WO2017133451A1 - 一种上行控制信息的传输方法及装置 - Google Patents

一种上行控制信息的传输方法及装置 Download PDF

Info

Publication number
WO2017133451A1
WO2017133451A1 PCT/CN2017/071503 CN2017071503W WO2017133451A1 WO 2017133451 A1 WO2017133451 A1 WO 2017133451A1 CN 2017071503 W CN2017071503 W CN 2017071503W WO 2017133451 A1 WO2017133451 A1 WO 2017133451A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
occupied
time domain
control information
uplink control
Prior art date
Application number
PCT/CN2017/071503
Other languages
English (en)
French (fr)
Inventor
高雪娟
司倩倩
潘学明
郑方政
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to KR1020187025250A priority Critical patent/KR102140550B1/ko
Priority to US16/075,113 priority patent/US10849155B2/en
Priority to EP17746771.9A priority patent/EP3413652B1/en
Priority to JP2018540443A priority patent/JP6713053B2/ja
Publication of WO2017133451A1 publication Critical patent/WO2017133451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for transmitting uplink control information.
  • TTI Transmission Time Interval
  • uplink and downlink transmissions use different carrier frequencies, uplink and downlink transmissions. Both use the same frame structure.
  • a 10ms-length radio frame contains 10 1ms subframes, each of which is divided into two 0.5ms long slots.
  • the TTI duration of uplink and downlink data transmission is 1 ms.
  • the existing LTE time division duplex uses a frame structure in which uplink and downlink transmissions use different subframes or different time slots on the same frequency.
  • Each 10 ms radio frame consists of two. 5 ms half frame, each half frame contains 5 subframes of 1 ms length.
  • the subframes are divided into three categories: downlink subframe, uplink subframe and special subframe, and each special subframe is downlink transmission slot (Downlink) Pilot Time Slot (DwPTS), Guard Period (GP), and Uplink Pilot Time Slot (UpPTS).
  • Each field contains at least one downlink subframe and at least one uplink. Subframes, and up to 1 special subframe.
  • the User Plane (U-plane) delay of the LTE system is composed of four parts: the base station processing time, the frame alignment time, the TTI time, and the terminal processing time, where the frame is composed.
  • the alignment time is the waiting time between when the service arrives and when the service can obtain the transmission opportunity of the air interface subframe.
  • LTE-FDD downlink U-plane delay base station processing time 1 ms + frame alignment time 0.5 ms + TTI time 1 ms + terminal processing time 1.5 ms , a total of 4ms. Similar, LTE-FDD The uplink U-plane delay of the system without considering HARQ retransmission is also 4 ms, as shown in Figure 3.
  • base station and terminal processing time and TTI length are the same as FDD.
  • the frame alignment time is related to the time when the service arrives and the uplink and downlink configuration used by the system.
  • the above downlink configuration #5 is taken as an example. If the base station completes the processing of the transmitting end in the subframe #1, the earliest subframe #3 can be transmitted, and the frame alignment time transmitted to the air interface subframe is 1.5 ms on average, and the remaining subframes are used.
  • the processing time and frame alignment time of the base station and the terminal are related to the TTI length. If the TTI length is shortened, the total delay of the U-plane will be shortened.
  • the TTI is shortened to 0.5 ms or even smaller, that is, one TTI length is the number of symbols included in one slot in the existing LTE frame structure, for example, 7 for a conventional CP.
  • the symbols are 6 symbols when the CP is extended; it is also possible to further shorten the TTI to a length of less than 1 slot, for example: one or several symbols.
  • TTI 1ms.
  • the embodiment of the invention provides a method and a device for transmitting uplink control information, which are used to provide a transmission solution for uplink control information in case of shortened TTI.
  • a method for transmitting uplink control information includes:
  • the terminal determines the resource for transmitting the uplink control information, where the resource includes the time domain occupied resource and the frequency domain occupied resource, wherein the time domain occupies the resource for less than 1 ms; and the terminal transmits the uplink control information on the determined resource.
  • shortened TTI ie, shortened TTI
  • a transmission solution for uplink control information is provided, which supports normal feedback of uplink control information and ensures system performance.
  • the size of the frequency domain occupied resource is represented by the number of subcarriers SC, or by the number of resource elements RE, or by the number of resource units RU, where Indicates that the RU is a predefined resource region occupying X1 symbols in the time domain and occupying X2 SCs or REs in the frequency domain, the X2 SCs or REs being continuous or discontinuous, the X1 and X2 For the pre-defined or configured, X1 and X2 are integers with a large value of 0.
  • the size of the time domain occupied resources is represented by the number of symbols or the length of time.
  • the terminal determines that the size of the frequency domain occupied resource is a fixed set of A1 SCs or A2 REs or A3s.
  • the RU where A1, A2, and A3 are integers greater than 0, or the terminal determines the size of the frequency domain occupied resource according to the signaling notification; and the terminal determines the location of the resource occupied by the frequency domain according to a predetermined agreement. Or determining, by the terminal, the location of the resource occupied by the frequency domain according to the signaling notification;
  • the terminal determines that the size of the time domain occupied resource is a fixed number of B1 symbols or B2ms, where B1 is an integer greater than 0, and B2 is a decimal number less than 1, or the terminal determines the time domain occupied resource according to the signaling notification. And determining, by the terminal, the location of the resource occupied by the time domain according to a predetermined agreement, or determining, by the terminal, the location of the resource occupied by the time domain according to the signaling notification.
  • the determining, by the terminal, the resource for transmitting the uplink control information the determining, by the terminal, the resource for transmitting the uplink control information according to the notification of the downlink grant signaling DL grant, where the indication field indication in the downlink control information DCI used in the DL grant is The high-level signaling is one of a plurality of resource sets pre-configured; or the terminal determines, according to the notification of the uplink grant signaling UL grant, the resource for transmitting the uplink control information, where the first indication field in the DCI used by the UL grant is used for Indicates the size and location of the resource occupied by the frequency domain, and the second indication field is used to indicate at least the size of the resource occupied by the time domain; or the terminal determines the resource for transmitting the uplink control information according to the notification of the high layer signaling, where at least one of the high layer signaling is configured.
  • a collection of resources from which a terminal selects a collection of resources when more than one collection of resources is configured.
  • the second indication field is further used to indicate that the time domain occupies the location of the resource, or the location of the time domain occupied resource is a pre-agreed location.
  • each resource set includes a size and a location of the frequency domain occupied resource and a size of the time domain occupied resource, where the size of the resource occupied by the frequency domain in the different resource set The same or different, or / and, the size of the time domain occupied resources in the different resource sets are the same or different; or the size of the frequency domain occupied resources is a fixed value negotiated by the terminal side and the network side, and each resource set includes a frequency The size of the resource occupied by the domain and the size of the resource occupied by the time domain, wherein the size of the resource occupied by the time domain in the different resource sets is the same or different; or the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side, and each The resource set includes the size and location of the resource occupied by the frequency domain, where the size of the resource occupied by the frequency domain is the same or different; or the size of the resource occupied by the time domain is a fixed value
  • each resource set further includes a location where the time domain occupies the resource, or the location of the time domain occupies the resource is a pre-agreed location.
  • the terminal when the terminal selects a resource set, the terminal includes: the total number of bits of the uplink control information that the terminal feeds back according to the current requirement, and the maximum number of bits that can be carried by each resource set according to the specific code rate, and determines the selected number of bits.
  • the resource set or, when the size of the time domain occupied resources included in the different resource sets is different, the terminal determines the selected resource set according to the size of the time domain occupied resources included in each resource set; or, the terminal The selected resource set is determined according to the number of symbols in the resource set.
  • the terminal determines, when the time domain occupies the starting location of the resource, the following:
  • the terminal performs the following operations:
  • the terminal determines the starting position of the time domain occupied resource as: the first symbol in the time range numbered n+k, where n is the number of the time period in which the downlink data transmission requiring ACK/NACK feedback is required, k is a predetermined value; or, the terminal determines that the start position of the time domain occupied resource is: the kth pre-divided after the time segment for downlink transmission where the downlink data transmission requiring ACK/NACK feedback is required is used for The first symbol in the time period of the uplink transmission, k is a predetermined value; or the terminal determines that the start position of the time domain occupied resource is: the first symbol that satisfies the preset timing relationship, and the symbol is an uplink The symbol in the sending period; or the terminal determines the starting position of the time domain occupied resource as: the first symbol in an uplink sending time period that satisfies the preset timing relationship, wherein whether the timing relationship is satisfied by one downlink The last symbol of the data transmission is determined by the symbol
  • the timing relationship mentioned is specifically represented as a processing delay, where the processing delay includes downlink data parsing and processing time and time for generating ACK/NACK feedback information corresponding to downlink data; and based on a transmission end time of a downlink data, The ACK/NACK feedback information is transmitted in an uplink symbol that is not earlier than the processing delay that satisfies the processing delay;
  • the terminal performs the following operations:
  • the terminal determines the start symbol position of the time domain occupied resource according to the pre-configured CSI feedback period, where the period is specifically represented by Y1 symbols, and Y1 is a positive integer; or
  • the terminal determines, according to the pre-configured CSI feedback period, a predetermined uplink symbol position in the subframe of the transmission CSI corresponding to the CSI feedback period, which is a starting symbol position of the time domain occupied resource, where the CSI feedback period is specifically expressed as Y2 subframes, Y2 is a positive integer.
  • the terminal transmits uplink control information on the determined resource, including:
  • the uplink control information is transmitted on the determined resources by using a spread spectrum method.
  • the non-spreading mode is used to transmit uplink control information on the determined resources, including:
  • the terminal determines the number of coded bits according to the number of REs available for data transmission in the determined resource and the modulation coding mode used, and performs channel coding and rate matching on the uplink control information based on the number of coded bits to obtain a corresponding modulation symbol;
  • the terminal maps the obtained modulation symbols to the resources in a specific order for transmission.
  • the uplink control information is transmitted on the determined resource by using a spread spectrum method, including:
  • the terminal determines the number of coded bits according to the number of REs available for data transmission, the length of the spreading sequence, and the modulation and coding mode used, and then performs channel coding and rate matching on the uplink control information based on the number of coded bits, and obtains corresponding Modulation symbol
  • the terminal multiplies each obtained modulation symbol by an orthogonal sequence of length N to obtain a spread-length modulation symbol of length N, and maps the modulation symbol of length N to one of the resources.
  • the transmission is performed on one RE group on the symbol, and the one RE group contains N REs; where N is the length of the orthogonal sequence.
  • the method further includes:
  • the terminal separately performs frequency domain spreading on each symbol by using an orthogonal sequence of length N; or, the terminal performs time domain spreading using an orthogonal sequence of length B in the time domain, where B is a time domain occupied resource.
  • Time domain spreading is performed, where B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource.
  • the terminal carries a specific sequence when transmitting the uplink control information, and the specific sequence is related to the identifier ID of the terminal, at least for other network elements to identify the terminal and perform interference measurement on the terminal.
  • a transmission device for uplink control information comprising:
  • the processing unit is configured to determine a resource for transmitting the uplink control information, where the resource includes a time domain occupied resource and a frequency domain occupied resource, where the time domain occupying the resource has a duration of less than 1 ms.
  • a communication unit configured to transmit uplink control information on the determined resource.
  • the size of the frequency domain occupied resource is represented by the number of subcarriers SC, or by the number of resource elements RE, or by the number of resource units RU, where If the RU is used, the RU is a predefined resource region occupying X1 symbols in the time domain and occupying X2 SCs or REs in the frequency domain, where the X2 SCs or REs are continuous or discontinuous, X1 and X2 are pre-defined or configured, and X1 and X2 are integers of 0.
  • the size of the time-domain occupied resource is represented by the number of symbols or the length of time in the resource for transmitting uplink control information determined by the processing unit.
  • the processing unit determines that the size of the frequency domain occupied resource is a fixed number of A1 SCs or A2 REs or A3 RUs, where A1, A2, and A3 are integers greater than 0, or The processing unit determines the size of the frequency domain occupied resource according to the signaling notification; and the processing unit determines the location of the resource occupied by the frequency domain according to a pre-agreed, or the processing unit determines the frequency according to the signaling notification The location of the resource occupied by the domain;
  • the processing unit determines that the size of the time domain occupied resource is a fixed set of B1 symbols or B2ms, where B1 is an integer greater than 0, and B2 is a fraction less than 1, or the processing unit determines a size of the time domain occupied resource according to signaling, and the processing unit determines that the time domain is occupied according to a predetermined agreement.
  • the location of the resource, or the processing unit determines the location of the time domain occupied resource according to the signaling notification.
  • the processing unit determines resources for transmitting uplink control information, including:
  • the processing unit determines, according to the notification of the downlink grant signaling DL grant, the resource for transmitting the uplink control information, where the indication field in the downlink control information DCI used in the DL grant indicates that the high-level signaling is pre-configured in the multiple resource sets. Or the processing unit determines, according to the notification of the uplink grant signaling UL grant, the resource for transmitting the uplink control information, where the first indication field in the DCI used by the UL grant is used to indicate the size and location of the resource occupied by the frequency domain.
  • the second indication field is configured to indicate at least the size of the time domain occupied resource; or the processing unit determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, when the configuration exceeds When a resource is aggregated, the processing unit selects a resource set therefrom.
  • the processing unit determines, according to the notification of the UL grant, the resource that transmits the uplink control information, where the first indication field in the DCI used by the UL grant is used to indicate the size and location of the frequency domain occupied resource, and the second indication
  • the method further includes: the second indication domain is further used to indicate the location of the resource occupied by the time domain, or the location of the resource occupied by the time domain is a pre-agreed location.
  • the processing unit determines, according to the notification of the DL grant, the resource that transmits the uplink control information, where the indication field in the DCI used in the DL grant indicates one of a plurality of resource sets pre-configured by the high layer signaling; or The processing unit determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, when the processing unit selects one resource set, the resource
  • the collection is configured as follows:
  • Each resource set includes the size and location of the frequency domain occupied resources and the size of the time domain occupied resources, wherein the frequency occupied by the frequency domain in different resource sets is the same or different, or/and, in different resource sets
  • the time domain occupies the same or different size of the resource; or,
  • the frequency occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side, and each resource set includes a frequency domain occupied resource location and a time domain occupied resource size, wherein the time domain occupying resources in different resource sets The same size or different; or,
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes the size and location of the resource occupied by the frequency domain.
  • the size of the resource occupied by the frequency domain in the different resource sets is the same or different.
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • the size of the resource occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes a location of the resource occupied by the frequency domain.
  • each resource set further includes a location of the time domain occupying the resource, or the time domain occupation
  • the location of the resource is the pre-agreed location.
  • the processing unit determines, according to the notification of the high layer signaling, the resource that transmits the uplink control information, where the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, the processing unit selects one resource set from the resource set.
  • the method includes: the processing unit determines the selected resource set according to the total number of bits of the uplink control information that is currently required to be fed back, and the maximum number of bits that can be carried by each resource set according to the specific code rate; or, when different When the size of the time domain occupied resource included in the resource set is different, the processing unit determines the selected resource set according to the size of the time domain occupied resource included in each resource set; or the processing unit according to the resource set The number of symbols in the deterministic resource set.
  • the processing unit determines, when the time domain occupies the starting location of the resource, the following:
  • the processing unit performs the following operations:
  • the processing unit determines that the start position of the time domain occupied resource is: the first symbol in the time range numbered n+k, where n is the number of the time period in which the downlink data transmission requiring ACK/NACK feedback is required. And k is a predetermined value; or, the processing unit determines that the start position of the time domain occupied resource is: the kth after the time period for downlink transmission where the downlink data transmission requiring ACK/NACK feedback is required is located a pre-divided first symbol in the time period for uplink transmission, k is a predetermined value; or, the processing unit determines that the start position of the time domain occupied resource is: the first one satisfies a preset timing relationship The symbol is a symbol in an uplink transmission period; or the processing unit determines that the start position of the time domain occupied resource is: the first symbol in an uplink transmission period that satisfies a preset timing relationship And determining whether the timing relationship is determined by a symbol interval of a last symbol of
  • the timing relationship mentioned is specifically represented as a processing delay, where the processing delay includes downlink data parsing and processing time and time for generating ACK/NACK feedback information corresponding to downlink data; and based on a transmission end time of a downlink data, The ACK/NACK feedback information is transmitted in an uplink symbol that is not earlier than the processing delay that satisfies the processing delay;
  • the processing unit performs the following operations:
  • the processing unit determines, according to the pre-configured CSI feedback period, a start symbol position of the time domain occupied resource, where the period is specifically represented by Y1 symbols, and Y1 is a positive integer; or
  • the processing unit determines, according to the pre-configured CSI feedback period, a predetermined uplink symbol position in a subframe of the transmission CSI corresponding to the CSI feedback period, which is a start symbol position of a time domain occupied resource, where the CSI feedback period Specifically, it is represented by Y2 subframes, and Y2 is a positive integer.
  • the communications unit when the uplink control information is transmitted on the determined resource, the communications unit is configured to: use the non-spreading mode to transmit the uplink control information on the determined resource; or use the spread spectrum method to transmit the uplink on the determined resource. Control letter interest.
  • the communication unit is configured to: determine, by the communication unit, the number of REs available for data transmission in the determined resource, and a modulation and coding manner used. Encoding the number of bits, and performing channel coding and rate matching on the uplink control information based on the number of coded bits to obtain corresponding modulation symbols; and the communication unit maps the obtained modulation symbols to the resources in a specific order for transmission.
  • the communication unit is configured to: use, by the communication unit, the number of REs available for data transmission, the length of the spreading sequence, and the adopted Modulating the coding mode to determine the number of coding bits, and then performing channel coding and rate matching on the uplink control information based on the number of coding bits to obtain corresponding modulation symbols; each communication symbol obtained by the communication unit is orthogonal to the length N Multiplying the sequence to obtain a spread-length modulation symbol of length N, and mapping the modulation symbol of length N to an RE group on one of the resources for transmission, the one RE group Contains N REs; where N is the length of the orthogonal sequence.
  • the communication unit is further configured to: the communication unit separately perform frequency domain spreading on each symbol by using an orthogonal sequence of length N; Or the communication unit performs time domain spreading on the time domain using an orthogonal sequence of length B, where B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource; or The communication unit performs frequency domain spreading on each symbol by using an orthogonal sequence of length N, and the communication unit performs time domain spreading using an orthogonal sequence of length B in the time domain, where B is a time domain.
  • the number of symbols used for data transfer in the number of symbols included in the occupied resource is further configured to: the communication unit separately perform frequency domain spreading on each symbol by using an orthogonal sequence of length N; Or the communication unit performs time domain spreading on the time domain using an orthogonal sequence of length B, where B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource; or The communication unit performs frequency domain spreading on each symbol by using an orthogonal sequence of length N, and the communication
  • the communication unit is further configured to: when the uplink control information is transmitted, the communication unit carries a specific sequence, where the specific sequence is related to the identifier ID of the device, and at least is used by other network elements to identify the device. And performing interference measurements on the device.
  • a transmission device for uplink control information comprising: a processor, configured to read a program in a memory, and perform the following process: determining a resource for transmitting uplink control information, where the resource includes a time domain occupied resource and a frequency domain occupied resource, wherein The time domain occupies resources for less than 1 ms; the transceiver is configured to transmit uplink control information on the determined resources under the control of the processor.
  • a transmission solution for uplink control information is provided, which supports normal feedback of uplink control information and ensures system performance.
  • the size of the frequency domain occupied resource is represented by the number of subcarriers SC, or is represented by the number of resource elements RE, or is represented by the number of resource units RU, where If the RU is used, the RU is a predefined resource region occupying X1 symbols in the time domain and occupying X2 SCs or REs in the frequency domain, where the X2 SCs or REs are continuous or discontinuous, X1 and X2 are predefined or configured; in the resource determined by the processor for transmitting uplink control information, the time domain occupies resources The size is expressed in terms of the number of symbols or the length of time.
  • the processor determines that the size of the frequency domain occupied resource is a fixed number of A1 SCs or A2 REs or A3 RUs, where A1, A2, and A3 are integers greater than 0, or Determining, by the processor, the size of the resource occupied by the frequency domain according to the signaling notification; and determining, by the processor, a location of the resource occupied by the frequency domain according to a predetermined agreement, or determining, by the processor, the frequency according to the signaling notification The location of the resource occupied by the domain; the processor determines that the size of the time domain occupied resource is a fixedly set B1 symbol or B2ms, where B1 is an integer greater than 0, and B2 is a decimal less than 1, or the processing Determining, according to the signaling notification, the size of the time domain occupied resource; and determining, by the processor, the location of the resource occupied by the time domain according to a pre-agreed, or determining, by the processor, the time domain according to the signaling notification
  • the determining, by the processor, the resource for transmitting the uplink control information where the determining, by the processor, the resource for transmitting the uplink control information according to the notification of the downlink grant signaling DL grant, where the downlink control information used in the DL grant
  • the indication field in the DCI indicates one of a plurality of resource sets pre-configured by the high layer signaling; or the processor determines, according to the notification of the uplink grant signaling UL grant, the resource for transmitting the uplink control information, where the UL grant uses
  • the first indication field in the DCI is used to indicate the size and location of the resource occupied by the frequency domain, and the second indication field is used to indicate at least the size of the resource occupied by the time domain; or the processor determines the transmission uplink control according to the notification of the high layer signaling.
  • a resource of information, wherein the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, the processor selects one resource set therefrom.
  • the processor determines, according to the notification of the UL grant, the resource that transmits the uplink control information, where the first indication field in the DCI used by the UL grant is used to indicate the size and location of the frequency domain occupied resource, and the second indication
  • the method further includes: the second indication domain is further used to indicate the location of the resource occupied by the time domain, or the location of the resource occupied by the time domain is a pre-agreed location.
  • the processor determines, according to the notification of the DL grant, a resource for transmitting uplink control information, where the indication field in the DCI used in the DL grant indicates one of a plurality of resource sets pre-configured by the high layer signaling; or The processor determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, and when the server exceeds one resource set, when the processor selects one resource set, the resource
  • the configuration of the set is as follows: each resource set includes the size and location of the resource occupied by the frequency domain and the size of the resource occupied by the time domain, wherein the resources occupied by the frequency domain in different resource sets are the same or different in size, or And the size of the resource occupied by the time domain in the different resource sets is the same or different; or the size of the resource occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side, and each resource set includes the frequency domain occupied resource location, Time domain
  • the size of the resource occupied by the time domain is a fixed value negotiated between the terminal and the network.
  • the size of the resource occupied by the frequency domain is a fixed value negotiated between the terminal and the network.
  • Each resource collection contains the location of the resource occupied by the frequency domain.
  • each resource set further includes a location where the time domain occupies the resource, or the location of the time domain occupies the resource is a pre-agreed location.
  • the processor determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, the processor selects one resource set from the The method includes: determining, by the processor, the total number of bits of the uplink control information that is currently fed back, and determining the selected resource set according to the maximum number of bits that can be carried by each resource set according to the specific code rate; or, when different When the size of the time domain occupied resource included in the resource set is different, the processor determines the selected resource set according to the size of the time domain occupied resource included in each resource set; or the processor according to the resource set The number of symbols in the to determine the selected resource collection
  • the method includes:
  • the processor performs the following operations:
  • the processor determines that the start position of the time domain occupied resource is: the first symbol in the time range numbered n+k, where n is the number of the time period in which the downlink data transmission requiring ACK/NACK feedback is required. And k is a predetermined value; or, the processor determines that the start position of the time domain occupied resource is: the kth after the time period for downlink transmission where the downlink data transmission requiring ACK/NACK feedback is required is located a pre-divided first symbol in the time period for uplink transmission, k is a predetermined value; or the processor determines that the start position of the time domain occupied resource is: the first one satisfies a preset timing relationship The symbol is a symbol in an uplink transmission period; or the processor determines that the start position of the time domain occupied resource is: the first symbol in an uplink transmission period that satisfies a preset timing relationship , wherein the timing relationship is determined by a symbol interval of a last symbol of a downlink data
  • the processor determines, according to the pre-configured CSI feedback period, a start symbol position of the time domain occupied resource, where the period Specifically, it is represented by Y1 symbols, and Y1 is a positive integer.
  • the processor determines, according to a pre-configured CSI feedback period, a predetermined uplink symbol position in a subframe of the CSI corresponding to the CSI feedback period, which is a time domain. Occupy resources The starting symbol position, wherein the CSI feedback period is specifically represented by Y2 subframes, and Y2 is a positive integer.
  • the transceiver when transmitting the uplink control information on the determined resource, is configured to: use the non-spreading mode to transmit the uplink control information on the determined resource; or use the spread spectrum method to transmit the uplink on the determined resource. Control information.
  • the transceiver when the uplink control information is transmitted on the determined resource by using a non-spreading manner, the transceiver is configured to: determine, by the transceiver, the number of REs available for data transmission in the determined resource, and a modulation and coding manner used. Encoding the number of bits, and performing channel coding and rate matching on the uplink control information based on the number of coded bits to obtain corresponding modulation symbols; and the transceiver maps the obtained modulation symbols to the resources in a specific order for transmission.
  • the transceiver when the uplink control information is transmitted on the determined resource by using a spread spectrum method, the transceiver is configured to: use, by the transceiver, the number of REs that can be used for data transmission, the length of the spread spectrum sequence, and the adopted
  • the modulation coding method determines the number of coded bits, and then performs channel coding and rate matching on the uplink control information based on the number of coded bits to obtain a corresponding modulation symbol; each transceiver symbol obtained by the transceiver is orthogonal to the length N. Multiplying the sequence to obtain a spread-length modulation symbol of length N, and mapping the modulation symbol of length N to an RE group on one of the resources for transmission, the one RE group Contains N REs; where N is the length of the orthogonal sequence.
  • the transceiver is further configured to: the transceiver separately performs frequency domain spreading on each symbol by using an orthogonal sequence of length N; Or the transceiver performs time domain spreading on the time domain using an orthogonal sequence of length B, where B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource; or The transceiver performs frequency domain spreading on each symbol by using an orthogonal sequence of length N, and the transceiver performs time domain spreading using an orthogonal sequence of length B in the time domain, where B is a time domain.
  • the number of symbols used for data transfer in the number of symbols included in the occupied resource is further configured to: the transceiver separately performs frequency domain spreading on each symbol by using an orthogonal sequence of length N; Or the transceiver performs time domain spreading on the time domain using an orthogonal sequence of length B, where B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource; or The transceiver performs frequency domain
  • the transceiver is further configured to: when the transceiver transmits uplink control information, carrying a specific sequence, where the specific sequence is related to the identifier ID of the device, and at least used by other network elements to identify the device. And performing interference measurements on the device.
  • FIG. 1 is a schematic diagram of a frame structure in an LTE FDD system in the prior art
  • FIG. 2 is a schematic diagram of a frame structure in an LTE TDD system in the prior art
  • FIG. 3 is a schematic diagram of an uplink U-plane delay in an LTE-FDD system without considering HARQ retransmission;
  • FIG. 12 are schematic diagrams of pilot patterns used in spreading spectrum according to an embodiment of the present invention.
  • FIG. 13 and FIG. 14 are schematic diagrams showing the functional structure of a terminal in an embodiment of the present invention.
  • Step 400 The terminal determines a resource for transmitting uplink control information, where the resource includes a time domain occupied resource and a frequency domain occupied resource, where the time domain occupied resource has a duration of less than 1 ms.
  • Step 410 The terminal transmits uplink control information on the determined resource.
  • the size of the frequency domain occupied resource is represented by the number of subcarriers (SC), or the number of resource elements (Resource Element, RE) is used.
  • SC subcarriers
  • RE resource elements
  • the number of resource units (RUs) is used, where, if the RU is used, the RU is a predefined resource area occupying X1 symbols in the time domain and occupying X2 SCs or REs in the frequency domain.
  • the X2 SCs or REs are continuous or discontinuous, and the X1 and X2 are predefined or configured, and X1 and X2 are integers of a large 0.
  • the terminal determines that the size of the frequency domain occupied resource is a fixed number of A1 SCs or A2 REs or A3 RUs, where A1, A2, and A3 are integers greater than 0, or the terminal determines the frequency according to signaling notification. And determining, by the terminal, the location of the resource occupied by the frequency domain, or determining, by the terminal, the location of the resource occupied by the frequency domain according to the signaling notification.
  • the foregoing signaling may be carried in broadcast, downlink control information (DCI), and radio resource control (RRC).
  • the size of the time domain occupied resource is represented by the number of symbols or the length of time.
  • the terminal determines that the size of the time domain occupied resource is a fixed number of B1 symbols or B2ms, where B1 is an integer greater than 0, and B2 is a decimal number less than 1, or the terminal determines the time domain occupied resource according to the signaling notification. And determining, by the terminal, the location of the resource occupied by the time domain according to a predetermined agreement, or determining, by the terminal, the location of the resource occupied by the time domain according to the signaling notification.
  • the foregoing signaling may be carried in information such as broadcast, DCI, and RRC.
  • the terminal determines to perform the resource for transmitting the uplink control information
  • the following method may be adopted:
  • Method A The terminal determines, according to the notification of the downlink grant signaling (DL grant), the resource for transmitting the uplink control information, where the indication field in the DCI used in the DL grant indicates one of a plurality of resource sets pre-configured by the high layer signaling. .
  • DL grant downlink grant signaling
  • the DL grant indicates one of a plurality of resource sets pre-configured by the high layer signaling by using an ACK/NACK Resource Indicator (ARI) field in the carried DCI.
  • ARI ACK/NACK Resource Indicator
  • the high layer signaling is pre-configured to the terminal multiple resource sets, and the network side passes the DL grant. Notifying the terminal which resource collection uplink control information is currently indicated in the resource set.
  • the network side may allocate the foregoing multiple resource sets to multiple terminals through high-layer signaling, and further instruct the different terminals to use different resource sets in the same subframe by using the DL grant.
  • the resource set may adopt, but is not limited to, the following configuration methods:
  • Method A-1 The frequency domain occupied resources and the time domain occupied resources are all variable in size.
  • Each resource set includes the size and location of the frequency domain occupied resources and the size of the time domain occupied resources, wherein the frequency occupied by the frequency domain in different resource sets is the same or different, or/and, in different resource sets
  • the time domain occupies the same or different sizes of resources.
  • each resource set includes a location in which the time domain occupies the resource, or a location in which the time domain occupies the resource is a pre-agreed location.
  • Method A-2 The size of the resource occupied by the frequency domain is fixed, and the size of the resource occupied by the time domain is variable.
  • the size of the resource occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side, and each resource set includes a frequency domain occupied resource location and a time domain occupied resource size, wherein the time domain occupied resources in different resource sets
  • the sizes of the resources are the same or different; or each resource set contains only the location of the frequency domain occupied resources, and the size of the time domain occupied resources is indicated by other bits in the DL grant;
  • each resource set includes a location in which the time domain occupies the resource, or a location in which the time domain occupies the resource is a pre-agreed location.
  • Method A-3 The size of the resource occupied by the frequency domain is variable, and the size of the resource occupied by the time domain is fixed.
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes the size and location of the resource occupied by the frequency domain.
  • the resources occupied by the frequency domain in different resource sets are the same or different.
  • each resource set includes a location in which the time domain occupies the resource, or a location in which the time domain occupies the resource is a pre-agreed location.
  • Method A-4 The size of the resource occupied by the frequency domain is fixed, and the size of the resource occupied by the time domain is fixed.
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • the size of the resource occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes a location of the resource occupied by the frequency domain.
  • each resource set includes a location in which the time domain occupies the resource, or a location in which the time domain occupies the resource is a pre-agreed location.
  • the ARI field in the DCI carried by the DL grant indicates that the transmission power control (TPC, Transmit Power Control) field or the ACK/NACK Resource Offset (ARO, ACK/NACK Resource Offset) in the DCI indicates the reuse of the domain, or , a predefined number of bits;
  • TPC Transmission Power Control
  • ARO ACK/NACK Resource Offset
  • Method B The terminal determines, according to the notification of the UL grant authorization signaling UL grant, the resource for transmitting the uplink control information, where
  • the first indication field in the DCI used by the UL grant is used to indicate the size and location of the resource occupied by the frequency domain, and the second indication field is used to indicate at least the size of the resource occupied by the time domain.
  • the second indication domain may also be used to indicate the location of the resource occupied by the time domain, or if the second indication domain does not indicate, the location of the resource occupied by the time domain is a pre-agreed location.
  • Method C The terminal determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set (one or more resource sets), and when multiple resource sets are configured, the terminal selects one of the resources. Resource collection.
  • Method C is more suitable for periodic channel state information (CSI) feedback information.
  • CSI channel state information
  • the resource set may adopt, but is not limited to, the following configuration methods:
  • Method C-1 The frequency domain occupied resources and the time domain occupied resources are all variable in size.
  • Each resource set includes the size and location of the frequency domain occupied resources and the size of the time domain occupied resources, wherein the frequency occupied by the frequency domain in different resource sets is the same or different, or/and, in different resource sets
  • the time domain occupies the same or different sizes of resources.
  • each resource set includes a location in which the time domain occupies the resource, or a location in which the time domain occupies the resource is a pre-agreed location.
  • Method C-2 The size of the resource occupied by the frequency domain is fixed, and the size of the resource occupied by the time domain is variable.
  • the size of the resource occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side, and each resource set includes a frequency domain occupied resource location and a time domain occupied resource size, wherein the time domain occupied resources in different resource sets The same size or different;
  • each resource set includes a location in which the time domain occupies the resource, or a location in which the time domain occupies the resource is a pre-agreed location.
  • Method C-3 The size of the resource occupied by the frequency domain is variable, and the size of the resource occupied by the time domain is fixed.
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes the size and location of the resource occupied by the frequency domain.
  • the resources occupied by the frequency domain in different resource sets are the same or different.
  • each resource set includes a location in which the time domain occupies the resource, or a location in which the time domain occupies the resource is a pre-agreed location.
  • Method C-4 The size of the resource occupied by the frequency domain is fixed, and the size of the resource occupied by the time domain is fixed.
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • the size of the resource occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes a location of the resource occupied by the frequency domain.
  • each resource set includes a location in which the time domain occupies the resource, or a location in which the time domain occupies the resource is a pre-agreed location.
  • the terminal may select one resource set, but not limited to the following two methods:
  • Selection method 1 the terminal determines the selected resource set according to the total number of bits of the uplink control information that needs to be fed back, and the maximum number of bits that can be carried by each resource set according to the specific code rate; or, when in different resource sets When the size of the occupied time domain resource is different, the terminal determines the selected resource set according to the size of the time domain occupied resource included in each resource set.
  • the resource set corresponding to the minimum value is selected, otherwise, another resource set is selected.
  • Selection method 2 The terminal determines the selected resource set according to the number of symbols in the resource set.
  • the terminal selects a resource set that is smaller than the maximum number of symbols included in the current uplink transmission time period
  • the selection mode 1 is further used.
  • the terminal may determine the start position of the time domain occupied resource in different manners in different situations, because the size of the time domain occupied resource may be fixed or The resource collection notification, therefore, after knowing the starting position of the resource occupied by the time domain, the specific location of the resource occupied by the time domain can be determined, that is, consecutive symbols starting from the starting location.
  • the terminal can adopt the following two methods:
  • Mode A The terminal determines the starting position of the time domain occupied resource as: the first symbol in the time range numbered n+k, where n is the number of the time period in which the downlink data transmission requiring ACK/NACK feedback is required. , k is a predetermined value, and n and k are integers greater than or equal to zero.
  • Mode B The terminal determines the starting position of the time domain occupied resource as: the kth pre-divided pre-divided time zone for downlink transmission after the downlink data transmission that needs to perform ACK/NACK feedback is used for uplink transmission.
  • the first symbol in the time period, k is a predetermined value.
  • Manner C The terminal determines that the starting position of the time domain occupied resource is: the first symbol that satisfies the preset timing relationship, and the symbol is a symbol in an uplink sending time period.
  • Manner D The terminal determines the starting position of the time domain occupied resource as: the first symbol in an uplink sending time period that satisfies the preset timing relationship, wherein whether the timing relationship is satisfied by the last one of the downlink data transmission The symbol is determined by the symbol interval of the first symbol in an uplink transmission period.
  • the timing relationship mentioned in the mode C and the mode D is specifically expressed as a processing delay, and the processing delay includes the following.
  • a is a predetermined constant
  • the terminal can adopt, but is not limited to, the following two modes:
  • the terminal determines the start symbol position of the time domain occupied resource according to the pre-configured CSI feedback period, where the period is specifically represented by Y1 symbols, and Y1 is a positive integer; or
  • the mode F the terminal determines, according to the pre-configured CSI feedback period, a predetermined uplink symbol position in the subframe of the transmission CSI corresponding to the CSI feedback period, where the start symbol position of the time domain occupied resource, where the CSI feedback period Specifically, it is represented by Y2 subframes, and Y2 is a positive integer.
  • the starting position of the frequency domain occupied resource is: the first symbol in the first or last uplink transmission time period in the CSI subframe.
  • the starting position of the frequency domain occupied resource is: the symbol position where the ACK/NACK feedback information is transmitted in the CSI subframe.
  • the terminal when performing step 410, may transmit uplink control information on the determined resource by using a non-spreading mode or a spreading mode, which is specifically introduced as follows:
  • Method 1 The terminal transmits the uplink control information on the determined resource by using a non-spreading mode, including:
  • the terminal determines the number of coded bits according to the number of REs available for data transmission in the determined resource and the modulation coding mode used, and performs channel coding and rate matching on the uplink control information based on the number of coded bits to obtain corresponding modulation symbols.
  • the channel coding mode may be a CRC (Cyclic Redundancy Check) + Turbo coding or Tail Biting Convolutional Coding (TBCC), for example: 8 Bit CRC + TBCC mode (ie PUCCH format 4/5 mode) or 24-bit CRC + turbo coding.
  • CRC Cyclic Redundancy Check
  • TBCC Tail Biting Convolutional Coding
  • the terminal maps the obtained modulation symbols to the resources in a specific order for transmission.
  • it can be mapped to the frequency domain and then mapped to the time domain, or it can be mapped to the time domain and then mapped to the frequency domain.
  • the terminal needs to cascade the uplink control information together with the data data to perform the same processing as the data;
  • the terminal uses the spread spectrum method to transmit uplink control information on the determined resources, and the spread spectrum method can adopt positive
  • the Orthogonal Cover Code (OCC) includes:
  • the terminal determines the number of coding bits according to the number of REs available for data transmission, the length of the spreading sequence, and the modulation coding mode used, and then performs channel coding and rate matching on the uplink control information based on the number of coded bits. The corresponding modulation symbol.
  • the time domain occupies a group of REs on a symbol in the resource, and the one RE group includes N REs; wherein, in the frequency domain occupied resources in the resource, in the above one symbol, each N
  • the REs are a group of frequency domain OCCs, where N is the length of the orthogonal sequence and N is an integer greater than one.
  • all obtained modulation symbols are mapped to a group of REs on the above one symbol for transmission, and REs in the RE group are continuously distributed or discretely distributed in the frequency domain; and/or, different modulation symbols obtained are The REs in the different RE groups in the above one symbol are transmitted, and the REs in the RE groups are distributed in parallel or staggered in the frequency domain.
  • the terminal when the time domain occupied resource determined by the terminal includes multiple symbols, the terminal performs frequency domain spreading on each symbol on the orthogonal sequence of length N according to the foregoing manner; or, the terminal uses the length in the time domain.
  • time domain spreading for the orthogonal sequence of B where B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource; or, the terminal uses an orthogonal sequence of length N on each symbol Frequency domain spreading is performed, and the terminal performs time domain spreading using an orthogonal sequence of length B in the time domain, where B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource, B is An integer greater than or equal to 1.
  • the pilot number is spread in the same manner as described above, or when the pilot occupies a data transmission bandwidth transmission on one symbol, the cyclic shift mode can be used for spreading, wherein the cyclic shift interval and the pilot
  • the sequence length is related to the floor (the pilot sequence length/cycle shift interval) is not less than N or not less than N*M, and the floor is rounded down.
  • the terminal may further carry a specific sequence when transmitting the uplink control information, where the specific sequence is related to the identifier (ID) of the terminal, and at least used by other network elements (other terminals and/or base stations) to identify the terminal, and The other network element performs interference measurement on the terminal, and the other terminal includes a terminal in the local cell and/or the neighboring cell.
  • ID the identifier
  • other network elements other terminals and/or base stations
  • the specific sequence is generated based on a sequence such as a ZC sequence or an m sequence or a CAZAC sequence; other sequences are not excluded, and as long as the UE ID can be supported, sequences with high autocorrelation and low cross-correlation can be adopted.
  • the following uses a specific example to describe the OCC spread spectrum method in detail.
  • the specific OCC spreading method is as follows, but is not limited to the following examples:
  • the number of symbols occupied by the uplink control information transmission is 3, and an area of 12 REs (or SCs) in the frequency domain is taken as an example.
  • FIG. 7, FIG. 9, FIG. 10 assume that the pilot or LTE-like manner occupies all REs on one symbol.
  • the uplink control information may be transmitted by the front or the back when the current symbol is transmitted.
  • the pilot on the symbol performs channel estimation.
  • the pilot can be similar to the PUCCH design in the original LTE system, and performs cyclic shift in the frequency domain.
  • the cyclic shift interval and the pilot length are satisfied to distinguish at least not less than the data symbol.
  • the pilot can also perform time domain OCC and/or frequency domain OCC in a data-like manner.
  • the pilot and data of the uplink transmission are transmitted in a frequency division manner on one symbol, that is, occupying different RE transmissions, and the pilot can be similar to the PUCCH design in the original LTE system, and the frequency is performed.
  • the cyclic shift, cyclic shift interval and pilot length on the domain can satisfy the number of users that can be distinguished by at least not less than the data symbols, and the pilot can also perform time domain OCC and/or frequency domain OCC in a manner similar to data.
  • each RE area of length 12 can be as shown in FIG.
  • Spreading and mapping are performed in the same manner, or Z REs of length 12 are combined, and spreading and mapping at a specific interval is performed according to a design scheme of a RE area of length 12.
  • pilot time domain and or frequency domain density the specific design method is similar, and will not be described again.
  • the following uses a specific example to introduce the specific transmission process of the uplink control information.
  • the pilot pattern shown in FIG. 5 is adopted, that is, the pilot and the uplink control information separately occupy different symbols, and it is assumed that the resource for uplink control information transmission is one symbol in the time domain (ie, the SC-FDMA symbol, the same below, No more details) and 24 REs in the frequency domain, using Quadrature Phase Shift Keying (QPSK) modulation, then:
  • QPSK Quadrature Phase Shift Keying
  • the 8-bit information is added with CRC (for example, 8-bit) check information, and then 48-bit coded bits are obtained through channel coding and rate matching (at this time, the code rate is 1/3).
  • the 48-bit coded bits are modulated by QPSK to obtain 24 modulation symbols, which are respectively mapped to 24 RE positions on the above one symbol. Specifically, they can be mapped one by one from low frequency to high frequency, or can be mapped one by one from high frequency to low frequency.
  • the number of REs that can be used for different uplink data transmission is 12 (although there are 24 total REs, the same original bits are carried on the two REs).
  • 24-bit coded bits are modulated by QPSK to obtain 12 modulation symbols, and each modulation symbol is mapped to 2 RE positions on the above one symbol by OCC spreading of length 2 respectively.
  • the number of encoded bits will change accordingly. If the code rate is relatively unchanged, the number of original uplink control information bits that can be carried also occurs. Variety.
  • the pilot pattern shown in FIG. 6 is adopted, that is, the pilot and the data are frequency-divisionally transmitted on the same symbol, and the resource for uplink control information transmission is assumed to be one symbol in the time domain and 24 REs in the frequency domain.
  • QPSK modulation then:
  • the 40-bit coded bits are modulated by QPSK to obtain 20 modulation symbols, which are respectively mapped to 20 RE positions on the above one symbol, specifically, can be mapped one by one from low frequency to high frequency, or from high frequency to The low frequencies are mapped one by one.
  • N 2
  • the number of REs that can be used for different uplink data transmission is (24-4).
  • the frequency is spread and mapped one by one according to a specific order. Specifically, it can be mapped one by one from low frequency to high frequency, or can be mapped one by one from high frequency to low frequency.
  • the number of encoded bits will change accordingly, and if the code rate is relatively unchanged, more original uplink control information bits can be carried.
  • the terminal includes a processing unit 130 and a communication unit 131, where
  • the processing unit 130 is configured to determine a resource for transmitting the uplink control information, where the resource includes a time domain occupied resource and a frequency domain occupied resource, where the time domain occupies the resource for less than 1 ms.
  • the communication unit 131 is configured to transmit uplink control information on the determined resource.
  • the size of the frequency domain occupied resource is represented by the number of subcarriers SC, or by the number of resource elements RE, or by the number of resource units RU, where If the RU is used, the RU is a predefined resource region occupying X1 symbols in the time domain and occupying X2 SCs or REs in the frequency domain, where the X2 SCs or REs are continuous or discontinuous. Said X1 and X2 are predefined or configured;
  • the size of the time domain occupied resource is represented by a symbol number or a time length.
  • the processing unit 130 determines that the size of the frequency domain occupied resource is a fixed number of A1 SCs or A2 REs or A3 RUs, where A1, A2, and A3 are integers greater than 0.
  • the processing unit 130 may determine the size of the frequency domain occupied resource according to the signaling notification, determine the location of the resource occupied by the frequency domain according to a predetermined agreement, or the processing unit 130 determines the frequency domain according to the signaling notification.
  • the location of the resource is a fixed number of A1 SCs or A2 REs or A3 RUs, where A1, A2, and A3 are integers greater than 0.
  • the processing unit 130 may determine the size of the frequency domain occupied resource according to the signaling notification, determine the location of the resource occupied by the frequency domain according to a predetermined agreement, or the processing unit 130 determines the frequency domain according to the signaling notification. The location of the resource;
  • the processing unit 130 determines that the size of the time domain occupied resource is a fixedly set B1 symbol or B2ms, where B1 is an integer greater than 0, and B2 is a decimal less than 1.
  • the processing unit 130 may determine the size of the time domain occupied resource according to the signaling notification, and determine the location of the resource occupied by the time domain according to a predetermined agreement, or The processing unit 130 determines the location of the time domain occupied resource according to the signaling notification.
  • the processing unit 130 determines resources for transmitting uplink control information, including:
  • the processing unit 130 determines, according to the notification of the downlink grant signaling DL grant, the resource for transmitting the uplink control information, where the indication field in the downlink control information DCI used in the DL grant indicates that the high-level signaling is pre-configured in multiple resource sets.
  • the indication field in the downlink control information DCI used in the DL grant indicates that the high-level signaling is pre-configured in multiple resource sets.
  • the processing unit 130 determines, according to the notification of the uplink grant signaling UL grant, the resource for transmitting the uplink control information, where the first indication field in the DCI used by the UL grant is used to indicate the size and location of the frequency domain occupied resource, and the second The indication field is used to indicate at least the size of the resource occupied by the time domain; or
  • the processing unit 130 determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, the processing unit 130 selects one resource set therefrom.
  • the processing unit 130 determines, according to the notification of the UL grant, the resource that transmits the uplink control information, where the first indication field in the DCI used by the UL grant is used to indicate the size and location of the resource occupied by the frequency domain, and second.
  • the indication field is used to indicate at least the size of the resource occupied by the time domain, the method further includes:
  • the second indication field is further configured to indicate a location of the resource occupied by the time domain, or
  • the location of the time domain occupying resources is a pre-agreed location.
  • the processing unit 130 determines, according to the notification of the DL grant, the resource that transmits the uplink control information, where the indication field in the DCI used in the DL grant indicates one of a plurality of resource sets pre-configured by the high layer signaling; Alternatively, the processing unit 130 determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, the processing unit 130 selects one resource set from the resource set.
  • the resource collection is configured as follows:
  • Each resource set includes the size and location of the frequency domain occupied resources and the size of the time domain occupied resources, wherein the frequency occupied by the frequency domain in different resource sets is the same or different, or/and, in different resource sets
  • the time domain occupies the same or different size of the resource; or,
  • the frequency occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side, and each resource set includes a frequency domain occupied resource location and a time domain occupied resource size, wherein the time domain occupying resources in different resource sets The same size or different; or,
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes the size and location of the resource occupied by the frequency domain.
  • the size of the resource occupied by the frequency domain in the different resource sets is the same or different.
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • the size of the resource occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes a location of the resource occupied by the frequency domain.
  • Each resource collection also includes a location in which the time domain occupies the resource, or the location in which the time domain occupies the resource is a pre-agreed location.
  • the processing unit 130 determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, the processing unit 130 selects one of the resources.
  • resources include:
  • the processing unit 130 determines the selected resource set according to the total number of bits of the uplink control information that needs to be fed back, and the maximum number of bits that can be carried by each resource set according to the specific code rate; or
  • the processing unit 130 determines the selected resource set according to the size of the time domain occupied resources included in each resource set; or
  • the processing unit 130 determines the selected resource set according to the number of symbols in the resource set.
  • the processing unit 130 determines, when the time domain occupies the starting location of the resource, the following:
  • the processing unit 130 performs the following operations:
  • the processing unit 130 determines that the start position of the time domain occupied resource is: the first symbol in the time range numbered n+k, where n is the time period in which the downlink data transmission requiring ACK/NACK feedback is required The number, k is a predetermined value; or, the processing unit 130 determines that the start position of the time domain occupied resource is: a pre-divided time period for downlink transmission where the downlink data transmission requiring ACK/NACK feedback is required The kth pre-divided first symbol in the time period for uplink transmission, k is a predetermined value; or, the processing unit 130 determines that the start position of the time domain occupied resource is: the first one satisfies the preset The symbol of the timing relationship, the symbol is a symbol in an uplink transmission period; or the processing unit 130 determines that the starting position of the time domain occupied resource is: in an uplink transmission period that satisfies a preset timing relationship a first symbol, wherein whether the timing relationship is satisfied is determined by
  • the timing relationship mentioned is specifically represented as a processing delay, where the processing delay includes downlink data parsing and processing time and time for generating ACK/NACK feedback information corresponding to downlink data; and based on a transmission end time of a downlink data, The ACK/NACK feedback information is transmitted in an uplink symbol that is not earlier than the processing delay that satisfies the processing delay;
  • the processing unit 130 performs the following operations:
  • the processing unit 130 determines the start symbol position of the time domain occupied resource according to the pre-configured CSI feedback period, where the period is specifically represented by Y1 symbols, and Y1 is a positive integer; or
  • the processing unit 130 determines the transmission corresponding to the CSI feedback period according to the pre-configured CSI feedback period.
  • the predetermined uplink symbol position in the subframe of the CSI is the start symbol position of the time domain occupied resource, wherein the CSI feedback period is specifically represented by Y2 subframes, and Y2 is a positive integer.
  • the communications unit 131 is configured to:
  • the uplink control information is transmitted on the determined resources by using a spread spectrum method.
  • the communication unit 131 is configured to:
  • the communication unit 131 determines the number of coded bits according to the number of REs available for data transmission in the determined resource and the modulation coding mode used, and performs channel coding and rate matching on the uplink control information based on the number of coded bits to obtain a corresponding modulation. symbol;
  • the communication unit 131 maps the obtained modulation symbols to the resources in a specific order for transmission.
  • the communication unit 131 is configured to:
  • the communication unit 131 determines the number of coded bits according to the number of REs available for data transmission, the length of the spread sequence, and the modulation and coding mode used, and then performs channel coding and rate matching on the uplink control information based on the number of coded bits. , obtaining the corresponding modulation symbol;
  • the communication unit 131 multiplies each obtained modulation symbol by an orthogonal sequence of length N to obtain a spread-length modulation symbol of length N, and then maps the modulation symbol of length N to the The transmission is performed on one RE group on one symbol in the resource, and the one RE group contains N REs; where N is the length of the orthogonal sequence.
  • the communication unit 131 is further configured to:
  • the communication unit 131 performs frequency domain spreading on each symbol by using an orthogonal sequence of length N; or, the communication unit 131 performs time domain spreading using an orthogonal sequence of length B in the time domain.
  • B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource; or, the communication unit 131 performs frequency domain spreading on each symbol by using an orthogonal sequence of length N, and The communication unit 131 performs time domain spreading on the time domain using an orthogonal sequence of length B, where B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource.
  • the communication unit 131 is further configured to:
  • the communication unit 131 carries a specific sequence when transmitting the uplink control information, and the specific sequence is related to the identifier ID of the device, at least for other network elements to identify the device and perform interference measurement on the device.
  • the terminal includes a processor 140 and a transceiver 141, where
  • the processor 140 is configured to read a program in the memory and perform the following process:
  • Determining a resource for transmitting uplink control information where the resource includes a time domain occupied resource and a frequency domain occupied resource, where The duration of the resource occupation in the time domain is less than 1 ms.
  • the transceiver 141 is configured to transmit uplink control information on the determined resource under the control of the processor.
  • the size of the frequency domain occupied resource is represented by the number of subcarriers SC, or by the number of resource elements RE, or by the number of resource units RU, where If the RU is used, the RU is a predefined resource region occupying X1 symbols in the time domain and occupying X2 SCs or REs in the frequency domain, where the X2 SCs or REs are continuous or discontinuous. Said X1 and X2 are predefined or configured;
  • the size of the time domain occupied resource is represented by a symbol number or a length of time.
  • the processor 140 determines that the size of the frequency domain occupied resource is a fixed number of A1 SCs or A2 REs or A3 RUs, where A1, A2, and A3 are integers greater than 0, or The processor 140 determines the size of the frequency domain occupied resource according to the signaling notification; and the processor 140 determines the location of the resource occupied by the frequency domain according to a predetermined agreement, or the processor 140 according to the signaling notification Determining a location of the frequency domain occupying resources;
  • the processor 140 determines that the size of the time domain occupied resource is a fixedly set B1 symbol or B2ms, where B1 is an integer greater than 0, B2 is a decimal less than 1, or the processor 140 according to signaling Determining, by the processor, the size of the resource occupied by the time domain; and determining, by the processor 140, the location of the resource occupied by the time domain according to a pre-agreed, or determining, by the processor 140, the resource occupied by the time domain according to the signaling notification s position.
  • the processor 140 determines resources for transmitting uplink control information, including:
  • the processor 140 determines, according to the notification of the downlink grant signaling DL grant, the resource for transmitting the uplink control information, where the indication field in the downlink control information DCI used in the DL grant indicates that the high-level signaling is pre-configured in multiple resource sets.
  • the indication field in the downlink control information DCI used in the DL grant indicates that the high-level signaling is pre-configured in multiple resource sets.
  • the processor 140 determines, according to the notification of the uplink grant signaling UL grant, the resource for transmitting the uplink control information, where the first indication field in the DCI used by the UL grant is used to indicate the size and location of the frequency domain occupied resource, and the second The indication field is used to indicate at least the size of the resource occupied by the time domain; or
  • the processor 140 determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, the processor 140 selects one resource set therefrom.
  • the processor 140 determines, according to the notification of the UL grant, the resource that transmits the uplink control information, where the first indication field in the DCI used by the UL grant is used to indicate the size and location of the resource occupied by the frequency domain, and second.
  • the indication field is used to indicate at least the size of the resource occupied by the time domain, the method further includes:
  • the second indication field is further configured to indicate a location of the resource occupied by the time domain, or
  • the location of the time domain occupying resources is a pre-agreed location.
  • the processor 140 determines, according to the notification of the DL grant, the resource for transmitting the uplink control information, where the indication field in the DCI used in the DL grant indicates one of a plurality of resource sets pre-configured by the high layer signaling; Alternatively, the processor 140 determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, the processor 140 selects one resource set from the resource set.
  • the resource collection is configured as follows:
  • Each resource set includes the size and location of the frequency domain occupied resources and the size of the time domain occupied resources, wherein the frequency occupied by the frequency domain in different resource sets is the same or different, or/and, in different resource sets
  • the time domain occupies the same or different size of the resource; or,
  • the frequency occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side, and each resource set includes a frequency domain occupied resource location and a time domain occupied resource size, wherein the time domain occupying resources in different resource sets The same size or different; or,
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes the size and location of the resource occupied by the frequency domain.
  • the size of the resource occupied by the frequency domain in the different resource sets is the same or different.
  • the size of the resource occupied by the time domain is a fixed value negotiated by the terminal side and the network side.
  • the size of the resource occupied by the frequency domain is a fixed value negotiated by the terminal side and the network side.
  • Each resource set includes a location of the resource occupied by the frequency domain.
  • Each resource collection also includes a location in which the time domain occupies the resource, or the location in which the time domain occupies the resource is a pre-agreed location.
  • the processor 140 determines, according to the notification of the high layer signaling, the resource for transmitting the uplink control information, where the high layer signaling configures at least one resource set, and when the configuration exceeds one resource set, the processor 140 selects one of the resources.
  • resources include:
  • the processor 140 determines the selected resource set according to the total number of bits of the uplink control information that needs to be fed back, and the maximum number of bits that can be carried by each resource set according to the specific code rate; or
  • the processor 140 determines the selected resource set according to the size of the time domain occupied resources included in each resource set; or
  • the processor 140 determines the selected resource set according to the number of symbols in the resource set.
  • the processor 140 determines, when the time domain occupies the starting location of the resource, the following:
  • the processor 140 performs the following operations:
  • the processor 140 determines that the start position of the time domain occupied resource is: the first one of the time segments numbered n+k Number, where n is the number of the time period in which the downlink data transmission for which ACK/NACK feedback is required, k is a predetermined value; or, the processor 140 determines that the start position of the time domain occupied resource is: ACK is required /NACK feedback of the downlink data transmission pre-divided the first symbol in the k-th pre-divided time period for uplink transmission after the time period for downlink transmission, k is a predetermined value; or The processor 140 determines that the start position of the time domain occupied resource is: the first symbol that satisfies the preset timing relationship, the symbol is a symbol in an uplink transmission period; or the processor 140 determines the time domain occupation
  • the starting position of the resource is: the first symbol in an uplink transmission period that satisfies the preset timing relationship, wherein whether the timing relationship is satisfied by the last symbol of one downlink data transmission
  • the timing relationship mentioned is specifically represented as a processing delay, where the processing delay includes downlink data parsing and processing time and time for generating ACK/NACK feedback information corresponding to downlink data; and based on a transmission end time of a downlink data, The ACK/NACK feedback information is transmitted in an uplink symbol that is not earlier than the processing delay that satisfies the processing delay;
  • the processor 140 performs the following operations:
  • the processor 140 determines, according to the pre-configured CSI feedback period, a starting symbol position of the time domain occupied resource, where the period is specifically represented by Y1 symbols, and Y1 is a positive integer; or
  • the processor 140 determines, according to the pre-configured CSI feedback period, a predetermined uplink symbol position in a subframe of the transmission CSI corresponding to the CSI feedback period, which is a starting symbol position of a time domain occupied resource, where the CSI feedback
  • the period is specifically represented by Y2 subframes, and Y2 is a positive integer.
  • the transceiver 141 when transmitting uplink control information on the determined resource, is configured to:
  • the uplink control information is transmitted on the determined resources by using a spread spectrum method.
  • the transceiver 141 is configured to:
  • the transceiver 141 determines the number of coded bits according to the number of REs available for data transmission in the determined resource and the modulation coding mode used, and performs channel coding and rate matching on the uplink control information based on the number of coded bits to obtain a corresponding modulation. symbol;
  • the transceiver 141 maps the resulting modulation symbols onto the resource for transmission in a particular order.
  • the transceiver 141 is configured to:
  • the transceiver 141 determines the number of coded bits according to the number of REs available for data transmission, the length of the spread sequence, and the modulation and coding mode used, and then performs channel coding and rate matching on the uplink control information based on the number of coded bits. , obtaining the corresponding modulation symbol;
  • the transceiver 141 multiplies each obtained modulation symbol by an orthogonal sequence of length N to obtain a spread-length modulation symbol of length N, and then maps the modulation symbol of length N to the On a symbol in the resource Transmission is performed on one RE group, the one RE group containing N REs; where N is the length of the orthogonal sequence.
  • the transceiver 141 is further configured to:
  • the transceiver 141 performs frequency domain spreading on each symbol by using an orthogonal sequence of length N; or the transceiver 141 performs time domain spreading using an orthogonal sequence of length B in the time domain.
  • B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource; or, the transceiver 141 performs frequency domain spreading on each symbol by using an orthogonal sequence of length N, and The transceiver 141 performs time domain spreading on the time domain using an orthogonal sequence of length B, where B is the number of symbols used for data transmission in the number of symbols included in the time domain occupied resource.
  • the transceiver 141 is further configured to:
  • the transceiver 141 carries a specific sequence when transmitting uplink control information, and the specific sequence is related to the identifier ID of the device, at least for other network elements to identify the device and perform interference measurement on the device.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 140 and various circuits of memory represented by the memory.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 141 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 140 is responsible for managing the bus architecture and the usual processing, and the memory can store data used by the processor 140 when performing operations.
  • the terminal needs to determine the resource for transmitting the uplink control information, where the resource includes the time domain occupied resource and the frequency domain occupied resource, wherein the time domain occupied resource has a duration of less than 1 ms, and then, The terminal transmits the uplink control information on the determined resource, so that the TTI shortening situation (ie, the shortened TTI) provides a transmission solution for the uplink control information, and supports normal feedback of the uplink control information to ensure system performance.
  • the TTI shortening situation ie, the shortened TTI
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明涉及通信领域,特别涉及一种上行控制信息的传输方法及装置。该方法为:终端确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中,所述时域占用资源的时长小于1ms,然后,终端在确定的资源上传输上行控制信息。这样,针对TTI缩短的情况(即shortened TTI),提供了上行控制信息的传输解决方案,支持上行控制信息的正常反馈,保证了系统性能。

Description

一种上行控制信息的传输方法及装置
本申请要求在2016年2月2日提交中国专利局、申请号为201610074278.2、申请名称为“一种上行控制信息的传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,特别涉及一种上行控制信息的传输方法及装置。
背景技术
随着移动通信业务需求的发展变化,国际组织对未来移动通信系统都定义了更高的用户面延时性能要求。缩短用户时延性能的主要方法之一是降低传输时间间隔(Transmission Time Interval,TTI)的长度。
参阅图1所示,现有的长期演进(Long Term Evolution,LTE)频分双工(Frequency Division Duplex,FDD)系统使用的帧结构中,上行和下行传输使用不同的载波频率,上行和下行传输均使用相同的帧结构。在每个载波上,一个10ms长度的无线帧包含有10个1ms子帧,每个子帧内由分为两个0.5ms长的时隙。上行和下行数据发送的TTI时长为1ms。
参阅图2所示,现有LTE时分双工(Time Division Duplex,TDD系统使用帧结构中,上行和下行传输使用相同的频率上的不同子帧或不同时隙。每个10ms无线帧由两个5ms半帧构成,每个半帧中包含5个1ms长度的子帧。子帧分为三类:下行子帧、上行子帧和特殊子帧,每个特殊子帧由下行传输时隙(Downlink Pilot Time Slot,DwPTS)、保护间隔(Guard Period,GP)和上行传输时隙(Uplink Pilot Time Slot,UpPTS)三部分构成。。每个半帧中包含至少1个下行子帧和至少1个上行子帧,以及至多1个特殊子帧。
根据3GPP TR36.912附录B.2章节的定义,LTE系统的用户平面(User Plane,简称U平面)时延由基站处理时间、帧对齐时间、TTI时间和终端处理时间四部分构成,其中,帧对齐时间为业务到达至业务能够获得空口子帧传输机会之间的等待时间。
以LTE-FDD下行传输为例,由于FDD系统每个子帧均有下行传输机会,帧对齐时间平均为0.5ms。基站处理时间在下行方向时为1ms,上行方向时为1.5ms;终端处理时间在上行方向时为1ms,下行方向时为1.5ms。因此,在不考虑混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)重传情况下,LTE-FDD下行U平面时延=基站处理时间1ms+帧对齐时间0.5ms+TTI时间1ms+终端处理时间1.5ms,共4ms。相似的,LTE-FDD 系统不考虑HARQ重传情况下的上行U平面延时也为4ms,具体如图3所示。
对于LTE-TDD系统,基站和终端处理时间以及TTI长度同FDD。帧对齐时间与业务到达的时间和系统所使用的上下行配置有关。
以上下行配置#5为例,基站若在子帧#1中完成发送端处理,则最早到子帧#3才能进行发送,则发射到空口子帧的帧对齐时间平均为1.5ms,其余子帧的帧对齐时间平均为0.5ms,故下行数据的平均对齐处理时间为(1.5+8*0.5)/9=0.6ms。
上述U平面时延的计算中,基站和终端的处理时间、帧对齐时间都是与TTI长度相关的,如果TTI长度缩短,则U平面的总时延将会缩短。
在现有的LTE帧结构基础上,可以考虑缩短TTI为0.5ms甚至于更小,即一个TTI长度为现有LTE帧结构中的一个时隙所包含的符号数,例如:常规CP时为7个符号,扩展CP时为6个符号;还可以进一步缩短TTI为小于1个时隙的长度,例如:一个或几个符号。
然而,在LTE系统中,现有的信道传输都是以TTI=1ms来定义的,当业务信道采用非1ms的TTI长度时,数据如何传输目前尚无明确方案。
发明内容
本发明实施例提供一种上行控制信息的传输方法及装置,用以针对TTI缩短的情况,提供上行控制信息的传输解决方案。
本发明实施例提供的具体技术方案如下:
一种上行控制信息的传输方法,包括:
终端确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中,所述时域占用资源的时长小于1ms;所述终端在确定的资源上传输上行控制信息。这样,针对TTI缩短的情况(即shortened TTI),提供了上行控制信息的传输解决方案,支持上行控制信息的正常反馈,保证了系统性能。
可选的,终端确定的传输上行控制信息的资源中,频域占用资源的大小采用子载波SC数目表示,或者,采用资源元素RE数目表示,或者采用资源单元RU数目表示,其中,若采用RU表示,则RU为预先定义的在时域上占用X1个符号、在频域上占用X2个SC或RE的资源区域,所述X2个SC或RE为连续或者不连续的,所述X1和X2为预先定义或者配置的,X1、X2均为大0的整数;终端确定的传输上行控制信息的资源中,所述时域占用资源的大小采用符号数目或时间长度表示。
可选的,终端确定所述频域占用资源的大小为固定设置的A1个SC或A2个RE或A3 个RU,其中,A1、A2、A3为大于0的整数,或者,终端根据信令通知确定所述频域占用资源的大小;以及,终端根据预先约定确定所述频域所占用资源的位置,或者,终端根据信令通知确定所述频域占用资源的位置;
终端确定所述时域占用资源的大小为固定设置的B1个符号或B2ms,其中,B1为大于0的整数,B2为小于1的小数,或者,终端根据信令通知确定所述时域占用资源的大小;以及,终端根据预先约定确定所述时域所占用资源的位置,或者,终端根据信令通知确定所述时域占用资源的位置。
可选的,终端确定传输上行控制信息的资源,包括:终端根据下行授权信令DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的下行控制信息DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,终端根据上行授权信令UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小;或者,终端根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,终端从中选取一个资源集合。
可选的,所述第二指示域还用于指示时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
可选的,所述资源集合的配置方式如下:每一个资源集合中均包含频域占用资源的大小和位置以及时域占用资源的大小,其中,不同资源集合中的频域占用的资源的大小相同或不同,或/和,不同资源集合中的时域占用资源的大小相同或不同;或者,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源位置以及时域占用资源的大小,其中,不同资源集合中的时域占用资源的大小相同或不同;或者,时域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的大小和位置,其中,不同资源集合中频域占用资源的大小相同或者不同;或者,时域占用资源的大小为终端侧和网络侧协商的固定值,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的位置。
可选的,进一步包括:每一个资源集合中还包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
可选的,终端从中选取一个资源集合时,包括:终端根据当前需要反馈的上行控制信息的总比特数,以及每一个资源集合按照特定码率计算得到的能够承载的最大比特数,确定选取的资源集合;或者,当不同资源集合中所包含的时域占用资源的大小不同时,终端根据每一个资源集合中所包含的时域占用资源的大小,确定选取的资源集合;或者,终端 根据资源集合中的符号数目,确定选取的资源集合。
可选的,若时域占用资源的位置为预先约定的位置,则终端确定时域占用资源的起始位置时,包括:
若上行控制信息为正确/错误ACK/NACK反馈信息,则终端执行以下操作:
终端确定时域占用资源的起始位置为:编号为n+k的时间段中的第一个符号,其中,n为需要进行ACK/NACK反馈的下行数据传输所在的时间段的编号,k为预定的值;或者,终端确定时域占用资源的起始位置为:需要进行ACK/NACK反馈的下行数据传输所在的预先划分的用于下行传输的时间段之后的第k个预先划分的用于上行传输的时间段中的第一个符号,k为预定的值;或者,终端确定时域占用资源的起始位置为:第一个满足预设的定时关系的符号,所述符号为一个上行发送时段中的符号;或者,终端确定时域占用资源的起始位置为:满足预设的定时关系的一个上行发送时间段中的第一个符号,其中,是否满足所述定时关系由一个下行数据传输的最后一个符号与一个上行发送时间段中的第一个符号的符号间隔确定;其中,
提及的定时关系具体表现为处理时延,所述处理时延包括下行数据解析和处理时间以及产生下行数据所对应的ACK/NACK反馈信息的时间;以一个下行数据的传输结束时刻为基准,其ACK/NACK反馈信息在不早于满足所述述处理时延的上行符号中传输;
若上行控制信息为周期信道状态CSI反馈信息时,则终端执行以下操作:
终端按照预先配置的CSI反馈周期,确定时域占用资源的起始符号位置,其中,所述周期具体表现为Y1个符号,Y1为正整数;或者,
终端按照预先配置的CSI反馈周期,确定该CSI反馈周期所对应的传输CSI的子帧中的预定的上行符号位置,为时域占用资源的起始符号位置,其中所述CSI反馈周期具体表现为Y2个子帧,Y2为正整数。
可选的,终端在确定的资源上传输上行控制信息,包括:
采用非扩频方式在确定的资源上传输上行控制信息;或者,
采用扩频方式在确定的资源上传输上行控制信息。
可选的,采用非扩频方式在确定的资源上传输上行控制信息,包括:
终端根据确定的资源中可用于数据传输的RE数目及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
终端将得到的调制符号按照特定顺序映射到所述资源上进行传输。
可选的,采用扩频方式在确定的资源上传输上行控制信息,包括:
终端根据确定的资源中可用于数据传输的RE数目、扩频序列长度及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
终端将获得的每一个调制符号与长度为N的正交序列相乘,得到扩频后的长度为N的调制符号,再将所述长度为N的调制符号,映射到所述资源中的一个符号上的一个RE组上进行传输,所述一个RE组中包含N个RE;其中N为正交序列的长度。
可选的,当终端确定的时域占用资源中包含多个符号时,进一步包括:
终端分别在每一个符号上采用长度为N的正交序列进行频域扩频;或者,终端在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目;或者,终端在每一个符号上采用长度为N的正交序列进行频域扩频,且终端在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目。
可选的,进一步包括:
终端在传输的上行控制信息时携带特定序列,所述特定序列与所述终端的标识ID相关,至少用于其他网元识别所述终端以及对所述终端进行干扰测量。
一种上行控制信息的传输装置,包括:
处理单元,用于确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中,所述时域占用资源的时长小于1ms。通信单元,用于在确定的资源上传输上行控制信息。这样,针对TTI缩短的情况(即shortened TTI),提供了上行控制信息的传输解决方案,支持上行控制信息的正常反馈,保证了系统性能。
可选的,所述处理单元确定的传输上行控制信息的资源中,频域占用资源的大小采用子载波SC数目表示,或者,采用资源元素RE数目表示,或者采用资源单元RU数目表示,其中,若采用RU表示,则RU为预先定义的在时域上占用X1个符号、在频域上占用X2个SC或RE的资源区域,所述X2个SC或RE为连续或者不连续的,所述X1和X2为预先定义或者配置的,X1、X2均为大0的整数;所述处理单元确定的传输上行控制信息的资源中,所述时域占用资源的大小采用符号数目或时间长度表示。
可选的,所述处理单元确定所述频域占用资源的大小为固定设置的A1个SC或A2个RE或A3个RU,其中,A1、A2、A3为大于0的整数,或者,所述处理单元根据信令通知确定所述频域占用资源的大小;以及,所述处理单元根据预先约定确定所述频域所占用资源的位置,或者,所述处理单元根据信令通知确定所述频域占用资源的位置;
所述处理单元确定所述时域占用资源的大小为固定设置的B1个符号或B2ms,其中, B1为大于0的整数,B2为小于1的小数,或者,所述处理单元根据信令通知确定所述时域占用资源的大小;以及,所述处理单元根据预先约定确定所述时域所占用资源的位置,或者,所述处理单元根据信令通知确定所述时域占用资源的位置。
可选的,所述处理单元确定传输上行控制信息的资源,包括:
所述处理单元根据下行授权信令DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的下行控制信息DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,所述处理单元根据上行授权信令UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小;或者,所述处理单元根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理单元从中选取一个资源集合。
可选的,所述处理单元根据UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小时,进一步包括:所述第二指示域还用于指示时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
可选的,所述处理单元根据DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,所述处理单元根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理单元从中选取一个资源集合时,资源集合的配置方式如下:
每一个资源集合中均包含频域占用资源的大小和位置、以及时域占用资源的大小,其中,不同资源集合中的频域占用的资源的大小相同或不同,或/和,不同资源集合中的时域占用资源的大小相同或不同;或者,
频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源位置、以及时域占用资源的大小,其中,不同资源集合中的时域占用资源的大小相同或不同;或者,
时域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的大小和位置,其中,不同资源集合中频域占用资源的大小相同或者不同;或者,
时域占用资源的大小为终端侧和网络侧协商的固定值,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的位置。
可选的,进一步包括:每一个资源集合中还包含时域占用资源的位置,或者,时域占 用资源的位置为预先约定的位置。
可选的,所述处理单元根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理单元从中选取一个资源集合时,包括:所述处理单元根据当前需要反馈的上行控制信息的总比特数,以及每一个资源集合按照特定码率计算得到的能够承载的最大比特数,确定选取的资源集合;或者,当不同资源集合中所包含的时域占用资源的大小不同时,所述处理单元根据每一个资源集合中所包含的时域占用资源的大小,确定选取的资源集合;或者,所述处理单元根据资源集合中的符号数目,确定选取的资源集合。
可选的,若时域占用资源的位置为预先约定的位置,则所述处理单元确定时域占用资源的起始位置时,包括:
若上行控制信息为正确/错误ACK/NACK反馈信息,则所述处理单元执行以下操作:
所述处理单元确定时域占用资源的起始位置为:编号为n+k的时间段中的第一个符号,其中,n为需要进行ACK/NACK反馈的下行数据传输所在的时间段的编号,k为预定的值;或者,所述处理单元确定时域占用资源的起始位置为:需要进行ACK/NACK反馈的下行数据传输所在的预先划分的用于下行传输的时间段之后的第k个预先划分的用于上行传输的时间段中的第一个符号,k为预定的值;或者,所述处理单元确定时域占用资源的起始位置为:第一个满足预设的定时关系的符号,所述符号为一个上行发送时段中的符号;或者,所述处理单元确定时域占用资源的起始位置为:满足预设的定时关系的一个上行发送时间段中的第一个符号,其中,是否满足所述定时关系由一个下行数据传输的最后一个符号与一个上行发送时间段中的第一个符号的符号间隔确定;其中,
提及的定时关系具体表现为处理时延,所述处理时延包括下行数据解析和处理时间以及产生下行数据所对应的ACK/NACK反馈信息的时间;以一个下行数据的传输结束时刻为基准,其ACK/NACK反馈信息在不早于满足所述述处理时延的上行符号中传输;
若上行控制信息为周期信道状态CSI反馈信息时,则所述处理单元执行以下操作:
所述处理单元按照预先配置的CSI反馈周期,确定时域占用资源的起始符号位置,其中,所述周期具体表现为Y1个符号,Y1为正整数;或者,
所述处理单元按照预先配置的CSI反馈周期,确定该CSI反馈周期所对应的传输CSI的子帧中的预定的上行符号位置,为时域占用资源的起始符号位置,其中所述CSI反馈周期具体表现为Y2个子帧,Y2为正整数。
可选的,在确定的资源上传输上行控制信息时,所述通信单元用于:采用非扩频方式在确定的资源上传输上行控制信息;或者,采用扩频方式在确定的资源上传输上行控制信 息。
可选的,采用非扩频方式在确定的资源上传输上行控制信息时,所述通信单元用于:所述通信单元根据确定的资源中可用于数据传输的RE数目及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;所述通信单元将得到的调制符号按照特定顺序映射到所述资源上进行传输。
可选的,采用扩频方式在确定的资源上传输上行控制信息时,所述通信单元用于:所述通信单元根据确定的资源中可用于数据传输的RE数目、扩频序列长度及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;所述通信单元将获得的每一个调制符号与长度为N的正交序列相乘,得到扩频后的长度为N的调制符号,再将所述长度为N的调制符号,映射到所述资源中的一个符号上的一个RE组上进行传输,所述一个RE组中包含N个RE;其中N为正交序列的长度。
可选的,当确定的时域占用资源中包含多个符号时,所述通信单元进一步用于:所述通信单元分别在每一个符号上采用长度为N的正交序列进行频域扩频;或者,所述通信单元在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目;或者,所述通信单元在每一个符号上采用长度为N的正交序列进行频域扩频,且所述通信单元在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目。
可选的,所述通信单元进一步用于:所述通信单元在传输的上行控制信息时携带特定序列,所述特定序列与所述装置的标识ID相关,至少用于其他网元识别所述装置以及对所述装置进行干扰测量。
一种上行控制信息的传输装置,包括:处理器,用于读取存储器中的程序,执行下列过程:确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中,所述时域占用资源的时长小于1ms;收发机,用于在处理器的控制下在确定的资源上传输上行控制信息。这样,针对TTI缩短的情况(即shortened TTI),提供了上行控制信息的传输解决方案,支持上行控制信息的正常反馈,保证了系统性能。
可选的,所述处理器确定的传输上行控制信息的资源中,频域占用资源的大小采用子载波SC数目表示,或者,采用资源元素RE数目表示,或者采用资源单元RU数目表示,其中,若采用RU表示,则RU为预先定义的在时域上占用X1个符号、在频域上占用X2个SC或RE的资源区域,所述X2个SC或RE为连续或者不连续的,所述X1和X2为预先定义或者配置的;所述处理器确定的传输上行控制信息的资源中,所述时域占用资源的 大小采用符号数目或时间长度表示。
可选的,所述处理器确定所述频域占用资源的大小为固定设置的A1个SC或A2个RE或A3个RU,其中,A1、A2、A3为大于0的整数,或者,所述处理器根据信令通知确定所述频域占用资源的大小;以及,所述处理器根据预先约定确定所述频域所占用资源的位置,或者,所述处理器根据信令通知确定所述频域占用资源的位置;所述处理器确定所述时域占用资源的大小为固定设置的B1个符号或B2ms,其中,B1为大于0的整数,B2为小于1的小数,或者,所述处理器根据信令通知确定所述时域占用资源的大小;以及,所述处理器根据预先约定确定所述时域所占用资源的位置,或者,所述处理器根据信令通知确定所述时域占用资源的位置。
可选的,所述处理器确定传输上行控制信息的资源,包括:所述处理器根据下行授权信令DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的下行控制信息DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,所述处理器根据上行授权信令UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小;或者,所述处理器根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理器从中选取一个资源集合。
可选的,所述处理器根据UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小时,进一步包括:所述第二指示域还用于指示时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
可选的,所述处理器根据DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,所述处理器根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理器从中选取一个资源集合时,资源集合的配置方式如下:每一个资源集合中均包含频域占用资源的大小和位置、以及时域占用资源的大小,其中,不同资源集合中的频域占用的资源的大小相同或不同,或/和,不同资源集合中的时域占用资源的大小相同或不同;或者,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源位置、以及时域占用资源的大小,其中,不同资源集合中的时域占用资源的大小相同或不同;或者,时域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的大小和位置,其 中,不同资源集合中频域占用资源的大小相同或者不同;或者,时域占用资源的大小为终端侧和网络侧协商的固定值,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的位置。
可选的,进一步包括:每一个资源集合中还包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
可选的,所述处理器根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理器从中选取一个资源集合时,包括:所述处理器根据当前需要反馈的上行控制信息的总比特数,以及每一个资源集合按照特定码率计算得到的能够承载的最大比特数,确定选取的资源集合;或者,当不同资源集合中所包含的时域占用资源的大小不同时,所述处理器根据每一个资源集合中所包含的时域占用资源的大小,确定选取的资源集合;或者,所述处理器根据资源集合中的符号数目,确定选取的资源集合
可选的,若时域占用资源的位置为预先约定的位置,则所述处理器确定时域占用资源的起始位置时,包括:
若上行控制信息为正确/错误ACK/NACK反馈信息,则所述处理器执行以下操作:
所述处理器确定时域占用资源的起始位置为:编号为n+k的时间段中的第一个符号,其中,n为需要进行ACK/NACK反馈的下行数据传输所在的时间段的编号,k为预定的值;或者,所述处理器确定时域占用资源的起始位置为:需要进行ACK/NACK反馈的下行数据传输所在的预先划分的用于下行传输的时间段之后的第k个预先划分的用于上行传输的时间段中的第一个符号,k为预定的值;或者,所述处理器确定时域占用资源的起始位置为:第一个满足预设的定时关系的符号,所述符号为一个上行发送时段中的符号;或者,所述处理器确定时域占用资源的起始位置为:满足预设的定时关系的一个上行发送时间段中的第一个符号,其中,是否满足所述定时关系由一个下行数据传输的最后一个符号与一个上行发送时间段中的第一个符号的符号间隔确定;其中,提及的定时关系具体表现为处理时延,所述处理时延包括下行数据解析和处理时间以及产生下行数据所对应的ACK/NACK反馈信息的时间;以一个下行数据的传输结束时刻为基准,其ACK/NACK反馈信息在不早于满足所述述处理时延的上行符号中传输;
若上行控制信息为周期信道状态CSI反馈信息时,则所述处理器执行以下操作:所述处理器按照预先配置的CSI反馈周期,确定时域占用资源的起始符号位置,其中,所述周期具体表现为Y1个符号,Y1为正整数;或者,所述处理器按照预先配置的CSI反馈周期,确定该CSI反馈周期所对应的传输CSI的子帧中的预定的上行符号位置,为时域占用资源 的起始符号位置,其中所述CSI反馈周期具体表现为Y2个子帧,Y2为正整数。
可选的,在确定的资源上传输上行控制信息时,所述收发机用于:采用非扩频方式在确定的资源上传输上行控制信息;或者,采用扩频方式在确定的资源上传输上行控制信息。
可选的,采用非扩频方式在确定的资源上传输上行控制信息时,所述收发机用于:所述收发机根据确定的资源中可用于数据传输的RE数目及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;所述收发机将得到的调制符号按照特定顺序映射到所述资源上进行传输。
可选的,采用扩频方式在确定的资源上传输上行控制信息时,所述收发机用于:所述收发机根据确定的资源中可用于数据传输的RE数目、扩频序列长度及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;所述收发机将获得的每一个调制符号与长度为N的正交序列相乘,得到扩频后的长度为N的调制符号,再将所述长度为N的调制符号,映射到所述资源中的一个符号上的一个RE组上进行传输,所述一个RE组中包含N个RE;其中N为正交序列的长度。
可选的,当确定的时域占用资源中包含多个符号时,所述收发机进一步用于:所述收发机分别在每一个符号上采用长度为N的正交序列进行频域扩频;或者,所述收发机在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目;或者,所述收发机在每一个符号上采用长度为N的正交序列进行频域扩频,且所述收发机在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目。
可选的,所述收发机进一步用于:所述收发机在传输的上行控制信息时携带特定序列,所述特定序列与所述装置的标识ID相关,至少用于其他网元识别所述装置以及对所述装置进行干扰测量。
附图说明
图1为现有技术下LTE FDD系统中帧结构示意图;
图2为现有技术下LTETDD系统中帧结构示意图;
图3为LTE-FDD系统中不考虑HARQ重传情况下的上行U平面延时示意图;
图4为本发明实施例中对上行控制信息进行传输的流程图;
图5至图12分别为本发明实施例中扩频时采用的导频图样示意图;
图13和图14分别为本发明实施例中终端功能结构示意图。
具体实施方式
下面结合说明书附图对本发明优选的实施方式作出进一步详细说明。
参阅图4所示,本发明实施例中,对上行控制信息进行传输的详细流程如下:
步骤400:终端确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中,所述时域占用资源的时长小于1ms。
步骤410:终端在确定的资源上传输上行控制信息。
具体的,在步骤400中,终端确定的传输上行控制信息的资源中,频域占用资源的大小采用子载波(Sub Carrier,SC)数目表示,或者,采用资源元素(Resource Element,RE)数目表示,或者,采用资源单元(Resource Unit,RU)数目表示,其中,若采用RU表示,则RU为预先定义的在时域上占用X1个符号、在频域上占用X2个SC或RE的资源区域,所述X2个SC或RE为连续或者不连续的,所述X1和X2为预先定义或者配置的,X1、X2均为大0的整数。
终端确定所述频域占用资源的大小为固定设置的A1个SC或A2个RE或A3个RU,其中,A1、A2、A3为大于0的整数,或者,终端根据信令通知确定所述频域占用资源的大小;以及,终端根据预先约定确定所述频域所占用资源的位置,或者,终端根据信令通知确定所述频域占用资源的位置。可选地,上述信令可以承载在广播、下行控制信息(Downlink Control Information,DCI)、无线资源控制(Radio Resource Control,RRC)中。
另一方面,终端确定的传输上行控制信息的资源中,所述时域占用资源的大小采用符号数目或时间长度表示。
终端确定所述时域占用资源的大小为固定设置的B1个符号或B2ms,其中,B1为大于0的整数,B2为小于1的小数,或者,终端根据信令通知确定所述时域占用资源的大小;以及,终端根据预先约定确定所述时域所占用资源的位置,或者,终端根据信令通知确定所述时域占用资源的位置。可选地,上述信令可以承载在广播、DCI、RRC等信息中。
本发明实施例中,在执行步骤400时,终端确定传输上行控制信息的资源时,可以采用但不限于以下方法:
方法A:终端根据下行授权信令(DL grant)的通知确定传输上行控制信息的资源,其中,DL grant中所使用的DCI中的指示域指示高层信令预先配置的多个资源集合中的一个。
具体的,DL grant通过携带的DCI中的ACK/NACK资源指示(ARI)域,指示高层信令预先配置的多个资源集合中的一个。
在采用方法A时,高层信令预先配置给终端多个资源集合,网络侧会通过DL grant 通知终端当前哪一个资源集合中指示的资源传输上行控制信息。为了减少系统资源开销,网络侧可以将上述多个资源集合通过高层信令同时配置给多个终端,并进一步通过DL grant指示不同的终端在同一个子帧中使用不同的资源集合。
具体的,资源集合可以采用但不限于以下几种配置方法:
方法A-1:频域占用资源和时域占用资源的大小均可变。
每一个资源集合中均包含频域占用资源的大小和位置、以及时域占用资源的大小,其中,不同资源集合中的频域占用的资源的大小相同或不同,或/和,不同资源集合中的时域占用资源的大小相同或不同。
进一步地,每一个资源集合中包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
方法A-2:频域占用资源的大小固定,时域占用资源的大小可变。
频域占用资源的大小为终端侧和网络侧协商的固定值,而每一个资源集合中均包含频域占用资源位置、以及时域占用资源的大小,其中,不同资源集合中的时域占用资源的大小相同或不同;或者,每个资源集合中仅包含频域占用资源的位置,时域占用资源的大小通过DL grant中的其他比特指示;
进一步地,每一个资源集合中包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
方法A-3:频域占用资源的大小可变,时域占用资源的大小固定。
时域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的大小和位置,其中,不同资源集合中频域占用资源的大相同或者不同。
进一步地,每一个资源集合中包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
方法A-4:频域占用资源的大小固定,时域占用资源的大小固定。
时域占用资源的大小为终端侧和网络侧协商的固定值,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的位置。
进一步地,每一个资源集合中包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
进一步地,DL grant携带的DCI中的ARI域,为DCI中的传输功率控制(TPC,Transmit Power Control)域或者ACK/NACK资源偏移(ARO,ACK/NACK Resource Offset)指示域的重用,或者,为预先定义的一个比特数;
方法B:终端根据上信授权信令UL grant的通知确定传输上行控制信息的资源,其中, UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小。
进一步地,第二指示域还可以用于指示时域占用资源的位置,或者,若第二指示域不指示,则时域占用资源的位置为预先约定的位置。
方法C:终端根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合(一个或多个资源集合),当配置了多个资源集合时,终端从中选取一个资源集合。方法C较适用于周期信道状态信息(Channel State Information,CSI)反馈信息。
具体的,资源集合可以采用但不限于以下几种配置方法:
方法C-1:频域占用资源和时域占用资源的大小均可变。
每一个资源集合中均包含频域占用资源的大小和位置、以及时域占用资源的大小,其中,不同资源集合中的频域占用的资源的大小相同或不同,或/和,不同资源集合中的时域占用资源的大小相同或不同。
进一步地,每一个资源集合中包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
方法C-2:频域占用资源的大小固定,时域占用资源的大小可变。
频域占用资源的大小为终端侧和网络侧协商的固定值,而每一个资源集合中均包含频域占用资源位置、以及时域占用资源的大小,其中,不同资源集合中的时域占用资源的大小相同或不同;
进一步地,每一个资源集合中包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
方法C-3:频域占用资源的大小可变,时域占用资源的大小固定。
时域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的大小和位置,其中,不同资源集合中频域占用资源的大相同或者不同。
进一步地,每一个资源集合中包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
方法C-4:频域占用资源的大小固定,时域占用资源的大小固定。
时域占用资源的大小为终端侧和网络侧协商的固定值,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的位置。
进一步地,每一个资源集合中包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
在使用方法C时,若高层信令配置了两个资源集合,则终端选取一个资源集合时,可以采用但不限于以下两种方式:
选取方式1:终端根据当前需要反馈的上行控制信息的总比特数,以及每一个资源集合按照特定码率计算得到的能够承载的最大比特数,确定选取的资源集合;或者,当不同资源集合中所包含的时域占用资源的大小不同时,终端根据每一个资源集合中所包含的时域占用资源的大小,确定选取的资源集合。
例如,当上行控制信息的总比特数不超过不同资源集合的可以承载的最大比特数的最小值时,选择所述最小值所对应的资源集合,否则,选择另一个资源集合。
选取方式2:终端根据资源集合中的符号数目,确定选取的资源集合。
例如,终端选择符号数目小于当前上行传输时间段所包含的最大符号数目的资源集合;
如果多个资源集合都满足上述条件或者所有资源集合都不满足上述条件,则进一步使用选取方式1。
进一步地,在上述时域占用资源为预先约定的位置时,终端在不同的情况下可以采用不同的方式确定时域占用资源的起始位置,由于时域占用资源的大小可以是固定的或者由资源集合通知,因此,获知时域占用资源的起始位置后,即可确定时域占用资源的具体位置,即起始位置开始的连续多个符号。
第一种情况下,若上行控制信息为ACK/NACK反馈信息,则确定终端可以采用但不限于以下两种方式:
方式A:终端确定时域占用资源的起始位置为:编号为n+k的时间段中的第一个符号,其中,n为需要进行ACK/NACK反馈的下行数据传输所在的时间段的编号,k为预定的值,n和k均为大于或等于0的整数。
方式B:终端确定时域占用资源的起始位置为:需要进行ACK/NACK反馈的下行数据传输所在的预先划分的用于下行传输的时间段之后的第k个预先划分的用于上行传输的时间段中的第一个符号,k为预定的值。
方式C:终端确定时域占用资源的起始位置为:第一个满足预设的定时关系的符号,所述符号为一个上行发送时间段中的符号。
方式D:终端确定时域占用资源的起始位置为:满足预设的定时关系的一个上行发送时间段中的第一个符号,其中,是否满足所述定时关系由一个下行数据传输的最后一个符号与一个上行发送时间段中的第一个符号的符号间隔确定。
其中,方式C和方式D中提及的定时关系具体表现为处理时延,所述处理时延包括下 行数据解析和处理时间以及产生下行数据所对应的ACK/NACK反馈信息的时间。以一个下行数据的传输结束时刻为基准,其ACK/NACK反馈信息在不早于满足上述处理时延的上行符号中传输。
例如,若处理时延具体表现为a*b,a为预定的常数,a=3,b为一个下行数据传输所占用的符号数目或者时间长度。
第二种情况下,当上行控制信息为周期CSI反馈信息时,则确定终端可以采用但不限于以下两种方式:
方式E:终端按照预先配置的CSI反馈周期,确定时域占用资源的起始符号位置,其中,所述周期具体表现为Y1个符号,Y1为正整数;或者,
方式F:终端按照预先配置的CSI反馈周期,确定该CSI反馈周期所对应的传输CSI的子帧中的预定的上行符号位置,为时域占用资源的起始符号位置,其中所述CSI反馈周期具体表现为Y2个子帧,Y2为正整数。
例如:频域占用资源的起始位置为:CSI子帧中第一个或最后一个上行传输时间段中的第一个符号。
又例如:当CSI子帧中同时存在ACK/NACK反馈信息时,频域占用资源的起始位置为:该CSI子帧中的传输ACK/NACK反馈信息所在的符号位置。
本发明实施例中,在执行步骤410时,终端可以采用非扩频方式或扩频方式在确定的资源上传输上行控制信息,具体介绍如下:
方法1:终端采用非扩频方式在确定的资源上传输上行控制信息,包括:
首先,终端根据确定的资源中可用于数据传输的RE数目及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号。
可选地,上述信道编码方式可以为A比特循环冗余校验(CRC,Cyclic Redundancy Check)+Turbo编码(turbo coding)or咬尾卷积编码(TBCC,Tail Biting Convolutional Coding)方式,例如:8比特CRC+TBCC方式(即PUCCH format 4/5方式)或24比特CRC+turbo coding。
其次,终端将得到的调制符号按照特定顺序映射到所述资源上进行传输。
例如,可以映射至频域后映射至时域,或者,也可以先映射至时域后映射至频域。
进一步地,若所述资源在PUSCH上,则终端需要将上行控制信息与数据data一起级联传输,进行与数据相同的处理;
方法2:终端采用扩频方式在确定的资源上传输上行控制信息,扩频方式可以采用正 交扩频码(Orthogonal Cover Code,OCC)包括:
首先,终端根据确定的资源中可用于数据传输的RE数目、扩频序列长度及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号。
其次,将获得的每一个调制符号与长度为N的正交序列相乘,得到扩频后的长度为N的调制符号,再将所述长度为N的调制符号,映射到所述资源中的时域占用资源内的一个符号上的一个RE组上进行传输,所述一个RE组中包含N个RE;其中,在所述资源中的频域占用资源上,在上述一个符号内,每N个RE为一组进行频域OCC,其中N为正交序列的长度,N为大于1的整数。
其中,获得的所有调制符号被映射到的上述一个符号上的一RE组上进行传输,该一RE组内的RE在频域上连续分布或离散分布;和/或,获得的不同调制符号被映射到的上述一个符号内的不同RE组内的RE上进行传输,这些RE组内的RE在频域上平行分布或交错分布。
进一步地,当终端确定的时域占用资源中包含多个符号时,终端在每一个符号上按照上述方式进行长度为N的正交序列进行频域扩频;或者,终端在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目;或者,终端在每一个符号上采用长度为N的正交序列进行频域扩频,且终端在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目,B为大于等于1的整数。
另一方面,导频数按照上述相同的方式进行扩频,或者,当导频占用一个符号上的数据传输带宽传输时,可采用循环移位方式进行扩频,其中,循环移位间隔与导频序列长度相关,需满足floor(导频序列长度/循环移位间隔)不小于N或不小于N*M,floor为向下取整。
进一步,终端在传输上行控制信息时还可以携带特定序列,所述特定序列与所述终端的标识(ID)相关,至少用于其他网元(其他终端和/或基站)识别所述终端,以及用于其他网元对所述该终端进行干扰测量,所述其他终端包括本小区和/或邻小区中的终端。
例如:所述特定序列基于ZC序列或m序列或CAZAC序列等序列产生;不排除其他序列产生方式,只要可以支持与UE ID相关,自相关性高,互相关性低的序列都可以采纳。
下面采用一个具体的实例,对OCC扩频方式进行详细说明。具体的OCC扩频方式如下实例,但不限于如下实例:
假设上行控制信息传输所占用的符号(即SC-FDMA符号,以下相同,不再赘述)的 数目为1,则以频域上12个RE(或SC)的区域为例,OCC长度N为2时的频域扩频和映射方式如图5和图6所示。
假设上行控制信息传输所占用的符号数目为3,以频域上12个RE(或SC)的区域为例。
第一种实现方式为:每个符号上都进行长度为N=2的OCC,频域扩频和映射方式在每个承载数据的符号上都相同,得到如图7和图8所示的方式。
第二种实现方式为:在时域上进行长度为M=2的OCC,如图9所示;或者,在时域上进行长度为M=3的OCC,如图10所示。
第三种实现方式为:同时在时域上进行长度为M=2的OCC,且在频域上进行长度为N=2的OCC,如图11所示;或者,同时在时域上进行长度为M=3的OCC,且在频域上进行长度为N=2的OCC,如图12所示;其中,频域OCC序列与时域OCC序列可以不同。
图5、图7、图9、图10中假设导频还是类似LTE的方式占用一个符号上的所有RE,对于图5,该上行控制信息在当前一个符号传输时,可以借助其前或后一个符号上的导频进行信道估计,此时导频可以类似原LTE系统中的PUCCH设计,进行频域上的循环移位,循环移位间隔和导频长度满足可以区分至少不少于数据符号可以区分的用户数目。导频也可以类似数据的方式进行时域OCC和/或频域OCC。
图6、图8、图10、图12中假设上行传输的导频与数据在一个符号上采用频分方式传输,即占用不同RE传输,导频可以类似原LTE系统中的PUCCH设计,进行频域上的循环移位,循环移位间隔和导频长度满足可以区分至少不少于数据符号可以区分的用户数目,导频也可以类似数据的方式进行时域OCC和/或频域OCC。
上述实施例中,当频域上占用更多RE时,映射方式类似,例如:频域上占用Z个长度为12的RE时,每个长度为12的RE区域可以按照如图5所示的相同方式进行扩频和映射,或者,Z个长度为12的RE联合在一起,按照类似一个长度为12的RE区域的设计方案进行特定间隔的扩频和映射。
另外,对于上述图6、图8、图10、图12所示的导频图样中两个导频符号间隔6个RE,还可以调整间隔为2、3、4、12等其他值,即改变导频时域和或频域密度,具体设计方式上述内容类似,不再赘述。
OCC长度还可以为其他值,例如N=3、4、5、6等,M=4、5等,具体设计方式上述内容类似,不再赘述。
下面采用一个具体的实例,对上行控制信息的具体传输过程进行介绍。
具体传输过程的实施例如下:
例如,采用如图5所示导频图样,即导频与上行控制信息单独占用不同的符号,假设上行控制信息传输的资源为时域上1个符号(即SC-FDMA符号,以下相同,将不再赘述)且频域上24个RE,采用四相相移键控(Quadrature Phase Shift Keying,QPSK)调制,则:
在不使用频域OCC时,可用于上行数据传输的RE总数为24个,则可以承载的编码比特数为24*2=48。假设原始上行控制信息比特数为8比特,则8比特信息加上CRC(例如8比特)校验信息后,经过信道编码和速率匹配得到48比特编码比特(此时码率为1/3),48比特编码比特经过QPSK调制,得到24个调制符号,分别映射到上述一个符号上的24个RE位置上,具体的,可以从低频到高频逐一映射,也可以从高频到低频逐一映射。
在使用频域OCC时,如图5所示,N=2,则可用于不同上行数据传输的RE数为12个(虽然总RE有24个,但是两个RE上承载的是相同原比特的扩频版本,实际可以承载的不同的调制符号数仅为12个),则可以承载的编码比特数为12*2=24,因此,在相同码率下,可以承载的原始上行控制信息的比特数减少,或者,如果同样承载相同的原始比特数,则编码码率升高。
假设原始上行控制信息比特数为8比特,则8比特信息加上CRC(例如8比特)后,经过信道编码和速率匹配得到24比特编码比特(此时码率为16/24=2/3),或者,假设原始上行控制信息比特数为4比特,则4比特信息加上CRC(例如8比特)后,经过信道编码和速率匹配得到24比特编码信息(此时码率为12/24=1/2);24比特编码比特经过QPSK调制,得到12个调制符号,每个调制符号经过长度为2的OCC扩频后得到的两个调制符号分别映射到上述一个符号上的2个RE位置上,按照特定顺序逐一扩频和映射,具体的,可以从低频到高频逐一映射,也可以从高频到低频逐一映射。
当改变占用符号数目和/或频域占用资源大小(RE数目)时,上述编码比特数将随之发生变化,如果码率相对不变,则可以承载的原始上行控制信息比特数也随之发生变化。
又例如,采用如图6所示导频图样,即导频与数据在同一个符号上频分传输,假设上行控制信息传输的资源为时域上1个符号且频域上24个RE,采用QPSK调制,则:
在不使用频域OCC时,可用于上行数据传输的RE总数为24-4=20个,则可以承载的编码比特数为20*2=40。假设原始上行控制信息比特数为8比特,则8比特信息加上CRC(例如8比特)校验信息后,经过信道编码和速率匹配得到40比特编码比特(此时码率为16/40=2/5),40比特编码比特经过QPSK调制,得到20个调制符号,分别映射到上述一个符号上的20个RE位置上,具体的,可以从低频到高频逐一映射,也可以从高频到低频逐一映射。
在使用频域OCC时,如图6所示,N=2,则可用于不同上行数据传输的RE数为(24-4) /N=10个(虽然可用与数据的总RE有20个,但是两个RE上承载的是相同原比特的扩频版本,实际可以承载的不同的调制符号数仅为10个),则可以承载的编码比特数为10*2=20,因此,在相同码率下,可以承载的原始上行控制信息的比特数减少,或者,如果同样承载相同的原始比特数,则编码码率升高。
假设原始上行控制信息比特数为8比特,则8比特信息加上CRC(例如8比特)校验信息后,经过信道编码和速率匹配得到20比特编码比特(此时码率为16/20=4/5),或者,假设原始上行控制信息比特数为4比特,则4比特信息加上CRC(例如8比特)后,经过信道编码和速率匹配得到20比特编码信息(此时码率为12/20=3/5);20比特编码比特经过QPSK调制,得到10个调制符号,每个调制符号经过长度为2的OCC扩频后得到的两个调制符号分别映射到上述一个符号上的2个RE位置上,按照特定顺序逐一扩频和映射,具体的,可以从低频到高频逐一映射,也可以从高频到低频逐一映射。
当改变占用符号数和/或频域占用资源大小(RE数目)时,上述编码比特数将随之发生变化,如果码率相对不变,则可以承载更多的原始上行控制信息比特数。
参阅图13所示,本发明实施例中,终端包括处理单元130和通信单元131,其中,
处理单元130,用于确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中,所述时域占用资源的时长小于1ms。
通信单元131,用于在确定的资源上传输上行控制信息。
可选的,所述处理单元130确定的传输上行控制信息的资源中,频域占用资源的大小采用子载波SC数目表示,或者,采用资源元素RE数目表示,或者采用资源单元RU数目表示,其中,若采用RU表示,则RU为预先定义的在时域上占用X1个符号、在频域上占用X2个SC或RE的资源区域,所述X2个SC或RE为连续或者不连续的,所述X1和X2为预先定义或者配置的;
所述处理单元130确定的传输上行控制信息的资源中,所述时域占用资源的大小采用符号数目或时间长度表示。
可选的,所述处理单元130确定所述频域占用资源的大小为固定设置的A1个SC或A2个RE或A3个RU,其中,A1、A2、A3为大于0的整数。所述处理单元130可根据信令通知确定所述频域占用资源的大小,根据预先约定确定所述频域所占用资源的位置,或者,所述处理单元130根据信令通知确定所述频域占用资源的位置;
所述处理单元130确定所述时域占用资源的大小为固定设置的B1个符号或B2ms,其中,B1为大于0的整数,B2为小于1的小数。所述处理单元130可根据信令通知确定所述时域占用资源的大小,可根据预先约定确定所述时域所占用资源的位置,或者,所述处 理单元130根据信令通知确定所述时域占用资源的位置。
可选的,所述处理单元130确定传输上行控制信息的资源,包括:
所述处理单元130根据下行授权信令DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的下行控制信息DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,
所述处理单元130根据上行授权信令UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小;或者,
所述处理单元130根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理单元130从中选取一个资源集合。
可选的,所述处理单元130根据UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小时,进一步包括:
所述第二指示域还用于指示时域占用资源的位置,或者,
时域占用资源的位置为预先约定的位置。
可选的,所述处理单元130根据DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,所述处理单元130根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理单元130从中选取一个资源集合时,资源集合的配置方式如下:
每一个资源集合中均包含频域占用资源的大小和位置、以及时域占用资源的大小,其中,不同资源集合中的频域占用的资源的大小相同或不同,或/和,不同资源集合中的时域占用资源的大小相同或不同;或者,
频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源位置、以及时域占用资源的大小,其中,不同资源集合中的时域占用资源的大小相同或不同;或者,
时域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的大小和位置,其中,不同资源集合中频域占用资源的大小相同或者不同;或者,
时域占用资源的大小为终端侧和网络侧协商的固定值,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的位置。
可选的,进一步包括:
每一个资源集合中还包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
可选的,所述处理单元130根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理单元130从中选取一个资源集合时,包括:
所述处理单元130根据当前需要反馈的上行控制信息的总比特数,以及每一个资源集合按照特定码率计算得到的能够承载的最大比特数,确定选取的资源集合;或者,
当不同资源集合中所包含的时域占用资源的大小不同时,所述处理单元130根据每一个资源集合中所包含的时域占用资源的大小,确定选取的资源集合;或者,
所述处理单元130根据资源集合中的符号数目,确定选取的资源集合
可选的,若时域占用资源的位置为预先约定的位置,则所述处理单元130确定时域占用资源的起始位置时,包括:
若上行控制信息为正确/错误ACK/NACK反馈信息,则所述处理单元130执行以下操作:
所述处理单元130确定时域占用资源的起始位置为:编号为n+k的时间段中的第一个符号,其中,n为需要进行ACK/NACK反馈的下行数据传输所在的时间段的编号,k为预定的值;或者,所述处理单元130确定时域占用资源的起始位置为:需要进行ACK/NACK反馈的下行数据传输所在的预先划分的用于下行传输的时间段之后的第k个预先划分的用于上行传输的时间段中的第一个符号,k为预定的值;或者,所述处理单元130确定时域占用资源的起始位置为:第一个满足预设的定时关系的符号,所述符号为一个上行发送时段中的符号;或者,所述处理单元130确定时域占用资源的起始位置为:满足预设的定时关系的一个上行发送时间段中的第一个符号,其中,是否满足所述定时关系由一个下行数据传输的最后一个符号与一个上行发送时间段中的第一个符号的符号间隔确定;其中,
提及的定时关系具体表现为处理时延,所述处理时延包括下行数据解析和处理时间以及产生下行数据所对应的ACK/NACK反馈信息的时间;以一个下行数据的传输结束时刻为基准,其ACK/NACK反馈信息在不早于满足所述述处理时延的上行符号中传输;
若上行控制信息为周期信道状态CSI反馈信息时,则所述处理单元130执行以下操作:
所述处理单元130按照预先配置的CSI反馈周期,确定时域占用资源的起始符号位置,其中,所述周期具体表现为Y1个符号,Y1为正整数;或者,
所述处理单元130按照预先配置的CSI反馈周期,确定该CSI反馈周期所对应的传输 CSI的子帧中的预定的上行符号位置,为时域占用资源的起始符号位置,其中所述CSI反馈周期具体表现为Y2个子帧,Y2为正整数。
可选的,在确定的资源上传输上行控制信息时,所述通信单元131用于:
采用非扩频方式在确定的资源上传输上行控制信息;或者,
采用扩频方式在确定的资源上传输上行控制信息。
可选的,采用非扩频方式在确定的资源上传输上行控制信息时,所述通信单元131用于:
所述通信单元131根据确定的资源中可用于数据传输的RE数目及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
所述通信单元131将得到的调制符号按照特定顺序映射到所述资源上进行传输。
可选的,采用扩频方式在确定的资源上传输上行控制信息时,所述通信单元131用于:
所述通信单元131根据确定的资源中可用于数据传输的RE数目、扩频序列长度及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
所述通信单元131将获得的每一个调制符号与长度为N的正交序列相乘,得到扩频后的长度为N的调制符号,再将所述长度为N的调制符号,映射到所述资源中的一个符号上的一个RE组上进行传输,所述一个RE组中包含N个RE;其中N为正交序列的长度。
可选的,当确定的时域占用资源中包含多个符号时,所述通信单元131进一步用于:
所述通信单元131分别在每一个符号上采用长度为N的正交序列进行频域扩频;或者,所述通信单元131在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目;或者,所述通信单元131在每一个符号上采用长度为N的正交序列进行频域扩频,且所述通信单元131在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目。
可选的,所述通信单元131进一步用于:
所述通信单元131在传输的上行控制信息时携带特定序列,所述特定序列与所述装置的标识ID相关,至少用于其他网元识别所述装置以及对所述装置进行干扰测量。
参阅图14所示,本发明实施例中,终端包括处理器140和收发机141,其中,
处理器140,用于读取存储器中的程序,执行下列过程:
确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中, 所述时域占用资源的时长小于1ms。
收发机141,用于在处理器的控制下在确定的资源上传输上行控制信息。
可选的,所述处理器140确定的传输上行控制信息的资源中,频域占用资源的大小采用子载波SC数目表示,或者,采用资源元素RE数目表示,或者采用资源单元RU数目表示,其中,若采用RU表示,则RU为预先定义的在时域上占用X1个符号、在频域上占用X2个SC或RE的资源区域,所述X2个SC或RE为连续或者不连续的,所述X1和X2为预先定义或者配置的;
所述处理器140确定的传输上行控制信息的资源中,所述时域占用资源的大小采用符号数目或时间长度表示。
可选的,所述处理器140确定所述频域占用资源的大小为固定设置的A1个SC或A2个RE或A3个RU,其中,A1、A2、A3为大于0的整数,或者,所述处理器140根据信令通知确定所述频域占用资源的大小;以及,所述处理器140根据预先约定确定所述频域所占用资源的位置,或者,所述处理器140根据信令通知确定所述频域占用资源的位置;
所述处理器140确定所述时域占用资源的大小为固定设置的B1个符号或B2ms,其中,B1为大于0的整数,B2为小于1的小数,或者,所述处理器140根据信令通知确定所述时域占用资源的大小;以及,所述处理器140根据预先约定确定所述时域所占用资源的位置,或者,所述处理器140根据信令通知确定所述时域占用资源的位置。
可选的,所述处理器140确定传输上行控制信息的资源,包括:
所述处理器140根据下行授权信令DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的下行控制信息DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,
所述处理器140根据上行授权信令UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小;或者,
所述处理器140根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理器140从中选取一个资源集合。
可选的,所述处理器140根据UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小时,进一步包括:
所述第二指示域还用于指示时域占用资源的位置,或者,
时域占用资源的位置为预先约定的位置。
可选的,所述处理器140根据DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,所述处理器140根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理器140从中选取一个资源集合时,资源集合的配置方式如下:
每一个资源集合中均包含频域占用资源的大小和位置、以及时域占用资源的大小,其中,不同资源集合中的频域占用的资源的大小相同或不同,或/和,不同资源集合中的时域占用资源的大小相同或不同;或者,
频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源位置、以及时域占用资源的大小,其中,不同资源集合中的时域占用资源的大小相同或不同;或者,
时域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的大小和位置,其中,不同资源集合中频域占用资源的大小相同或者不同;或者,
时域占用资源的大小为终端侧和网络侧协商的固定值,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的位置。
可选的,进一步包括:
每一个资源集合中还包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
可选的,所述处理器140根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理器140从中选取一个资源集合时,包括:
所述处理器140根据当前需要反馈的上行控制信息的总比特数,以及每一个资源集合按照特定码率计算得到的能够承载的最大比特数,确定选取的资源集合;或者,
当不同资源集合中所包含的时域占用资源的大小不同时,所述处理器140根据每一个资源集合中所包含的时域占用资源的大小,确定选取的资源集合;或者,
所述处理器140根据资源集合中的符号数目,确定选取的资源集合
可选的,若时域占用资源的位置为预先约定的位置,则所述处理器140确定时域占用资源的起始位置时,包括:
若上行控制信息为正确/错误ACK/NACK反馈信息,则所述处理器140执行以下操作:
所述处理器140确定时域占用资源的起始位置为:编号为n+k的时间段中的第一个符 号,其中,n为需要进行ACK/NACK反馈的下行数据传输所在的时间段的编号,k为预定的值;或者,所述处理器140确定时域占用资源的起始位置为:需要进行ACK/NACK反馈的下行数据传输所在的预先划分的用于下行传输的时间段之后的第k个预先划分的用于上行传输的时间段中的第一个符号,k为预定的值;或者,所述处理器140确定时域占用资源的起始位置为:第一个满足预设的定时关系的符号,所述符号为一个上行发送时段中的符号;或者,所述处理器140确定时域占用资源的起始位置为:满足预设的定时关系的一个上行发送时间段中的第一个符号,其中,是否满足所述定时关系由一个下行数据传输的最后一个符号与一个上行发送时间段中的第一个符号的符号间隔确定;其中,
提及的定时关系具体表现为处理时延,所述处理时延包括下行数据解析和处理时间以及产生下行数据所对应的ACK/NACK反馈信息的时间;以一个下行数据的传输结束时刻为基准,其ACK/NACK反馈信息在不早于满足所述述处理时延的上行符号中传输;
若上行控制信息为周期信道状态CSI反馈信息时,则所述处理器140执行以下操作:
所述处理器140按照预先配置的CSI反馈周期,确定时域占用资源的起始符号位置,其中,所述周期具体表现为Y1个符号,Y1为正整数;或者,
所述处理器140按照预先配置的CSI反馈周期,确定该CSI反馈周期所对应的传输CSI的子帧中的预定的上行符号位置,为时域占用资源的起始符号位置,其中所述CSI反馈周期具体表现为Y2个子帧,Y2为正整数。
可选的,在确定的资源上传输上行控制信息时,所述收发机141用于:
采用非扩频方式在确定的资源上传输上行控制信息;或者,
采用扩频方式在确定的资源上传输上行控制信息。
可选的,采用非扩频方式在确定的资源上传输上行控制信息时,所述收发机141用于:
所述收发机141根据确定的资源中可用于数据传输的RE数目及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
所述收发机141将得到的调制符号按照特定顺序映射到所述资源上进行传输。
可选的,采用扩频方式在确定的资源上传输上行控制信息时,所述收发机141用于:
所述收发机141根据确定的资源中可用于数据传输的RE数目、扩频序列长度及采用的调制编码方式确定编码比特数,再基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
所述收发机141将获得的每一个调制符号与长度为N的正交序列相乘,得到扩频后的长度为N的调制符号,再将所述长度为N的调制符号,映射到所述资源中的一个符号上的 一个RE组上进行传输,所述一个RE组中包含N个RE;其中N为正交序列的长度。
可选的,当确定的时域占用资源中包含多个符号时,所述收发机141进一步用于:
所述收发机141分别在每一个符号上采用长度为N的正交序列进行频域扩频;或者,所述收发机141在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目;或者,所述收发机141在每一个符号上采用长度为N的正交序列进行频域扩频,且所述收发机141在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目。
可选的,所述收发机141进一步用于:
所述收发机141在传输的上行控制信息时携带特定序列,所述特定序列与所述装置的标识ID相关,至少用于其他网元识别所述装置以及对所述装置进行干扰测量。
其中,在图14中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器140代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机141可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器140负责管理总线架构和通常的处理,存储器可以存储处理器140在执行操作时所使用的数据。
综上所述,本发明实施例中,终端需要确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中,所述时域占用资源的时长小于1ms、然后,终端在确定的资源上传输上行控制信息,这样,针对TTI缩短的情况(即shortened TTI),提供了上行控制信息的传输解决方案,支持上行控制信息的正常反馈,保证了系统性能。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流 程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (29)

  1. 一种上行控制信息的传输方法,其特征在于,包括:
    终端确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中,所述时域占用资源的时长小于1ms;
    所述终端在确定的资源上传输上行控制信息。
  2. 如权利要求1所述的方法,其特征在于,终端确定的传输上行控制信息的资源中,频域占用资源的大小采用子载波SC数目表示,或者,采用资源元素RE数目表示,或者采用资源单元RU数目表示,其中,若采用RU表示,则RU为预先定义的在时域上占用X1个符号、在频域上占用X2个SC或RE的资源区域,所述X2个SC或RE为连续或者不连续的,所述X1和X2为预先定义或者配置的,X1、X2均为大0的整数;
    终端确定的传输上行控制信息的资源中,所述时域占用资源的大小采用符号数目或时间长度表示。
  3. 如权利要求1或2所述的方法,其特征在于,终端确定所述频域占用资源的大小为固定设置的A1个SC或A2个RE或A3个RU,其中,A1、A2、A3为大于0的整数,或者,终端根据信令通知确定所述频域占用资源的大小;以及,终端根据预先约定确定所述频域所占用资源的位置,或者,终端根据信令通知确定所述频域占用资源的位置;
    终端确定所述时域占用资源的大小为固定设置的B1个符号或B2ms,其中,B1为大于0的整数,B2为小于1的小数,或者,终端根据信令通知确定所述时域占用资源的大小;以及,终端根据预先约定确定所述时域所占用资源的位置,或者,终端根据信令通知确定所述时域占用资源的位置。
  4. 如权利要求1、2或3所述的方法,其特征在于,所述终端确定传输上行控制信息的资源,包括:
    所述终端根据下行授权信令DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的下行控制信息DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,
    所述终端根据上行授权信令UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小;或者,
    所述终端根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,终端从中选取一个资源集合。
  5. 如权利要求4所述的方法,其特征在于,所述第二指示域还用于指示时域占用资源的位置,或者,
    时域占用资源的位置为预先约定的位置。
  6. 如权利要求4所述的方法,其特征在于,所述资源集合的配置方式如下:
    每一个资源集合中均包含频域占用资源的大小和位置以及时域占用资源的大小,其中,不同资源集合中的频域占用的资源的大小相同或不同,或/和,不同资源集合中的时域占用资源的大小相同或不同;或者,
    频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源位置以及时域占用资源的大小,其中,不同资源集合中的时域占用资源的大小相同或不同;或者,
    时域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的大小和位置,其中,不同资源集合中频域占用资源的大小相同或者不同;或者,时域占用资源的大小为终端侧和网络侧协商的固定值,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的位置。
  7. 如权利要求6所述的方法,其特征在于,进一步包括:
    每一个资源集合中还包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
  8. 如权利要求4所述的方法,其特征在于,所述终端从中选取一个资源集合时,包括:
    所述终端根据当前需要反馈的上行控制信息的总比特数,以及每一个资源集合按照特定码率计算得到的能够承载的最大比特数,确定选取的资源集合;或者,
    当不同资源集合中所包含的时域占用资源的大小不同时,所述终端根据每一个资源集合中所包含的时域占用资源的大小,确定选取的资源集合;或者,
    所述终端根据资源集合中的符号数目,确定选取的资源集合。
  9. 如权利要求1-8任一项所述的方法,其特征在于,若时域占用资源的位置为预先约定的位置,且上行控制信息为正确/错误ACK/NACK反馈信息,则:
    终端确定时域占用资源的起始位置为:编号为n+k的时间段中的第一个符号,其中,n为需要进行ACK/NACK反馈的下行数据传输所在的时间段的编号,k为预定的值,n和k为大于或等于0的整数;或者,终端确定时域占用资源的起始位置为:需要进行ACK/NACK反馈的下行数据传输所在的预先划分的用于下行传输的时间段之后的第k个预先划分的用于上行传输的时间段中的第一个符号,k为预定的值,k为大于等于0的整 数;或者,终端确定时域占用资源的起始位置为:第一个满足预设的定时关系的符号,所述符号为一个上行发送时段中的符号;或者,终端确定时域占用资源的起始位置为:满足预设的定时关系的一个上行发送时间段中的第一个符号,其中,是否满足所述定时关系由一个下行数据传输的最后一个符号与一个上行发送时间段中的第一个符号的符号间隔确定,其中,所述定时关系具体表现为处理时延,所述处理时延包括下行数据解析和处理时间以及产生下行数据所对应的ACK/NACK反馈信息的时间,其中,以一个下行数据的传输结束时刻为基准,其ACK/NACK反馈信息在不早于满足所述述处理时延的上行符号中传输;
    若时域占用资源的位置为预先约定的位置,且上行控制信息为周期信道状态CSI反馈信息时,则所述终端执行以下操作:
    所述终端按照预先配置的CSI反馈周期,确定时域占用资源的起始符号位置,其中,所述周期具体表现为Y1个符号,Y1为正整数;或者,
    所述终端按照预先配置的CSI反馈周期,确定该CSI反馈周期所对应的传输CSI的子帧中的预定的上行符号位置,为时域占用资源的起始符号位置,其中所述CSI反馈周期具体表现为Y2个子帧,Y2为正整数。
  10. 如权利要求1-9任一项所述的方法,其特征在于,终端在确定的资源上传输上行控制信息,包括:
    所述终端采用非扩频方式在确定的资源上传输上行控制信息;或者,
    所述终端采用扩频方式在确定的资源上传输上行控制信息。
  11. 如权利要求10所述的方法,其特征在于,采用非扩频方式在确定的资源上传输上行控制信息,包括:
    根据确定的资源中可用于数据传输的RE数目及采用的调制编码方式确定编码比特数,基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
    将得到的调制符号按照特定顺序映射到所述资源上进行传输。
  12. 如权利要求10所述的方法,其特征在于,采用扩频方式在确定的资源上传输上行控制信息,包括:
    根据确定的资源中可用于数据传输的RE数目、扩频序列长度及采用的调制编码方式确定编码比特数,基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
    将获得的每一个调制符号与长度为N的正交序列相乘,得到扩频后的长度为N的调制符号,将所述长度为N的调制符号,映射到所述资源中的一个符号上的一个RE组上进行 传输,所述一个RE组中包含N个RE;其中N为正交序列的长度。
  13. 如权利要求12所述的方法,其特征在于,当所述终端确定的时域占用资源中包含多个符号时,进一步包括:
    所述终端分别在每一个符号上采用长度为N的正交序列进行频域扩频;或者,所述终端在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目,N和B均为大于等于1的整数;或者,所述终端在每一个符号上采用长度为N的正交序列进行频域扩频,且终端在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目,N和B为大于等于1的整数。
  14. 如权利要求12所述的方法,其特征在于,进一步包括:
    所述终端在传输的上行控制信息时携带特定序列,所述特定序列与所述终端的标识ID相关,所述特定序列至少用于其他网元识别所述终端以及对所述终端进行干扰测量。
  15. 一种上行控制信息的传输装置,其特征在于,包括:
    处理单元,用于确定传输上行控制信息的资源,所述资源包括时域占用资源和频域占用资源,其中,所述时域占用资源的时长小于1ms;
    通信单元,用于在确定的资源上传输上行控制信息。
  16. 如权利要求15所述的装置,其特征在于,所述处理单元确定的传输上行控制信息的资源中,频域占用资源的大小采用子载波SC数目表示,或者,采用资源元素RE数目表示,或者采用资源单元RU数目表示,其中,若采用RU表示,则RU为预先定义的在时域上占用X1个符号、在频域上占用X2个SC或RE的资源区域,所述X2个SC或RE为连续或者不连续的,所述X1和X2为预先定义或者配置的,X1、X2均为大0的整数;
    所述处理单元确定的传输上行控制信息的资源中,所述时域占用资源的大小采用符号数目或时间长度表示。
  17. 如权利要求15或16所述的装置,其特征在于,所述处理单元确定所述频域占用资源的大小为固定设置的A1个SC或A2个RE或A3个RU,其中,A1、A2、A3为大于0的整数,或者,所述处理单元根据信令通知确定所述频域占用资源的大小;以及,所述处理单元根据预先约定确定所述频域所占用资源的位置,或者,所述处理单元根据信令通知确定所述频域占用资源的位置;
    所述处理单元确定所述时域占用资源的大小为固定设置的B1个符号或B2ms,其中,B1为大于0的整数,B2为小于1的小数,或者,所述处理单元根据信令通知确定所述时 域占用资源的大小;以及,所述处理单元根据预先约定确定所述时域所占用资源的位置,或者,所述处理单元根据信令通知确定所述时域占用资源的位置。
  18. 如权利要求15、16或17所述的装置,其特征在于,所述处理单元具体用于:
    根据下行授权信令DL grant的通知确定传输上行控制信息的资源,其中,DL grant中所使用的下行控制信息DCI中的指示域指示高层信令预先配置的多个资源集合中的一个;或者,
    根据上行授权信令UL grant的通知确定传输上行控制信息的资源,其中,UL grant所使用的DCI中的第一指示域用于指示频域占用资源的大小和位置,第二指示域用于至少指示时域占用资源的大小;或者,
    根据高层信令的通知确定传输上行控制信息的资源,其中,高层信令配置至少一个资源集合,当配置超过一个资源集合时,所述处理单元从中选取一个资源集合。
  19. 如权利要求18所述的装置,其特征在于,所述第二指示域还用于:指示时域占用资源的位置,或者,
    时域占用资源的位置为预先约定的位置。
  20. 如权利要求18所述的装置,其特征在于,所述资源集合的配置方式如下:
    每一个资源集合中均包含频域占用资源的大小和位置以及时域占用资源的大小,其中,不同资源集合中的频域占用的资源的大小相同或不同,或/和,不同资源集合中的时域占用资源的大小相同或不同;或者,
    频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源位置以及时域占用资源的大小,其中,不同资源集合中的时域占用资源的大小相同或不同;或者,
    时域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的大小和位置,其中,不同资源集合中频域占用资源的大小相同或者不同;或者,时域占用资源的大小为终端侧和网络侧协商的固定值,频域占用资源的大小为终端侧和网络侧协商的固定值,每一个资源集合中均包含频域占用资源的位置。
  21. 如权利要求20所述的装置,其特征在于,进一步包括:
    每一个资源集合中还包含时域占用资源的位置,或者,时域占用资源的位置为预先约定的位置。
  22. 如权利要求18所述的装置,其特征在于,所述处理单元具体用于:
    根据当前需要反馈的上行控制信息的总比特数,以及每一个资源集合按照特定码率计算得到的能够承载的最大比特数,确定选取的资源集合;或者,
    当不同资源集合中所包含的时域占用资源的大小不同时,根据每一个资源集合中所包含的时域占用资源的大小,确定选取的资源集合;或者,
    根据资源集合中的符号数目,确定选取的资源集合。
  23. 如权利要求15-22任一项所述的装置,其特征在于,若时域占用资源的位置为预先约定的位置,且上行控制信息为正确/错误ACK/NACK反馈信息,则:
    所述处理单元确定时域占用资源的起始位置为:编号为n+k的时间段中的第一个符号,其中,n为需要进行ACK/NACK反馈的下行数据传输所在的时间段的编号,k为预定的值,n和k为大于或等于0的整数;或者,所述处理单元确定时域占用资源的起始位置为:需要进行ACK/NACK反馈的下行数据传输所在的预先划分的用于下行传输的时间段之后的第k个预先划分的用于上行传输的时间段中的第一个符号,k为预定的值,k为大于等于0的整数;或者,所述处理单元确定时域占用资源的起始位置为:第一个满足预设的定时关系的符号,所述符号为一个上行发送时段中的符号;或者,所述处理单元确定时域占用资源的起始位置为:满足预设的定时关系的一个上行发送时间段中的第一个符号,其中,是否满足所述定时关系由一个下行数据传输的最后一个符号与一个上行发送时间段中的第一个符号的符号间隔确定,所述定时关系具体表现为处理时延,所述处理时延包括下行数据解析和处理时间以及产生下行数据所对应的ACK/NACK反馈信息的时间,其中,以一个下行数据的传输结束时刻为基准,其ACK/NACK反馈信息在不早于满足所述述处理时延的上行符号中传输;
    若时域占用资源的位置为预先约定的位置,且上行控制信息为周期信道状态CSI反馈信息时,则所述处理单元具体用于:
    按照预先配置的CSI反馈周期,确定时域占用资源的起始符号位置,其中,所述周期具体表现为Y1个符号,Y1为正整数;或者,
    按照预先配置的CSI反馈周期,确定该CSI反馈周期所对应的传输CSI的子帧中的预定的上行符号位置,为时域占用资源的起始符号位置,其中所述CSI反馈周期具体表现为Y2个子帧,Y2为正整数。
  24. 如权利要求15-23任一项所述的装置,其特征在于,所述通信单元具体用于:
    采用非扩频方式在确定的资源上传输上行控制信息;或者,
    采用扩频方式在确定的资源上传输上行控制信息。
  25. 如权利要求24所述的装置,其特征在于,采用非扩频方式在确定的资源上传输上行控制信息时,所述通信单元具体用于:
    根据确定的资源中可用于数据传输的RE数目及采用的调制编码方式确定编码比特 数,基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
    将得到的调制符号按照特定顺序映射到所述资源上进行传输。
  26. 如权利要求24所述的装置,其特征在于,采用扩频方式在确定的资源上传输上行控制信息时,所述通信单元具体用于:
    根据确定的资源中可用于数据传输的RE数目、扩频序列长度及采用的调制编码方式确定编码比特数,基于所述编码比特数将上行控制信息进行信道编码和速率匹配,得到相应的调制符号;
    将获得的每一个调制符号与长度为N的正交序列相乘,得到扩频后的长度为N的调制符号,将所述长度为N的调制符号,映射到所述资源中的一个符号上的一个RE组上进行传输,所述一个RE组中包含N个RE;其中N为正交序列的长度。
  27. 如权利要求26所述的装置,其特征在于,当确定的时域占用资源中包含多个符号时,所述通信单元进一步用于:
    分别在每一个符号上采用长度为N的正交序列进行频域扩频;或者,在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目,N和B均为大于等于1的整数;或者,在每一个符号上采用长度为N的正交序列进行频域扩频,且在时域上使用长度为B的正交序列进行时域扩频,其中,B为时域占用资源所包含的符号数目中用于数据传输的符号数目,N和B均为大于等于1的整数。
  28. 如权利要求26所述的装置,其特征在于,所述通信单元进一步用于:
    在传输的上行控制信息时携带特定序列,所述特定序列与所述装置的标识ID相关,所述特定序列至少用于其他网元识别所述装置以及对所述装置进行干扰测量。
  29. 一种信号检测装置,其特征在于,包括:处理器、收发机和存储器;
    所述处理器,用于读取存储器中的程序,执行如权利要求1至14中任一项所述的方法。
PCT/CN2017/071503 2016-02-02 2017-01-18 一种上行控制信息的传输方法及装置 WO2017133451A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187025250A KR102140550B1 (ko) 2016-02-02 2017-01-18 업링크 제어 정보의 전송 방법 및 장치
US16/075,113 US10849155B2 (en) 2016-02-02 2017-01-18 Method and apparatus for transmitting uplink control information
EP17746771.9A EP3413652B1 (en) 2016-02-02 2017-01-18 Method and apparatus for transmitting uplink control information
JP2018540443A JP6713053B2 (ja) 2016-02-02 2017-01-18 アップリンク制御情報の伝送方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610074278.2A CN107027181B (zh) 2016-02-02 2016-02-02 一种上行控制信息的传输方法及装置
CN201610074278.2 2016-02-02

Publications (1)

Publication Number Publication Date
WO2017133451A1 true WO2017133451A1 (zh) 2017-08-10

Family

ID=59500521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071503 WO2017133451A1 (zh) 2016-02-02 2017-01-18 一种上行控制信息的传输方法及装置

Country Status (6)

Country Link
US (1) US10849155B2 (zh)
EP (1) EP3413652B1 (zh)
JP (1) JP6713053B2 (zh)
KR (1) KR102140550B1 (zh)
CN (1) CN107027181B (zh)
WO (1) WO2017133451A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510939A (ja) * 2017-11-09 2021-04-30 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. アップリンク制御チャネルリソース確定方法、端末及びネットワーク側装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629596B (zh) * 2016-08-11 2018-07-11 祥碩科技股份有限公司 橋接模組及資料傳輸方法
CN113411894B (zh) * 2016-09-30 2022-04-29 华为技术有限公司 信息的传输方法、终端设备和网络设备
CN108282304B (zh) * 2017-01-06 2024-03-15 华为技术有限公司 信息传输方法、终端及网络侧设备
KR20210122323A (ko) * 2017-03-17 2021-10-08 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 업링크 전송 방법, 장치, 단말 장치, 접속 네트워크 장치 및 시스템
US10624070B2 (en) 2017-04-14 2020-04-14 Qualcomm Incorporated Scheduling and transmission scheme for periodic and aperiodic control information
KR102369471B1 (ko) * 2017-08-07 2022-03-03 삼성전자 주식회사 무선 통신 시스템에서 추가적인 상향링크 주파수를 지원하기 위한 방법 및 장치
CN109392146B (zh) * 2017-08-11 2023-04-28 华为技术有限公司 确定上行传输资源的方法、终端及网络设备
US11297520B2 (en) * 2017-08-11 2022-04-05 Qualcomm Incorporated Channel state information reporting for short transmission time intervals
CN109474997B (zh) 2017-09-08 2020-02-21 华为技术有限公司 一种传输上行控制信息的方法及设备
CN109600846B (zh) * 2017-09-30 2022-06-10 华为技术有限公司 一种时域信息的确定方法及装置
WO2019062789A1 (zh) * 2017-09-30 2019-04-04 华为技术有限公司 一种时域信息的确定方法及装置
CN109600207B (zh) * 2017-09-30 2020-10-20 维沃移动通信有限公司 一种上行控制信道配置的传输方法和相关设备
WO2019084735A1 (zh) * 2017-10-30 2019-05-09 Oppo广东移动通信有限公司 上行控制信道传输方法及终端和基站
RU2741633C1 (ru) 2017-11-16 2021-01-28 Бейджин Сяоми Мобайл Софтвеа Ко., Лтд. Способ и устройство для отображения ресурсов физического уровня, пользовательское оборудование и базовая станция
CN115474280A (zh) 2017-11-17 2022-12-13 华为技术有限公司 一种上行控制信息传输的方法及装置
US11469858B2 (en) 2017-11-17 2022-10-11 Beijing Xiaomi Mobile Software Co., Ltd. Hybrid automatic repeat request feedback indication and feedback method, device, and base station
CN109996341B (zh) * 2017-12-29 2023-03-24 华为技术有限公司 控制信息的传输方法
CN110034886B (zh) * 2018-01-12 2022-06-14 大唐移动通信设备有限公司 一种资源指示、确定方法及装置
US10986613B2 (en) * 2018-01-19 2021-04-20 Qualcomm Incorporated Uplink control information (UCI) to resource element (RE) mapping
CN110099446B (zh) * 2018-01-30 2023-05-30 大唐移动通信设备有限公司 上行传输方法及装置、通信系统、计算机存储介质
CN112261723B (zh) 2018-03-30 2022-10-28 Oppo广东移动通信有限公司 上行控制信息传输方法及装置
CN110351049B (zh) 2018-04-04 2020-10-20 电信科学技术研究院有限公司 一种上行控制信息传输的方法与设备
AU2018417494B2 (en) 2018-04-04 2021-12-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting uplink control information, and related product
WO2019191999A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 一种资源确定方法、指示方法及装置
JP7197280B2 (ja) * 2018-04-06 2022-12-27 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN112235751A (zh) * 2018-08-31 2021-01-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN110944400B (zh) * 2018-09-25 2021-11-16 中国电信股份有限公司 Ack/nack反馈方法、系统、基站、终端
CN110972278B (zh) * 2018-09-28 2022-05-06 大唐移动通信设备有限公司 一种资源选择方法、装置、终端及存储介质
CN116390228A (zh) * 2018-12-04 2023-07-04 华为技术有限公司 确定传输资源的方法和装置
US20220070794A1 (en) * 2019-02-13 2022-03-03 Lg Electronics Inc. Method for determining a maximum output power and ue thereof
US11412497B2 (en) * 2019-03-27 2022-08-09 Electronics And Telecommunications Research Institute Method and apparatus for transmitting or receiving uplink feedback information in communication system
CN111294944B (zh) * 2019-03-29 2023-04-21 北京紫光展锐通信技术有限公司 资源池的配置方法及装置、存储介质、终端、基站
CN111278129B (zh) * 2019-04-29 2023-03-14 维沃移动通信有限公司 上行控制信息发送、接收方法、终端及网络侧设备
CN111867070A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 通信方法和通信装置
CN111953458B (zh) * 2019-05-15 2022-01-14 大唐移动通信设备有限公司 一种pucch资源确定方法和通信设备
CN113766640A (zh) * 2020-06-01 2021-12-07 华为技术有限公司 通信方法及装置
BR112022026845A2 (pt) * 2020-06-29 2023-01-24 Lenovo Singapore Pte Ltd Informações de controle que escalonam ou ativam múltiplas transmissões
US20220052861A1 (en) * 2020-08-17 2022-02-17 Qualcomm Incorporated Group-based signaling for a wireless communication system
WO2022174818A1 (zh) * 2021-02-20 2022-08-25 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置
CN115190620A (zh) * 2021-04-06 2022-10-14 华为技术有限公司 信息传输方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438319A (zh) * 2012-01-13 2012-05-02 电信科学技术研究院 一种上行控制信道资源分配方法及其装置
US20130163540A1 (en) * 2011-12-26 2013-06-27 Samsung Electronics Co. Ltd. Resource allocation method and apparatus of base station in wireless communication system
WO2015172363A1 (zh) * 2014-05-15 2015-11-19 华为技术有限公司 数据传输装置和方法
CN105099634A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133043A1 (zh) * 2009-05-22 2010-11-25 华为技术有限公司 多子帧调度方法、系统及终端、基站
CN101997659B (zh) * 2009-08-25 2012-12-26 电信科学技术研究院 配置上行控制资源以及上行控制信息的传输方法及装置
US8934447B2 (en) * 2010-03-05 2015-01-13 Lg Electronics Inc. Method and apparatus for communication with a network in a wireless communication system
CN105162508B (zh) * 2010-04-01 2018-05-29 Lg电子株式会社 在无线接入系统中收发信道状态信息报告的方法和装置
JP5873503B2 (ja) * 2010-11-11 2016-03-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて上りリンク制御情報の送受信方法及び装置
DK2919545T3 (en) * 2011-02-11 2016-12-05 Interdigital Patent Holdings Inc Device and method for an improved control channel (E-PDCCH).
CN102223720B (zh) * 2011-04-08 2015-07-22 电信科学技术研究院 一种在pusch传输上行控制信息的方法及装置
US9723592B2 (en) * 2011-10-13 2017-08-01 Lg Electronics Inc. Method and user equipment for transmitting uplink signal, and method and evolved node B for receiving uplink signal
US9491748B2 (en) * 2012-05-22 2016-11-08 Lg Electronics Inc. HARQ ACK/NACK transmission method and wireless device
CN104509191B (zh) * 2012-07-27 2019-06-11 华为技术有限公司 用于多点通信的系统和方法
GB201214137D0 (en) * 2012-08-07 2012-09-19 Gen Dynamics Broadband Inc Communication unit, integrated circuit and method for supporting a virtual carrier
US9622234B2 (en) * 2012-09-27 2017-04-11 Panasonic Intellectual Property Corporation Of America Wireless communication terminal, base station device, and resource allocation method
US20140328260A1 (en) * 2013-02-26 2014-11-06 Samsung Electronics Co., Ltd. Scheduling over multiple transmission time intervals
EP3130189A1 (en) 2014-04-09 2017-02-15 IDAC Holdings, Inc. Mmw physical layer downlink channel scheduling and control signaling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163540A1 (en) * 2011-12-26 2013-06-27 Samsung Electronics Co. Ltd. Resource allocation method and apparatus of base station in wireless communication system
CN102438319A (zh) * 2012-01-13 2012-05-02 电信科学技术研究院 一种上行控制信道资源分配方法及其装置
CN105099634A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
WO2015172363A1 (zh) * 2014-05-15 2015-11-19 华为技术有限公司 数据传输装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413652A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510939A (ja) * 2017-11-09 2021-04-30 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. アップリンク制御チャネルリソース確定方法、端末及びネットワーク側装置
JP7241035B2 (ja) 2017-11-09 2023-03-16 オッポ広東移動通信有限公司 アップリンク制御チャネルリソース確定方法、端末及びネットワーク側装置
US11627559B2 (en) 2017-11-09 2023-04-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink control channel resource determination method, terminal, and network side device

Also Published As

Publication number Publication date
JP2019510393A (ja) 2019-04-11
EP3413652B1 (en) 2023-03-22
CN107027181B (zh) 2020-02-04
KR102140550B1 (ko) 2020-08-03
EP3413652A4 (en) 2019-01-09
EP3413652A1 (en) 2018-12-12
US20190045536A1 (en) 2019-02-07
US10849155B2 (en) 2020-11-24
CN107027181A (zh) 2017-08-08
KR20180109995A (ko) 2018-10-08
JP6713053B2 (ja) 2020-06-24

Similar Documents

Publication Publication Date Title
WO2017133451A1 (zh) 一种上行控制信息的传输方法及装置
CN114884637B (zh) 用于资源块中的物理上行链路控制信道的方法和装置
CN108029133B (zh) 用于降低lte上行链路传输的时延的方法和设备
CN107926037B (zh) 用于降低lte上行链路传输的时延的方法和设备
CN107852744B (zh) 用于降低lte上行链路传输的时延的方法和设备
CN110073627B (zh) 通信系统中的uci传输
TWI433497B (zh) 混合式自動重送請求時序判定
CN110419186A (zh) 用于上行链路超高可靠和低延迟通信的下行链路控制通道
TWI696360B (zh) 反饋ack/nack信息的方法、終端設備和網絡側設備
EP3013092B1 (en) Terminal apparatus, base station apparatus, integrated circuit, and radio communication method
CN103416015A (zh) 针对多分量载波的物理上行链路控制信道资源分配
KR20190116927A (ko) 통신 시스템에서 상향링크 전송을 위한 방법 및 장치
CN110249572A (zh) 用于短pdcch操作的方法和装置
WO2014067140A1 (zh) 一种信息传输方法、用户设备及基站
CN104995980A (zh) 终端装置、基站装置、通信方法以及集成电路
WO2014179958A1 (en) Method, apparatus and computer program for wireless communications
WO2019052455A1 (zh) 数据信道参数配置方法及装置
TW201804836A (zh) 基於無線網絡的通信方法、終端設備和網絡設備
KR102496114B1 (ko) 채널 상태 정보를 송신하는 방법 및 사용자 단말기
CN104995979A (zh) 终端装置、基站装置、通信方法以及集成电路
EP3024269A1 (en) Terminal device, base station device, integrated circuit, and wireless communication method
JP2022547779A (ja) 端末、ネットワーク装置、端末の方法、及びネットワーク装置の方法
CN112787772A (zh) Sps pdsch的harq反馈方法、装置及存储介质
WO2019214658A1 (zh) 数据传输的发送、接收方法及装置
US11469871B2 (en) Signaling of SRS resources for PUSCH rate matching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187025250

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017746771

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017746771

Country of ref document: EP

Effective date: 20180903