WO2017133638A1 - 自移动设备及自移动设备的控制方法 - Google Patents

自移动设备及自移动设备的控制方法 Download PDF

Info

Publication number
WO2017133638A1
WO2017133638A1 PCT/CN2017/072748 CN2017072748W WO2017133638A1 WO 2017133638 A1 WO2017133638 A1 WO 2017133638A1 CN 2017072748 W CN2017072748 W CN 2017072748W WO 2017133638 A1 WO2017133638 A1 WO 2017133638A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
sensor
self
moving device
plate
Prior art date
Application number
PCT/CN2017/072748
Other languages
English (en)
French (fr)
Inventor
董永明
刘芳世
高振东
谭一云
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610076150.XA external-priority patent/CN107027433A/zh
Priority claimed from CN201620260436.9U external-priority patent/CN205567099U/zh
Priority claimed from CN201610214095.6A external-priority patent/CN107258207B/zh
Priority claimed from CN201610423176.7A external-priority patent/CN107515015A/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP17746958.2A priority Critical patent/EP3412136A4/en
Priority to CN201780001321.5A priority patent/CN107920466B/zh
Priority to US15/551,718 priority patent/US10444757B2/en
Publication of WO2017133638A1 publication Critical patent/WO2017133638A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0098Plants or trees
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers

Definitions

  • the invention relates to a self-mobile device, and to a control method of the self-mobile device.
  • a lawn mower is a lawn dressing tool that typically includes a wheel set, casing, and cutting system that can travel on the lawn and cut grass.
  • the traditional lawn mower mainly uses a gasoline engine or an alternating current system as the power for cutting, and relies on manpower to push back and forth on the lawn to complete the care trimming of the grass.
  • the labor intensity that drives its mowing is greater.
  • intelligent lawn mowers Compared with traditional lawn mowers, intelligent lawn mowers have automatic walking function and sensors with grass recognition function. Intelligent lawn mowers use capacitive sensors to automatically identify grasses that need to be trimmed, and can independently complete the work of mowing lawns without human intervention. Direct control and operation, greatly reducing manual operation, is a tool suitable for lawn trimming maintenance in home gardens, public green spaces and other places.
  • the capacitive sensor detects the ground below the lawn mower and determines whether it is the grass to be cut, thereby controlling the working condition of the mowing motor.
  • some grassland sensors in the prior art have the disadvantages of low sensitivity, and some of the non-contact grass sensors are also susceptible to interference from other factors such as air.
  • the capacitive sensor of the intelligent mower includes a probe for detecting the grass; to protect the probe from damage, the capacitive sensor further includes an end cover disposed at the bottom of the capacitive sensor, and the end cover separates the grass from the probe.
  • the end cover of the bottom of the capacitive sensor is not conducive to the propagation of the probe electric field, resulting in poor sensitivity of the capacitive sensor and poor grass detection.
  • the capacitive sensor adopts a fixed column type.
  • the sensor is easy to rub against the grass when the lawn mower is automatically maintained, and the traveling resistance of the intelligent lawn mower is increased. , hindering the walking of the intelligent mower.
  • a self-moving device that moves and operates within a work area defined by a boundary, including a housing, a moving module, a task execution module, and a control module;
  • the control module controls the mobile module to drive movement from the mobile device, and controls the task execution module to perform a work task;
  • the self-moving device includes at least one capacitive sensor, is mounted on the housing, and is electrically connected to the control module, and detects whether a surface in front of the moving device or in front of the moving direction is a surface to be processed;
  • the capacitive sensor includes at least one probe, the probe includes a detecting surface, located at an outer surface of the probe, and at least a portion of the detecting surface has a conductivity greater than or equal to 10 -9 s/m;
  • the distance between the probe and the surface below the mobile device satisfies a first preset condition
  • the area of the detecting surface satisfies a second preset condition.
  • the detecting surface comprises a lower surface facing a surface below the mobile device, and the lower surface has a conductivity of 10 -9 s/m or more.
  • the capacitive sensor comprises a longitudinal axis extending downwardly from the housing, the detection surface comprising a circumferential surface about a longitudinal axis, the circumferential surface having an electrical conductivity of greater than or equal to 10 -9 s/m.
  • the detecting surface comprises a side surface, perpendicular to a working surface of the self-moving device, or inclined with respect to a working surface of the mobile device by a predetermined angle, the side surface having a conductivity of 10 -9 s/m or more.
  • the probe comprises at least one plate electrically connected to the control module, the plate having a conductivity of 10 -9 s/m or more, the detection surface comprising a surface of the plate.
  • the probe comprises at least one electrode plate electrically connected to the control module, and a cladding layer at least partially covering the electrode plate, the outer surface of the cladding layer having a conductivity greater than or equal to 10 -9 s /m, the detection surface includes an outer surface of the cladding layer.
  • the coating layer comprises an inner layer adjacent to the electrode plate and an outer layer away from the electrode plate, the inner layer having a conductivity of 10 -9 s/m or less, and electrical conductivity of the outer layer Greater than or equal to 10 -9 s/m.
  • the distance between the electrode plate and the outer layer of the cladding layer is less than or equal to a preset distance.
  • the control module includes a signal processing circuit that processes an electrical signal input by the capacitive sensor, and further includes a protection circuit electrically connected to the capacitance sensor and the signal processing circuit.
  • a protection circuit electrically connected to the capacitance sensor and the signal processing circuit.
  • the first preset condition is that a distance between the probe and a surface below the mobile device is less than a distance between an end of the task execution module and a surface below the mobile device.
  • the first preset condition is that the distance between the probe and the surface below the mobile device is less than the height of the medium on the working plane of the mobile device.
  • the first preset condition is that the distance between the probe and the surface below the mobile device is less than or equal to 50 mm.
  • the first preset condition is that the distance between the probe and the surface below the mobile device is greater than or equal to 10 mm.
  • the capacitive sensor includes a connecting portion connecting the probe and the housing, and the connecting portion can drive the probe to move relative to the housing.
  • the connecting portion is capable of driving the probe to move in a height direction with respect to the housing.
  • the connecting portion can drive the probe to swing in a horizontal direction with respect to the housing.
  • the connecting portion is made of a flexible material.
  • the capacitive sensor comprises a longitudinal axis extending downwardly from the bottom of the housing, the connecting portion comprising a through hole along the longitudinal axis through which the wires connecting the probe and the control module pass.
  • the second preset condition is that the area of the detecting surface is greater than or equal to 28 cm 2 .
  • the probe comprises at least one plate electrically connected to the control module, the plate having an area of 28 cm 2 or more.
  • the probe includes a concave and convex surface
  • the detection surface includes the surface of the concave and convex.
  • the probe comprises a plurality of teeth, the detection surface comprising a surface of the tooth.
  • At least one of the capacitive sensors is disposed at a front end or a rear end of the housing.
  • the moving module comprises a front wheel and a rear wheel, at least one of which is disposed on a front side of the front wheel or on a rear side of the rear wheel.
  • the moving module includes a front wheel and a rear wheel, and at least one of the capacitive sensors is disposed between a front side of the front wheel and a rear side of the rear wheel.
  • At least two sets of the capacitive sensors are included, respectively disposed on two sides of the housing.
  • the probe comprises at least two plates electrically connected to the control module, the plates having different potentials.
  • the plate comprises a shielding side facing away from the surface below the mobile device, and the shielding side is provided with a shielding layer.
  • the capacitive sensor includes a connecting portion connecting the probe and the housing, the probe A first axis of rotation is included, parallel to the working surface of the self-moving device, the probe being rotatable relative to the connecting portion about the first axis of rotation.
  • the connecting portion includes a second rotating shaft perpendicular to a working surface of the self-moving device, and the connecting portion is rotatable relative to the housing about the second rotating shaft, so that the probe rotates around the second rotating shaft .
  • the probe is a roller
  • the first rotating shaft is an axle of the roller
  • the bottom of the roller is higher than the bottom of the moving module.
  • a self-moving device control method comprising at least one capacitive sensor detecting whether a surface in front of a moving device or in a moving direction is a surface to be processed, the capacitive sensor comprising at least one probe, the probe The detection surface is disposed on the outer surface of the probe, and the control method of the self-mobile device includes the steps of:
  • the detection surface having a conductivity greater than or equal to 10 -9 s/m, or providing the probe with a distance from a surface below the mobile device that satisfies a first predetermined condition, or providing an area that satisfies a second preset The detection surface of the condition;
  • a capacitive sensor comprising: a metal plate and an end cover; the end cover is disposed outside the metal plate for protecting the metal plate; the capacitive sensor further comprises an insulating spacer, the insulating spacer A layer is disposed between the metal plate and the end cap; the end cap is made of a conductive material.
  • the metal plate When the above capacitive sensor is in operation, the metal plate propagates an electric field to the object to be detected to detect the object to be detected. Since the end cover is a conductor and the conductivity is high, the end cover is favorable for the electric field propagation of the metal plate, and the sensitivity of the capacitance sensor is effectively enhanced, so that the metal plate of the capacitance sensor has a good detection effect.
  • the insulating spacer is made of plastic or rubber.
  • the end cap is a metal end cap.
  • the metal plate is a metal thin plate;
  • the capacitive sensor further includes a substrate, the end cover is disposed at one side of the metal plate, and the substrate is disposed on the metal plate On the other side, the metal plate is embedded on the substrate, and the substrate is used to fix the metal plate.
  • the capacitive sensor further includes a wire and a fixed structure, the guide A wire is connected to the metal plate through the substrate; the fixing structure surrounds the wire, and the fixing structure abuts the substrate, and the fixing structure is used to fix the wire.
  • the material of the fixing structure is a sponge.
  • the capacitive sensor further includes a sensor housing having a cylindrical shape, a sidewall of the sensor housing defining an inner cavity, and the fixing structure and the substrate are disposed on In the inner cavity, the substrate is perpendicular to a central axis of the sensor housing, the fixing structure and the substrate abut against a sidewall of the sensor housing, a sidewall of the sensor housing and the end The cover is mated together, and the sensor housing, the fixing structure and the end cover cooperate to protect the metal plate.
  • the side wall of the sensor housing is connected to the end cap by a screw.
  • the end cap includes a flange disposed on a side of the end cap toward the outer casing, and the flange encloses a sidewall of the sensor housing, The flange is threadedly connected to the side wall of the sensor housing.
  • a lawn mower comprising a controller, a signal processing circuit and the capacitive sensor of any of the above embodiments; the capacitive sensor comprising a metal plate and an end cap, the end cap being disposed outside the metal plate
  • the end cap is made of a conductive material; an input end of the signal processing circuit is connected to the metal plate; and an input end of the controller is connected to an output end of the signal processing circuit.
  • the above lawn mower is used to cut vegetation.
  • the metal plate When the capacitive sensor is working, the metal plate will propagate an electric field to the vegetation to detect the vegetation.
  • the end cover is located between the metal plate and the vegetation. Since the end cover is a conductive material, the electrical conductivity is high, and the end cover is beneficial to the electric field propagation of the metal plate, thereby effectively enhancing the sensitivity of the capacitive sensor, so that the metal plate of the capacitive sensor detects the vegetation. The effect is better.
  • the metal plate transmits the signal for detecting vegetation to the processor through the signal processing circuit, and the mower can perform the work task according to the condition of detecting the vegetation by the metal plate, so that the effect of cutting the vegetation is better.
  • a lawn mower for cutting vegetation on a work surface comprising: a housing and a sensing assembly; the sensing assembly being disposed on the housing, the sensing assembly including a sensor The height of the sensor relative to the working surface can be adjusted, the sensor being used to sense vegetation.
  • the above lawn mower can adjust the height of the sensor relative to the working surface, so that the user can adjust the height of the sensor according to the height of the vegetation.
  • the height of the sensor is lowered, and the lawn mower can recognize the vegetation.
  • the cutting cutter can be started to cut the vegetation, and the vegetation to be trimmed is not missed, the cutting effect is good, and the cutting efficiency is high.
  • the lawn mower further includes a rotating assembly, the rotating assembly being rotatable, And the rotating assembly has a first side wall perpendicular to the working surface, the surface of the first side wall is provided with rotating teeth; the sensing assembly has a second side wall perpendicular to the working surface, a second side wall is provided with a rotating thread with respect to a surface of the first side wall, the rotating thread is engaged with the rotating tooth, and the sensor is disposed on the second side wall, the sensing component Moving relative to the work surface as the rotating assembly rotates.
  • the rotating assembly is rotatable, the rotating teeth of the surface of the first side wall meshing with the rotating thread of the second side wall surface, and the rotating tooth surrounds when the rotating assembly rotates
  • the rotating thread rotates and the height of the rotating assembly does not change, so the rotating assembly drives the sensing assembly to move relative to the working surface, and the sensor moves relative to the working surface.
  • the lawn mower further includes: an elevation motor having a first output shaft, the rotation assembly being disposed on the first output shaft, the height adjustment motor capable of passing through The first output shaft drives the rotating assembly to rotate.
  • the lawn mower further includes an adjustment assembly disposed on a side of the rotating assembly away from the working surface, the adjustment assembly including an adjustment knob and a locking structure, wherein the adjustment The knob is rotatable and movable relative to the working surface, the locking structure is disposed between the adjustment knob and the rotating assembly, and is rotatable with rotation of the adjustment knob when the adjustment knob is pressed
  • the locking structure is for fixedly connecting the rotating assembly.
  • the sensing assembly includes a sensor connection rod, the sensor is disposed on the sensor connection rod, and the sensor and the sensor connection rod are threaded.
  • the senor is one or more.
  • the lawn mower further includes: a cutting motor located on a side of the cutting blade away from the working surface, the cutting motor powering the cutting blade.
  • the lawn mower further includes: a motor box sleeved on an outer side of the cutting motor and located on a side of the cutting blade away from the working surface, the second side wall It is the side wall of the motor box.
  • the motor box gives a sufficient working space for the cutting motor so that the cutting motor does not interfere with other parts of the mower during operation, and further, the side wall of the motor box serves as the sensing component.
  • the second side wall which is combined, can reduce the weight of the lawn mower and save space occupied by the mower components.
  • the cutting motor has a rotatable output shaft, the cutting blade being fixedly coupled to the output shaft, the cutting blade rotating with rotation of the output shaft.
  • the cutting motor is activated, and the cutting cutter can be driven by the output shaft to perform the cutting action.
  • the rotating assembly and the cutting blade rotate about the same axis.
  • the lawn mower further includes a walking assembly including at least one wheel, the sensor being located forward or rearward of the walking direction of the walking assembly.
  • the lawn mower further includes a cam motor and a cam, the cam motor being fixed to the body, an output shaft of the cam motor being coupled to a rotating shaft of the cam, the rotation of the cam
  • the shaft is parallel to the working surface
  • the cam includes a protrusion, the protrusion faces the working surface, and the protrusion is reciprocally swingable about a rotation axis of the cam
  • the sensing component further
  • the first elastic structure includes a fixed end and a movable end, the first elastic structure includes a fixed end and a movable end, and the fixed end is fixed to the body, the activity The end moves up and down with respect to the working surface, the connecting rod is perpendicular to the working surface, the middle of the connecting rod is connected with the movable end, one end of the connecting rod is connected to the sensor, and the other end is opposite to the convex
  • the reciprocating oscillating movement of the protruding portion drives the connecting rod to move up and down with respect to the working surface, and the first elastic structure is used
  • the lawn mower further includes a second resilient structure, the sensing assembly being coupled to the fuselage by the second resilient structure.
  • the lawn mower further includes a fixing plate fixed to the body, the fixing plate is provided with a through hole perpendicular to the working surface, and the fixing plate is used for
  • the sensing assembly further includes a movable rod and a limiting block, the movable rod passes through the through hole, and the movable rod reciprocates in the through hole relative to the working surface,
  • the limiting block is disposed at an end of the movable rod away from the working surface, the sensor is disposed at another end of the movable rod, and the limiting block and the sensor limit the movable rod to the Fix the board.
  • the senor is a capacitive sensor, and the capacitive sensor comprises A detection electrode for sensing vegetation, the height of the detection electrode being adjustable relative to the working surface.
  • the lawn mower further includes a cutting blade disposed on the body, the cutting blade being adjustable in height relative to the working surface, the cutting blade The tray is used to cut vegetation.
  • a sensor height control method for controlling the height of a sensor based on the lawn mower characterized in that the method comprises the steps of:
  • the above sensor height control method enables the lawn mower to discriminate whether the sensor detects vegetation according to the output signal of the sensor, and the lawn mower can adjust the sensor height according to the detection condition.
  • the lawn mower performs the operation of cutting the vegetation or continues to walk; when the sensor indicates that the vegetation is not detected, the lawn mower adjusts the height of the sensor to continue the detection. In this way, when the lawn mower recognizes the vegetation, it will not cause misjudgment due to the short grass, and the accuracy of identifying the vegetation is improved, the cutting effect is good, and the cutting efficiency is high.
  • the method further includes:
  • the sensor Comparing the parameter value of the signal of the sensor with the parameter threshold, determining whether the sensor detects vegetation according to the result of the comparison, and if yes, cutting the vegetation or continuing to walk, if not, then The sensor adjusts a specific distance downward and outputs a height value of the sensor;
  • the height value of the sensor is less than or equal to a height threshold, and if so, the lawn mower travels to the vegetation area, and if not, the sensor is adjusted downward by a specific distance.
  • the comparing the parameter value of the initial signal with a preset parameter threshold, determining, according to the result of the comparison, whether the sensor detects vegetation, and if so, the lawn mower cutting vegetation or Continue to walk, if not, the step of adjusting the sensor downward by a specific distance comprises: comparing a frequency value of the initial signal with a preset frequency threshold, and determining whether a frequency value of the initial signal is less than the frequency threshold, If so, the sensor detects vegetation, and if not, the sensor does not detect vegetation.
  • the parameter value of the signal of the sensor is compared with the parameter a threshold value, determining, according to the result of the comparison, whether the sensor detects vegetation, and if so, the lawn mower cuts the vegetation or continues to walk, and if not, adjusts the sensor downward by a specific distance to output the sensor
  • the step of height value includes: comparing a frequency value of the signal of the sensor with a preset frequency threshold, determining whether a frequency value of the signal of the sensor is less than the frequency threshold, and if yes, detecting the vegetation, if not , the sensor does not detect vegetation.
  • a lawn mower includes a housing, a cutting module, a moving module, and a control module, wherein the control module is configured to control the working of the cutting module, and further includes:
  • a sensor comprising a first plate and a second plate
  • a signal processing circuit having an input end and an output end, wherein the input end is connected to the sensor, and the output end is connected to the control device;
  • the control module issues a control command to the cutting module according to a change in capacitance value between the first plate and the second plate detected by the signal processing circuit.
  • an electric field pressing against the grass is formed between the first plate and the second plate on the sensor, and when the height of the grass changes, the height change can be detected in time, thereby improving the sensitivity.
  • the first plate and the second plate are in the same plane.
  • the first plate and the second plate are each arranged in a horizontal direction.
  • the senor is provided with one or more, the one or more sensors collectively forming a sensing area in a width direction of the lawn mower, the sensing area having a width greater than or equal to the The cutting mechanism cuts the diameter.
  • control module controls the cutting module to perform a cutting operation when the control module determines that the grass height is greater than a preset height according to the change in capacitance.
  • the first plate is connected to an input end of the signal processing circuit, the second plate is connected to a common ground of the signal processing circuit; or the first plate is A common ground terminal of the signal processing circuit is coupled, and the second plate is coupled to an input of the signal processing circuit.
  • the signal processing circuit includes a Schmitt trigger, and the first or second plate is coupled to the input of the Schmitt trigger.
  • the first plate has two, respectively located on two sides of the second plate, and the two first plates are connected by wires; or the first plate and the first plate There are one set of two plates, and the two are arranged side by side.
  • the first plate and the second plate are further disposed on a side opposite to the grass.
  • an insulating spacer is disposed between the first and second plates and the shield, and the insulating spacer is provided with a channel for placing the voltage follower.
  • the senor is mounted to the housing and the height on the housing is adjustable.
  • the senor further includes a support plate coupled to the housing, the first and second plates being arranged side by side on the support plate.
  • the senor is disposed on both sides of the cutting module.
  • control module is further configured to control the moving module, and the control module moves to the mobile according to a change in a capacitance value between the first plate and the second plate detected by the signal processing circuit.
  • the module issues a control command.
  • a lawn mower comprising a housing and a sensor module, the sensor module being disposed on the housing, further comprising a roller, the roller being adjacent to a bottom of the housing and disposed at a bottom of the housing or
  • the sensor module includes at least one probe disposed on the roller for sensing the grass.
  • the probe since the probe is arranged on the roller, if the roller is in contact with the grass, the roller rotates while the lawn mower is traveling, and the friction between the roller and the grass is rolling friction, which can reduce friction between the probe and the grass, thereby reducing The resistance of the lawn mower reduces the energy consumption of the lawn mower and improves the mowing efficiency.
  • the roller is a two-layer structure comprising an inner layer and an outer layer, the inner layer being provided with the probe, and the outer layer being a protective layer.
  • the inner layer is a metal layer that acts as the probe.
  • the outer layer is made of plastic.
  • the roller is suspended from the bottom of the housing.
  • the roller is a universal wheel.
  • the bearing is disposed on the housing, a central axis of the bearing is perpendicular to a bottom of the housing; one end of the connecting shaft is connected to the bearing, and One end is coupled to the roller, and the roller, along with the connecting shaft, is rotatable about a central axis of the bearing.
  • the lawn mower further includes a control module disposed on the housing; the sensor module further includes a signal processing circuit, an input of the signal processing circuit The terminal is electrically connected to the probe, and an output of the signal processing circuit is electrically connected to an input of the control module.
  • the signal processing circuit includes a Schmitt trigger, an input of the Schmitt trigger is coupled to the probe, and an output of the Schmitt trigger is coupled to the control module Input.
  • the sensor module is a capacitive sensor and the probe is a pole piece of the capacitive sensor.
  • At least one main traveling wheel is further disposed, the main traveling wheel is disposed at a bottom of the casing, and the roller is disposed in front of and/or behind the traveling direction of the main traveling wheel.
  • the invention has the beneficial effects of improving the sensitivity of the capacitive sensor, making the automatic mower more accurate in judging the grassland and the non-grass, and ensuring the safety of the automatic mower.
  • FIG. 1 is a schematic structural view of an automatic lawn mower according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a capacitance sensor according to a first embodiment of the present invention
  • 3(a) and 3(b) are schematic diagrams showing the detection of the capacitance sensor according to the first embodiment of the present invention.
  • 4(a) and 4(b) are schematic diagrams showing the structure of a capacitance sensor according to a second embodiment of the present invention.
  • 4(c) and 5 are schematic diagrams showing the detection of a capacitive sensor according to a second embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a capacitance sensor according to a third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a capacitance sensor according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a capacitance sensor according to a fifth embodiment of the present invention.
  • Figure 9 is a cross-sectional view of the lawn mower of the sixth embodiment.
  • Figure 10 is a schematic diagram of a signal processing circuit of the lawn mower of the embodiment shown in Figure 9;
  • FIG. 11 is a schematic diagram of an output signal of a signal processing circuit of the embodiment shown in FIG. 9;
  • Figure 12 is a cross-sectional view showing the sensor connection of the lawn mower of the seventh embodiment
  • Figure 13 is a cross-sectional view showing the adjusting knob and the locking device of the lawn mower of the eighth embodiment
  • Figure 14 is a schematic view showing the connection of the cam and the sensing assembly of the lawn mower of the ninth embodiment
  • Figure 15 is a schematic view showing the connection of the second elastic structure and the sensing assembly of the lawn mower of the tenth embodiment
  • Figure 16 is a schematic view of a sensing assembly of the lawn mower of the eleventh embodiment
  • FIG. 17 is a schematic flow chart of a sensor height control method according to an embodiment
  • FIG. 18 is a schematic flow chart of a sensor height control method according to another embodiment.
  • Figure 19 is a schematic view of a lawn mower of a twelfth embodiment
  • Figure 20 is a schematic diagram of a capacitance sensor of a twelfth embodiment
  • Figure 21 is a schematic view of a capacitance sensor of a twelfth embodiment
  • Figure 22 is a schematic plan view of a capacitance sensor of a twelfth embodiment
  • Figure 23 is a schematic side view of a capacitance sensor of a twelfth embodiment
  • Figure 24 is a schematic view showing another connection mode of the capacitance sensor of the twelfth embodiment
  • Figure 25 is a schematic plan view of a capacitance sensor of a thirteenth embodiment
  • Figure 26 is a schematic side view of a capacitance sensor of a thirteenth embodiment
  • Figure 27 is a schematic diagram of a capacitance sensor of a thirteenth embodiment
  • Figure 29 is a schematic view of a lawn mower of a fourteenth embodiment
  • Figure 30 is a schematic view showing the connection of the roller of the lawn mower shown in Figure 29;
  • Figure 31 is a schematic illustration of the signal processing circuit of the lawn mower shown in Figure 29.
  • the self-moving device is an automatic lawn mower 100.
  • the self-mobile device may also be an unattended device such as an automatic snow sweeper or an automatic vacuum cleaner.
  • 1 is a bottom plan view of the automatic lawn mower 100, that is, a structural view of the automatic lawn mower 100 as seen from below the automatic lawn mower 100.
  • the automatic mower 100 includes a housing 110 , a moving module 130 , a task execution module, an energy module, a control module, and the like.
  • the mobile module 130 , the task execution module , the energy module , and the control module are all mounted on the housing 110 .
  • the housing 110 includes a front end and a rear end in the moving direction of the automatic mower 100.
  • the moving module 130 includes a wheel set that is driven by a drive motor to drive the automatic mower 100 to move.
  • the wheel set includes a front wheel and a rear wheel.
  • the task execution module is a cutting module 120, including a cutting assembly including a blade mounted to the bottom of the housing 110 and driven by a cutting motor to perform a mowing operation.
  • the energy module includes a battery pack that powers the movement and operation of the automatic mower 100.
  • the control module is electrically connected to the mobile module 130, the cutting module 120, and the energy module, and controls the mobile module 130 to drive the automatic mower 100 to move, and controls the cutting module 120 to perform a mowing task.
  • the automatic mower 100 moves and operates in a work area defined by a limit (not shown).
  • the automatic mower 100 includes a limit detection module that detects the automatic mower 100 relative to The positional relationship of the boundaries.
  • the boundary includes the boundary between the grass and the non-grass.
  • the control module determines that the automatic mower 100 is moved from the grass to the non-grass, the control module controls the movement module 130 to drive the automatic mower 100 to retreat or turn into the grass.
  • the limit detection module includes at least one capacitive sensor 150 mounted on the bottom portion 140 of the housing and electrically connected to the control module to detect whether the surface in front of the automatic mower 100 or in the moving direction is a grass to be cut.
  • the capacitive sensor 150 includes a probe 1 , and the probe 1 is fixed to the housing 110 by a screw 2 .
  • the probe 1 includes a detecting surface 5 located on the outer surface of the probe 1, and at least a portion of the detecting surface 5 has a conductivity of 10 -9 s/m or more.
  • the probe 1 includes a plate 3 electrically connected to the control module, and the conductivity of the plate 3 is greater than or equal to 10 -9 s/m.
  • the detecting surface 5 includes the surface of the electrode plate 3.
  • the detecting surface 5 includes a lower surface 7 facing the surface below the automatic mower 100.
  • Capacitive sensor 150 includes a longitudinal axis X extending downwardly from the bottom of housing 110, which also includes a circumferential surface 9 about longitudinal axis X.
  • FIG. 3(a) and (b) are schematic diagrams of the detection of the capacitance sensor 150.
  • the capacitor 1 is formed between the probe 1 and the surface under the automatic mower 100 (hereinafter referred to as the surface).
  • the electrical signal output by the capacitive sensor 150 is related to the medium between the two poles of the capacitor C1.
  • the control module can determine whether the surface under the probe 1 is a grass according to the difference of the electrical signals output by the capacitance sensor 150.
  • the inverter is connected to the output end of the capacitive sensor 150, and the two ends of the inverter always have different potentials.
  • the capacitance sensor 150 is discharged.
  • the capacitance sensor 150 is charged, thereby forming a charge and discharge cycle in the circuit, and the capacitance sensor 150 outputs as shown in FIG. 3(a).
  • the capacitance sensor 150 When the surface under the probe 1 is grass, and the surface under the probe 1 is non-grass, the capacitance sensor 150 is charged and discharged at different speeds, so the frequency of the output square wave is different, so that the control module detects the output of the capacitive sensor 150.
  • the wave frequency can determine whether the surface under the probe 1 is grass.
  • Cb is the basic capacitance provided in the circuit
  • C0 is the capacitance between the ground of the board and the ground.
  • the sensitivity of the capacitance sensor 150 is increased by increasing the conductivity of the detecting surface 5.
  • the electrode plate 3 electrically connected to the control module is directly exposed.
  • the conductivity of the electrode plate 3 is greater than or equal to 10 -9 s/m.
  • the electrode plate 3 is a conductor or a semiconductor, and further The plate 3 is a metal plate.
  • the metal plate is directly exposed, which avoids the sensitivity reduction of the capacitive sensor 150 caused by the metal plate being covered by the housing 110 or other structures, thereby ensuring the accuracy of the automatic mower 100 detecting the grassland and non-grass boundaries, and improving the automatic The reliability of the lawn mower 100.
  • the metal plate can also be only partially exposed.
  • the control module includes a signal processing circuit 300, and processes the electrical signal input by the capacitive sensor 150, and further includes a protection circuit 500 electrically connected to the capacitance sensor 150 and the signal processing circuit 300.
  • the protection circuit 500 lowers the value of the electrical signal input by the capacitive sensor 150 such that the value of the electrical signal of the input signal processing circuit 300 remains within the preset range. Specifically, as shown in FIG.
  • the protection circuit 500 includes an ESD protection device.
  • the diode of the protection circuit 500 is turned on, and functions as a shunt. In this way, the current of the input signal processing circuit 300 is limited to a safe preset range without causing damage to the circuit, and the stability of the automatic mower 100 is ensured.
  • the protection circuit 500 can also directly adopt an integrated ESD protection device.
  • the structure of the probe 1 is as shown in FIG. 4(a) or 4(b), and the probe includes a plate 3, which is electrically connected to the control module, and a cladding layer covering the outside of the plate 3.
  • the surface, the outer surface of the cladding layer has a conductivity of 10 -9 s/m or more
  • the detection surface includes the outer surface of the cladding layer.
  • the cladding layer includes an inner layer 17 adjacent to the electrode plate and an outer layer 19 away from the electrode plate.
  • the inner layer 17 has a conductivity of 10 -9 s/m or less
  • the outer layer 19 has a conductivity of 10 -9 s or more. /m.
  • the electrode plate 3 is a metal plate
  • the inner layer 17 of the cladding layer is an insulator (hereinafter also referred to as an insulating spacer layer)
  • the outer layer 19 of the cladding layer is a conductor or a semiconductor, specifically, coated
  • the outer layer 19 of the layer is a metal (hereinafter also referred to as a metal end cap).
  • the detection principle of the capacitance sensor 150 is as shown in FIG. 5.
  • the electrical signals output by the capacitive sensor 150 are different, and the control module can be based on the capacitive sensor. 150 The difference in the output electrical signal determines whether the surface under the probe 1 is a grass.
  • the outer side of the metal plate is covered with a coating layer, and the cladding layer includes an insulating spacer, which can isolate the metal plate from the outside and protect the internal circuit.
  • the outer surface of the cladding layer is made of metal, so that the detection surface 5 has a high electrical conductivity, which ensures that the capacitance sensor 150 has high sensitivity.
  • a capacitor C2 is formed between the metal plate and the metal outer layer of the cladding layer, and the capacitor C1 is connected in series with the capacitor C2.
  • the sensitivity of the capacitance sensor 150 in the first embodiment is higher.
  • the metal outer layer is increased, the sensitivity of the capacitive sensor is improved, and the cladding metal is reduced. The effect of the plates on the sensitivity of the capacitive sensor 150.
  • the detecting surface 5 includes only the lower surface 7 facing the surface, and the lower surface 7 is metal; as shown in FIG. 4( b ), the detecting surface 5 includes a surrounding surface in addition to the lower surface 7 .
  • the face 9, the lower surface 7 and the surrounding surface 9 are both metal.
  • the lower surface 7 is in direct contact with the medium under the probe 1, such as grass, and the conductivity of the lower surface 7 is increased to effectively increase the sensitivity of the capacitive sensor 150.
  • the surrounding surface 9 also plays an important role in increasing the sensitivity of the capacitive sensor 150.
  • the surrounding surface 9 is also in contact with the medium below the probe, especially when the grass is high, the contact area of the medium with the surrounding surface 9 is large.
  • the edge of the capacitor C1 plate is concentrated with a large amount of electric charge, and the arrangement of the surrounding surface 9 can effectively utilize the electric charge accumulated at the edge of the capacitor C1, so that the sensitivity of the capacitance sensor 150 can be improved.
  • the distance between the control plate 3 and the outer layer 19 of the cladding layer is less than or equal to a predetermined distance, so that the metal plate is as close as possible to the metal outer layer, and the sensitivity of the capacitance sensor 150 can be further increased.
  • Fig. 6 is a structural view showing a probe 1 of a third embodiment of the present invention.
  • the probe 1 comprises a plate 3, which is a metal plate, the plate 3 is arranged in a sensor housing 8, and the sensor housing 8 is made of an insulating material.
  • the probe 1 comprises a coating layer covering the plate 3 around the longitudinal axis, and the outer surface of the cladding layer has a conductivity of 10 -9 s/m or more, and specifically, the cladding layer is metal.
  • the detecting surface 5 comprises a surrounding surface 9, ie an outer surface of the cladding.
  • the metal plate faces the surface.
  • the lower surface of the probe 1 is an insulating material, when there is a potential difference between the metal plate and the ground surface, the lower surface of the probe 1 may still induce a charge, and therefore, the probe The lower surface can also be the detection surface 7. That is, in the present embodiment, the detecting surface 5 includes the first portion having a conductivity of 10 -9 s/m or less, that is, the lower surface 7 of the detecting surface 5, and the second portion having a conductivity of 10 -9 s/m or more. The portion, that is, the surrounding surface 9 of the detecting surface 5. It can be understood that in other embodiments, the metal plate may not face the surface, for example, perpendicular to the surface, and the detecting surface is a surrounding surface, or other probe surface that induces electric charge under the action of the metal plate.
  • the sensitivity of the capacitive sensor 150 is also related to the distance between the probe 1 and the surface, in particular, the distance between the end of the probe 1 and the surface. The smaller the distance between the probe 1 and the surface, the higher the sensitivity of the capacitive sensor 150.
  • the sensitivity of the capacitive sensor 150 is related to the distance from the lower surface 7 of the detecting surface 5 to the surface, that is, the distance from the lower surface 7 of the detecting surface 5 to the bottom surface of the wheel. The smaller the distance from the lower surface 7 of the detecting surface 5 to the surface, the higher the sensitivity of the capacitance sensor 150.
  • the lower surface 7 of the detecting surface 5 should be placed as close as possible to the surface, that is, as close as possible to the bottom surface of the wheel set.
  • the detecting surface 5 may come into contact with the ground during the movement of the automatic mower 100, especially when the automatic mower 100 moves on the uneven surface. If the detecting surface 5 contacts the surface, there will be no potential difference between the two poles of the capacitor C1, and the electrical signal output by the capacitive sensor 150 cannot accurately reflect whether the ground is grass or not, so that the automatic mower 100 cannot work safely.
  • the probe 1 is directly in contact with the ground surface, which may cause damage to the probe 1. In particular, when the automatic mower 100 collides, when the probe 1 collides with the ground surface, the probe 1 is subjected to impact damage.
  • the lower surface 7 of the control detecting surface 5 is higher than the bottom surface of the wheel set, and the distance from the bottom surface of the wheel set is greater than or equal to 10 mm. , less than or equal to 50mm.
  • the distance between the lower surface 7 of the detecting surface 5 and the bottom surface of the wheel set it is also possible to control the distance between the lower surface 7 of the detecting surface 5 and the bottom surface of the wheel set to be 15 mm or 20 mm or more.
  • the distance between the lower surface 7 of the detecting surface 5 and the bottom surface of the wheel group is 40 mm, 30 mm or the like.
  • the distance between the control probe 1 and the ground surface is smaller than the distance between the end of the cutting module 120 (ie, the end of the blade) and the ground surface. That is, in the height direction, the end of the probe 1 is lower than the cutting plane.
  • the capacitive sensor in order to avoid damage to the probe 1 and the ground surface, and to increase the sensitivity of the capacitance sensor 150 as much as possible, the distance between the control probe 1 and the bottom surface of the wheel set is adjustable.
  • the capacitive sensor includes a connecting portion 14 that connects the probe 1 and the housing 110 , and the connecting portion 14 can drive the probe 1 to move relative to the housing 110 .
  • the connecting portion 14 can drive the probe 1 to move in the height direction with respect to the housing 110.
  • the connecting portion 14 is made of a flexible material, and specifically, the connecting portion 14 is made of rubber.
  • the connecting portion 14 When the probe 1 is subjected to the upward force in the height direction, for example, when the probe 1 is in contact with the ground surface, the connecting portion 14 is contracted upward, and the probe 1 is moved upward to make the probe 1 away from the surface; when the probe 1 is no longer subjected to the force of the surface
  • the connecting portion 14 is under the action of its own elasticity
  • the downward extension causes the probe 1 to move downward, so that the probe 1 and the ground surface are restored to a smaller distance. In this way, the probe 1 can be kept at a small distance from the ground surface at all times, thereby ensuring that the capacitance sensor 150 has high sensitivity, and the damage of the probe 1 caused by the collision of the probe 1 with the ground surface is avoided.
  • the connecting portion 14 can also drive the probe 1 to swing in the horizontal direction with respect to the housing 110.
  • the probe 1 comes into contact with the ground surface, and at this time, the probe 1 may receive a force in the horizontal direction in addition to the force in the height direction.
  • the connecting portion 14 has flexibility, when the probe 1 receives a force in the horizontal direction, one end of the connecting portion 14 connected to the probe 1 will be horizontally offset with respect to one end of the connecting housing 110, that is, the connecting portion 14 drives the probe 1 relative to each other.
  • the housing 110 is yawed in the horizontal direction.
  • the connecting portion 14 When the probe 1 is no longer subjected to the contact force of the ground surface, the connecting portion 14 returns to its original shape under the action of its own elastic force, and the probe 1 is restored to the original position relative to the housing 110. Therefore, when the probe 1 comes into contact with the ground surface, the probe 1 assumes a state of being swung in the horizontal direction with respect to the housing 110. The connecting portion 14 drives the probe 1 to swing in the horizontal direction with respect to the housing 110, thereby preventing the probe 1 from rubbing against the ground when the probe 1 comes into contact with the ground surface, thereby causing damage to the probe 1.
  • the connecting portion 14 includes a through hole along the longitudinal axis X through which the wires 13 electrically connected to the probe 1 and the control module pass. Since the connecting portion 14 has flexibility, when the probe 1 comes into contact with the ground surface, the connecting portion 14 can absorb the vibration caused by the collision, thereby protecting the circuit.
  • the automatic mower 100 can be kept in contact with the grass when the lawn mower 100 moves on the grass, that is, the detecting surface 5 is in contact with the grass. That is to say, the distance between the probe 1 and the ground surface is smaller than the height of the medium (ie grass) on the work plane (lawn). It has been tested that when the detecting surface 5 is in contact with the grass, the electrical signal output by the capacitive sensor 150 has a more significant change than the electrical signal output by the capacitive sensor 150 when the probe 1 is non-grassed.
  • the detecting surface 5 is in contact with the grass, and the charging and discharging speed of the capacitance sensor 150 is slower than that of the detecting surface 5 without contacting the grass. Therefore, enabling the probe 1 to be in contact with the grass will make the capacitive sensor 150 more sensitive to the detection of grass.
  • the capacitive sensor 150 can also utilize other height adjustment structures to adjust the height of the probe 1 relative to the housing 110, as will be described later.
  • the sensitivity of the capacitive sensor 150 is also related to the surface area of the probe, and specifically, to the area of the detecting surface 5.
  • the detecting surface 5 includes a lower surface 7 and a surrounding surface 9, and the area of the detecting surface 5 is 28 cm 2 or more .
  • the area of the detecting surface 5, that is, the area of the metal plate, and the area of the metal plate is 28 cm 2 or more .
  • the area of the control metal plate is 28 cm 2 or more .
  • the probe 1 in order to increase the area of the detecting surface 5 as much as possible, the probe 1 includes a concave-convex surface, and the detecting surface 5 includes the surface of the uneven surface. Specifically, the lower surface of the detecting surface 5 is wavy, so that the area of the detecting surface 5 can be further increased without increasing the diameter of the probe 1 to improve the sensitivity.
  • the probe 1 includes a plurality of teeth extending downward in the height direction, and the detecting surface 5 includes the surface of the teeth.
  • the detecting surface 5 includes a side surface 10 perpendicular to the working surface of the automatic lawn mower 100, and the electric conductivity of the side surface 10 is greater than or equal to 10 -9 s/m.
  • the detecting surface 5 extends in the height direction, the surface of the tooth can be used as the detecting surface 5, and the probe 1 can include a plurality of teeth, thus greatly increasing the area of the detecting surface 5.
  • the probe 1 is formed in a comb shape, and a gap for the grass to leak is formed between the adjacent teeth, so that the detecting surface 5 can be in full contact with the grass, and the cutting module 120 is not affected to perform the cutting task.
  • the gap between adjacent teeth faces the moving direction of the automatic mower 100, that is, the side surface 10 of the detecting surface 5 is parallel to the moving direction of the automatic mower 100, so that the automatic mower 100 When moving, the grass can better leak through the gap between adjacent teeth.
  • the teeth may not be perpendicular to the working surface of the automatic mower 100, but may be inclined with respect to the working surface of the automatic mower 100 by a predetermined angle, that is, the side 10 of the detecting surface 5 is opposite to The working surface of the automatic mower 100 is tilted by a predetermined angle.
  • the bottom of the housing 110 is opposite to the top and the side of the housing 110, and refers to the portion of the housing 110 facing the surface, which is not limited by height.
  • the lower surface 7 of the detection surface 5 can also be a curved surface, such as a spherical probe.
  • the capacitive sensor 150 is also capable of detecting the cut grass and the uncut grass. For example, depending on the ratio of air to grass in the medium under the probe 1, or depending on whether the grass is in contact with the detecting surface 5, the probe 1 can be made slightly higher than the cutting blade.
  • At least one of the capacitive sensors is disposed at a front end or a rear end of the housing.
  • the wheel set includes a front wheel and a rear wheel, at least one of which is disposed on a front side of the front wheel or on a rear side of the rear wheel.
  • the wheel set includes a front wheel and a rear wheel, and at least one of the capacitive sensors is provided Placed between the front side of the front wheel and the rear side of the rear wheel.
  • At least two sets of capacitive sensors are included, each disposed on either side of the housing.
  • FIG. 4(a) is a cross-sectional view of the capacitive sensor 150.
  • a capacitive sensor 150 includes a plate 3, an end cap (ie, a cladding outer layer 19), and an insulating spacer (ie, a cladding inner layer 17).
  • the end cover is disposed outside the electrode plate 3, and the end cover is used to protect the electrode plate 3, thereby preventing the electrode plate 3 from being damaged by impact or friction.
  • the end cover is made of a conductive material, and the insulating spacer is disposed between the electrode plate 3 and the end cover.
  • the plate 3 When the capacitive sensor 150 is in operation, the plate 3 propagates an electric field to the object to be detected to detect the object to be detected. Since the end cover is a conductor and the electrical conductivity is high, the end cover is favorable for the electric field propagation of the plate 3, and the sensitivity of the capacitance sensor 150 is effectively enhanced, so that the detection effect of the capacitance sensor 150 is better.
  • the object to be detected is exemplified by vegetation.
  • the plate 3 serves as an electrode of the capacitance sensor 150 for detecting vegetation, and the earth is used as the other electrode of the capacitance sensor 150.
  • the plate 3 and the ground can constitute a capacitance sensor, which is simple and cost-effective.
  • the electrode plate 3 is a thin metal plate, so that the detection range of the electrode plate 3 is larger.
  • the end cap is disposed on the outer side of the plate 3, that is, the end cap is disposed on the side of the plate 3 facing the vegetation.
  • the material of the end cap may be a conductive material such as a metal, a conductive alloy or a superconducting material.
  • the end cap is a metal end cap, the metal has a small electrical resistivity, and the electrical conductivity is large, that is, the metal has good electrical conductivity, so the metal end cap is more favorable for the electric field propagation of the plate 3 to the vegetation direction.
  • the insulating spacer insulates between the plate 3 and the end cap.
  • the end cap is exposed to the external environment. Since the end cap is made of a conductive material, it is easy to conduct static electricity in the external environment, so the insulating spacer is used to protect the electrode plate 3 from external static electricity.
  • the insulating spacer is a thin insulating layer, for example, the thickness of the insulating spacer is on the order of micrometer, so that the insulating spacer is not affected by external static electricity while the protective interlayer is not affected, and does not affect between the plate 3 and the vegetation. Electric field propagation.
  • the material of the insulating spacer is an insulating plastic or an insulating rubber, so that the electrode plate 3 is electrically insulated from the external environment.
  • the material of the insulating spacer is not limited thereto, and may be other insulating materials.
  • the capacitance sensor 150 may further include a substrate 21 disposed on the other side of the electrode plate 3, the electrode plate 3 being embedded on the substrate 21, and the substrate 21 for fixing the electrode plate 3. This makes the setting of the plate 3 more stable.
  • the capacitance sensor 150 in this embodiment viewed from the substrate 21 toward the end cover, is a substrate 21, a plate 3, an insulating spacer, and an end cap. Wherein the substrate 21, the plate 3 and the insulating spacer are parallel to each other, And stacked together to make the structure compact.
  • the capacitance sensor 150 may further include a wire 13 and a fixing structure 23, and the wire 13 is connected to the electrode plate 3 through the substrate 21. That is, the substrate 21 is provided with a through hole adapted to the wire 13, and one end of the wire 13 passes through the through hole. The hole is connected to the plate 3 and the other end is led away from the end cap to connect the circuit of the capacitive sensor 150.
  • the fixing structure 23 surrounds the wire 13, and the fixing structure 23 abuts against the substrate 21, and the fixing structure 23 is used to fix the wire 13. This can define the position of the wire 13 near the portion of the plate 3.
  • the material of the fixing structure 23 is a sponge. Since the sponge has elasticity, the wire 13 can move relative to the fixed structure 23, and when the capacitive sensor 150 is accidentally collided, the wire 13 is not easily broken.
  • the capacitive sensor 150 may further include a sensor housing 25 having a cylindrical shape, a sidewall of the sensor housing 25 defining an inner cavity, a fixing structure 23 and a substrate 21 disposed in the inner cavity, and the substrate 21 being perpendicular to the sensor housing
  • the central axis of the body 25, the fixing structure 23 and the substrate 21 abut against the side wall of the sensor housing 25, the side walls of the sensor housing 25 and the end cover are mated together, and the sensor housing 25, the fixing structure 23 and the end cover are fitted Protect the plates 3 together.
  • the sensor housing 25, the fixing structure 23 and the end cover together can seal the electrode plate 3 inside the capacitance sensor 150, preventing the electrode plate 3 from being collided in various directions, and protecting the electrode plate 3.
  • the fixing structure 23 of the sponge and the substrate 21 are filled together with the inner cavity of the sensor housing 25, and the end cover is mated from the bottom of the sensor housing 25 to the side wall of the sensor housing 25. Moreover, the end cover is tightly coupled with the side wall of the sensor housing 25, between the end cover and the insulating spacer, and between the insulating spacer and the electrode plate 3, so that the arrangement of the electrode plate 3 is stronger.
  • the end cover is a circular cover, and the end cover includes a flange 27 disposed on a side of the end cover facing the sensor housing 25, and the flange 27 surrounds the side wall of the sensor housing 25.
  • the flange 27 is threadedly coupled to the side wall of the sensor housing 25. In this way, the end cover and the side wall of the sensor housing 25 are screwed together to achieve connection, and the installation is simple.
  • the end cover is detachably connected with the side wall of the sensor housing 25 to facilitate the maintenance of the electrode plate 3. Further, since the end cap is made of a metal material, wear resistance is better, and therefore, the metal flange 27 can protect the sensor housing 25 from the side of the sensor housing 25.
  • a metal flange 27 is disposed on the side of the sensor housing 25, which facilitates the electric field of the electrode plate 3 radiating outward from the sidewall of the sensor housing 25, and can identify the vegetation located on the side of the sensor housing 25, further improving the capacitance sensor 150. Sensitivity.
  • the capacitive sensor 150 includes a plate 3, an end cap, and an insulating spacer.
  • the end cap is flat.
  • the capacitive sensor 150 also includes a sensor housing 25 to which the side walls of the sensor housing 25 are connected by screws. Thus, the side wall of the sensor housing 25 is simply connected to the end cover, and the end cover is The flat shape makes the production process simple and saves costs.
  • FIG. 4(c) is a schematic diagram of the detection of the capacitance sensor of the second embodiment.
  • the input of signal processing circuit 160 is coupled to plate 3; the input of processor 170 is coupled to the output of signal processing circuit 160.
  • the plate 3 In the operational state of the capacitive sensor 150, the plate 3 propagates an electric field to the vegetation to detect vegetation.
  • the end cover is located between the plate 3 and the vegetation. Since the end cover is a conductive material, the electrical conductivity is high, and the end cover is favorable for the electric field propagation of the plate 3, thereby effectively enhancing the sensitivity of the capacitance sensor 150, so that the capacitance sensor 150 detects the vegetation. it is good.
  • the plate 3 transmits the signal for detecting the vegetation to the processor 170 via the signal processing circuit 160, and the automatic mower 100 can perform the work task according to the condition that the plate 3 detects the vegetation, so that the effect of cutting the vegetation is better.
  • the plate 3 serves as one electrode of the capacitance sensor 150, and the earth acts as the other electrode of the capacitance sensor 150, and detects the state of the grass by detecting a change in capacitance between the electrode plate 3 and the ground.
  • the signal processing circuit 160 outputs a square wave based on the signal transmitted by the capacitance sensor 150.
  • the dielectric constant between the plate 3 and the surface becomes large, the capacitance between the plate 3 and the earth increases, and the square wave frequency outputted by the signal processing circuit 160 decreases.
  • the processor 170 can control the operating state of the automatic mower 100 based on the square wave frequency of the output of the signal processing circuit 160 to determine the vegetation condition.
  • the output signal of the signal processing circuit 160 is not limited thereto, and may be other signal forms, for example, level change, as long as the capacitance sensor 150 detects the grass.
  • the signal processing circuit 160 includes a Schmitt trigger ST, the input of which is connected to the plate 3, and the output of the Schmitt trigger ST is connected to the input of the processor 170.
  • the output signal of the Schmitt trigger ST changes, enabling the automatic mower 100 to automatically recognize the vegetation.
  • the signal processing circuit 160 further includes a base capacitor and a resistor R. One end of the base capacitor is connected to the input end of the Schmitt trigger ST, and the other end is grounded. Both ends of the resistor R are coupled between the input end and the output end of the Schmitt trigger ST.
  • the signal processing circuit 160 further includes a power source Vcc and a filter capacitor.
  • the power supply Vcc is connected to the power supply end of the Schmitt trigger ST for supplying operating power to the Schmitt trigger ST.
  • the filter capacitor is connected to the power supply of the Schmitt trigger ST Between the terminal and the ground, there is a voltage stabilizing function for stably connecting the power supply voltage of the Schmitt trigger ST, so that the Schmitt trigger ST works stably.
  • the number of the capacitive sensors 150 is one or more, the number of the signal processing circuits 160 is one or more, the number of the signal processing circuits 160 is the same as the number of the capacitive sensors 150, and each of the capacitive sensors 150 is connected to a signal processing circuit 160. This can prevent interference between the plurality of signal processing circuits 160, and cause the processor 170 to accurately determine the condition in which the capacitive sensor 150 detects vegetation, thereby enabling the automatic mower 100 to accurately perform the cutting task.
  • the number of capacitive sensors 150 is two. To accurately detect vegetation.
  • the capacitance sensor of the conventional automatic lawn mower is fixed to the casing, and the height cannot be adjusted. Since the capacitive sensor contacts the grass, the grass recognition accuracy is increased, so when the grass is short, the capacitance sensor is When it is high, the automatic mower is prone to misjudgment and does not cut grass. In addition, due to the high capacitance sensor, the automatic mower does not recognize the grass in the current short grass area, that is, the automatic mower determines that there is no grass in the local area. At this time, even if there is a high grass area behind the short grass area, the automatic mower also It will not walk through the current dwarf grass area to the high grass area, that is, the phenomenon of “short grass trapping” appears. As a result, the trimmed lawn is not trimmed, and the conventional automatic lawn mower is less efficient.
  • the capacitance sensor is fixed to the casing and the height cannot be adjusted.
  • the height of the capacitance sensor can be adjusted relative to the ground, and the capacitance sensor can be adjusted according to the height of the grass to be cut. Height, reduce the misjudgment of the machine without cutting the grass, so that the effect of trimming the grass is ideal and the work efficiency is improved.
  • FIG. 9 is a cross-sectional view of the automatic lawn mower of the embodiment
  • FIG. 10 is a schematic diagram of a signal processing circuit of the automatic lawn mower of the embodiment
  • FIG. 11 is a signal processing circuit of the embodiment. Schematic diagram of the output signal.
  • the normal traveling direction of the automatic mower is defined as the front of the automatic mower, and the side opposite to the front is the rear of the mower.
  • an automatic lawn mower is used to cut vegetation on a work surface.
  • the automatic mower includes a housing and a sensing assembly 312.
  • the sensing component 312 is disposed on the housing, and the sensing component 312 includes a capacitive sensor (hereinafter referred to as a sensor).
  • the height of the sensor relative to the working surface can be adjusted for sensing vegetation.
  • the automatic mower further includes a cutting blade 314 disposed in the housing, the height of the cutting blade 314 being adjustable relative to the working surface, and the cutting blade 314 for cutting vegetation.
  • the working surface is the ground.
  • the worksheet The surface can also be the surface of a building or the like.
  • the sensing assembly 312 and the cutting blade 314 are capable of simultaneously adjusting the height relative to the working surface. It should be noted that in other embodiments, the cutter head 314 can also individually adjust the height of the opposing work surface.
  • the automatic lawn mower further includes a rotating assembly 310, the rotating assembly 310 is rotatable, and the rotating assembly 310 has a first side wall 316 perpendicular to the working surface, the surface of the first side wall 316 is provided with rotating teeth 318; the sensing assembly 312 has The second side wall 322 is perpendicular to the second side wall 322 of the working surface.
  • the second side wall 322 is provided with a rotating thread 324 opposite to the surface of the first side wall 316.
  • the rotating thread 324 is engaged with the rotating tooth 318, and the sensor is disposed on the second side wall 322.
  • the sensing component 312 moves relative to the working surface as the rotating component 310 rotates.
  • the rotating assembly 310 includes a transverse link 328 that is parallel to the working surface and a transverse link 328 that is coupled to the first side wall 316.
  • the rotating assembly 310 can be rotated to subsequently move the sensing assembly 312 up and down.
  • the rotation of the rotating assembly 310 can be driven by manual, automatic, or manual and automatic combination.
  • the lawn mower in this embodiment drives the rotation assembly 310 to rotate in an automatic manner by the height adjustment motor 330.
  • the height adjustment motor 330 has a first output shaft 332, and the rotation assembly 310 is disposed on the first output shaft 332 to raise the motor 330.
  • the rotation of the rotating assembly 310 can be rotated by the first output shaft 332.
  • the step-up motor 330 is located above the rotating assembly 310, and the first output shaft 332 is coupled to the center of the transverse link 328.
  • the rotation of the first output shaft 332 can be driven by the driving of the height adjusting motor 330.
  • the rotating assembly 310 rotates.
  • the step-up motor 330 is a stepping motor, and the stepping motor converts the electric pulse signal into an angular displacement.
  • the stepping motor receives a pulse signal, the stepping motor rotates the corresponding angle according to the set direction.
  • the rotating assembly 310 is thereby driven to rotate by a corresponding angle.
  • the sensing assembly 312 has a second side wall 322 that is perpendicular to the working surface, the sensor is disposed on the second side wall 322, and the probe of the sensor faces the working surface for sensing vegetation.
  • the second sidewall 322 is disposed opposite the first sidewall 316, and the second sidewall 322 and the first sidewall 316 are both perpendicular to the working surface.
  • a rotating thread 324 is disposed on a surface of the second side wall 322 with respect to one side of the rotating tooth 318, and the rotating thread 324 is engaged with the rotating tooth 318.
  • the rotating assembly 310 and the sensing assembly 312 are subjected to relative circular motion and up and down motion. In this embodiment, since the rotating component 310 remains fixed in the height direction, when the rotating component 310 is driven to rotate, the rotating component 310 performs a circular motion, and the sensing component 312 moves up and down to facilitate the sensor to sense the vegetation. .
  • the sensor itself can also telescope.
  • the sensor is made of an elastic material, and the sensor is free to adjust its height relative to the working surface depending on the height of the vegetation.
  • the sensor is stretched due to its own gravity and can approach the vegetation.
  • the vegetation gives the sensor upward force, compressing the sensor, and the sensor is higher relative to the working surface. In this way, the sensor can freely adjust the height of its relative working surface according to the height of the vegetation, and the automatic mower can effectively identify and cut the vegetation.
  • the circular motion of the rotating tooth 318 relative to the rotating thread 324 is adopted, thereby driving the sensing component 312 to move up and down.
  • the sensing assembly 312 can be moved up and down relative to the work surface in other manners, such as with other mechanical structures or automated control structures.
  • the rotating teeth 318 may be located on a surface of the first side wall 316 away from the rotating shaft side of the rotating assembly 310, or may be located at a rotation of the first side wall 316 near the rotating assembly 310.
  • the rotating thread 324 may be located on a surface of the second side wall 322 away from the rotating shaft side of the rotating assembly 310, or may be located on a surface of the second side wall 322 near the rotating shaft side of the rotating assembly 310 as long as the two can be engaged.
  • the second sidewall 322 is located on a side of the first sidewall 316 adjacent to the rotating shaft of the rotating component 310, opposite to the first sidewall 316, and the surface of the second sidewall 322 is provided with a rotating thread 324. That is, the rotating thread 324 is located on a surface of the second side wall 322 away from the rotating shaft of the rotating assembly 310, the rotating thread 324 is engaged with the rotating tooth 318, and the rotating tooth 318 is circumferentially rotated along the rotating thread 324, and the rotating tooth 318 The height is fixed so that the sensing assembly 312 is driven to move up and down.
  • the second sidewall 322 may also be located on a side of the first sidewall 316 away from the rotation axis of the rotating component 310, and the rotating thread 324 is located on the second sidewall 322 adjacent to the rotating component 310.
  • the surface of one side of the rotating shaft, and the rotating tooth 318 is located on a surface of the first side wall 316 away from the rotating shaft of the rotating assembly 310, and meshes with the rotating thread 324, thereby also enabling the rotating assembly 310 to rotate along The threads 324 rotate to drive the sensing assembly 312 up and down.
  • the sensing component 312 further includes a sensor connecting rod 334.
  • the sensor connecting rod 334 is connected to the second sidewall 322 and located under the second sidewall 322.
  • the sensor is disposed on the sensor connecting rod 334 and faces the working surface.
  • the connection between the sensor and the sensor connecting rod 334 may be a fixed connection or a detachable connection. In this embodiment, a fixed connection is adopted, and the sensor moves up and down correspondingly as the sensing assembly 312 moves up and down. .
  • the automatic lawn mower of this embodiment further includes a cutting motor 338 located on the side of the cutting blade 314 away from the working surface, and the cutting motor 338 provides power for the cutting blade 314 to operate.
  • the automatic lawn mower in this embodiment further includes a motor box (not shown), the motor box is sleeved on the outer side of the cutting motor 338, and is located on a side of the cutting blade 314 away from the working surface, and the second side wall 322 is a motor box. Side wall.
  • the electric chassis gives a sufficient working space for the cutting motor 338, so that the cutting motor 338 does not interfere with other parts of the automatic mower when working, and the side wall of the motor box serves as the second side wall of the sensing assembly. It can reduce the weight of the automatic mower and save the space occupied by the parts of the automatic mower.
  • the cutting motor 338 is located at the bottom of the motor box, and the cutting motor 338 housing, the motor box bottom and the sensor connecting rod 334 are fixed together by screws, and the three are moved up and down together.
  • the automatic mower also includes a position sensor (not shown) on a surface of the second side wall 322 away from the side of the rotating shaft of the rotating assembly 310.
  • the position sensor is used to sense the height of the motor box from the work surface. In this way, when the motor box is lowered to the minimum height or the maximum height to the cutting motor 38 and the sensor connecting rod 334, the position sensor can timely feed back the height information to the automatic lawn mower, so that the height adjusting motor 330 stops working in time to avoid energy. Waste, while preventing damage to the motor 330 and the rotating assembly 310.
  • the cutting motor 338 has a rotatable output shaft 340.
  • the cutting blade 314 is fixedly coupled to the output shaft 340.
  • the cutting blade 314 rotates with the rotation of the output shaft 340, and is driven by the cutting motor 338 through the output shaft 340.
  • the cutting blade 314 performs a cutting vegetation operation.
  • the rotating assembly 310 and the cutting blade 314 are rotated about the same axis. Further, the first output shaft 332, the central axis of the motor box, the central axis of the cutting motor 338, and the rotating shaft of the cutting blade 314 can be overlapped, so that the center of the automatic lawn mower can be stable when the grass is mowing and the grass is evenly cut.
  • the automatic lawn mower of this embodiment further includes a casing 342 for arranging the components of the above-mentioned automatic lawn mower.
  • the inside of the casing 342 is an elevation motor 330, a rotating component 310, a sensing component 312, a cutting motor 338, and a cutting blade.
  • the setting of components such as 314 provides enough space.
  • the automatic mower also includes a walking assembly (not shown) that includes at least one wheel that is located forward or rearward of the walking direction of the walking assembly.
  • the walking assembly in this embodiment includes a front wheel (not shown) and two rear wheels 344, wherein the front wheel is a support wheel, and the two rear wheels 344 are placed in parallel as a driving wheel, located behind the automatic lawn mower.
  • the automatic lawn mower is driven by the drive wheel.
  • the sensor is disposed in front of the front wheel, or the sensor is disposed behind one of the rear wheels 344, and the sensor may be disposed between the two rear wheels 344 and other positions.
  • the number of sensors can be more Multiple sensors are evenly distributed around the periphery of all the wheels.
  • the automatic lawn mower in this embodiment further includes a control device (not shown) located on the outer casing 342 and electrically connected to the cutting motor 338, the sensor and the height adjusting motor 330 for controlling the operation of the automatic lawn mower and controlling the adjustment.
  • a control device located on the outer casing 342 and electrically connected to the cutting motor 338, the sensor and the height adjusting motor 330 for controlling the operation of the automatic lawn mower and controlling the adjustment.
  • the operation of components such as high motor 330, cutting motor 338, and sensors.
  • FIG. 10 is a schematic diagram of a signal processing circuit of the automatic lawn mower according to the embodiment.
  • the signal processing circuit includes a Schmitt trigger 348, an input capacitor 350, and a resistor 352.
  • the input of the Schmitt trigger 348 is coupled to the probe 346 of the sensor, and the output of the Schmitt trigger 348 (i.e., the output of the signal processing circuit) is coupled to the control device.
  • the sensor is a capacitive sensor, the capacitive sensor includes a detecting electrode, the detecting electrode is used to sense vegetation, and the height of the detecting electrode relative to the working surface can be adjusted.
  • the sensor also includes a reference electrode opposite the detection electrode. The detection electrode is close to the working surface, and the capacitance of the capacitance sensor changes when the vegetation approaches the detection electrode.
  • the probe 346 serves as a detection electrode of the capacitance sensor, and the reference electrode is a circuit ground or a ground of the signal processing circuit. In the two cases where the probe 346 senses vegetation or does not sense vegetation, the capacitance values of the capacitance sensors are different, and the parameter values of the output signals of the signal processing circuits are also different.
  • FIG. 11 is a schematic diagram of the output signal of the signal processing circuit of the embodiment.
  • the signal processing circuit outputs a square wave signal, and when the probe 346 does not sense the vegetation, the frequency of the square wave signal is large and the period is small.
  • the control device can determine whether the probe 346 recognizes the vegetation. If the probe 346 identifies the vegetation, the control device controls the automatic mower to cut the vegetation or continue walking.
  • the control device controls the height adjustment motor 330 to adjust the height of the sensor assembly 312 relative to the vegetation, thereby adjusting the height of the sensor relative to the vegetation, and the height of the probe 346 relative to the vegetation is also adjusted accordingly, so that the speed can be quickly and sensitively Identify vegetation and increase work efficiency.
  • the output signal of the signal processing circuit is not limited thereto.
  • the output signal of the signal processing circuit can also be other signals, for example. Such as the level signal, as long as it can indicate whether the probe 346 senses the vegetation.
  • the above automatic mower can automatically adjust the height of the sensor relative to the working surface, so that the user can adjust the height of the sensor according to the height of the vegetation.
  • the height of the sensor is lowered, and the automatic mower can recognize the vegetation.
  • the misjudgment is generated, thereby starting the cutting cutter to cut the vegetation, and the vegetation that should be trimmed is not missed, the cutting effect is good, and the cutting efficiency is high.
  • the height of the entire sensing component relative to the working surface can be adjusted, and only the height of the sensor relative to the working surface can be adjusted.
  • the adjustment of the sensing component and the single sensor can also be combined with each other to facilitate Cutting vegetation.
  • FIG. 12 is a cross-sectional view showing the connection of the sensor 362 of the automatic lawn mower of the embodiment.
  • the automatic lawn mower includes a housing and a sensing assembly (not shown), and their arrangement and connection relationship can be referred to the sixth embodiment.
  • the sensing assembly of the present embodiment further includes a sensor connecting rod (not shown), the sensor 362 is disposed on the sensor connecting rod, and the sensor 362 and the sensor connecting rod are screwed, and the sensor 362 and the sensor connecting rod are Adjustable connection method.
  • the sensor connecting rod is provided with an extended end (not shown) facing the working surface
  • the sensor 362 is internally provided with an internal thread 364
  • the protruding end is provided with an adjusting stud 366 at an end near the working surface
  • the internal thread 364 In conjunction with the heightening studs 366, the sensor 362 can be coupled to the heightening studs 366 by internal threads 364, and the mating length of the internal threads 364 and the heightening studs 366 can be adjusted.
  • the senor 362 is not provided with the height adjustment stud 366, and the extension end is provided with the internal thread 364, and the sensor 362 and the sensor connection rod can also be realized. Connection, and relative height adjustment.
  • the user can adjust the height of the sensor 362 relative to the working surface by adjusting the length of the internal thread 364 and the height adjustment stud 366 without adjusting the height of the sensing component, thereby achieving manual adjustment of the height of the sensor 362.
  • the specific operation method the user inserts the sensor 362 into the height adjustment stud 366, so that the internal thread 364 of the sensor 362 is matched with the height adjustment stud 366, and the sensor 362 is opposite to the working surface by rotating the sensor 362 from bottom to top counterclockwise. Ascending, rotating the sensor 362 clockwise from top to bottom, the sensor 362 can be lowered relative to the working surface.
  • the automatic mower can include one or more sensors 362.
  • the automatic lawn mower includes four sensors 362 that are uniformly distributed on the sensor connecting rods with equal radius circumferences.
  • the number and position of the sensors 362 are not limited thereto, and the number may also be three, and the triangles are equally distributed.
  • the height of the one or more sensors 362 relative to the vegetation can be adjusted in a targeted manner, so that the automatic mower can simultaneously sense different heights of vegetation in different regions, and expand the sensor. 362 identifies the extent of vegetation.
  • the plurality of sensors 362 can expand the range of the automatic mower to identify the vegetation, and the height of each sensor 362 relative to the working surface can be manually adjusted, so that the different sensors 362 have different heights, and the sensor 362 can be fully utilized for identification. Vegetation of different heights in different areas improves the efficiency of automatic mowers.
  • the automatic mower in this embodiment can manually rotate the adjustment assembly to drive the rotation of the rotating assembly to drive the up and down movement of the opposing working surfaces of the sensing assembly.
  • FIG. 13 is a cross-sectional view of the adjusting knob 371 and the locking device 372 of the automatic lawn mower of the embodiment.
  • the automatic lawn mower includes a housing, a sensing assembly (not shown) and a rotating assembly 378, and their arrangement and connection relationship can be referred to the sixth embodiment.
  • the automatic lawn mower of the present embodiment further includes an adjustment assembly 370 disposed on a side of the rotation assembly 378 away from the work surface, and the adjustment assembly 370 includes an adjustment knob 371 and a locking structure 372.
  • the adjustment knob 371 can rotate and can move up and down.
  • the locking structure 372 is disposed between the adjustment knob 371 and the rotation assembly 378, and the locking structure 372 can be rotated with the rotation of the adjustment knob 371.
  • the locking structure 372 is fixedly coupled to the rotation assembly 378.
  • the adjustment knob 371 can be pressed or reset in a direction perpendicular to the work surface.
  • the locking structure 372 includes a first connecting member 3721 and a second connecting member 3722.
  • the first connecting member 3721 is connected to the adjusting knob 371, and the second connecting member 3722 is connected to the rotating assembly 378.
  • the first connecting member 3721 and the first connecting member 3721 The two connecting members 3722 are adapted. When the adjusting knob 371 is pressed, the first connecting member 3721 and the second connecting member 3722 are fixed together.
  • the first connecting member 3721 is provided with protruding hooks 374 at opposite ends of the second connecting member 3722, and corresponding ends of the second connecting member 3722 are provided with hook grooves 376, and the protruding hooks 374 are matched with the hook grooves 376.
  • the protruding hook 374 is fixed with the hook groove 376 to realize that the first connecting member 3721 and the second connecting member 3722 are fixed together, thereby implementing the adjusting knob 371 and the rotating component 378. Consolidated together.
  • the rotation assembly 378 drives the sensing assembly by rotation (not shown) Moving up and down, so that the sensor (not shown) can be moved in a direction perpendicular to the working surface to achieve height adjustment of the sensor from the working surface.
  • the user can manually adjust the up and down movement of the sensing assembly by adjusting the knob 371 and the locking structure 372, thereby adjusting the height of the sensor from the vegetation.
  • the height adjustment of the sensor relative to the working surface is realized by the cam principle.
  • FIG. 14 is a schematic diagram showing the connection of the cam 380 and the sensing assembly 382 of the automatic lawn mower of the present embodiment.
  • the automatic lawn mower includes a housing 383 and a sensing assembly 382.
  • the automatic lawn mower further includes a cam motor (not shown) and a cam 380 fixed to the housing 383.
  • the output shaft of the cam motor is coupled to the rotating shaft 380A of the cam 380, and the rotating shaft 380A of the cam 380 is parallel to the working surface.
  • the cam 380 includes a projection 381 that faces the work surface, and the projection 381 swings back and forth about the rotational axis 380A of the cam 380 toward the work surface.
  • the sensing assembly 382 further includes a first elastic structure 3822 and a connecting rod 3823.
  • the first elastic structure 3822 is perpendicular to the working surface.
  • the first elastic structure 3822 includes a fixed end 3822A and a movable end 3822B.
  • the fixed end 3822A is fixed on the housing 383.
  • the movable end 3822B is movable up and down with respect to the working surface, and the first elastic structure 3822 is used to limit the sensing component 382 within a predetermined range.
  • the connecting rod 3823 is perpendicular to the working surface, and the middle portion of the connecting rod 3823 is connected with the movable end 3822B.
  • One end of the connecting rod 3823 is connected to the sensor, and the other end is abutted against the protruding portion 381.
  • the reciprocating swing of the protruding portion 381 drives the opposite working surface of the connecting rod 3823. move up and down.
  • cam 380 acts as an active member and sensing assembly 382 acts as a follower for cam 380.
  • the cam motor driving cam 380 swings back and forth.
  • the cam motor driving cam 380 swings clockwise or counterclockwise about its rotation axis, and the projection 381 reciprocates clockwise or counterclockwise about the rotation axis 380A of the cam 380 toward the working surface. swing.
  • the link 3823 of the sensing assembly 382 abuts against the projection 381, and when the projection 381 reciprocates toward the working surface, the link 3823 is moved up and down.
  • the movable end 3822B of the first elastic structure 3822 is close to the working surface, and the fixed end 3822A of the first elastic structure 3822 is located above the movable end 3822B. Due to the first elastic structure The fixed end 3822A of the 3822 is fixed on the housing 383, and the movable end 3822B is connected to the connecting rod 3823.
  • the protruding portion 381 swings counterclockwise, the protruding portion 381 drives the connecting rod 3823 to move downward, and the connecting rod 3823 drives the movable end 3822B. Moving downward, the movable end 3822B elongates the first elastic structure 3822, further driving the sensor to move downward.
  • the rotation direction of the cam 380 can be adjusted by the cam motor according to the height of the vegetation, thereby adjusting the height of the sensor from the working surface correspondingly to adapt to the cutting of vegetation of different heights.
  • the height of the sensor relative to the working surface is adjusted by the elastic height follower structure.
  • FIG. 15 is a schematic diagram showing the connection of the second elastic structure 388 and the sensing component 386 of the automatic lawn mower of the present embodiment.
  • the automatic mower includes a housing 384 and a sensing assembly 386.
  • Sensing assembly 386 is disposed on housing 384, and sensing assembly 386 includes a sensor (not shown) that is adjustable in height relative to the working surface.
  • the automatic mower also includes a second resilient structure 388 that is coupled to the housing 384 by a second resilient structure 388.
  • the second elastic structure 388 is perpendicular to the work surface and is expandable and contractible in a direction perpendicular to the work surface. When the automatic mower is not working, the second elastic structure 388 is in an initial state.
  • the second elastic structure 388 is a spring.
  • the working surface is the ground.
  • the sensing component 386 When the vegetation is high, when the sensing component 386 is touched, the vegetation will give the sensing component 386 an upward force and overcome the gravity of the sensing component 386 itself. At this time, the sensing component 386 The second elastic structure 388 is compressed while the sensing assembly 386 moves upward to drive the sensor upward.
  • the second elastic structure 388 When the automatic mower travels to a region where the vegetation is relatively short, the second elastic structure 388 is elongated downward by its own gravity, driving the sensing component 386 close to the vegetation. This effectively induces vegetation and facilitates automatic lawn mower cutting vegetation.
  • the expansion and contraction of the second elastic structure 388 is not limited to this method, and the expansion and contraction of the second elastic structure 388 may be controlled by an external force to achieve different heights of the sensing component 386 relative to the working surface. Adjustment.
  • the second resilient structure is a torsion spring.
  • the torsion spring can be twisted at a pre-designed angle. When the sensing component touches the vegetation at any angle, the vegetation gives the sensing component a corresponding angular force. Since the sensing component is connected with the torsion spring, the torsion spring is twisted to a corresponding angle. This enables adjustment of the different degrees of freedom of the sensing assembly relative to the housing.
  • the height adjustment of the sensor 394C relative to the working surface is realized by the rail type height follower structure.
  • FIG. 16 is a schematic diagram of the sensing component 394 of the automatic lawn mower of the present embodiment.
  • the automatic mower includes a housing (not shown) and a sensing assembly 394.
  • the sensing assembly 394 is disposed on the housing, the sensing assembly 394 includes a sensor 394C, the height of the sensor 394C relative to the working surface is adjustable, and the probe of the sensor 394C is directed toward the working surface for sensing vegetation.
  • the automatic lawn mower further includes a fixing plate 396 fixed to the housing.
  • the fixing plate 396 is provided with a through hole (not shown) perpendicular to the working surface, and the fixing plate 396 is used to set the sensing assembly 394.
  • the sensing assembly 394 further includes a movable rod 394A and a limiting block 394B.
  • the movable rod 394A passes through the through hole, the movable rod 394A can reciprocate relative to the working surface in the through hole, and the limiting block 394B is disposed on the movable rod 394A away from the working surface.
  • the sensor 394C is disposed at the other end of the movable lever 394A, and the limiting block 394B and the sensor 394C restrict the movable lever 394A from being moved in the through hole of the fixed plate 396.
  • the movable lever 394A reciprocates in the through hole, and the movable lever 394A moves within a predetermined range to drive the sensor 394C to move up and down with respect to the working surface.
  • the vegetation jacks up the sensor 394C and the sensor 394C moves up with the boom 394A.
  • the sensor 394C, together with the movable rod 394A hangs on the vegetation due to gravity, and the size of the limiting block 394B is larger than the size of the through hole to prevent the movable rod 394A from coming off the fixed plate 396.
  • the above automatic lawn mower can freely adjust the height of the sensing component 394 according to the height of the vegetation, and effectively recognize and cut the vegetation.
  • the up and down movement of the movable rod 394A in the through hole may also be controlled by other external forces to achieve adjustment of the different heights of the sensor 394C relative to the working surface.
  • the height of the sensor of the automatic mower can be adjusted relative to the working surface, which can reduce the misjudgment of the machine without cutting the vegetation, and can avoid the problem of "dwarf grass berisoning", so that the effect of trimming the vegetation is ideal and the work efficiency is improved.
  • FIG. 17 is a schematic flowchart of a method for controlling a height of a sensor according to an embodiment.
  • a sensor height control method for controlling the height of a sensor of the automatic lawn mower of any of the above embodiments includes:
  • step S110 the initial height of the sensor is set, and the sensor outputs an initial signal.
  • the automatic mower can determine whether the grass is recognized to perform the corresponding operation.
  • the initial signal is a square wave signal, and the automatic mower can determine the condition of the vegetation based on the relevant parameters of the square wave signal.
  • Step S120 comparing the parameter value of the initial signal with the preset parameter threshold, and determining whether the sensor detects the vegetation according to the comparison result. If so, the automatic mower cuts the vegetation or continues to walk, and if not, adjusts the sensor down a certain distance.
  • the current automatic lawn mower is in the work area.
  • the automatic mower determines whether the vegetation needs to be cut according to the current height of the sensor. If the vegetation needs to be cut, the automatic mower performs the cutting operation. If the vegetation does not need to be cut, the automatic mower determines that the current vegetation area is the working area and can continue to walk. If the result of the comparison indicates that the sensor does not detect vegetation, the automatic mower adjusts the sensor down a certain distance. In this embodiment, the specific distance is set to 0.5 cm in advance, that is, if the result of the comparison indicates that the sensor does not detect vegetation, the sensor is lowered by 0.5 cm.
  • the above sensor height control method enables the automatic lawn mower to discriminate whether the sensor detects vegetation based on the output signal of the sensor, and the automatic lawn mower can adjust the sensor height according to the detection condition.
  • the automatic mower performs the operation of cutting the vegetation or continues to walk; when the sensor shows that the vegetation is not detected, the automatic mower adjusts the height of the sensor and continues to detect. In this way, when the automatic mower recognizes the vegetation, it does not cause misjudgment due to the short vegetation, and improves the accuracy of identifying the vegetation, the cutting effect is better, and the cutting efficiency is higher.
  • step S120 further includes: comparing a frequency value of the initial signal with a preset frequency threshold, determining whether the frequency value of the initial signal is less than a preset frequency threshold, and if so, the sensor detects the vegetation, and if not, The sensor does not detect vegetation.
  • the output signal of the sensor is a frequency signal, and the sensor presets a frequency threshold.
  • the sensor does not detect the grass, and the frequency value is large; the sensor senses the vegetation and the frequency value is small. If the frequency value of the initial signal is less than the frequency threshold, then the sensor detects the vegetation area. If the frequency value of the initial signal is not less than the frequency threshold, the sensor does not detect the vegetation area. In this way, the automatic mower can determine whether the sensor recognizes the grass based on the frequency value of the sensor output, which is accurate and convenient.
  • FIG. 18 is a schematic flowchart of a sensor height control method according to another embodiment.
  • the method further includes:
  • Step S140 comparing the parameter value of the signal of the sensor with the parameter threshold, determining whether the sensor detects the vegetation according to the comparison result, and if so, the automatic mower cutting the vegetation or continuing to walk, if not, Then adjust the sensor down a certain distance and output the height value of the sensor.
  • the signal of the sensor is a square wave signal.
  • the parameter value of the signal and the parameter threshold are the same type of parameters, such as frequency values or level values, etc., which are comparable.
  • the automatic mower can judge whether the sensor detects vegetation by comparing the results. In this embodiment, if the result of the comparison indicates that the sensor does not detect vegetation, the sensor is lowered by 0.5 cm. In addition, the height value of the sensor at this time is also output.
  • step S160 it is determined whether the height of the sensor is less than or equal to the height threshold, and if so, the automatic lawn mower travels to the vegetation area, and if not, the sensor is adjusted downward by a specific distance.
  • the automatic lawn mower sets the height threshold of the sensor in advance, that is, the sensor detects the minimum height of the vegetation. If the height value of the sensor is less than or equal to the height threshold, the sensor has been lowered below the minimum height or the minimum height, further indicating the area under the sensor that is not the automatic mower operating area, when the automatic mower control sensor walks to The work area continues to detect and cut vegetation. If the height value of the sensor is still greater than the height threshold, the height of the sensor is adjusted downward again, and it is determined whether the vegetation is under the sensor, and the automatic mower performs the corresponding steps according to the result of the judgment. In this way, the automatic mower can more accurately identify the vegetation area and the non-vegetation area.
  • step S140 further includes: comparing a frequency value of the signal of the sensor with a preset frequency threshold, determining whether the frequency value of the signal of the sensor is less than a frequency threshold, and if so, the sensor detects the vegetation, and if not, The sensor did not detect vegetation.
  • the signal of the sensor is a frequency signal
  • the sensor presets a frequency threshold. If the frequency value of the sensor's signal is less than the frequency threshold, the sensor detects the vegetation area. If the frequency value of the sensor's signal is not less than the frequency threshold, the sensor does not detect the vegetation area. In this way, the automatic mower can determine whether the sensor recognizes the vegetation based on the frequency value of the sensor output, which is accurate and convenient.
  • the probe includes at least two plates that are electrically connected to the control module, respectively, the plates having different potentials.
  • the electrode plate includes a shielding side, a surface facing away from the underside of the automatic lawn mower, and a shielding layer is disposed on the shielding side.
  • the automatic lawn mower 100 includes a housing 110, a cutting module 120, a moving module 130, and a control module, wherein the control module is used to control the operations of the cutting module 120 and the moving module 130.
  • the automatic mower 100 is further provided with a capacitance sensor 150 (hereinafter referred to as a sensor 150) on both sides of the cutting module 120, and the control module includes a letter.
  • the number processing circuit 160 is coupled to the sensor 150.
  • the sensor 150 uses the principle of capacitance to achieve the judgment of grass height, grassland or non-grass.
  • the absence of grass in the grass causes the capacitance at the sensor 150 in FIG. 20 to change, thereby changing the change in the output signal S of the signal processing circuit 160.
  • the signal processing circuit 160 includes a Schmitt trigger 162.
  • the capacitance value at the sensor 150 changes, the oscillation frequency of the Schmitt trigger 162 output signal S changes, and the MCU of the control module reads the signal frequency.
  • the change identifies the change in capacitance at the sensor 150, thereby enabling identification of grass or non-grass, grass height, and in turn issuing work orders to the cutting module 120 and the movement module 130 according to the settings.
  • the capacitive sensor 150 which illustrates changing the oscillation frequency of the output signal S of the Schmitt trigger 162 in the signal processing circuit 160 by the change in capacitance, thereby achieving the purpose of identifying the change in capacitance.
  • the change of capacitance can of course also convert the change of capacitance into the change of voltage and current signal through different signal processing circuits, and then record and judge, and the purpose of identifying the change of capacitance can also be achieved.
  • the sensor 150 includes three plates in the same plane, and the first plate 152, the second plate 154, and the first plate 152 are respectively from left to right.
  • the three plates are made of a conductive metal material.
  • the first plates 152 are respectively located on two sides of the second plate 154, and the two first plates 152 are connected by wires 156.
  • the electric field E is formed on both the left and right sides of the second plate 154 to form a large sensing area. It is of course also possible to provide only one first plate 152 and one second plate 154, which are arranged side by side on the same plane.
  • Signal processing circuit 160 has an input and an output.
  • the first plate 152 is connected to the input end of the signal processing circuit 160, and the second plate 154 is connected to the common ground of the signal processing circuit 160, so that a capacitance is formed between the first plate 152 and the second plate 154.
  • the first plate 152 is connected to the input end of the Schmitt trigger 162, and the second plate 154 is connected to the zero potential of the signal processing circuit 160.
  • the two first plates 152 are connected to the common ground of the signal processing circuit 160, and the second plate 154 is connected to the input of the signal processing circuit 160.
  • the control module determines that the grass height is greater than the preset height according to the change of the capacitance, the control module controls the cutting mechanism to perform the cutting work.
  • the output frequency of the capacitive sensor 150 has a linear relationship with the grass height. For example, the higher the setting is, the lower the frequency of the signal processing circuit 160 output signal.
  • the general signal frequency can be set to vary around 1Mhz.
  • the output frequency f ⁇ 1Mhz can be made when the grass height below the sensor is greater than 4cm, and f>1Mhz.
  • the control module recognizes this change, thereby driving the cutting module 120 to mowing or not cutting grass, and controlling the movement module 130 to advance or retreat.
  • control module can complete the identification of the grassland and the non-grass according to the change of the capacitance.
  • the reason is that non-grass is equivalent to zero grass height, and when the change exceeds a predetermined change, it can be determined that the grass height is changed from 4 cm to zero, and it can be judged as non-grass.
  • a sensor 150 is mounted below the housing 110 to detect the height of the grass in the mowing work area.
  • the sensor 150 also includes a support plate 158 that is coupled to the housing 110.
  • the first plate 152 and the second plate 154 are arranged side by side on the support plate 158.
  • the electric field E formed between the first plate 152 and the second plate 154 is located below the first plate 152 and the second plate 154. , facing the grass side, closer to the grass, with a higher detection sensitivity.
  • the change in the height of the grass will make the change of the capacitance more obvious and the detection more sensitive.
  • the frequency is set to about 1M
  • the output frequency is 800khz when the scheme is adopted, and the output frequency is 900khz if the upward electric field scheme is adopted. Sensor detection is more sensitive.
  • the first plate 152 and the second plate 154 are each arranged in a horizontal direction. When the automatic mower 100 is in operation, the first plate 152 and the second plate 154 are flush with the grass to ensure that the induced electric field is pressed downward toward the grass.
  • the sensor 150 is height-adjustable on the housing 110 to be able to adapt to the requirements of the lawn with different cutting heights to match the adjustment of the signal processing circuit 160, thereby ensuring detection sensitivity. For example, when the 8cm lawn needs to be reserved, if the position of the sensor 160 is still at the position where the original 4cm lawn is detected, the adjustment of the signal processing circuit 160 may be difficult or even impossible to detect. In this case, the sensor 150 may be adjusted first. The height on the body 110.
  • the left and right sides of the cutting module 120, and also the front and rear ends of the housing 110 are respectively provided with a plurality of sensors 150.
  • the sensors 150 form sensing regions in the width direction of the automatic mower 100 in front of and behind the cutting module 120, respectively. Due to the first The first plate 152 and the second plate 154 are arranged on the same plane.
  • the sensing regions of the plurality of sensors 150 can be joined together to form a continuous sensing area.
  • the width of the continuous sensing region is greater than or equal to the cutting diameter of the cutting module 120. In this way, it is ensured that the grass in the cutting range can be detected, and the grass height in the local area is avoided, but the grass height in the individual area is large.
  • the sensor 150 is disposed on both sides of the cutting module 120.
  • the sensor on the left side determines whether the cutting operation needs to be performed before mowing, and the sensor on the right side has a recheck function to determine whether the cutting is in place.
  • the sensor 250 includes three plates made of a metallic conductive material. The three plates are on the same plane, forming an electric field that faces downward toward the grass. Two first plates 252 are located on opposite sides of the second plate 254, and the two first plates 252 are connected by wires 256 and connected to the input of the Schmitt trigger 262 in the signal processing circuit 260. The second plate 254 is grounded.
  • the sensor 250 also includes a shield plate 257.
  • the shield plate 257 is disposed on the back side of the first plate 252 and the second plate 254, that is, the side of the first plate 252 and the second plate 254 facing away from the grass.
  • the shield plate 257 is connected to the second plate 254 via the voltage follower 258, so that the shield plate 257 and the second plate 254 have the same potential, thereby avoiding interference caused by air changes above the grass.
  • the shielding plate 257 also acts to press the electric field between the first plate 252 and the second plate 254 against the grass, further increasing the sensitivity of the capacitive sensor.
  • An insulating spacer 259 is disposed between the first plate 252 and the second plate 254 and the shield plate 257.
  • a channel in which the voltage follower 258 is placed is provided in the insulating spacer 259.
  • the automatic lawn mower 100 of the present invention forms an electric field on the sensor 150 or the sensor 250 that can be pressed against the grass, so that the change in the height of the grass on the grass can be quickly detected, the height of the grass can be recognized, and the grass can be further completed. Identification with non-grass.
  • the capacitive sensor of the present invention can also be applied to a hand-push lawn mower with an armrest or a riding lawn mower that can be used by a user.
  • the capacitive sensor includes a connecting portion connecting the probe and the housing, the probe including a first rotating shaft parallel to the working surface of the automatic mower, and the probe is capable of being opposite to the connecting portion Rotating around the first axis of rotation.
  • the connecting portion includes a second rotating shaft perpendicular to a working surface of the automatic mower, and the connecting portion is rotatable relative to the housing about the second rotating shaft such that the probe rotates about the second rotating shaft.
  • the probe is a roller
  • the first rotating shaft is an axle of the roller.
  • the roller is a universal wheel.
  • FIG. 29 is a schematic diagram of the automatic lawn mower 100 of the embodiment
  • FIG. 30 is a schematic diagram of the connection of the roller of the automatic lawn mower shown in FIG. 29
  • an automatic lawn mower 100 includes a housing 110 and a capacitance sensor 150, and the capacitance sensor 150 is disposed on the housing 110.
  • the capacitive sensor 150 includes a roller 421 that is adjacent to the bottom of the housing 110 and that is disposed at the bottom or periphery of the housing 110.
  • the capacitive sensor 150 includes at least one probe that is disposed on the roller 421 for sensing the grass.
  • the automatic mower 100 may further include at least one main traveling wheel 440 disposed at the bottom of the housing 110.
  • the automatic mower 100 can walk freely on the grass by the main traveling wheel 440, greatly reducing the manual operation, and can cut the grass easily and quickly.
  • the automatic lawn mower 100 in this embodiment includes three main traveling wheels 440, so that the automatic lawn mower 100 can be balancedly supported to make the automatic lawn mower 100 walk smoothly. In other embodiments, this is not limited thereto.
  • Capacitive sensor 150 can be a capacitive humidity sensor for sensing grass conditions. In this way, the capacitive sensor 150 can sense the specific state of the grass according to the humidity condition of the grass, and facilitate the automatic mower 100 to perform the cutting operation.
  • the roller 421 is a two-layer structure comprising an inner layer and an outer layer, the plate being disposed on the inner layer and the outer layer being a protective layer.
  • the protective layer on the outside of the roller 421 can protect the electrode plate and improve the service life of the probe.
  • the inner layer is a metal layer, so that the sensing effect is better.
  • the outer protective layer can also be made of plastic, which enhances the wear resistance of the roller and better protects the plates disposed on the inner layer.
  • the roller 421 is suspended from the bottom of the housing 110. This can sense the grass more accurately.
  • the number of rollers 421 is one or more.
  • the number of rollers 421 can be set as needed to improve the induction efficiency.
  • two rollers 421 are included.
  • the two rollers 421 and the main traveling wheel 440 are both located at the bottom of the housing 110.
  • the bottom of the main traveling wheel 440 is in contact with the ground, and the two rollers 421 are respectively suspended from the main traveling wheel 440.
  • the front and/or rear of the direction, that is, when the grass is short or the ground is flat, the bottoms of the two rollers 421 do not contact the ground.
  • the roller 421 is in contact with the grass, and the roller 421 is used as an auxiliary wheel to travel or retreat to avoid friction with the grass, and the grass is automatically cut.
  • the resistance of the grass machine 100 facilitates the automatic mower 100 to travel.
  • the number of the rollers 421 is not limited thereto, and may be one or more. If the roller 421 is set to one, it can save costs while meeting the demand for sensing grass. If the roller 421 is set to a plurality of, for example, three or four, it can be evenly distributed, and the range of the automatic lawn mower 100 to sense the grass is increased, and the grass is effectively cut.
  • the automatic mower 100 further includes a bearing 450 and a connecting shaft 460.
  • the bearing 450 is disposed on the housing 110, and the central axis of the bearing 450 is perpendicular to the bottom of the housing 110.
  • One end of the connecting shaft 460 is connected to the bearing 450, and the other end is connected to the roller 421.
  • the roller 421 and the connecting shaft 460 are rotatable about the central axis of the bearing 450. In this way, when the roller 421 encounters a high grass or obstacle at any angle of the traveling process, it can rotate freely around the central axis of the bearing 150, and can also bypass the grass or obstacles while sensing the grass.
  • the small grass or obstacle gives the resistance of the roller 421, thereby reducing the running resistance of the automatic mower 100 and improving the mowing efficiency.
  • the connecting shaft 460 is curved, and the connecting ends of the connecting shaft 460 are at an angle preset with respect to the central axis of the bearing 450.
  • the range of rotation of the roller 421 about the central axis of the bearing 450 is large, and a large obstacle can be bypassed to better assist the automatic mower 100 to travel.
  • the connecting shaft 460 is further provided with a wire track (not shown).
  • the wire 470 passes through the wire track and connects the roller 421 to the control module, so that signal transmission between the roller 421 and the control module can be realized, and the automatic mower 100 is facilitated. Automatic mowing.
  • the roller 421 can be a universal wheel.
  • the universal wheel itself can freely rotate in a plane parallel to the grass, so that the universal wheel encounters the grass at any angle of the traveling process, and the probe located on the roller 421 can recognize the grass and improve the mowing efficiency. Or, if an obstacle is encountered, the roller 421 can flexibly bypass the obstacle, reducing the resistance of the obstacle to the roller 421, thereby reducing the traveling resistance of the automatic mower 100.
  • the automatic mower 100 further includes a control module disposed on the housing 110.
  • the control module includes a signal processing circuit, an input end of the signal processing circuit, and a capacitive sensor.
  • the probe is electrically connected.
  • the probe of the capacitive sensor includes a pole piece, the ground surface or the ground of the signal processing circuit as a reference pole piece of the capacitive sensor.
  • the condition of the grass is judged by detecting the change in capacitance between the probe and the ground.
  • the signal processing circuit outputs a square wave according to the signal transmitted by the capacitance sensor. When the probe senses the grass, the dielectric constant between the probe and the surface becomes larger, the capacitance between the probe and the surface increases, and the square wave frequency output by the signal processing circuit decreases.
  • the control module can determine the grassland condition according to the square wave frequency of the output of the signal processing circuit, and control the working state of the mowing.
  • the position of the signal processing circuit is not limited to being in the control module, and may also be included in the capacitive sensor.
  • the signal variation of the signal processing circuit is not limited thereto.
  • the output signal of the signal processing circuit may also be level-changed as long as it can indicate that the roller 421 senses the grass.
  • the signal processing circuit includes a Schmitt trigger ST to which an input terminal of the Schmitt trigger ST is connected.
  • the signal processing circuit further includes a capacitor C' and a resistor R'.
  • One end of the capacitor C' is connected to the input terminal of the Schmitt trigger ST, and the other end is grounded. Both ends of the resistor R' are coupled between the input terminal and the output terminal of the Schmitt trigger ST.
  • the present invention is not limited to the specific embodiment structures, and the structures based on the inventive concept are all within the scope of the present invention.

Abstract

一种自移动设备,在由界限限定的工作区域内移动并工作,包括壳体(110)、移动模块(130)、任务执行模块和控制模块。控制模块控制移动模块带动移动设备移动,并控制任务执行模块执行工作任务。自移动设备包括至少一个电容传感器(150),其与安装于壳体(110),与控制模块电连接,检测自移动设备下方或移动方向的前方的表面是否为待加工表面。电容传感器包括至少一个探头(1),探头包括探测面(5),位于探头的外表面,探测面的至少部分的电导率大于等于10 -9s/m;或者,所述探头与自移动设备下方的表面的距离满足第一预设条件;或者,所述探测面的面积满足第二预设条件。

Description

自移动设备及自移动设备的控制方法 技术领域
本发明涉及一种自移动设备,还涉及一种自移动设备的控制方法。
背景技术
割草机是一种草坪修整工具,通常包括轮组、机壳和切割系统,能够在草坪上行驶并切割草地。传统割草机主要使用汽油发动机或者交流电系统作为切割的动力,依靠人力推动在草坪上来回行走来完成对草地的护理修剪。但是,推动其割草的劳动强度较大。
随着计算机技术和人工智能技术的不断进步,类似于智能机器人的智能割草机已经开始慢慢的走进人们的生活。智能割草机能够自动在用户的草坪中割草、充电,无需用户干涉。这种自动工作系统一次设置之后就无需再投入精力管理,将用户从清洁、草坪维护等枯燥且费时费力的家务工作中解放出来。
与传统割草机相比,智能割草机具备自动行走功能,且具有草地识别功能的传感器,智能割草机采用电容传感器自动识别需要修剪的草地,能够自主的完成修剪草坪的工作,无须人为直接控制和操作,大幅度降低人工操作,是一种适合家庭庭院、公共绿地等场所进行草坪修剪维护的工具。
电容传感器检测割草机下方地面,判断是否为待割草丛,进而控制割草马达的工作情况。但是现有技术中的一些草地传感器,存在着灵敏度不高的不足,而其中的一些非接触式的草地传感器还容易受到空气等其他因素的干扰。
智能割草机的电容传感器包括探头,用于检测草地;为保护探头不受损坏,电容传感器还包括端盖,端盖设置于电容传感器的底部,端盖将草地和探头分隔开。但是,对于传统的智能割草机,电容传感器底部的端盖不利于探头电场的传播,导致电容传感器灵敏度差,草地检测效果不好。
另一个问题是,对于传统的智能割草机,电容传感器采用固定柱状式,在进行草坪修剪维护时,当智能割草机自动行走时,传感器容易与草地摩擦,增加智能割草机的行进阻力,阻碍了智能割草机的行走。
发明内容
本发明解决现有技术问题所采用的技术方案是:
一种自移动设备,在由界限限定的工作区域内移动并工作,包括壳体、移动模块、任务执行模块和控制模块;
所述控制模块控制所述移动模块带动自移动设备移动,并控制所述任务执行模块执行工作任务;
所述自移动设备包括至少一个电容传感器,安装于壳体,与控制模块电连接,检测自移动设备下方或移动方向的前方的表面是否为待加工表面;
所述电容传感器包括至少一个探头,所述探头包括探测面,位于探头的外表面,所述探测面的至少部分的电导率大于等于10-9s/m;
或者,所述探头与自移动设备下方的表面的距离满足第一预设条件;
或者,所述探测面的面积满足第二预设条件。
优选的,所述探测面包括下表面,面向自移动设备下方的表面,所述下表面的电导率大于等于10-9s/m。
优选的,所述电容传感器包括纵轴,由壳体向下延伸,所述探测面包括绕纵轴的环绕面,所述环绕面的电导率大于等于10-9s/m。
优选的,所述探测面包括侧面,垂直于自移动设备的工作表面,或相对于自移动设备的工作表面倾斜预设角度,所述侧面的电导率大于等于10-9s/m。
优选的,所述探头包括至少一个极板,与控制模块电连接,所述极板的电导率大于等于10-9s/m,所述探测面包括所述极板的表面。
优选的,所述探头包括至少一个极板,与控制模块电连接,以及包覆层,至少部分的包覆所述极板,所述包覆层的外表面的电导率大于等于10-9s/m,所述探测面包括所述包覆层的外表面。
优选的,所述包覆层包括靠近所述极板的内层和远离所述极板的外层,所述内层的电导率小于等于10-9s/m,所述外层的电导率大于等于10-9s/m。
优选的,所述极板与所述包覆层外层的间距小于等于预设距离。
优选的,所述控制模块包括信号处理电路,处理电容传感器输入的电信号,还包括保护电路,电连接电容传感器和信号处理电路,当电容传感器输入的电信号的值大于等于阈值时,所述保护电路降低电容传感器输入的电信号的值,使得输入信号处理电路的电信号的值保持在预设范围内。
优选的,所述第一预设条件为,所述探头与自移动设备下方的表面的距离小于所述任务执行模块的末端与自移动设备下方的表面的距离。
优选的,所述第一预设条件为,所述探头与自移动设备下方的表面的距离小于自移动设备的工作平面上的介质的高度。
优选的,所述第一预设条件为,所述探头与自移动设备下方的表面的距离小于等于50mm。
优选的,所述第一预设条件为,所述探头与自移动设备下方的表面的距离大于等于10mm。
优选的,所述电容传感器包括连接部,连接所述探头和壳体,所述连接部能够带动所述探头相对于壳体活动。
优选的,所述连接部能够带动所述探头相对于壳体在高度方向上移动。
优选的,所述连接部能够带动所述探头相对于壳体在水平方向上摆动。
优选的,所述连接部由柔性材料制成。
优选的,所述电容传感器包括纵轴,由壳体底部向下延伸,所述连接部包括沿纵轴的通孔,供电连接所述探头和控制模块的导线穿过。
优选的,所述第二预设条件为,所述探测面的面积大于等于28cm2。
优选的,所述探头包括至少一个极板,与控制模块电连接,所述极板的面积大于等于28cm2。
优选的,所探头包括凹凸的表面,所述探测面包括所述凹凸的表面。
优选的,所述探头包括若干齿,所述探测面包括所述齿的表面。
优选的,所述电容传感器的至少其中之一设置在壳体的前端或后端。
优选的,所述移动模块包括前轮和后轮,所述电容传感器的至少其中之一设置在前轮的前侧,或者设置在后轮的后侧。
优选的,所述移动模块包括前轮和后轮,所述电容传感器的至少其中之一设置在前轮的前侧与后轮的后侧之间。
优选的,包括至少两组所述电容传感器,分别设置在壳体的两侧。
优选的,所述探头包括至少两个极板,分别与控制模块电连接,所述极板具有不同的电位。
优选的,所述极板包括屏蔽侧,背对自移动设备下方的表面,屏蔽侧设置有屏蔽层。
优选的,所述电容传感器包括连接部,连接所述探头与壳体,所述探头 包括第一转动轴,平行于自移动设备的工作表面,所述探头能够相对于连接部绕所述第一转动轴转动。
优选的,所述连接部包括第二转动轴,垂直于自移动设备的工作表面,所述连接部能够相对于壳体绕第二转动轴转动,使得所述探头绕所述第二转动轴转动。
优选的,所述探头为滚轮,所述第一转动轴为滚轮的轮轴。
优选的,滚轮的底部高于移动模块的底部。
一种自移动设备的控制方法,所述自移动设备包括至少一个电容传感器,检测自移动设备下方或移动方向的前方的表面是否为待加工表面,所述电容传感器包括至少一个探头,所述探头包括探测面,位于探头的外表面,所述自移动设备的控制方法包括步骤:
提供至少部分的电导率大于等于10-9s/m的所述探测面,或者提供与自移动设备下方的表面的距离满足第一预设条件的所述探头,或者提供面积满足第二预设条件的所述探测面;
根据电容传感器输出的电信号,判断自移动设备下方或移动方向的前方的表面是否为待加工表面;
若是,则控制自移动设备继续移动;
若不是,则控制自移动设备改变移动方式。
一种电容传感器,包括:金属极板和端盖;所述端盖设置在所述金属极板外侧,用于保护所述金属极板;所述电容传感器还包括绝缘隔层,所述绝缘隔层设置于所述金属极板和所述端盖之间;所述端盖为导电材料制成。
上述电容传感器工作时,金属极板会向待检测物传播电场,以检测待检测物。由于端盖是导体,电导率高,端盖有利于金属极板电场的传播,有效增强电容传感器的灵敏度,使得电容传感器的金属极板检测效果较好。
在其中一个实施例中,所述绝缘隔层的材料为塑料或橡胶。
在其中一个实施例中,所述端盖为金属端盖。
在其中一个实施例中,所述金属极板为金属薄板;所述电容传感器还包括基板,所述端盖设置在所述金属极板的一侧,所述基板设置于所述金属极板的另一侧,所述金属极板嵌设于所述基板上,所述基板用于固定所述金属极板。
在其中一个实施例中,所述电容传感器还包括导线和固定结构,所述导 线穿过所述基板连接所述金属极板;所述固定结构围绕所述导线,且所述固定结构抵住所述基板,所述固定结构用于固定所述导线。
在其中一个实施例中,所述固定结构的材料为海绵。
在其中一个实施例中,所述电容传感器还包括传感器壳体,所述传感器壳体呈圆筒状,所述传感器壳体的侧壁界定了内腔,所述固定结构和所述基板设置于所述内腔中,所述基板垂直于所述传感器壳体的中心轴,所述固定结构和所述基板抵住所述传感器壳体的侧壁,所述传感器壳体的侧壁和所述端盖配接在一起,所述传感器壳体、所述固定结构和所述端盖配合在一起保护所述金属极板。
在其中一个实施例中,所述传感器壳体的侧壁与所述端盖通过螺钉连接。
在其中一个实施例中,所述端盖包括凸缘,所述凸缘设置于所述端盖朝向所述外壳的一侧,且所述凸缘包围所述传感器壳体的侧壁,所述凸缘与所述传感器壳体的侧壁通过螺纹连接。
一种割草机,包括控制器、信号处理电路和以上任一实施例所述的电容传感器;所述电容传感器包括金属极板和端盖,所述端盖设置在所述金属极板的外侧,所述端盖为导电材料制成;所述信号处理电路的输入端连接所述金属极板;所述控制器的输入端连接所述信号处理电路的输出端。
上述割草机,用于切割植被。电容传感器工作时,金属极板会向植被传播电场,以检测植被。端盖位于金属极板与植被之间,由于端盖是导电材料,电导率高,端盖有利于金属极板电场的传播,有效增强电容传感器的灵敏度,使得电容传感器的金属极板检测植被的效果较好。金属极板将检测植被的信号经过信号处理电路传输给处理器,割草机能够根据金属极板检测植被的情况执行工作任务,从而使切割植被的效果较好。
一种割草机,用于切割位于工作表面上的植被,所述割草机包括:壳体和传感组件;所述传感组件设置于所述壳体上,所述传感组件包括传感器,所述传感器相对所述工作表面的高度能够调节,所述传感器用于感应植被。
上述割草机,由于所述传感器相对所述工作表面高度可以调节,使得用户可以根据植被高度调节传感器高度,当植被较矮时,将所述传感器高度调低,割草机即可识别植被,不会产生误判,从而启动所述切割刀盘切割植被,不会漏掉本该修剪的植被,切割效果较好,切割效率较高。
在其中一个实施例中,割草机还包括旋转组件,所述旋转组件能够旋转, 且所述旋转组件具有垂直于所述工作表面的第一侧壁,所述第一侧壁的表面设置有旋转齿;所述传感组件具有垂直于所述工作表面的第二侧壁,所述第二侧壁相对于所述第一侧壁的表面设置有旋转螺纹,所述旋转螺纹与所述旋转齿相啮合,所述传感器设置于所述第二侧壁上,所述传感组件随所述旋转组件的旋转而相对所述工作表面移动。
所述旋转组件可旋转,所述第一侧壁的表面的所述旋转齿与所述第二侧壁表面的所述旋转螺纹相啮合,当所述旋转组件旋转时,所述旋转齿绕着所述旋转螺纹旋转,且所述旋转组件的高度不变,因此所述旋转组件驱动所述传感组件相对所述工作表面移动,进而所述传感器相对所述工作表面移动。
在其中一个实施例中,割草机还包括:调高电机,所述调高电机具有第一输出轴,所述旋转组件设置于所述第一输出轴上,所述调高电机能够通过所述第一输出轴带动所述旋转组件旋转。
在其中一个实施例中,割草机还包括调节组件,所述调节组件设置于所述旋转组件远离所述工作表面的一侧,所述调节组件包括调节旋钮和锁定结构,其中,所述调节旋钮能够旋转,且能够相对所述工作表面活动,所述锁定结构设置于所述调节旋钮和所述旋转组件之间,且能够随所述调节旋钮的旋转而旋转,当按下所述调节旋钮时,所述锁定结构用于固定连接所述旋转组件。
这样,当按下所述调节组件,所述旋转组件与所述调节旋钮通过所述锁定结构固结在一起,以实现所述传感组件的相对所述工作表面的移动。
在其中一个实施例中,所述传感组件包括传感器连接杆,所述传感器设置于所述传感器连接杆上,且所述传感器和所述传感器连接杆螺纹连接。
这样,可方便所述传感器的更换以及所述传感器相对于所述传感器连接杆的相对高度调节。
在其中一个实施例中,所述传感器为1个或多个。
这样可以扩大所述割草机识别植被的范围,提高割草机的工作效率。
在其中一个实施例中,割草机还包括:切割电机,所述切割电机位于所述切割刀盘远离所述工作表面一侧,所述切割电机为所述切割刀盘工作提供动力。
在其中一个实施例中,割草机还包括:电机箱,所述电机箱套在所述切割电机的外侧,且位于所述切割刀盘远离所述工作表面一侧,所述第二侧壁 为所述电机箱的侧壁。
这样,所述电机箱给以所述切割电机足够的工作空间,以使所述切割电机工作时不与割草机其它部件互相干扰,此外,所述电机箱的侧壁作为所述传感组件的所述第二侧壁,两者合一,能够减轻割草机的重量,节省割草机部件所占空间。
在其中一个实施例中,所述切割电机具有能够旋转的输出轴,所述切割刀盘固定连接于所述输出轴上,所述切割刀盘随所述输出轴的旋转而旋转。
这样,所述切割电机启动,可以通过所述输出轴带动所述切割刀盘工作,使切割刀盘执行切割动作。
在其中一个实施例中,所述旋转组件和所述切割刀盘绕同一轴线旋转。
在其中一个实施例中,割草机还包括行走组件,所述行走组件包括至少一个轮子,所述传感器位于所述行走组件行走方向的前方或后方。
在其中一个实施例中,割草机还包括凸轮电机和凸轮,所述凸轮电机固定于所述机身上,所述凸轮电机的输出轴与所述凸轮的转动轴相连,所述凸轮的转动轴平行于所述工作表面,所述凸轮包括凸出部,所述凸出部朝向所述工作表面,且所述凸出部能够绕所述凸轮的转动轴往复摆动;所述传感组件还包括第一弹性结构和连杆,所述第一弹性结构垂直于所述工作表面,所述第一弹性结构包括固定端和活动端,所述固定端固定于所述机身上,所述活动端相对所述工作表面上下移动,所述连杆垂直于所述工作表面,所述连杆的中部与所述活动端相连,所述连杆的一端连接所述传感器,另一端抵住所述凸出部,所述凸出部的往复摆动带动所述连杆相对所述工作表面上下移动,所述第一弹性结构用于将所述传感组件限位于预先设定的范围内。
在其中一个实施例中,割草机还包括第二弹性结构,所述传感组件与所述机身通过所述第二弹性结构相连。
在其中一个实施例中,割草机还包括固定板,所述固定板固定于所述机身上,所述固定板上开设有垂直于所述工作表面的通孔,所述固定板用于设置所述传感组件;所述传感组件还包括活动杆和限位块,所述活动杆穿过所述通孔,所述活动杆在所述通孔内相对所述工作表面往复活动,所述限位块设置于所述活动杆远离所述工作表面的一端,所述传感器设置于所述活动杆的另一端,所述限位块和所述传感器将所述活动杆限制在所述固定板上。
在其中一个实施例中,所述传感器是电容传感器,所述电容传感器包括 检测电极,所述检测电极用于感应植被,所述检测电极相对所述工作表面的高度能够调节。
在其中一个实施例中,所述割草机还包括切割刀盘,所述切割刀盘设置于所述机身上,所述切割刀盘相对所述工作表面的高度能够调节,所述切割刀盘用于切割植被。
一种传感器高度控制方法,用于控制基于以上任一实施例所述的割草机的传感器的高度,其特征在于,包括步骤:
设定所述传感器的初始高度,所述传感器输出初始信号;
比较所述初始信号的参数值与预设的参数阈值,根据所述比较的结果判断所述传感器是否检测到植被,若是,则所述割草机切割植被或继续行走,若否,则将所述传感器向下调节特定距离。
上述传感器高度控制方法,使得割草机可以根据传感器的输出信号判别传感器是否检测到植被,割草机可以根据检测情况调节传感器高度。当传感器检测到植被时,割草机执行切割植被的操作或继续行走;当传感器显示未检测到植被时,割草机将所述传感器高度调低,继续检测。这样,割草机在识别植被时,不会因为矮草而产生误判,提高了识别植被的准确性,切割效果较好,切割效率较高。
在其中一个实施例中,在所述将所述传感器向下调节特定距离的步骤之后,还包括:
比较所述传感器的信号的参数值与所述参数阈值,根据所述比较的结果判断所述传感器是否检测到植被,若是,则所述割草机切割植被或继续行走,若否,则将所述传感器向下调节特定距离,输出所述传感器的高度值;
判断所述传感器的高度值是否小于或等于高度阈值,若是,则所述割草机行走至植被区域,若否,则将所述传感器向下调节特定距离。
在其中一个实施例中,所述比较所述初始信号的参数值与预设的参数阈值,根据所述比较的结果判断所述传感器是否检测到植被,若是,则所述割草机切割植被或继续行走,若否,则将所述传感器向下调节特定距离的步骤包括:比较所述初始信号的频率值与预设的频率阈值,判断所述初始信号的频率值是否小于所述频率阈值,若是,则所述传感器检测到植被,若否,则所述传感器未检测到植被。
在其中一个实施例中,所述比较所述传感器的信号的参数值与所述参数 阈值,根据所述比较的结果判断所述传感器是否检测到植被,若是,则所述割草机切割植被或继续行走,若否,则将所述传感器向下调节特定距离,输出所述传感器的高度值的步骤包括:比较所述传感器的信号的频率值与预设的频率阈值,判断所述传感器的信号的频率值是否小于所述频率阈值,若是,则所述传感器检测到植被,若否,则所述传感器未检测到植被。
一种割草机,包括壳体、切割模块、移动模块、控制模块,所述控制模块用于控制所述切割模块的工作,还包括:
传感器,包括第一极板和第二极板;
信号处理电路,具有输入端和输出端,其中输入端与所述传感器相连,输出端与所述控制装置相连;
所述控制模块根据信号处理电路检测到的第一极板和第二极板之间的电容值变化向所述切割模块发出控制指令。
上述割草机,传感器上的第一极板与第二极板之间形成压向草地的电场,当草丛高度变化时能够及时检测到高度变化,从而实现灵敏度的提升。
在其中一个实施例中,所述第一极板和第二极板位于同一平面。
在其中一个实施例中,所述第一极板和第二极板均沿水平方向布置。
在其中一个实施例中,所述传感器设置有一个或多个,所述一个或多个传感器在所述割草机的宽度方向上共同形成感应区域,所述感应区域的宽度大于或等于所述切割机构切割直径。
在其中一个实施例中,所述控制模块根据电容变化判断草高大于预设高度时,所述控制模块控制切割模块执行切割作业。
在其中一个实施例中,所述第一极板接入所述信号处理电路的输入端,所述第二极板与所述信号处理电路的公共接地端相连;或第一极板与所述信号处理电路的公共接地端相连,所述第二极板接入所述信号处理电路的输入端。
在其中一个实施例中,所述信号处理电路包括施密特触发器,所述第一极板或第二极板与所述施密特触发器的输入端相连接。
在其中一个实施例中,所述第一极板有两个,分别位于所述第二极板的两侧,两个第一极板之间通过导线连接;或所述第一极板和第二极板各设置有一个,二者并排布置。
在其中一个实施例中,所述第一极板和第二极板背对草地的一侧还设置 有屏蔽板,所述屏蔽板与所述第二极板通过电压跟随器相连。
在其中一个实施例中,所述第一极板和第二极板与所述屏蔽板之间设有绝缘隔离板,所述绝缘隔离板中设有放置所述电压跟随器的通道。
在其中一个实施例中,所述传感器安装于所述壳体,且在所述壳体上的高度可调。
在其中一个实施例中,所述传感器还包括连接于所述壳体的支撑板,所述第一极板和第二极板在所述支撑板上并排布置。
在其中一个实施例中,所述切割模块的两侧均设置有所述传感器。
在其中一个实施例中,所述控制模块还用于控制所述移动模块,所述控制模块根据信号处理电路检测到的第一极板和第二极板之间的电容值变化向所述移动模块发出控制指令。
一种割草机,包括壳体和传感器模块,所述传感器模块设置在所述壳体上,还包括滚轮,所述滚轮靠近所述壳体的底部,且设置于所述壳体的底部或外围;所述传感器模块包括至少一个探头,所述探头设置在所述滚轮上,用于感应草地。
上述割草机,由于探头设置在滚轮上,若滚轮与草地接触,在割草机行进时,滚轮转动行走,滚轮与草地之间的摩擦为滚动摩擦,能够减少探头与草地的摩擦,从而减少割草机的行进阻力,降低割草机的耗能,提高割草效率。
在其中一个实施例中,所述滚轮为双层结构,包括内层和外层,所述内层上设置有所述探头,所述外层为保护层。
在其中一个实施例中,所述内层为金属层,所述金属层作为所述探头。
在其中一个实施例中,所述外层由塑料制成。
在其中一个实施例中,所述滚轮悬设在所述壳体底部。
在其中一个实施例中,所述滚轮为万向轮。
在其中一个实施例中,还包括轴承和连接轴,所述轴承设置于所述壳体上,所述轴承的中心轴垂直于壳体底部;所述连接轴的一端与所述轴承相连,另一端与所述滚轮相连,所述滚轮连同所述连接轴能够绕所述轴承的中心轴转动。
在其中一个实施例中,割草机还包括控制模块,所述控制模块设置在所述壳体上;所述传感器模块还包括信号处理电路,所述信号处理电路的输入 端与所述探头电连接,所述信号处理电路的输出端与所述控制模块的输入端电连接。
在其中一个实施例中,所述信号处理电路包括施密特触发器,所述施密特触发器的输入端连接所述探头,所述施密特触发器的输出端连接所述控制模块的输入端。
在其中一个实施例中,所述传感器模块为电容传感器,所述探头为所述电容传感器的一个极片。
在其中一个实施例中,还包括至少一个主行走轮,所述主行走轮设置于所述壳体底部,所述滚轮设于所述主行走轮行进方向的前方和/或后方。
与现有技术相比,本发明的有益效果是:提高电容传感器的灵敏度,使自动割草机对草地与非草地的判断更准确,保证自动割草机工作的安全性。
附图说明
以上所述的本发明的目的、技术方案以及有益效果可以通过下面附图实现:
图1为本发明第一实施例的自动割草机的结构示意图;
图2为本发明第一实施例的电容传感器的结构示意图;
图3(a)、(b)为本发明第一实施例的电容传感器的检测原理图;
图4(a)、(b)为本发明第二实施例的电容传感器的结构示意图;
图4(c)、图5为本发明第二实施例的电容传感器的检测原理图;
图6为本发明第三实施例的电容传感器的结构示意图;
图7为本发明第四实施例的电容传感器的结构示意图;
图8为本发明第五实施例的电容传感器的结构示意图;
图9为第六实施例的割草机的剖视图;
图10为图9所示实施例的割草机的信号处理电路的示意图;
图11为图9所示实施例的信号处理电路的输出信号示意图;
图12为第七实施例的割草机的传感器连接剖视图;
图13为第八实施例的割草机的调节旋钮与锁定装置的剖视图;
图14为第九实施例的割草机的凸轮和传感组件的连接示意图;
图15为第十实施例的割草机的第二弹性结构和传感组件的连接示意图;
图16为第十一实施例的割草机的传感组件的示意图;
图17为一实施例的传感器高度控制方法流程示意图;
图18为另一实施例的传感器高度控制方法流程示意图。
图19为第十二实施例的割草机的示意图;
图20为第十二实施例的电容传感器的原理图;
图21为第十二实施例的电容传感器的示意图;
图22为第十二实施例的电容传感器的示意俯视图;
图23为第十二实施例的电容传感器的示意侧视图;
图24为第十二实施例的电容传感器的另一种连线方式的示意图;
图25为第十三实施例的电容传感器的示意俯视图;
图26为第十三实施例的电容传感器的示意侧视图;
图27为第十三实施例的电容传感器的示意图;
图28为第十三实施例的电容传感器的另一种连线方式的示意图;
图29为第十四实施例的割草机的示意图;
图30为图29所示的割草机的滚轮的连接示意图;
图31为图29所示的割草机的信号处理电路的示意图。
具体实施方式
图1为本发明的第一实施例的自移动设备的结构示意图。以与自移动设备的工作平面平行的方向为水平方向,与自移动设备的工作平面垂直的方向为高度方向。本实施例中,自移动设备为自动割草机100,在其他实施例中,自移动设备也可以是自动扫雪机、自动吸尘器等适合无人值守的设备。图1为自动割草机100的仰视图,即由自动割草机100下方看到的自动割草机100的结构图。如图1所示,自动割草机100包括壳体110、移动模块130、任务执行模块、能源模块和控制模块等,移动模块130、任务执行模块、能源模块和控制模块均安装于壳体110。壳体110包括沿自动割草机100移动方向的前端和后端。移动模块130包括轮组,由驱动马达驱动来带动自动割草机100移动,轮组包括前轮和后轮。任务执行模块为切割模块120,包括切割组件,切割组件包括刀片,安装于壳体110底部,由切割马达驱动以旋转执行割草工作。能量模块包括电池包,为自动割草机100的移动和工作供电。控制模块与移动模块130、切割模块120、能源模块电连接,控制移动模块130带动自动割草机100移动,并控制切割模块120执行割草任务。
本实施例中,自动割草机100在由界限(图未示)限定的工作区域内移动并工作。自动割草机100包括界限侦测模块,侦测自动割草机100相对于 界限的位置关系。界限包括草地与非草地的界限,当控制模块判断自动割草机100由草地移动至非草地时,控制模块控制移动模块130带动自动割草机100后退、或向草地内转向。本实施例中,界限侦测模块包括至少一个电容传感器150,安装于壳体底部140,与控制模块电连接,检测自动割草机100下方或移动方向的前方的表面是否为待切割草地。
图2为本实施例的电容传感器150的结构示意图,如图2所示,电容传感器150包括探头1,探头1由螺钉2固定于壳体110。探头1包括探测面5,位于探头1的外表面,探测面5的至少部分的电导率大于等于10-9s/m。本实施例中,探头1包括极板3,与控制模块电连接,极板3的电导率大于等于10-9s/m。本实施例中,探测面5包括极板3的表面。
本实施例中,探测面5包括下表面7,面向自动割草机100下方的表面。电容传感器150包括纵轴X,由壳体110底部向下延伸,探测面5还包括绕纵轴X的环绕面9。
图3(a)、(b)为电容传感器150的检测原理图。如图3(a)所示,自动割草机100工作时,探头1与自动割草机100下方的表面(以下简称地表)之间形成电容C1。电容传感器150输出的电信号与电容C1两极间的介质相关。当探头1下方的表面为非草地时,与探头1下方的表面为草地时,两极间的介质不同,电容传感器150输出的电信号不同。这样,控制模块能够根据电容传感器150输出的电信号的不同,判断探头1下方的表面是否为草地。具体的,本实施例中,在电容传感器150的输出端连接反向器,反向器两端始终具有不同的电位,当反向器靠近电容传感器150的一端的电位高于另一端的电位时,电容传感器150放电,当反向器靠近电容传感器150的一端的电位低于另一端的电位时,电容传感器150充电,从而在电路中形成充放电循环,电容传感器150输出如图3(a)所示的方波信号。探头1下方的表面为草地时,与探头1下方的表面为非草地时,电容传感器150充放电的速度不同,因此输出的方波的频率不同,这样,控制模块通过检测电容传感器150输出的方波频率,能够判断探头1下方的表面是否为草地。
在图3(a)所示的电路中,Cb为设置在电路中的基本电容,C0为电路板的地与地表之间的电容。
电容传感器150的灵敏度越高,控制模块对探头1下方是否为草地的判断越准确,对自动割草机100的控制就越可靠。本实施例中,通过增大探测 面5的电导率,来提高电容传感器150的灵敏度。具体的,将与控制模块电连接的极板3直接裸露,作为探测面5,极板3的电导率大于等于10-9s/m,优选的,极板3为导体或半导体,更进一步的,极板3为金属极板。金属极板直接裸露,避免了金属极板被壳体110或其他结构覆盖导致的电容传感器150灵敏度的降低,从而保证了自动割草机100侦测草地与非草地界限的准确性,提高了自动割草机100的可靠性。
可以理解的是,金属极板也可以仅部分裸露。
本实施例中,由于电容传感器150的金属极板裸露在外,当金属极板上有较高的电压,例如人手接触金属极板引起静电时,可能导致电路的损坏。如图3(b),本实施例中,控制模块包括信号处理电路300,处理电容传感器150输入的电信号,还包括保护电路500,电连接电容传感器150和信号处理电路300,当电容传感器150输入的电信号的值大于等于阈值时,保护电路500降低电容传感器150输入的电信号的值,使得输入信号处理电路300的电信号的值保持在预设范围内。具体的,如图3所示,本实施例中,保护电路500包括ESD保护器件,当电容传感器150输入的电信号的值大于等于阈值时,保护电路500的二极管导通,起到分流的作用,这样,输入信号处理电路300的电流被限制在安全的预设范围内,不会对电路造成损坏,保证了自动割草机100工作的稳定性。当然,保护电路500也可直接采用集成的ESD保护器件。
本发明的第二实施例中,探头1结构如图4(a)或4(b)所示,探头包括极板3,与控制模块电连接,以及包覆层,包覆极板3的外表面,包覆层的外表面的电导率大于等于10-9s/m,探测面包括包覆层的外表面。具体的,包覆层包括靠近极板的内层17和远离极板的外层19,内层17的电导率小于等于10-9s/m,外层19的电导率大于等于10-9s/m。本实施例中,极板3为金属极板,包覆层的内层17为绝缘体(下文中也称为绝缘隔层),包覆层的外层19为导体或半导体,具体的,包覆层的外层19为金属(下文中也称为金属端盖)。
本实施例中,电容传感器150的检测原理如图5所示。探测面5,即包覆层的外表面,与地表之间形成电容C1。本实施例中,探头1下方的表面为非草地时,与探头1下方的表面为草地时,电容C1充放电的速度不同,因此,电容传感器150输出的电信号不同,控制模块能够根据电容传感器150 输出的电信号的不同,判断探头1下方的表面是否为草地。
本实施例中,金属极板的外侧包覆有包覆层,包覆层包括绝缘隔层,能够将金属极板与外部隔绝,起到保护内部电路的作用。另一方面,包覆层外表面为金属,使得探测面5具有较高的电导率,保证了电容传感器150具有较高的灵敏度。
如图5所示,本实施例中,金属极板与包覆层的金属外层之间形成电容C2,电容C1与电容C2串联。第一实施例中的电容传感器150的灵敏度更高。另一方面,与金属极板外侧仅包覆绝缘隔层(图未示)的传统结构相比,本实施例中由于增加了金属外层,提高了电容传感器的灵敏度,减小了包覆金属极板对电容传感器150的灵敏度的影响。
本实施例中,如图4(a),探测面5仅包括下表面7,面向地表,下表面7为金属;如图4(b),探测面5除包括下表面7外,还包括环绕面9,下表面7与环绕面9均为金属。下表面7与探头1下方的介质,如草,直接接触,提高下表面7的电导率能够有效提高电容传感器150的灵敏度。环绕面9对提高电容传感器150的灵敏度也起到重要作用。一方面,环绕面9也与探头下方的介质接触,尤其当草较高时,介质与环绕面9的接触面积较大。另一方面,电容C1极板的边缘聚集了较多的电荷,环绕面9的设置能够有效利用聚集在电容C1极板边缘的电荷,因此能够提高电容传感器150的灵敏度。
本实施例中,控制极板3与包覆层外层19的间距小于等于预设距离,使金属极板尽量靠近金属外层,能够进一步增加电容传感器150的灵敏度。
图6为本发明的第三实施例的探头1结构图。探头1包括极板3,极板3为金属极板,极板3设置在传感器壳体8内,传感器壳体8由绝缘材料制成。探头1包括包覆层,绕纵轴包覆极板3,包覆层外表面的电导率大于等于10-9s/m,具体的,包覆层为金属。本实施例中,探测面5包括环绕面9,即包覆层的外表面。本实施例中,金属极板面向地表,因此,虽然探头1的下表面为绝缘材料,当金属极板与地表之间存在电势差时,探头1的下表面仍然可能感应出电荷,因此,探头的下表面也可以是探测面7。也就是说,本实施例中,探测面5包括电导率小于等于10-9s/m的第一部分,即探测面5的下表面7,以及电导率大于等于10-9s/m的第二部分,即探测面5的环绕面9。可以理解的是,在其他实施例中,金属极板也可以不面向地表,例如垂直于地表,则探测面为环绕面,或其他的在金属极板的作用下感应出电荷的探 头表面。
电容传感器150的灵敏度还与探头1和地表的距离有关,具体的,与探头1的末端和地表的距离有关。探头1与地表的距离越小,电容传感器150的灵敏度越高。本实施例中,电容传感器150的灵敏度与探测面5的下表面7到地表的距离有关,也即与探测面5的下表面7到轮组底面的距离有关。探测面5的下表面7到地表的距离越小,电容传感器150的灵敏度越高。因此,为提高电容传感器150的灵敏度,应使探测面5的下表面7尽量靠近地表,也就是尽量靠近轮组的底面。但是,当探测面5的下表面7与地表距离过小时,在自动割草机100移动过程中,探测面5可能接触地表,尤其是当自动割草机100在凹凸不平的地表移动时。若探测面5接触地表,则电容C1的两极间将不存在电势差,电容传感器150输出的电信号就不能准确反映地面是否为草地,使得自动割草机100无法安全工作。另一方面,探头1直接与地表接触,可能造成探头1的损坏,尤其是自动割草机100在移动过程中,探头1与地表发生碰撞时,将给探头1造成冲击损坏。
为了避免探头1与地表接触,同时尽可能增大电容传感器150的灵敏度,本实施例中,控制探测面5的下表面7高于轮组底面,且与轮组底面之间的距离大于等于10mm,小于等于50mm。当然,为了更可靠的避免探头1与地表接触,也可以控制探测面5的下表面7与轮组底面之前的距离大于等于15mm或20mm,等等。为了进一步增大电容传感器150的灵敏度,也可以控制探测面5的下表面7与轮组底面之间的距离小于等于40mm,30mm等等。本实施例中,控制探头1与地表的距离小于切割模块120的末端(即刀片的末端)与地表的距离。也就是说,在高度方向上,探头1的末端低于切割平面。
本实施例中,为了避免探头1与地表接触受损,同时尽可能增大电容传感器150的灵敏度,控制探头1与轮组底面之间的距离可调。具体的,如图2所示,电容传感器包括连接部14,连接探头1和壳体110,连接部14能够带动探头1相对于壳体110活动。具体的,连接部14能够带动探头1相对于壳体110在高度方向上移动。本实施例中,连接部14由柔性材料制成,具体的,连接部14由橡胶制成。当探头1受到沿高度方向向上的作用力时,例如探头1与地表接触时,连接部14向上收缩,带动探头1向上移动,使探头1远离地表;当探头1不再受到地表的作用力时,连接部14在自身弹力作用下 向下伸长,带动探头1向下移动,使探头1与地表恢复较小的间距。如此,可以使探头1始终与地表保持较小的间距,从而保证电容传感器150具有较高的灵敏度,同时避免了探头1与地表碰撞造成对探头1的损伤。
本实施例中,连接部14还能够带动探头1相对于壳体110在水平方向上摆动。当自动割草机100在凹凸不平的地表移动时,探头1与地表接触,此时,探头1除了受到沿高度方向的力之外,还可能受到沿水平方向的力。由于连接部14具有柔性,当探头1受到沿水平方向的力时,连接部14连接探头1的一端将相对于连接壳体110的一端发生水平方向的偏移,即连接部14带动探头1相对于壳体110沿水平方向发生偏摆。当探头1不再受地表的接触力时,连接部14在自身弹力作用下恢复原来的形状,带动探头1相对于壳体110恢复原来的位置。因此,当探头1与地表接触时,探头1呈现出相对于壳体110在水平方向上摆动的状态。连接部14带动探头1相对于壳体110在水平方向上摆动,能够避免探头1与地表接触时与地表发生摩擦,造成探头1的损坏。
如图2所示,本实施例中,连接部14包括沿纵轴X的通孔,供电连接所述探头1和控制模块的导线13穿过。由于连接部14具有柔性,当探头1与地表发生接触时,连接部14能够吸收碰撞引起的振动,从而保护电路。
本实施例中,通过控制探头1与地表的距离,可以使得自动割草机100在草地上移动时,保持探头1与草接触,即探测面5与草接触。也就是说,探头1与地表的距离小于工作平面(草坪)上的介质(即草)的高度。经测试,当探测面5与草接触时,电容传感器150输出的电信号,相比于探头1下方为非草地时,电容传感器150输出的电信号,有更加明显的变化。也就是说,自动割草机100同样是在草地上移动时,探测面5与草接触,相比于探测面5不与草接触,电容传感器150的充放电速度更慢。因此,使探头1能够与草接触,将使电容传感器150对草地的检测更灵敏。
在其他实施例中,电容传感器150也可以利用其他调高结构,来调节探头1相对于壳体110的高度,具体方案在后面描述。
电容传感器150的灵敏度还与探头的表面积有关,具体的,与探测面5的面积有关。探测面5的面积越大,电容传感器150的灵敏度越高。本发明的第一实施例中,探测面5包括下表面7和环绕面9,探测面5的面积大于等于28cm2。本发明的第一实施例中,探测面5的面积即金属极板的面积, 金属极板的面积大于等于28cm2。本发明的第二实施例中,优选的,控制金属极板的面积大于等于28cm2。当然,为了进一步提高电容传感器150的灵敏度,也可以设置探测面5或极板的面积大于等于35cm2,或40cm2,或45cm2,等等。
如图7所示,本发明的第四实施例中,为了尽可能增大探测面5的面积,探头1包括凹凸的表面,探测面5包括所述凹凸的表面。具体的,探测面5的下表面成波浪状,如此,在不增大探头1直径的基础上,能够进一步增大探测面5的面积,达到提高灵敏度的目的。
如图8所示,本发明的第五实施例中,探头1包括若干齿,沿高度方向向下延伸,探测面5包括所述齿的表面。具体的,本实施例中,探测面5包括侧面10,垂直于自动割草机100的工作表面,侧面10的电导率大于等于10-9s/m。本实施例中,探测面5沿高度方向延伸,齿的表面均可以作为探测面5,且探头1可以包括多个齿,如此,大大增加了探测面5的面积。本实施例中,探头1成梳状,相邻齿之间形成供草漏过的间隙,使探测面5能够与草充分接触,且不影响切割模块120执行切割任务。本实施例中,优选的,相邻齿之间的间隙面向自动割草机100的移动方向,即,探测面5的侧面10与自动割草机100的移动方向平行,使得自动割草机100移动时,草能够更好的漏过相邻齿之间的间隙。当然,在其他实施例中,齿也可以不垂直于自动割草机100的工作表面,而是相对于自动割草机100的工作表面倾斜预设角度,即,探测面5的侧面10相对于自动割草机100的工作表面倾斜预设角度。
上述实施例中,可以理解的是,壳体110底部是相对壳体110顶部和侧部而言的,指壳体110面向地表的部分,不受高度的限制。
在一些实施例中,探测面5的下表面7也可以是弧面,例如球状的探头。
在一些实施例中,电容传感器150也能够检测已切割的草地与未切割的草地。例如依据探头1下方的介质中,空气和草的比例的不同,或依据草是否与探测面5接触,此时可使探头1略高于切割刀片。
在一些实施例中,电容传感器的至少其中之一设置在壳体的前端或后端。
在一些实施例中,轮组包括前轮和后轮,电容传感器的至少其中之一设置在前轮的前侧,或者设置在后轮的后侧。
在一些实施例中,轮组包括前轮和后轮,电容传感器的至少其中之一设 置在前轮的前侧与后轮的后侧之间。
在一些实施例中,包括至少两组电容传感器,分别设置在壳体的两侧。
本发明的第二实施例中,请参照图4(a),为电容传感器150的剖视图。如图4(a)所示,一种电容传感器150,包括极板3、端盖(即包覆层外层19)和绝缘隔层(即包覆层内层17)。端盖设置在极板3外侧,端盖用于保护极板3,避免极板3受到撞击或摩擦等损坏。其中端盖为导电材料制成,绝缘隔层设置于极板3和端盖之间。
上述电容传感器150工作时,极板3会向待检测物传播电场,以检测待检测物。由于端盖是导体,电导率高,端盖有利于极板3电场的传播,有效增强电容传感器150的灵敏度,使得电容传感器150的检测效果较好。
本实施例中,待检测物以植被为例。
极板3作为电容传感器150的一个电极,用于检测植被,大地作为电容传感器150的另一个电极,这样,极板3与大地便可组成电容传感器,简单且节省成本。
在本实施例中,极板3为金属薄板,使得极板3的检测范围更大。端盖设置在极板3的外侧,即端盖设置于极板3朝向植被的一侧。端盖的材料可以是金属、导电合金或超导材料等导电材料。本实施例中,端盖为金属端盖,金属的电阻率很小,电导率很大,即金属的导电性能很好,因此金属端盖更有利于极板3向植被方向的电场传播。
绝缘隔层使极板3与端盖之间绝缘。一般情况,端盖裸露于外部环境中,由于端盖为导电材料,很容易传导外界环境中的静电,所以绝缘隔层用于保护极板3不受外界静电的影响。具体地,绝缘隔层为绝缘薄层,比如绝缘隔层的厚度为微米量级,使得绝缘隔层在保护极板3不受外界静电影响的同时,也不影响极板3与植被之间的电场传播。进一步地,绝缘隔层的材料为绝缘的塑料或绝缘的橡胶,使得极板3与外部环境电绝缘效果更好。在其它实施例中,绝缘隔层的材料不局限于此,也可以为其它绝缘材料。
电容传感器150还可以包括基板21,基板21设置于极板3的另一侧,极板3嵌设于基板21上,基板21用于固定极板3。这样使得极板3的设置更加稳固。
本实施例中的电容传感器150,从基板21向端盖的方向看,依次为基板21、极板3、绝缘隔层和端盖。其中基板21、极板3和绝缘隔层相互平行, 且叠放在一起,使结构紧凑。
电容传感器150还可以包括导线13和固定结构23,导线13穿过基板21连接极板3,也就是说,基板21上设置有与导线13相适配的通孔,导线13一端穿过该通孔连接至极板3,另一端向远离端盖的方向引出,以连接电容传感器150的电路。固定结构23围绕导线13,且固定结构23抵住基板21,固定结构23用于固定导线13。这样可以限定导线13靠近极板3部分的位置。优选地,固定结构23的材料为海绵,由于海绵具有弹性,导线13可以相对固定结构23活动,当电容传感器150被意外碰撞时,导线13不容易被折断。
电容传感器150还可以包括传感器壳体25,传感器壳体25呈圆筒状,传感器壳体25的侧壁界定了内腔,固定结构23和基板21设置于内腔中,基板21垂直于传感器壳体25的中心轴,固定结构23和基板21抵住传感器壳体25的侧壁,传感器壳体25的侧壁和端盖配接在一起,传感器壳体25、固定结构23和端盖配合在一起保护极板3。这样,传感器壳体25、固定结构23和端盖三者一起可以将极板3封在电容传感器150的内部,防止极板3在各个方向被碰撞,保护极板3。具体地,本实施例中,海绵的固定结构23和基板21一起填充满传感器壳体25内部的内腔,端盖从传感器壳体25的底部与传感器壳体25的侧壁配接在一起,且端盖与传感器壳体25的侧壁之间、端盖与绝缘隔层之间及绝缘隔层与极板3之间紧密配合,这样使得极板3的设置更牢固。
请参照图4(b),端盖为圆形盖,端盖包括凸缘27,凸缘27设置于端盖朝向传感器壳体25的一侧,且凸缘27包围传感器壳体25的侧壁,凸缘27与传感器壳体25的侧壁通过螺纹连接在一起。这样,端盖与传感器壳体25的侧壁通过螺纹旋扭在一起即可实现连接,安装简单。并且端盖与传感器壳体25的侧壁之间是可拆卸的连接,方便极板3的维护。进一步地,由于端盖为金属材质,耐磨性更好,因此,金属的凸缘27可以从传感器壳体25的侧面保护传感器壳体25。并且在传感器壳体25侧面设置金属的凸缘27,有利于极板3从传感器壳体25侧壁向外辐射的电场传播,可以识别位于传感器壳体25侧面的植被,进一步提高电容传感器150的灵敏度。
请参照图4(a),电容传感器150包括极板3、端盖和绝缘隔层。端盖为平板状。电容传感器150还包括传感器壳体25,传感器壳体25的侧壁与端盖通过螺钉连接。这样,传感器壳体25的侧壁与端盖连接简单,并且端盖为 平板状,制作工艺简单,节省成本。
请参照图4(c),为第二实施例的电容传感器的检测原理图。信号处理电路160的输入端连接极板3;处理器170的输入端连接信号处理电路160的输出端。
在电容传感器150的工作状态,极板3会向植被传播电场,以检测植被。端盖位于极板3与植被之间,由于端盖是导电材料,电导率高,端盖有利于极板3电场的传播,有效增强电容传感器150的灵敏度,使得电容传感器150检测植被的效果较好。极板3将检测植被的信号经过信号处理电路160传输给处理器170,自动割草机100能够根据极板3检测植被的情况执行工作任务,从而使切割植被的效果较好。
极板3作为电容传感器150的一个电极,大地作为电容传感器150的另一个电极,通过检测极板3和大地之间的电容的变化,以判断草地的状况。信号处理电路160根据电容传感器150传输的信号,输出为方波。当极板3检测到植被时,极板3和地表之间介电常数变大,极板3和大地之间的电容增大,信号处理电路160输出的方波频率减小。当没有植被时,极板3和大地之间的介电常数则变小,极板3和地表之间的电容也减小,信号处理电路160输出的方波频率增大。从而处理器170可以根据信号处理电路160的输出的方波频率以判断植被状况,控制自动割草机100的工作状态。
需要说明的是,信号处理电路160的输出信号不局限于此,也可以是其它信号形式,比如也可以是电平变化,只要能表明电容传感器150检测草地的情况即可。
具体地,信号处理电路160包括施密特触发器ST,施密特触发器ST的输入端连接极板3,施密特触发器ST的输出端连接处理器170的输入端。当极板3检测到植被,施密特触发器ST的输出信号变化,实现自动割草机100自动识别植被。更进一步地,信号处理电路160还包括基础电容和电阻R。基础电容一端连接施密特触发器ST的输入端、另一端接地。电阻R的两端并联接于施密特触发器ST的输入端和输出端之间。极板3下方有植被或者与植被接触,将会引起基础电容的变化,从而引起施密特触发器ST输出信号变化,实现植被检测,便于有效切割植被。此外,信号处理电路160还包括电源Vcc和滤波电容。电源Vcc连接于施密特触发器ST的电源端,用于给施密特触发器ST提供工作电能。滤波电容连接于施密特触发器ST的电源 端和地之间,具有稳压作用,用于稳定接入施密特触发器ST的电源电压,使施密特触发器ST工作稳定。
电容传感器150的数量为一个或多个,信号处理电路160的数量为一个或多个,信号处理电路160的数量与电容传感器150的数量相同,每个电容传感器150对应连接一个信号处理电路160。这样可以防止多个信号处理电路160之间的干扰,使处理器170准确判断电容传感器150检测植被的情况,从而使自动割草机100准确执行切割任务。本实施例中,电容传感器150的数量为两个。以准确检测植被。
探头调高的其他实施例:传统的自动割草机的电容传感器固定于壳体,高度无法调节,由于电容传感器接触到草会增大草地识别准确率,因此当草地较矮,而电容传感器较高时,自动割草机容易产生误判,不切割草。另外,由于电容传感器较高,自动割草机在当前的矮草区域识别不到草地,即自动割草机判定局部没有草地,这时即使矮草区后面存在高草区域,自动割草机也不会通过当前的矮草区行走至高草区,即出现“矮草围困”现象。从而导致该修剪的草坪没有被修剪,传统的自动割草机的工作效率较低。
因此,有必要针对电容传感器固定于壳体,高度无法调节的问题,设计一种新型的自动割草机,其电容传感器相对地面的高度能够调节,可以根据需要切割的草地的高度来调节电容传感器高度,减少机器不切割草地的误判,使修剪草地的效果理想,提高工作效率。
第六实施例:
请参照图9至图11,图9为本实施例的自动割草机的剖视图,图10为本实施例的自动割草机的信号处理电路的示意图,图11为本实施例的信号处理电路的输出信号示意图。此处定义自动割草机的正常行进方向为自动割草机的前方,与前方相对的一方为割草机的后方。
如图9所示,一种自动割草机,用于切割位于工作表面上的植被。该自动割草机包括壳体和传感组件312。其中,传感组件312设置于壳体上,传感组件312包括电容传感器(以下简称传感器),传感器相对工作表面的高度能够调节,用于感应植被。
自动割草机还包括切割刀盘314,设置于壳体,切割刀盘314相对工作表面的高度能够调节,切割刀盘314用于切割植被。
本实施例中,工作表面是地面。在其它实施例中,不局限于此,工作表 面也可以是建筑物的表面等。
本实施例中,传感组件312与切割刀盘314能够同时相对工作表面调节高度。需要说明的是,在其它实施例中,切割刀盘314也能够单独调节相对工作表面的高度。
自动割草机还包括旋转组件310,旋转组件310能够旋转,且旋转组件310具有垂直于工作表面的第一侧壁316,第一侧壁316的表面设置有旋转齿318;传感组件312具有垂直于工作表面的第二侧壁322,第二侧壁322相对于第一侧壁316的表面设置有旋转螺纹324,旋转螺纹324与旋转齿318相啮合,传感器设置于第二侧壁322上,传感组件312随旋转组件310的旋转而相对工作表面移动。
本实施例中,旋转组件310包括横向连杆328,横向连杆328平行于工作表面,横向连杆328与第一侧壁316相连。
旋转组件310能够旋转,以在后续带动传感组件312上下移动。可以通过手动、自动、或手动与自动相结合的方式驱动旋转组件310旋转。本实施例中的割草机通过调高电机330以自动的方式驱动旋转组件310旋转,调高电机330具有第一输出轴332,旋转组件310设置于第一输出轴332上,调高电机330能够通过第一输出轴332带动旋转组件310旋转。具体地,调高电机330位于旋转组件310的上方,其第一输出轴332与横向连杆328的中心相配接,因而,在调高电机330的驱动下,第一输出轴332的旋转可带动旋转组件310旋转。本实施例中,调高电机330为步进电机,步进电机是将电脉冲信号转变为角位移,当步进电机接收到一个脉冲信号,步进电机按设定的方向转动相应的角度,从而驱动旋转组件310旋转相应角度。
传感组件312具有垂直于工作表面的第二侧壁322,传感器设置于第二侧壁322上,且传感器的探头朝向工作表面,用于感应植被。
第二侧壁322与第一侧壁316相对设置,第二侧壁322与第一侧壁316均垂直于工作表面。为使固定连接于第二侧壁322的传感器的高度能够上下调节,在第二侧壁322相对于旋转齿318的一侧的表面设置旋转螺纹324,该旋转螺纹324与旋转齿318相啮合,以使旋转组件310和传感组件312进行相对的圆周运动和上下运动。本实施例中,由于旋转组件310在高度方向上保持固定不变,当旋转组件310被驱动旋转时,旋转组件310进行圆周运动,而传感组件312进行上下运动,以利于传感器的探头感应植被。
在其它实施例中,传感器自身也能够伸缩。比如,传感器采用弹性材料制作,传感器随植被的高度自由调整其自身相对工作表面的高度。当植被较矮,传感器由于其自身重力,处于拉伸状态,能够靠近植被。当植被较高,植被便给以传感器向上的力,将传感器压缩,传感器相对工作表面较高。这样传感器便可以根据植被的高度自由调节其相对工作表面的高度,自动割草机可以有效识别并切割植被。
需要说明的是,本实施例中,采用了旋转齿318相对旋转螺纹324的圆周运动,进而驱动传感组件312上下运动。在其它实施例中,也可以采用其它方式使传感组件312相对工作表面上下移动,比如采用其它机械结构或者自动控制结构等。
进一步地,关于旋转齿318和旋转螺纹324的位置,旋转齿318可以位于第一侧壁316远离旋转组件310的旋转轴一侧的表面,也可以位于第一侧壁316靠近旋转组件310的旋转轴一侧的表面。旋转螺纹324可以位于第二侧壁322远离旋转组件310的旋转轴一侧的表面,也可以位于第二侧壁322靠近旋转组件310的旋转轴一侧的表面,只要两者可以啮合即可。本实施例中,第二侧壁322位于第一侧壁316的靠近旋转组件310的旋转轴的一侧,与第一侧壁316相对设置,第二侧壁322的表面设置有旋转螺纹324,即旋转螺纹324位于第二侧壁322远离旋转组件310的旋转轴的一侧的表面,旋转螺纹324与旋转齿318相啮合,旋转齿318沿着旋转螺纹324呈圆周旋转,而旋转齿318的高度固定不变,从而驱动传感组件312上下移动。
需要说明的是,在其他实施例中,第二侧壁322也可以位于第一侧壁316远离旋转组件310的旋转轴的一侧,其旋转螺纹324位于第二侧壁322靠近旋转组件310的旋转轴的一侧的表面,而旋转齿318位于第一侧壁316远离旋转组件310的旋转轴的一侧的表面,且与旋转螺纹324相啮合,由此也可以实现旋转组件310沿着旋转螺纹324旋转,从而驱动传感组件312上下移动。
本实施例中,传感组件312还包括传感器连接杆334,传感器连接杆334与第二侧壁322相连,位于第二侧壁322下方;传感器设置于传感器连接杆334上,且朝向工作表面,用于感应植被,传感器与传感器连接杆334的连接可以是固定连接也可以是可拆卸连接,本实施例中,采用的是固定连接,传感器随着传感组件312的上下移动而相应地上下移动。
本实施例中的自动割草机还包括切割电机338,位于切割刀盘314远离工作表面一侧,切割电机338为切割刀盘314工作提供动力。
本实施例中的自动割草机还包括电机箱(未示出),电机箱套在切割电机338的外侧,且位于切割刀盘314远离工作表面一侧,第二侧壁322为电机箱的侧壁。电机箱给以切割电机338足够的工作空间,使切割电机338工作时不与自动割草机其它部件互相干扰,此外,电机箱的侧壁作为传感组件的第二侧壁,两者合一,可以减轻自动割草机的重量,节省自动割草机部件所占空间。
本实施例中,切割电机338位于电机箱内的底部,用螺钉将切割电机338外壳、电机箱底部及传感器连接杆334三者固结在一起,三者一同上下移动。
自动割草机还包括位置传感器(未示出),位于第二侧壁322远离旋转组件310的旋转轴的一侧的表面。位置传感器用于感测电机箱距离工作表面的高度。这样,当电机箱连同切割电机38和传感器连接杆334下降到最低高度或者上升到最大高度时,位置传感器可以将高度信息及时反馈给自动割草机,使调高电机330及时停止工作,避免能源浪费,同时防止损坏调高电机330及旋转组件310。
本实施例中,切割电机338具有可旋转的输出轴340,切割刀盘314固定连接于输出轴340上,切割刀盘314随输出轴340的旋转而旋转,由切割电机338通过输出轴340带动切割刀盘314执行切割植被操作。
本实施例中,旋转组件310和切割刀盘314绕同一轴线旋转。进一步地,可使第一输出轴332、电机箱的中心轴、切割电机338的中心轴及切割刀盘314的旋转轴重合,这样可以使自动割草机割草时重心稳重,割草均匀。
本实施例中的自动割草机还包括外壳342,用于设置上述自动割草机的部件,外壳342内部为调高电机330、旋转组件310、传感组件312、切割电机338及切割刀盘314等部件的设置提供足够空间。
自动割草机还包括行走组件(未示出),行走组件包括至少一个轮子,传感器位于行走组件行走方向的前方或后方。本实施例中的行走组件包括前轮(未示出)和两个后轮344,其中,前轮为支撑轮,两个后轮344平行放置,为驱动轮,位于自动割草机的后方,由驱动轮驱动自动割草机行走。传感器设置于前轮的前方,或者传感器设置于其中一个后轮344的后方,传感器还可以设置于两个后轮344中间以及其它位置。当然传感器的数量还可以为多 个,多个传感器均匀分布于所有轮子的外围。这样可以增大传感组件312检测植被的范围,有效切割植被。并且,当自动割草机行驶至非工作区域,传感器发出检测不到草的信号,这时自动割草机便自动返回植被区域,继续检测植被并切割。进一步地,这样可以避免自动割草机行驶至台阶、悬崖等地方继续行进损坏自动割草机的情况。
本实施例中的自动割草机还包括控制装置(未示出),位于外壳342上,与切割电机338、传感器及调高电机330电连接,用于控制自动割草机的工作,控制调高电机330、切割电机338、以及传感器等部件的工作。
请参照图10,图10为本实施例的自动割草机的信号处理电路的示意图,信号处理电路包括施密特触发器348,输入电容350,电阻352。施密特触发器348的输入端与传感器的探头346相连,施密特触发器348的输出端(即信号处理电路的输出端)与控制装置相连。
传感器是电容传感器,电容传感器包括检测电极,检测电极用于感应植被,检测电极相对工作表面的高度能够调节。传感器还包括与检测电极相对的参考电极。检测电极靠近工作表面,当植被靠近检测电极时,电容传感器的电容发生变化。具体地,探头346作为电容传感器的检测电极,参考电极为信号处理电路的电路地或大地。在探头346感应到植被或者没有感应到植被的两种情况下,电容传感器的电容值不同,信号处理电路的输出信号的参数值也不同。
请参照图11,图11为本实施例的信号处理电路的输出信号示意图,自动割草机在植被上行走时,信号处理电路的输出信号会随着探头346是否感应到植被而不同。具体地,如图11所示,信号处理电路输出方波信号,探头346在没有感应到植被时,方波信号的频率较大,周期较小。当探头346感应到植被时,方波信号的频率较小,周期较大。即根据信号处理电路的输出信号,控制装置就可以判定探头346是否识别到植被。如果探头346识别到植被,控制装置便控制自动割草机切割植被或继续行走。如果探头346没有识别到植被,控制装置便控制调高电机330相应调节传感组件312相对植被的高度,进而调节传感器相对植被的高度,探头346相对植被的高度也相应调节,以便能快速灵敏地识别植被,提高工作效率。
需要说明的是,在其他实施例中,信号处理电路的输出信号不局限于此。在探头346感应到植被时,信号处理电路的输出信号也可以为其它信号,例 如电平信号,只要能表明探头346是否感应到植被即可。
上述自动割草机,由于传感器相对工作表面的高度可以自动调节,使得用户可以根据植被高度调节传感器高度,当植被较矮时,将传感器高度调低,自动割草机即可识别植被,不会产生误判,从而启动切割刀盘切割植被,不会漏掉本该修剪的植被,切割效果较好,切割效率较高。
第七实施例:
与实施例一不同,本实施例中,可以不调节整个传感组件相对工作表面的高度,仅仅调节传感器相对工作表面的高度,另外,传感组件与单个传感器的调节也可以相互结合,以利于切割植被。
请参照图12,图12为本实施例的自动割草机的传感器362连接剖视图。
本实施例中,自动割草机包括壳体和传感组件(未示出),它们的设置及连接关系可参照第六实施例。
如图12所示,本实施例的传感组件还包括传感器连接杆(未示出),传感器362设置于传感器连接杆上,且传感器362和传感器连接杆螺纹连接,传感器362与传感器连接杆是可调节的连接方式。
本实施例中,传感器连接杆设有朝向工作表面的伸出端(未示出),传感器362内部设有内螺纹364,伸出端靠近工作表面一端设有调高螺柱366,内螺纹364与调高螺柱366相适配,可将传感器362通过内螺纹364与调高螺柱366相连,且内螺纹364与调高螺柱366的配接长度可调节。
需要说明的是,在其他实施例中,不局限于此,也可以是传感器362外部设有调高螺柱366,伸出端内设有内螺纹364,也可以实现传感器362与传感器连接杆的连接,及相对高度调节。
这样,用户在不调节传感组件的高度时,依然可以通过内螺纹364与调高螺柱366的配接长度来调节传感器362相对工作表面的高度,进而实现对传感器362高度的手动调节。
具体操作方法:用户将传感器362套入调高螺柱366上,使传感器362的内螺纹364与调高螺柱366配接,由下而上逆时针旋转传感器362,可实现传感器362相对工作表面上升,由上而下顺时针旋转传感器362,可实现传感器362相对工作表面下降。
自动割草机可以包括一个或多个传感器362。本实施例中,自动割草机包括四个传感器362,呈等半径圆周均匀分布于传感器连接杆上。在其他实 施例中,传感器362的数量及位置不局限于此,数量也可以为三个,成等三角形分布。本实施例中,可以在整体调节传感组件的高度之后,有针对性地调整一个或者多个传感器362相对植被的高度,使得自动割草机可以同时感应不同区域的不同高度的植被,扩大传感器362识别植被的范围。
上述自动割草机,设置多个传感器362可以扩大自动割草机识别植被的范围,还可以单独手动调节每个传感器362相对工作表面的高度,使不同传感器362有不同高度,充分利用传感器362识别不同区域内不同高度的的植被,提高自动割草机的工作效率。
第八实施例:
本实施例中的自动割草机可以手动旋转调节组件,以驱动旋转组件旋转,从而驱动传感组件的相对工作表面的上下移动。
请参照图13,图13为本实施例的自动割草机的调节旋钮371与锁定装置372的剖视图。
本实施例中,自动割草机包括壳体,传感组件(未示出)和旋转组件378,它们的设置及连接关系可参照第六实施例。
如图13所示,本实施例的自动割草机还包括调节组件370,调节组件370设置于旋转组件378远离工作表面的一侧,调节组件370包括调节旋钮371和锁定结构372。其中,调节旋钮371能够旋转,且能够上下移动。锁定结构372设置于调节旋钮371和旋转组件378之间,且锁定结构372能够随调节旋钮371的旋转而旋转,当按下调节旋钮371时,锁定结构372固定连接旋转组件378。
本实施例中,调节旋钮371可沿垂直于工作表面的方向按下或复位。本实施例中,锁定结构372包括第一连接件3721和第二连接件3722,第一连接件3721与调节旋钮371相连,第二连接件3722与旋转组件378相连,第一连接件3721与第二连接件3722相适配,当调节旋钮371按下,第一连接件3721与第二连接件3722固结在一起。
本实施例中,第一连接件3721朝向第二连接件3722两端设有凸出钩374,第二连接件3722上的对应两端设有钩槽376,凸出钩374与钩槽376相适配,当调高旋钮按下,凸出钩374与钩槽376固结在一起,以实现第一连接件3721与第二连接件3722固结在一起,从而实现调节旋钮371与旋转组件378固结在一起。
当用户将调节旋钮371按下,使得调节旋钮371与旋转组件378锁定固结在一起,从而旋转调节旋钮371,即可带动旋转组件378转动,旋转组件378通过旋转驱动传感组件(未示出)的上下移动,从而可以带动传感器(未示出)在垂直于工作表面的方向上移动,以实现传感器距离工作表面的高度调节。
这样,当需要手动调节传感组件的高度时,用户可以通过调节旋钮371和锁定结构372来手动调节传感组件的上下移动,进而可以调节传感器离植被的高度。
第九实施例:
本实施例中利用凸轮原理实现传感器相对工作表面的高度调节。
请参照图14,图14为本实施例的自动割草机的凸轮380和传感组件382的连接示意图。
本实施例中,自动割草机包括壳体383和传感组件382。
自动割草机还包括凸轮电机(未示出)和凸轮380,凸轮电机固定于壳体383上,凸轮电机的输出轴与凸轮380的转动轴380A相连,凸轮380的转动轴380A平行于工作表面,凸轮380包括凸出部381,凸出部381朝向工作表面,且凸出部381绕凸轮380的转动轴380A朝向工作表面往复摆动。
传感组件382还包括第一弹性结构3822和连杆3823,第一弹性结构3822垂直于工作表面,第一弹性结构3822包括固定端3822A和活动端3822B,固定端3822A固定于壳体383上,活动端3822B能够相对工作表面上下移动,第一弹性结构3822用于将传感组件382限位于预先设定的范围内。连杆3823垂直于工作表面,连杆3823的中部与活动端3822B相连,连杆3823的一端连接传感器,另一端抵住凸出部381,凸出部381的往复摆动带动连杆3823相对工作表面上下移动。
这样,凸轮380作为主动件,传感组件382作为凸轮380的从动件。凸轮电机驱动凸轮380往复摆动,本实施例中,凸轮电机驱动凸轮380绕其转动轴顺时针或逆时针摆动,进而凸出部381绕凸轮380的转动轴380A朝向工作表面顺时针或逆时针往复摆动。传感组件382的连杆3823抵住凸出部381,当凸出部381朝向工作表面往复摆动时带动连杆3823上下移动。
本实施例中第一弹性结构3822的活动端3822B靠近工作表面,第一弹性结构3822的固定端3822A位于活动端3822B的上方。由于第一弹性结构 3822的固定端3822A固定于壳体383上,活动端3822B与连杆3823相连,当凸出部381逆时针摆动时,凸出部381驱动连杆3823向下运动,连杆3823带动活动端3822B向下运动,活动端3822B将第一弹性结构3822拉长,进一步带动传感器向下运动。当凸出部381顺时针摆动,第一弹性结构3822回弹,带动连杆3823向上运动,从而带动传感器向上运动。这样便可以根据植被的高度,通过凸轮电机调节凸轮380的转动方向,从而相应调节传感器距离工作表面的高度,以适应不同高度植被的切割。
第十实施例:
本实施例中利用弹性高度随动结构调节传感器相对工作表面的高度。
请参照图15,图15为本实施例的自动割草机的第二弹性结构388和传感组件386的连接示意图。
本实施例中,自动割草机包括壳体384和传感组件386。传感组件386设置于壳体384上,传感组件386包括传感器(未示出),传感器相对工作表面的高度能够调节。
自动割草机还包括第二弹性结构388,传感组件386与壳体384通过第二弹性结构388相连。第二弹性结构388垂直于工作表面,且能够在垂直于工作表面的方向伸缩。自动割草机不工作时,第二弹性结构388处于初始状态。本实施例中,第二弹性结构388为弹簧。
本实施例中,工作表面为地面,当植被较高,碰到传感组件386时,植被会给传感组件386向上的力,并且克服传感组件386自身的重力,此时传感组件386压缩第二弹性结构388,同时传感组件386向上运动,带动传感器向上运动。当自动割草机行进至植被较矮的区域,第二弹性结构388在自身重力的作用下向下伸长,带动传感组件386靠近植被。这样有效感应植被,方便自动割草机切割植被。
需要说明的是,在其它实施例中,第二弹性结构388的伸缩不局限于此方法,也可以用外力控制第二弹性结构388的伸缩,以实现传感组件386相对于工作表面的不同高度调节。
在其中一个实施例中,第二弹性结构为扭转弹簧。扭转弹簧能够以预先设计的角度扭转,当传感组件在任意角度触碰到植被,植被给传感组件以相应角度的力,由于传感组件与扭转弹簧相连,扭转弹便向相应角度扭转,这样能够实现传感组件相对壳体不同自由度的调节。
第十一实施例:
本实施例采用导轨式高度随动结构实现传感器394C相对工作表面的高度调节。
请参照图16,图16为本实施例的自动割草机的传感组件394的示意图。
本实施例中,自动割草机包括壳体(未示出)和传感组件394。传感组件394设置于壳体上,传感组件394包括传感器394C,传感器394C相对工作表面的高度可调节,且传感器394C的探头朝向工作表面,用于感应植被。
自动割草机还包括固定板396,固定板396固定于壳体上,固定板396上开设有垂直于工作表面的通孔(未示出),固定板396用于设置传感组件394。传感组件394还包括活动杆394A和限位块394B,活动杆394A穿过通孔,活动杆394A能够在通孔内相对工作表面往复活动,限位块394B设置于活动杆394A远离工作表面的一端,传感器394C设置于活动杆394A的另一端,限位块394B和传感器394C将活动杆394A限制在固定板396的通孔内活动。
这样,活动杆394A在通孔内往复活动,并且活动杆394A在预先设定的范围内活动,带动传感器394C相对工作表面上下移动。当植被较高,植被将传感器394C顶起,传感器394C连同活动杆394A向上运动。当植被较矮,传感器394C连同活动杆394A由于重力的作用垂向植被,且限位块394B的尺寸大于通孔的尺寸,以防活动杆394A脱离固定板396。上述自动割草机,可以随着植被高度,自由调节传感组件394的高度,有效识别并切割植被。
需要说明的是,在其它实施例中,活动杆394A的在通孔内的上下活动也可以由其它外力控制,以实现传感器394C相对工作表面的不同高度的调节。
另外,有必要针对传感器固定于壳体,高度无法调节的问题,提供一种传感器高度控制方法。自动割草机的传感器相对工作表面的高度可调节,减少机器不切割植被的误判,还可以避免“矮草围困”的问题,使修剪植被的效果理想,提高工作效率。
请参照图17,为本实施例的传感器高度控制方法流程示意图。如图17所示,一种传感器高度控制方法,用于控制以上任一实施例的自动割草机的传感器的高度,包括:
步骤S110,设定传感器的初始高度,传感器输出初始信号。
具体地,根据传感器输出的初始信号,自动割草机即可判断是否识别到草,以执行相应的操作。初始信号为方波信号,自动割草机能够根据方波信号的相关参数判定识别植被的情况。
步骤S120,比较初始信号的参数值与预设的参数阈值,根据比较的结果判断传感器是否检测到植被。若是,则自动割草机切割植被或继续行走,若否,则将所述传感器向下调节特定距离。
具体地,若比较的结果显示传感器检测到植被,则说明当前自动割草机处在工作区域。自动割草机根据传感器当前的高度判断植被是否需要切割,如果植被需要切割,则自动割草机执行切割操作。如果植被不需要切割,自动割草机判定当前植被区域为工作区域,可以继续行走。若比较的结果显示传感器未检测到植被,则自动割草机将传感器向下调节特定距离。本实施例中,提前设定特定距离为0.5cm,即若比较的结果显示传感器未检测到植被,则传感器下降0.5cm。
上述传感器高度控制方法,使得自动割草机可以根据传感器的输出信号判别传感器是否检测到植被,自动割草机可以根据检测情况调节传感器高度。当传感器检测到植被时,自动割草机执行切割植被的操作或继续行走;当传感器显示未检测到植被时,自动割草机将传感器高度调低,继续检测。这样,自动割草机在识别植被时,不会因为植被较矮而产生误判,提高了识别植被的准确性,切割效果较好,切割效率较高。
在其中一个实施例中,步骤S120还包括:比较初始信号的频率值与预设的频率阈值,判断初始信号的频率值是否小于预设的频率阈值,若是,则传感器检测到植被,若否,则传感器未检测到植被。
具体地,传感器的输出信号为频率信号,传感器预先设定频率阈值。传感器未检测到草,频率值较大;传感器感应到植被,频率值较小。若初始信号的频率值小于频率阈值,则说明传感器检测到植被区域。若初始信号的频率值不小于频率阈值,则说明传感器未检测到植被区域。这样,自动割草机便可以根据传感器输出的频率值判定传感器是否识别到草,准确方便。
请参照图18,为另一实施例的传感器高度控制方法流程示意图。本实施例中,在将传感器向下调节特定距离的步骤之后,该方法还包括:
步骤S140,比较传感器的信号的参数值与参数阈值,根据比较的结果判断传感器是否检测到植被,若是,则自动割草机切割植被或继续行走,若否, 则将传感器向下调节特定距离,输出传感器的高度值。
本实施例中,传感器的信号为方波信号。该信号的参数值与参数阈值为同类型的参数,比如都为频率值或者电平值等,具有可比性。自动割草机通过比较的结果即可判断传感器是否检测到植被。本实施例中,若比较的结果显示传感器未检测到植被,则传感器下降0.5cm。此外,还要输出此时传感器的高度值。
步骤S160,判断传感器的高度是否小于或等于高度阈值,若是,则自动割草机行走至植被区域,若否,则将传感器向下调节特定距离。
具体地,自动割草机提前设置了传感器的高度阈值,即传感器检测植被的最低高度。若传感器的高度值小于或等于高度阈值,则说明传感器已经降低至最低高度或最低高度之下,进一步说明传感器下方的区域非自动割草机的工作区域,这时自动割草机控制传感器行走至工作区域继续检测并切割植被。若传感器的高度值依然大于高度阈值,则再次向下调节传感器的高度,并继续判断传感器下方是否是植被,自动割草机根据判断的结果执行相应步骤的操作。这样,自动割草机可以更加准确的识别植被区域与非植被区域。
在其中一个实施例中,步骤S140还包括:比较传感器的信号的频率值与预设的频率阈值,判断传感器的信号的频率值是否小于频率阈值,若是,则传感器检测到植被,若否,则传感器未检测到植被。
具体地,传感器的信号为频率信号,传感器预先设定频率阈值。若传感器的信号的频率值小于频率阈值,则说明传感器检测到植被区域。若传感器的信号的频率值不小于频率阈值,则说明传感器未检测到植被区域。这样,自动割草机便可以根据传感器输出的频率值判定传感器是否识别到植被,准确方便。
本发明的其他实施例中,探头包括至少两个极板,分别与控制模块电连接,极板具有不同的电位。具体的,极板包括屏蔽侧,背对自动割草机下方的表面,屏蔽侧设置有屏蔽层。
第十二实施例:
参图19,自动割草机100,包括壳体110、切割模块120、移动模块130、控制模块,其中控制模块用于控制切割模块120和移动模块130的工作。为了减少自动割草机的空转,提高工作效率,自动割草机100还于切割模块120的两侧分别设置有电容传感器150(以下简称传感器150),控制模块包括信 号处理电路160,与传感器150相连。
参图20,传感器150采用电容原理实现对草高、草地或非草地的判断。有草无草时会使得图20中传感器150处的电容发生变化,从而改变信号处理电路160的输出信号S的变化。图20中,信号处理电路160包含施密特触发器162,传感器150处的电容值变化时,施密特触发器162输出信号S的振荡频率将发生改变,控制模块的MCU通过读取信号频率的变化识别传感器150处电容的变化,从而实现草地或非草地、草高的识别,进而根据设定向切割模块120和移动模块130发出工作指令。
图20仅为电容传感器150的原理图,其示意了通过电容变化改变信号处理电路160中施密特触发器器162输出信号S的振荡频率,从而达到识别电容变化的目的。但电容变化当然也可以通过不同信号处理电路将电容变化转换为电压、电流信号的变化,然后记录判断,同样可以达到识别电容变化的目的。
参图21-23,传感器150包括三块位于同一平面的极板,自左至右分别为第一极板152、第二极板154、第一极板152。三块极板均用导电金属材料制成,第一极板152有两个,分别位于第二极板154的两侧,两个第一极板152之间通过导线156连接。这样,第二极板154左右两侧均形成电场E,形成较大的感应区域。当然也可以只设置一个第一极板152和一个第二极板154,二者并排布置于同一平面。
信号处理电路160具有输入端和输出端。其中,第一极板152接入信号处理电路160的输入端,第二极板154与信号处理电路160的公共接地端相连,从而第一极板152与第二极板154之间形成电容。具体到本实施例,第一极板152与施密特触发器162的输入端相连,第二极板154接入信号处理电路160的零电位。
参考图24,示意了传感器150与信号处理电路160的另一种连线方式。其中,两个第一极板152与信号处理电路160的公共接地端相连,第二极板154接入信号处理电路160的输入端。
根据平行板电容的计算公式C=(εS)/d,其中,ε:极板间介质介电常数,S:极板正对面积,d:极板间距;要想改变C的大小,可以通过调整ε、S或d来实现。因此当草高度变化时,引起第一极板152、第二极板154附近介质变化,进而引起电容变化,即实现传感功能。
控制模块根据电容变化判断草高大于预设高度时,控制模块控制切割机构执行切割工作。电容传感器150的输出频率与草高度有一定的线性对应关系。例如,设定为草越高,信号处理电路160输出信号频率越低。一般信号频率可设置在1Mhz左右变化,通过设置传感器内部的电阻R的参数,可以使得当传感器下方草高大于4cm时,输出频率f<1Mhz,反之则f>1Mhz。控制模块识别这一变化,从而驱动切割模块120割草或者不割草,控制移动模块130前进或者后退。
进一步地,控制模块根据电容变化能完成草地与非草地的识别。原因在于非草地相当于草高度为零,变化超过预定变化时,即可确定草高度由4cm变为零,可判断为非草地。
传感器150安装在壳体110下方,以检测割草工作区域内草的高度。传感器150还包括连接于壳体110的支撑板158。第一极板152、第二极板154并排布置支撑板158上。
由于第一极板152、第二极板154均设置在传感器152,因此,第一极板152、第二极板154之间形成的电场E位于第一极板152、第二极板154下方,朝向草地一侧,比较接近草地,具有较高的检测灵敏度。
换言之,由于电场压向草地一侧,检测时,草高的变化将使得电容变化更加明显,检测更为灵敏。例如当频率设置为1M左右变化时,当传感器150下方草高为4cm时,采用本方案时,其输出频率为800khz,而如果采用向上的电场方案则输出频率为900khz,因此采用本方案时,传感器检测更加灵敏。
第一极板152、第二极板154均沿水平方向布置。自动割草机100工作时,第一极板152、第二极板154与草地平齐,保证感应电场是向下压向草地一侧。
传感器150在壳体110上设置为高度可调,以能够适应切割高度不同的草坪的要求,以配合信号处理电路160的调整,进而保证检测灵敏度。如,需要预留8cm草坪时,传感器160的位置如果仍停留在原来检测4cm草坪的位置时,可能会给信号处理电路160的调整增加难度,甚至无法检测,此时可以先调整传感器150在壳体110上的高度。
参图19,切割模块120的左右两侧,也是壳体110的前后两端处分别设置有若干个传感器150。自动割草机100工作时,这些传感器150在切割模块120前方和后方在自动割草机100宽度方向上分别形成感应区域。由于第 一极板152、第二极板154布置于同一平面,当设置多个传感器150,多个传感器150的感应区域可衔接在一起,形成连续的感应区域。该连续的感应区域的宽度大于或等于切割模块120的切割直径。这样,可保证切割范围内的草均能被检测到,避免出现局部区域的草高度适当,但个别区域的草高度较大的情况。
切割模块120两侧均设置传感器150,左侧的传感器在割草前判断是否需要执行切割作业,右侧的传感器则具有复检功能,判断切割是否到位。
第十三实施例:
下面结合附图25-27,描述实施例十三的电容传感器的构成。
传感器250包括三块由金属导电材料制成的极板。三块极板位于同一平面,形成向下的朝向草地的电场。两个第一极板252位于第二极板254的两侧,两个第一极板252通过导线256连接在一起,并与信号处理电路260中的施密特触发器262的输入端连接,第二极板254则接地。
传感器250还包括屏蔽板257。屏蔽板257设置在第一极板252和第二极板254的背面,即第一极板252和第二极板254背对草地的一侧。屏蔽板257通过电压跟随器258与第二极板254连接,实现屏蔽板257与第二极板254电位相同,从而实现避免由于草地上方空气变化引起的干扰。同时,屏蔽板257也起到将第一极板252与第二极板254之间的电场压向草地的作用,进一步增加电容传感器的灵敏度。
第一极板252和第二极板254与屏蔽板257之间设有绝缘隔离板259。绝缘隔离板259中设有放置电压跟随器258的通道。
参考图28,示意了传感器250与信号处理电路260的另一种连线方式。其中,两个第一极板252与信号处理电路260的公共接地端相连,第二极板254接入信号处理电路260的输入端。综上,本发明的自动割草机100,在传感器150或传感器250上形成可以压向草地的电场,因此能够快速检测到草地上草丛高度的变化,完成草丛高度识别,进一步地还能完成草地与非草地的识别。
本发明所述的电容传感器,也可以应用于带有扶手的手推式割草机或可供使用者乘骑的乘骑式割草机。
本发明的其他实施例中,电容传感器包括连接部,连接探头和壳体,探头包括第一转动轴,平行与自动割草机的工作表面,探头能够相对于连接部 绕第一转动轴转动。连接部包括第二转动轴,垂直于自动割草机的工作表面,连接部能够相对于壳体绕第二转动轴转动,使得探头绕第二转动轴转动。具体的,探头为滚轮,第一转动轴为滚轮的轮轴。具体的,滚轮为万向轮。
第十四实施例:
请参照图29至图31,图29为本实施例的自动割草机100示意图;图30为图29所示的自动割草机的滚轮的连接示意图;图31为图29所示的自动割草机的信号处理电路的示意图。
如图29所示,一种自动割草机100,包括壳体110和电容传感器150,电容传感器150设置在壳体110上。电容传感器150包括滚轮421,滚轮421靠近壳体110的底部,且设置于壳体110的底部或外围。电容传感器150包括至少一个探头,探头设置在滚轮421上,用于感应草地。
上述自动割草机100,由于探头设置在滚轮421上,若滚轮421与草地接触,在自动割草机行进时,滚轮421转动行走,滚轮421与草地之间的摩擦为滚动摩擦,能够减少探头与草地的摩擦,从而减少自动割草机的行进阻力,降低自动割草机的耗能,提高割草效率。
如图29所示,自动割草机100还可以包括至少一个主行走轮440,主行走轮440设置于壳体110底部。这样,自动割草机100可以依靠主行走轮440在草地上自由行走,大幅降低人工操作,能够方便快速地切割草地。本实施例中的自动割草机100包括三个主行走轮440,这样可以平衡支撑自动割草机100,使自动割草机100行走平稳。在其它实施例中,不局限与此。
电容传感器150可以为电容湿度传感器,用于感应草地状况。这样,电容传感器150可以根据草地的湿度情况感应到草地的具体状态,便于自动割草机100执行切割操作。
在其中一个实施例中,滚轮421为双层结构,包括内层和外层,极板设置在内层上,外层为保护层。这样,在自动割草机100行进过程中,滚轮421外部的保护层可以对极板进行保护,提高探头的使用寿命。优选地,该内层为金属层,使得传感感应效果更好。
在另一个实施例中,该外层保护层也可以由塑料制成,这样能够增强滚轮的耐磨性,更好地保护设置在内层上的极板。
滚轮421悬设在壳体110底部。这样可以更精确的感应草地。滚轮421的数量为一个或多个。可以根据需要设置滚轮421的数量,以提高感应效率。 本实施例中包括两个滚轮421,两个滚轮421与主行走轮440均位于壳体110的底部,主行走轮440的底部与地面接触,且两个滚轮421分别悬挂于主行走轮440行进方向的前方和/或后方,即在草地较矮或地面平坦时,两个滚轮421的底部不接触地面。在自动割草机100行进或后退的过程中,当草地较高或者草地凹凸不平时,滚轮421与草地接触,滚轮421作为辅助轮行进或后退,避免与草地的摩擦,减小草地给予自动割草机100的阻力,便于自动割草机100行进。
需要说明的是,在其它实施例中,滚轮421的数量不局限于此,也可以为一个或多个。如果滚轮421设置为一个,在满足感应草地需求的同时,又能节省成本。如果滚轮421设置为多个,比如三个或四个,可以均匀分布,增大自动割草机100感应草地的范围,有效切割草地。
如图30所示,自动割草机100还包括轴承450和连接轴460,轴承450设置于壳体110上,轴承450的中心轴垂直于壳体110底部。连接轴460的一端与轴承450相连,另一端与滚轮421相连,滚轮421连同连接轴460能够绕轴承450的中心轴转动。这样,当滚轮421在行进过程的任意一个角度遇到较高的草地或者障碍物,都可以绕着轴承150的中心轴自由转动,在感应草地的同时,还可以绕开草地或障碍物,减小草地或障碍物给予滚轮421的阻力,进而减小自动割草机100的行进阻力,提高割草效率。本实施例中,连接轴460为弯曲状,连接轴460的两端连线与轴承450的中心轴呈提前预设的角度。这样,滚轮421绕着轴承450的中心轴的转动范围较大,可以绕开较大的障碍物,更好地辅助自动割草机100行进。
连接轴460上还设有导线轨道(未示出),导线470穿过导线轨道,将滚轮421与控制模块连接,这样可以实现滚轮421与控制模块之间的信号传输,便于自动割草机100自动割草。
在其它的实施例中,滚轮421可以为万向轮。万向轮本身就可以在与草地平行的平面内自由转动,这样,万向轮在行进过程的任意一个角度遇到草地,位于滚轮421上的探头都可以识别草地,提高割草效率。或者如果遇到障碍物,滚轮421可以灵活地绕开障碍物,减小障碍物给予滚轮421的阻力,进而减小自动割草机100的行进阻力。
自动割草机100还包括控制模块,控制模块设置在壳体110上,如图31所示,控制模块包括信号处理电路,信号处理电路的输入端与电容传感器的 探头电连接。电容传感器的探头包括一个极片,地表或信号处理电路的地作为电容传感器的参考极片。通过检测探头和地表之间的电容的变化,以判断草地的状况。信号处理电路根据电容传感器传输的信号,输出为方波。当探头感应到草地时,探头和地表之间介电常数变大,探头和地表之间的电容增大,信号处理电路输出的方波频率则减小。当没有草时,探头和地表之间的介电常数则变小,探头和地表之间的电容也减小,信号处理电路输出的方波频率增大。从而控制模块可以根据信号处理电路的输出的方波频率以判断草地状况,控制割草的工作状态。
需要说明的是,在其它实施例中,信号处理电路的位置不局限于在控制模块中,也可以包含于电容传感器中。此外,信号处理电路的信号变化不局限与此,在滚轮421感应到草地时,信号处理电路的输出信号也可以为电平变化,只要能表明滚轮421感应到草地即可。
具体地,信号处理电路包括施密特触发器ST,施密特触发器ST的输入端连接滚轮421。当滚轮421感应到草地,施密特触发器ST的输出信号变化,实现自动割草机100自动识别草地。更进一步地,信号处理电路还包括电容C’和电阻R’。电容C’一端连接施密特触发器ST的输入端、另一端接地。电阻R’的两端并联接于施密特触发器ST的输入端和输出端之间。滚轮421下方有草或者与草接触,将会引起电容C’的变化,从而引起施密特触发器ST输出信号变化,实现草地检测,便于有效切割草地。
本发明不局限于所举的具体实施例结构,基于本发明构思的结构均属于本发明保护范围。

Claims (28)

  1. 一种自移动设备,在由界限限定的工作区域内移动并工作,包括壳体、移动模块、任务执行模块和控制模块;
    所述控制模块控制所述移动模块带动自移动设备移动,并控制所述任务执行模块执行工作任务;
    所述自移动设备包括至少一个电容传感器,安装于壳体,与控制模块电连接,检测自移动设备下方或移动方向的前方的表面是否为待加工表面;其特征在于,
    所述电容传感器包括至少一个探头,所述探头包括探测面,位于探头的外表面,所述探测面的至少部分的电导率大于等于10-9s/m;
    或者,所述探头与自移动设备下方的表面的距离满足第一预设条件;
    或者,所述探测面的面积满足第二预设条件。
  2. 如权利要求1所述的自移动设备,其特征在于,所述探测面包括下表面,面向自移动设备下方的表面,所述下表面的电导率大于等于10-9s/m。
  3. 如权利要求1所述的自移动设备,其特征在于,所述电容传感器包括纵轴,由壳体向下延伸,所述探测面包括绕纵轴的环绕面,所述环绕面的电导率大于等于10-9s/m。
  4. 如权利要求1所述的自移动设备,其特征在于,所述探测面包括侧面,垂直于自移动设备的工作表面,或相对于自移动设备的工作表面倾斜预设角度,所述侧面的电导率大于等于10-9s/m。
  5. 如权利要求1所述的自移动设备,其特征在于,所述探头包括至少一个极板,与控制模块电连接,所述极板的电导率大于等于10-9s/m,所述探测面包括所述极板的表面。
  6. 如权利要求1所述的自移动设备,其特征在于,所述探头包括至少一个极板,与控制模块电连接,以及包覆层,至少部分的包覆所述极板,所述包覆层的外表面的电导率大于等于10-9s/m,所述探测面包括所述包覆层的外表面。
  7. 如权利要求6所述的自移动设备,其特征在于,所述包覆层包括靠近所述极板的内层和远离所述极板的外层,所述内层的电导率小于等于10-9s/m,所述外层的电导率大于等于10-9s/m。
  8. 如权利要求7所述的自移动设备,其特征在于,所述极板与所述包覆层外层的间距小于等于预设距离。
  9. 如权利要求2-8任一项所述的自移动设备,其特征在于,所述控制模块包括信号处理电路,处理电容传感器输入的电信号,还包括保护电路,电连接电容传感器和信号处理电路,当电容传感器输入的电信号的值大于等于阈值时,所述保护电路降低电容传感器输入的电信号的值,使得输入信号处理电路的电信号的值保持在预设范围内。
  10. 如权利要求1所述的自移动设备,其特征在于,所述第一预设条件为,所述探头与自移动设备下方的表面的距离小于所述任务执行模块的末端与自移动设备下方的表面的距离。
  11. 如权利要求1所述的自移动设备,其特征在于,所述第一预设条件为,所述探头与自移动设备下方的表面的距离小于自移动设备的工作平面上的介质的高度。
  12. 如权利要求1所述的自移动设备,其特征在于,所述第一预设条件为,所述探头与自移动设备下方的表面的距离小于等于50mm。
  13. 如权利要求1所述的自移动设备,其特征在于,所述第一预设条件为,所述探头与自移动设备下方的表面的距离大于等于10mm。
  14. 如权利要求10-13任一项所述的自移动设备,其特征在于,所述电容传感器包括连接部,连接所述探头和壳体,所述连接部能够带动所述探头相对于壳体活动。
  15. 如权利要求14所述的自移动设备,其特征在于,所述连接部能够带动所述探头相对于壳体在高度方向上移动。
  16. 如权利要求14所述的自移动设备,其特征在于,所述连接部能够带动所述探头相对于壳体在水平方向上摆动。
  17. 如权利要求14所述的自移动设备,其特征在于,所述连接部由柔性材料制成。
  18. 如权利要求14所述的自移动设备,其特征在于,所述电容传感器包括纵轴,由壳体底部向下延伸,所述连接部包括沿纵轴的通孔,供电连接所述探头和控制模块的导线穿过。
  19. 如权利要求1所述的自移动设备,其特征在于,所述第二预设条件为,所述探测面的面积大于等于28cm2
  20. 如权利要求19所述的自移动设备,其特征在于,所述探头包括至少一个极板,与控制模块电连接,所述极板的面积大于等于28cm2
  21. 如权利要求19所述的自移动设备,其特征在于,所探头包括凹凸的表面,所述探测面包括所述凹凸的表面。
  22. 如权利要求19所述的自移动设备,其特征在于,所述探头包括若干齿,所述探测面包括所述齿的表面。
  23. 如权利要求1所述的自移动设备,其特征在于,所述探头包括至少两个极板,分别与控制模块电连接,所述极板具有不同的电位。
  24. 如权利要求23所述的自移动设备,其特征在于,所述极板包括屏蔽侧,背对自移动设备下方的表面,屏蔽侧设置有屏蔽层。
  25. 如权利要求1所述的自移动设备,其特征在于,所述电容传感器包括连接部,连接所述探头与壳体,所述探头包括第一转动轴,平行于自移动设备的工作表面,所述探头能够相对于连接部绕所述第一转动轴转动。
  26. 如权利要求25所述的自移动设备,其特征在于,所述连接部包括第二转动轴,垂直于自移动设备的工作表面,所述连接部能够相对于壳体绕第二转动轴转动,使得所述探头绕所述第二转动轴转动。
  27. 如权利要求25所述的自移动设备,其特征在于,所述探头为滚轮,所述第一转动轴为滚轮的轮轴。
  28. 一种自移动设备的控制方法,所述自移动设备包括至少一个电容传感器,检测自移动设备下方或移动方向的前方的表面是否为待加工表面,所述电容传感器包括至少一个探头,所述探头包括探测面,位于探头的外表面,其特征在于,所述自移动设备的控制方法包括步骤:
    提供至少部分的电导率大于等于10-9s/m的所述探测面,或者提供与自移动设备下方的表面的距离满足第一预设条件的所述探头,或者提供面积满足第二预设条件的所述探测面;
    根据电容传感器输出的电信号,判断自移动设备下方或移动方向的前方的表面是否为待加工表面;
    若是,则控制自移动设备继续移动;
    若不是,则控制自移动设备改变移动方式。
PCT/CN2017/072748 2016-02-03 2017-01-26 自移动设备及自移动设备的控制方法 WO2017133638A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17746958.2A EP3412136A4 (en) 2016-02-03 2017-01-26 SELF-MOVING DEVICE AND CONTROL METHOD THEREFOR
CN201780001321.5A CN107920466B (zh) 2016-02-03 2017-01-26 自移动设备及自移动设备的控制方法
US15/551,718 US10444757B2 (en) 2016-02-03 2017-01-26 Self-moving device and control method therefor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201610076150.XA CN107027433A (zh) 2016-02-03 2016-02-03 割草机
CN201610076150.X 2016-02-03
CN201620260436.9U CN205567099U (zh) 2016-03-30 2016-03-30 割草机
CN201620260436.9 2016-03-30
CN201610214095.6A CN107258207B (zh) 2016-04-07 2016-04-07 割草机及传感器高度控制方法
CN201610214095.6 2016-04-07
CN201610423176.7A CN107515015A (zh) 2016-06-15 2016-06-15 电容传感器及割草机
CN201610423176.7 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017133638A1 true WO2017133638A1 (zh) 2017-08-10

Family

ID=59499347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072748 WO2017133638A1 (zh) 2016-02-03 2017-01-26 自移动设备及自移动设备的控制方法

Country Status (3)

Country Link
US (1) US10444757B2 (zh)
EP (1) EP3412136A4 (zh)
WO (1) WO2017133638A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221594A (zh) * 2018-03-01 2019-09-10 苏州宝时得电动工具有限公司 电容传感器及自动行走设备
CN112512299A (zh) * 2018-07-25 2021-03-16 罗伯特·博世有限公司 自主工作器具
EP3770001A4 (en) * 2018-03-23 2021-03-17 Honda Motor Co., Ltd. RIDING LAWN MOWER AND CONTROL SYSTEM
US20210096574A1 (en) * 2018-04-06 2021-04-01 Lg Electronics Inc. Moving robot and moving robot system
US20220121217A1 (en) * 2019-02-03 2022-04-21 Positec Power Tools (Suzhou) Co., Ltd Self-moving device, its obstacle detection method and obstacle detection module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11464161B1 (en) 2019-03-29 2022-10-11 Hydro-Gear Limited Partnership Automatic sensitivity adjustment for an autonomous mower
IT201900023511A1 (it) 2019-12-10 2021-06-10 Stiga S P A In Breve Anche St S P A Gruppo di regolazione dell’altezza della lama di taglio per un robot tosaerba

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020049521A1 (en) * 1999-03-19 2002-04-25 Ruffner Bryan John Multifunctional mobile appliance
CN101828464A (zh) * 2010-05-20 2010-09-15 浙江亚特电器有限公司 一种平行运动的智能割草机器人及平行运动的控制方法
CN102498364A (zh) * 2009-09-15 2012-06-13 林小冬 一种草丛接触传感器
CN102640625A (zh) * 2012-05-11 2012-08-22 林小冬 自动草坪割草机及其控制系统和方法
CN205567099U (zh) * 2016-03-30 2016-09-14 苏州宝时得电动工具有限公司 割草机
CN205611273U (zh) * 2016-04-07 2016-10-05 苏州宝时得电动工具有限公司 割草机
CN205825980U (zh) * 2016-06-15 2016-12-21 苏州宝时得电动工具有限公司 电容传感器及割草机

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131609A (ja) 1984-11-30 1986-06-19 Hitachi Ltd 発振回路
US4887415A (en) 1988-06-10 1989-12-19 Martin Robert L Automated lawn mower or floor polisher
GB2334875B (en) 1994-11-25 1999-11-17 Black & Decker Inc Lawn mower
DE19932552C2 (de) 1999-07-13 2002-08-01 Gunter Arnold Selbstfahrender, graserkennender Rasenmäher
US6481515B1 (en) 2000-05-30 2002-11-19 The Procter & Gamble Company Autonomous mobile surface treating apparatus
US20030117321A1 (en) * 2001-07-07 2003-06-26 Furse Cynthia M. Embedded antennas for measuring the electrical properties of materials
US6949938B2 (en) 2002-11-20 2005-09-27 Taiwan Semiconductor Manufacturing Co., Ltd. Prevention of robot damage via capacitive sensor assembly
DE10327223A1 (de) 2003-06-17 2005-01-05 Gunter Arnold Selbstfahrender Rasenmäher mit Grasdetektor
DE10357636B4 (de) 2003-12-10 2013-05-08 Vorwerk & Co. Interholding Gmbh Selbsttätig verfahrbares Bodenstaub-Aufsammelgerät
EP2270620B1 (en) 2005-12-02 2014-10-01 iRobot Corporation Autonomous Coverage robot
KR101300492B1 (ko) 2005-12-02 2013-09-02 아이로보트 코퍼레이션 커버리지 로봇 이동성
ITFI20050250A1 (it) 2005-12-05 2007-06-06 Ciro Scaramucci Dispositivo per l'attivazione, la disattivazione e la regolazione di dispositivi elettrici comprendente un sensore di prossimita' e metodo ad esso collegato
ES2654513T3 (es) 2006-03-17 2018-02-14 Irobot Corporation Confinamiento de robot
US8787899B2 (en) 2006-06-30 2014-07-22 Nokia Corporation Restricting and preventing pairing attempts from virus attack and malicious software
EP3031375B1 (en) 2007-05-09 2021-11-03 iRobot Corporation Compact autonomous coverage robot
ITFI20070116A1 (it) 2007-05-17 2008-11-18 Fabrizio Bernini Tagliaerba
KR20090005616A (ko) 2007-07-09 2009-01-14 주식회사 유진로봇 로봇의 장애물 인식용 범퍼
ITBO20080040A1 (it) 2008-01-23 2009-07-24 Fabrizio Bernini Tagliaerba.
ITFI20090014A1 (it) 2009-01-26 2010-07-27 Fabrizio Bernini Dispositivo di taglio per tosaerba e tosaerba comprendente detto dispositivo
US8706297B2 (en) 2009-06-18 2014-04-22 Michael Todd Letsky Method for establishing a desired area of confinement for an autonomous robot and autonomous robot implementing a control system for executing the same
IT1395844B1 (it) 2009-06-30 2012-10-26 Bernini Tagliaerba
KR101334961B1 (ko) 2011-08-03 2013-11-29 엘지전자 주식회사 잔디 깎기용 이동로봇 시스템 및 이의 제어방법
KR101302149B1 (ko) 2011-08-18 2013-08-30 이상열 로봇청소기의 장애물 감지장치 및 이를 구비한 로봇청소기
CN103196358B (zh) 2013-02-27 2016-01-20 常州兆能电子科技有限公司 一种基于平面电容传感器的塑料测厚装置及方法
CN103234460A (zh) 2013-05-06 2013-08-07 慈溪迈思特电子科技有限公司 基于红外线的草坪高度检测装置
TW201446208A (zh) 2013-06-05 2014-12-16 Uni Ring Tech Co Ltd 物件差動偵測方法及裝置
US20160128275A1 (en) 2014-11-12 2016-05-12 Deere & Company Robotic mower contact detection system
US9630319B2 (en) 2015-03-18 2017-04-25 Irobot Corporation Localization and mapping using physical features
US9918605B2 (en) 2015-04-09 2018-03-20 Irobot Corporation Wall following robot

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020049521A1 (en) * 1999-03-19 2002-04-25 Ruffner Bryan John Multifunctional mobile appliance
CN102498364A (zh) * 2009-09-15 2012-06-13 林小冬 一种草丛接触传感器
CN101828464A (zh) * 2010-05-20 2010-09-15 浙江亚特电器有限公司 一种平行运动的智能割草机器人及平行运动的控制方法
CN102640625A (zh) * 2012-05-11 2012-08-22 林小冬 自动草坪割草机及其控制系统和方法
CN205567099U (zh) * 2016-03-30 2016-09-14 苏州宝时得电动工具有限公司 割草机
CN205611273U (zh) * 2016-04-07 2016-10-05 苏州宝时得电动工具有限公司 割草机
CN205825980U (zh) * 2016-06-15 2016-12-21 苏州宝时得电动工具有限公司 电容传感器及割草机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221594A (zh) * 2018-03-01 2019-09-10 苏州宝时得电动工具有限公司 电容传感器及自动行走设备
EP3770001A4 (en) * 2018-03-23 2021-03-17 Honda Motor Co., Ltd. RIDING LAWN MOWER AND CONTROL SYSTEM
US20210096574A1 (en) * 2018-04-06 2021-04-01 Lg Electronics Inc. Moving robot and moving robot system
US11960289B2 (en) * 2018-04-06 2024-04-16 Lg Electronics Inc. Moving robot and moving robot system
CN112512299A (zh) * 2018-07-25 2021-03-16 罗伯特·博世有限公司 自主工作器具
US20220121217A1 (en) * 2019-02-03 2022-04-21 Positec Power Tools (Suzhou) Co., Ltd Self-moving device, its obstacle detection method and obstacle detection module

Also Published As

Publication number Publication date
EP3412136A4 (en) 2019-09-18
EP3412136A1 (en) 2018-12-12
US10444757B2 (en) 2019-10-15
US20180329420A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2017133638A1 (zh) 自移动设备及自移动设备的控制方法
EP3438778B1 (en) Automatic traveling device and steering method thereof
US20180253098A1 (en) Autonomous working system, an autonomous vehicle and a turning method thereof
EP2939508B1 (en) Automatic mowing system
CN103891463A (zh) 自动割草系统
CN103891464A (zh) 自动割草系统
CN212278869U (zh) 自移动设备及智能割草机
CN205320575U (zh) 割草机
CN105747999A (zh) 扫地机器人
US20210219488A1 (en) Autonomous lawn mower and control method thereof
CN208016344U (zh) 自动行走设备
CN107920466B (zh) 自移动设备及自移动设备的控制方法
CN112312761B (zh) 自移动设备及其自动工作系统
WO2019223725A1 (zh) 自动割草机及其转向方法
US20230017821A1 (en) Autonomous working system
CN107027433A (zh) 割草机
CN213343381U (zh) 割草机器人
WO2022001556A1 (zh) 割草机器人
WO2018001340A1 (zh) 一种自移动设备
CN104252174B (zh) 自动工作设备
KR101541269B1 (ko) 청소 로봇
WO2021218084A1 (zh) 扫地机器人
TW201446203A (zh) 自走式清潔裝置回充導引方法及其設備
CN213091901U (zh) 雨淋传感器、自主作业设备、停靠站及自主作业系统
CN216253992U (zh) 割草机

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017746958

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15551718

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE