) on the surface of the hard coat layer 38 is easily visually recognized.
 各層の応力分散係数αは、ハードコート層38の下地層37と反対側の表面(上面)から当該層の厚さ方向の中心位置までの距離をx(μm)とすると、
x≦300の場合、
α=-1.5×10-7+8.6×10-5-1.7×10-2x+1.45
x>300の場合、
α=0
の式で規定される。
The stress dispersion coefficient α of each layer is defined as x (μm) when the distance from the surface (upper surface) opposite to the base layer 37 of the hard coat layer 38 to the center position in the thickness direction of the layer is
When x ≦ 300,
α = −1.5 × 10 −7 x 3 + 8.6 × 10 −5 x 2 −1.7 × 10 −2 x + 1.45
If x> 300,
α = 0
It is prescribed by the formula of
 なお、有機EL素子層20、下地層37、ハードコート層38のような積層構造を有する構成物については、それを構成する各構成層の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求め、それらの値から塑性変形量をそれぞれ算出して合算する。 In addition, about the structure which has laminated structures, such as the organic EL element layer 20, the base layer 37, and the hard-coat layer 38, the residual strain ratio (kappa), thickness d, Young's modulus E, and stress of each structure layer which comprises it The dispersion coefficient α is obtained, and the amount of plastic deformation is calculated from these values and combined.
 一方、本実施形態の有機EL表示装置100bbは、構成する各層の塑性変形量の総和が0.4μm以下である、すなわち、
σ(κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすように構成されている。なお、σ(κα/E+κα/E+κα/E+κα/E)>0.4μmの場合には、ハードコート層38の表面における半永久的な塑性変形(傷)が視認され易くなる。
On the other hand, in the organic EL display device 100bb of the present embodiment, the total amount of plastic deformation of each layer constituting the layer is 0.4 μm or less.
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 ) ≦ 0.4 μm
It is comprised so that the relational expression may be satisfied. If σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 )> 0.4 μm, Semi-permanent plastic deformation (scratches) on the surface of the hard coat layer 38 is easily visually recognized.
 次に、具体的に行った実験について説明する。 Next, a specific experiment will be described.
 本実施形態の実施例(実施例3)として、以下の構成の有機EL表示装置100baを作製した(図10の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 As an example (Example 3) of the present embodiment, an organic EL display device 100ba having the following configuration was manufactured (see the table in FIG. 10). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 応力調整層8:厚さ10.0μmのポリエチレンテレフタレートフィルム
 裏側接着層9:厚さ10.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 ベース樹脂基板層10:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層31:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター32:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層33:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層34:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 タッチパネル35:厚さ25.0μmのアラミドフィルム
 表側第3接着層36:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 第1ハードコート層:厚さ25.0μmのアラミドフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図10の表では、省略されている。
Stress adjustment layer 8: Polyethylene terephthalate film with a thickness of 10.0 μm Back side adhesive layer 9: Epoxy resin adhesive with a thickness of 10.0 μm (manufactured by Arteco)
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film Front side first adhesive layer 31: 5.0 μm thick UV delayed-curing adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter 32: Photosensitive color filter resin having a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer 33: 10.0 μm thick non-photosensitive coating type polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer 34: 5.0 μm thick epoxy resin adhesive (manufactured by Arteco)
Touch panel 35: Aramid film with a thickness of 25.0 μm Front side third adhesive layer 36: Epoxy resin adhesive with a thickness of 5.0 μm (manufactured by Arteco)
First hard coat layer: aramid film having a thickness of 25.0 μm Second hard coat layer: UV-curable organosilicon resin having a thickness of 10.0 μm Here, the pressure σ applied to the upper surface of the second hard coat layer is 90 MPa. It was. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. Since the total amount of plastic deformation is hardly affected, it is omitted in the table of FIG.
 作製された有機EL表示装置100baは、図10の表に示すように、塑性変形量の総和0.361μmとなり、ハードコート層38の上面を90MPaの圧力で押圧した後であっても、装置表面(ハードコート層38の表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 10, the manufactured organic EL display device 100ba has a total plastic deformation amount of 0.361 μm, and even after the upper surface of the hard coat layer 38 is pressed with a pressure of 90 MPa, the surface of the device Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 38) was hardly visually recognized.
 また、本実施形態の実施例(実施例4)として、以下の構成の有機EL表示装置100bbを作製した(図12の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 Further, as an example (Example 4) of the present embodiment, an organic EL display device 100bb having the following configuration was manufactured (see the table in FIG. 12). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 ベース樹脂基板層10:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層31:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター32:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層33:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層34:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 タッチパネル35:厚さ25.0μmのアラミドフィルム
 表側第3接着層36:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 第1ハードコート層:厚さ25.0μmのアラミドフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図12の表では、省略されている。
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film Front side first adhesive layer 31: 5.0 μm thick UV delayed-curing adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter 32: Photosensitive color filter resin having a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer 33: 10.0 μm thick non-photosensitive coating type polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer 34: 5.0 μm thick epoxy resin adhesive (manufactured by Arteco)
Touch panel 35: Aramid film with a thickness of 25.0 μm Front side third adhesive layer 36: Epoxy resin adhesive with a thickness of 5.0 μm (manufactured by Arteco)
First hard coat layer: aramid film having a thickness of 25.0 μm Second hard coat layer: UV-curable organosilicon resin having a thickness of 10.0 μm Here, the pressure σ applied to the upper surface of the second hard coat layer is 90 MPa. It was. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 12, it is omitted because it hardly affects the total amount of plastic deformation.
 作製された有機EL表示装置100bbは、図12の表に示すように、塑性変形量の総和0.318μmとなり、ハードコート層38の上面を90MPaの圧力で押圧した後であっても、装置表面(ハードコート層38の表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 12, the manufactured organic EL display device 100bb had a total plastic deformation amount of 0.318 μm, and even after the upper surface of the hard coat layer 38 was pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 38) was hardly visually recognized.
 また、本実施形態の比較例1として、有機EL表示装置100baに対応する以下の構成の有機EL表示装置を作製した(図13の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 Further, as Comparative Example 1 of the present embodiment, an organic EL display device having the following configuration corresponding to the organic EL display device 100ba was manufactured (see the table in FIG. 13). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 応力調整層:厚さ40.0μmのポリエチレンテレフタレートフィルム
 裏側接着層:厚さ15.0μmの感圧型接着剤
 ベース樹脂基板層:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層:厚さ15.0μmの感圧型接着剤
 タッチパネル:厚さ15.0μmの透明ポリイミド樹脂(ソマール株式会社製のSPIXAREA(登録商標)TPシリーズ)
 表側第3接着層:厚さ15.0μmの感圧型接着剤
 第1ハードコート層:厚さ30.0μmのトリアセチルセルロースフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層を構成する防湿層、第1TFT等、第1電極、有機EL層、第2電極及び封止膜については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図13の表では、省略されている。
Stress adjustment layer: Polyethylene terephthalate film with a thickness of 40.0 μm Back side adhesive layer: Pressure sensitive adhesive with a thickness of 15.0 μm Base resin substrate layer: Non-photosensitive coating type polyimide resin with a thickness of 10.0 μm (Hitachi Kasei DuPont Micro PIQ (registered trademark) series manufactured by Systems Co., Ltd.)
Moisture-proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT, etc .: Including a wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film: Photosensitive acrylic resin with a thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode: 0.1 μm thick ITO / Ag multilayer film formed by a general TFT process Edge cover: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) series manufactured by JSR Corporation) )
Organic EL layer: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film: Thickness formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film Front side first adhesive layer: 5.0 μm thick UV delayed curable adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter: Photosensitive color filter resin with a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer: 10.0 μm thick non-photosensitive coated polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer: Pressure sensitive adhesive with a thickness of 15.0 μm Touch panel: Transparent polyimide resin with a thickness of 15.0 μm (SPIRAREA (registered trademark) TP series manufactured by Somaar Co., Ltd.)
Front side third adhesive layer: pressure sensitive adhesive with a thickness of 15.0 μm First hard coat layer: triacetyl cellulose film with a thickness of 30.0 μm Second hard coat layer: UV curable organosilicon with a thickness of 10.0 μm Resin Here, the pressure σ applied to the upper surface of the second hard coat layer was 90 MPa. For the moisture-proof layer, the first TFT, etc. constituting the organic EL element layer, the first electrode, the organic EL layer, the second electrode, and the sealing film have a plastic deformation amount due to the film thickness, Young's modulus, etc. Since the sum is hardly affected, it is omitted in the table of FIG.
 作製された有機EL表示装置は、図13の表に示すように、塑性変形量の総和4.010μmとなり、ハードコート層の上面を90MPaの圧力で押圧すると、装置表面(ハードコート層の表面)における半永久的な塑性変形(傷)が視認された。 As shown in the table of FIG. 13, the produced organic EL display device has a total plastic deformation amount of 4.010 μm. When the upper surface of the hard coat layer is pressed with a pressure of 90 MPa, the surface of the device (the surface of the hard coat layer) Semi-permanent plastic deformation (scratches) was observed.
 また、本実施形態の比較例2として、有機EL表示装置100baに対応する以下の構成の有機EL表示装置を作製した(図14の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 Further, as Comparative Example 2 of the present embodiment, an organic EL display device having the following configuration corresponding to the organic EL display device 100ba was manufactured (see the table in FIG. 14). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 応力調整層:厚さ40.0μmのポリエチレンテレフタレートフィルム
 裏側接着層:厚さ15.0μmのUV硬化型接着剤(東亞合成株式会社製のアロニックス(登録商標)シリーズ)
 ベース樹脂基板層:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層:厚さ15.0μmのUV硬化型接着剤(東亞合成株式会社製のアロニックス(登録商標)シリーズ)
 タッチパネル:厚さ15.0μmの透明ポリイミド樹脂(ソマール株式会社製のSPIXAREA(登録商標)TPシリーズ)
 表側第3接着層:厚さ15.0μmののUV硬化型接着剤(東亞合成株式会社製のアロニックス(登録商標)シリーズ)
 第1ハードコート層:厚さ30.0μmのトリアセチルセルロースフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層を構成する防湿層、第1TFT等、第1電極、有機EL層、第2電極及び封止膜については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図14の表では、省略されている。
Stress adjustment layer: Polyethylene terephthalate film with a thickness of 40.0 μm Back side adhesive layer: UV curable adhesive with a thickness of 15.0 μm (Aronix (registered trademark) series manufactured by Toagosei Co., Ltd.)
Base resin substrate layer: 10.0 μm thick non-photosensitive coated polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture-proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT, etc .: Including a wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film: Photosensitive acrylic resin with a thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode: 0.1 μm thick ITO / Ag multilayer film formed by a general TFT process Edge cover: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) series manufactured by JSR Corporation) )
Organic EL layer: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film: Thickness formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film Front side first adhesive layer: 5.0 μm thick UV delayed curable adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter: Photosensitive color filter resin with a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer: 10.0 μm thick non-photosensitive coated polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer: 15.0 μm thick UV curable adhesive (Aronix (registered trademark) series manufactured by Toagosei Co., Ltd.)
Touch panel: Transparent polyimide resin with a thickness of 15.0 μm (SPIRAREA (registered trademark) TP series manufactured by Somar Corporation)
Front side third adhesive layer: 15.0 μm thick UV curable adhesive (Aronix (registered trademark) series manufactured by Toagosei Co., Ltd.)
First hard coat layer: 30.0 μm thick triacetyl cellulose film Second hard coat layer: 10.0 μm thick UV curable organosilicon resin Here, the pressure σ applied to the upper surface of the second hard coat layer Was 90 MPa. For the moisture-proof layer, the first TFT, etc. constituting the organic EL element layer, the first electrode, the organic EL layer, the second electrode, and the sealing film have a plastic deformation amount due to the film thickness, Young's modulus, etc. Since the total is hardly affected, it is omitted in the table of FIG.
 作製された有機EL表示装置は、図14の表に示すように、塑性変形量の総和0.800μmとなり、ハードコート層の上面を90MPaの圧力で押圧すると、装置表面(ハードコート層の表面)における半永久的な塑性変形(傷)が視認された。 The produced organic EL display device has a total plastic deformation amount of 0.800 μm as shown in the table of FIG. 14, and when the upper surface of the hard coat layer is pressed with a pressure of 90 MPa, the surface of the device (the surface of the hard coat layer) Semi-permanent plastic deformation (scratches) was observed.
 また、本実施形態の比較例3として、有機EL表示装置100baに対応する以下の構成の有機EL表示装置を作製した(図15の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 Further, as Comparative Example 3 of the present embodiment, an organic EL display device having the following configuration corresponding to the organic EL display device 100ba was manufactured (see the table in FIG. 15). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 応力調整層:厚さ40.0μmのポリエチレンテレフタレートフィルム
 裏側接着層:厚さ15.0μmのUV硬化型接着剤(東亞合成株式会社製のアロニックス(登録商標)シリーズ)
 ベース樹脂基板層:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層:厚さ15.0μmのUV硬化型接着剤(東亞合成株式会社製のアロニックス(登録商標)シリーズ)
 タッチパネル:厚さ15.0μmの透明ポリイミド樹脂(ソマール株式会社製のSPIXAREA(登録商標)TPシリーズ)
 表側第3接着層:厚さ15.0μmのUV硬化型接着剤(東亞合成株式会社製のアロニックス(登録商標)シリーズ)
 第1ハードコート層:厚さ30.0μmのトリアセチルセルロースフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層を構成する防湿層、第1TFT等、第1電極、有機EL層、第2電極及び封止膜については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図15の表では、省略されている。
Stress adjustment layer: Polyethylene terephthalate film with a thickness of 40.0 μm Back side adhesive layer: UV curable adhesive with a thickness of 15.0 μm (Aronix (registered trademark) series manufactured by Toagosei Co., Ltd.)
Base resin substrate layer: 10.0 μm thick non-photosensitive coated polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture-proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT, etc .: Including a wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film: Photosensitive acrylic resin with a thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode: 0.1 μm thick ITO / Ag multilayer film formed by a general TFT process Edge cover: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) series manufactured by JSR Corporation) )
Organic EL layer: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film: Thickness formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film Front side first adhesive layer: 5.0 μm thick UV delayed curable adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter: Photosensitive color filter resin with a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer: 10.0 μm thick non-photosensitive coated polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer: 15.0 μm thick UV curable adhesive (Aronix (registered trademark) series manufactured by Toagosei Co., Ltd.)
Touch panel: Transparent polyimide resin with a thickness of 15.0 μm (SPIRAREA (registered trademark) TP series manufactured by Somar Corporation)
Front side third adhesive layer: 15.0 μm thick UV curable adhesive (Aronix (registered trademark) series manufactured by Toagosei Co., Ltd.)
First hard coat layer: 30.0 μm thick triacetyl cellulose film Second hard coat layer: 10.0 μm thick UV curable organosilicon resin Here, the pressure σ applied to the upper surface of the second hard coat layer Was 90 MPa. For the moisture-proof layer, the first TFT, etc. constituting the organic EL element layer, the first electrode, the organic EL layer, the second electrode, and the sealing film have a plastic deformation amount due to the film thickness, Young's modulus, etc. Since the total is hardly affected, it is omitted in the table of FIG.
 作製された有機EL表示装置は、図15の表に示すように、塑性変形量の総和0.602μmとなり、ハードコート層の上面を90MPaの圧力で押圧すると、装置表面(ハードコート層の表面)における半永久的な塑性変形(傷)が視認された。 As shown in the table of FIG. 15, the produced organic EL display device has a total plastic deformation amount of 0.602 μm. When the upper surface of the hard coat layer is pressed with a pressure of 90 MPa, the surface of the device (the surface of the hard coat layer) Semi-permanent plastic deformation (scratches) was observed.
 また、本実施形態の比較例4として、有機EL表示装置100baに対応する以下の構成の有機EL表示装置を作製した(図16の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 Further, as Comparative Example 4 of the present embodiment, an organic EL display device having the following configuration corresponding to the organic EL display device 100ba was produced (see the table in FIG. 16). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 応力調整層:厚さ10.0μmのポリエチレンテレフタレートフィルム
 裏側接着層:厚さ10.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 ベース樹脂基板層:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 タッチパネル:厚さ25.0μmのポリエチレンテレフタレートフィルム
 表側第3接着層:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 第1ハードコート層:厚さ25.0μmのアラミドフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層を構成する防湿層、第1TFT等、第1電極、有機EL層、第2電極及び封止膜については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図16の表では、省略されている。
Stress adjustment layer: 10.0 μm thick polyethylene terephthalate film Back side adhesive layer: 10.0 μm thick epoxy resin adhesive (manufactured by Arteco)
Base resin substrate layer: 10.0 μm thick non-photosensitive coated polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture-proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT, etc .: Including a wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film: Photosensitive acrylic resin with a thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode: 0.1 μm thick ITO / Ag multilayer film formed by a general TFT process Edge cover: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) series manufactured by JSR Corporation) )
Organic EL layer: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film: Thickness formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film Front side first adhesive layer: 5.0 μm thick UV delayed curable adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter: Photosensitive color filter resin with a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer: 10.0 μm thick non-photosensitive coated polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer: 5.0 μm thick epoxy resin adhesive (manufactured by Arteco)
Touch panel: Polyethylene terephthalate film with a thickness of 25.0 μm Front side third adhesive layer: Epoxy resin adhesive with a thickness of 5.0 μm (manufactured by Arteco)
First hard coat layer: aramid film having a thickness of 25.0 μm Second hard coat layer: UV-curable organosilicon resin having a thickness of 10.0 μm Here, the pressure σ applied to the upper surface of the second hard coat layer is 90 MPa. It was. For the moisture-proof layer, the first TFT, etc. constituting the organic EL element layer, the first electrode, the organic EL layer, the second electrode, and the sealing film have a plastic deformation amount due to the film thickness, Young's modulus, etc. Since the sum is hardly affected, it is omitted in the table of FIG.
 作製された有機EL表示装置は、図16の表に示すように、塑性変形量の総和0.441μmとなり、ハードコート層の上面を90MPaの圧力で押圧すると、装置表面(ハードコート層の表面)における半永久的な塑性変形(傷)が視認された。 The produced organic EL display device has a total plastic deformation amount of 0.441 μm as shown in the table of FIG. 16, and when the upper surface of the hard coat layer is pressed with a pressure of 90 MPa, the surface of the device (the surface of the hard coat layer) Semi-permanent plastic deformation (scratches) was observed.
 以上説明したように、本実施形態の有機EL表示装置100baによれば、以下の効果を得ることができる。 As described above, according to the organic EL display device 100ba of the present embodiment, the following effects can be obtained.
 ベース樹脂基板層10、有機EL素子層20、下地層37、ハードコート層38及び応力調整層8が、残留歪比率κ、κ、κ、κ及びκをそれぞれ有し、厚さd、d、d、d及びdをそれぞれ有し、ヤング率E1、2、、E及びEをそれぞれ有し、応力分散係数α、α、α、α及びαをそれぞれ有し、ハードコート層38の表面に印加する圧力をσとすると、
σ(κα/E+κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすので、ハードコート層38が表面に設けられた有機EL表示装置100baにおいて、ハードコート層38の塑性変形を抑制することができる。これにより、有機EL表示装置100baの表示画面に入射する外光の反射光や有機EL素子層20で発光する光のハードコート層38の表面における散乱が抑制されるので、有機EL表示装置100baの表示品位を保持することができる。
The base resin substrate layer 10, the organic EL element layer 20, the base layer 37, the hard coat layer 38, and the stress adjustment layer 8 have residual strain ratios κ 1 , κ 2 , κ 3 , κ 4 and κ 5 , respectively. And d 1 , d 2 , d 3 , d 4 and d 5 respectively, Young's modulus E 1, E 2, E 3 , E 4 and E 5 respectively, and stress distribution coefficients α 1 , α 2 , α 3 , α 4, and α 5 respectively, and σ is a pressure applied to the surface of the hard coat layer 38,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5 ) ≦ 0 .4 μm
Therefore, in the organic EL display device 100ba having the hard coat layer 38 provided on the surface, plastic deformation of the hard coat layer 38 can be suppressed. Thereby, the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100ba and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 38 is suppressed, so that the organic EL display device 100ba Display quality can be maintained.
 また、本実施形態の有機EL表示装置100bbによれば、以下の効果を得ることができる。 Further, according to the organic EL display device 100bb of the present embodiment, the following effects can be obtained.
 ベース樹脂基板層10、有機EL素子層20、下地層37及びハードコート層38が、残留歪比率κ、κ、κ及びκをそれぞれ有し、厚さd、d、d及びdをそれぞれ有し、ヤング率E1、2、及びEをそれぞれ有し、応力分散係数α、α、α及びαをそれぞれ有し、ハードコート層29の表面に印加する圧力をσとすると、
σ(κα/E+κα/E+κα/E+κα/E+)≦0.4μm
という関係式を満たすので、ハードコート層38が表面に設けられた有機EL表示装置100bbにおいて、ハードコート層38の塑性変形を抑制することができる。これにより、有機EL表示装置100bbの表示画面に入射する外光の反射光や有機EL素子層20で発光する光のハードコート層38の表面における散乱が抑制されるので、有機EL表示装置100bbの表示品位を保持することができる。
The base resin substrate layer 10, the organic EL element layer 20, the base layer 37, and the hard coat layer 38 have residual strain ratios κ 1 , κ 2 , κ 3, and κ 4 , respectively, and have thicknesses d 1 , d 2 , d 3 and d 4 respectively, Young's modulus E 1, E 2, E 3 and E 4 respectively, stress dispersion coefficients α 1 , α 2 , α 3 and α 4 respectively, and hard coat layer 29 If the pressure applied to the surface of σ is σ,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 +) ≦ 0.4 μm
Therefore, in the organic EL display device 100bb having the hard coat layer 38 provided on the surface, plastic deformation of the hard coat layer 38 can be suppressed. Thereby, the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100bb and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 38 is suppressed, so that the organic EL display device 100bb Display quality can be maintained.
 《第3の実施形態》
 図17~図20は、本発明に係る有機EL表示装置の第3の実施形態を示している。ここで、図17は、本実施形態の有機EL表示装置100caの断面図である。また、図18は、有機EL表示装置100caにおいて、具体的に行った実施例5の内容を示す表である。また、図19は、有機EL表示装置100caの変形例の有機EL表示装置100cbの断面図である。また、図20は、有機EL表示装置100cbにおいて、具体的に行った実施例6の内容を示す表である。
<< Third Embodiment >>
17 to 20 show a third embodiment of the organic EL display device according to the present invention. Here, FIG. 17 is a cross-sectional view of the organic EL display device 100ca of the present embodiment. FIG. 18 is a table showing the contents of Example 5 specifically performed in the organic EL display device 100ca. FIG. 19 is a cross-sectional view of an organic EL display device 100cb which is a modification of the organic EL display device 100ca. FIG. 20 is a table showing the contents of Example 6 specifically performed in the organic EL display device 100cb.
 上記実施形態1及び2では、対向樹脂基板層22及び33を備えた有機EL表示装置100aa(100ab)及び100ba(100bb)を例示したが、本実施形態では、対向樹脂基板層が省略された有機EL表示装置100caを例示する。 In the first and second embodiments, the organic EL display devices 100aa (100ab) and 100ba (100bb) including the counter resin substrate layers 22 and 33 are illustrated. However, in the present embodiment, the organic resin in which the counter resin substrate layer is omitted is illustrated. An EL display device 100ca is illustrated.
 有機EL表示装置100caは、図17に示すように、ベース樹脂基板層10と、ベース樹脂基板層10の図中下側の表面に設けられた応力調整層8と、ベース樹脂基板層10の図中上側の表面に設けられた有機EL素子層20と、有機EL素子層20上に設けられた下地層45と、下地層45上に設けられたハードコート層46とを備えている。ここで、有機EL表示装置100caの表示領域に配列された画素の構造は、上記実施形態1の有機EL表示装置100aaの表示領域に配列された画素の構造と実質的に同じである。 As shown in FIG. 17, the organic EL display device 100 ca includes a base resin substrate layer 10, a stress adjustment layer 8 provided on the lower surface of the base resin substrate layer 10 in the drawing, and a diagram of the base resin substrate layer 10. An organic EL element layer 20 provided on the middle upper surface, a base layer 45 provided on the organic EL element layer 20, and a hard coat layer 46 provided on the base layer 45 are provided. Here, the structure of the pixels arranged in the display area of the organic EL display device 100ca is substantially the same as the structure of the pixels arranged in the display area of the organic EL display device 100aa of the first embodiment.
 下地層45は、図17に示すように、封止膜19上に順に設けられた表側第1接着層41、カラーフィルター42、タッチパネル43及び表側第2接着層44を備えている。 As shown in FIG. 17, the base layer 45 includes a front-side first adhesive layer 41, a color filter 42, a touch panel 43, and a front-side second adhesive layer 44 that are sequentially provided on the sealing film 19.
 表側第1接着層41は、例えば、UV遅延硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、アクリル系接着剤、ポリオレフィン系接着剤等により構成されている。 The front-side first adhesive layer 41 is made of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
 カラーフィルター42は、例えば、格子状に設けられたブラックマトリクス層と、各サブ画素Pに対応するようにそれぞれ設けられた赤色層、緑色層及び青色層の複数のカラーレジスト層と、ブラックマトリクス層及び各カラーレジスト層を覆うように設けられたオーバーコート層とを備え、感光性アクリル樹脂、感光性ポリイミド樹脂、感光性ポリシロキサン樹脂等が主成分になっている。なお、カラーフィルター42は、タッチパネル43上に形成されている。 The color filter 42 includes, for example, a black matrix layer provided in a lattice shape, a plurality of color resist layers of a red layer, a green layer, and a blue layer provided so as to correspond to each subpixel P, and a black matrix layer And an overcoat layer provided so as to cover each color resist layer, and a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin or the like is a main component. The color filter 42 is formed on the touch panel 43.
 タッチパネル43は、例えば、ベースフィルムと、そのベースフィルム上に設けられた静電容量方式のタッチパネル層とを備え、ベースフィルムを構成するポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムが主成分となっている。 The touch panel 43 includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film. The plastic film is the main component.
 表側第2接着層44は、例えば、光硬化型接着シート、UV硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、シアノアクリレート系の瞬間接着剤等により構成されている。 The front-side second adhesive layer 44 is made of, for example, a photocurable adhesive sheet, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, a cyanoacrylate instantaneous adhesive, or the like.
 ハードコート層46は、第3接着層44上に設けられた第1ハードコート層と、その第1ハードコート層上に設けられた第2ハードコート層とを備えている。ここで、第1ハードコート層は、例えば、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムにより構成されている。また、第2ハードコート層は、例えば、UV硬化型のオルガノシリコン樹脂、熱硬化型樹脂、アクリル樹脂、ウレタン樹脂、ポリシロキサン樹脂等により構成されている。 The hard coat layer 46 includes a first hard coat layer provided on the third adhesive layer 44 and a second hard coat layer provided on the first hard coat layer. Here, the first hard coat layer is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate. The second hard coat layer is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, or a polysiloxane resin.
 上記構成の有機EL表示装置100caは、上記実施形態1の有機EL表示装置100aaと同様に、各サブ画素Pにおいて、発光層3を適宜発光させることにより、画像表示を行うように構成されている。 Similar to the organic EL display device 100aa of the first embodiment, the organic EL display device 100ca having the above configuration is configured to display an image by appropriately emitting light from the light emitting layer 3 in each sub-pixel P. .
 また、本実施形態の有機EL表示装置100caは、上記実施形態1の有機EL表示装置100aaの製造方法を適宜変更することにより、製造することができる。 Further, the organic EL display device 100ca of the present embodiment can be manufactured by appropriately changing the manufacturing method of the organic EL display device 100aa of the first embodiment.
 なお、本実施形態では、応力調整層8が設けられた有機EL表示装置100caを例示したが、図19に示すように、応力調整層8(及び裏側接着層9)が省略された有機EL表示装置100cbであってもよい。 In the present embodiment, the organic EL display device 100ca provided with the stress adjustment layer 8 is exemplified. However, as shown in FIG. 19, the organic EL display in which the stress adjustment layer 8 (and the back side adhesive layer 9) is omitted. The device 100cb may be used.
 また、本実施形態の有機EL表示装置100caは、構成する各層の塑性変形量の総和が0.4μm以下である、すなわち、
σ(κα/E+κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすように構成されている。ここで、ベース樹脂基板層10は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、有機EL素子層20は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、下地層45は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層46は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、応力調整層8は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層46の下地層45と反対側の表面(上面)に印加する圧力をσ(Pa)とする。なお、σ(κα/E+κα/E+κα/E+κα/E+κα/E)>0.4μmの場合には、ハードコート層46の表面における半永久的な塑性変形(傷)が視認され易くなる。
Further, in the organic EL display device 100ca of the present embodiment, the total amount of plastic deformation of each layer constituting the organic EL display device 100ca is 0.4 μm or less.
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5 ) ≦ 0 .4 μm
It is comprised so that the relational expression may be satisfied. Here, the base resin substrate layer 10 has a residual strain ratio κ 1 , a thickness d 1 (μm), a Young's modulus E 1 (Pa), and a stress dispersion coefficient α 1 , and the organic EL element layer 20 has a residual strain. It has a ratio κ 2 , a thickness d 2 (μm), a Young's modulus E 2 (Pa), and a stress dispersion coefficient α 2. The underlayer 45 has a residual strain ratio κ 3 , a thickness d 3 (μm), and a Young's modulus. E 3 (Pa) and a stress dispersion coefficient α 3 , and the hard coat layer 46 has a residual strain ratio κ 4 , a thickness d 4 (μm), a Young's modulus E 4 (Pa), and a stress dispersion coefficient α 4 . The stress adjusting layer 8 has a residual strain ratio κ 5 , a thickness d 5 (μm), a Young's modulus E 5 (Pa), and a stress dispersion coefficient α 5 , and is opposite to the base layer 45 of the hard coat layer 46. Let σ (Pa) be the pressure applied to the surface (upper surface). Incidentally, σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5) When> 0.4 μm, semi-permanent plastic deformation (scratches) on the surface of the hard coat layer 46 is easily visually recognized.
 各層の応力分散係数αは、ハードコート層46の下地層45と反対側の表面(上面)から当該層の厚さ方向の中心位置までの距離をx(μm)とすると、
x≦300の場合、
α=-1.5×10-7+8.6×10-5-1.7×10-2x+1.45
x>300の場合、
α=0
の式で規定される。
The stress dispersion coefficient α of each layer is defined as x (μm) where the distance from the surface (upper surface) opposite to the base layer 45 of the hard coat layer 46 to the center position in the thickness direction of the layer is
When x ≦ 300,
α = −1.5 × 10 −7 x 3 + 8.6 × 10 −5 x 2 −1.7 × 10 −2 x + 1.45
If x> 300,
α = 0
It is prescribed by the formula of
 なお、有機EL素子層20、下地層45、ハードコート層46のような積層構造を有する構成物については、それを構成する各構成層の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求め、それらの値から塑性変形量をそれぞれ算出して合算する。 In addition, about the structure which has laminated structures, such as the organic EL element layer 20, the base layer 45, and the hard-coat layer 46, residual-strain ratio (kappa), thickness d, Young's modulus E, and stress of each structure layer which comprises it The dispersion coefficient α is obtained, and the amount of plastic deformation is calculated from these values and combined.
 一方、本実施形態の有機EL表示装置100cbは、構成する各層の塑性変形量の総和が0.4μm以下である、すなわち、
σ(κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすように構成されている。なお、σ(κα/E+κα/E+κα/E+κα/E)>0.4μmの場合には、ハードコート層46の表面における半永久的な塑性変形(傷)が視認され易くなる。
On the other hand, in the organic EL display device 100cb of the present embodiment, the total amount of plastic deformation of each constituent layer is 0.4 μm or less.
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 ) ≦ 0.4 μm
It is comprised so that the relational expression may be satisfied. If σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 )> 0.4 μm, Semi-permanent plastic deformation (scratches) on the surface of the hard coat layer 46 is easily visible.
 次に、具体的に行った実験について説明する。 Next, a specific experiment will be described.
 本実施形態の実施例(実施例5)として、以下の構成の有機EL表示装置100caを作製した(図18の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 As an example (Example 5) of the present embodiment, an organic EL display device 100ca having the following configuration was manufactured (see the table in FIG. 18). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 応力調整層8:厚さ10.0μmのポリエチレンテレフタレートフィルム
 裏側接着層9:厚さ10.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 ベース樹脂基板層10:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層41:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター42:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 タッチパネル43:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層44:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 第1ハードコート層:厚さ25.0μmのアラミドフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図18の表では、省略されている。
Stress adjustment layer 8: Polyethylene terephthalate film with a thickness of 10.0 μm Back side adhesive layer 9: Epoxy resin adhesive with a thickness of 10.0 μm (manufactured by Arteco)
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film Front side first adhesive layer 41: 5.0 μm thick UV delayed curing adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter 42: photosensitive color filter resin having a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Touch panel 43: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer 44: 5.0 μm thick epoxy resin adhesive (manufactured by Arteco)
First hard coat layer: aramid film having a thickness of 25.0 μm Second hard coat layer: UV-curable organosilicon resin having a thickness of 10.0 μm Here, the pressure σ applied to the upper surface of the second hard coat layer is 90 MPa. It was. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 18, it is omitted because it hardly affects the total amount of plastic deformation.
 作製された有機EL表示装置100caは、図18の表に示すように、塑性変形量の総和0.313μmとなり、ハードコート層46の上面を90MPaの圧力で押圧した後であっても、装置表面(ハードコート層46の表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 18, the manufactured organic EL display device 100ca has a total plastic deformation amount of 0.313 μm, and even after the upper surface of the hard coat layer 46 is pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 46) was hardly visually recognized.
 また、本実施形態の実施例(実施例6)として、以下の構成の有機EL表示装置100cbを作製した(図20の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 Further, as an example (Example 6) of the present embodiment, an organic EL display device 100cb having the following configuration was manufactured (see the table in FIG. 20). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 ベース樹脂基板層10:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層41:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター42:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 タッチパネル43:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層44:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 第1ハードコート層:厚さ25.0μmのアラミドフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図20の表では、省略されている。
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 μm thick silicon nitride film Front side first adhesive layer 41: 5.0 μm thick UV delayed curing adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter 42: photosensitive color filter resin having a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Touch panel 43: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer 44: 5.0 μm thick epoxy resin adhesive (manufactured by Arteco)
First hard coat layer: aramid film having a thickness of 25.0 μm Second hard coat layer: UV-curable organosilicon resin having a thickness of 10.0 μm Here, the pressure σ applied to the upper surface of the second hard coat layer is 90 MPa. It was. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 20, it is omitted because it hardly affects the total amount of plastic deformation.
 作製された有機EL表示装置100cbは、図20の表に示すように、塑性変形量の総和0.256μmとなり、ハードコート層46の上面を90MPaの圧力で押圧した後であっても、装置表面(ハードコート層46の表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 20, the manufactured organic EL display device 100cb has a total plastic deformation amount of 0.256 μm, and even after the upper surface of the hard coat layer 46 is pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 46) was hardly visually recognized.
 以上説明したように、本実施形態の有機EL表示装置100caによれば、以下の効果を得ることができる。 As described above, according to the organic EL display device 100ca of the present embodiment, the following effects can be obtained.
 ベース樹脂基板層10、有機EL素子層20、下地層45、ハードコート層46及び応力調整層8が、残留歪比率κ、κ、κ、κ及びκをそれぞれ有し、厚さd、d、d、d及びdをそれぞれ有し、ヤング率E1、2、、E及びEをそれぞれ有し、応力分散係数α、α、α、α及びαをそれぞれ有し、ハードコート層46の表面に印加する圧力をσとすると、
σ(κα/E+κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすので、ハードコート層46が表面に設けられた有機EL表示装置100caにおいて、ハードコート層46の塑性変形を抑制することができる。これにより、有機EL表示装置100caの表示画面に入射する外光の反射光や有機EL素子層20で発光する光のハードコート層46の表面における散乱が抑制されるので、有機EL表示装置100caの表示品位を保持することができる。
The base resin substrate layer 10, the organic EL element layer 20, the underlayer 45, the hard coat layer 46, and the stress adjustment layer 8 have residual strain ratios κ 1 , κ 2 , κ 3 , κ 4 and κ 5 , respectively. And d 1 , d 2 , d 3 , d 4 and d 5 respectively, Young's modulus E 1, E 2, E 3 , E 4 and E 5 respectively, and stress distribution coefficients α 1 , α 2 , α 3 , α 4, and α 5 respectively, and σ is a pressure applied to the surface of the hard coat layer 46,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5 ) ≦ 0 .4 μm
Therefore, in the organic EL display device 100ca having the hard coat layer 46 provided on the surface, plastic deformation of the hard coat layer 46 can be suppressed. Thereby, the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100ca and the light of the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 46 is suppressed. Display quality can be maintained.
 また、本実施形態の有機EL表示装置100cbによれば、以下の効果を得ることができる。 Further, according to the organic EL display device 100cb of the present embodiment, the following effects can be obtained.
 ベース樹脂基板層10、有機EL素子層20、下地層45及びハードコート層46が、残留歪比率κ、κ、κ及びκをそれぞれ有し、厚さd、d、d及びdをそれぞれ有し、ヤング率E1、2、及びEをそれぞれ有し、応力分散係数α、α、α及びαをそれぞれ有し、ハードコート層46の表面に印加する圧力をσとすると、
σ(κα/E+κα/E+κα/E+κα/E+)≦0.4μm
という関係式を満たすので、ハードコート層46が表面に設けられた有機EL表示装置100cbにおいて、ハードコート層46の塑性変形を抑制することができる。これにより、有機EL表示装置100cbの表示画面に入射する外光の反射光や有機EL素子層20で発光する光のハードコート46の表面における散乱が抑制されるので、有機EL表示装置100cbの表示品位を保持することができる。
The base resin substrate layer 10, the organic EL element layer 20, the underlayer 45, and the hard coat layer 46 have residual strain ratios κ 1 , κ 2 , κ 3, and κ 4 , respectively, and have thicknesses d 1 , d 2 , d 3 and d 4 respectively, Young's modulus E 1, E 2, E 3 and E 4 respectively, stress dispersion coefficients α 1 , α 2 , α 3 and α 4 respectively, and hard coat layer 46 If the pressure applied to the surface of σ is σ,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 +) ≦ 0.4 μm
Therefore, the plastic deformation of the hard coat layer 46 can be suppressed in the organic EL display device 100cb provided with the hard coat layer 46 on the surface. Thereby, since the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100cb and the light emitted from the organic EL element layer 20 on the surface of the hard coat 46 is suppressed, the display of the organic EL display device 100cb The quality can be maintained.
 また、有機EL表示装置100ca及び100cbでは、タッチパネル43が上記実施形態1及び2の対向樹脂基板層22及び33を兼ねているので、有機EL表示装置100ca及び100cbを薄型化することができると共に、部材コスト及び製造コストを低減することができる。 Further, in the organic EL display devices 100ca and 100cb, the touch panel 43 also serves as the counter resin substrate layers 22 and 33 of the first and second embodiments, so that the organic EL display devices 100ca and 100cb can be thinned. The member cost and the manufacturing cost can be reduced.
 《第4の実施形態》
 図21~図24は、本発明に係る有機EL表示装置の第4の実施形態を示している。ここで、図21は、本実施形態の有機EL表示装置100daの断面図である。また、図22は、有機EL表示装置100daにおいて、具体的に行った実施例7の内容を示す表である。また、図23は、有機EL表示装置100daの変形例の有機EL表示装置100dbの断面図である。また、図24は、有機EL表示装置100dbにおいて、具体的に行った実施例8の内容を示す表である。
<< Fourth Embodiment >>
21 to 24 show a fourth embodiment of the organic EL display device according to the present invention. Here, FIG. 21 is a cross-sectional view of the organic EL display device 100da of the present embodiment. FIG. 22 is a table showing the contents of Example 7 specifically performed in the organic EL display device 100da. FIG. 23 is a cross-sectional view of an organic EL display device 100db which is a modification of the organic EL display device 100da. FIG. 24 is a table showing the contents of Example 8 specifically performed in the organic EL display device 100db.
 上記実施形態2では、タッチパネル35が対向樹脂基板層33のベース樹脂基板層10と反対側に設けられた有機EL表示装置100ba(100bb)を例示したが、本実施形態では、タッチパネル52がベース樹脂基板層10及び対向樹脂基板層54の間に設けられた有機EL表示装置100daを例示する。 In the second embodiment, the organic EL display device 100ba (100bb) in which the touch panel 35 is provided on the opposite side to the base resin substrate layer 10 of the counter resin substrate layer 33 is exemplified. However, in this embodiment, the touch panel 52 is the base resin. The organic EL display device 100da provided between the substrate layer 10 and the counter resin substrate layer 54 is illustrated.
 有機EL表示装置100daは、図21に示すように、ベース樹脂基板層10と、ベース樹脂基板層10の図中下側の表面に設けられた応力調整層8と、ベース樹脂基板層10の図中上側の表面に設けられた有機EL素子層20と、有機EL素子層20上に設けられた下地層56と、下地層56上に設けられたハードコート層57とを備えている。ここで、有機EL表示装置100daの表示領域に配列された画素の構造は、上記実施形態1の有機EL表示装置100aaの表示領域に配列された画素の構造と実質的に同じである。 As shown in FIG. 21, the organic EL display device 100 da includes a base resin substrate layer 10, a stress adjustment layer 8 provided on the lower surface of the base resin substrate layer 10 in the drawing, and a diagram of the base resin substrate layer 10. An organic EL element layer 20 provided on the middle upper surface, a base layer 56 provided on the organic EL element layer 20, and a hard coat layer 57 provided on the base layer 56 are provided. Here, the structure of the pixels arranged in the display area of the organic EL display device 100da is substantially the same as the structure of the pixels arranged in the display area of the organic EL display device 100aa of the first embodiment.
 下地層56は、図21に示すように、封止膜19上に順に設けられた表側第1接着層51、タッチパネル52、カラーフィルター53、対向樹脂基板層54及び表側第2接着層55を備えている。 As shown in FIG. 21, the base layer 56 includes a front-side first adhesive layer 51, a touch panel 52, a color filter 53, a counter resin substrate layer 54, and a front-side second adhesive layer 55 that are sequentially provided on the sealing film 19. ing.
 表側第1接着層51は、例えば、UV遅延硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、アクリル系接着剤、ポリオレフィン系接着剤等により構成されている。 The front-side first adhesive layer 51 is composed of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
 タッチパネル52は、例えば、ベースフィルムと、そのベースフィルム上に設けられた静電容量方式のタッチパネル層とを備え、ベースフィルムを構成するポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムが主成分となっている。 The touch panel 52 includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film. The plastic film is the main component.
 カラーフィルター53は、例えば、格子状に設けられたブラックマトリクス層と、各サブ画素Pに対応するようにそれぞれ設けられた赤色層、緑色層及び青色層の複数のカラーレジスト層と、ブラックマトリクス層及び各カラーレジスト層を覆うように設けられたオーバーコート層とを備え、感光性アクリル樹脂、感光性ポリイミド樹脂、感光性ポリシロキサン樹脂等が主成分になっている。 The color filter 53 includes, for example, a black matrix layer provided in a lattice shape, a plurality of color resist layers of a red layer, a green layer, and a blue layer provided so as to correspond to each sub-pixel P, and a black matrix layer And an overcoat layer provided so as to cover each color resist layer, and a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin or the like is a main component.
 対向樹脂基板層54は、例えば、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムにより構成されている。 The counter resin substrate layer 54 is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate.
 表側第2接着層55は、例えば、光硬化型接着シート、UV硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、シアノアクリレート系の瞬間接着剤等により構成されている。 The front-side second adhesive layer 55 is made of, for example, a photocurable adhesive sheet, a UV curable adhesive, a thermosetting adhesive, an epoxy adhesive, a cyanoacrylate instantaneous adhesive, or the like.
 ハードコート層57は、第3接着層55上に設けられた第1ハードコート層と、その第1ハードコート層上に設けられた第2ハードコート層とを備えている。ここで、第1ハードコート層は、例えば、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムにより構成されている。また、第2ハードコート層は、例えば、UV硬化型のオルガノシリコン樹脂、熱硬化型樹脂、アクリル樹脂、ウレタン樹脂、ポリシロキサン樹脂等により構成されている。 The hard coat layer 57 includes a first hard coat layer provided on the third adhesive layer 55 and a second hard coat layer provided on the first hard coat layer. Here, the first hard coat layer is made of, for example, a plastic film such as polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, or (meth) acrylate. The second hard coat layer is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, or a polysiloxane resin.
 上記構成の有機EL表示装置100daは、上記実施形態1の有機EL表示装置100aaと同様に、各サブ画素Pにおいて、発光層3を適宜発光させることにより、画像表示を行うように構成されている。 Similar to the organic EL display device 100aa of the first embodiment, the organic EL display device 100da having the above configuration is configured to display an image by appropriately emitting light from the light emitting layer 3 in each sub-pixel P. .
 また、本実施形態の有機EL表示装置100daは、上記実施形態1の有機EL表示装置100aaの製造方法を適宜変更することにより、製造することができる。 Moreover, the organic EL display device 100da of the present embodiment can be manufactured by appropriately changing the manufacturing method of the organic EL display device 100aa of the first embodiment.
 なお、本実施形態では、応力調整層8が設けられた有機EL表示装置100daを例示したが、図23に示すように、応力調整層8(及び裏側接着層9)が省略された有機EL表示装置100dbであってもよい。 In the present embodiment, the organic EL display device 100da provided with the stress adjustment layer 8 is illustrated, but as shown in FIG. 23, the organic EL display in which the stress adjustment layer 8 (and the back side adhesive layer 9) is omitted. The device 100db may be used.
 また、本実施形態の有機EL表示装置100daは、構成する各層の塑性変形量の総和が0.4μm以下である、すなわち、
σ(κα/E+κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすように構成されている。ここで、ベース樹脂基板層10は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、有機EL素子層20は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、下地層56は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層57は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、応力調整層8は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層57の下地層56と反対側の表面(上面)に印加する圧力をσ(Pa)とする。なお、σ(κα/E+κα/E+κα/E+κα/E+κα/E)>0.4μmの場合には、ハードコート層57の表面における半永久的な塑性変形(傷)が視認され易くなる。
Further, in the organic EL display device 100da of the present embodiment, the total amount of plastic deformation of each layer constituting the layer is 0.4 μm or less, that is,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5 ) ≦ 0 .4 μm
It is comprised so that the relational expression may be satisfied. Here, the base resin substrate layer 10 has a residual strain ratio κ 1 , a thickness d 1 (μm), a Young's modulus E 1 (Pa), and a stress dispersion coefficient α 1 , and the organic EL element layer 20 has a residual strain. It has a ratio κ 2 , a thickness d 2 (μm), a Young's modulus E 2 (Pa), and a stress dispersion coefficient α 2 , and the underlayer 56 has a residual strain ratio κ 3 , a thickness d 3 (μm), and a Young's modulus. E 3 (Pa) and a stress dispersion coefficient α 3 , and the hard coat layer 57 has a residual strain ratio κ 4 , a thickness d 4 (μm), a Young's modulus E 4 (Pa), and a stress dispersion coefficient α 4 . The stress adjusting layer 8 has a residual strain ratio κ 5 , a thickness d 5 (μm), a Young's modulus E 5 (Pa), and a stress dispersion coefficient α 5 , and is opposite to the base layer 56 of the hard coat layer 57. Let σ (Pa) be the pressure applied to the surface (upper surface). Incidentally, σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5) When> 0.4 μm, semi-permanent plastic deformation (scratches) on the surface of the hard coat layer 57 is easily visually recognized.
 各層の応力分散係数αは、ハードコート層57の下地層56と反対側の表面(上面)から当該層の厚さ方向の中心位置までの距離をx(μm)とすると、
x≦300の場合、
α=-1.5×10-7+8.6×10-5-1.7×10-2x+1.45
x>300の場合、
α=0
の式で規定される。
The stress dispersion coefficient α of each layer is defined as x (μm) when the distance from the surface (upper surface) opposite to the base layer 56 of the hard coat layer 57 to the center position in the thickness direction of the layer is
When x ≦ 300,
α = −1.5 × 10 −7 x 3 + 8.6 × 10 −5 x 2 −1.7 × 10 −2 x + 1.45
If x> 300,
α = 0
It is prescribed by the formula of
 なお、有機EL素子層20、下地層56、ハードコート層57のような積層構造を有する構成物については、それを構成する各構成層の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求め、それらの値から塑性変形量をそれぞれ算出して合算する。 In addition, about the structure which has laminated structures, such as the organic EL element layer 20, the base layer 56, and the hard-coat layer 57, the residual strain ratio (kappa), thickness d, Young's modulus E, and stress of each structure layer which comprises it The dispersion coefficient α is obtained, and the amount of plastic deformation is calculated from these values and combined.
 一方、本実施形態の有機EL表示装置100dbは、構成する各層の塑性変形量の総和が0.4μm以下である、すなわち、
σ(κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすように構成されている。なお、σ(κα/E+κα/E+κα/E+κα/E)>0.4μmの場合には、ハードコート層57の表面における半永久的な塑性変形(傷)が視認され易くなる。
On the other hand, in the organic EL display device 100db of the present embodiment, the total amount of plastic deformation of each layer constituting the layer is 0.4 μm or less.
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 ) ≦ 0.4 μm
It is comprised so that the relational expression may be satisfied. If σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 )> 0.4 μm, Semi-permanent plastic deformation (scratches) on the surface of the hard coat layer 57 is easily visually recognized.
 次に、具体的に行った実験について説明する。 Next, a specific experiment will be described.
 本実施形態の実施例(実施例7)として、以下の構成の有機EL表示装置100daを作製した(図22の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 As an example (Example 7) of the present embodiment, an organic EL display device 100da having the following configuration was manufactured (see the table in FIG. 22). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 応力調整層8:厚さ10.0μmのポリエチレンテレフタレートフィルム
 裏側接着層9:厚さ10.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 ベース樹脂基板層10:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層51:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 タッチパネル52:厚さ15.0μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 カラーフィルター53:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層54:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層55:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 第1ハードコート層:厚さ25.0μmのアラミドフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図22の表では、省略されている。
Stress adjustment layer 8: Polyethylene terephthalate film with a thickness of 10.0 μm Back side adhesive layer 9: Epoxy resin adhesive with a thickness of 10.0 μm (manufactured by Arteco)
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 μm-thick silicon nitride film, front side first adhesive layer 51: 5.0 μm-thick UV delayed-curing adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Touch panel 52: photosensitive acrylic resin having a thickness of 15.0 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
Color filter 53: Photosensitive color filter resin having a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer 54: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer 55: epoxy resin adhesive having a thickness of 5.0 μm (manufactured by Arteco)
First hard coat layer: aramid film having a thickness of 25.0 μm Second hard coat layer: UV-curable organosilicon resin having a thickness of 10.0 μm Here, the pressure σ applied to the upper surface of the second hard coat layer is 90 MPa. It was. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 22, this is omitted because it hardly affects the total amount of plastic deformation.
 作製された有機EL表示装置100daは、図22の表に示すように、塑性変形量の総和0.345μmとなり、ハードコート層57の上面を90MPaの圧力で押圧した後であっても、装置表面(ハードコート層57の表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 22, the manufactured organic EL display device 100da has a total plastic deformation amount of 0.345 μm, and even after the upper surface of the hard coat layer 57 is pressed with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 57) was hardly visually recognized.
 また、本実施形態の実施例(実施例8)として、以下の構成の有機EL表示装置100dbを作製した(図24の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 Further, as an example (Example 8) of the present embodiment, an organic EL display device 100db having the following configuration was manufactured (see the table in FIG. 24). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 ベース樹脂基板層10:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 表側第1接着層51:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 タッチパネル52:厚さ15.0μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 カラーフィルター53:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層54:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 表側第2接着層55:厚さ5.0μmのエポキシ樹脂系接着剤(株式会社アルテコ製)
 第1ハードコート層:厚さ25.0μmのアラミドフィルム
 第2ハードコート層:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、第2ハードコート層の上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図24の表では、省略されている。
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 μm-thick silicon nitride film, front side first adhesive layer 51: 5.0 μm-thick UV delayed-curing adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Touch panel 52: photosensitive acrylic resin having a thickness of 15.0 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
Color filter 53: Photosensitive color filter resin having a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer 54: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Front side second adhesive layer 55: epoxy resin adhesive having a thickness of 5.0 μm (manufactured by Arteco)
First hard coat layer: aramid film having a thickness of 25.0 μm Second hard coat layer: UV-curable organosilicon resin having a thickness of 10.0 μm Here, the pressure σ applied to the upper surface of the second hard coat layer is 90 MPa. It was. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 24, it is omitted because it hardly affects the total amount of plastic deformation.
 作製された有機EL表示装置100dbは、図24の表に示すように、塑性変形量の総和0.295μmとなり、ハードコート層57の上面を90MPaの圧力で押圧した後であっても、装置表面(ハードコート層57の表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 24, the manufactured organic EL display device 100db had a total plastic deformation amount of 0.295 μm, and even after the upper surface of the hard coat layer 57 was pressed with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 57) was hardly visually recognized.
 以上説明したように、本実施形態の有機EL表示装置100daによれば、以下の効果を得ることができる。 As described above, according to the organic EL display device 100da of the present embodiment, the following effects can be obtained.
 ベース樹脂基板層10、有機EL素子層20、下地層56、ハードコート層57及び応力調整層8が、残留歪比率κ、κ、κ、κ及びκをそれぞれ有し、厚さd、d、d、d及びdをそれぞれ有し、ヤング率E1、2、、E及びEをそれぞれ有し、応力分散係数α、α、α、α及びαをそれぞれ有し、ハードコート層57の表面に印加する圧力をσとすると、
σ(κα/E+κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすので、ハードコート層57が表面に設けられた有機EL表示装置100daにおいて、ハードコート層57の塑性変形を抑制することができる。これにより、有機EL表示装置100daの表示画面に入射する外光の反射光や有機EL素子層20で発光する光のハードコート層57の表面における散乱が抑制されるので、有機EL表示装置100daの表示品位を保持することができる。
The base resin substrate layer 10, the organic EL element layer 20, the base layer 56, the hard coat layer 57 and the stress adjustment layer 8 have residual strain ratios κ 1 , κ 2 , κ 3 , κ 4 and κ 5 , respectively. And d 1 , d 2 , d 3 , d 4 and d 5 respectively, Young's modulus E 1, E 2, E 3 , E 4 and E 5 respectively, and stress distribution coefficients α 1 , α 2 , α 3 , α 4, and α 5 respectively, and σ is a pressure applied to the surface of the hard coat layer 57,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5 ) ≦ 0 .4 μm
Therefore, in the organic EL display device 100da having the hard coat layer 57 provided on the surface, plastic deformation of the hard coat layer 57 can be suppressed. Thereby, the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100da and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 57 is suppressed, so that the organic EL display device 100da Display quality can be maintained.
 また、本実施形態の有機EL表示装置100dbによれば、以下の効果を得ることができる。 Further, according to the organic EL display device 100db of the present embodiment, the following effects can be obtained.
 ベース樹脂基板層10、有機EL素子層20、下地層56及びハードコート層57が、残留歪比率κ、κ、κ及びκをそれぞれ有し、厚さd、d、d及びdをそれぞれ有し、ヤング率E1、2、及びEをそれぞれ有し、応力分散係数α、α、α及びαをそれぞれ有し、ハードコート層57の表面に印加する圧力をσとすると、
σ(κα/E+κα/E+κα/E+κα/E+)≦0.4μm
という関係式を満たすので、ハードコート層57が表面に設けられた有機EL表示装置100dbにおいて、ハードコート層57の塑性変形を抑制することができる。これにより、有機EL表示装置100dbの表示画面に入射する外光の反射光や有機EL素子層20で発光する光のハードコート57の表面における散乱が抑制されるので、有機EL表示装置100dbの表示品位を保持することができる。
The base resin substrate layer 10, the organic EL element layer 20, the base layer 56 and the hard coat layer 57 have residual strain ratios κ 1 , κ 2 , κ 3 and κ 4 , respectively, and have thicknesses d 1 , d 2 , d 3 and d 4 respectively, Young's modulus E 1, E 2, E 3 and E 4 respectively, stress dispersion coefficients α 1 , α 2 , α 3 and α 4 respectively, and hard coat layer 57 If the pressure applied to the surface of σ is σ,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 +) ≦ 0.4 μm
Therefore, in the organic EL display device 100db provided with the hard coat layer 57 on the surface, plastic deformation of the hard coat layer 57 can be suppressed. Thereby, since the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100db and the light emitted from the organic EL element layer 20 on the surface of the hard coat 57 is suppressed, the display of the organic EL display device 100db is performed. The quality can be maintained.
 また、有機EL表示装置100da及び100dbでは、タッチパネル52がベース樹脂基板層10及び対向樹脂基板層54の間に設けられているので、タッチパネル52を対向樹脂基板層54上にカラーフィルター53と共に作り込むことができ、製造コストを低減することができる。 In the organic EL display devices 100da and 100db, since the touch panel 52 is provided between the base resin substrate layer 10 and the counter resin substrate layer 54, the touch panel 52 is formed on the counter resin substrate layer 54 together with the color filter 53. Manufacturing cost can be reduced.
 《第5の実施形態》
 図25~図29は、本発明に係る有機EL表示装置の第5の実施形態を示している。ここで、図25は、本実施形態の有機EL表示装置100eaの断面図である。また、図26は、有機EL表示装置100eaにおいて、具体的に行った実施例9の内容を示す表である。また、図27は、有機EL表示装置100eaの変形例の有機EL表示装置100ebの断面図である。また、図28及び図29は、有機EL表示装置100ebにおいて、具体的に行った実施例10及び実施例11の内容を示す表である。
<< Fifth Embodiment >>
25 to 29 show a fifth embodiment of the organic EL display device according to the present invention. Here, FIG. 25 is a sectional view of the organic EL display device 100ea of the present embodiment. FIG. 26 is a table showing the contents of Example 9 specifically performed in the organic EL display device 100ea. FIG. 27 is a cross-sectional view of an organic EL display device 100eb which is a modification of the organic EL display device 100ea. FIG. 28 and FIG. 29 are tables showing the contents of Example 10 and Example 11 specifically performed in the organic EL display device 100eb.
 上記実施形態1~4では、ベース樹脂基板層10の裏面側に応力調整層8が設けられた有機EL表示装置100aa~100daを基本的に例示したが、本実施形態では、応力調整層が省略された有機EL表示装置100eaを例示する。 In the first to fourth embodiments, the organic EL display devices 100aa to 100da in which the stress adjusting layer 8 is provided on the back surface side of the base resin substrate layer 10 are basically exemplified. However, in this embodiment, the stress adjusting layer is omitted. An example of the organic EL display device 100ea is illustrated.
 有機EL表示装置100eaは、図25に示すように、ベース樹脂基板層10と、ベース樹脂基板層10の図中上側の表面に設けられた有機EL素子層20と、有機EL素子層20上に設けられた下地層64aと、下地層64a上に設けられたハードコート層65とを備えている。ここで、有機EL表示装置100eaの表示領域に配列された画素の構造は、上記実施形態1の有機EL表示装置100aaの表示領域に配列された画素の構造と実質的に同じである。 As shown in FIG. 25, the organic EL display device 100ea includes a base resin substrate layer 10, an organic EL element layer 20 provided on the upper surface of the base resin substrate layer 10, and an organic EL element layer 20 on the surface. The base layer 64a provided and the hard coat layer 65 provided on the base layer 64a are provided. Here, the structure of the pixels arranged in the display area of the organic EL display device 100ea is substantially the same as the structure of the pixels arranged in the display area of the organic EL display device 100aa of the first embodiment.
 下地層64aは、図25に示すように、封止膜19上に順に設けられた接着層61、カラーフィルター62及びタッチパネル63aを備えている。 As shown in FIG. 25, the base layer 64a includes an adhesive layer 61, a color filter 62, and a touch panel 63a provided in this order on the sealing film 19.
 接着層61は、例えば、UV遅延硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、アクリル系接着剤、ポリオレフィン系接着剤等により構成されている。 The adhesive layer 61 is made of, for example, a UV delayed curable adhesive, a thermosetting adhesive, an epoxy adhesive, an acrylic adhesive, a polyolefin adhesive, or the like.
 カラーフィルター62は、例えば、格子状に設けられたブラックマトリクス層と、各サブ画素Pに対応するようにそれぞれ設けられた赤色層、緑色層及び青色層の複数のカラーレジスト層と、ブラックマトリクス層及び各カラーレジスト層を覆うように設けられたオーバーコート層とを備え、感光性アクリル樹脂、感光性ポリイミド樹脂、感光性ポリシロキサン樹脂等が主成分になっている。なお、カラーフィルター62は、タッチパネル63a上に形成されている。 The color filter 62 includes, for example, a black matrix layer provided in a lattice shape, a plurality of color resist layers of a red layer, a green layer, and a blue layer provided so as to correspond to each subpixel P, and a black matrix layer And an overcoat layer provided so as to cover each color resist layer, and a photosensitive acrylic resin, a photosensitive polyimide resin, a photosensitive polysiloxane resin or the like is a main component. The color filter 62 is formed on the touch panel 63a.
 タッチパネル63aは、例えば、ベースフィルムと、そのベースフィルム上に設けられた静電容量方式のタッチパネル層とを備え、ベースフィルムを構成するポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート等のプラスチックフィルムが主成分となっている。 The touch panel 63a includes, for example, a base film and a capacitive touch panel layer provided on the base film, and includes polyimide, polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, and the like constituting the base film. The plastic film is the main component.
 ハードコート層65は、例えば、UV硬化型のオルガノシリコン樹脂、熱硬化型樹脂、アクリル樹脂、ウレタン樹脂、ポリシロキサン樹脂、窒化シリコン膜等により構成されている。 The hard coat layer 65 is made of, for example, a UV curable organosilicon resin, a thermosetting resin, an acrylic resin, a urethane resin, a polysiloxane resin, a silicon nitride film, or the like.
 上記構成の有機EL表示装置100eaは、上記実施形態1の有機EL表示装置100aaと同様に、各サブ画素Pにおいて、発光層3を適宜発光させることにより、画像表示を行うように構成されている。 Similar to the organic EL display device 100aa of the first embodiment, the organic EL display device 100ea having the above configuration is configured to display an image by appropriately emitting light from the light emitting layer 3 in each sub-pixel P. .
 また、本実施形態の有機EL表示装置100eaは、上記実施形態1の有機EL表示装置100aaの製造方法を適宜変更することにより、製造することができる。 Further, the organic EL display device 100ea according to the present embodiment can be manufactured by appropriately changing the manufacturing method of the organic EL display device 100aa according to the first embodiment.
 なお、本実施形態では、タッチパネル63aを含む下地層64aが設けられた有機EL表示装置100eaを例示したが、図27に示すように、対向樹脂基板層63bを含む下地層64bが設けられた有機EL表示装置100ebであってもよい。ここで、有機EL表示装置100ebにおいて、カラーフィルター62は、対向樹脂基板層63b上に形成されている。 In the present embodiment, the organic EL display device 100ea provided with the base layer 64a including the touch panel 63a is illustrated, but as shown in FIG. 27, the organic layer provided with the base layer 64b including the counter resin substrate layer 63b. It may be an EL display device 100eb. Here, in the organic EL display device 100eb, the color filter 62 is formed on the counter resin substrate layer 63b.
 また、本実施形態の有機EL表示装置100ea(100eb)は、構成する各層の塑性変形量の総和が0.4μm以下である、すなわち、
σ(κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすように構成されている。ここで、ベース樹脂基板層10は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、有機EL素子層20は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、下地層64a(64b)は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層65は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、ハードコート層65の下地層64と反対側の表面(上面)に印加する圧力をσ(Pa)とする。なお、σ(κα/E+κα/E+κα/E+κα/E)>0.4μmの場合には、ハードコート層65の表面における半永久的な塑性変形(傷)が視認され易くなる。
Further, in the organic EL display device 100ea (100eb) of the present embodiment, the total amount of plastic deformation of each layer constituting the layer is 0.4 μm or less, that is,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 ) ≦ 0.4 μm
It is comprised so that the relational expression may be satisfied. Here, the base resin substrate layer 10 has a residual strain ratio κ 1 , a thickness d 1 (μm), a Young's modulus E 1 (Pa), and a stress dispersion coefficient α 1 , and the organic EL element layer 20 has a residual strain. It has a ratio κ 2 , a thickness d 2 (μm), a Young's modulus E 2 (Pa), and a stress dispersion coefficient α 2 , and the underlayer 64a (64b) has a residual strain ratio κ 3 and a thickness d 3 (μm). , Young's modulus E 3 (Pa) and stress dispersion coefficient α 3 , and the hard coat layer 65 has a residual strain ratio κ 4 , thickness d 4 (μm), Young's modulus E 4 (Pa), and stress dispersion coefficient α. 4 and the pressure applied to the surface (upper surface) of the hard coat layer 65 opposite to the base layer 64 is σ (Pa). If σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 )> 0.4 μm, Semi-permanent plastic deformation (scratches) on the surface of the hard coat layer 65 is easily visible.
 各層の応力分散係数αは、ハードコート層65の下地層64a(64b)と反対側の表面(上面)から当該層の厚さ方向の中心位置までの距離をx(μm)とすると、
x≦300の場合、
α=-1.5×10-7+8.6×10-5-1.7×10-2x+1.45
x>300の場合、
α=0
の式で規定される。
The stress dispersion coefficient α of each layer is defined as x (μm) when the distance from the surface (upper surface) of the hard coat layer 65 opposite to the base layer 64a (64b) to the center position in the thickness direction of the layer is
When x ≦ 300,
α = −1.5 × 10 −7 x 3 + 8.6 × 10 −5 x 2 −1.7 × 10 −2 x + 1.45
If x> 300,
α = 0
It is prescribed by the formula of
 なお、有機EL素子層20、下地層64a(64b)のような積層構造を有する構成物については、それを構成する各構成層の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求め、それらの値から塑性変形量をそれぞれ算出して合算する。 In addition, about the structure which has laminated structures like the organic EL element layer 20 and the base layer 64a (64b), the residual strain ratio (kappa), thickness d, Young's modulus E, and stress dispersion coefficient of each structure layer which comprises it α is obtained, and the plastic deformation amount is calculated from these values and added together.
 次に、具体的に行った実験について説明する。 Next, a specific experiment will be described.
 本実施形態の実施例(実施例9)として、以下の構成の有機EL表示装置100eaを作製した(図26の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 As an example (Example 9) of the present embodiment, an organic EL display device 100ea having the following configuration was manufactured (see the table in FIG. 26). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 ベース樹脂基板層10:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 接着層61:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター62:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 タッチパネル63a:厚さ10.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 ハードコート層65:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、ハードコート層65の上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図26の表では、省略されている。
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 10.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 [mu] m thick silicon nitride film Adhesive layer 61: 5.0 [mu] m thick UV delayed curable adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter 62: photosensitive color filter resin having a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Touch panel 63a: 10.0 μm-thick non-photosensitive polyimide resin (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Hard coat layer 65: UV curable organosilicon resin with a thickness of 10.0 μm Here, the pressure σ applied to the upper surface of the hard coat layer 65 was 90 MPa. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. In the table of FIG. 26, it is omitted because it hardly affects the total amount of plastic deformation.
 作製された有機EL表示装置100eaは、図26の表に示すように、塑性変形量の総和0.169μmとなり、ハードコート層65の上面を90MPaの圧力で押圧した後であっても、装置表面(ハードコート層65の表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 26, the manufactured organic EL display device 100ea has a total plastic deformation amount of 0.169 μm, and even after the upper surface of the hard coat layer 65 is pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 65) was hardly visually recognized.
 また、本実施形態の実施例(実施例10)として、以下の構成の有機EL表示装置100ebを作製した(図28の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 Also, as an example (Example 10) of the present embodiment, an organic EL display device 100eb having the following configuration was manufactured (see the table in FIG. 28). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 ベース樹脂基板層10:厚さ12.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 接着層61:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター62:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層63b:厚さ12.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 ハードコート層65:厚さ3.0μmの窒化シリコン膜
 ここで、ハードコート層65の上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図28の表では、省略されている。
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 12.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 [mu] m thick silicon nitride film Adhesive layer 61: 5.0 [mu] m thick UV delayed curable adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter 62: photosensitive color filter resin having a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer 63b: Non-photosensitive coating type polyimide resin having a thickness of 12.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Hard coat layer 65: silicon nitride film having a thickness of 3.0 μm Here, the pressure σ applied to the upper surface of the hard coat layer 65 was 90 MPa. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. Since it hardly affects the total amount of plastic deformation, it is omitted in the table of FIG.
 作製された有機EL表示装置100ebは、図28の表に示すように、塑性変形量の総和0.189μmとなり、ハードコート層65の上面を90MPaの圧力で押圧した後であっても、装置表面(ハードコート層65の表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 28, the manufactured organic EL display device 100eb had a total plastic deformation amount of 0.189 μm, and even after the upper surface of the hard coat layer 65 was pressed with a pressure of 90 MPa, Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 65) was hardly visually recognized.
 また、本実施形態の実施例(実施例11)として、以下の構成の有機EL表示装置100ebを作製した(図29の表参照)。なお、以下の材料名等は、実際の残留歪比率κ、厚さd、ヤング率E及び応力分散係数αを求める際に使用したものの材料名等である。 In addition, as an example (Example 11) of the present embodiment, an organic EL display device 100eb having the following configuration was manufactured (see the table in FIG. 29). In addition, the following material names are the names of materials used when determining the actual residual strain ratio κ, thickness d, Young's modulus E, and stress dispersion coefficient α.
 ベース樹脂基板層10:厚さ12.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 防湿層:プラズマCVD(chemical vapor deposition)法により形成される厚さ1.0μmの窒化シリコン膜
 第1TFT13a等:Ti/Al/TiやAl/Tiの積層膜からなる配線層を含み、総厚さ0.3μmの一般的なボトムゲート型のTFTの構成
 層間絶縁膜14:厚さ2.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 第1電極15:一般的なTFTプロセスで形成される厚さ0.1μmのITO/Agの積層膜
 エッジカバー16:厚さ1.5μmの感光性アクリル樹脂(JSR株式会社製のオプトマー(登録商標)シリーズ)
 有機EL層17:総厚さ0.2μmの一般的な有機EL素子の構成
 第2電極18:蒸着法で形成される厚さ0.1μmのAg膜
 封止膜19:低温プラズマCVD法により形成される厚さ3.0μmの窒化シリコン膜
 接着層61:厚さ5.0μmのUV遅延硬化型接着剤(積水化学工業株式会社製のフォトレック(登録商標)Eシリーズ)
 カラーフィルター62:厚さ5.0μmの感光性カラーフィルター樹脂(富士フィルム株式会社製のCOLOR MOSAIC(登録商標)シリーズ)
 対向樹脂基板層63b:厚さ12.0μmの非感光性塗布型ポリイミド樹脂(日立化成デュポンマイクロシステムズ株式会社製のPIQ(登録商標)シリーズ)
 ハードコート層65:厚さ10.0μmのUV硬化型のオルガノシリコン樹脂
 ここで、ハードコート層65の上面に印加する圧力σを90MPaとした。なお、有機EL素子層20を構成する防湿層、第1TFT13a等、第1電極15、有機EL層17、第2電極18及び封止膜19については、その膜厚やヤング率等に起因して、塑性変形量の総和にほとんど影響しないので、図29の表では、省略されている。
Base resin substrate layer 10: Non-photosensitive coating type polyimide resin having a thickness of 12.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Moisture proof layer: 1.0 μm thick silicon nitride film formed by plasma CVD (chemical vapor deposition) method First TFT 13a, etc .: including wiring layer made of Ti / Al / Ti or Al / Ti laminated film, total thickness Configuration of 0.3 μm General Bottom Gate TFT Interlayer Insulating Film 14: Photosensitive Acrylic Resin with a Thickness of 2.5 μm (Optomer (registered trademark) series manufactured by JSR Corporation)
First electrode 15: 0.1 μm thick ITO / Ag laminated film formed by a general TFT process Edge cover 16: 1.5 μm thick photosensitive acrylic resin (Optomer (registered trademark) manufactured by JSR Corporation) )series)
Organic EL layer 17: Configuration of a general organic EL element having a total thickness of 0.2 μm Second electrode 18: Ag film having a thickness of 0.1 μm formed by a vapor deposition method Sealing film 19: formed by a low temperature plasma CVD method 3.0 [mu] m thick silicon nitride film Adhesive layer 61: 5.0 [mu] m thick UV delayed curable adhesive (Photorec (registered trademark) E series manufactured by Sekisui Chemical Co., Ltd.)
Color filter 62: photosensitive color filter resin having a thickness of 5.0 μm (COLOR MOSAIC (registered trademark) series manufactured by Fuji Film Co., Ltd.)
Opposite resin substrate layer 63b: Non-photosensitive coating type polyimide resin having a thickness of 12.0 μm (PIQ (registered trademark) series manufactured by Hitachi Chemical DuPont Microsystems)
Hard coat layer 65: UV curable organosilicon resin with a thickness of 10.0 μm Here, the pressure σ applied to the upper surface of the hard coat layer 65 was 90 MPa. In addition, about the moisture proof layer which comprises the organic EL element layer 20, 1st TFT13a, etc., about the 1st electrode 15, the organic EL layer 17, the 2nd electrode 18, and the sealing film 19, it originates in the film thickness, Young's modulus, etc. Since it hardly affects the total amount of plastic deformation, it is omitted in the table of FIG.
 作製された有機EL表示装置100ebは、図29の表に示すように、塑性変形量の総和0.179μmとなり、ハードコート層65の上面を90MPaの圧力で押圧した後であっても、装置表面(ハードコート層65の表面)における半永久的な塑性変形(傷)がほとんど視認されなかった。 As shown in the table of FIG. 29, the manufactured organic EL display device 100eb had a total plastic deformation amount of 0.179 μm, and even after the upper surface of the hard coat layer 65 was pressed with a pressure of 90 MPa, the device surface Semi-permanent plastic deformation (scratches) in (the surface of the hard coat layer 65) was hardly visually recognized.
 以上説明したように、本実施形態の有機EL表示装置100ea(100eb)によれば、以下の効果を得ることができる。 As described above, according to the organic EL display device 100ea (100eb) of the present embodiment, the following effects can be obtained.
 ベース樹脂基板層10、有機EL素子層20、下地層64a(64b)及びハードコート層65が、残留歪比率κ、κ、κ及びκをそれぞれ有し、厚さd、d、d及びdをそれぞれ有し、ヤング率E1、2、及びEをそれぞれ有し、応力分散係数α、α、α及びαをそれぞれ有し、ハードコート層65の表面に印加する圧力をσとすると、
σ(κα/E+κα/E+κα/E+κα/E)≦0.4μm
という関係式を満たすので、ハードコート層65が表面に設けられた有機EL表示装置100ea(100eb)において、ハードコート層65の塑性変形を抑制することができる。これにより、有機EL表示装置100ea(100eb)の表示画面に入射する外光の反射光や有機EL素子層20で発光する光のハードコート層65の表面における散乱が抑制されるので、有機EL表示装置100ea(100eb)の表示品位を保持することができる。
The base resin substrate layer 10, the organic EL element layer 20, the base layer 64 a (64 b), and the hard coat layer 65 have residual strain ratios κ 1 , κ 2 , κ 3, and κ 4 , respectively, and have thicknesses d 1 , d 2 , d 3 and d 4 , respectively, Young's modulus E 1, E 2, E 3 and E 4 respectively, stress dispersion coefficients α 1 , α 2 , α 3 and α 4 respectively, When the pressure applied to the surface of the coat layer 65 is σ,
σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 ) ≦ 0.4 μm
Therefore, in the organic EL display device 100ea (100eb) having the hard coat layer 65 provided on the surface, plastic deformation of the hard coat layer 65 can be suppressed. Thereby, the scattering of the reflected light of the external light incident on the display screen of the organic EL display device 100ea (100eb) and the light emitted from the organic EL element layer 20 on the surface of the hard coat layer 65 is suppressed, so that the organic EL display The display quality of the device 100ea (100eb) can be maintained.
 また、有機EL表示装置100ea(100eb)では、対向樹脂基板層及び応力調整層が省略され、ハードコート層65が1層で形成されているので、有機EL表示装置100ea(100eb)を薄型化することができると共に、部材コスト及び製造コストを低減することができる。 Further, in the organic EL display device 100ea (100eb), the counter resin substrate layer and the stress adjustment layer are omitted, and the hard coat layer 65 is formed as a single layer. Therefore, the organic EL display device 100ea (100eb) is thinned. In addition, the member cost and the manufacturing cost can be reduced.
 《その他の実施形態》
 上記各実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。
<< Other Embodiments >>
In each of the above embodiments, an organic EL layer having a five-layer structure of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer has been exemplified. A three-layer structure of a layer / hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer may be employed.
 また、上記各実施形態では、第1電極を陽極とし、第2電極を陰極とした有機EL表示装置を例示したが、本発明は、有機EL層の積層構造を反転させ、第1電極を陰極とし、第2電極を陽極とした有機EL表示装置にも適用することができる。 In each of the above embodiments, the organic EL display device using the first electrode as an anode and the second electrode as a cathode has been exemplified. However, the present invention reverses the stacked structure of the organic EL layers and uses the first electrode as a cathode. The present invention can also be applied to an organic EL display device using the second electrode as an anode.
 また、上記各実施形態では、第1電極に接続されたTFTの電極をドレイン電極とした有機EL表示装置を例示したが、本発明は、第1電極に接続されたTFTの電極をソース電極と呼ぶ有機EL表示装置にも適用することができる。 In each of the above embodiments, the organic EL display device using the TFT electrode connected to the first electrode as the drain electrode has been exemplified. However, in the present invention, the TFT electrode connected to the first electrode is used as the source electrode. It can also be applied to an organic EL display device called.
 また、上記各実施形態では、有機EL表示装置100aa(100ab)~100ea(100eb)を例示したが、本発明は、例示した各有機EL表示装置100aa(100ab)~100ea(100eb)の積層構造の組み合わせも自在に適用することができる。 Further, in each of the above embodiments, the organic EL display devices 100aa (100ab) to 100ea (100eb) have been exemplified, but the present invention has a stacked structure of the exemplified organic EL display devices 100aa (100ab) to 100ea (100eb). Combinations can also be applied freely.
 以上説明したように、本発明は、フレキシブルな有機EL表示装置について有用である。 As described above, the present invention is useful for flexible organic EL display devices.
8   応力調整層
10  ベース樹脂基板層
20  有機EL素子層
22,33,54  対向樹脂基板層
24  偏光板
26,35,43,52,63  タッチパネル
28,37,45,56,64a,64b  下地層
29,38,46,57,65  ハードコート層
32,42,53,62  カラーフィルター
100aa,100ab,100ba,100bb,100ca,100cb,100da,100db,100ea,100eb  有機EL表示装置
8 Stress Adjustment Layer 10 Base Resin Substrate Layer 20 Organic EL Element Layers 22, 33, 54 Opposite Resin Substrate Layer 24 Polarizing Plate 26, 35, 43, 52, 63 Touch Panel 28, 37, 45, 56, 64a, 64b Base Layer 29 , 38, 46, 57, 65 Hard coat layers 32, 42, 53, 62 Color filters 100aa, 100ab, 100ba, 100bb, 100ca, 100cb, 100da, 100db, 100ea, 100eb Organic EL display device

Claims (8)

  1.  ベース樹脂基板層と、
     前記ベース樹脂基板層に設けられた有機EL素子層と、
     前記有機EL素子層上に設けられた下地層と、
     前記下地層上に設けられたハードコート層とを備えた有機EL表示装置であって、
     前記ベース樹脂基板層は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、
     前記有機EL素子層は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、
     前記下地層は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、
     前記ハードコート層は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、
     前記ハードコート層の前記下地層と反対側の表面に印加する圧力をσ(Pa)とすると、
    σ(κα/E+κα/E+κα/E+κα/E)≦0.4μm
    という関係式を満たすことを特徴とする有機EL表示装置。
    A base resin substrate layer;
    An organic EL element layer provided on the base resin substrate layer;
    An underlayer provided on the organic EL element layer;
    An organic EL display device comprising a hard coat layer provided on the underlayer,
    The base resin substrate layer has a residual strain ratio κ 1 , a thickness d 1 (μm), a Young's modulus E 1 (Pa), and a stress dispersion coefficient α 1 .
    The organic EL element layer has a residual strain ratio κ 2 , a thickness d 2 (μm), a Young's modulus E 2 (Pa), and a stress dispersion coefficient α 2 .
    The underlayer has a residual strain ratio κ 3 , a thickness d 3 (μm), a Young's modulus E 3 (Pa), and a stress dispersion coefficient α 3 .
    The hard coat layer has a residual strain ratio κ 4 , a thickness d 4 (μm), a Young's modulus E 4 (Pa), and a stress dispersion coefficient α 4 .
    When the pressure applied to the surface of the hard coat layer opposite to the base layer is σ (Pa),
    σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 ) ≦ 0.4 μm
    An organic EL display device satisfying the relational expression:
  2.  前記ベース樹脂基板層の前記有機EL素子層と反対側には、応力調整層が設けられ、
     前記応力調整層は、残留歪比率κ、厚さd(μm)、ヤング率E(Pa)及び応力分散係数αを有し、
     前記ハードコート層の前記下地層と反対側の表面に印加する圧力をσ(Pa)とすると、
    σ(κα/E+κα/E+κα/E+κα/E+κα/E)≦0.4μm
    という関係式を満たすことを特徴とする請求項1に記載の有機EL表示装置。
    On the opposite side of the base resin substrate layer from the organic EL element layer, a stress adjustment layer is provided,
    The stress adjustment layer has a residual strain ratio κ 5 , a thickness d 5 (μm), a Young's modulus E 5 (Pa), and a stress dispersion coefficient α 5 .
    When the pressure applied to the surface of the hard coat layer opposite to the base layer is σ (Pa),
    σ (κ 1 α 1 d 1 / E 1 + κ 2 α 2 d 2 / E 2 + κ 3 α 3 d 3 / E 3 + κ 4 α 4 d 4 / E 4 + κ 5 α 5 d 5 / E 5 ) ≦ 0 .4 μm
    The organic EL display device according to claim 1, wherein:
  3.  前記各層の残留歪比率κは、ナノインデンテーション法により荷重を1mN~10mNの範囲で変化させたときの最大押し込み深さhmaxの変化量Δhmaxと、永久くぼみ深さhの変化量Δhとを測定し、該最大押し込み深さhmaxの変化量Δhmaxに対する該永久くぼみ深さhの変化量Δhの比率Δh/Δhmaxで規定され、
     前記各層のヤング率Eは、ナノインデンテーション法により測定された押し込み弾性率で規定され、
     前記各層の応力分散係数αは、前記ハードコート層の前記下地層と反対側の表面から当該層の厚さ方向の中心位置までの距離をx(μm)とすると、
    x≦300の場合、
    α=-1.5×10-7+8.6×10-5-1.7×10-2x+1.45の式で規定され、
    x>300の場合、
    α=0
    の式で規定されることを特徴とする請求項1又は2に記載の有機EL表示装置。
    The residual strain ratio κ of each layer includes a change amount Δh max of the maximum indentation depth h max and a change amount Δh of the permanent depression depth h p when the load is changed in the range of 1 mN to 10 mN by the nanoindentation method. were measured and p, defined by the ratio Δh p / Δh max variation Delta] h p of the depth h p recess the permanent with respect to the change amount Delta] h max of said maximum indentation depth h max,
    The Young's modulus E of each layer is defined by the indentation elastic modulus measured by the nanoindentation method,
    The stress dispersion coefficient α of each layer is defined as x (μm), where x (μm) is the distance from the surface of the hard coat layer opposite to the base layer to the center position in the thickness direction of the layer.
    When x ≦ 300,
    α = −1.5 × 10 −7 x 3 + 8.6 × 10 −5 x 2 −1.7 × 10 −2 x + 1.45
    If x> 300,
    α = 0
    The organic EL display device according to claim 1, wherein the organic EL display device is defined by:
  4.  前記下地層は、偏光板を備えていることを特徴とする請求項1~3の何れか1つに記載の有機EL表示装置。 4. The organic EL display device according to claim 1, wherein the underlayer includes a polarizing plate.
  5.  前記下地層は、カラーフィルターを備えていることを特徴とする請求項1~3の何れか1つに記載の有機EL表示装置。 The organic EL display device according to any one of claims 1 to 3, wherein the base layer includes a color filter.
  6.  前記下地層は、前記ベース樹脂基板層に対向するように設けられた対向樹脂基板層と、該対向樹脂基板層に接着されたタッチパネルとを備えていることを特徴とする請求項5に記載の有機EL表示装置。 The said base layer is provided with the opposing resin substrate layer provided so as to oppose the said base resin substrate layer, and the touchscreen adhere | attached on this opposing resin substrate layer, The Claim 5 characterized by the above-mentioned. Organic EL display device.
  7.  前記下地層は、前記ベース樹脂基板層に対向するように設けられた対向樹脂基板層と、該対向樹脂基板層及び前記ベース樹脂基板層の間に設けられたタッチパネルとを備えていることを特徴とする請求項5に記載の有機EL表示装置。 The underlayer includes a counter resin substrate layer provided to face the base resin substrate layer, and a touch panel provided between the counter resin substrate layer and the base resin substrate layer. The organic EL display device according to claim 5.
  8. 前記下地層は、前記ベース樹脂基板層に対向して前記カラーフィルターが設けられたタッチパネルを備えていることを特徴とする請求項5に記載の有機EL表示装置。 The organic EL display device according to claim 5, wherein the base layer includes a touch panel provided with the color filter so as to face the base resin substrate layer.
PCT/JP2017/003335 2016-02-01 2017-01-31 Organic el display device WO2017135227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-017356 2016-02-01
JP2016017356 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017135227A1 true WO2017135227A1 (en) 2017-08-10

Family

ID=59500219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003335 WO2017135227A1 (en) 2016-02-01 2017-01-31 Organic el display device

Country Status (1)

Country Link
WO (1) WO2017135227A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11227904B2 (en) 2017-08-29 2022-01-18 Boe Technology Group Co., Ltd. Method for manufacturing light-emitting layer, electroluminescent device and display device
CN114071903A (en) * 2020-07-31 2022-02-18 群创光电股份有限公司 Flexible electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228314A (en) * 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd Hard coat film and polarizing plate and image display device using the same
US20140159001A1 (en) * 2012-12-12 2014-06-12 Lg Display Co., Ltd. Flexible organic light emitting display device
JP2015060780A (en) * 2013-09-20 2015-03-30 株式会社東芝 Method and system for manufacturing display device
JP2015069197A (en) * 2013-10-01 2015-04-13 Dic株式会社 Hard coat film and image display device
JP2015228367A (en) * 2014-05-02 2015-12-17 株式会社半導体エネルギー研究所 Semiconductor device, input-output device and electronic apparatus
WO2016088641A1 (en) * 2014-12-04 2016-06-09 コニカミノルタ株式会社 Polyimide film and method for manufacturing same, flexible printed wiring board, substrate for flexible display, front plate for flexible display, led illumination device, and organic electroluminescence display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228314A (en) * 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd Hard coat film and polarizing plate and image display device using the same
US20140159001A1 (en) * 2012-12-12 2014-06-12 Lg Display Co., Ltd. Flexible organic light emitting display device
JP2015060780A (en) * 2013-09-20 2015-03-30 株式会社東芝 Method and system for manufacturing display device
JP2015069197A (en) * 2013-10-01 2015-04-13 Dic株式会社 Hard coat film and image display device
JP2015228367A (en) * 2014-05-02 2015-12-17 株式会社半導体エネルギー研究所 Semiconductor device, input-output device and electronic apparatus
WO2016088641A1 (en) * 2014-12-04 2016-06-09 コニカミノルタ株式会社 Polyimide film and method for manufacturing same, flexible printed wiring board, substrate for flexible display, front plate for flexible display, led illumination device, and organic electroluminescence display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11227904B2 (en) 2017-08-29 2022-01-18 Boe Technology Group Co., Ltd. Method for manufacturing light-emitting layer, electroluminescent device and display device
CN114071903A (en) * 2020-07-31 2022-02-18 群创光电股份有限公司 Flexible electronic device
CN114071903B (en) * 2020-07-31 2024-04-05 群创光电股份有限公司 Flexible electronic device

Similar Documents

Publication Publication Date Title
WO2017138416A1 (en) Organic el display device
KR102421426B1 (en) Display device
US9735387B2 (en) Organic light emitting diode display
US11270605B2 (en) Organic el display device
WO2017159503A1 (en) Organic el display device
US10236459B2 (en) Display device and method for producing same
KR20150031100A (en) Organic light emitting display device and manufacturing method thereof
KR20150019885A (en) Organic light emitting display device and manufacturing method thereof
KR102545527B1 (en) Transparent organic emitting display device
WO2018034244A1 (en) Organic el display device
KR101410102B1 (en) Organic light emitting display device
WO2018061056A1 (en) Organic electroluminescence display device and method for manufacturing same
KR102503218B1 (en) Organic light emitting display device
JP5119536B2 (en) Organic light emitting display
KR20060066363A (en) Electroluminescence display device
WO2017135227A1 (en) Organic el display device
US20210043690A1 (en) Light emitting display apparatus
WO2017159502A1 (en) Organic el display device
KR101777864B1 (en) Top-Emission Organic Light Emitting Display Device
KR20150126503A (en) Organic electro luminescent device
KR20190077673A (en) Organic light emitting display device
KR20130061471A (en) Organic eletro luminescent display device and manufacturing method for the same
KR101901758B1 (en) organic light emitting diode device
WO2018179288A1 (en) Display device and production method therefor
JP2008071578A (en) Organic el display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP