WO2017135000A1 - 情報処理装置、および情報処理方法、並びにプログラム - Google Patents

情報処理装置、および情報処理方法、並びにプログラム Download PDF

Info

Publication number
WO2017135000A1
WO2017135000A1 PCT/JP2017/000779 JP2017000779W WO2017135000A1 WO 2017135000 A1 WO2017135000 A1 WO 2017135000A1 JP 2017000779 W JP2017000779 W JP 2017000779W WO 2017135000 A1 WO2017135000 A1 WO 2017135000A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reproduction
track
input
data
Prior art date
Application number
PCT/JP2017/000779
Other languages
English (en)
French (fr)
Inventor
公博 齊藤
山本 健二
紀彰 西
淳也 白石
伸嘉 小林
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP17747163.8A priority Critical patent/EP3413313B1/en
Priority to US15/780,090 priority patent/US10373640B2/en
Priority to JP2017565449A priority patent/JP6868782B2/ja
Publication of WO2017135000A1 publication Critical patent/WO2017135000A1/ja
Priority to US16/460,435 priority patent/US20190325908A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/133Shape of individual detector elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and a program. More specifically, the present invention relates to an information processing apparatus, an information processing method, and a program that realize high-quality data reproduction from a disk on which high-density data recording has been performed.
  • Optical media such as DVD (Digital Versatile Disc) and BD (Blu-ray (registered trademark) Disc) are widely used as media for recording various data such as images and programs.
  • DVD Digital Versatile Disc
  • BD Blu-ray (registered trademark) Disc
  • Optical discs such as BD are required to perform high-density information recording.
  • As a method of increasing the density of the optical disk there is a method of shortening the channel bit length, that is, the mark length and increasing the density in the linear density direction, and a method of narrowing the track pitch.
  • crosstalk adjacent track crosstalk
  • Patent Document 1 International Publication WO 2016/006157
  • crosstalk is reduced by dividing a light receiving area of a photodetector and performing adaptive equalization processing using a plurality of light receiving signals obtained from each divided area.
  • this method it is difficult to reliably analyze the recording signal of the adjacent track, and sufficient crosstalk removal is difficult.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2015-057753
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2012-079385
  • Patent Document 4 Japanese Patent No. 4184585) etc.
  • the read signal of the reproduction target track and the read signals of the tracks on both sides are phase-aligned. And the input to the adaptive equalizer unit is required.
  • the present disclosure has been made in view of, for example, the above-described problems, and an information processing apparatus that realizes reproduction processing of high quality data in which crosstalk caused by recording signals of adjacent tracks is suppressed, and information processing method , As well as to provide programs.
  • information for realizing reproduction processing of high quality data with reduced crosstalk without reducing the required capacity of the memory for temporarily storing read data of adjacent tracks and without increasing the circuit scale. It is an object of the present invention to provide a processing device, an information processing method, and a program.
  • the first aspect of the present disclosure is A photodetector for outputting a read signal from a reproduction track of the information recording disk;
  • An adjacent track reproduction identification signal supply unit that outputs a reproduction identification signal obtained from a reproduction signal of a track adjacent to the reproduction track;
  • a multi-input adaptive equalizer having an equalizer unit for inputting a read signal from the reproduction track and an adjacent track reproduction identification signal, and outputting an equalization signal by adaptive equalization processing based on the input signal;
  • the information processing apparatus includes a reproduction signal generation unit that executes a reproduction signal generation process based on the equalized signal to generate a reproduction signal of the reproduction track.
  • a second aspect of the present disclosure is: An information processing method to be executed in the information processing apparatus;
  • the photodetector outputs a read signal from the reproduction track of the information recording disc
  • the adjacent track reproduction identification signal supply unit outputs a reproduction identification signal obtained from the reproduction signal of the adjacent track of the reproduction track
  • the multi-input adaptive equalizer inputs each of the read signal from the reproduction track and the adjacent track reproduction identification signal to the equalizer unit, and outputs an equalization signal by adaptive equalization processing based on the input signal
  • the reproduction signal generation unit may execute reproduction signal generation processing based on the equalized signal to generate a reproduction signal of the reproduction track.
  • the third aspect of the present disclosure is: A program that causes an information processing apparatus to execute information processing,
  • the program is Output processing of read signal from reproduction track of information recording disc by photodetector An output process of a reproduction identification signal obtained from a reproduction signal of an adjacent track of the reproduction track by an adjacent track reproduction identification signal supply unit; Equalized signal output processing by adaptive equalization processing based on the input signal to a read signal from the reproduction track and an input to each equalizer unit of the adjacent track reproduction identification signal by a multi-input adaptive equalizer,
  • the program is for executing a reproduction signal generation process of the reproduction track by the reproduction signal generation process based on the equalization signal by the reproduction signal generation unit.
  • the program of the present disclosure is, for example, a program that can be provided by a storage medium or a communication medium that provides various program codes in a computer-readable format to an information processing apparatus or computer system capable of executing the program code.
  • a storage medium or a communication medium that provides various program codes in a computer-readable format to an information processing apparatus or computer system capable of executing the program code.
  • a system is a logical set composition of a plurality of devices, and the device of each composition is not limited to what exists in the same case.
  • an apparatus and method are realized that enable high quality data reproduction with crosstalk removed from a high density recording type optical disc.
  • a photodetector that outputs a read signal from the reproduction track of the information recording disk, and an adjacent track reproduction binary signal supply that outputs a binary signal (binary data) that is a reproduction signal of an adjacent track to the reproduction track.
  • Multi-input adaptive equalizer which has an equalizer unit that inputs a read signal from a reproduction track and an adjacent track reproduction binarization signal, and outputs an equalization signal by adaptive equalization processing based on the input signal, etc.
  • It has a binarization processing unit that generates a reproduction signal of a reproduction track by executing a binarization process based on the conversion signal. According to this configuration, an apparatus and method are realized that enable high quality data reproduction with crosstalk removed from the high density recording type optical disc.
  • the effects described in the present specification are merely examples and are not limited, and additional effects may be present.
  • FIG. 7 is a diagram showing an example of a configuration of an information processing apparatus (reproduction apparatus) that performs crosstalk cancellation using a read signal of an adjacent track.
  • FIG. 7 is a diagram showing an example of a configuration of an information processing apparatus (reproduction apparatus) that performs crosstalk cancellation using a read signal of an adjacent track.
  • FIG. 7 is a diagram showing an example of a configuration of an information processing apparatus (reproduction apparatus) that performs crosstalk cancellation using a read signal of an adjacent track.
  • FIG. 7 is a diagram showing an example of a configuration of an information processing apparatus (reproduction apparatus) that performs crosstalk cancellation using a read signal of an adjacent track. It is a figure explaining the specific example of the multi-input adaptive equalizer of the information processing apparatus (reproduction apparatus) which performs crosstalk cancellation using the read signal of an adjacent track.
  • FIG. 17 is a diagram showing a configuration example of an information processing apparatus (reproduction apparatus) that executes crosstalk cancellation by applying read data of an adjacent track using a 5-signal output type photo detector. It is a figure explaining the example of a multi-input adaptive equalizer set.
  • FIG. 17 is a diagram showing an example of a configuration of an information processing apparatus (reproduction apparatus) that performs crosstalk cancellation using a read signal of an adjacent track.
  • FIG. 7 is a diagram for describing a configuration of each of the multi-input adaptive equalizers 121 to 123.
  • FIG. 7 is a diagram for describing an overview of the configuration and processing of an information processing apparatus that executes crosstalk cancellation using a binarized reproduction signal (binary data) of an adjacent track. It is a figure which shows the structure of the multi-input adaptive equalizer 205 shown in FIG. A diagram for explaining an outline of a configuration and processing of an information processing apparatus that executes crosstalk cancellation using a binary reproduction signal (binary data) of one adjacent track (Tn-1) adjacent to a reproduction target track (Tn) It is. It is a figure which shows the structure of the multi-input adaptive equalizer 205 shown in FIG. FIG.
  • 17 is a diagram for describing a configuration of an adjacent track reproduction binary signal supply unit that generates a reproduction binary signal (binary data) of one track (Tn-1) adjacent to a reproduction target track (Tn). It is a figure explaining the processing example of the reproducing
  • Example of applying reproduction signal of one adjacent track 3-3.1 Adjacent track reproduction 2 in an example of application of reproduction signal of two adjacent tracks Specific configuration example of the value signal supply unit and configuration example of the information processing apparatus 3-4.2 Specific configuration example of the adjacent track reproduction binary signal supply unit in the example to which the reproduction signal of two adjacent tracks is applied, and information Regarding Configuration Example of Processing Device 3-5.
  • FIG. 1 is a block diagram showing an example of the configuration of an information processing apparatus that executes data reproduction processing and recording processing from an optical disk 10.
  • the information processing apparatus includes an optical pickup 11 for recording and reproducing information on an optical disc 10 as an optical recording medium, and a spindle motor 12 for rotating the optical disc 10.
  • a sled (feed motor) 13 is provided in order to move the optical pickup 11 in the radial direction of the optical disc 10.
  • the optical disc 10 is, for example, a high density optical disc such as a BD (Blu-ray (registered trademark) Disc).
  • the BD is, for example, a high density optical disc having a recording capacity of about 25 G bytes in a single-sided single layer and about 50 G bytes in two-sided single layer.
  • the light source wavelength is set to 405 nm, and the numerical aperture NA (Numerical Aperture) of the objective lens is increased to 0.85.
  • NA numerical aperture
  • the spot diameter can be narrowed to 0.58 ⁇ m.
  • BD Blu-ray (registered trademark) Disc
  • the channel bit length that is, the mark length is shortened, the density is increased in the linear density direction, and 100GB in three layers and 128GB in four layers.
  • BDXL registered trademark
  • a method (land / groove recording method) of recording data on both a groove track and a land track is being adopted.
  • the groove set along the recording track of the disc is a groove (G), and the track formed by the groove is called a groove track.
  • an area serving as a mountain portion sandwiched between two grooves is a land (L), and a track formed by the land is called a land track.
  • the optical disc 10 When the optical disc 10 is loaded into the information processing apparatus, it is rotationally driven at a constant linear velocity (CLV) or a constant angular velocity (CAV) by the spindle motor 12 at the time of recording / reproducing. In order to align the phase of the wobble groove in the radial direction of the optical disk 10, CAV or zone CAV is preferable.
  • CAV or zone CAV is preferable.
  • reading of mark information recorded on a track on the optical disc 10 is performed by the optical pickup (optical head) 11.
  • the user data changes the brightness (reflectance) or reflection phase (complex reflectance) such as phase change mark or pigment change mark on the track on the optical disk 10 by the optical pickup 11. Recorded as
  • phase change mark In the case of a recordable disc, a recording mark by a phase change mark is recorded on the track formed by the wobbling groove, but the phase change mark is RLL (1, 7) PP modulation method (RLL; Run Length Limited, PP) Recording is performed at a linear density of 0.12 ⁇ m / bit and 0.08 ⁇ m / channel bit in the case of 23.3 GB of BD per layer by, for example, Parity preserve / Prohibit rmtr (repeated minimum transition run length).
  • a laser beam serving as a laser light source, a photodetector for detecting reflected light, an objective lens serving as an output end of the laser beam, and a disc recording surface are irradiated with the laser beam via the objective lens
  • An optical system or the like for guiding the reflected light to the photodetector is configured.
  • the objective lens is held movably in the tracking direction and the focus direction by a biaxial mechanism.
  • the entire optical pickup 11 is movable by the sled mechanism 13 in the radial direction of the disc.
  • the drive current from the laser driver 23 is supplied to the laser diode of the optical pickup 11, and the laser diode generates a laser.
  • Reflected light from the optical disk 10 is detected by the photodetector, converted into an electrical signal according to the amount of light received, and supplied to the matrix circuit 14.
  • the matrix circuit 14 is provided with a current-voltage conversion circuit, a matrix operation / amplification circuit and the like corresponding to output currents from a plurality of light receiving elements as photodetectors, and generates necessary signals by matrix operation processing.
  • the current-voltage conversion circuit may be formed in the photodetector element in consideration of the signal transmission quality.
  • a reproduction information signal (RF signal) corresponding to reproduction data, a focus error signal for servo control, a tracking error signal and the like are generated.
  • a push-pull signal is generated as a signal related to groove wobbling, that is, a signal for detecting wobbling.
  • the reproduction information signal output from the matrix circuit 14 is supplied to the data detection processing unit 15, the focus error signal and the tracking error signal are supplied to the optical block servo circuit 21, and the push pull signal is supplied to the wobble signal processing unit 16. .
  • the data detection processing unit 15 performs binarization processing of the reproduction information signal. For example, the data detection processing unit 15 performs A / D conversion processing of an RF signal, reproduction clock generation processing by PLL, PR (Partial Response) equalization processing, Viterbi decoding (maximum likelihood decoding), etc. A binary data string is obtained by (PRML detection method: Partial Response Maximum Likelihood detection method). The data detection processing unit 15 supplies a binary data string as information read from the optical disc 10 to the encode / decode unit 17 in the subsequent stage.
  • PRML detection method Partial Response Maximum Likelihood detection method
  • the encoding / decoding unit 17 demodulates reproduction data at the time of reproduction and modulates recording data at the time of recording. That is, at the time of reproduction, data demodulation, deinterleaving, ECC decoding, address decoding and the like are performed, and at the time of recording, ECC encoding, interleaving, data modulation and the like are performed.
  • the binary data string decoded by the data detection processing unit 15 is supplied to the encoding / decoding unit 17.
  • the encode / decode unit 17 demodulates the binary data string to obtain reproduced data from the optical disc 10. For example, demodulation processing for data recorded on the optical disk 10 with run length limited code modulation such as RLL (1, 7) PP modulation and ECC decoding processing for performing error correction Get playback data.
  • the data decoded to reproduction data by the encoding / decoding unit 17 is transferred to the host interface 18 and transferred to the host device 30 based on an instruction of the system controller 20.
  • the host device 30 is, for example, a computer device or an AV (Audio-Visual) system device.
  • PLL processing generates a clock synchronized with the push-pull signal.
  • the wobble data is demodulated into a data stream constituting an ADIP address by the ADIP demodulation processing unit 26 and supplied to the address decoder 19.
  • the address decoder 19 decodes the supplied data, obtains an address value, and supplies it to the system controller 20.
  • recording data is transferred from the host device 30, and the recording data is supplied to the encoding / decoding unit 17 through the host interface 18.
  • the encoding / decoding unit 17 performs error correction code addition (ECC encoding), interleaving, subcode addition, and the like as encoding processing of recording data.
  • ECC encoding error correction code addition
  • Run-length limited code modulation such as RLL (1-7) PP method is performed on the data subjected to these processes.
  • the recording data processed by the encode / decode unit 17 is supplied to the write strategy unit 24.
  • the write strategy unit 24 adjusts the laser drive pulse waveform with respect to the characteristics of the recording layer, the spot shape of the laser beam, the recording linear velocity, and the like as the recording compensation processing. Then, the laser drive pulse is output to the laser driver 23.
  • the laser driver 23 causes a current to flow to the laser diode in the optical pickup 11 based on the laser drive pulse subjected to the recording compensation processing, and emits a laser. As a result, a mark corresponding to the recording data is formed on the optical disc 10.
  • the optical block servo circuit 21 generates various servo drive signals of focus, tracking, and sled from the focus error signal and the tracking error signal from the matrix circuit 14 to execute the servo operation. That is, the focus drive signal and the tracking drive signal are generated according to the focus error signal and the tracking error signal, and the driver drives the focus coil and the tracking coil of the biaxial mechanism in the optical pickup 11. As a result, the optical pickup 11, the matrix circuit 14, the optical block servo circuit 21, the driver 28, the tracking servo loop and the focus servo loop by the two-axis mechanism are formed.
  • the optical block servo circuit 21 turns off the tracking servo loop and outputs a jump drive signal to execute a track jump operation. Furthermore, the optical block servo circuit 21 generates a thread drive signal based on a thread error signal obtained as a low-frequency component of the tracking error signal, access execution control from the system controller 20, etc. Drive.
  • the spindle servo circuit 22 controls the spindle motor 12 to perform CLV rotation or CAV rotation.
  • the spindle servo circuit 22 obtains a clock generated by the PLL for the wobble signal as the current rotational speed information of the spindle motor 12 and compares this with predetermined reference speed information to generate a spindle error signal.
  • the spindle is compared with predetermined reference speed information. An error signal is generated. Then, the spindle servo circuit 22 outputs a spindle drive signal generated according to the spindle error signal, and causes the spindle driver 27 to execute CLV rotation or CAV rotation of the spindle motor 12.
  • the spindle servo circuit 22 generates a spindle drive signal according to a spindle kick / brake control signal from the system controller 20, and also performs operations such as start, stop, acceleration, and deceleration of the spindle motor 12.
  • the various operations of the servo system and the recording and reproducing system as described above are controlled by a system controller 20 formed by a microcomputer.
  • the system controller 20 executes various processes in response to a command from the host device 30 given via the host interface 18. For example, when a write command (write command) is issued from the host device 30, the system controller 20 first moves the optical pickup 11 to an address to be written. Then, the encoding / decoding unit 17 executes the encoding process as described above on the data (for example, video data, audio data, etc.) transferred from the host device 30. Then, the laser driver 23 drives the laser light emission according to the encoded data to execute the recording.
  • a write command write command
  • the system controller 20 first moves the optical pickup 11 to an address to be written.
  • the encoding / decoding unit 17 executes the encoding process as described above on the data (for example, video data, audio data, etc.) transferred from the host device 30.
  • the laser driver 23 drives the laser light emission according to the encoded
  • the system controller 20 when a read command for transferring certain data recorded on the optical disk 10 is supplied from the host device 30, the system controller 20 first performs seek operation control for the designated address. That is, a command is issued to the optical block servo circuit 21 to execute the access operation of the optical pickup 11 with the address specified by the seek command as the target. Thereafter, operation control necessary to transfer data of the instructed data section to the host device 30 is performed. That is, data reading from the optical disc 10 is performed, reproduction processing in the data detection processing unit 15 and the encoding / decoding unit 17 is executed, and requested data is transferred.
  • FIG. 1 has been described as an optical disk device connected to the host device 30, the optical disk device may have a form not connected to other devices.
  • the operation unit and the display unit are provided, and the configuration of the data input / output interface portion is different from that in FIG. That is, recording and reproduction may be performed according to the user's operation, and a terminal portion for input / output of various data may be formed.
  • the optical disk apparatus there are various other possible configuration examples of the optical disk apparatus.
  • the optical pickup 11 records information on the optical disc 10 using, for example, a laser beam (beam) having a wavelength ⁇ of 405 nm, and reproduces the information from the optical disc 10.
  • a laser beam beam having a wavelength ⁇ of 405 nm
  • Laser light is emitted from a semiconductor laser (LD: Laser Diode) 51.
  • a laser beam passes through a collimator lens 52, a polarization beam splitter (PBS: Polarizing Beam Splitter) 53, and an objective lens 54, and is irradiated onto the optical disk 10.
  • the polarization beam splitter 53 has, for example, a separation surface that transmits approximately 100% of P-polarized light and reflects approximately 100% of S-polarized light. Reflected light from the recording layer of the optical disk 10 returns along the same optical path and enters the polarization beam splitter 53. By interposing a ⁇ / 4 element (not shown), the incident laser light is reflected approximately 100% by the polarization beam splitter 53.
  • the laser beam reflected by the polarization beam splitter 53 is condensed on the light receiving surface of the photodetector 56 through the lens 55.
  • the photodetector 56 has a light receiving cell on the light receiving surface, which photoelectrically converts the incident light.
  • FIG. 2 shows the following three types of examples.
  • A No division 1 signal output type
  • B Division area 3 signal output type
  • C Division area 5 signal output type
  • the signal output type outputs one electrical signal according to the amount of light received by the light receiving cell on the entire surface of the photodetector 56.
  • the divided area corresponding three-signal output type is constituted by light receiving cells in which the light receiving surface of the photodetector 56 is divided, and outputs three electric signals according to the amount of light received by the light receiving cells of each divided area.
  • the divisional area corresponding five signal output type is also composed of light receiving cells in which the light receiving surface of the photodetector 56 is divided, and outputs five electric signals according to the amount of light received by the light receiving cells in each divided area.
  • (B) Split-field compatible 3-signal output type and (C) Split-domain compatible 5-signal output type light receiving cells are split lines extending in the radial direction (disk radial direction) or tangential direction (track direction) of the optical disc 10 Is divided into a plurality of areas.
  • These split photo detectors 56 output electrical signals of a plurality of channels in accordance with the amount of light received in each region of the light receiving cell.
  • various configurations other than these are possible.
  • FIG. 3 shows a detailed configuration of the five-signal output type photodetector (56) corresponding to the divisional area (C) shown in FIG.
  • the photodetector 56 is composed of light receiving cells divided into a plurality of regions. In the example shown in FIG. 3, A1, A2, B, C, D1, D2, D3, E1, E2, E3, and these regions are divided. In each divided area, an electric signal corresponding to the amount of received light is individually output.
  • the signals applied to the generation of the reproduction signal are five signals corresponding to the following five channels.
  • Signal A A1 + A2 Signal
  • B B
  • Signal C C
  • Signal D D1 + D2 + D3
  • E E1 + E2 + E3
  • a high-quality reproduced signal can be obtained by performing adaptive equalization processing on each signal using a multi-input adaptive equalizer using such a division type photodetector.
  • An adaptive equalization processing configuration using a multi-input adaptive equalizer will be described later.
  • Each of the signals A to E is a characteristic signal according to the light receiving area, such as a signal containing many signal components of the track to be read, a signal having a high ratio of crosstalk signals of adjacent tracks, and the like.
  • a high quality reproduced signal can be obtained by executing adaptive equalization processing according to the characteristics of each of these signals.
  • the configuration for generating and processing a reproduction signal using such a split photodetector is disclosed in Patent Document 1 (International Publication WO 2016/006157), which is an earlier application of the present applicant.
  • the multiple signal output type photodetector used in the present disclosure is the same as the configuration disclosed in these publications, and the setting of the multiple signals output from the photodetector and each of the multiple signals are input to the multiple input adaptive equalizer.
  • the configuration and processing for obtaining the equalized signal and the binarized signal are similarly applied in the present disclosure.
  • the configuration of the optical pickup 11 shown in FIG. 2 shows the minimum components for explaining the present disclosure, and the focus error signal and tracking output to the optical block servo circuit 21 through the matrix circuit 14 are shown.
  • An error signal, a signal for generating a push-pull signal output to the wobble signal processing circuit 16 through the matrix circuit 14, and the like are omitted.
  • various configurations other than the configuration shown in FIG. 2 are possible.
  • the embodiment of the present disclosure to be described below will be described as an example using the divided-area-corresponding five-signal output photodetector described mainly with reference to FIG. 3.
  • the process of the present disclosure is not limited to the five-region output five-signal output photo detector described with reference to FIG. 3, but the non-division one-signal output type, three-region three-signal output type shown in FIG. A configuration using photodetectors having different division configurations is also applicable.
  • the light beam of the return beam from the optical disk 10 is split into a plurality of areas and divided into each area.
  • Corresponding reproduction information signals of a plurality of channels can be obtained. High quality reproduced signals can be obtained by data processing using these area-based signals.
  • a method other than the method of dividing the photo detector 56 can be used as a method of obtaining the reproduction information signal for each area.
  • optical path conversion elements for separating a plurality of regions are disposed, and a plurality of optical path conversion elements Methods can be used to deliver the beam to different photodetectors.
  • a diffractive element such as a holographic optical element, or a refractive element such as a micro lens array or a micro prism can be used.
  • the data detection processing unit 15 has an A / D converter 61 to which the reproduction information signal supplied from the matrix circuit 14 is supplied, as shown in FIG. FIG. 4 is a configuration example of the data detection processing unit 15 which generates five reproduction signals by inputting five signals A to E obtained by using the five-region output five-signal output type photodetector 56 shown in FIG. .
  • a clock for the A / D converter 61 is formed by the PLL 62.
  • the reproduction information signal supplied from the matrix circuit 14 is converted into digital data by the A / D converter 61.
  • the digitized reproduction information signals of the five channels A to E are denoted as Sa to Se.
  • a signal obtained by adding the reproduction information signals Sa to Se by the adding circuit 67 is supplied to the PLL 62.
  • the signals A to E are electric signals according to the amount of light received in the following region described above with reference to FIG.
  • Signal A A1 + A2
  • B B
  • B B
  • C C
  • D D1 + D2 + D3
  • E E1 + E2 + E3
  • the data detection processing unit 15 has a multi-input adaptive equalizer 63, a binarization detector 64, a PR (Pertial Response) convolver 65, and an equalization error calculator 66.
  • the multi-input adaptive equalizer 63 performs PR adaptive equalization processing based on the reproduction information signals Sa to Se.
  • the reproduction information signals Sa to Se are output through the adaptive equalizer unit, and equalized so as to approximate the added equalized signal y 0 to the target PR waveform.
  • the output of the multi-input adaptive equalizer may be used as a signal input to the PLL 62.
  • the initial coefficient of the multi-input adaptive equalizer is set to a predetermined value.
  • the binarization detector 64 is, for example, a Viterbi decoder, and performs maximum likelihood decoding on the PR-equalized equalized signal y0 to obtain binarized data DT.
  • the binarized data DT is supplied to the encode / decode unit 17 shown in FIG. 1 to perform reproduction data demodulation processing.
  • the Viterbi decoding uses a Viterbi detector composed of a plurality of states composed of consecutive bits of a predetermined length and a branch represented by a transition between them, and uses all possible bit sequences. Among them, the configuration is configured to efficiently detect a desired bit sequence.
  • a register for storing partial response series up to the state called path metric register and path metric of the signal, and a flow of bit series up to the state called path memory register Two registers of registers for storing are provided. Furthermore, for each branch, there is provided an operation unit called branch metric unit that calculates a partial response sequence at that bit and a path metric of the signal.
  • various bit sequences can be associated in a one-to-one relationship by one of the paths passing through the state.
  • the path metric between the partial response sequence passing through these paths and the actual signal (reproduction signal) is the inter-state transition constituting the above path, that is, the above-mentioned branch metric in the branch It is obtained by adding.
  • the PR convolver 65 performs a convolution process of the binarization result to generate a target signal Zk.
  • the target signal Zk is an ideal signal without noise because it is a convolution of the binary detection result.
  • PR (1, 2, 2, 2, 1) the value P for each channel clock is (1, 2, 2, 2, 1).
  • the restraint length is five.
  • PR (1, 2, 3, 3, 3, 2, 1) the value P for each channel clock is (1, 2, 3, 3, 3, 2, 1).
  • the restraint length is seven.
  • the partial response constraint length 5 If the detection capability is not increased by increasing the length to 7, detection will be difficult.
  • the equalization error computing unit 66 obtains an equalization error ek from the equalization signal y0 from the multi-input adaptive equalizer 63 and the target signal Zk, and controls the tap error control of the equalization error ek to the multi-input adaptive equalizer 63.
  • the equalization error computing unit 66 includes a subtractor 91 and a coefficient multiplier 92.
  • the subtractor 81 subtracts the target signal Zk from the equalized signal y0.
  • An equalization error ek is generated by multiplying the subtraction result by a predetermined coefficient a by the coefficient multiplier 82.
  • the multi-input adaptive equalizer 63 has adaptive equalizer units 71 to 75 and an adder 76 as shown in FIG.
  • the reproduction information signal Sa described above is input to the adaptive equalizer unit 71
  • the reproduction information signal Sb is input to the adaptive equalizer unit 72
  • the reproduction information signal Sc is input to the adaptive equalizer unit 73
  • the reproduction information signal Sd is the adaptive equalizer unit 74.
  • the reproduction information signal Se is input to the adaptive equalizer unit 75.
  • An adaptive equalizer unit is provided corresponding to the divided signal numbers A to E obtained from the divided area.
  • Each of the adaptive equalizer units 71 to 75 has the number of FIR (Finite Impulse Response) filter taps, the calculation accuracy (bit resolution), and the parameter of the update gain of the adaptive calculation, and the optimum value is set for each.
  • Each of the adaptive equalizer units 71 to 75 is supplied with an equalization error ek as a coefficient control value for adaptive control.
  • the outputs y1 to y5 of the adaptive equalizer units 71 to 75 are added by the adder 76 and output as the equalized signal y0 of the multi-input adaptive equalizer 63.
  • the output target of the multi-input adaptive equalizer 63 is an ideal PR waveform in which the binary detection result is folded into PR (partial response).
  • the adaptive equalizer unit 71 is composed of, for example, an FIR filter as shown in FIG.
  • the adaptive equalizer unit 71 is a filter having taps of n + 1 stages including delay elements 80-1 to 80-n, coefficient multipliers 81-0 to 81-n, and an adder 84.
  • the coefficient multipliers 81-0 to 81-n multiply tap coefficients C0 to Cn with respect to the input x at each point in time.
  • the outputs of the coefficient multipliers 81-0 to 81-n are added by the adder 84 and taken out as an output y.
  • Control of tap coefficients C0 to Cn is performed in order to perform adaptive equalization processing.
  • arithmetic units 82-0 to 82-n are provided which perform arithmetic operations with the equalization error ek and each tap input being input.
  • integrators 83-0 to 83-n which integrate the outputs of the computing units 82-0 to 82-n are provided.
  • Each of the arithmetic units 82-0 to 82-n performs, for example, an operation of -1 ⁇ ek ⁇ x.
  • the outputs of the arithmetic units 82-0 to 82-n are integrated by the integrators 83-0 to 83-n, and the tap coefficients C0 to Cn of the coefficient multipliers 81-0 to 81-n are changed and controlled by the integration result. Ru.
  • the integration of the integrators 83-0 to 83-n is performed to adjust the responsiveness of the adaptive coefficient control.
  • decoding of the binarized data is performed after reduction of unnecessary signals such as crosstalk is performed.
  • the other adaptive equalizer units 72 to 75 shown in FIG. 5 also have the same configuration as the adaptive equalizer unit 71.
  • a common equalization error ek is supplied to the adaptive equalizer units 71 to 75 to perform adaptive equalization. That is, the adaptive equalizer units 71 to 75 optimize the error and phase distortion of the input signal frequency components of the reproduction information signals Sa, Sb, Sc, Sd and Se, that is, perform adaptive PR equalization. That is, tap coefficients C0 to Cn are adjusted in accordance with the calculation result of ⁇ 1 ⁇ ek ⁇ x in arithmetic units 82-0 to 82-n. This means that the tap coefficients C0 to Cn are adjusted in the direction of eliminating the equalization error.
  • the tap coefficients C0 to Cn are adaptively controlled in the direction of the target frequency characteristic using the equalization error ek.
  • the equalized signal y0 of the multi-input adaptive equalizer 63 obtained by adding the outputs y1, y2, y3, y4 and y5 of the adaptive equalizer units 71 to 75 by the adder 76 is a signal with reduced crosstalk and the like.
  • Specific examples of tap coefficient control processing and the like according to each of the signals A to E are described in the above-mentioned Patent Document 1 (International Publication WO 2016/006157) which is a prior application of the same applicant as the present applicant. ing. Also in the configuration of the present application, tap coefficient setting processing corresponding to each signal similar to that described in the prior application can be applied.
  • optical discs such as BD are required to perform high-density information recording.
  • One method for increasing the density of an optical disc is to narrow the track pitch.
  • a land (L) / groove (G) recording method of recording data on both a groove track and a land track is effective.
  • such a high density recording disc has a problem that the possibility of crosstalk in data reproduction processing becomes high. That is, there is a problem that crosstalk in which data of an adjacent track is mixed as noise into read data of a read target track is likely to occur.
  • FIG. 8 is a diagram showing a configuration example of an information processing apparatus (reproduction apparatus) that performs crosstalk cancellation using a read signal of an adjacent track. Data reading by the optical pickup 11 is performed on the disc 10.
  • the optical pickup 11 reads track data along a data read line 100 of the disk 10 shown in the figure. As shown in FIG. 8 (1), an enlarged view of the track, data recorded on three adjacent tracks Tn ⁇ 1, Tn, Tn + 1 centered on the track Tn are read along the data read line 100.
  • Read data from the disk 10 is input from the photodetector 101 to the ADC (AD converter) 102, converted to a digital signal, and stored in the memory 103.
  • the data stored in the memory 103 is a digital signal generated based on an analog signal which is a read signal (RF signal) from the disk 10, for example, an 8-bit (0 to 255) digitized analog signal.
  • the memory 103 stores data read along the data read line 100 of the disk 10 shown in the figure.
  • FIG. 8 (1) when the read data of the adjacent region of three tracks A to B in the enlarged view of the track is stored in the memory 103, the read signal for three tracks of the A to B lines is sent to the multi-input adaptive equalizer It is input.
  • Signals S (tn + 1) to S (tn-1) shown in FIG. 8 correspond to the read signals of the tracks Tn + 1, Tn, and Tn-1, respectively.
  • data input from the memory 103 to the multi-input adaptive equalizer 106 needs to be performed by synchronizing three signals of lines A to B in FIG. 8A.
  • This control is performed by the memory controller 105 based on a rotation synchronization signal, an address and the like provided from the system controller 104 to the memory controller 105.
  • the multi-input adaptive equalizer 106 has a plurality of adaptive equalizer units each of which receives three read signals of each track Tn-1 to Tn + 1.
  • Each adaptive equalizer unit has a configuration similar to that described above with reference to FIG.
  • the read signal S (tn) of the central track Tn to be subjected to one adaptive reproduction is input to one adaptive equalizer unit. Furthermore, the read signals S (tn-1) and S (tn + 1) of the adjacent tracks Tn-1 and Tn + 1 which generate crosstalk components are input to the respective adaptive equalizer units. The output of each adaptive equalizer unit is calculated to output an equalized signal, and the equalized signal is binarized to generate binary data. By this process, it is possible to obtain high quality data from which the crosstalk component has been removed from the read signal S (tn) of the track Tn.
  • the configuration and processing of the multi-input adaptive equalizer 106 will be described later with reference to FIG.
  • the read signal of the reproduction target track and the adjacent track can be input to the multi-input adaptive equalizer 106 to remove the crosstalk component.
  • the configuration shown in FIG. 8 it is necessary to store in the memory 103 read data along the data read line 100 shown in the disk 10 of FIG. 8, that is, read data of approximately two tracks of the disk.
  • the data stored in the memory 103 is a digital signal generated based on an analog signal which is a read signal (RF signal) from the disk 10, for example, an 8-bit (0 to 255) digitalized analog signal
  • RF signal read signal
  • 8-bit 8-bit
  • the pickup 11 irradiates spot light to each of the adjacent three tracks at a time, and the reflected light from each track is detected by the three photodetectors 101a to 101c.
  • Patent Document 4 Japanese Patent 4184585 describes a configuration in which three spot lights are irradiated and detection light from each spot light is detected by an individual photodetector.
  • read data from the disk 10 that is, read data from three adjacent tracks Tn-1, Tn, and Tn + 1 are output from the photodetectors 101a to 101c to ADCs (AD converters) 102a to 102c, respectively.
  • the signal is converted into a digital signal and stored in the memory 103.
  • the data stored in the memory 103 is a digital signal generated based on an analog signal which is a read signal (RF signal) from the disk 10, for example, an 8-bit (0 to 255) digitized analog It is a signal.
  • the memory 103 stores data read from three adjacent tracks. These read data are offset in the track direction. As described above, the multi-input adaptive equalizer 106 needs to input data of three adjacent tracks without deviation in the track direction. Therefore, it is necessary to store data of three adjacent tracks without deviation in the track direction in the memory 103, and three tracks of a section corresponding to the deviation in the track direction of three spot lights irradiated to three tracks are stored. Needs to store the read data of
  • the data input from the memory 103 to the multi-input adaptive equalizer 106 is input by synchronizing the signal of the closest position of the three tracks, that is, the three signals of lines A to B in FIG. You need to This control is performed by the memory controller 105 based on a rotation synchronization signal, an address and the like provided from the system controller 104 to the memory controller 105.
  • the memory 103 is a digital signal generated based on an analog signal which is a signal read from three adjacent tracks, that is, a read signal (RF signal) from the disk 10, for example, 8 bits (0 bits). It is necessary to store the digitized analog signal of ⁇ 255), and there is a problem that the required memory capacity is increased. Further, in the configuration shown in FIG. 10, a circuit for processing signals from three adjacent tracks in parallel, for example, the number of ADCs necessary for reading data is required, resulting in a problem that the circuit configuration is complicated. .
  • the multi-input adaptive equalizer 106 includes adaptive equalizer units 111, 112 and 113 and an adder 114.
  • the reproduction signal S (tn + 1) corresponding to the track Tn + 1 is input to the adaptive equalizer unit 111.
  • the reproduction signal S (tn) corresponding to the track Tn is input to the adaptive equalizer unit 112.
  • the reproduction signal S (tn-1) corresponding to the track Tn-1 is input to the adaptive equalizer unit 113.
  • Each of the adaptive equalizer units 111, 112, and 113 has the number of FIR filter taps, its operation accuracy (bit resolution), and the parameter of the update gain of the adaptive operation, and an optimum value is set for each.
  • the equalization error ek is supplied to each of the adaptive equalizer units 111, 112, and 113 as a coefficient control value for adaptive control.
  • the outputs y1, y2 and y3 of the adaptive equalizer units 111, 112 and 113 are added by the adder 114 and output as the equalized signal y0 of the multi-input adaptive equalizer 106.
  • the output target of the multi-input adaptive equalizer 106 is an ideal PR waveform in which the binary detection result is folded into PR (partial response).
  • Each of the adaptive equalizer units 111, 112, and 113 is configured by, for example, an FIR filter as shown in FIG. 6 described above. That is, each of the adaptive equalizer units 111, 112, and 113 is a filter having taps of n + 1 stages including delay elements 80-1 to 80-n, coefficient multipliers 81-0 to 81-n, and an adder 84.
  • the coefficient multipliers 81-0 to 81-n multiply tap coefficients C0 to Cn with respect to the input x at each point in time.
  • the outputs of the coefficient multipliers 81-0 to 81-n are added by the adder 84 to be the output y.
  • Control of tap coefficients C0 to Cn is performed in order to perform adaptive equalization processing.
  • arithmetic units 82-0 to 82-n are provided which perform arithmetic operations with the equalization error ek and each tap input being input.
  • integrators 83-0 to 83-n which integrate the outputs of the computing units 82-0 to 82-n are provided.
  • each of the computing units 82-0 to 82-n for example, an operation of -1 ⁇ ek ⁇ x is performed.
  • the outputs of the arithmetic units 82-0 to 82-n are integrated by the integrators 83-0 to 83-n, and the tap coefficients C0 to Cn of the coefficient multipliers 81-0 to 81-n are changed and controlled by the integration result. Ru.
  • the integration of the integrators 83-0 to 83-n is performed to adjust the responsiveness of the adaptive coefficient control. Decoding of binarized data is performed after crosstalk cancellation is performed using the above configuration.
  • Each of the adaptive equalizer units 111, 112, and 113 has the configuration shown in FIG. 6, and the same equalization error ek is supplied to perform adaptive equalization.
  • the adaptive equalizer unit 112 to which the reproduction information signal S (tn) of the track to be processed is input optimizes the error and phase distortion of the input signal frequency component of the reproduction information signal S (tn), that is, adaptive PR equalization Do. This is the same as the operation of a conventional adaptive equalizer. That is, tap coefficients C0 to Cn are adjusted according to the calculation result of-1 x ek x x in each arithmetic unit 82-0 to 82-n shown in FIG. 6, and tap is performed in the direction to eliminate the equalization error. The coefficients C0 to Cn are adjusted.
  • the output target is uncorrelated with the reproduction information signals S (tn + 1) and S (tn-1) of the adjacent tracks.
  • an operation to cancel the correlation component that is, the crosstalk component is performed. That is, in the case of the adaptive equalizer units 111 and 113, the tap coefficients C0 to Cn are adjusted according to the calculation result of ⁇ 1 ⁇ ek ⁇ x in each of the arithmetic units 82-0 to 82-n.
  • the tap coefficients C0 to Cn are adjusted so that the frequency characteristic in the direction in which the crosstalk component is eliminated is obtained in the addition result.
  • the tap coefficients C0 to Cn are adaptively controlled in the direction to achieve the target frequency characteristics using the equalization error ek, while in the adaptive equalizer units 111 and 113, the equalization errors are also the same.
  • the tap coefficients C0 to Cn are automatically controlled in the direction of the frequency characteristic for crosstalk cancellation using ek.
  • the equalization signal y0 of the multi-input adaptive equalizer 106 obtained by adding the outputs y1, y2, y3 of the respective adaptive equalizer units 111, 112, 113 by the adder 114 becomes a crosstalk canceled signal.
  • the read signal of each track is one signal, that is, “(A) no division 1 signal output type described earlier with reference to FIG. Is a configuration example in the case of using the photodetector of ".”
  • the read signal from each track will be 3 signals and 5 signals respectively .
  • data to be stored in the data storage memory for adjusting the input timing to the multi-input adaptive equalizer, that is, the memory 103 shown in FIGS. 8 and 10 is tripled or quadrupled.
  • the weighting factors p and q as described above may be multiplied to generate a signal.
  • the pickup 11 reads data from three adjacent tracks of the disk 10, inputs the read data to the ADC 102, converts the read data into digital data, and stores the digital data in the memory 103.
  • read data from the disk 10 that is, read data from three adjacent tracks Tn-1, Tn and Tn + 1 are input from the photodetectors 101a to 101c to ADCs (AD converters) 102a to 102c, respectively. And converted into a digital signal and stored in the memory 103.
  • ADCs AD converters
  • Each of the photodetectors 101a to 101c outputs five signals A to E in parallel.
  • Each of the ADCs (AD converters) 102a to 102c is configured by five ADCs. That is, a total of 15 ADCs operate in parallel, and digital signals generated by the 15 ADCs are stored in the memory 103.
  • the data stored in the memory 103 is a digital signal generated based on an analog signal which is a read signal (RF signal) from the disk 10, for example, an 8-bit (0 to 255) digitized analog signal.
  • the memory 103 stores data read from three adjacent tracks.
  • read signals for three tracks are input to the multi-input adaptive equalizer set 120.
  • the data input from the memory 103 to the multi-input adaptive equalizer set 120 is made by synchronizing the signal of the closest position of the three tracks, ie, the three signals of lines A to B in FIG. It is necessary to make it input.
  • This control is performed by the memory controller 105 based on a rotation synchronization signal, an address and the like provided from the system controller 104 to the memory controller 105.
  • the multi-input adaptive equalizer set 120 is configured by three multi-input adaptive equalizers 121 to 123 which input read signals (five signals A to E) of three tracks, and an adder 124.
  • Each of the multi-input adaptive equalizers 121 to 123 is, as shown in FIG. 14, five adaptive equalizer units for inputting reproduction signals Sa to Se based on five signals A to E output from the five-signal output photodetector corresponding to the divided area.
  • 131 to 135 and an adder 136 Each of the adaptive equalizer units 131 to 135 is configured by the FIR filter described above with reference to FIG.
  • FIG. 15 is a diagram for explaining an outline of a configuration and processing of an information processing apparatus which executes crosstalk cancellation using a binarized reproduction signal (binary data) of an adjacent track.
  • the optical pickup 11 is provided with a five-signal output type photodetector 201 as shown in FIG. 15 (1).
  • the processing of the present disclosure is 1 signal output type other than 5-signal output type, 3 signals
  • the present invention is also applicable to a configuration using photodetectors having various signal outputs, such as an output type.
  • the optical pickup 11 reads the recorded data of the reproduction target track (Tn), that is, the central track (Tn) of three adjacent tracks (Tn-1, Tn, Tn + 1) shown in the enlarged view of FIG. Run.
  • the photodetector 201 of the optical pickup 11 inputs read signals [R (tn) A to E] composed of five signals to the ADC 202.
  • the ADC 202 performs digital conversion of these five read signals, and inputs the signals S (tn) A to E to the multi-input adaptive equalizer 205.
  • This input signal is a digitized analog signal (for example, 8 bits 0 to 255) obtained by digitizing the read signal (RF signal) from the disk 10.
  • the final reproduction signal that is, any one of 1 and 2 binary signals according to the marks (pits) recorded on the disc That is, binary data is input from the adjacent track reproduction binary signal supply unit 203 to the multi-input adaptive equalizer 205 via the memory 204.
  • a signal D (tn-1) shown in FIG. 15 is a reproduced binary signal (binary data) of the track Tn-1
  • a signal D (tn + 1) is a reproduced binary signal (binary data) of the track Tn + 1.
  • the signal supplied by the adjacent track reproduction binary signal supply unit 203 is a final reproduction signal of the adjacent track (Tn-1, Tn + 1) of the reproduction target track (Tn), that is, a mark (pit) recorded on the disc.
  • This is either one of 1 or 2 corresponding binary signals, that is, binary data.
  • This binarized signal (binary data) is stored in the memory 204, and from the memory 204, the read binary signal of the two adjacent tracks (Tn-1, Tn + 1) of the nearest position of the read track (Tn) is used.
  • Certain binary data is input to the multi-input adaptive equalizer 205.
  • the reproduction signal (binary data) of the adjacent track input from the memory 204 to the multi-input adaptive equalizer 205 is the closest position of the read target track (Tn) input through the ADC 202, that is, the radial direction of the disc. It is necessary to be the data of the position along.
  • the A to B lines correspond to radial lines of the disc.
  • This synchronous input control is not shown in FIG. 15, but, as described with reference to FIG. 8 and the like, the memory controller executes a row by the memory controller based on a rotation synchronization signal, an address, etc. provided to the memory controller. It will be.
  • the memory 204 stores reproduction binary signals (binary data) of the adjacent track (Tn ⁇ 1, Tn + 1) of the reproduction target track (Tn).
  • the memory 103 stores a digitized analog signal (for example, 8-bit 0) obtained by digitizing a read signal (RF signal) by the optical pickup 11. It is necessary to store ⁇ 255), and a large memory capacity is required to store this data.
  • the memory 204 only needs to store reproduction binary signals (binary data) of the adjacent track (Tn ⁇ 1, Tn + 1) of the reproduction target track (Tn). Memory capacity is greatly reduced.
  • the ADC provided at the front stage of the multi-input adaptive equalizer 205 is only the ADC for the read signals R (tn) A to E of the reproduction target track (Tn). As compared to the configuration, the number of required ADCs can also be reduced.
  • the reproduction binary signal (binary data) stored in the memory 204 may be compressed according to a predetermined algorithm before being stored in the memory 204 to further reduce the amount of data. However, in this case, it is necessary to execute decompression processing of compressed data as pre-processing to be output from the memory 204 to the multi-input adaptive equalizer 205.
  • the adjacent track reproduction binary signal supply unit 203 is a final reproduction signal of the adjacent track (Tn-1, Tn + 1) of the reproduction target track (Tn), that is, a mark (pit) recorded on the disc. And 1) one or two binary signals, ie, binary data, are supplied to the memory.
  • the adjacent track reproduction binary signal supply unit 203 can have various configurations. One is that it is possible to apply the execution configuration of the conventional reproduction signal generation processing, for example, the same reproduction signal generation configuration as described above with reference to FIG. 4 as it is. Alternatively, a configuration is also possible in which the reproduction signal obtained by applying the configuration shown in FIG. 15 is reused for the next reproduction track. Alternatively, for example, when the recording signal for the disk 10 is known, the recording signal may be used as it is. These processing examples will be described later.
  • FIG. 16 is a diagram showing the configuration of the multi-input adaptive equalizer 205.
  • the multi-input adaptive equalizer 205 includes adaptive equalizer units 211 to 217 and an adder 218, as shown in FIG.
  • the read signal of the reproduction target track (Tn), that is, five signals (StnA to StnE) obtained through the five-signal output type pickup are inputted to the adaptive equalizer units 211 to 215, respectively. Also, from the memory 204, reproduction binary signals (binary data) (D (tn-1), D (tn + 1)) of the adjacent track are input to the adaptive equalizer units 216 to 217, respectively.
  • the multi-input adaptive equalizer 205 performs PR adaptive equalization processing based on these input signals.
  • Each of the adaptive equalizer units 211 to 217 is configured by the same FIR filter as that of FIG. 6 described above. It has parameters of the number of FIR filter taps, the calculation accuracy (bit resolution), and the update gain of the adaptive calculation, and the optimum value is set for each.
  • Each of the adaptive equalizer units 211 to 217 is supplied with an equalization error ek as a coefficient control value for adaptive control.
  • the outputs y1 to y7 of the respective adaptive equalizer units 211 to 217 are added by the adder 218 and output as the equalized signal y0 of the multi-input adaptive equalizer 206.
  • the output target of the multi-input adaptive equalizer 206 is an ideal PR waveform in which the binary detection result is folded into PR (partial response).
  • Each of the adaptive equalizer units 211 to 217 is configured by, for example, an FIR filter as shown in FIG. 6 described above. That is, each adaptive equalizer unit 211 to 217 is a filter having n + 1 stages of taps having delay elements 80-1 to 80-n, coefficient multipliers 81-0 to 81-n, and an adder 84 as shown in FIG. It is assumed.
  • the coefficient multipliers 81-0 to 81-n multiply tap coefficients C0 to Cn with respect to the input x at each point in time.
  • the outputs of the coefficient multipliers 81-0 to 81-n are added by the adder 84 to be the output y.
  • Control of tap coefficients C0 to Cn is performed in order to perform adaptive equalization processing.
  • arithmetic units 82-0 to 82-n are provided which perform arithmetic operations with the equalization error ek and each tap input being input.
  • integrators 83-0 to 83-n which integrate the outputs of the computing units 82-0 to 82-n are provided.
  • each of the computing units 82-0 to 82-n for example, an operation of -1 ⁇ ek ⁇ x is performed.
  • the outputs of the arithmetic units 82-0 to 82-n are integrated by the integrators 83-0 to 83-n, and the tap coefficients C0 to Cn of the coefficient multipliers 81-0 to 81-n are changed and controlled by the integration result. Ru.
  • the integration of the integrators 83-0 to 83-n is performed to adjust the responsiveness of the adaptive coefficient control. Decoding of binarized data is performed after crosstalk cancellation is performed using the above configuration.
  • Each of the adaptive equalizer units 211 to 217 has the configuration shown in FIG. 6, and the same equalization error ek is supplied to perform adaptive equalization.
  • the adaptive equalizer units 211 to 215 to which the signals StnA to E of the track (Tn) to be reproduced are input optimize the error and phase distortion of the input signal frequency component of the reproduction signal, that is, adaptive PR equalization. This is the same as the operation of a conventional adaptive equalizer. That is, tap coefficients C0 to Cn are adjusted according to the calculation result of-1 x ek x x in each arithmetic unit 82-0 to 82-n shown in FIG. 6, and tap is performed in the direction to eliminate the equalization error. The coefficients C0 to Cn are adjusted.
  • the output target is uncorrelated with the reproduction signal of the adjacent track.
  • an operation to cancel the correlation component that is, the crosstalk component is performed. That is, in the case of the adaptive equalizer units 216 and 217, the tap coefficients C0 to Cn are adjusted according to the calculation result of ⁇ 1 ⁇ ek ⁇ x in each of the arithmetic units 82-0 to 82-n, and the adder 218 of FIG. The tap coefficients C0 to Cn are adjusted so that the frequency characteristic in the direction in which the crosstalk component is eliminated is obtained in the addition result.
  • the tap coefficients C0 to Cn are adaptively controlled in the direction to achieve the target frequency characteristics using the equalization error ek, while in the adaptive equalizer units 216 and 217, The tap coefficients C0 to Cn are automatically controlled in the direction of the frequency characteristic for crosstalk cancellation using the quantization error ek.
  • the equalization signal y0 of the multi-input adaptive equalizer 206 obtained by adding the outputs y1 to y7 of the respective adaptive equalizer units 211 to 217 by the adder 218 becomes a crosstalk canceled signal.
  • the example described below is a processing example in which the reproduction signal of only one adjacent track is applied, not the two tracks on both sides of the reproduction target track (Tn).
  • FIG. 17 shows an outline of the configuration and process of an information processing apparatus that executes crosstalk cancellation using a binary reproduction signal (binary data) of one adjacent track (Tn-1) adjacent to the reproduction target track (Tn).
  • FIG. 17 the optical pickup 11 is provided with a five-signal output photodetector 201 as shown in FIG. 17 (1).
  • the process of the present disclosure is also applicable to a configuration using photodetectors having various signal outputs, such as one signal output type other than five signal output type, three signal output type, and the like.
  • the optical pickup 11 reads the recorded data of the reproduction target track (Tn), that is, one track (Tn) of two adjacent tracks (Tn ⁇ 1, Tn) shown in the enlarged view of FIG. .
  • the photodetector 201 of the optical pickup 11 inputs read signals [R (tn) A to E] composed of five signals to the ADC 202.
  • the ADC 202 performs digital conversion of these five read signals, and inputs the signals S (tn) A to E to the multi-input adaptive equalizer 205.
  • This input signal is a digitized analog signal (for example, 8 bits 0 to 255) obtained by digitizing the read signal (RF signal) from the disk 10.
  • the final reproduction signal that is, any one of 1, 0 binary signals according to the marks (pits) recorded on the disc That is, binary data is input from the adjacent track reproduction binary signal supply unit 203 to the multi-input adaptive equalizer 205 via the memory 204.
  • a signal D (tn-1) shown in FIG. 15 is a reproduced binary signal (binary data) of the track Tn-1.
  • the signal supplied by the adjacent track reproduction binary signal supply unit 203 corresponds to the final reproduction signal of the adjacent track (Tn-1) of the reproduction target track (Tn), that is, the mark (pit) recorded on the disc. It is one of 1, 0 binary signals, that is, binary data.
  • the memory 204 stores this binarized signal (binary data), and binary data which is a reproduced binary signal of one adjacent track (Tn-1) of the closest position of the read track (Tn) from the memory 204.
  • the reproduction signal (binary data) of the adjacent track input from the memory 204 to the multi-input adaptive equalizer 205 is the closest position of the read target track (Tn) input through the ADC 202, that is, the diameter of the disc. It is necessary to be data of the position along the direction.
  • the A to B lines correspond to radial lines of the disc.
  • This synchronous input control is not shown in FIG. 17, but, as described with reference to FIG. 8 and the like, the memory controller executes a row by the memory controller based on a rotation synchronization signal, an address, etc. provided to the memory controller. It will be.
  • the memory 204 stores a reproduction binary signal (binary data) of the adjacent track (Tn-1) of the reproduction target track (Tn). Also in this example, as described above with reference to FIG. 15, the memory capacity required for the memory 204 is significantly larger than that of the memory 103 described with reference to FIGS. 8, 10, 12, and 13. Reduced to Also, the number of required ADCs can be reduced.
  • the reproduction binary signal (binary data) stored in the memory 204 may be compressed according to a predetermined algorithm before being stored in the memory 204 to further reduce the amount of data. However, in this case, it is necessary to execute decompression processing of compressed data as pre-processing to be output from the memory 204 to the multi-input adaptive equalizer 205.
  • the adjacent track reproduction binary signal supply unit 203 records the final reproduction signal of one adjacent track (Tn-1) of the reproduction target track (Tn), that is, The memory is supplied with one of 1, 0 binary signals corresponding to the marks (pits), that is, binary data.
  • the adjacent track reproduction binary signal supply unit 203 can have various configurations.
  • FIG. 18 is a diagram showing the configuration of the multi-input adaptive equalizer 205.
  • the multi-input adaptive equalizer 205 includes adaptive equalizer units 211 to 216 and an adder 218, as shown in FIG.
  • the configuration of the multi-input adaptive equalizer 205 shown in FIG. 18 corresponds to the configuration in which the adaptive equalizer unit 217 is eliminated from the multi-input adaptive equalizer 205 of FIG. 16 described above. In this configuration, only the adaptive equalizer unit 216 inputs the reproduction signal of one adjacent track (Tn-1) which is not the reproduction target track (Tn).
  • the tap coefficients C0 to Cn are adaptively controlled in the direction of the target frequency characteristics using the equalization error ek.
  • the adaptive equalizer unit 216 is automatically controlled in the direction in which the tap coefficients C0 to Cn have frequency characteristics for crosstalk cancellation, similarly using the equalization error ek.
  • the equalization signal y0 of the multi-input adaptive equalizer 206 obtained by adding the outputs y1 to y6 of the respective adaptive equalizer units 211 to 216 by the adder 218 becomes a crosstalk canceled signal.
  • the adjacent track reproduction binary signal supply unit 203 can have various configurations.
  • One is that it is possible to apply the execution configuration of the conventional reproduction signal generation processing, for example, the same reproduction signal generation configuration as described above with reference to FIG. 4 as it is.
  • a configuration is also possible in which the reproduction signal obtained by applying the configuration shown in FIG. 15 is reused for the next reproduction track.
  • the recording signal for the disk 10 is known, the recording signal may be used as it is.
  • FIG. 19 shows one process in which the adjacent track reproduction binary signal supply unit 203 generates a reproduction binary signal (binary data) of one track (Tn-1) adjacent to the reproduction target track (Tn). It is a figure explaining an example.
  • the example shown in FIG. 19 is a processing example in the case where a reproduction apparatus is used in which one optical pickup 11 sets one irradiation spot and performs reproduction.
  • Data read by the optical pickup 11 according to the data reading line 100 of the disk 10 shown in FIG. 19 is supplied to the adjacent track reproduction binary signal supply unit 203, where a normal reproduction signal (binary data (binary data)) Generation processing is performed. That is, the adjacent track reproduction binary signal supply unit 203 applies the reproduction signal generation signal configuration described with reference to, for example, FIG. 4 to generate a reproduction signal of the preceding track area and stores the reproduction signal in the memory 204.
  • the example shown in FIG. 20 is a processing example in the case of applying a reproducing apparatus having two optical pickups 11a and 11b and setting two irradiation spots to perform reproduction.
  • the two irradiation lights may be set using one optical pickup.
  • the configuration is similar to that of the optical pickup described above with reference to FIG.
  • the optical pickups a and 11a acquire the reproduction signal of the reproduction target track (Tn), and the optical pickups b and 11b acquire the reproduction signal of the adjacent track (Tn-1). is there.
  • FIG. 20 shows an example using a pickup having an offset (shift) in the track direction for irradiation spot light between adjacent tracks
  • an optical pickup capable of irradiating a plurality of spot lights having no such offset is described. When used, data storage processing according to such an offset distance is unnecessary.
  • the example shown in FIG. 21 is a processing example in the case of applying a reproducing apparatus having two optical pickups 11a and 11b and setting two irradiation spots to perform reproduction.
  • the irradiation spot light between adjacent tracks has an offset (shift) in the track direction
  • the example shown in FIG. 21 does not have the offset. If there is a deviation as shown in FIG. 20, it is necessary to store data corresponding to the deviation in the memory and correct it.
  • the two irradiation lights may be set using one optical pickup.
  • the configuration is similar to that of the optical pickup described above with reference to FIG.
  • the optical pickups a and 11a acquire the reproduction signal of the reproduction target track (Tn), and the optical pickups b and 11b acquire the reproduction signal of the adjacent track (Tn-1).
  • the read data from the adjacent track (Tn-1) of the reproduction target track (Tn) is supplied to the adjacent track reproduction binary signal supply unit 203 via the optical pickups b and 11b, where a normal reproduction signal is obtained.
  • (Binarized data (binary data)) is generated and input to the multi-input adaptive equalizer 205 through the memory 204.
  • the memory 204 stores the reproduction signal (binarized data (binary data)) of the adjacent track (Tn-1) generated by the reproduction binary signal supply unit 203.
  • read signals [R (tn) A to E] of the reproduction target track (Tn) are input to the ADC 202, and digital data [S (tn) A to E: digitized analog signals (for example, 8 bits 0 to 255) ] And stored in the memory 230, and then input from the memory 230 to the multi-input adaptive equalizer 205.
  • the memory 230 and the memory 204 are buffers for adjustment (delay processing) of the input timing to the multi-input adaptive equalizer 205, and their memory capacity can be made small.
  • FIG. 22 is a diagram for explaining a configuration example of the information processing apparatus in an example to which a reproduction signal of one adjacent track is applied.
  • the ADC 202, the adjacent track reproduction binary signal supply unit 203, the memory 204, and the multi-input adaptive equalizer 205 illustrated in FIG. 22 are the ADC 202, the adjacent track reproduction binary signal supply unit 203, the memory 204, and the multi-input adaptive equalizer 205 illustrated in FIG. Is the same as
  • the configuration shown in FIG. 22 is an example using a pickup provided with a 5-signal output type photodetector as an optical pickup, as described with reference to FIG.
  • the process of the present disclosure is also applicable to a configuration using photodetectors having various signal outputs, such as one signal output type other than five signal output type, three signal output type, and the like.
  • ADC 201 Five read signals [R (tn) A to E] from the reproduction target track (Tn) are input to the ADC 202 shown in FIG. 22 from the optical pickup.
  • the ADC 201 illustrated in FIG. 22 may be configured to have a signal processing function such as a high pass filter (HPF) or an auto gain controller (AGC) other than the ADC.
  • HPF high pass filter
  • AGC auto gain controller
  • the ADC 202 performs digital conversion of five read signals, and inputs the signals S (tn) A to E to the multi-input adaptive equalizer 205.
  • This input signal is a digitized analog signal (for example, 8 bits 0 to 255) obtained by digitizing the read signal (RF signal) from the disk 10.
  • the final reproduction signal that is, any one of 1, 0 binary signals according to the marks (pits) recorded on the disc That is, binary data is input from the adjacent track reproduction binary signal supply unit 203 to the multi-input adaptive equalizer 205 via the memory 204.
  • a signal D (tn-1) shown in FIG. 22 is a reproduced binary signal (binary data) of the track Tn-1.
  • the signal supplied by the adjacent track reproduction binary signal supply unit 203 corresponds to the final reproduction signal of the adjacent track (Tn-1) of the reproduction target track (Tn), that is, the mark (pit) recorded on the disc. It is one of 1, 0 binary signals, that is, binary data.
  • the memory 204 stores this binarized signal (binary data), and binary data which is a reproduced binary signal of one adjacent track (Tn-1) of the closest position of the read track (Tn) from the memory 204.
  • the reproduction signal (binary data) of the adjacent track input from the memory 204 to the multi-input adaptive equalizer 205 is the closest position of the read target track (Tn) input through the ADC 202, that is, the diameter of the disc. It is necessary to be data of the position along the direction.
  • the synchronization input control is performed by the memory controller 221 based on a rotation synchronization signal, an address and the like provided from the system controller 220 to the memory controller 221.
  • the memory 204 stores a reproduction binary signal (binary data) of the adjacent track (Tn-1) of the reproduction target track (Tn). Also in this example, as described above with reference to FIG. 15, the memory capacity required for the memory 204 is significantly larger than that of the memory 103 described with reference to FIGS. 8, 10, 12, and 13. Reduced to Also, the number of required ADCs can be reduced.
  • the multi-input adaptive equalizer 205 has the configuration shown in FIG. 18 described above.
  • the multi-input adaptive equalizer 205 includes adaptive equalizer units 211 to 216 and an adder 218, as shown in FIG.
  • the tap coefficients C0 to Cn are adaptively controlled in the direction of the target frequency characteristics using the equalization error ek.
  • the adaptive equalizer unit 216 is automatically controlled in the direction in which the tap coefficients C0 to Cn have frequency characteristics for crosstalk cancellation, similarly using the equalization error ek.
  • the equalization signal y0 of the multi-input adaptive equalizer 206 obtained by adding the outputs y1 to y6 of the respective adaptive equalizer units 211 to 216 by the adder 218 becomes a crosstalk canceled signal.
  • the multi-input adaptive equalizer 205 is calculated in the subtractor 253 based on the target signals generated by the binarization detector [PRTL (Pertial Response Maximum Likelihood) decoder] 251 and the PR convolver [PR target signal generation unit] 252.
  • Input equalization error (ek) perform noise component removal processing and the like based on these inputs, and output the generated signal to the binarization detector (PRML decoder) 251, PLL 254, and subtractor 253 Do.
  • a binarization detector (PRML decoder) 251 receives the equalized signal (y0) input from the multi-input adaptive equalizer 205, and generates the most probable reproduced signal by the maximum likelihood decoding method.
  • a Viterbi decoding scheme is applied.
  • Viterbi decoding realizes maximum likelihood decoding of a convolutional code by repeating simple processes of addition, comparison, and selection, and a traceback operation that finally decodes data.
  • every time encoded data (received data sequence) corresponding to one information bit is obtained, the distance between signals (metrics) of the path in each state at that time is calculated to obtain the most probable path.
  • a reproduced signal is output by this decoding process.
  • a clock signal is input to the binarization detector (PRML decoder) 251 from a PLL 254 that generates a clock signal based on the output of the multi-input adaptive equalizer 205, and generation and output of a reproduction signal are performed under clock control.
  • the PLL 254 executes clock signal generation processing according to the servo signal included in the output of the multi-input adaptive equalizer 205.
  • the clock signal generated by the PLL 254 is also input to the memory controller 221, and is also used to control the data input timing to the multi-input adaptive equalizer 205 of the adjacent track reproduction signal from the memory 204.
  • the reproduction signal generated by the binarization detector (PRML decoder) 251 is input to the PR target generation unit 212.
  • the PR convolver (PR target signal generation unit) 212 generates a target of the subsequent reproduction signal based on the reproduction signal generated by the binarization detector (PRML decoder) 251 and inputs the target to the subtractor 253.
  • the subtracter calculates the difference between the target signal and the signal generated by the multi-input adaptive equalizer 205, and feeds this difference back to the multi-input adaptive equalizer 205 as an equalization error (ek) for the target.
  • the multi-input adaptive equalizer 205 receives this equalization error (ek) and performs adaptive equalization to generate an output signal.
  • FIG. 23 is a view for explaining the configuration and processing of the information processing apparatus (reproduction apparatus) when the signal (binary data) recorded in advance on the disk 10 is known and stored in the recording data storage memory 225.
  • the adjacent track reproduction binary signal supply unit 203 extracts the reproduction binary signal of the adjacent track (Tn-1) of the reproduction target track (Tn) from the recording data storage memory 225, and the multi-input adaptive equalizer via the memory 204. Input at 205.
  • the other configuration is the same as that shown in FIG.
  • data recording is performed on the disc by the recording pickup, and the recorded track is reproduced to confirm whether the data recording has been normally performed, so that data recording with so-called verify processing is performed.
  • verify processing is performed.
  • FIG. 24 is a diagram showing a configuration example of an information processing apparatus (reproduction apparatus) to which a memory 230 for controlling the input timing of the read signal of the reproduction target track (Tn) to the multi-input adaptive equalizer 205 is added.
  • the other configuration is the same as that shown in FIG.
  • the memory 230 corresponds to, for example, the memory 230 in the configuration described above with reference to FIG.
  • the read signals [R (tn) A to E] of the reproduction target track (Tn) are converted into digital data [S (tn) A to E: digitized analog signals (for example, 8 bits 0 to 255)] in the ADC 202, After being stored in the memory 230, the multi-input adaptive equalizer 205 is input from the memory 230.
  • the memory 230 and the memory 204 are buffers for adjustment (delay processing) of the input timing to the multi-input adaptive equalizer 205, and their memory capacity can be small.
  • the signal of each track input from the memory 230 and the memory 204 to the multi-input adaptive equalizer 205 is required to be data at a position along the radial direction of the disc.
  • the synchronization input control is performed by the memory controller 221 based on a rotation synchronization signal, an address and the like provided from the system controller 220 to the memory controller 221.
  • reproduction process according to the circuit configuration shown in FIGS. 22 to 24 can be executed, for example, under the control of the reproduction processing program stored in the storage unit of the reproduction apparatus (information processing apparatus). It is.
  • the reproduction signal of the adjacent track input to the multi-input adaptive equalizer is binarized (binary data). It may be a signal to have.
  • a target signal such as a PR signal generated from a binarized signal (binary data) may be used.
  • the binarization detector 251 generates and outputs a binary signal (binary data) in the above-described embodiment has been described.
  • a signal having an amount of data of two or more values may be output.
  • the output of the photodetector is input to a matrix operation circuit, and the matrix operation circuit outputs a plurality of signals according to the amount of light received in units of divided areas of the photodetector and inputs them to the ADC 202.
  • a matrix operation circuit may be provided downstream of the ADC 202 so that the matrix operation circuit generates a plurality of signals according to the amount of light received in units of divided areas of the photodetector and inputs the signals to the other input adaptive equalizer 205.
  • data is recorded on the land (L) and groove (G) of the disk 10, and a single pickup picks up both data, and the pickup and groove compatible with land (L).
  • G The present invention can be applied to any configuration using a plurality of pickups, such as compatible pickups.
  • the present invention is also applicable to a disc in which data is recorded only in one of land (L) and groove (G), and a high density recording type disc having only narrow track density without distinction between land (L) and groove (G). It is possible.
  • the adjacent track reproduction binary signal supply unit 203 can have various configurations.
  • One is that it is possible to apply the execution configuration of the conventional reproduction signal generation processing, for example, the same reproduction signal generation configuration as described above with reference to FIG. 4 as it is.
  • a configuration is also possible in which the reproduction signal obtained by applying the configuration shown in FIG. 15 is reused for the next reproduction track.
  • the recording signal for the disk 10 is known, the recording signal may be used as it is.
  • the adjacent track reproduction binary signal supply unit 203 generates reproduction binary signals (binary data) of two tracks (Tn ⁇ 1, Tn + 1) adjacent to the reproduction target track (Tn) 1. It is a figure explaining one processing example.
  • the example shown in FIG. 25 is a processing example in the case where a reproduction apparatus is used in which one optical pickup 11 sets one irradiation spot and performs reproduction.
  • Data read by the optical pickup 11 in accordance with the data reading line 100 of the disk 10 shown in FIG. 25 is supplied to the adjacent track reproduction binary signal supply unit 203, where a normal reproduction signal (binary data (binary data)) Generation processing is performed. That is, the adjacent track reproduction binary signal supply unit 203 applies the reproduction signal generation signal configuration described with reference to, for example, FIG. 4 to generate a reproduction signal of the preceding track area and stores the reproduction signal in the memory 204.
  • the adjacent track reproduction binary signal supply unit 203 follows the data read line 100 of the disk 10 shown in FIG. 25 to read the read data of approximately two tracks between the three irradiation spots p to q to r.
  • a reproduction binary signal is generated and stored in the memory 204.
  • the irradiation spot of the reproduction target track (Tn) is q
  • the irradiation spot of the adjacent track (Tn-1) closest to the irradiation spot q is p
  • the irradiation spot of the adjacent track (Tn + 1) closest to the irradiation spot q is r ing.
  • the spot position to be reproduced is q, and in order to use the reproduction signals of p and r in the reproduction signal generation process of the spot position q, the irradiation spot must be advanced to the position of r.
  • Read data between q and r are stored in the memory 230 after digital data generation by the ADC 202.
  • the read signals [R (tn) A to E] of the reproduction target track (Tn) are converted into digital data [S (tn) A to E: digitized analog signals (for example, 8 bits 0 to 255)] in the ADC 202, After being stored in the memory 230, the multi-input adaptive equalizer 205 is input from the memory 230.
  • the memory 230 and the memory 204 are buffers for adjustment (delay processing) of the input timing to the multi-input adaptive equalizer 205.
  • the signal of each track input from the memory 230 and the memory 204 to the multi-input adaptive equalizer 205 is required to be data at a position along the radial direction of the disc.
  • the synchronous input control is performed by the memory controller based on a rotational synchronization signal, an address, etc. provided to the memory controller from the system controller, although not shown.
  • the example shown in FIG. 26 is a processing example in the case of applying a reproducing apparatus having three optical pickups 11a, 11b and 11c and setting three irradiation spots to perform reproduction. In addition, it is good also as a structure which sets three irradiation lights using one optical pick-up.
  • the configuration is similar to that of the optical pickup described above with reference to FIG.
  • the optical pickups a and 11a acquire the reproduction signal of the adjacent track (Tn + 1)
  • the optical pickups b and 11b acquire the reproduction signal of the reproduction target track (Tn)
  • the optical pickup c , 11c are configured to acquire the reproduction signal of the adjacent track (Tn-1).
  • the irradiation spot Sq of the reproduction track (Tn) is set at the reproduction position (above the AB line) of the reproduction target track (Tn). Thereafter, at time t2, the irradiation spot Sr of the adjacent track (Tn + 1) is set on the AB line.
  • the irradiation spot Sp of another adjacent track (Tn-1) is set on the AB line at a time t0 (not shown) before the time t1.
  • the adjacent track reproduction binary signal supply unit 203 generates a reproduction binary signal of time t0 to t2 of the adjacent track (Tn-1) and a reproduction binary signal of track (Tn + 1) of time t2 and stores the same in the memory 204. Do. Further, the read signal of the reproduction target track (Tn) is converted into a digital signal by the ADC 202 and stored in the memory 230. The read signal of the reproduction target track (Tn) during the time t1 to t2 is also stored in the memory 230.
  • the memory 204 stores the reproduction signal (binarized data (binary data)) of the adjacent track (Tn ⁇ 1, Tn + 1) generated by the reproduction binary signal supply unit 203.
  • read signals [R (tn) A to E] of the reproduction target track (Tn) are input to the ADC 202, and digital data [S (tn) A to E: digitized analog signals (for example, 8 bits 0 to 255) ] And stored in the memory 230, and then input from the memory 230 to the multi-input adaptive equalizer 205.
  • the memory 230 and the memory 204 are buffers for adjustment (delay processing) of the input timing to the multi-input adaptive equalizer 205.
  • the signal of each track input from the memory 230 and the memory 204 to the multi-input adaptive equalizer 205 is required to be data at a position along the radial direction of the disc.
  • the synchronous input control is performed by the memory controller based on a rotational synchronization signal, an address, etc. provided to the memory controller from the system controller, although not shown.
  • the memory 230 and the memory 204 are buffers for adjustment (delay processing) of the input timing to the multi-input adaptive equalizer 205, and their memory capacity can be made small.
  • FIG. 26 shows an example using a pickup having an offset (shift) in the track direction to the irradiation spot light between adjacent tracks
  • an optical pickup capable of irradiating a plurality of spot lights having no such offset is described. When used, data storage processing according to such an offset distance is unnecessary.
  • the example shown in FIG. 27 is a processing example in the case of applying a reproduction apparatus having three optical pickups 11a, 11b and 11c and setting three irradiation spots for reproduction.
  • the irradiation spot light between adjacent tracks has an offset (shift) in the track direction
  • the example shown in FIG. 27 does not have the offset.
  • the configuration is similar to that of the optical pickup described above with reference to FIG.
  • the optical pickups a and 11a acquire the reproduction signal of the adjacent track (Tn + 1)
  • the optical pickups b and 11b acquire the reproduction signal of the reproduction target track (Tn)
  • the optical pickups c and 11c The reproduction signal of the adjacent track (Tn-1) is acquired.
  • the read data from the adjacent track (Tn ⁇ 1, Tn + 1) of the reproduction target track (Tn) is supplied to the adjacent track reproduction binary signal supply unit 203 and the normal reproduction signal (binarized data Binary data) is generated and input to the multi-input adaptive equalizer 205 through the memory 204.
  • the memory 204 stores the reproduction signal (binarized data (binary data)) of the adjacent track (Tn ⁇ 1, Tn + 1) generated by the reproduction binary signal supply unit 203.
  • read signals [R (tn) A to E] of the reproduction target track (Tn) are input to the ADC 202, and digital data [S (tn) A to E: digitized analog signals (for example, 8 bits 0 to 255) ] And stored in the memory 230, and then input from the memory 230 to the multi-input adaptive equalizer 205.
  • the memory 230 and the memory 204 are buffers for adjustment (delay processing) of the input timing to the multi-input adaptive equalizer 205, and their memory capacity can be made small.
  • FIG. 28 is a diagram for explaining a configuration example of the information processing apparatus in an example in which the reproduction signals of two adjacent tracks on both sides of the reproduction target track (Tn) are applied.
  • the ADC 202, adjacent track reproduction binary signal supply unit 203, memory 204, multi-input adaptive equalizer 205, and memory 230 shown in FIG. 28 are the ADC 202, adjacent track reproduction binary signal supply unit 203, memory 204 shown in FIGS. , Multi-input adaptive equalizer 205, and memory 230 are the same.
  • the configuration shown in FIG. 28 is an example in which a pickup provided with a 5-signal output type photodetector is used as an optical pickup.
  • the process of the present disclosure is also applicable to a configuration using photodetectors having various signal outputs, such as one signal output type other than five signal output type, three signal output type, and the like.
  • the ADC 201 illustrated in FIG. 28 may be configured to have a signal processing function such as a high pass filter (HPF) or an auto gain controller (AGC) other than the ADC.
  • HPF high pass filter
  • AGC auto gain controller
  • the ADC 202 performs digital conversion of five read signals, and inputs the signals S (tn) A to E to the multi-input adaptive equalizer 205 through the memory 230.
  • This input signal is a digitized analog signal (for example, 8 bits 0 to 255) obtained by digitizing the read signal (RF signal) from the disk 10.
  • the final reproduction signal that is, either 1, 0 according to the marks (pits) recorded on the disc , Or binary data
  • the adjacent track reproduction binary signal supply unit 203 receives the signals from the adjacent track reproduction binary signal supply unit 203 and the multi-input adaptive equalizer 205 via the memory 204.
  • a signal D (tn-1) shown in FIG. 22 is a reproduced binary signal (binary data) of the track Tn-1
  • a signal D (tn + 1) is a reproduced binary signal (binary data) of the track Tn + 1.
  • the signal supplied by the adjacent track reproduction binary signal supply unit 203 is a final reproduction signal of the adjacent track (Tn-1, Tn + 1) of the reproduction target track (Tn), that is, a mark (pit) recorded on the disc.
  • This is either one of 1 or 2 corresponding binary signals, that is, binary data.
  • the memory 204 stores this binarized signal (binary data), and is a reproduced binary signal of one adjacent track (Tn-1, Tn + 1) of the closest position of the read track (Tn) from the memory 204.
  • Binary data is input to the multi-input adaptive equalizer 205.
  • read signals [R (tn) A to E] of the reproduction target track (Tn) are input to the ADC 202, and digital data [S (tn) A to E: digitized analog signals (for example, 8 bits 0 to 255) ] And stored in the memory 230, and then input from the memory 230 to the multi-input adaptive equalizer 205.
  • the reproduction signal (binary data) of the adjacent track input from the memory 204 and the memory 230 to the multi-input adaptive equalizer 205 be data at a position along the radial direction of the disc.
  • the synchronization input control is performed by the memory controller 221 based on a rotation synchronization signal, an address and the like provided from the system controller 220 to the memory controller 221.
  • the memory 230 and the memory 204 are buffers for adjustment (delay processing) of the input timing to the multi-input adaptive equalizer 205, and their memory capacity can be made small. As described above, also in this example, the memory capacity required for the memory 204 is significantly reduced as compared with the memory 103 described with reference to FIGS. 8, 10, 12, and 13. Also, the number of required ADCs can be reduced.
  • the multi-input adaptive equalizer 205 has the configuration shown in FIG. 16 described above.
  • the multi-input adaptive equalizer 205 includes adaptive equalizer units 211 to 217 and an adder 218, as shown in FIG.
  • the tap coefficients C0 to Cn are adaptively controlled in the direction of the target frequency characteristics using the equalization error ek.
  • the adaptive equalizer units 216 and 217 are automatically controlled in the direction in which the tap coefficients C0 to Cn have frequency characteristics for crosstalk cancellation, similarly using the equalization error ek.
  • the equalization signal y0 of the multi-input adaptive equalizer 206 obtained by adding the outputs y1 to y6 of the respective adaptive equalizer units 211 to 217 by the adder 218 becomes a crosstalk canceled signal.
  • the multi-input adaptive equalizer 205 is an equalization error (ek) calculated in the subtractor 253 based on the target signal generated by the PRML (Pertial Response Maximum Likelihood) decoder 251 and the PR convolver (PR target signal generation unit) 212. , And performs noise component removal processing and the like based on these inputs, and outputs a generated signal to the binarization detector (PRML decoder) 251, the PLL 254, and the subtractor 253.
  • ek equalization error
  • a binarization detector (PRML decoder) 251 receives the equalized signal (y0) input from the multi-input adaptive equalizer 205, and generates the most probable reproduced signal by the maximum likelihood decoding method.
  • a Viterbi decoding scheme is applied.
  • Viterbi decoding realizes maximum likelihood decoding of a convolutional code by repeating simple processes of addition, comparison, and selection, and a traceback operation that finally decodes data.
  • every time encoded data (received data sequence) corresponding to one information bit is obtained, the distance between signals (metrics) of the path in each state at that time is calculated to obtain the most probable path.
  • a reproduced signal is output by this decoding process.
  • a clock signal is input to the binarization detector (PRML decoder) 251 from a PLL 254 that generates a clock signal based on the output of the multi-input adaptive equalizer 205, and generation and output of a reproduction signal are performed under clock control.
  • the PLL 254 executes clock signal generation processing according to the servo signal included in the output of the multi-input adaptive equalizer 205.
  • the clock signal generated by the PLL 254 is also input to the memory controller 221, and is also used to control the data input timing to the multi-input adaptive equalizer 205 of the adjacent track reproduction signal from the memory 204.
  • the reproduction signal generated by the binarization detector (PRML decoder) 251 is input to the PR target generation unit 212.
  • the PR convolver (PR target signal generation unit) 212 generates a target of the subsequent reproduction signal based on the reproduction signal generated by the binarization detector (PRML decoder) 251 and inputs the target to the subtractor 253.
  • the subtracter calculates the difference between the target signal and the signal generated by the multi-input adaptive equalizer 205, and feeds this difference back to the multi-input adaptive equalizer 205 as an equalization error (ek) for the target.
  • the multi-input adaptive equalizer 205 receives this equalization error (ek) and performs adaptive equalization to generate an output signal.
  • FIG. 29 is a view showing a configuration example of an information processing apparatus (reproduction apparatus) in the case where a signal (binary data) recorded in advance on the disk 10 is known and stored in the recording data storage memory 225.
  • the adjacent track reproduction binary signal supply unit 203 extracts the reproduction binary signal of the adjacent track (Tn ⁇ 1, Tn + 1) of the reproduction target track (Tn) from the recording data storage memory 225, and performs multiple inputs via the memory 204. Input to the adaptive equalizer 205.
  • the other configuration is similar to that shown in FIG.
  • the configuration shown in FIG. 29 can be applied to, for example, a configuration that executes data recording accompanied by a verification process in which the recording process and the reproduction process described above are performed together.
  • reproduction process according to the circuit configurations shown in FIGS. 28 to 29 can be executed, for example, under the control of the reproduction processing program stored in the storage unit of the reproduction apparatus (information processing apparatus) It is.
  • the reproduction signal of the adjacent track input to the multi-input adaptive equalizer is binarized (binary data). It may be a signal to have.
  • a target signal such as a PR signal generated from a binarized signal (binary data) may be used.
  • the binarization detector 251 generates and outputs a binary signal (binary data) in the above-described embodiment has been described.
  • a signal having an amount of data of two or more values may be output.
  • the output of the photodetector is input to a matrix operation circuit, and the matrix operation circuit outputs a plurality of signals corresponding to the amount of light received in units of divided areas of the photodetector and inputs them to the ADC 202.
  • a matrix operation circuit may be provided downstream of the ADC 202 so that the matrix operation circuit generates a plurality of signals according to the amount of light received in units of divided areas of the photodetector and inputs the signals to the other input adaptive equalizer 205.
  • data is recorded on the land (L) and groove (G) of the disk 10, and a single pickup picks up both data, and the pickup and groove compatible with land (L).
  • G The present invention can be applied to any configuration using a plurality of pickups, such as compatible pickups.
  • the present invention is also applicable to a disc in which data is recorded only in one of land (L) and groove (G), and a high density recording type disc having only narrow track density without distinction between land (L) and groove (G). It is possible.
  • FIG. 30 is a diagram showing a reproduction processing configuration of the information processing apparatus according to the present embodiment.
  • FIG. 30 shows the following two reproduction processing configurations.
  • Track (Tn) Reproduction Unit (2) Track (Tn + 1) Reproduction Unit
  • These two reproduction units execute data reproduction processing from two adjacent tracks of the disc in parallel.
  • Data reading of the track (Tn) is performed by the optical pickup 311.
  • Data reading of the track (Tn + 1) is performed by the optical pickup 321.
  • These data reads are performed in parallel.
  • the irradiation light of the optical pickups 311 and 312 is irradiated to a position along the radial direction of the disc. Further, it is assumed that the optical pickups 311 and 312 are provided with the five-signal output photodetector described above with reference to FIG. Also in the present embodiment, the photodetector is not limited to the five-signal output type, and photodetectors of various configurations such as one-progressive output type and three-signal output type can be applied.
  • the photodetector 3112 receives five signals to the ADC 313 according to the amount of light received in units of divided areas.
  • the signals A to E are electric signals according to the amount of light received in the following region shown in FIG.
  • Signal A A1 + A2 Signal
  • B B
  • Signal C C
  • Signal D D1 + D2 + D3
  • E E1 + E2 + E3
  • the weighting factors p and q as described above may be multiplied to generate a signal.
  • the ADC 313 digitally converts the five signals to generate five digitized analog signals (eg, 8 bits: 0 to 255) and inputs them to the first multi-input adaptive equalizer 314.
  • the first multiple input adaptive equalizer 314 is the five-input one-output equalizer described above with reference to FIG.
  • the adaptive equalizer units 71 to 75 shown in FIG. 5 optimize the error and phase distortion of the input signal frequency components of the signals A to E, that is, perform adaptive PR equalization. . That is, tap coefficients C0 to Cn are adjusted in accordance with the calculation result of ⁇ 1 ⁇ ek ⁇ x in arithmetic units 82-0 to 82-n. This means that the tap coefficients C0 to Cn are adjusted in the direction of eliminating the equalization error.
  • the tap coefficients C0 to Cn are adaptively controlled in the direction of the target frequency characteristic using the equalization error ek.
  • the equalized signal y0 of the first multiple input adaptive equalizer 313 obtained by adding the outputs y1, y2, y3, y4 and y5 of the adaptive equalizer units 71 to 75 by the adder 76 is a signal with reduced crosstalk and the like. Become.
  • the adaptive equalization signal y0 is input to the memory 315 and the first decoder 318.
  • This adaptive equalization signal is a crosstalk reduction processing signal using only the read signal from the track (Tn), and is not a crosstalk reduction using the reproduction signal of the adjacent track (Tn-1). There is a possibility that sufficient crosstalk reduction has not been made.
  • the output of the first multi-input adaptive equalizer 314 shown in FIG. 30 is stored in the memory 315 and further output to the first decoder 318.
  • the first decoder 318 is, for example, a Viterbi decoder, and performs maximum likelihood decoding on the PR-equalized equalized signal y0 to generate binarized data D (Tn).
  • the binarized data D (Tn) generated by the first decoder 318 is input to the second multi-input adaptive equalizer 326 of (2) track (Tn + 1) reproduction unit shown in the figure.
  • the optical pickup 321 sequentially inputs the read signal of the track (Tn + 1) to the photodetector 322, the ADC 323, the first multiple input adaptive equalizer 324, and the first decoder 328. , Generating reproduced binarized data D (Tn + 1) of the track (Tn + 1).
  • the binarized data D (Tn + 1) generated by the first decoder 328 is input to the second multi-input adaptive equalizer 316 of the (1) track (Tn) reproducing unit shown in the figure.
  • the second multi-input adaptive equalizer 316 of the (1) track (Tn) playback unit shown in the figure has the configuration shown in FIG. As shown in FIG. 31, adaptive equalizer units 331 to 332 and an adder 333 are included.
  • the adaptive equalizer unit 331 receives the adaptive equalization signal y0 generated based on the reproduction signal (digitized analog signal) of the reproduction target track (Tn). This signal is the adaptive equalization signal (y0) generated in the first multi-input adaptive equalizer 314.
  • the adaptive equalizer unit 332 inputs D (Tn + 1) which is a binarized reproduction signal (binary data) of the adjacent track (Tn + 1).
  • the tap coefficients C0 to Cn are adaptively controlled in the direction to achieve the target frequency characteristics using the equalization error ek.
  • the adaptive equalizer unit 332 is automatically controlled in the direction in which the tap coefficients C0 to Cn have frequency characteristics for crosstalk cancellation, similarly using the equalization error ek.
  • the equalization signal y0 of the second multi-input adaptive equalizer 316 obtained by adding the outputs y1 to y2 of each of the adaptive equalizer units 331 to 332 by the adder 333 performs crosstalk cancellation using the reproduction signal of the adjacent track. It becomes a signal that has been
  • the adaptive equalization signal y 0 generated by the second multi-input adaptive equalizer 316 is input to the second decoder 317.
  • the second decoder 317 is, for example, a Viterbi decoder, and performs maximum likelihood decoding on the PR-equalized equalized signal y0 to form a binary reproduction signal of the final track (Tn).
  • This final binarized reproduction signal is adaptive equalization processing based on 5 signals obtained as read signals of the track (Tn) to be reproduced, and adaptive equalization processing when the reproduction signal of the adjacent track (Tn + 1) is applied Processing is performed to generate high quality reproduction data, that is, high quality reproduction data in which crosstalk is sufficiently eliminated.
  • the second multi-input adaptive equalizer 326 in one (2) track (Tn + 1) reproduction unit has a configuration shown in FIG.
  • the adaptive equalizer unit 336 of the second multi-input adaptive equalizer 326 receives the adaptive equalization signal y0 generated based on the reproduction signal (digitized analog signal) of the reproduction target track (Tn + 1). This signal is the adaptive equalization signal (y0) generated in the first multi-input adaptive equalizer 324.
  • the adaptive equalizer unit 337 inputs D (Tn) which is a binarized reproduction signal (binary data) of the adjacent track (Tn).
  • the tap coefficients C0 to Cn are adaptively controlled in the direction of the target frequency characteristic using the equalization error ek.
  • the adaptive equalizer unit 337 is automatically controlled in the direction in which the tap coefficients C0 to Cn have frequency characteristics for crosstalk cancellation, similarly using the equalization error ek.
  • the equalization signal y0 of the second multi-input adaptive equalizer 326 obtained by adding the outputs y1 to y2 of each of the adaptive equalizer units 336 to 337 in the adder 338 is subjected to crosstalk cancellation using the reproduction signal of the adjacent track. It becomes a signal that has been
  • the adaptive equalization signal y 0 generated by the second multi-input adaptive equalizer 326 is input to the second decoder 327.
  • the second decoder 327 is, for example, a Viterbi decoder, and performs maximum likelihood decoding on the PR-equalized equalized signal y0 to form a binary reproduction signal of the final track (Tn + 1).
  • This final binarized reproduction signal is adaptive equalization processing based on 5 signals obtained as read signals of the track (Tn + 1) to be reproduced, and further, adaptive equalization processing when the reproduction signal of the adjacent track (Tn) is applied Processing is performed to generate high quality reproduction data, that is, high quality reproduction data in which crosstalk is sufficiently eliminated.
  • the example shown in FIG. 30 is an example, and other configurations are also possible.
  • the second multi-input adaptive equalizers 316 and 326 in the configuration shown in FIG. 30 convert the adaptive equalization signal y0 generated based on the reproduction signal (digitized analog signal) of the reproduction target track and the binarization of the adjacent track.
  • the reproduction equalization signal (binary data) is input to perform adaptive equalization processing. This configuration is changed, and as shown in FIG.
  • the reproduction signal before adaptive equalization of the reproduction signal (digitized analog signal) of the reproduction target track is stored in the memories 315 and 325, and this memory storage signal is
  • the configuration may be such that adaptive equalization processing is performed by inputting to the multi-input adaptive equalizers 316 and 326 and further inputting the binarized reproduction signal (binary data) of the adjacent track.
  • the information processing apparatus of the present disclosure obtains a reproduction signal by using a binary reproduction signal (binary data) of a track adjacent to the reproduction target track, thereby effectively removing the crosstalk signal. It is realized to obtain a good reproduction signal.
  • FIG. 34 is a graph showing the result of quality evaluation of reproduction signals obtained by a plurality of different reproduction processes. Specifically, it is a graph showing the correspondence between the amount of positional deviation (Detrack) from the center of the reproduction target track of the center of the irradiation spot light and the reproduction signal evaluation value (e-MLSE).
  • FIG. 34 is a diagram showing an example of the result of evaluation of reproduced data quality by simulation when data recording and data reproduction are performed under the following condition settings.
  • Condition settings are as follows.
  • Laser wavelength of optical pickup: ⁇ 405 nm
  • NA 0.85 PR (235777532)
  • the recording density corresponds to 0.0339 ⁇ m / channel bit. This corresponds to 78 GB per layer in the case of the same coding rate as BD (Blu-ray (registered trademark) Disc).
  • PR (235777532) is a parameter applied in the target signal Zk generation processing by convolution processing in the PR convolver (PR target signal generation unit) 212.
  • PR (235777532) means that the value P for each channel clock is (2, 3, 5, 7, 7, 7, 5, 3, 2) and the constraint length is 9.
  • the horizontal axis represents the amount of deviation of the irradiation spot from the playback track center [Detrack (nm)] set on the disc by the optical pickup,
  • the vertical axis is [e-MLSE evaluation value] which is the quality evaluation value of the reproduction signal.
  • e-MLSE Maximum Likelihood Sequence Error
  • i-MLSE As a general evaluation value of the reproduction signal, "i-MLSE” is known.
  • MLSE Maximum Likelihood Sequence Error
  • i-MLSE calculations are performed by weighting data patterns that are prone to errors. However, when the recording density is further increased, data patterns that easily cause errors are different, and errors occur in the conventional signal index value i-MLSE.
  • e-MLSE was created as a signal evaluation value to which a new data pattern was added in order to improve the accuracy of the signal index value at a higher linear density.
  • the quality evaluation process of reproduction data using an error pattern is described in WO 2013/183385 which is a prior patent application filed by the same applicant as the present applicant.
  • E-MLSE is a signal evaluation value according to this description.
  • the e-MLSE indicated on the vertical axis of the graph shown in FIG. 34 indicates the probability of an error included in the reproduction signal.
  • FIG. 34 is a graph showing the correspondence between the shift amount between the center position of the illumination spot light by the optical pickup shown by the horizontal axis and the track center position to be reproduced and the reproduction signal evaluation value (e-MLSE) shown by the vertical axis. is there.
  • (1) and (2) correspond to the conventional example
  • (3) and (4) are configuration examples of the present disclosure, that is, crosstalk using a binarized reproduction signal (binary data) of an adjacent track. This corresponds to a processing example in which a reproduction signal generation process including cancellation is performed.
  • the D5D type of (3) corresponds to the embodiment described with reference to FIGS. 15, 16, and 25 to 29.
  • the D1D type has a configuration in which the 5-signal output photodetector used in the embodiments described with reference to FIGS. 15, 16 and 25 to 29 is replaced with a 1-signal output photodetector.
  • reproduction signal generation including crosstalk cancellation using a binarized reproduction signal (binary data) of an adjacent track is performed.
  • E-MLSE indicating the error rate which is the reproduced signal evaluation value of is located below the line of (1) and (2) corresponding to the conventional example, and a good reproduced signal with less error rate is obtained. There is. In particular, it has been shown that even if the spot light is at a position deviated from the center of the track, the deterioration of the reproduced signal is small.
  • FIG. 34 shows the result of quality evaluation of reproduction data in a processing example using reproduction signals on both sides adjacent to the reproduction target track (Tn).
  • the reproduction target track (Tn) is A quality evaluation result of reproduction data in a processing example using reproduction signals of only one adjacent track (Tn-1) adjacent to one another will be described.
  • FIG. 36 is also a graph showing the result of quality evaluation of reproduction signals obtained by a plurality of different reproduction processes. Specifically, it is a graph showing the correspondence between the amount of positional deviation (Detrack) from the center of the reproduction target track of the center of the irradiation spot light and the reproduction signal evaluation value (e-MLSE).
  • FIG. 36 is also a diagram showing an example of a reproduction data quality evaluation result by simulation when data recording and data reproduction are performed under the following condition settings.
  • Condition settings are as follows.
  • Laser wavelength of optical pickup: ⁇ 405 nm
  • Optical pickup numerical aperture: NA 0.85
  • FIG. 13 is shown as an example of the reference circuit of (2), but FIG. 13 is an example using reproduction signals of the tracks (Tn-1, Tn + 1) on both sides of the reproduction target track. From the configuration shown in FIG. 13, the 55 type shown in (2) of 37 corresponds to a configuration in which the output from the photo detector 101a is not used.
  • (1) and (2) correspond to the conventional example
  • (3) is a configuration example of the present disclosure, that is, binarized reproduction signal (binary data) of adjacent tracks. This corresponds to the processing example in which the reproduction signal generation processing including the crosstalk cancellation used is performed.
  • processing according to the embodiment of the present disclosure that is, reproduction signal generation including crosstalk cancellation using a binary reproduction signal (binary data) of an adjacent track is performed.
  • the error rate (e-MLSE) which is the reproduced signal evaluation value of (e-MLSE)
  • e-MLSE is below the line of (1) and (2) corresponding to the conventional example, particularly at the shifted position on the right (Detrack is + side).
  • this example corresponds to an example in which crosstalk cancellation is performed using a reproduction signal (binary data) from an adjacent track on the right side.
  • a photodetector for outputting a read signal from a reproduction track of an information recording disk
  • An adjacent track reproduction identification signal supply unit that outputs a reproduction identification signal obtained from a reproduction signal of a track adjacent to the reproduction track
  • a multi-input adaptive equalizer having an equalizer unit for inputting a read signal from the reproduction track and an adjacent track reproduction identification signal, and outputting an equalization signal by adaptive equalization processing based on the input signal
  • An information processing apparatus comprising: a reproduction signal generator configured to execute a reproduction signal generation process based on the equalized signal to generate a reproduction signal of the reproduction track.
  • the reproduction identification signal supply unit An adjacent track reproduction binarized signal supply unit that outputs a binarized signal (binary data) obtained from the reproduction signal of the adjacent track;
  • the reproduction signal generation unit The information processing apparatus according to (1), wherein the binarization processing unit generates a reproduction signal of the reproduction track by executing a binarization process based on the equalized signal.
  • the adjacent track reproduction binary signal supply unit The information processing apparatus according to any one of (2) to (4), which generates an adjacent track reproduction binarized signal based on a read signal of an adjacent track read via an optical pickup.
  • the adjacent track reproduction binary signal supply unit The information processing apparatus according to any one of (2) to (4), wherein the adjacent track reproduction binarization signal stored in advance in the recording data storage memory is acquired from the recording data storage memory.
  • the information processing apparatus A memory for storing an adjacent track reproduction binary signal supplied by the adjacent track reproduction binary signal supply unit;
  • the information processing apparatus according to any one of (2) to (6), further comprising: a memory controller that executes data input control from the memory to the multi-input adaptive equalizer.
  • the memory controller is An information processing apparatus according to (7), wherein data input control is performed to simultaneously input the read signal from the reproduction track and the adjacent track reproduction binarization signal at the closest position of the read signal to the multi-input adaptive equalizer.
  • the photo detector is It is a multiple signal output type photodetector that outputs multiple signals according to the amount of light received in units of divided areas
  • the multi-input adaptive equalizer is An equalizer unit for inputting the plurality of signals output from the photo detector and the adjacent track reproduction binarized signal is provided, and an equalized signal is output by adaptive equalization processing based on the input signal (2) to (8).
  • the information processing apparatus according to any one of the above.
  • the photo detector is An information processing apparatus according to (9), which is a multiple signal output type photodetector having a plurality of divided areas along a track direction (tangential direction) and outputting a plurality of signals according to the amount of light received in each divided area unit.
  • the photo detector is (8) or (9) or (10) A multiple signal output type photodetector having a plurality of divided areas along the disc radial direction (radial direction) and outputting a plurality of signals according to the amount of light received in each divided area unit.
  • the information processing apparatus according to the above.
  • the output of the photo detector is input to a matrix operation circuit.
  • the matrix operation circuit is configured to output a plurality of signals according to the amount of light received in units of divided areas of the photodetector.
  • the multi-input adaptive equalizer is The signal processing apparatus has an equalizer unit for inputting a plurality of signals output from the matrix operation circuit and an adjacent track reproduction binarized signal, and outputs an equalized signal by adaptive equalization processing based on the input signal (2) to (11)
  • the information processing apparatus according to any one of the above.
  • the multi-input adaptive equalizer performs partial response equalization processing based on an input signal
  • the information processing apparatus according to any one of (2) to (12), wherein the binarization processing unit executes maximum likelihood decoding processing as binarization processing on the equalization signal output from the multi-input adaptive equalizer.
  • the information processing apparatus is A partial response (PR) convolution unit that generates an equalization target signal based on the binarized signal generated by the binarization processing unit; And an equalization error operation unit that calculates an equalization error from the equalization target signal and the equalization signal output from the multi-input adaptive equalizer unit.
  • PR partial response
  • the information processing apparatus according to any one of (2) to (13), wherein the multi-input adaptive equalizer receives the equalization error and executes an adaptive equalization process.
  • the information recording disc is A disc with data recorded on both land and groove,
  • the information processing apparatus according to any one of (1) to (14), wherein the reproduction track and the adjacent track are a combination of a land track and a groove track.
  • the information processing apparatus is Has a configuration to execute data reproduction in parallel from adjacent tracks, A first photodetector for outputting a read signal from a first reproduction track of the information recording disc; A second photodetector for outputting a read signal from a second reproduction track adjacent to the first reproduction track; A decoder for generating a binary signal (binary data) as a reproduction signal of the first reproduction track and a binary signal (binary data) as a reproduction signal of the second reproduction track; It has an equalizer unit for inputting the read signal from the first reproduction track and the binarized signal as the reproduction signal of the second reproduction track generated by the decoder, and an equalization signal is obtained by adaptive equalization processing based on the input signal.
  • a first playback track-compatible multi-input adaptive equalizer that outputs It has an equalizer unit for inputting the read signal from the second reproduction track and the binarized signal as the reproduction signal of the first reproduction track generated by the decoder, and an equalization signal is obtained by adaptive equalization processing based on the input signal.
  • a second playback track-compatible multi-input adaptive equalizer that outputs A first track-based binarization processing unit that generates a first track-based reproduction binarized signal by executing a binarization process based on the equalization signal output from the first reproduction track-based multi-input adaptive equalizer; A second track-based binarization processing unit that generates a second track-based reproduction binarized signal by executing a binarization process based on the equalization signal output from the second reproduction track-based multi-input adaptive equalizer
  • the information processing apparatus according to 2).
  • An information processing method to be executed in an information processing apparatus The photodetector outputs a read signal from the reproduction track of the information recording disc, The adjacent track reproduction identification signal supply unit outputs a reproduction identification signal obtained from the reproduction signal of the adjacent track of the reproduction track, The multi-input adaptive equalizer inputs each of the read signal from the reproduction track and the adjacent track reproduction identification signal to the equalizer unit, and outputs an equalization signal by adaptive equalization processing based on the input signal, An information processing method, wherein a reproduction signal generation unit executes a reproduction signal generation process based on the equalized signal to generate a reproduction signal of the reproduction track.
  • a program for causing an information processing apparatus to execute information processing is Output processing of read signal from reproduction track of information recording disc by photodetector An output process of a reproduction identification signal obtained from a reproduction signal of an adjacent track of the reproduction track by an adjacent track reproduction identification signal supply unit; Equalized signal output processing by adaptive equalization processing based on the input signal to a read signal from the reproduction track and an input to each equalizer unit of the adjacent track reproduction identification signal by a multi-input adaptive equalizer, A program for executing a reproduction signal generation process of the reproduction track by the reproduction signal generation process based on the equalization signal by the reproduction signal generation unit.
  • the series of processes described in the specification can be performed by hardware, software, or a combined configuration of both.
  • the program recording the processing sequence is installed in memory in a computer built into dedicated hardware and executed, or the program is executed on a general-purpose computer capable of executing various processing. It is possible to install and run.
  • the program can be recorded in advance on a recording medium.
  • the program can be installed from a recording medium to a computer, or can be installed in a recording medium such as a built-in hard disk by receiving a program via a network such as a LAN (Local Area Network) or the Internet.
  • LAN Local Area Network
  • a system is a logical set configuration of a plurality of devices, and the devices of each configuration are not limited to those in the same housing.
  • an apparatus and method are realized that enable high-quality data reproduction with crosstalk removed from a high density recording type optical disc.
  • a photodetector that outputs a read signal from the reproduction track of the information recording disk, and an adjacent track reproduction binary signal supply that outputs a binary signal (binary data) that is a reproduction signal of an adjacent track to the reproduction track.
  • Multi-input adaptive equalizer which has an equalizer unit that inputs a read signal from a reproduction track and an adjacent track reproduction binarization signal, and outputs an equalization signal by adaptive equalization processing based on the input signal, etc.
  • It has a binarization processing unit that generates a reproduction signal of a reproduction track by executing a binarization process based on the conversion signal. According to this configuration, an apparatus and method are realized that enable high quality data reproduction with crosstalk removed from the high density recording type optical disc.
  • Reference Signs List 10 disc 11 optical pickup 12 spindle motor 13 thread 14 matrix circuit 15 data detection processing unit 16 wobble signal processing unit 17 ENC / DEC 18 Host I / F 19 address decoder 20 system controller 21 optical block servo circuit 22 spindle servo circuit 23 laser driver 24 write strategy 25 thread driver 26 ADIP demodulation processor 27 spindle driver 28 driver 30 host device 51 semiconductor laser 52 collimator lens 53 polarization beam splitter 54 objective lens 55 Lens 56 Photodetector 61 ADC 62 PLL 63 Multiple Input Adaptive Equalizer 64 Binarization Detector 65 PR Convolution Device 66 Equalization Error Arithmetic Device 67 Addition Circuit 71 to 75 Adaptive Equalizer Unit 76 Adder 80 Delay Element 81 Coefficient Multiplier 82 Arithmetic Unit 83 Integrator 84 Adder 91 subtractor 92 coefficient multiplier 101 photodetector 102 ADC 103 Memory 104 System Controller 105 Memory Controller 106 Multiple Input Adaptive Equalizer 111 to 113

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Head (AREA)

Abstract

高密度記録型光ディスクからクロストークを除去した高品質なデータ再生を可能とした装置、方法を提供する。情報記録ディスクの再生トラックからの読み出し信号を出力するフォトディテクタと、再生トラックの隣接トラックの再生信号である2値化信号(バイナリデータ)を出力する隣接トラック再生2値化信号供給部と、再生トラックからの読み出し信号と、隣接トラック再生2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する多入力適応イコライザと、等化信号に基づく2値化処理を実行して、再生トラックの再生信号を生成する2値化処理部を有する。

Description

情報処理装置、および情報処理方法、並びにプログラム
 本開示は、情報処理装置、および情報処理方法、並びにプログラムに関する。さらに詳細には、高密度なデータ記録が行われたディスクから品質の高いデータ再生を実現する情報処理装置、および情報処理方法、並びにプログラムに関する。
 画像、プログラム他、様々なデータを記録するメディアとして、DVD(Digital Versatile Disc)や、BD(Blu-ray(登録商標) Disc)等の光ディスクが多く利用されている。
 これらBD等の光ディスクは、高密度な情報記録を行うことが求められている。
 光ディスクの高密度化をはかる方法として、チャンネルビット長、すなわち、マーク長を短くし、線密度方向に高密度化をはかる方法、およびトラックピッチを狭くする方法がある。
 しかし、線密度方向に高密度化をはかると、符号間干渉が増大する問題が発生する。
 また、トラックピッチを狭くすると、隣接トラックからの情報の漏れ込み(隣接トラッククロストーク)が増大する。
 隣接トラッククロストーク(以下、単にクロストークと適宜称する)を低減するため、様々な方法が提案されている。
 例えば特許文献1(国際公開WO2016/006157号公報)には、フォトディテクタの受光領域を分割し、各分割領域から得られる複数の受光信号を用いて適応等化処理を行なうことで、クロストークを低減させた再生信号を生成する構成を開示している。
 しかし、この方法では、隣接トラックの記録信号を確実に解析することが困難であり、十分なクロストーク除去は困難である。
 また、特許文献2(特開2015-057753号公報)や、特許文献3(特開2012-079385号公報)、さらに特許文献4(特許4184585号公報)等には、再生対象のトラックと、その両側のトラックとのそれぞれの再生信号を適応イコライザユニットに供給し、適応イコライザユニットのタップ係数を制御することによって、クロストークを打ち消すことが記載されている。
 しかし、これら特許文献に記載の構成では、再生対象トラックの読み取り信号からクロストーク信号を除去した信号を取得するために、再生対象トラックの読み取り信号と、その両側のトラックの読み取り信号を、位相合わせを行った上で適応イコライザユニットに入力することが必要となる。
 この処理のためには、再生対象トラックの隣接トラックの読み取り信号を一時的に蓄積するためのメモリや遅延処理構成が必要となり、必要とするメモリ容量が増大し、回路規模が大きくなるという問題がある。
WO2016/006157号公報 特開2015-057753号公報 特開2012-079385号公報 特許4184585号公報
 本開示は、例えば、上述の問題点に鑑みてなされたものであり、隣接トラックの記録信号等に起因するクロストークを抑制した高品質データの再生処理を実現する情報処理装置、および情報処理方法、並びにプログラムを提供することを目的とする。
 本開示の一実施態様においては、隣接トラックの読み取りデータの一時的格納用メモリの必要容量を小さく抑え、回路規模を大きくすることなく、クロストークを抑制した高品質データの再生処理を実現する情報処理装置、および情報処理方法、並びにプログラムを提供することを目的とする。
 本開示の第1の側面は、
 情報記録ディスクの再生トラックからの読み出し信号を出力するフォトディテクタと、
 前記再生トラックの隣接トラックの再生信号から得られる再生識別信号を出力する隣接トラック再生識別信号供給部と、
 前記再生トラックからの読み出し信号と、隣接トラック再生識別信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する多入力適応イコライザと、
 前記等化信号に基づく再生信号生成処理を実行して、前記再生トラックの再生信号を生成する再生信号生成部を有する情報処理装置にある。
 さらに、本開示の第2の側面は、
 情報処理装置において実行する情報処理方法であり、
 フォトディテクタが、情報記録ディスクの再生トラックからの読み出し信号を出力し、
 隣接トラック再生識別信号供給部が、前記再生トラックの隣接トラックの再生信号から得られる再生識別信号を出力し、
 多入力適応イコライザが、前記再生トラックからの読み出し信号と、隣接トラック再生識別信号の各々をイコライザユニットに入力して、入力信号に基づく適応等化処理により等化信号を出力し、
 再生信号生成部が、前記等化信号に基づく再生信号生成処理を実行して、前記再生トラックの再生信号を生成する情報処理方法にある。
 さらに、本開示の第3の側面は、
 情報処理装置において情報処理を実行させるプログラムであり、
 前記プログラムは、
 フォトディテクタによる、情報記録ディスクの再生トラックからの読み出し信号の出力処理、
 隣接トラック再生識別信号供給部による、前記再生トラックの隣接トラックの再生信号から得られる再生識別信号の出力処理、
 多入力適応イコライザによる、前記再生トラックからの読み出し信号と、隣接トラック再生識別信号の各々のイコライザユニットに対する入力と、入力信号に基づく適応等化処理による等化信号出力処理、
 再生信号生成部による、前記等化信号に基づく再生信号生成処理による前記再生トラックの再生信号生成処理を実行させるプログラムにある。
 なお、本開示のプログラムは、例えば、様々なプログラム・コードを実行可能な情報処理装置やコンピュータ・システムに対して、コンピュータ可読な形式で提供する記憶媒体、通信媒体によって提供可能なプログラムである。このようなプログラムをコンピュータ可読な形式で提供することにより、情報処理装置やコンピュータ・システム上でプログラムに応じた処理が実現される。
 本開示のさらに他の目的、特徴や利点は、後述する本開示の実施例や添付する図面に基づくより詳細な説明によって明らかになるであろう。なお、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
 本開示の一実施例の構成によれば、高密度記録型光ディスクからクロストークを除去した高品質なデータ再生を可能とした装置、方法が実現される。
 具体的には、情報記録ディスクの再生トラックからの読み出し信号を出力するフォトディテクタと、再生トラックの隣接トラックの再生信号である2値化信号(バイナリデータ)を出力する隣接トラック再生2値化信号供給部と、再生トラックからの読み出し信号と、隣接トラック再生2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する多入力適応イコライザと、等化信号に基づく2値化処理を実行して、再生トラックの再生信号を生成する2値化処理部を有する。
 本構成により、高密度記録型光ディスクからクロストークを除去した高品質なデータ再生を可能とした装置、方法が実現される。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
情報処理装置の構成例を示す図である。 光ピックアップの構成例を示す図である。 分割領域対応5信号出力型光ピックアップの構成例を示す図である。 データ検出処理部の一構成例を示す図である。 多入力適応イコライザの一例を示す図である。 適応イコライザユニットの一例を示す図である。 等化誤差演算器の一例を示す図である。 隣接トラックの読み取り信号を用いてクロストークキャンセルを行なう情報処理装置(再生装置)の一構成例を示す図である。 隣接トラックの読み取り信号を用いてクロストークキャンセルを行なう情報処理装置(再生装置)の一構成例を示す図である。 隣接トラックの読み取り信号を用いてクロストークキャンセルを行なう情報処理装置(再生装置)の一構成例を示す図である。 隣接トラックの読み取り信号を用いてクロストークキャンセルを行なう情報処理装置(再生装置)の多入力適応イコライザの具体例について説明する図である。 5信号出力型のフォトディテクタを利用し、隣接トラックの読み取りデータを適用してクロストークキャンセルを実行する情報処理装置(再生装置)の構成例を図である。 多入力適応イコライザセットの例について説明する図である。 多入力適応イコライザ121~123の各々の構成について説明する図である。 隣接トラックの2値化再生信号(バイナリデータ)を用いてクロストークキャンセルを実行する情報処理装置の構成と処理の概要を説明する図である。 図15に示す多入力適応イコライザ205の構成を示す図である。 再生対象トラック(Tn)に隣接する1つの隣接トラック(Tn-1)の2値化再生信号(バイナリデータ)を用いてクロストークキャンセルを実行する情報処理装置の構成と処理の概要を説明する図である。 図17に示す多入力適応イコライザ205の構成を示す図である。 再生対象トラック(Tn)に隣接する1つのトラック(Tn-1)の再生2値信号(バイナリデータ)を生成する隣接トラック再生2値信号供給部の構成について説明する図である。 2つの光ピックアップ11a,11bにより、2つの照射スポットを設定して再生を行なう再生装置の処理例について説明する図である。 2つの光ピックアップ11a,11bにより、2つの照射スポットを設定して再生を行なう再生装置の処理例について説明する図である。 1つの隣接トラックの再生信号を適用した例における情報処理装置の構成例について説明する図である。 ディスクに記録された信号(バイナリデータ)が既知であり、記録データ格納メモリに格納されている場合の情報処理装置(再生装置)の構成と処理について説明する図である。 再生対象トラック(Tn)の読み取り信号の多入力適応イコライザ205に対する入力タイミングを制御するためのメモリ230を追加した情報処理装置(再生装置)の構成例を示す図である。 再生対象トラック(Tn)に隣接する2つのトラックの再生2値信号(バイナリデータ)を生成する隣接トラック再生2値信号供給部の構成について説明する図である。 3つの光ピックアップ11a~11cにより、3つの照射スポットを設定して再生を行なう再生装置の処理例について説明する図である。 3つの光ピックアップ11a~11cにより、3つの照射スポットを設定して再生を行なう再生装置の処理例について説明する図である。 2つの隣接トラックの再生信号を適用した例における情報処理装置の構成例について説明する図である。 ディスクに記録された信号(バイナリデータ)が既知であり、記録データ格納メモリに格納されている場合の情報処理装置(再生装置)の構成と処理について説明する図である。 隣接トラックの再生信号をクロストークキャンセル処理に適用するとともに、複数トラックの同時再生を実現する情報処理装置の構成について説明する図である。 第2多入力適応イコライザ316の構成について説明する図である。 第2多入力適応イコライザ326の構成について説明する図である。 隣接トラックの再生信号をクロストークキャンセル処理に適用するとともに、複数トラックの同時再生を実現する情報処理装置の構成について説明する図である。 再生データの品質評価データについて説明する図である。 図34に示す各データについて説明する図である。 再生データの品質評価データについて説明する図である。 図34に示す各データについて説明する図である。
 以下、図面を参照しながら本開示の情報処理装置、および情報処理方法、並びにプログラムの詳細について説明する。なお、説明は以下の項目に従って行なう。
 1.情報処理装置の構成と再生処理例について
 1-1.光ピックアップの構成例について
 1-2.データ検出処理部の構成例について
 2.隣接トラックの読み取り信号を用いたクロストークキャンセル処理の基本的構成例について
 3.隣接トラックの2値化再生信号(バイナリデータ)を用いてクロストークキャンセルを実行する構成と処理について
 3-1.両隣の2つの隣接トラックの再生信号を適用した例について
 3-2.1つの隣接トラックの再生信号を適用した例について
 3-3.1つの隣接トラックの再生信号を適用した例における隣接トラック再生2値信号供給部の具体的構成例と、情報処理装置の構成例について
 3-4.2つの隣接トラックの再生信号を適用した例における隣接トラック再生2値信号供給部の具体的構成例と、情報処理装置の構成例について
 3-5.複数トラックの並列再生処理を実行する構成例について
 4.隣接トラックの2値化再生信号(バイナリデータ)を用いた再生信号の品質評価について
 5.本開示の構成のまとめ
  [1.情報処理装置の構成と再生処理例について]
 まず、光ディスク、例えばBD(Blu-ray(登録商標) Disc)を適用したデータ記録再生処理を実行する情報処理装置の構成と処理例について説明する。
 図1は、光ディスク10からのデータ再生処理や記録処理を実行する情報処理装置の構成例を示すブロック図である。
 図1に示すように、情報処理装置は、光記録媒体としての光ディスク10に対して情報の記録再生を行う光ピックアップ11と、光ディスク10を回転させるスピンドルモータ12とを備えている。
 光ピックアップ11を光ディスク10の径方向に移動させるために、スレッド(送りモータ)13が設けられている。
 光ディスク10は、例えば、BD(Blu-ray (登録商標)Disc)等の高密度光ディスクである。
 BDは、例えば、片面単層で約25Gバイト、片面2層で約50Gバイトの記録容量を有する高密度光ディスクである。
 なお、BD規格では、ビームスポット径を小とするために、光源波長を405nmとし、対物レンズの開口数NA(Numerical Aperture)を0.85と大きくしている。BD規格では、スポット径を0.58μmまで絞ることができる。
 さらに、近年、BD(Blu-ray (登録商標)Disc)に対し、チャンネルビット長すなわちマーク長を短くし、線密度方向に高密度化をはかり、3層で100GBおよび4層で128GBの大容量化を実現したBDXL(登録商標)が実用化されている。
 さらに、記録容量の増大のため、グルーブトラックおよびランドトラックの両方にデータを記録する方法(ランド/グルーブ記録方式)も採用されつつある。
 なお、ディスクの記録トラックに添って設定される溝がグルーブ(G)であり、グルーブにより形成されるトラックをグルーブトラックと呼ぶ。
 また、2つのグルーブ(溝)間に挟まれた山部分となるエリアがランド(L)であり、ランドにより形成されるトラックをランドトラックと呼ぶ。
 高密度記録型ディスクでは、グルーブ(G)、ランド(L)の何れにもデータを記録する。この構成により、より多くのデータをディスクに記録することができる。
 しかし、このような高密度記録ディスクでは、データ再生処理におけるクロストークの発生可能性が高くなるという問題がある。
 すなわち、読み出し対象トラックの読み出しデータに、隣接トラックのデータがノイズとして混入するクロストークが発生しやすくなるという問題がある。
 光ディスク10が情報処理装置に装填されると、記録/再生時においてスピンドルモータ12によって一定線速度(CLV)または一定角速度(CAV)で回転駆動される。
 ウォブルグルーブの位相を光ディスク10の半径方向で揃えるためには、CAVまたはゾーンCAVが好ましい。
 再生時には、光ピックアップ(光学ヘッド)11によって光ディスク10上のトラックに記録されたマーク情報の読出が行われる。
 光ディスク10に対してのデータ記録時には、光ピックアップ11によって光ディスク10上のトラックに、ユーザーデータがフェイズチェンジマークもしくは色素変化マーク等の、明るさ(反射率)や反射位相(複素反射率)の変化として記録される。
 記録可能型ディスクの場合、ウォブリンググルーブによって形成されるトラック上にはフェイズチェンジマークによるレコーディングマークが記録されるが、フェイズチェンジマークはRLL(1,7)PP変調方式(RLL;Run Length Limited、PP:Parity preserve/Prohibit rmtr(repeated minimum transition runlength))等により、1層あたり23.3GBのBDの場合で線密度0.12μm/bit、0.08μm/channel bitで記録される。
 同様に、25GB/層のBDの場合、0.0745μm/channel bit、32GB/層のBDXL(登録商標)の場合、0.05826μm/channel bit、33.4 GB/層のBDXL(登録商標)の場合、0.05587μm/channel bit というように、ディスク種別に応じてチャンネルビット長に対応した密度での記録が行われる。
 チャネルクロック周期を「T」とすると、マーク長は2Tから8Tとなる。
再生専用ディスクの場合、グルーブは形成されないが、同様にRLL(1,7)PP変調方式で変調されたデータがエンボスピット列として記録されている。
 光ディスク10の内周エリア等には、再生専用の管理情報として例えばディスクの物理情報等がエンボスピットまたはウォブリンググルーブによって記録される。
これらの情報の読出も光ピックアップ11により行われる。
 さらに、光ピックアップ11によって光ディスク10上のグルーブトラックのウォブリングとして埋め込まれたADIP情報の読み出しもおこなわれる。
 光ピックアップ11内には、レーザ光源となるレーザダイオード、反射光を検出するためのフォトディテクタ、レーザ光の出力端となる対物レンズ、対物レンズを介してディスク記録面にレーザ光を照射し、またその反射光をフォトディテクタに導く光学系等が構成される。
 光ピックアップ11内において対物レンズは二軸機構によってトラッキング方向およびフォーカス方向に移動可能に保持されている。
 光ピックアップ11全体はスレッド機構13によりディスク半径方向に移動可能とされている。
 光ピックアップ11のレーザダイオードに対して、レーザドライバ23からの駆動電流が供給され、レーザダイオードがレーザを発生する。
 光ディスク10からの反射光がフォトディテクタによって検出され、受光光量に応じた電気信号とされてマトリクス回路14に供給される。
 マトリクス回路14には、フォトディテクタとしての複数の受光素子からの出力電流に対応して電流電圧変換回路、マトリクス演算/増幅回路等を備え、マトリクス演算処理により必要な信号を生成する。
 信号伝送品質を考慮し、電流電圧変換回路をフォトディテクタ素子内に形成するようにしてもよい。
 例えば再生データに相当する再生情報信号(RF信号)、サーボ制御のためのフォーカスエラー信号、トラッキングエラー信号などを生成する。
 さらに、グルーブのウォブリングに係る信号、すなわち、ウォブリングを検出する信号としてプッシュプル信号を生成する。
 マトリクス回路14から出力される再生情報信号はデータ検出処理部15へ供給され、フォーカスエラー信号およびトラッキングエラー信号は光学ブロックサーボ回路21へ供給され、プッシュプル信号はウォブル信号処理部16へ供給される。
 データ検出処理部15は、再生情報信号の2値化処理を行う。
 例えばデータ検出処理部15では、RF信号のA/D変換処理、PLLによる再生クロック生成処理、PR(Partial Response)等化処理、ビタビ復号(最尤復号)等を行い、パーシャルレスポンス最尤復号処理(PRML検出方式: Partial Response Maximum Likelihood検出方式)により、2値データ列を得るようになされる。
 データ検出処理部15は、光ディスク10から読み出した情報としての2値データ列を、後段のエンコード/デコード部17に対して供給する。
 エンコード/デコード部17は、再生時における再生データの復調と、記録時における記録データの変調処理を行う。
すなわち、再生時にはデータ復調、デインターリーブ、ECCデコード、アドレスデコード等を行い、記録時には、ECCエンコード、インターリーブ、データ変調等を行う。
 再生時においては、データ検出処理部15で復号された2値データ列がエンコード/デコード部17に供給される。
 エンコード/デコード部17では、2値データ列に対する復調処理を行い、光ディスク10からの再生データを得る。
 例えばRLL(1,7)PP変調等のランレングスリミテッドコード変調が施されて光ディスク10に記録されたデータに対しての復調処理と、エラー訂正を行うECCデコード処理を行って、光ディスク10からの再生データを得る。
 エンコード/デコード部17で再生データにまでデコードされたデータは、ホストインターフェース18に転送され、システムコントローラ20の指示に基づいてホスト機器30に転送される。
 ホスト機器30は、例えばコンピュータ装置やAV(Audio-Visual)システム機器などである。
 光ディスク10に対する記録/再生時には、ADIP情報の処理が行われる。
 すなわち、グルーブのウォブリングに係る信号としてマトリクス回路14から出力されるプッシュプル信号は、ウォブル信号処理回路16においてデジタル化されたウォブルデータとされる。
 PLL処理によりプッシュプル信号に同期したクロックが生成される。
 ウォブルデータは、ADIP復調処理部26で、ADIPアドレスを構成するデータストリームに復調されてアドレスデコーダ19に供給される。
 アドレスデコーダ19は、供給されるデータについてのデコードを行い、アドレス値を得て、システムコントローラ20に供給する。
 記録時には、ホスト機器30から記録データが転送されてくるが、その記録データはホストインターフェース18を介してエンコード/デコード部17に供給される。
 エンコード/デコード部17は、記録データのエンコード処理として、エラー訂正コード付加(ECCエンコード)やインターリーブ、サブコードの付加等を行う。
 これらの処理を施したデータに対して、RLL(1-7)PP方式等のランレングスリミテッドコード変調を施す。
 エンコード/デコード部17で処理された記録データは、ライトストラテジ部24に供給される。
 ライトストラテジ部24では、記録補償処理として、記録層の特性、レーザ光のスポット形状、記録線速度等に対するレーザ駆動パルス波形調整を行う。
 そして、レーザ駆動パルスをレーザドライバ23に出力する。
 レーザドライバ23は、記録補償処理したレーザ駆動パルスに基づいて、光ピックアップ11内のレーザダイオードに電流を流し、レーザ発光を行う。
 これにより光ディスク10に、記録データに応じたマークが形成されることになる。
 光学ブロックサーボ回路21は、マトリクス回路14からのフォーカスエラー信号、トラッキングエラー信号から、フォーカス、トラッキング、スレッドの各種サーボドライブ信号を生成しサーボ動作を実行させる。
 すなわち、フォーカスエラー信号、トラッキングエラー信号に応じてフォーカスドライブ信号、トラッキングドライブ信号を生成し、ドライバ28により光ピックアップ11内の二軸機構のフォーカスコイル、トラッキングコイルを駆動することになる。
 これによって、光ピックアップ11、マトリクス回路14、光学ブロックサーボ回路21、ドライバ28、二軸機構によるトラッキングサーボループおよびフォーカスサーボループが形成される。
 さらに、光学ブロックサーボ回路21は、システムコントローラ20からのトラックジャンプ指令に応じて、トラッキングサーボループをオフとし、ジャンプドライブ信号を出力することで、トラックジャンプ動作を実行させる。
 さらに、光学ブロックサーボ回路21は、トラッキングエラー信号の低域成分として得られるスレッドエラー信号や、システムコントローラ20からのアクセス実行制御などに基づいてスレッドドライブ信号を生成し、スレッドドライバ25によりスレッド機構13を駆動する。
 スピンドルサーボ回路22はスピンドルモータ12をCLV回転またはCAV回転させる制御を行う。
 スピンドルサーボ回路22は、ウォブル信号に対するPLLで生成されるクロックを、現在のスピンドルモータ12の回転速度情報として得、これを所定の基準速度情報と比較することで、スピンドルエラー信号を生成する。
 さらに、データ再生時においては、データ検出処理部15内のPLLによって生成される再生クロックが、現在のスピンドルモータ12の回転速度情報となるため、これを所定の基準速度情報と比較することでスピンドルエラー信号が生成される。
そして、スピンドルサーボ回路22は、スピンドルエラー信号に応じて生成したスピンドルドライブ信号を出力し、スピンドルドライバ27によりスピンドルモータ12のCLV回転またはCAV回転を実行させる。
 スピンドルサーボ回路22は、システムコントローラ20からのスピンドルキック/ブレーキ制御信号に応じてスピンドルドライブ信号を発生させ、スピンドルモータ12の起動、停止、加速、減速などの動作も実行させる。
 以上のようなサーボ系および記録再生系の各種動作はマイクロコンピュータによって形成されたシステムコントローラ20により制御される。
 システムコントローラ20は、ホストインターフェース18を介して与えられるホスト機器30からのコマンドに応じて各種処理を実行する。
 例えばホスト機器30から書込命令(ライトコマンド)が出されると、システムコントローラ20は、まず書き込むべきアドレスに光ピックアップ11を移動させる。
 そしてエンコード/デコード部17により、ホスト機器30から転送されてきたデータ(例えばビデオデータやオーディオデータ等)について上述したようにエンコード処理を実行させる。
 そして、エンコードされたデータに応じてレーザドライバ23がレーザ発光を駆動することで記録が実行される。
 さらに、例えばホスト機器30から、光ディスク10に記録されている或るデータの転送を求めるリードコマンドが供給された場合は、システムコントローラ20はまず指示されたアドレスを目的としてシーク動作制御を行う。
 すなわち、光学ブロックサーボ回路21に指令を出し、シークコマンドにより指定されたアドレスをターゲットとする光ピックアップ11のアクセス動作を実行させる。
その後、その指示されたデータ区間のデータをホスト機器30に転送するために必要な動作制御を行う。
 すなわち、光ディスク10からのデータ読出を行い、データ検出処理部15、エンコード/デコード部17における再生処理を実行させ、要求されたデータを転送する。
 なお、図1の例は、ホスト機器30に接続される光ディスク装置として説明したが、光ディスク装置としては他の機器に接続されない形態もあり得る。
その場合は、操作部や表示部が設けられたり、データ入出力のインターフェース部位の構成が、図1とは異なるものとなる。
 つまり、ユーザーの操作に応じて記録や再生が行われると共に、各種データの入出力のための端子部が形成されればよい。
 もちろん光ディスク装置の構成例としては他にも多様に考えられる。
  [1-1.光ピックアップの構成例について]
 次に、上述した光ディスク装置に用いられる光ピックアップ11の具体的構成例について、図2を参照して説明する。
 光ピックアップ11は、例えば波長λが405nmのレーザ光(ビーム)を用いて、光ディスク10に情報を記録し、光ディスク10から情報を再生する。
 レーザ光は、半導体レーザ(LD:Laser Diode)51から出射される。
 レーザ光がコリメータレンズ52と、偏光ビームスプリッタ(PBS:Polarizing BeamSplitter )53と、対物レンズ54とを通過して光ディスク10上に照射される。
 偏光ビームスプリッタ53は、例えばP偏光を略々100%透過させ、S偏光を略々100%反射する分離面を有する。
 光ディスク10の記録層からの反射光は同じ光路を戻り、偏光ビームスプリッタ53へと入射する。
 図示しないλ/4素子を介在させることによって、入射したレーザ光は偏光ビームスプリッタ53で略100%反射される。
 偏光ビームスプリッタ53で反射されたレーザ光は、レンズ55を介してフォトディテクタ56の受光面に集光される。
 フォトディテクタ56は、受光面上に、入射した光を光電変換する受光セルを有する。
 フォトディテクタ56には、図2に示すように、様々なタイプがある。図2には、以下の3タイプの例を示している。
 (A)分割なし1信号出力型
 (B)分割領域対応3信号出力型
 (C)分割領域対応5信号出力型
 (A)分割なし1信号出力型は、フォトディテクタ56全面の受光セルによって受光された光量に応じた1つの電気信号を出力する。
 (B)分割領域対応3信号出力型は、フォトディテクタ56の受光面が分割された受光セルによって構成され、各分割領域の受光セルが受光した光量に応じた3つの電気信号を出力する。
 (C)分割領域対応5信号出力型も、フォトディテクタ56の受光面が分割された受光セルによって構成され、各分割領域の受光セルが受光した光量に応じた5つの電気信号を出力する。
 (B)分割領域対応3信号出力型や、(C)分割領域対応5信号出力型の受光セルは、光ディスク10のラジアル方向(ディスク径方向)や、タンジェンシャル方向(トラック方向)に延びる分割線によって複数の領域に分割されている。
 これらの分割型フォトディテクタ56は、受光セルの各領域の受光量に応じて複数チャンネルの電気信号を出力する。
 なお、分割構成は、これらの他にも様々な構成が可能である。
 図2に示す(C)分割領域対応5信号出力型のフォトディテクタ56の詳細構成を図3に示す。
 図3に示すように、フォトディテクタ56は、複数の領域に分割された受光セルから構成される。
 図3に示す例では、A1,A2,B,C,D1,D2,D3、E1,E2,E3、これらの領域に分割されている。
 各分割領域では、各々、個別に受光量に応じた電気信号を出力する。
 ただし、再生信号の生成に適用する信号は、以下の5つのチャンネル対応の5信号となる。
 信号A=A1+A2
 信号B=B
 信号C=C
 信号D=D1+D2+D3
 信号E=E1+E2+E3
 これら5つの信号を用いて、再生信号を生成する。
 なお、複数領域の加算信号からなる信号については、予め設定した領域単位の重み係数を乗算して信号を生成する構成としてもよい。
 例えば、
 A=p*A1+q*A2
 上記のような重み係数p,qを乗算して出力信号を生成してもよい。
 このような分割型フォトディテクタを用いて、各信号を、多入力適応イコライザを用いて適応等化処理を行うことで、高品質な再生信号を得ることができる。
 多入力適応イコライザを用いた適応等化処理構成については後述する。
 信号A~Eの各々は、読み取り対象トラックの信号成分を多く含む信号や、隣接トラックのクロストーク信号の比率が高い信号等、受光領域に応じた特徴的な信号となる。これらの各信号の特性に応じた適応等化処理を実行することで高品質な再生信号を得ることができる。
 なお、このような分割型フォトディテクタを用いた再生信号の生成処理構成については、本出願人の先の出願である特許文献1(国際公開WO2016/006157号公報)において開示している。
 本開示において用いる複数信号出力型のフォトディテクタは、これらの公報に開示された構成と同様のものであり、フォトディテクタから出力される複数信号の設定や、複数信号の各々を多入力適応イコライザに入力して等化信号、2値化信号を得る構成や処理は、本開示においても同様に適用される。
 なお、図2に示す光ピックアップ11の構成は、本開示を説明するための最小限の構成要素を示しており、マトリクス回路14を介して光学ブロックサーボ回路21に出力されるフォーカスエラー信号、トラッキングエラー信号や、マトリクス回路14を介してウォブル信号処理回路16に出力されるプッシュプル信号を生成するための信号等については省略している。
 その他、図2に示す構成以外の種々の構成が可能である。
 なお、以下に説明する本開示の実施例は、主に図3を参照して説明した分割領域対応5信号出力型のフォトディテクタを利用した例として説明する。
 ただし、本開示の処理は、図3を参照して説明した分割領域対応5信号出力型のフォトディテクタに限らず、図2に示す分割なし1信号出力型、分割領域対応3信号出力型、その他、異なる分割構成を持つフォトディテクタを利用した構成でも適用可能である。
 分割領域対応3信号出力型フォトディテクタや、分割領域対応5信号出力型フォトディテクダ等の分割型フォトディテクタを利用した場合、光ディスク10からの戻りビームの光束を複数の領域に分割して、各領域に対応する複数チャンネルの再生情報信号を得ることができる。
 これらの領域単位の信号を用いたデータ処理によって、高品質な再生信号を得ることができる。
 なお、領域毎の再生情報信号を得る方法としては、フォトディテクタ56を分割する方法以外の方法も使用可能である。
 例えば、図2に示す光ピックアップ11において、対物レンズ54を通過し、フォトディテクタ56に至る光路中に、複数の領域を分離するための光路変換素子を配置し、光路変換素子によって分離された複数のビームを異なるフォトディテクタに供給する方法を使用することができる。
 光路変換素子としては、ホログラフィック光学素子等の回折素子や、マイクロレンズアレイ、マイクロプリズム等の屈折素子等が使用可能である。
  [1-2.データ検出処理部の構成例について]
 次に、図1に示す構成中のデータ検出処理部15の構成例について、図4を参照して説明する。
 上述したように、光ピックアップ11により光ディスク10から再生され、各領域に対応する検出信号がマトリクス回路14に供給され、各領域に対応する複数チャンネルの再生情報信号とされる。
 データ検出処理部15は、図4に示すように、マトリクス回路14から供給される再生情報信号が供給されるA/Dコンバータ61を有する。
 なお、図4は、図3に示す分割領域対応5信号出力型フォトディテクタ56を用いて得られた5つの信号A~Eを入力して再生信号を生成するデータ検出処理部15の構成例である。
 A/Dコンバータ61に対するクロックがPLL62によって形成される。
 マトリクス回路14から供給される再生情報信号は、A/Dコンバータ61でデジタルデータに変換される。
 信号A~Eのデジタル化された5チャンネルの再生情報信号をSa~Seと表記する。
 PLL62には、再生情報信号Sa~Seを加算回路67によって加算した信号が供給される。
 なお、信号A~Eは、先に図3を参照して説明した以下の領域の受光量に応じた電気信号である。
 信号A=A1+A2
 信号B=B
 信号C=C
 信号D=D1+D2+D3
 信号E=E1+E2+E3
 図4に示すように、データ検出処理部15は、多入力適応イコライザ63、2値化検出器64、PR(Pertial Response)畳込器65、等化誤差演算器66を有する。
 多入力適応イコライザ63は、再生情報信号Sa~SeをもとにPR適応等化処理を行う。
 すなわち、再生情報信号Sa~Seが適応イコライザユニットを介して出力され、加算された等化信号y0を目標とするPR波形に近似するように等化される。
 なお、PLL62へ入力する信号として、多入力適応イコライザの出力を用いても良い。この場合には、多入力適応イコライザの初期係数をあらかじめ定められた値に設定しておく。
 2値化検出器64は例えばビタビデコーダとされ、PR等化された等化信号y0に対して最尤復号処理を行って2値化データDTを得る。
 この2値化データDTは、図1に示したエンコード/デコード部17に供給されて再生データ復調処理が行われることになる。
 ビタビ復号は、所定の長さの連続ビットを単位として構成される複数のステートと、それらの間の遷移によって表されるブランチで構成されるビタビ検出器が用いられ、全ての可能なビット系列の中から、効率よく所望のビット系列を検出するように構成されている。
 実際の回路では、各ステートに対してパスメトリックレジスタとよばれるそのステートに至るまでのパーシャルレスポンス系列と信号のパスメトリックを記憶するレジスタ、パスメモリレジスタと呼ばれるそのステートにいたるまでのビット系列の流れを記憶するレジスタの2つのレジスタが用意される。
 さらに、各ブランチに対してはブランチメトリックユニットとよばれるそのビットにおけるパーシャルレスポンス系列と信号のパスメトリックを計算する演算ユニットが用意されている。
 このビタビ復号器では、さまざまなビット系列を、ステートを通過するパスのひとつによって一対一の関係で対応付けることができる。
 また、これらのパスを通過するようなパーシャルレスポンス系列と、実際の信号(再生信号)との間のパスメトリックは、上記のパスを構成するステート間遷移、すなわち、ブランチにおける前述のブランチメトリックを順次加算していくことで得られる。
 さらに、パスメトリックを最小にするようなパスを選択するには、この各ステートにおいて到達する2つ以下のブランチが有するパスメトリックの大小を比較しながら、パスメトリックの小さいパスを順次選択することで実現できる。
 この選択情報をパスメモリレジスタに転送することで、各ステートに到達するパスをビット系列で表現する情報が記憶される。
 パスメモリレジスタの値は、順次更新されながら最終的にパスメトリックを最小にするようなビット系列に収束していくので、その結果を出力する。
 PR畳込器65では、2値化結果の畳み込み処理を行って目標信号Zkを生成する。
 この目標信号Zkは、2値検出結果を畳み込んだものであるためノイズのない理想信号である。
 例えばPR(1,2,2,2,1)の場合、チャンネルクロック毎の値Pが(1,2,2,2,1)となる。拘束長が5である。
 さらに、PR(1,2,3,3,3,2,1)の場合、チャンネルクロック毎の値Pが(1,2,3,3,3,2,1)となる。拘束長が7である。
 レーザ光の波長λ=405nmで、対物レンズのNA=0.85にて、トラックピッチを0.32μm一定として、容量が35GBを超える程度に記録密度を高くした場合、パーシャルレスポンスの拘束長5から7に長くして検出能力を高くしないと、検出が難しくなる。
 等化誤差演算器66は、多入力適応イコライザ63からの等化信号y0と、目標信号Zkから、等化誤差ekを求め、この等化誤差ekを多入力適応イコライザ63にタップ係数制御のために供給する。
 図7に示すように、等化誤差演算器66は、減算器91と係数乗算器92とを備える。
 減算器81は、等化信号y0から目標信号Zkを減算する。
 この減算結果に対して、係数乗算器82によって所定の係数aを乗算することで等化誤差ekが生成される。
 多入力適応イコライザ63は、図5に示すように、適応イコライザユニット71~75、および加算器76を有する。
 上述した再生情報信号Saが適応イコライザユニット71に入力され、再生情報信号Sbが適応イコライザユニット72に入力され、再生情報信号Scが適応イコライザユニット73に入力され、再生情報信号Sdが適応イコライザユニット74に入力され、再生情報信号Seは適応イコライザユニット75に入力される。
 分割領域から得られる分割信号数A~Eに対応して適応イコライザユニットが備えられる。
 適応イコライザユニット71~75の各々は、FIR(Finite Impulse Response)フィルタタップ数、その演算精度(ビット分解能)、適応演算の更新ゲインのパラメータを持ち、各々に最適な値が設定されている。
 適応イコライザユニット71~75の各々には、適応制御のための係数制御値として等化誤差ekが供給される。
 適応イコライザユニット71~75の出力y1~y5は、加算器76で加算されて多入力適応イコライザ63の等化信号y0として出力される。
 この多入力適応イコライザ63の出力目標は、2値検出結果をPR(パーシャルレスポンス)に畳みこんだ理想PR波形となっている。
 適応イコライザユニット71は、例えば図6に示すようなFIRフィルタで構成される。
 適応イコライザユニット71は、遅延素子80-1~80-n、係数乗算器81-0~81-n、加算器84を有するn+1段のタップを有するフィルタとされる。
 係数乗算器81-0~81-nは、それぞれ各時点の入力xに対してタップ係数C0~Cnの乗算を行う。
 係数乗算器81-0~81-nの出力が加算器84で加算されて出力yとして取り出される。
 適応型の等化処理を行うため、タップ係数C0~Cnの制御が行われる。
 このために、等化誤差ekと、各タップ入力が入力されて演算を行う演算器82-0~82-nが設けられる。
 また各演算器82-0~82-nの出力を積分する積分器83-0~83-nが設けられる。
 演算器82-0~82-nのそれぞれでは、例えば-1×ek×xの演算が行われる。
 この演算器82-0~82-nの出力は積分器83-0~83-nで積分され、その積分結果により係数乗算器81-0~81-nのタップ係数C0~Cnが変更制御される。
 なお、積分器83-0~83-nの積分を行うのは、適応係数制御の応答性を調整するためである。
 以上の構成のデータ検出処理部15では、クロストーク等の不要な信号の低減が行われたうえで2値化データの復号が行われることになる。
 図5に示すその他の適応イコライザユニット72~75も、適応イコライザユニット71と同様の構成を有する。
 適応イコライザユニット71~75に対して共通の等化誤差ekが供給されて適応等化が行われる。
 すなわち、適応イコライザユニット71~75では、再生情報信号Sa、Sb、Sc、Sd、Seの入力信号周波数成分の誤差、位相歪みを最適化、すなわち適応PR等化をおこなう。
 すなわち、演算器82-0~82-nでの-1×ek×xの演算結果に応じてタップ係数C0~Cnが調整される。
 このことは、等化誤差を解消していく方向にタップ係数C0~Cnが調整されることである。
 このように、適応イコライザユニット71~75では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される。
 適応イコライザユニット71~75の出力y1,y2,y3,y4,y5が加算器76で加算されて得られる多入力適応イコライザ63の等化信号y0は、クロストーク等が低減された信号となる。
 なお、各信号A~Eに応じたタップ係数制御処理等の具体例については、本出願人と同一出願人の先行出願である前述の特許文献1(国際公開WO2016/006157号公報)に記載されている。本願構成でも、この先願に記載されたと同様の各信号対応のタップ係数設定処理を適用することができる。
  [2.隣接トラックの読み取り信号を用いたクロストークキャンセル処理の基本的構成例について]
 次に、隣接トラックの読み取り信号を用いたクロストークキャンセル処理の基本的構成例について説明する。
 先に説明したように、BD等の光ディスクは、高密度な情報記録を行うことが求められている。
 光ディスクの高密度化をはかるための1つの手法が、トラックピッチを狭くする方法である。
 具体的には、例えば、グルーブトラックおよびランドトラックの両方にデータを記録するランド(L)/グルーブ(G)記録方式が有効である。
 しかし、このような高密度記録ディスクでは、データ再生処理におけるクロストークの発生可能性が高くなるという問題が発生する。
 すなわち、読み出し対象トラックの読み出しデータに、隣接トラックのデータがノイズとして混入するクロストークが発生しやすくなるという問題である。
 このクロストークを除去する手法として、隣接トラックの読み取り信号を適用したクロストークキャンセル手法がある。
 なお、本出願人の先の出願である特許文献2(特開2015-057753号公報)に、隣接トラックの読み取り信号を用いてクロストークキャンセルを実行する1つの構成例が開示されている。
 以下、この隣接トラックの読み取り信号を用いたクロストークキャンセル処理の基本的構成例について説明する。
 図8は、隣接トラックの読み取り信号を用いてクロストークキャンセルを行なう情報処理装置(再生装置)の一構成例を示す図である。
 ディスク10に対して、光ピックアップ11によるデータ読み取りが実行される。
 光ピックアップ11は、図に示すディスク10のデータ読み取りライン100に沿ってトラックデータを読み取る。
 図8(1)トラック拡大図に示すように、トラックTnを中心とする3本の隣接トラックTn-1,Tn,Tn+1これらのトラックに記録されたデータをデータ読み取りライン100に沿って読み取る。
 ディスク10からの読み取りデータは、フォトディテクタ101から、ADC(ADコンバータ)102に入力されデジタル信号に変換され、メモリ103に格納される。
 なお、メモリ103に格納されるデータは、ディスク10からの読み取り信号(RF信号)であるアナログ信号に基づいて生成されるデジタル信号、例えば8ビット(0~255)のデジタル化アナログ信号である。
 メモリ103には、図に示すディスク10のデータ読み取りライン100に沿って読み取られたデータが格納される。
 図8(1)トラック拡大図のA~Bラインの3トラックの隣接領域の読み取りデータがメモリ103に格納されると、このA~Bラインの3トラック分の読み取り信号が多入力適応イコライザ106に入力される。
 図8に示す信号S(tn+1)~S(tn-1)が、各々、トラックTn+1,Tn,Tn-1の読み取り信号に対応する。
 なお、メモリ103から多入力適応イコライザ106に対するデータ入力は、図8(1)のA~Bラインの3信号を同期させて行う必要がある。この制御は、システムコントローラ104からメモリコントローラ105に提供される回転同期信号やアドレス等に基づいて、メモリコントローラ105によって行われる。
 多入力適応イコライザ106は、例えば先に図5、図6を参照して説明したと同様の構成を有する。
 図5では、分割領域対応5信号出力型ディテクタの5つの信号を入力していたが、図8に示す例では、各トラックTn-1~Tn+1の3つの読み取り信号が入力される。
 ただし、これは、分割のないディテクタを利用した場合、すなわち、図2を参照して説明した(A)分割なし1信号出力型のディテクタを利用した場合である。
 例えば、分割領域対応5信号出力型のディテクタを利用した場合、5×3=15の信号を入力する必要がある。この例については後述する。
 多入力適応イコライザ106は、各トラックTn-1~Tn+1の3つの読み取り信号を各々入力する複数の適応イコライザユニットを有する。
 各適応イコライザユニットは、先に図6を参照して説明したと同様の構成を有する。
 1つの適応再生対象とする中心のトラックTnの読み取り信号S(tn)が1つの適応イコライザユニットに入力される。
 さらに、クロストーク成分を発生させる隣接トラックTn-1,Tn+1の読み取り信号S(tn-1)、S(tn+1)が、各々個別の適応イコライザユニットに入力される。
 これら各適応イコライザユニットの出力を演算して等化信号を出力し、この等化信号について2値化処理を行って2値データを生成する。
 この処理によって、トラックTnの読み取り信号S(tn)からクロストーク成分が除去された高品質なデータを得ることができる。
 なお、多入力適応イコライザ106の構成と処理については、図11を参照して後段で説明する。
 図8に示す構成を用い、再生対象トラックと隣接トラックの読み取り信号を多入力適応イコライザ106に入力してクロストーク成分の除去を行うことが可能となる。
 しかし、この図8に示す構成では、図8のディスク10に示すデータ読み取りライン100に添った読み取りデータ、すなわち、ディスクのトラックほぼ2周分の読み取りデータをメモリ103に蓄積する必要がある。
 メモリ103に格納されるデータは、前述したように、ディスク10からの読み取り信号(RF信号)であるアナログ信号に基づいて生成されるデジタル信号、例えば8ビット(0~255)のデシタル化アナログ信号であり、データ量が多く、メモリ103に要求されるメモリ容量が増大してしまうという問題がある、
 なお、ランド(L)、グルーブ(G)の双方にデータを記録し、これらを個別のピックアップでデータ読み取りを実行する場合は、図9に示すようにトラック一周分のデータをメモリに格納すればよい。
 図9に示す構成において、中央のグルーブトラックであるトラックTn(G)の読み取りデータのクロストーク低減処理のために、隣接するランドトラックTn-1(L)とTn+1(L)の読み取りデータが必要となる。
 図9に示す例では、ランド(L)、グルーブ(G)を個別のピックアップを利用して再生する構成であり、この場合、中央のグルーブトラックであるトラックTn(G)の読み取りデータのクロストーク低減処理のために蓄積が必要となるデータはランド(L)のトラック一周分の読み取りデータとなる。
 なお、図に示すG,Lは、グルーブ、ランドを意味する。本例は、G:グルーブ、L:ランドの双方にデータが記録されたディスク10を利用した例である。
 図8に示す構成では、ほぼ2周分のトラック読み取りデータをメモリに蓄積する必要がある。また、図9に示す構成においても、ほぼ1周分のトラック読み取りデータをメモリに蓄積する必要がある。このような問題を解決する構成として、図10に示す構成がある。
 図10に示す例は、ピックアップ11が、一度に隣接3トラックの各々にスポット光を照射して、各トラックからの反射光を3つのフォトディテクタ101a~101cによって検出する構成である。
 なお、図10に示すように3つのスポット光を照射し、各スポット光からの検出光を個別のフォトディテクタによって検出する構成については、例えば特許文献4(特許4184585号公報)に記載されている。
 しかし、3本の隣接トラックに照射されるスポット光の位置は、ディスク半径方向に並べるとスポット光の重なり等に基づく干渉等が発生し、ノイズが増大してしまうため、各スポット光は重なりのない位置に設定することが必要であり、トラック方向にずれた位置に3つのスポット光を設定する構成としている。
 この図10に示す構成では、ディスク10からの読み取りデータ、すなわち3つの隣接トラックTn-1,Tn,Tn+1からの読み取りデータは、フォトディテクタ101a~cから、ADC(ADコンバータ)102a~cに各々に入力されデジタル信号に変換され、メモリ103に格納される。
 なお、この場合も、メモリ103に格納されるデータは、ディスク10からの読み取り信号(RF信号)であるアナログ信号に基づいて生成されるデジタル信号、例えば8ビット(0~255)のデジタル化アナログ信号である。
 メモリ103には、3つの隣接トラックから読み取られたデータが格納される。
 これらの読み取りデータは、トラック方向にずれがある。
 先に説明したように、多入力適応イコライザ106には、トラック方向のずれのない3本の隣接トラックのデータを入力する必要がある。
 従って、メモリ103には、トラック方向のずれのない3本の隣接トラックのデータを格納する必要があり、3トラックに照射される3つのスポット光のトラック方向のずれに相当する区間の3トラック分の読み取りデータを格納する必要がある。
 先に説明した図8(1)トラック拡大図のA~Bラインの3トラックの隣接領域の読み取りデータがメモリ103に格納されると、このA~Bラインの3トラック分の読み取り信号が多入力適応イコライザ106に入力される。
 図10においても、図8と同様、信号S(tn+1)~S(tn-1)が、各々、トラックTn+1,Tn,Tn-1の読み取り信号に対応する。
 なお、メモリ103から多入力適応イコライザ106に対するデータ入力は、3本のトラックの最近接位置の信号、すなわち、先に説明した図8(1)のA~Bラインの3信号を同期させて入力させる必要がある。この制御は、システムコントローラ104からメモリコントローラ105に提供される回転同期信号やアドレス等に基づいて、メモリコントローラ105によって行われる。
 図10においても、メモリ103には、3つの隣接トラックから読み取られた信号、すなわち、ディスク10からの読み取り信号(RF信号)であるアナログ信号に基づいて生成されるデジタル信号、例えば8ビット(0~255)のデジタル化アナログ信号を格納する必要があり、必要なメモリ容量が大きくなるという問題がある。
 また、図10に示す構成では、3本の隣接トラックからの信号を並列に処理するための回路、例えばADCが読み取りデータ数と同様の数必要となり、回路構成が複雑化するという問題が発生する。
 図8、図10を参照して説明した構成における多入力適応イコライザ106の具体的構成例と処理例について、図11を参照して説明する。
 多入力適応イコライザ106は、適応イコライザユニット111,112,113と加算器114を有する。
 トラックTn+1に対応する再生信号S(tn+1)は適応イコライザユニット111に入力される。
 トラックTnに対応する再生信号S(tn)は適応イコライザユニット112に入力される。
 トラックTn-1に対応する再生信号S(tn-1)は適応イコライザユニット113に入力される。
 適応イコライザユニット111,112,113の各々は、FIRフィルタタップ数、その演算精度(ビット分解能)、適応演算の更新ゲインのパラメータを持ち、各々に最適な値が設定されている。
 適応イコライザユニット111,112,113の各々には、適応制御のための係数制御値として等化誤差ekが供給される。
 各適応イコライザユニット111,112,113の出力y1,y2,y3は加算器114で加算されて多入力適応イコライザ106の等化信号y0として出力される。
 この多入力適応イコライザ106の出力目標は、二値検出結果をPR(パーシャルレスポンス)に畳みこんだ理想PR波形となる。
 各適応イコライザユニット111,112,113は、例えば先に説明した図6に示すようなFIRフィルタで構成される。
 即ち各適応イコライザユニット111,112,113は、遅延素子80-1~80-n、係数乗算器81-0~81-n、加算器84を有するn+1段のタップを有するフィルタとされる。
 係数乗算器81-0~81-nでは、それぞれ各時点の入力xに対してタップ係数C0~Cnの乗算を行う。
 係数乗算器81-0~81-nの出力が加算器84で加算されて出力yとなる。
 適応型の等化処理を行うため、タップ係数C0~Cnの制御が行われる。このために、等化誤差ekと、各タップ入力が入力されて演算を行う演算器82-0~82-nが設けられる。また各演算器82-0~82-nの出力を積分する積分器83-0~83-nが設けられる。
 各演算器82-0~82-nでは、例えば-1×ek×xの演算が行われる。この演算器82-0~82-nの出力は積分器83-0~83-nで積分され、その積分結果により係数乗算器81-0~81-nのタップ係数C0~Cnが変更制御される。なお積分器83-0~83-nの積分を行うのは、適応係数制御の応答性を調整するためである。
 以上の構成を用いて、クロストークキャンセルが行われたうえで2値化データの復号が行われることになる。
 適応イコライザユニット111,112,113の各々は、いずれも図6に示す構成を有し、同じ等化誤差ekが供給されて適応等化が行われる。
 まず処理対象のトラックの再生情報信号S(tn)が入力されている適応イコライザユニット112では、再生情報信号S(tn)の入力信号周波数成分の誤差、位相歪みを最適化、すなわち適応PR等化をおこなう。これは通常の適応イコライザの働きと同じである。
 すなわち、図6に示す各演算器82-0~82-nでの-1×ek×xの演算結果に応じてタップ係数C0~Cnが調整され、等化誤差を解消していく方向にタップ係数C0~Cnが調整される。
 一方、他の2つの適応イコライザユニット111,113では、出力目標が、近接トラックの再生情報信号S(tn+1)、S(tn-1)と無相関である。このことから、適応イコライザユニット111,113では、相関成分、即ちクロストーク成分を打ち消すような演算が行われる事になる。
 即ち適応イコライザユニット111,113の場合、各演算器82-0~82-nでの-1×ek×xの演算結果に応じてタップ係数C0~Cnが調整され、図11の加算器114の加算結果においてクロストーク成分を解消していく方向の周波数特性が得られるようにタップ係数C0~Cnが調整される。
 このように、適応イコライザユニット112では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される一方、適応イコライザユニット111,113では、同じく等化誤差ekを用いてタップ係数C0~Cnがクロストークキャンセルのための周波数特性となる方向に自動的に制御される。これによって、各適応イコライザユニット111,112,113の出力y1,y2,y3が加算器114で加算されて得られる多入力適応イコライザ106の等化信号y0は、クロストークキャンセルされた信号となる。
 図8、図10を参照して説明した再生装置の構成例は、各トラックの読み取り信号が1つの信号、すなわち、先に図2を参照して説明した「(A)分割なし1信号出力型」のフォトディテクタを利用した場合の構成例である。
 例えば、利用するフォトディテクタを図2に示す「(B)3信号出力型」や、「(C)5信号出力型」とした場合、各トラックからの読み取り信号は、それぞれ3信号、5信号となる。
 この読み取り信号の増加に伴い、多入力適応イコライザへの入力タイミング調整用のデータ格納メモリ、すなわち図8、図10に示すメモリ103に格納すべきデータは3倍、または5倍になってしまう。
 フォトディテクタとして、図2に示す「(C)5信号出力型」のフォトディテクタを利用し、隣接トラックの読み取りデータを適用してクロストークキャンセルを実行する情報処理装置(再生装置)の構成例を図12に示す。
 図12に示す光ピックアップ11は、先に図2、図3を参照して説明した5信号出力型のフォトディテクタ101を有する。
 すなわち、先に図3を参照して説明したように、フォトディテクタの各分割領域(A1,A2,B,C,D1~D3,E1~E3)における受光量に応じて以下の信号A~Eを出力する。
 信号A=A1+A2
 信号B=B
 信号C=C
 信号D=D1+D2+D3
 信号E=E1+E2+E3
 これら5つの信号が、フォトディテクタ101から出力される。
 なお、前述したように、複数領域の加算信号からなる信号については、予め設定した領域単位の重み係数を乗算して信号を生成する構成としてもよい。
 例えば、
 A=p*A1+q*A2
 上記のような重み係数p,qを乗算して信号を生成してもよい。
 ピックアップ11は、ディスク10の3つの隣接するトラックからのデータ読み取り処理を行い、これらの読み取りデータをADC102に入力しデジタルデータに変換してメモリ103に格納する。
 なお、3本の隣接トラックからのデータ読み取り処理は、先に図8、図10を参照して説明した処理のいずれかによって実行される。すなわち、
 (a)図8を参照して説明したトラック2周分のデータ読み取り処理、
 (b)図10を参照して説明した複数スポット光を照射、読み取り可能なピックアップを適用した処理、
 これら(a),(b)のいずれかの処理によって実行される。
 図12に示す構成において、ディスク10からの読み取りデータ、すなわち3つの隣接トラックTn-1,Tn,Tn+1からの読み取りデータは、フォトディテクタ101a~cから、ADC(ADコンバータ)102a~cに各々に入力されデジタル信号に変換され、メモリ103に格納される。
 フォトディテクタ101a~cの各々は、5つの信号A~Eを並列に出力する。
 ADC(ADコンバータ)102a~cの各々は5つのADCによって構成される。すなわち、計15個のADCが並列に動作し、15個のADCの生成したデジタル信号がメモリ103に格納される。
 メモリ103に格納されるデータは、ディスク10からの読み取り信号(RF信号)であるアナログ信号に基づいて生成されるデジタル信号、例えば8ビット(0~255)のデジタル化アナログ信号である。
 メモリ103には、3つの隣接トラックから読み取られたデータが格納される。
 1つのフォトディテクタから、8ビット(0~255)のデジタル化アナログ信号が5つ出力され、3トラック分の計15の8ビット信号がメモリ103に格納されることになる。
 メモリ103に格納するデータは、以下の(a),(b)のいずれの処理を行なうかによって異なる。
 (a)図8を参照して説明したトラック2周分のデータ読み取り処理、
 (b)図10を参照して説明した複数スポット光を照射、読み取り可能なピックアップを適用した処理、
 メモリ103に格納されるデータは、上記(a),(b)のいずれの処理を行なうかによって異なる。
 しかし、いずれの場合も、先に図8、図10を参照して説明した分割なしのフォトディテクタを利用した場合に比較して、5倍のデータをメモリ103に格納する必要がある。
 3トラック対応の読み取りデータがメモリ103に格納されると、3トラック分の読み取り信号が多入力適応イコライザセット120に入力される。
 なお、メモリ103から多入力適応イコライザセット120に対するデータ入力は、3本のトラックの最近接位置の信号、すなわち、先に説明した図8(1)のA~Bラインの3信号を同期させて入力させる必要がある。この制御は、システムコントローラ104からメモリコントローラ105に提供される回転同期信号やアドレス等に基づいて、メモリコントローラ105によって行われる。
 多入力適応イコライザセット120は、図13に示すように3トラック各々の読み取り信号(5信号A~E)を入力する3つの多入力適応イコライザ121~123と加算器124によって構成される。
 多入力適応イコライザ121~123の各々は、図14に示すように、分割領域対応5信号出力型フォトディテクタの出力する5つの信号A~Eに基づく再生信号Sa~Seを入力する5つの適応イコライザユニット131~135と加算器136によって構成される。
 適応イコライザユニット131~135の各々は、先に図6を参照して説明したFIRフィルタで構成される。
 すなわち、図12、図13に示す多入力適応イコライザセット120は、図6を参照して説明したFIRフィルタを3×5=15個有する構成となる。
 図12~図14を参照して説明したように、分割領域対応5信号出力型フォトディテクタ等、分割型フォトディテクタを利用して、隣接トラックの読み取り信号を用いたクロストークキャンセルを実行しようとすると以下のような問題が発生する。
 (a)多入力適応等化イコライザの回路構成の大型化
 (b)多入力適応等化イコライザに対する入力データの同期化処理のために必要となるメモリに要求されるメモリ容量が大きくなる。
 (c)フォトディテクタの出力信号に対するADC等のデータ処理回路が処理信号数に応じて増大し、回路規模が大きくなる。
 以下では、このような問題を解決した構成について説明する。
  [3.隣接トラックの2値化再生信号(バイナリデータ)を用いてクロストークキャンセルを実行する構成と処理について]
 以下、隣接トラックの2値化再生信号(バイナリデータ)を用いてクロストークキャンセルを実行する情報処理装置の構成と処理について説明する。
  [3-1.両隣の2つの隣接トラックの再生信号を適用した例について]
 図15は、隣接トラックの2値化再生信号(バイナリデータ)を用いてクロストークキャンセルを実行する情報処理装置の構成と処理の概要を説明する図である。
 図15において、光ピックアップ11は、図15(1)に示すように、5信号出力型のフォトディテクタ201を備えている。
 なお、以下に説明する実施例では、5信号出力型のフォトディテクタ201を適用した場合の例を代表例として説明するが、本開示の処理は、5信号出力型以外の1信号出力型、3信号出力型等、様々な信号出力数を持つフォトディテクタを利用した構成においても適用可能である。
 光ピックアップ11は、再生対象トラック(Tn)、すなわち、図15(2)トラック拡大図に示す3つの隣接トラック(Tn-1,Tn,Tn+1)の中央のトラック(Tn)の記録データの読み取りを実行する。光ピックアップ11のフォトディテクタ201は、5つの信号から構成される読み取り信号[R(tn)A~E]をADC202に入力する。
 ADC202は、これらの5つの読み取り信号のデジタル変換を実行し、信号S(tn)A~Eを多入力適応イコライザ205に入力する。
 この入力信号は、ディスク10からの読み取り信号(RF信号)をデジタル化したデジタル化アナログ信号(例えば8ビット0~255)である。
 一方、再生対象トラック(Tn)の隣接トラック(Tn-1,Tn+1)については、最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータが、隣接トラック再生2値信号供給部203からメモリ204を介して多入力適応イコライザ205に入力される。
 図15に示す信号D(tn-1)が、トラックTn-1の再生2値信号(バイナリデータ)であり、信号D(tn+1)が、トラックTn+1の再生2値信号(バイナリデータ)である。
 隣接トラック再生2値信号供給部203の供給する信号は、再生対象トラック(Tn)の隣接トラック(Tn-1,Tn+1)の最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータである。
 メモリ204には、この2値化信号(バイナリデータ)が格納され、メモリ204から、読み取りトラック(Tn)の最近接位置の2つの両隣のトラック(Tn-1,Tn+1)の再生2値信号であるバイナリデータが多入力適応イコライザ205に入力される。
 なお、メモリ204から、多入力適応イコライザ205に入力される隣接トラックの再生信号(バイナリデータ)は、ADC202を介して入力される読み取り対象トラック(Tn)の最近接位置、すなわち、ディスクの径方向に沿った位置のデータであることが必要である。
 すなわち、図15(2)トラック拡大図に示すA~Bラインの信号を同期させて入力させる必要がある。A~Bラインはディスクの径方向のラインに相当する。
 この同期入力制御は、図15には示していないが、図8等を参照して説明したと同様、システムコントローラからメモリコントローラに提供される回転同期信号やアドレス等に基づいて、メモリコントローラによって行われる。
 図15に示す構成において、メモリ204には、再生対象トラック(Tn)の隣接トラック(Tn-1,Tn+1)の再生2値信号(バイナリデータ)が格納される。
 先に図8、図10、図12、図13を参照して説明した構成では、メモリ103には、光ピックアップ11による読み取り信号(RF信号)をデジタル化したデジタル化アナログ信号(例えば8ビット0~255)を格納することが必要であり、このデータを格納するために大きなメモリ容量が必要となっていた。
 これに対して、図15に示す構成では、メモリ204には、再生対象トラック(Tn)の隣接トラック(Tn-1,Tn+1)の再生2値信号(バイナリデータ)を格納すればよく、必要となるメモリ容量は大幅に削減される。
 また、図15に示す構成において、多入力適応イコライザ205の前段に設けるADCは、再生対象トラック(Tn)の読み取り信号R(tn)A~Eに対するADCのみとなり、図13を参照して説明した構成に比較して、必要となるADCの数も削減することができる。
 なお、メモリ204に格納する再生2値信号(バイナリデータ)は、メモリ204に格納する前に、所定のアルゴリズムに従った圧縮処理を実行し、さらにデータ量を削減する構成としてもよい。ただし、この場合、メモリ204から多入力適応イコライザ205に出力する前処理として、圧縮データの伸長処理を実行することが必要である。
 本開示の構成において、隣接トラック再生2値信号供給部203は、再生対象トラック(Tn)の隣接トラック(Tn-1,Tn+1)の最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータをメモリに供給する。
 隣接トラック再生2値信号供給部203は、様々な構成が可能である。
 1つは、従来型の再生信号生成処理の実行構成、例えば、先に図4を参照して説明したと同様の再生信号生成構成をそのまま適用することが可能である。
 あるいは、図15に示す構成を適用して得られた再生信号を、次の再生トラック用に再利用する構成も可能である。
 あるいは、例えばディスク10に対する記録信号が既知である場合、この記録信号をそのまま利用する構成としてもよい。
 これらの処理例については後述する。
 図16は、多入力適応イコライザ205の構成を示す図である。
 多入力適応イコライザ205は、図16に示すように、適応イコライザユニット211~217、および加算器218を有する。
 再生対象トラック(Tn)の読み取り信号、すなわち、5信号出力型ピックアップを介して得られた5信号(StnA~StnE)は、それぞれ適応イコライザユニット211~215に入力される。
 また、メモリ204からは、隣接トラックの再生2値信号(バイナリデータ)(D(tn-1),D(tn+1))が、それぞれ適応イコライザユニット216~217に入力される。
 多入力適応イコライザ205は、これらの入力信号に基づいてPR適応等化処理を行う。
 適応イコライザユニット211~217の各々は、先に説明した図6と同様のFIRフィルタによって構成される。
 FIRフィルタタップ数、その演算精度(ビット分解能)、適応演算の更新ゲインのパラメータを持ち、各々に最適な値が設定されている。
 適応イコライザユニット211~217の各々には、適応制御のための係数制御値として等化誤差ekが供給される。
 各適応イコライザユニット211~217の出力y1~y7は加算器218で加算されて多入力適応イコライザ206の等化信号y0として出力される。
 この多入力適応イコライザ206の出力目標は、二値検出結果をPR(パーシャルレスポンス)に畳みこんだ理想PR波形となる。
 各適応イコライザユニット211~217は、例えば先に説明した図6に示すようなFIRフィルタで構成される。
 即ち各適応イコライザユニット211~217は、図6に示すと同様の遅延素子80-1~80-n、係数乗算器81-0~81-n、加算器84を有するn+1段のタップを有するフィルタとされる。
 係数乗算器81-0~81-nでは、それぞれ各時点の入力xに対してタップ係数C0~Cnの乗算を行う。
 係数乗算器81-0~81-nの出力が加算器84で加算されて出力yとなる。
 適応型の等化処理を行うため、タップ係数C0~Cnの制御が行われる。このために、等化誤差ekと、各タップ入力が入力されて演算を行う演算器82-0~82-nが設けられる。また各演算器82-0~82-nの出力を積分する積分器83-0~83-nが設けられる。
 各演算器82-0~82-nでは、例えば-1×ek×xの演算が行われる。この演算器82-0~82-nの出力は積分器83-0~83-nで積分され、その積分結果により係数乗算器81-0~81-nのタップ係数C0~Cnが変更制御される。なお積分器83-0~83-nの積分を行うのは、適応係数制御の応答性を調整するためである。
 以上の構成を用いて、クロストークキャンセルが行われたうえで2値化データの復号が行われることになる。
 適応イコライザユニット211~217の各々は、いずれも図6に示す構成を有し、同じ等化誤差ekが供給されて適応等化が行われる。
 再生対象のトラック(Tn)の信号StnA~Eが入力されている適応イコライザユニット211~215では、再生信号の入力信号周波数成分の誤差、位相歪みを最適化、すなわち適応PR等化をおこなう。これは通常の適応イコライザの働きと同じである。
 すなわち、図6に示す各演算器82-0~82-nでの-1×ek×xの演算結果に応じてタップ係数C0~Cnが調整され、等化誤差を解消していく方向にタップ係数C0~Cnが調整される。
 一方、他の2つの適応イコライザユニット216,217では、出力目標が、隣接トラックの再生信号と無相関である。このことから、適応イコライザユニット216,217では、相関成分、即ちクロストーク成分を打ち消すような演算が行われる事になる。
 即ち適応イコライザユニット216,217の場合、各演算器82-0~82-nでの-1×ek×xの演算結果に応じてタップ係数C0~Cnが調整され、図16の加算器218の加算結果においてクロストーク成分を解消していく方向の周波数特性が得られるようにタップ係数C0~Cnが調整される。
 このように、適応イコライザユニット211~215では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される一方、適応イコライザユニット216,217では、同じく等化誤差ekを用いてタップ係数C0~Cnがクロストークキャンセルのための周波数特性となる方向に自動的に制御される。これによって、各適応イコライザユニット211~217の出力y1~y7が加算器218で加算されて得られる多入力適応イコライザ206の等化信号y0は、クロストークキャンセルされた信号となる。
 なお、再生対象トラック(Tn)の読み取り信号、すなわち、5信号出力型ピックアップを介して得られた5信号(StnA~StnE)が入力される適応イコライザユニット211~215においては、5信号(StnA~StnE)の特性に応じたタップ係数の制御処理が行われる。この処理の具体例については、本出願人と同一出願人の先行出願である前述の特許文献1(国際公開WO2016/006157号公報)に記載されている。本願構成でも、この先願に記載されたと同様の各信号対応のタップ係数設定処理を適用することができる。
  [3-2.1つの隣接トラックの再生信号を適用した例について]
 図15、図16を参照して説明した例は、再生対象トラック(Tn)の両隣の隣接トラック(Tn-1,Tn+1)の再生2値信号(バイナリデータ)を用いてクロストークキャンセルを実行する処理例であった。
 しかし、ピックアップの構成や、再生シーケンスの設定条件によっては、再生対象信号の両隣の再生信号を予め取得することが困難である場合がある。
 以下に説明する例は、再生対象トラック(Tn)の両隣の2つのトラックではなく、1つのみの隣接トラックの再生信号を適用した処理例である。
 図17は、再生対象トラック(Tn)に隣接する1つの隣接トラック(Tn-1)の2値化再生信号(バイナリデータ)を用いてクロストークキャンセルを実行する情報処理装置の構成と処理の概要を説明する図である。
 図17において、光ピックアップ11は、図17(1)に示すように、5信号出力型のフォトディテクタ201を備えている。
 なお、前述したように本開示の処理は、5信号出力型以外の1信号出力型、3信号出力型等、様々な信号出力数を持つフォトディテクタを利用した構成においても適用可能である。
 光ピックアップ11は、再生対象トラック(Tn)、すなわち、図17(2)トラック拡大図に示す2つの隣接トラック(Tn-1,Tn)の1つのトラック(Tn)の記録データの読み取りを実行する。光ピックアップ11のフォトディテクタ201は、5つの信号から構成される読み取り信号[R(tn)A~E]をADC202に入力する。
 ADC202は、これらの5つの読み取り信号のデジタル変換を実行し、信号S(tn)A~Eを多入力適応イコライザ205に入力する。
 この入力信号は、ディスク10からの読み取り信号(RF信号)をデジタル化したデジタル化アナログ信号(例えば8ビット0~255)である。
 一方、再生対象トラック(Tn)の一方の隣接トラック(Tn-1)については、最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータが、隣接トラック再生2値信号供給部203からメモリ204を介して多入力適応イコライザ205に入力される。
 図15に示す信号D(tn-1)が、トラックTn-1の再生2値信号(バイナリデータ)である。
 隣接トラック再生2値信号供給部203の供給する信号は、再生対象トラック(Tn)の隣接トラック(Tn-1)の最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータである。
 メモリ204には、この2値化信号(バイナリデータ)が格納され、メモリ204から、読み取りトラック(Tn)の最近接位置の1つの隣接トラック(Tn-1)の再生2値信号であるバイナリデータが多入力適応イコライザ205に入力される。
 なお、メモリ204から、多入力適応イコライザ205に対して入力する隣接トラックの再生信号(バイナリデータ)は、ADC202を介して入力される読み取り対象トラック(Tn)の最近接位置、すなわち、ディスクの径方向に沿った位置のデータであることが必要である。
 すなわち、図17(2)トラック拡大図に示すA~Bラインの信号を同期させて入力させる必要がある。A~Bラインはディスクの径方向のラインに相当する。
 この同期入力制御は、図17には示していないが、図8等を参照して説明したと同様、システムコントローラからメモリコントローラに提供される回転同期信号やアドレス等に基づいて、メモリコントローラによって行われる。
 図17に示す構成において、メモリ204には、再生対象トラック(Tn)の隣接トラック(Tn-1)の再生2値信号(バイナリデータ)が格納される。
 本例でも、先に図15を参照して説明したと同様、メモリ204に必要とされるメモリ容量は、図8、図10、図12、図13を参照して説明したメモリ103より、大幅に削減される。また、必要となるADCの数も削減することができる。
 なお、メモリ204に格納する再生2値信号(バイナリデータ)は、メモリ204に格納する前に、所定のアルゴリズムに従った圧縮処理を実行し、さらにデータ量を削減する構成としてもよい。ただし、この場合、メモリ204から多入力適応イコライザ205に出力する前処理として、圧縮データの伸長処理を実行することが必要である。
 このように、本開示の構成において、隣接トラック再生2値信号供給部203は、再生対象トラック(Tn)の一方の隣接トラック(Tn-1)の最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータをメモリに供給する。
 なお、隣接トラック再生2値信号供給部203は、様々な構成が可能である。
 図18は、多入力適応イコライザ205の構成を示す図である。
 多入力適応イコライザ205は、図18に示すように、適応イコライザユニット211~216、および加算器218を有する。
 図18に示す多入力適応イコライザ205の構成は、先に説明した図16の多入力適応イコライザ205から、適応イコライザユニット217を削除した構成に相当する。
 この構成では、適応イコライザユニット216のみが、再生対象トラック(Tn)ではない1つの隣接トラック(Tn-1)の再生信号を入力する。
 適応イコライザユニット211~215では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される。
 一方、適応イコライザユニット216は、同じく等化誤差ekを用いてタップ係数C0~Cnがクロストークキャンセルのための周波数特性となる方向に自動的に制御される。これによって、各適応イコライザユニット211~216の出力y1~y6が加算器218で加算されて得られる多入力適応イコライザ206の等化信号y0が、クロストークキャンセルされた信号となる。
 なお、再生対象トラック(Tn)の読み取り信号、すなわち、5信号出力型ピックアップを介して得られた5信号(StnA~StnE)が入力される適応イコライザユニット211~215においては、5信号(StnA~StnE)の特性に応じたタップ係数の制御処理が行われる。この処理の具体例については、前述したように本出願人と同一出願人の先行出願である前述の特許文献1(国際公開WO2016/006157号公報)に記載されている。本願構成でも、この先願に記載されたと同様の各信号対応のタップ係数設定処理を適用することができる。
  [3-3.1つの隣接トラックの再生信号を適用した例における隣接トラック再生2値信号供給部の具体的構成例と、情報処理装置の構成例について]
 次に、図15や図17の構成中に示す隣接トラック再生2値信号供給部203の具体的構成例と、情報処理装置の構成例について説明する。
 まず、図19以下を参照して、1つの隣接トラックの再生信号を適用した例における隣接トラック再生2値信号供給部の具体的構成例と、情報処理装置の構成例について説明する。
 先に説明したように、隣接トラック再生2値信号供給部203は、様々な構成が可能である。
 1つは、従来型の再生信号生成処理の実行構成、例えば、先に図4を参照して説明したと同様の再生信号生成構成をそのまま適用することが可能である。
 あるいは、図15に示す構成を適用して得られた再生信号を、次の再生トラック用に再利用する構成も可能である。
 あるいは、例えばディスク10に対する記録信号が既知である場合、この記録信号をそのまま利用する構成としてもよい。
 図19は、隣接トラック再生2値信号供給部203が、再生対象トラック(Tn)に隣接する1つのトラック(Tn-1)の再生2値信号(バイナリデータ)を生成する構成とした1つの処理例を説明する図である。
 図19に示す例は、1つの光ピックアップ11が1つの照射スポットを設定して再生を行なう再生装置を適用した場合の処理例である。
 図19に示すディスク10のデータ読み取りライン100に従って光ピックアップ11によって読み取られたデータが隣接トラック再生2値信号供給部203に供給され、ここで通常の再生信号(2値化データ(バイナリデータ))生成処理が実行される。
 すなわち、隣接トラック再生2値信号供給部203は、例えば図4を参照して説明した再生信号生成信号構成を適用して先行トラック領域の再生信号を生成してメモリ204に格納する。
 図20に示す例は、2つの光ピックアップ11a,11bを有し、2つの照射スポットを設定して再生を行なう再生装置を適用した場合の処理例である。
 なお、1つの光ピックアップを利用して2つの照射光を設定する構成としてもよい。先に図10を参照して説明した光ピックアップと同様の構成である。
 図20に示すディスク10の例では、光ピックアップa,11aが再生対象トラック(Tn)の再生信号を取得し、光ピックアップb,11bが隣接トラック(Tn-1)の再生信号を取得する構成である。
 この構成では、2つの照射光のオフセット(ずれ)距離に相当する隣接トラック(Tn-1)からの読み取りデータが光ピックアップb,11bを介して隣接トラック再生2値信号供給部203に供給され、ここで通常の再生信号(2値化データ(バイナリデータ))生成処理が実行される。
 なお、図20は、隣接するトラック間の照射スポット光にトラック方向のオフセット(ずれ)を有するピックアップを利用した例であるが、このようなオフセットを持たない複数スポット光を照射可能な光ピックアップを用いた場合は、このようなオフセット距離に応じたデータ格納処理は不要である。
 具体例について、図21を参照して説明する。
 図21に示す例は、図20示す例と同様、2つの光ピックアップ11a,11bを有し、2つの照射スポットを設定して再生を行なう再生装置を適用した場合の処理例である。
 ただし、図20に示す例では、隣接トラック間の照射スポット光にトラック方向のオフセット(ずれ)があるが、図21に示す例では、オフセットを有していない。
 図20に示すようなずれがある場合は、ずれ分相当のデータをメモリに格納して補正することが必要となる。
 なお、1つの光ピックアップを利用して2つの照射光を設定する構成としてもよい。先に図10を参照して説明した光ピックアップと同様の構成である。
 図21に示す例は、光ピックアップa,11aは、再生対象トラック(Tn)の再生信号を取得し、光ピックアップb,11bが隣接トラック(Tn-1)の再生信号を取得する。
 この構成では、再生対象トラック(Tn)の隣接トラック(Tn-1)からの読み取りデータが光ピックアップb,11bを介して隣接トラック再生2値信号供給部203に供給され、ここで通常の再生信号(2値化データ(バイナリデータ))が生成され、メモリ204を介して多入力適応イコライザ205に入力される。
 メモリ204には、再生2値信号供給部203によって生成された隣接トラック(Tn-1)の再生信号(2値化データ(バイナリデータ))が格納される。
 一方、再生対象トラック(Tn)の読み取り信号[R(tn)A~E]は、ADC202に入力され、デジタルデータ[S(tn)A~E:デジタル化アナログ信号(例えば8ビット0~255)]に変換され、メモリ230に格納されたのち、メモリ230から、多入力適応イコライザ205に入力される。
 なお、メモリ230、メモリ204は、多入力適応イコライザ205に対する入力タイミングの調整(デレイ処理)用のバッファであり、これらのメモリ容量は、小容量のものとすることが可能である。
 図22は、1つの隣接トラックの再生信号を適用した例における情報処理装置の構成例について説明する図である。
 図22に示すADC202、隣接トラック再生2値信号供給部203、メモリ204、多入力適応イコライザ205は、図17に示すADC202、隣接トラック再生2値信号供給部203、メモリ204、多入力適応イコライザ205と同じである。
 図22に示す構成は、図17を参照して説明したと同様、光ピックアップとして、5信号出力型のフォトディテクタを備えたピックアップを使用した例である。
 なお、前述したように本開示の処理は、5信号出力型以外の1信号出力型、3信号出力型等、様々な信号出力数を持つフォトディテクタを利用した構成においても適用可能である。
 図22に示すADC202には、光ピックアップから、再生対象トラック(Tn)からの5つの読み取り信号[R(tn)A~E]が入力される。
 なお、図22に示すADC201は、ADCの他、HPF(High pass filter)、AGC(Auto Gain controller)等の信号処理機能を備えた構成としてもよい。
 ADC202は、5つの読み取り信号のデジタル変換を実行し、信号S(tn)A~Eを多入力適応イコライザ205に入力する。
 この入力信号は、ディスク10からの読み取り信号(RF信号)をデジタル化したデジタル化アナログ信号(例えば8ビット0~255)である。
 一方、再生対象トラック(Tn)の一方の隣接トラック(Tn-1)については、最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータが、隣接トラック再生2値信号供給部203からメモリ204を介して多入力適応イコライザ205に入力される。
 図22に示す信号D(tn-1)が、トラックTn-1の再生2値信号(バイナリデータ)である。
 隣接トラック再生2値信号供給部203の供給する信号は、再生対象トラック(Tn)の隣接トラック(Tn-1)の最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータである。
 メモリ204には、この2値化信号(バイナリデータ)が格納され、メモリ204から、読み取りトラック(Tn)の最近接位置の1つの隣接トラック(Tn-1)の再生2値信号であるバイナリデータが多入力適応イコライザ205に入力される。
 なお、メモリ204から、多入力適応イコライザ205に対して入力する隣接トラックの再生信号(バイナリデータ)は、ADC202を介して入力される読み取り対象トラック(Tn)の最近接位置、すなわち、ディスクの径方向に沿った位置のデータであることが必要である。
 この同期入力制御は、システムコントローラ220からメモリコントローラ221に提供される回転同期信号やアドレス等に基づいて、メモリコントローラ221によって行われる。
 図22に示す構成において、メモリ204には、再生対象トラック(Tn)の隣接トラック(Tn-1)の再生2値信号(バイナリデータ)が格納される。
 本例でも、先に図15を参照して説明したと同様、メモリ204に必要とされるメモリ容量は、図8、図10、図12、図13を参照して説明したメモリ103より、大幅に削減される。また、必要となるADCの数も削減することができる。
 多入力適応イコライザ205は、先に説明した図18に示す構成を有する。
 多入力適応イコライザ205は、図18に示すように、適応イコライザユニット211~216、および加算器218を有する。
 適応イコライザユニット211~215では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される。
 一方、適応イコライザユニット216は、同じく等化誤差ekを用いてタップ係数C0~Cnがクロストークキャンセルのための周波数特性となる方向に自動的に制御される。これによって、各適応イコライザユニット211~216の出力y1~y6が加算器218で加算されて得られる多入力適応イコライザ206の等化信号y0が、クロストークキャンセルされた信号となる。
 多入力適応イコライザ205は、二値化検出器[PRML(Pertial Response Maximum Likelihood)デコーダ]251と、PR畳込器[PRターゲット信号生成部]252の生成するターゲット信号に基づいて減算器253において算出される等化誤差(ek)を入力し、これらの入力に基づいて、ノイズ成分の除去処理等を実行し、生成信号を二値化検出器(PRMLデコーダ)251、PLL254、減算器253に出力する。
 二値化検出器(PRMLデコーダ)251は、多入力適応イコライザ205から入力する等化信号(y0)を入力し、最尤復号方式により最も確からしい再生信号を生成する。
 具体的には、例えばビタビ復号方式が適用される。ビタビ復号は、加算,比較,選択という単純な処理の繰り返しと、最終的にデータを復号するトレースバック操作で畳み込み符号の最尤復号を実現する。ビタビ復号では、情報ビット1ビットに対応する符号化データ(受信データ系列)を得るごとに、その時点での各状態のパスの信号間距離(メトリック)を計算し、最も確からしいパスを求める。
 この復号処理により、再生信号が出力される。
 なお、二値化検出器(PRMLデコーダ)251には、多入力適応イコライザ205の出力に基づいてクロック信号を生成するPLL254からクロック信号が入力され、クロック制御の下で再生信号の生成、出力が実行される。
 PLL254は、多入力適応イコライザ205の出力に含まれるサーボ信号に従ったクロック信号生成処理を実行する。
 PLL254の生成するクロック信号は、メモリコントローラ221にも入力され、メモリ204からの隣接トラック再生信号の多入力適応イコライザ205へのデータ入力タイミングの制御にも利用される。
 また、二値化検出器(PRMLデコーダ)251の生成する再生信号は、PRターゲット生成部212に入力される。
 PR畳込器(PRターゲット信号生成部)212は、二値化検出器(PRMLデコーダ)251の生成する再生信号に基づいて、後続する再生信号のターゲットを生成して減算器253に入力する。
 減算器は、ターゲット信号と、多入力適応イコライザ205の生成信号との差分を算出し、この差分をターゲットに対する等化誤差(ek)として、多入力適応イコライザ205にフィードバックする。
 多入力適応イコライザ205は、この等化誤差(ek)を入力して適応等化処理を実行して出力信号を生成する。
 図23は、予めディスク10に記録された信号(バイナリデータ)が既知であり、記録データ格納メモリ225に格納されている場合の情報処理装置(再生装置)の構成と処理について説明する図である。
 隣接トラック再生2値信号供給部203は、記録データ格納メモリ225から、再生対象トラック(Tn)の隣接トラック(Tn-1)の再生2値信号を取り出して、メモリ204を介して多入力適応イコライザ205に入力する。
 その他の構成は、図22に示す構成と同様である。
 なお、例えばディスクに対して記録用ピックアップによるデータ記録を実行するとともに、記録済みトラックの再生を行ない、データ記録が正常に行われたか否かを確認する、いわゆるベリファイ処理を伴うデータ記録が実行される場合がある。
 このような構成では、再生対象トラックの隣接トラックの記録データが既知であり、図23に示す構成を適用した処理が可能となる。
 図24は、再生対象トラック(Tn)の読み取り信号の多入力適応イコライザ205に対する入力タイミングを制御するためのメモリ230を追加した情報処理装置(再生装置)の構成例を示す図である。
 その他の構成は、図22に示す構成と同様である。
 メモリ230は、例えば先に図21を参照して説明した構成におけるメモリ230に相当する。
 再生対象トラック(Tn)の読み取り信号[R(tn)A~E]は、ADC202においてデジタルデータ[S(tn)A~E:デジタル化アナログ信号(例えば8ビット0~255)]に変換され、メモリ230に格納されたのち、メモリ230から、多入力適応イコライザ205に入力される。
 メモリ230、メモリ204は、多入力適応イコライザ205に対する入力タイミングの調整(デレイ処理)用のバッファであり、これらのメモリ容量は、小容量のものとすることが可能である。
 メモリ230、メモリ204から、多入力適応イコライザ205に対して入力する各トラックの信号は、ディスクの径方向に沿った位置のデータであることが必要である。
 この同期入力制御は、システムコントローラ220からメモリコントローラ221に提供される回転同期信号やアドレス等に基づいて、メモリコントローラ221によって行われる。
 なお、図22~図24に示す回路構成に従った再生処理は、例えば、再生装置(情報処理装置)の記憶部に格納された再生処理プログラムの制御の下で実行する構成とすることが可能である。
 なお、上述した実施例において、多入力適応イコライザに入力する隣接トラックの再生信号を2値化信号(バイナリデータ)とした例について説明したが、例えば3値信号等、2値以上のデータ量を持つ信号としてもよい。また、2値化信号(バイナリデータ)から生成したPR信号等のターゲット信号を用いる構成としてもよい。
 また、再生対象トラックからの再生信号についても、上述した実施例では、二値化検出器251において2値化信号(バイナリデータ)を生成して出力する例について説明したが、例えば3値信号等、2値以上のデータ量を持つ信号を出力する構成としてもよい。
 また、図22~図24に示す構成において、フォトディテクタの出力をマトリクス演算回路に入力し、マトリクス演算回路が、フォトディテクタの分割領域単位の受光量に応じた複数信号を出力してADC202に入力する構成としてもよい。
 あるいは、ADC202の後段にマトリクス演算回路を設けてマトリクス演算回路が、フォトディテクタの分割領域単位の受光量に応じた複数信号を生成して他入力適応イコライザ205に入力する構成としてもよい。
 また、本実施例において説明した処理は、ディスク10のランド(L)とグルーブ(G)にデータが記録され、1つのピックアップによって双方のデータを読み取る構成や、ランド(L)対応のピックアップとグルーブ(G)対応のピックアップ等、複数ピックアップを利用した構成、いずれにも適用できる。
 また、ランド(L)やグルーブ(G)の一方のみにデータが記録されたディスクや、ランド(L)やグルーブ(G)の区別のない単にトラック間密度が狭い高密度記録型ディスクにも適用可能である。
  [3-4.2つの隣接トラックの再生信号を適用した例における隣接トラック再生2値信号供給部の具体的構成例と、情報処理装置の構成例について]
 次に、先に説明した図15のように、再生対象トラック(Tn)に隣接する両隣の2つのトラック(Tn-1,Tn+1)の再生信号を適用した例における隣接トラック再生2値信号供給部203の具体的構成例と、情報処理装置の構成例について説明する。
 先に説明したように、隣接トラック再生2値信号供給部203は、様々な構成が可能である。
 1つは、従来型の再生信号生成処理の実行構成、例えば、先に図4を参照して説明したと同様の再生信号生成構成をそのまま適用することが可能である。
 あるいは、図15に示す構成を適用して得られた再生信号を、次の再生トラック用に再利用する構成も可能である。
 あるいは、例えばディスク10に対する記録信号が既知である場合、この記録信号をそのまま利用する構成としてもよい。
 図25は、隣接トラック再生2値信号供給部203が、再生対象トラック(Tn)に隣接する2つのトラック(Tn-1,Tn+1)の再生2値信号(バイナリデータ)を生成する構成とした1つの処理例を説明する図である。
 図25に示す例は、1つの光ピックアップ11が1つの照射スポットを設定して再生を行なう再生装置を適用した場合の処理例である。
 図25に示すディスク10のデータ読み取りライン100に従って光ピックアップ11によって読み取られたデータが隣接トラック再生2値信号供給部203に供給され、ここで通常の再生信号(2値化データ(バイナリデータ))生成処理が実行される。
 すなわち、隣接トラック再生2値信号供給部203は、例えば図4を参照して説明した再生信号生成信号構成を適用して先行トラック領域の再生信号を生成してメモリ204に格納する。
 なお、本例では、隣接トラック再生2値信号供給部203は、図25に示すディスク10のデータ読み取りライン100に従って、3つの照射スポットp~q~r間のほぼトラック2周分の読み取りデータの再生2値信号を生成して、メモリ204に格納する。
 再生対象トラック(Tn)の照射スポットをqとし、照射スポットqに最も近い隣接トラック(Tn-1)の照射スポットをp、照射スポットqに最も近い隣接トラック(Tn+1)の照射スポットをrとして示している。
 再生対象のスポット位置がqであり、このスポット位置qの再生信号生成処理において、p,rの再生信号を用いるためには、照射スポットは、rの位置まで進んでいなければならない。
 q~r間の読み取りデータは、ADC202によるデジタルデータ生成後、メモリ230に格納される。
 再生対象トラック(Tn)の読み取り信号[R(tn)A~E]は、ADC202においてデジタルデータ[S(tn)A~E:デジタル化アナログ信号(例えば8ビット0~255)]に変換され、メモリ230に格納されたのち、メモリ230から、多入力適応イコライザ205に入力される。
 メモリ230、メモリ204は、多入力適応イコライザ205に対する入力タイミングの調整(デレイ処理)用のバッファである。メモリ230、メモリ204から、多入力適応イコライザ205に対して入力する各トラックの信号は、ディスクの径方向に沿った位置のデータであることが必要である。
 この同期入力制御は、図には示してないがシステムコントローラからメモリコントローラに提供される回転同期信号やアドレス等に基づいて、メモリコントローラによって行われる。
 図26に示す例は、3つの光ピックアップ11a,11b,11cを有し、3つの照射スポットを設定して再生を行なう再生装置を適用した場合の処理例である。
 なお、1つの光ピックアップを利用して3つの照射光を設定する構成としてもよい。先に図10を参照して説明した光ピックアップと同様の構成である。
 図26に示すディスク10の例では、光ピックアップa,11aが隣接トラック(Tn+1)の再生信号を取得し、光ピックアップb,11bが再生対象トラック(Tn)の再生信号を取得し、光ピックアップc,11cが隣接トラック(Tn-1)の再生信号を取得する構成である。
 この構成では、図26(1)トラック拡大図に示すように、時間t1で、再生対象トラック(Tn)の再生位置(ABライン上)に再生トラック(Tn)の照射スポットSqが設定される。
 その後、時間t2において、隣接トラック(Tn+1)の照射スポットSrがABライン上に設定される。
 また、もう1つの隣接トラック(Tn-1)の照射スポットSpがABライン上に設定されるのは、時間t1より前の図示しない時間t0となる。
 時間t1における再生トラック(Tn)の再生位置(Sq)の再生信号の生成処理に、両隣のトラック(Tn-1,Tn+1)の再生信号を適用した処理を行なうためには、時間t0における隣接トラック(Tn-1)の再生信号と、時間t2における隣接トラック(Tn+1)の再生信号が必要となる。
 これらのデータを保持するために、メモリ204と、メモリ230が利用される。
 隣接トラック再生2値信号供給部203は、隣接トラック(Tn-1)の時間t0~t2の再生2値信号と、時間t2のトラック(Tn+1)の再生2値信号を生成してメモリ204に格納する。
 また、再生対象トラック(Tn)の読み取り信号は、ADC202においてデジタル変換されてメモリ230に格納される。時間t1~t2間の再生対象トラック(Tn)の読み取り信号もメモリ230に格納される。
 これらのデータが揃った後、ラインABに添った3つの信号、すなわち、再生対象トラック(Tn)のデジタルデータ[S(tn)A~E:デジタル化アナログ信号(例えば8ビット0~255)]と、両隣の隣接トラック(Tn-1,Tn+1)の再生2値信号が、多入力適応イコライザ205に入力される。
 メモリ204には、再生2値信号供給部203によって生成された隣接トラック(Tn-1,Tn+1)の再生信号(2値化データ(バイナリデータ))が格納される。
 一方、再生対象トラック(Tn)の読み取り信号[R(tn)A~E]は、ADC202に入力され、デジタルデータ[S(tn)A~E:デジタル化アナログ信号(例えば8ビット0~255)]に変換され、メモリ230に格納されたのち、メモリ230から、多入力適応イコライザ205に入力される。
 メモリ230、メモリ204は、多入力適応イコライザ205に対する入力タイミングの調整(デレイ処理)用のバッファである。メモリ230、メモリ204から、多入力適応イコライザ205に対して入力する各トラックの信号は、ディスクの径方向に沿った位置のデータであることが必要である。
 この同期入力制御は、図には示してないがシステムコントローラからメモリコントローラに提供される回転同期信号やアドレス等に基づいて、メモリコントローラによって行われる。
 なお、メモリ230、メモリ204は、多入力適応イコライザ205に対する入力タイミングの調整(デレイ処理)用のバッファであり、これらのメモリ容量は、小容量のものとすることが可能である。
 なお、図26は、隣接するトラック間の照射スポット光にトラック方向のオフセット(ずれ)を有するピックアップを利用した例であるが、このようなオフセットを持たない複数スポット光を照射可能な光ピックアップを用いた場合は、このようなオフセット距離に応じたデータ格納処理は不要である。
 具体例について、図27を参照して説明する。
 図27に示す例は、図26示す例と同様、3つの光ピックアップ11a,11b,11cを有し、3つの照射スポットを設定して再生を行なう再生装置を適用した場合の処理例である。
 ただし、図26に示す例では、隣接トラック間の照射スポット光にトラック方向のオフセット(ずれ)があるが、図27に示す例では、オフセットを有していない。
 なお、1つの光ピックアップを利用して3つの照射光を設定する構成としてもよい。先に図10を参照して説明した光ピックアップと同様の構成である。
 図27に示す例は、光ピックアップa,11aが隣接トラック(Tn+1)の再生信号を取得し、光ピックアップb,11bが再生対象トラック(Tn)の再生信号を取得し、光ピックアップc,11cが隣接トラック(Tn-1)の再生信号を取得する構成である。
 この構成では、再生対象トラック(Tn)の隣接トラック(Tn-1,Tn+1)からの読み取りデータが隣接トラック再生2値信号供給部203に供給され、ここで通常の再生信号(2値化データ(バイナリデータ))が生成され、メモリ204を介して多入力適応イコライザ205に入力される。
 メモリ204には、再生2値信号供給部203によって生成された隣接トラック(Tn-1,Tn+1)の再生信号(2値化データ(バイナリデータ))が格納される。
 一方、再生対象トラック(Tn)の読み取り信号[R(tn)A~E]は、ADC202に入力され、デジタルデータ[S(tn)A~E:デジタル化アナログ信号(例えば8ビット0~255)]に変換され、メモリ230に格納されたのち、メモリ230から、多入力適応イコライザ205に入力される。
 なお、メモリ230、メモリ204は、多入力適応イコライザ205に対する入力タイミングの調整(デレイ処理)用のバッファであり、これらのメモリ容量は、小容量のものとすることが可能である。
 図28は、再生対象トラック(Tn)の両隣の2つの隣接トラックの再生信号を適用した例における情報処理装置の構成例について説明する図である。
 図28に示すADC202、隣接トラック再生2値信号供給部203、メモリ204、多入力適応イコライザ205、メモリ230は、図26、図27に示すADC202、隣接トラック再生2値信号供給部203、メモリ204、多入力適応イコライザ205、メモリ230と同じである。
 図28に示す構成は、光ピックアップとして、5信号出力型のフォトディテクタを備えたピックアップを使用した例である。
 なお、前述したように本開示の処理は、5信号出力型以外の1信号出力型、3信号出力型等、様々な信号出力数を持つフォトディテクタを利用した構成においても適用可能である。
 図28に示すADC202には、光ピックアップから、再生対象トラック(Tn)からの5つの読み取り信号[R(tn)A~E]が入力される。
 なお、図28に示すADC201は、ADCの他、HPF(High pass filter)、AGC(Auto Gain controller)等の信号処理機能を備えた構成としてもよい。
 ADC202は、5つの読み取り信号のデジタル変換を実行し、信号S(tn)A~Eをメモリ230を介して多入力適応イコライザ205に入力する。
 この入力信号は、ディスク10からの読み取り信号(RF信号)をデジタル化したデジタル化アナログ信号(例えば8ビット0~255)である。
 一方、再生対象トラック(Tn)に隣接する2つの隣接トラック(Tn-1,Tn+1)については、最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータが、隣接トラック再生2値信号供給部203からメモリ204を介して多入力適応イコライザ205に入力される。
 図22に示す信号D(tn-1)が、トラックTn-1の再生2値信号(バイナリデータ)、D(tn+1)が、トラックTn+1の再生2値信号(バイナリデータ)である。
 隣接トラック再生2値信号供給部203の供給する信号は、再生対象トラック(Tn)の隣接トラック(Tn-1,Tn+1)の最終的な再生信号、すなわち、ディスクに記録されたマーク(ピット)に応じた1,0いずれかの2値信号、すなわちバイナリデータである。
 メモリ204には、この2値化信号(バイナリデータ)が格納され、メモリ204から、読み取りトラック(Tn)の最近接位置の1つの隣接トラック(Tn-1,Tn+1)の再生2値信号であるバイナリデータが多入力適応イコライザ205に入力される。
 一方、再生対象トラック(Tn)の読み取り信号[R(tn)A~E]は、ADC202に入力され、デジタルデータ[S(tn)A~E:デジタル化アナログ信号(例えば8ビット0~255)]に変換され、メモリ230に格納されたのち、メモリ230から、多入力適応イコライザ205に入力される。
 メモリ204、メモリ230から、多入力適応イコライザ205に対して入力する隣接トラックの再生信号(バイナリデータ)は、ディスクの径方向に沿った位置のデータであることが必要である。
 この同期入力制御は、システムコントローラ220からメモリコントローラ221に提供される回転同期信号やアドレス等に基づいて、メモリコントローラ221によって行われる。
 なお、メモリ230、メモリ204は、多入力適応イコライザ205に対する入力タイミングの調整(デレイ処理)用のバッファであり、これらのメモリ容量は、小容量のものとすることが可能である。
 このように、本例でも、メモリ204に必要とされるメモリ容量は、図8、図10、図12、図13を参照して説明したメモリ103より、大幅に削減される。また、必要となるADCの数も削減することができる。
 多入力適応イコライザ205は、先に説明した図16に示す構成を有する。
 多入力適応イコライザ205は、図16に示すように、適応イコライザユニット211~217、および加算器218を有する。
 適応イコライザユニット211~215では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される。
 一方、適応イコライザユニット216,217は、同じく等化誤差ekを用いてタップ係数C0~Cnがクロストークキャンセルのための周波数特性となる方向に自動的に制御される。これによって、各適応イコライザユニット211~217の出力y1~y6が加算器218で加算されて得られる多入力適応イコライザ206の等化信号y0が、クロストークキャンセルされた信号となる。
 多入力適応イコライザ205は、PRML(Pertial Response Maximum Likelihood)デコーダ251とPR畳込器(PRターゲット信号生成部)212の生成するターゲット信号に基づいて減算器253において算出される等化誤差(ek)を入力し、これらの入力に基づいて、ノイズ成分の除去処理等を実行し、生成信号を二値化検出器(PRMLデコーダ)251、PLL254、減算器253に出力する。
 二値化検出器(PRMLデコーダ)251は、多入力適応イコライザ205から入力する等化信号(y0)を入力し、最尤復号方式により最も確からしい再生信号を生成する。
 具体的には、例えばビタビ復号方式が適用される。ビタビ復号は、加算,比較,選択という単純な処理の繰り返しと、最終的にデータを復号するトレースバック操作で畳み込み符号の最尤復号を実現する。ビタビ復号では、情報ビット1ビットに対応する符号化データ(受信データ系列)を得るごとに、その時点での各状態のパスの信号間距離(メトリック)を計算し、最も確からしいパスを求める。
 この復号処理により、再生信号が出力される。
 なお、二値化検出器(PRMLデコーダ)251には、多入力適応イコライザ205の出力に基づいてクロック信号を生成するPLL254からクロック信号が入力され、クロック制御の下で再生信号の生成、出力が実行される。
 PLL254は、多入力適応イコライザ205の出力に含まれるサーボ信号に従ったクロック信号生成処理を実行する。
 PLL254の生成するクロック信号は、メモリコントローラ221にも入力され、メモリ204からの隣接トラック再生信号の多入力適応イコライザ205へのデータ入力タイミングの制御にも利用される。
 また、二値化検出器(PRMLデコーダ)251の生成する再生信号は、PRターゲット生成部212に入力される。
 PR畳込器(PRターゲット信号生成部)212は、二値化検出器(PRMLデコーダ)251の生成する再生信号に基づいて、後続する再生信号のターゲットを生成して減算器253に入力する。
 減算器は、ターゲット信号と、多入力適応イコライザ205の生成信号との差分を算出し、この差分をターゲットに対する等化誤差(ek)として、多入力適応イコライザ205にフィードバックする。
 多入力適応イコライザ205は、この等化誤差(ek)を入力して適応等化処理を実行して出力信号を生成する。
 図29は、予めディスク10に記録された信号(バイナリデータ)が既知であり、記録データ格納メモリ225に格納されている場合の情報処理装置(再生装置)の構成例を示す図である。
 隣接トラック再生2値信号供給部203は、記録データ格納メモリ225から、再生対象トラック(Tn)の隣接トラック(Tn-1,Tn+1)の再生2値信号を取り出して、メモリ204を介して多入力適応イコライザ205に入力する。
 その他の構成は、図28に示す構成と同様である。
 なお、図29に示す構成は、例えば前述した記録処理と再生処理を併せて実行するベリファイ処理を伴うデータ記録を実行する構成において適用可能である。
 なお、図28~図29に示す回路構成に従った再生処理は、例えば、再生装置(情報処理装置)の記憶部に格納された再生処理プログラムの制御の下で実行する構成とすることが可能である。
 なお、上述した実施例において、多入力適応イコライザに入力する隣接トラックの再生信号を2値化信号(バイナリデータ)とした例について説明したが、例えば3値信号等、2値以上のデータ量を持つ信号としてもよい。また、2値化信号(バイナリデータ)から生成したPR信号等のターゲット信号を用いる構成としてもよい。
 また、再生対象トラックからの再生信号についても、上述した実施例では、二値化検出器251において2値化信号(バイナリデータ)を生成して出力する例について説明したが、例えば3値信号等、2値以上のデータ量を持つ信号を出力する構成としてもよい。
 また、図28~図29に示す構成において、フォトディテクタの出力をマトリクス演算回路に入力し、マトリクス演算回路が、フォトディテクタの分割領域単位の受光量に応じた複数信号を出力してADC202に入力する構成としてもよい。
 あるいは、ADC202の後段にマトリクス演算回路を設けてマトリクス演算回路が、フォトディテクタの分割領域単位の受光量に応じた複数信号を生成して他入力適応イコライザ205に入力する構成としてもよい。
 また、本実施例において説明した処理は、ディスク10のランド(L)とグルーブ(G)にデータが記録され、1つのピックアップによって双方のデータを読み取る構成や、ランド(L)対応のピックアップとグルーブ(G)対応のピックアップ等、複数ピックアップを利用した構成、いずれにも適用できる。
 また、ランド(L)やグルーブ(G)の一方のみにデータが記録されたディスクや、ランド(L)やグルーブ(G)の区別のない単にトラック間密度が狭い高密度記録型ディスクにも適用可能である。
  [3-5.複数トラックの並列再生処理を実行する構成例について]
 次に、再生対象トラックの再生処理に際して、隣接トラックの再生信号をクロストークキャンセル処理に適用するとともに、複数トラックの同時再生を実現する情報処理装置の構成について説明する。
 図30は、本実施例に係る情報処理装置の再生処理構成を示す図である。
 図30には、以下の2つの再生処理構成をしめしている。
 (1)トラック(Tn)再生部
 (2)トラック(Tn+1)再生部
 これら2つの再生部は、ディスクの2つの隣接トラックからのデータ再生処理を並列に実行する。
 トラック(Tn)のデータ読み取りは光ピックアップ311によって実行される。
 トラック(Tn+1)のデータ読み取りは光ピックアップ321によって実行される。
 これらのデータ読み取りは、並列に実行される。
 光ピックアップ311,312の照射光は、ディスクの半径方向に沿った位置に照射される。
 また、光ピックアップ311,312には、先に図3を参照して説明した5信号出力型のフォトディテクタが備えられているものとする。
 なお、本実施例についても、フォトディテクタは5信号出力型に限らず、その他1進行出力型、3信号出力型等、様々な構成のフォトディテクタが適用可能である。
 (1)トラック(Tn)再生部の構成と処理について説明する。
 光ピックアップ311に対するディスクの反射光はフォトディテクタ312によって受光され、フォトディテクタ312は、分割領域単位の受光量に応じた5つの信号をADC313に出力する。
 先に図3を参照して説明したように、信号A~Eは、図3に示す以下の領域の受光量に応じた電気信号である。
 信号A=A1+A2
 信号B=B
 信号C=C
 信号D=D1+D2+D3
 信号E=E1+E2+E3
 なお、前述したように、複数領域の加算信号からなる信号については、予め設定した領域単位の重み係数を乗算して信号を生成する構成としてもよい。
 例えば、
 A=p*A1+q*A2
 上記のような重み係数p,qを乗算して信号を生成してもよい。
 ADC313は、5つの信号をデジタル変換して、5つのデジタル化アナログ信号(例えば8ビット:0~255)を生成して、第1多入力適応イコライザ314に入力する。
 第1多入力適応イコライザ314は、先に図5を参照して説明した5入力1出力型のイコライザである。
 図5を参照して説明したように、図5に示す適応イコライザユニット71~75では、上記の信号A~Eの入力信号周波数成分の誤差、位相歪みを最適化、すなわち適応PR等化をおこなう。
 すなわち、演算器82-0~82-nでの-1×ek×xの演算結果に応じてタップ係数C0~Cnが調整される。
 このことは、等化誤差を解消していく方向にタップ係数C0~Cnが調整されることである。
 このように、適応イコライザユニット71~75では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される。
 適応イコライザユニット71~75の出力y1,y2,y3,y4,y5が加算器76で加算されて得られる第1多入力適応イコライザ313の等化信号y0は、クロストーク等が低減された信号となる。
 この適応等化信号y0が、メモリ315、第1デコーダ318に入力される。
 この適応等化信号は、トラック(Tn)からの読み取り信号のみを用いたクロストーク低減処理信号であり、隣接トラック(Tn-1)の再生信号を利用したクロストーク低減を行なったものではないため、十分なクロストーク低減がなされていない可能性がある。
 図30に示す第1多入力適応イコライザ314の出力は、メモリ315に格納され、さらに、第1デコーダ318に出力される。
 第1デコーダ318は、例えばビタビデコーダであり、PR等化された等化信号y0に対して最尤復号処理を行って2値化データD(Tn)を生成する。
 第1デコーダ318の生成した2値化データD(Tn)は、図に示す(2)トラック(Tn+1)再生部の第2多入力適応イコライザ326に入力される。
 一方の、(2)トラック(Tn+1)再生部では、光ピックアップ321は、トラック(Tn+1)の読み取り信号をフォトディテクタ322、ADC323、第1多入力適応イコライザ324、第1デコーダ328に順次、入力して、トラック(Tn+1)の再生2値化データD(Tn+1)を生成する。
 第1デコーダ328の生成した2値化データD(Tn+1)は、図に示す(1)トラック(Tn)再生部の第2多入力適応イコライザ316に入力される。
 図に示す(1)トラック(Tn)再生部の第2多入力適応イコライザ316は、図31に示す構成を有する。
 図31に示すように、適応イコライザユニット331~332、および加算器333を有する。
 適応イコライザユニット331が、再生対象トラック(Tn)の再生信号(デジタル化アナログ信号)に基づいて生成された適応等化信号y0を入力する。
 この信号は、第1多入力適応イコライザ314において生成された適応等化信号(y0)である。
 適応イコライザユニット332は、隣接トラック(Tn+1)の2値化再生信号(バイナリデータ)であるD(Tn+1)を入力する。
 適応イコライザユニット331では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される。
 一方、適応イコライザユニット332は、同じく等化誤差ekを用いてタップ係数C0~Cnがクロストークキャンセルのための周波数特性となる方向に自動的に制御される。これによって、各適応イコライザユニット331~332の出力y1~y2が加算器333で加算されて得られる第2多入力適応イコライザ316の等化信号y0が、隣接トラックの再生信号を用いてクロストークキャンセルされた信号となる。
 この第2多入力適応イコライザ316の生成した適応等化信号y0は、第2デコーダ317に入力される。
 第2デコーダ317は、例えばビタビデコーダであり、PR等化された等化信号y0に対して最尤復号処理を行って、最終的なトラック(Tn)の2値化再生信号を成する。
 この最終的な2値化再生信号は、再生対象のトラック(Tn)の読み取り信号として得られる5信号に基づく適応等化処理、さらに、隣接トラック(Tn+1)の再生信号を適用したと適応等化処理を実行して生成される高品質な再生データ、すなわちクロストークを十分に排除した高品質再生データとなる。
 一方の(2)トラック(Tn+1)再生部における第2多入力適応イコライザ326は、図32に示す構成を有する。
 第2多入力適応イコライザ326の適応イコライザユニット336が、再生対象トラック(Tn+1)の再生信号(デジタル化アナログ信号)に基づいて生成された適応等化信号y0を入力する。
 この信号は、第1多入力適応イコライザ324において生成された適応等化信号(y0)である。
 適応イコライザユニット337は、隣接トラック(Tn)の2値化再生信号(バイナリデータ)であるD(Tn)を入力する。
 適応イコライザユニット336では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される。
 一方、適応イコライザユニット337は、同じく等化誤差ekを用いてタップ係数C0~Cnがクロストークキャンセルのための周波数特性となる方向に自動的に制御される。これによって、各適応イコライザユニット336~337の出力y1~y2が加算器338で加算されて得られる第2多入力適応イコライザ326の等化信号y0が、隣接トラックの再生信号を用いてクロストークキャンセルされた信号となる。
 この第2多入力適応イコライザ326の生成した適応等化信号y0は、第2デコーダ327に入力される。
 第2デコーダ327は、例えばビタビデコーダであり、PR等化された等化信号y0に対して最尤復号処理を行って、最終的なトラック(Tn+1)の2値化再生信号を成する。
 この最終的な2値化再生信号は、再生対象のトラック(Tn+1)の読み取り信号として得られる5信号に基づく適応等化処理、さらに、隣接トラック(Tn)の再生信号を適用したと適応等化処理を実行して生成される高品質な再生データ、すなわちクロストークを十分に排除した高品質再生データとなる。
 図30に示す構成を適用することで、2つのトラックから高品質なクロストークキャンゼル再生信号を並列再生することが可能となる。
 なお、図30に示す例は一例であり、この他の構成も可能である。例えば、図30に示す構成における第2多入力適応イコライザ316,326は、再生対象トラックの再生信号(デジタル化アナログ信号)に基づいて生成された適応等化信号y0と、隣接トラックの2値化再生信号(バイナリデータ)を入力して適応等化処理を実行する構成であった。
 この構成を変更し、図33に示すように、再生対象トラックの再生信号(デジタル化アナログ信号)の適応等化前の再生信号をメモリ315,325に格納し、このメモリ格納信号を、第2多入力適応イコライザ316,326に入力し、さらに隣接トラックの2値化再生信号(バイナリデータ)を入力して適応等化処理を実行する構成としてもよい。
  [4.隣接トラックの2値化再生信号(バイナリデータ)を用いた再生信号の品質評価について]
 上述したように、本開示の情報処理装置は、再生対象トラックの隣接トラックの2値化再生信号(バイナリデータ)を用いて再生信号を得ることで、クロストーク信号を効果的に除去した高品質な再生信号を得ることを実現している。
 以下、隣接トラックの2値化再生信号(バイナリデータ)を用いて生成される再生信号の品質について、再生信号の評価試験結果を参照して説明する。
 図34は、複数の異なる再生処理によって得られる再生信号の品質評価結果を示すグラフである。
 具体的には、照射スポット光の中心の再生対象トラック中心からの位置ずれ量(Detrack)と、再生信号評価値(e-MLSE)との対応関係を示すグラフである。
 なお、図34は、以下の条件設定によるデータ記録、データ再生を行なった場合のシミュレーションによる再生データ品質評価結果の例を示す図である。
 条件設定は以下の通りである。
 光ピックアップのレーザ波長:λ=405nm
 光ピックアップの開口数:NA=0.85
 PR(235777532)
 トラックピッチ:0.225μm(ランドとグルーブの間隔)、
 なお、ランド間、グルーブ間は0.45μmである。
 また、記録密度は、0.0339μm/channel bitに相当する。これは、BD(Blu-ray(登録商標)Disc)と同じ符号化率の場合、1層あたり78GBに相当する。
 なお、PR(235777532)は、PR畳込器(PRターゲット信号生成部)212における畳み込み処理による目標信号Zk生成処理において適用するパラメータである。PR(235777532)は、チャンネルクロック毎の値Pが(2,3,5,7,7,7,5,3,2)、拘束長が9であることを意味する。
 上記の条件の下、異なる複数の光ピックアップを適用して再生信号を取得し、再生対象トラックからの位置ずれ(Detrack)と、再生信号評価値(e-MLSE)との対応を計測した。
 横軸が、光ピックアップによってディスク上に設定される照射スポットの再生トラック中心からのずれ量[Detrack(nm)]、
 縦軸が、再生信号の品質評価値である[e-MLSE評価値]である。
 なお、e-MLSE(Maximum Likelihood Sequence Error)は、再生信号の評価指標値である。
 再生信号の一般的な評価値としては、「i-MLSE」が知られている。MLSE(Maximum Likelihood Sequence Error)は、ビタビ検出されたデータを用いて設定されるターゲットレベルに対して実際の信号のレベルの差を用いて、エラー確率に対応した指標を計算したものである。
 i-MLSEでは、いくつかのエラーを引き起こしやすいデータパターンに重みを付けして計算が行われる。
 しかし、より記録密度を高くした場合には、エラーを引き起こしやすいデータパターンが異なり、従来の信号指標値であるi-MLSEでは誤差が発生してくる。そこで、より高い線密度での信号指標値の精度改善のために新たなデータパターンを追加した信号評価値として「e-MLSE」が作成された。
 なお、エラーパターンを用いた再生データの品質評価処理については、本出願人と同一の出願人による先行特許出願であるWO2013/183385に記載がある。「e-MLSE」は、この記載に従った信号評価値である。
 図34に示すグラフの縦軸に示すe-MLSEは、再生信号に含まれるエラーの確率を示している。e-MLSEの値は、より低い値が、エラー率が低く良好な再生信号が得られていることを示す。
 例えば、図34に示すグラフにおいてe-MLSE=15%以下の場合に良好な再生信号であると言える。
 図34は、横軸に示す光ピックアップによる照射スポット光の中心位置と再生対象トラック中心位置とのずれ量と、縦軸に示す再生信号評価値(e-MLSE)との対応関係を示すグラフである。
 図34に示す4つの再生信号の評価結果(1)~(4)は、図35に示すように、以下の4つの再生信号評価データである。
 (1)再生対象トラック(Tn)に対して、5信号出力型ディテクタを用いた読み取り信号(A~E)を適用して生成した再生信号の評価結果(参照回路例=図4)
 (2)再生対象トラック(Tn)に対する5信号出力型ディテクタを適用した読み取り信号(A~E)と、両隣の隣接トラック(Tn-1,Tn+1)に対する5信号出力型ディテクタを適用した再生信号(A~Eの5信号×2=10信号)を適用してクロストークキャンセル処理を実行した再生信号の評価結果(参照回路例=図13)
 (3)再生対象トラック(Tn)に対する5信号出力型ディテクタを適用した読み取り信号(A~E)と、両隣の隣接トラック(Tn-1,Tn+1)から得られる2値化再生信号(バイナリデータ)D(D(Tn-1),D(Tn+1))を適用してクロストークキャンセル処理を実行した再生信号の評価結果(参照回路例=図15~図16、図25~図29)
 (4)再生対象トラック(Tn)に対する1信号出力型ディテクタを適用した読み取り信号と、両隣の隣接トラック(Tn-1,Tn+1)から得られる2値化再生信号(バイナリデータ)D(D(Tn-1),D(Tn+1))を適用してクロストークキャンセル処理を実行した再生信号の評価結果(参照回路例=図15~図16、図25~図29)
 なお、(1),(2)が従来例に相当し、(3),(4)が、本開示の構成例、すなわち、隣接トラックの2値化再生信号(バイナリデータ)を用いたクロストークキャンセルを含む再生信号生成処理を行なった処理例に相当する。
 (3)のD5Dタイプが、図15、図16、図25~図29を参照して説明した実施例に対応する。(4)D1Dタイプは、図15、図16、図25~図29を参照して説明した実施例において利用した5信号出力型のフォトディテクタを1信号出力型のフォトディテクタに置き換えた構成となる。
 図34に示すグラフから理解されるように、本開示の実施例に従った処理、すなわち隣接トラックの2値化再生信号(バイナリデータ)を用いたクロストークキャンセルを含む再生信号生成を行なった場合の再生信号評価値であるエラー率を示す(e-MLSE)は、従来例に相当する(1),(2)のラインより下側にあり、エラー率の少ない良好な再生信号が得られている。
 特に、スポット光がトラック中心よりずれた位置にあっても、再生信号の品質低下が少ないことが示されている。
 図34は、再生対象トラック(Tn)に隣接する両隣の再生信号を用いた処理例における再生データの品質評価結果であるが、次に、図36を参照して、再生対象トラック(Tn)に隣接する一方のみの隣接トラック(Tn-1)の再生信号を用いた処理例における再生データの品質評価結果について説明する。
 図36も、図34と同様、複数の異なる再生処理によって得られる再生信号の品質評価結果を示すグラフである。
 具体的には、照射スポット光の中心の再生対象トラック中心からの位置ずれ量(Detrack)と、再生信号評価値(e-MLSE)との対応関係を示すグラフである。
 図36も、図34と同様、以下の条件設定によるデータ記録、データ再生を行なった場合のシミュレーションによる再生データ品質評価結果の例を示す図である。
 条件設定は以下の通りである。
 光ピックアップのレーザ波長:λ=405nm
 光ピックアップの開口数:NA=0.85
 記録密度:55GBL(BD(Blu-ray(登録商標)Disc)のトラックピッチ0.32μmにて1層55GBとした線方向記録密度)
 PR(235777532)
 図36に示す3つの再生信号の評価結果(1)~(3)は、図37に示すように、以下の3つの再生信号評価データである。
 (1)再生対象トラック(Tn)に対して、5信号出力型ディテクタを用いた読み取り信号(A~E)を適用して生成した再生信号の評価結果(参照回路例=図4)
 (2)再生対象トラック(Tn)に対する5信号出力型ディテクタを適用した読み取り信号(A~E)と、一方の隣接トラック(Tn-1)に対する5信号出力型ディテクタを適用した再生信号(A~Eの5信号)を適用してクロストークキャンセル処理を実行した再生信号の評価結果(参照回路例=図13)
 (3)再生対象トラック(Tn)に対する5信号出力型ディテクタを適用した読み取り信号(A~E)と、一方の隣接トラック(Tn-1)から得られる2値化再生信号(バイナリデータ)D(D(Tn-1))を適用してクロストークキャンセル処理を実行した再生信号の評価結果(参照回路例=図17~図18、図19~図24)
 なお、(2)の参照回路例として図13を示しているが、図13は、再生対象トラックの両隣のトラック(Tn-1,Tn+1)の再生信号を利用した例であり、図36、図37の(2)に示す55タイプは、この図13に示す構成から、フォトディテクタ101aからの出力を利用しない設定とした構成に相当する。
 図36に示す各信号評価ライン中、(1),(2)が従来例に相当し、(3)が、本開示の構成例、すなわち、隣接トラックの2値化再生信号(バイナリデータ)を用いたクロストークキャンセルを含む再生信号生成処理を行なった処理例に相当する。
 図36に示すグラフから理解されるように、本開示の実施例に従った処理、すなわち隣接トラックの2値化再生信号(バイナリデータ)を用いたクロストークキャンセルを含む再生信号生成を行なった場合の再生信号評価値であるエラー率を示す(e-MLSE)は、特に、右側のずれ位置(Detrackが+側)において、従来例に相当する(1),(2)のラインより下側にあり、エラー率の少ない良好な再生信号が得られている。
 なお、この例では、右側の隣接トラックからの再生信号(バイナリデータ)を用いて、クロストークキャンセルを実行した例に相当する。
  [5.本開示の構成のまとめ]
 以上、特定の実施例を参照しながら、本開示の実施例について詳解してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本開示の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
 なお、本明細書において開示した技術は、以下のような構成をとることができる。
 (1) 情報記録ディスクの再生トラックからの読み出し信号を出力するフォトディテクタと、
 前記再生トラックの隣接トラックの再生信号から得られる再生識別信号を出力する隣接トラック再生識別信号供給部と、
 前記再生トラックからの読み出し信号と、隣接トラック再生識別信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する多入力適応イコライザと、
 前記等化信号に基づく再生信号生成処理を実行して、前記再生トラックの再生信号を生成する再生信号生成部を有する情報処理装置。
 (2)前記再生識別信号供給部は、
 前記隣接トラックの再生信号から得られる2値化信号(バイナリデータ)を出力する隣接トラック再生2値化信号供給部であり、
 前記再生信号生成部は、
 前記等化信号に基づく2値化処理を実行して、前記再生トラックの再生信号を生成する2値化処理部である(1)に記載の情報処理装置。
 (3) 前記隣接トラック再生2値化信号供給部は、
 前記再生トラックの少なくとも1つの隣接トラックの2値化信号(バイナリデータ)を出力する構成である(2)に記載の情報処理装置。
 (4) 前記隣接トラック再生2値化信号供給部は、
 前記再生トラックの2つの隣接トラックの2値化信号(バイナリデータ)を出力する構成である(2)に記載の情報処理装置。
 (5) 前記隣接トラック再生2値化信号供給部は、
 光ピックアップを介して読み取られる隣接トラックの読み取り信号に基づいて隣接トラック再生2値化信号を生成する(2)~(4)いずれかに記載の情報処理装置。
 (6) 前記隣接トラック再生2値化信号供給部は、
 予め記録データ格納メモリに格納された隣接トラック再生2値化信号を前記記録データ格納メモリから取得する(2)~(4)いずれかに記載の情報処理装置。
 (7) 前記情報処理装置は、
 前記隣接トラック再生2値化信号供給部の供給する隣接トラック再生2値化信号を格納するメモリと、
 前記メモリから前記多入力適応イコライザに対するデータ入力制御を実行するメモリコントローラを有する(2)~(6)いずれかに記載の情報処理装置。
 (8) 前記メモリコントローラは、
 再生トラックからの読み出し信号と、該読み出し信号の最近接位置の隣接トラック再生2値化信号を、同時に前記多入力適応イコライザに入力するデータ入力制御を実行する(7)に記載の情報処理装置。
 (9) 前記フォトディテクタは、
 分割領域単位の受光量に応じた複数信号を出力する複数信号出力型フォトディテクタであり、
 前記多入力適応イコライザは、
 前記フォトディテクタの出力する複数信号と、隣接トラック再生2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する構成である(2)~(8)いずれかに記載の情報処理装置。
 (10) 前記フォトディテクタは、
 トラック方向(タンジェンシャル方向)に沿った複数の分割領域を有し、各分割領域単位の受光量に応じた複数信号を出力する複数信号出力型フォトディテクタである(9)に記載の情報処理装置。
 (11) 前記フォトディテクタは、
 ディスク径方向(ラジアル方向)に沿った複数の分割領域を有し、各分割領域単位の受光量に応じた複数信号を出力する複数信号出力型フォトディテクタである(8)または(9)または(10)に記載の情報処理装置。
 (12)前記フォトディテクタの出力は、マトリクス演算回路に入力され、
 前記マトリクス演算回路は、前記フォトディテクタの分割領域単位の受光量に応じた複数信号を出力する構成であり、
 前記多入力適応イコライザは、
 前記マトリクス演算回路の出力する複数信号と、隣接トラック再生2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する構成である(2)~(11)いずれかに記載の情報処理装置。
 (13) 前記多入力適応イコライザは、入力信号に基づくパーシャルレスポンス等化処理を実行し、
 前記2値化処理部は、前記多入力適応イコライザの出力する等化信号についての2値化処理として最尤復号処理を実行する(2)~(12)いずれかに記載の情報処理装置。
 (14) 前記情報処理装置は、
 前記2値化処理部の生成する2値化信号に基づいて等化目標信号を生成するPR(Pertial Response)畳込部と、
 前記等化目標信号と、前記多入力適応イコライザ部の出力する等化信号とから等化誤差を算出する等化誤差演算部を有し、
 前記多入力適応イコライザは、前記等化誤差を入力して適応等化処理を実行する(2)~(13)いずれかに記載の情報処理装置。
 (15) 情報記録ディスクは、
 ランド、およびグルーブの双方にデータ記録がなされたディスクであり、
 前記再生トラックと、隣接トラックは、ランドトラックとグルーブトラックの組み合わせである(1)~(14)いずれかに記載の情報処理装置。
 (16) 前記情報処理装置は、
 隣接トラックから並列にデータ再生を実行する構成を有し、
 情報記録ディスクの第1再生トラックからの読み出し信号を出力する第1フォトディテクタと、
 前記第1再生トラックに隣接する第2再生トラックからの読み出し信号を出力する第2フォトディテクタと、
 前記第1再生トラックの再生信号としての2値化信号(バイナリデータ)と、前記第2再生トラックの再生信号としての2値化信号(バイナリデータ)を生成するデコーダと、
 第1再生トラックからの読み出し信号と、前記デコーダの生成した第2再生トラックの再生信号としての2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する第1再生トラック対応多入力適応イコライザと、
 第2再生トラックからの読み出し信号と、前記デコーダの生成した第1再生トラックの再生信号としての2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する第2再生トラック対応多入力適応イコライザと、
 前記第1再生トラック対応多入力適応イコライザの出力する等化信号に基づく2値化処理を実行して第1トラック対応再生2値化信号を生成する第1トラック対応2値化処理部と、
 前記第2再生トラック対応多入力適応イコライザの出力する等化信号に基づく2値化処理を実行して第2トラック対応再生2値化信号を生成する第2トラック対応2値化処理部を有する(2)に記載の情報処理装置。
 (17) 情報処理装置において実行する情報処理方法であり、
 フォトディテクタが、情報記録ディスクの再生トラックからの読み出し信号を出力し、
 隣接トラック再生識別信号供給部が、前記再生トラックの隣接トラックの再生信号から得られる再生識別信号を出力し、
 多入力適応イコライザが、前記再生トラックからの読み出し信号と、隣接トラック再生識別信号の各々をイコライザユニットに入力して、入力信号に基づく適応等化処理により等化信号を出力し、
 再生信号生成部が、前記等化信号に基づく再生信号生成処理を実行して、前記再生トラックの再生信号を生成する情報処理方法。
 (18) 情報処理装置において情報処理を実行させるプログラムであり、
 前記プログラムは、
 フォトディテクタによる、情報記録ディスクの再生トラックからの読み出し信号の出力処理、
 隣接トラック再生識別信号供給部による、前記再生トラックの隣接トラックの再生信号から得られる再生識別信号の出力処理、
 多入力適応イコライザによる、前記再生トラックからの読み出し信号と、隣接トラック再生識別信号の各々のイコライザユニットに対する入力と、入力信号に基づく適応等化処理による等化信号出力処理、
 再生信号生成部による、前記等化信号に基づく再生信号生成処理による前記再生トラックの再生信号生成処理を実行させるプログラム。
 また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させるか、あるいは、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。例えば、プログラムは記録媒体に予め記録しておくことができる。記録媒体からコンピュータにインストールする他、LAN(Local Area Network)、インターネットといったネットワークを介してプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。
 なお、明細書に記載された各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。また、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
 以上、説明したように、本開示の一実施例の構成によれば、高密度記録型光ディスクからクロストークを除去した高品質なデータ再生を可能とした装置、方法が実現される。
 具体的には、情報記録ディスクの再生トラックからの読み出し信号を出力するフォトディテクタと、再生トラックの隣接トラックの再生信号である2値化信号(バイナリデータ)を出力する隣接トラック再生2値化信号供給部と、再生トラックからの読み出し信号と、隣接トラック再生2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する多入力適応イコライザと、等化信号に基づく2値化処理を実行して、再生トラックの再生信号を生成する2値化処理部を有する。
 本構成により、高密度記録型光ディスクからクロストークを除去した高品質なデータ再生を可能とした装置、方法が実現される。
  10 ディスク
  11 光ピックアップ
  12 スピンドルモータ
  13 スレッド
  14 マトリクス回路
  15 データ検出処理部
  16 ウォブル信号処理部
  17 ENC/DEC
  18 ホストI/F
  19 アドレスデコーダ
  20 システムコントローラ
  21 光学ブロックサーボ回路
  22 スピンドルサーボ回路
  23 レーザドライバ
  24 ライトストラテジ
  25 スレッドドライバ
  26 ADIP復調処理部
  27 スピンドルドライバ
  28 ドライバ
  30 ホスト機器
  51 半導体レーザ
  52 コリメータレンズ
  53 偏光ビームスプリッタ
  54 対物レンズ
  55 レンズ
  56 フォトディテクタ
  61 ADC
  62 PLL
  63 多入力適応イコライザ
  64 二値化検出器
  65 PR畳込器
  66 等化誤差演算器
  67 加算回路
  71~75 適応イコライザユニット
  76 加算器
  80 遅延素子
  81 係数乗算器
  82 演算器
  83 積分器
  84 加算器
  91 減算器
  92 係数乗算器
 101 フォトディテクタ
 102 ADC
 103 メモリ
 104 システムコントローラ
 105 メモリコントローラ
 106 多入力適応イコライザ
 111~113 適応イコライザユニット
 114 加算器
 120 多入力適応イコライザセット
 121~123 多入力適応イコライザ
 124 加算器
 131~135 適応イコライザユニット
 136 加算器
 201 フォトディテクタ
 202 ADC
 203 隣接トラック再生2値信号供給部
 204 メモリ
 205 多入力適応イコライザ
 211~216 適応イコライザユニット
 217 加算器
 220 システムコントローラ
 221 メモリコントローラ
 230 メモリ
 251 二値化検出器(PRMLデコーダ)
 252 PR畳込器(PRターゲット信号生成部)
 253 減算器
 254 PLL
 311,322 光ピックアップ
 312,322 フォトディテクタ
 313,323 ADC
 314,324 第1多入力適応イコライザ
 315,325 メモリ
 316,326 第2多入力適応イコライザ
 317,327 第2デコーダ
 318,328 第1デコーダ
 331,332,336,337 適応イコライザユニット

Claims (18)

  1.  情報記録ディスクの再生トラックからの読み出し信号を出力するフォトディテクタと、
     前記再生トラックの隣接トラックの再生信号から得られる再生識別信号を出力する隣接トラック再生識別信号供給部と、
     前記再生トラックからの読み出し信号と、隣接トラック再生識別信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する多入力適応イコライザと、
     前記等化信号に基づく再生信号生成処理を実行して、前記再生トラックの再生信号を生成する再生信号生成部を有する情報処理装置。
  2.  前記再生識別信号供給部は、
     前記隣接トラックの再生信号から得られる2値化信号(バイナリデータ)を出力する隣接トラック再生2値化信号供給部であり、
     前記再生信号生成部は、
     前記等化信号に基づく2値化処理を実行して、前記再生トラックの再生信号を生成する2値化処理部である請求項1に記載の情報処理装置。
  3.  前記隣接トラック再生2値化信号供給部は、
     前記再生トラックの少なくとも1つの隣接トラックの2値化信号(バイナリデータ)を出力する構成である請求項2に記載の情報処理装置。
  4.  前記隣接トラック再生2値化信号供給部は、
     前記再生トラックの2つの隣接トラックの2値化信号(バイナリデータ)を出力する構成である請求項2に記載の情報処理装置。
  5.  前記隣接トラック再生2値化信号供給部は、
     光ピックアップを介して読み取られる隣接トラックの読み取り信号に基づいて隣接トラック再生2値化信号を生成する請求項2に記載の情報処理装置。
  6.  前記隣接トラック再生2値化信号供給部は、
     予め記録データ格納メモリに格納された隣接トラック再生2値化信号を前記記録データ格納メモリから取得する請求項2に記載の情報処理装置。
  7.  前記情報処理装置は、
     前記隣接トラック再生2値化信号供給部の供給する隣接トラック再生2値化信号を格納するメモリと、
     前記メモリから前記多入力適応イコライザに対するデータ入力制御を実行するメモリコントローラを有する請求項2に記載の情報処理装置。
  8.  前記メモリコントローラは、
     再生トラックからの読み出し信号と、該読み出し信号の最近接位置の隣接トラック再生2値化信号を、同時に前記多入力適応イコライザに入力するデータ入力制御を実行する請求項7に記載の情報処理装置。
  9.  前記フォトディテクタは、
     分割領域単位の受光量に応じた複数信号を出力する複数信号出力型フォトディテクタであり、
     前記多入力適応イコライザは、
     前記フォトディテクタの出力する複数信号と、隣接トラック再生2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する構成である請求項2に記載の情報処理装置。
  10.  前記フォトディテクタは、
     トラック方向(タンジェンシャル方向)に沿った複数の分割領域を有し、各分割領域単位の受光量に応じた複数信号を出力する複数信号出力型フォトディテクタである請求項9に記載の情報処理装置。
  11.  前記フォトディテクタは、
     ディスク径方向(ラジアル方向)に沿った複数の分割領域を有し、各分割領域単位の受光量に応じた複数信号を出力する複数信号出力型フォトディテクタである請求項9に記載の情報処理装置。
  12.  前記フォトディテクタの出力は、マトリクス演算回路に入力され、
     前記マトリクス演算回路は、前記フォトディテクタの分割領域単位の受光量に応じた複数信号を出力する構成であり、
     前記多入力適応イコライザは、
     前記マトリクス演算回路の出力する複数信号と、隣接トラック再生2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する構成である請求項2に記載の情報処理装置。
  13.  前記多入力適応イコライザは、入力信号に基づくパーシャルレスポンス等化処理を実行し、
     前記2値化処理部は、前記多入力適応イコライザの出力する等化信号についての2値化処理として最尤復号処理を実行する請求項2に記載の情報処理装置。
  14.  前記情報処理装置は、
     前記2値化処理部の生成する2値化信号に基づいて等化目標信号を生成するPR(Pertial Response)畳込部と、
     前記等化目標信号と、前記多入力適応イコライザ部の出力する等化信号とから等化誤差を算出する等化誤差演算部を有し、
     前記多入力適応イコライザは、前記等化誤差を入力して適応等化処理を実行する請求項2に記載の情報処理装置。
  15.  情報記録ディスクは、
     ランド、およびグルーブの双方にデータ記録がなされたディスクであり、
     前記再生トラックと、隣接トラックは、ランドトラックとグルーブトラックの組み合わせである請求項1に記載の情報処理装置。
  16.  前記情報処理装置は、
     隣接トラックから並列にデータ再生を実行する構成を有し、
     情報記録ディスクの第1再生トラックからの読み出し信号を出力する第1フォトディテクタと、
     前記第1再生トラックに隣接する第2再生トラックからの読み出し信号を出力する第2フォトディテクタと、
     前記第1再生トラックの再生信号としての2値化信号(バイナリデータ)と、前記第2再生トラックの再生信号としての2値化信号(バイナリデータ)を生成するデコーダと、
     第1再生トラックからの読み出し信号と、前記デコーダの生成した第2再生トラックの再生信号としての2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する第1再生トラック対応多入力適応イコライザと、
     第2再生トラックからの読み出し信号と、前記デコーダの生成した第1再生トラックの再生信号としての2値化信号を各々入力するイコライザユニットを有し、入力信号に基づく適応等化処理により等化信号を出力する第2再生トラック対応多入力適応イコライザと、
     前記第1再生トラック対応多入力適応イコライザの出力する等化信号に基づく2値化処理を実行して第1トラック対応再生2値化信号を生成する第1トラック対応2値化処理部と、
     前記第2再生トラック対応多入力適応イコライザの出力する等化信号に基づく2値化処理を実行して第2トラック対応再生2値化信号を生成する第2トラック対応2値化処理部を有する請求項2に記載の情報処理装置。
  17.  情報処理装置において実行する情報処理方法であり、
     フォトディテクタが、情報記録ディスクの再生トラックからの読み出し信号を出力し、
     隣接トラック再生識別信号供給部が、前記再生トラックの隣接トラックの再生信号から得られる再生識別信号を出力し、
     多入力適応イコライザが、前記再生トラックからの読み出し信号と、隣接トラック再生識別信号の各々をイコライザユニットに入力して、入力信号に基づく適応等化処理により等化信号を出力し、
     再生信号生成部が、前記等化信号に基づく再生信号生成処理を実行して、前記再生トラックの再生信号を生成する情報処理方法。
  18.  情報処理装置において情報処理を実行させるプログラムであり、
     前記プログラムは、
     フォトディテクタによる、情報記録ディスクの再生トラックからの読み出し信号の出力処理、
     隣接トラック再生識別信号供給部による、前記再生トラックの隣接トラックの再生信号から得られる再生識別信号の出力処理、
     多入力適応イコライザによる、前記再生トラックからの読み出し信号と、隣接トラック再生識別信号の各々のイコライザユニットに対する入力と、入力信号に基づく適応等化処理による等化信号出力処理、
     再生信号生成部による、前記等化信号に基づく再生信号生成処理による前記再生トラックの再生信号生成処理を実行させるプログラム。
PCT/JP2017/000779 2016-02-05 2017-01-12 情報処理装置、および情報処理方法、並びにプログラム WO2017135000A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17747163.8A EP3413313B1 (en) 2016-02-05 2017-01-12 Information processing device, information processing method, and program
US15/780,090 US10373640B2 (en) 2016-02-05 2017-01-12 Information processing device, information processing method, and program
JP2017565449A JP6868782B2 (ja) 2016-02-05 2017-01-12 情報処理装置、および情報処理方法、並びにプログラム
US16/460,435 US20190325908A1 (en) 2016-02-05 2019-07-02 Information processing device, information processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-021294 2016-02-05
JP2016021294 2016-02-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/780,090 A-371-Of-International US10373640B2 (en) 2016-02-05 2017-01-12 Information processing device, information processing method, and program
US16/460,435 Continuation US20190325908A1 (en) 2016-02-05 2019-07-02 Information processing device, information processing method, and program

Publications (1)

Publication Number Publication Date
WO2017135000A1 true WO2017135000A1 (ja) 2017-08-10

Family

ID=59500656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000779 WO2017135000A1 (ja) 2016-02-05 2017-01-12 情報処理装置、および情報処理方法、並びにプログラム

Country Status (5)

Country Link
US (2) US10373640B2 (ja)
EP (1) EP3413313B1 (ja)
JP (1) JP6868782B2 (ja)
TW (1) TWI715706B (ja)
WO (1) WO2017135000A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021145016A1 (ja) * 2020-01-15 2021-07-22
WO2021153260A1 (ja) * 2020-01-30 2021-08-05 ソニーグループ株式会社 信号処理装置、信号処理方法、及び、プログラム
WO2022201583A1 (ja) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 光ディスク装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413313B1 (en) * 2016-02-05 2022-03-02 Sony Group Corporation Information processing device, information processing method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325196A (ja) * 1992-03-16 1993-12-10 Pioneer Electron Corp 光ディスク信号再生方式
JPH06162515A (ja) * 1992-11-25 1994-06-10 Pioneer Electron Corp 光ディスク信号再生装置
JP2005332453A (ja) * 2004-05-19 2005-12-02 Hitachi Ltd 情報再生装置及び情報再生方法
JP2007518202A (ja) * 2003-11-18 2007-07-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 情報キャリアから情報を読取るための装置及び方法。
JP2012079385A (ja) * 2010-10-04 2012-04-19 Sony Corp データ検出装置、再生装置、データ検出方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016169B2 (ja) * 1999-03-30 2007-12-05 ソニー株式会社 ドライブ装置
KR100716938B1 (ko) * 1999-08-09 2007-05-10 삼성전자주식회사 광픽업장치
JP2001338421A (ja) * 2000-03-21 2001-12-07 Sony Corp ディスクドライブ装置、ウォブル情報生成方法
JP4184585B2 (ja) 2000-09-19 2008-11-19 パイオニア株式会社 信号遅延装置、漏れ信号除去装置及び情報処理装置
JP2003100017A (ja) 2001-09-21 2003-04-04 Matsushita Electric Ind Co Ltd 光ディスク信号処理回路、および光ディスク装置
JP2003223761A (ja) * 2002-01-25 2003-08-08 Hitachi Ltd 等化器、情報記録装置、情報再生装置及び記録媒体
JP4830655B2 (ja) * 2006-06-13 2011-12-07 ソニー株式会社 再生装置、再生方法
JP5372864B2 (ja) * 2009-08-18 2013-12-18 パナソニック株式会社 多層光ディスクおよび光ディスク装置
JP2014029749A (ja) * 2012-07-31 2014-02-13 Taiyo Yuden Co Ltd 光記録システムおよびディスクカートリッジ
JP6075379B2 (ja) * 2012-10-05 2017-02-08 パナソニックIpマネジメント株式会社 情報再生装置及び情報再生方法
EP3035332B1 (en) * 2013-08-14 2021-04-07 Sony Corporation Optical medium reproduction device and optical medium reproduction method
WO2016006157A1 (ja) 2014-07-11 2016-01-14 ソニー株式会社 光媒体再生装置および光媒体再生方法
JP6036798B2 (ja) 2014-12-19 2016-11-30 ソニー株式会社 データ検出装置、再生装置、データ検出方法
EP3413313B1 (en) * 2016-02-05 2022-03-02 Sony Group Corporation Information processing device, information processing method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325196A (ja) * 1992-03-16 1993-12-10 Pioneer Electron Corp 光ディスク信号再生方式
JPH06162515A (ja) * 1992-11-25 1994-06-10 Pioneer Electron Corp 光ディスク信号再生装置
JP2007518202A (ja) * 2003-11-18 2007-07-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 情報キャリアから情報を読取るための装置及び方法。
JP2005332453A (ja) * 2004-05-19 2005-12-02 Hitachi Ltd 情報再生装置及び情報再生方法
JP2012079385A (ja) * 2010-10-04 2012-04-19 Sony Corp データ検出装置、再生装置、データ検出方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021145016A1 (ja) * 2020-01-15 2021-07-22
WO2021145016A1 (ja) * 2020-01-15 2021-07-22 パナソニックIpマネジメント株式会社 光ディスク再生装置
CN113412517A (zh) * 2020-01-15 2021-09-17 松下知识产权经营株式会社 光盘再现装置
JP7108836B2 (ja) 2020-01-15 2022-07-29 パナソニックIpマネジメント株式会社 光ディスク再生装置
WO2021153260A1 (ja) * 2020-01-30 2021-08-05 ソニーグループ株式会社 信号処理装置、信号処理方法、及び、プログラム
US11749307B2 (en) 2020-01-30 2023-09-05 Sony Group Corporation Signal processing device, signal processing method, and program
JP7559776B2 (ja) 2020-01-30 2024-10-02 ソニーグループ株式会社 信号処理装置、信号処理方法、及び、プログラム
WO2022201583A1 (ja) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 光ディスク装置

Also Published As

Publication number Publication date
US20180358047A1 (en) 2018-12-13
TW201732788A (zh) 2017-09-16
EP3413313A4 (en) 2019-03-06
EP3413313B1 (en) 2022-03-02
US20190325908A1 (en) 2019-10-24
JP6868782B2 (ja) 2021-05-12
JPWO2017135000A1 (ja) 2018-11-29
TWI715706B (zh) 2021-01-11
EP3413313A1 (en) 2018-12-12
US10373640B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
JP6504245B2 (ja) データ検出装置、再生装置、データ検出方法
JP2012079385A (ja) データ検出装置、再生装置、データ検出方法
US20190325908A1 (en) Information processing device, information processing method, and program
JP6167918B2 (ja) 光媒体再生装置および光媒体再生方法
JP6311711B2 (ja) 光媒体再生装置および光媒体再生方法
EP3035332B1 (en) Optical medium reproduction device and optical medium reproduction method
US8873358B2 (en) Skew detection method and optical disc device
US11749307B2 (en) Signal processing device, signal processing method, and program
WO2016129022A1 (ja) 光媒体再生装置及び光媒体再生方法
JP6036798B2 (ja) データ検出装置、再生装置、データ検出方法
US10978107B2 (en) Information processing apparatus, optical storage apparatus, and method for processing information
JP5623097B2 (ja) 情報再生方法及び装置、並びに光ディスク装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747163

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747163

Country of ref document: EP

Effective date: 20180905