WO2017132834A1 - 单纤双向组件 - Google Patents

单纤双向组件 Download PDF

Info

Publication number
WO2017132834A1
WO2017132834A1 PCT/CN2016/073200 CN2016073200W WO2017132834A1 WO 2017132834 A1 WO2017132834 A1 WO 2017132834A1 CN 2016073200 W CN2016073200 W CN 2016073200W WO 2017132834 A1 WO2017132834 A1 WO 2017132834A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
groove
support
wavelength splitter
disposed
Prior art date
Application number
PCT/CN2016/073200
Other languages
English (en)
French (fr)
Inventor
李远谋
董英华
刘西社
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2016391182A priority Critical patent/AU2016391182B2/en
Priority to CN201680077868.9A priority patent/CN108474917A/zh
Priority to JP2018558459A priority patent/JP2019503518A/ja
Priority to PCT/CN2016/073200 priority patent/WO2017132834A1/zh
Priority to EP16888659.6A priority patent/EP3404459A4/en
Priority to CA3013511A priority patent/CA3013511A1/en
Publication of WO2017132834A1 publication Critical patent/WO2017132834A1/zh
Priority to US16/051,715 priority patent/US20180341073A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29368Light guide comprising the filter, e.g. filter deposited on a fibre end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • G02B6/4293Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements hybrid electrical and optical connections for transmitting electrical and optical signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a single fiber bidirectional component.
  • the optical module is mainly used to realize photoelectric and electro-optical conversion, that is, the transmitted data signal is converted into an optical signal and transmitted to the opposite end through the optical fiber, and the optical signal transmitted from the opposite end is received from the optical fiber and converted into the optical signal. After the electrical signal is generated, the received data is recovered from the electrical signal.
  • the optical module is mainly composed of BOSA (Bidirectional Optical Subassembly Module), LA (Limiting Amplifier), and LDD (Laser Diode Driver). , laser driver).
  • BOSA Bidirectional Optical Subassembly Module
  • LA Liting Amplifier
  • LDD Laser Diode Driver
  • the BOSA commonly used in the industry is composed of a transmitter and a receiver.
  • the external device is fixed with a matching metal component to fix the transmitter and the receiver and the fiber connector, so that the laser emitted by the transmitter can be coupled into the fiber.
  • the light from the fiber can be received in the receiver and received by the PD (Photodiode).
  • One design direction of the commonly used single-fiber bidirectional device is based on the traditional metal part forming scheme.
  • the laser, the preamplifier and other components are placed on the metal base of the unidirectional transceiver, and one optical axis is arranged.
  • the laser, optical transceiver and preamplifier of the single-fiber bidirectional device of the structure are on the same platform, and the optical path is completed in the chamber of a spacer.
  • the laser emits light during the transmission process, and different mediums in the chamber
  • the surface is reflective, and since the optical transceiver is not protected, it is easy to generate photoelectric crosstalk.
  • the embodiment of the invention provides a single-fiber bidirectional component, which solves the technical problem that the existing single-fiber bidirectional optical component generates optical crosstalk when transmitting or receiving an optical signal.
  • the present invention provides a single-fiber bidirectional assembly including a susceptor, a laser, a light receiver, a wavelength splitter, and a sealing cover provided with a lens;
  • the base includes a surface, and the surface is recessed with a receiving groove,
  • the receiving slot includes a slot bottom wall parallel to the surface, the wavelength splitter is provided with a splitting surface, the light receiver is placed on the bottom wall of the slot, and the wavelength splitter is installed in the
  • the receiving slot is shielded from the light receiver, the laser is located on a side of the receiving slot, and the splitting surface faces the laser and
  • the bottom wall of the slot where the light receiver is located is disposed at an angle;
  • the sealing cover covers the base and houses a laser, a light receiver and a wavelength splitter, and the light beam of the laser is reflected by the splitting surface to The lens, the optical receiver receives and transmits an optical signal transmitted through the lens and the wavelength splitter.
  • the wavelength splitter includes a plane parallel to the splitting surface, and two opposite slot sidewalls of the receiving slot are provided with a support table, and the support platform is formed to be inclined with respect to the bottom wall of the slot. Supporting a slope, the plane abutting the support slope such that the wave splitting surface is disposed at an angle to the bottom wall of the groove.
  • the base comprises a support body
  • the support body comprises two spaced apart support arms and a connecting rod connecting the two support arms
  • the support slope is disposed on the support arm
  • the plane is attached to the The supporting slope is disposed in the receiving groove
  • the splitting surface is disposed at an angle of the bottom wall of the groove
  • the light receiver is located between the two supporting arms.
  • the wavelength splitter includes a plane and a slope connected at an angle to the plane, wherein the slope is the splitting surface; and two opposite slot sidewalls of the receiving slot are provided with a support platform, the support
  • the stage is formed with a support plane parallel to the bottom wall of the trough, the support plane supporting the wavelength splitter, the plane abutting the support plane and facing the light receiver.
  • the wavelength splitter includes a first plane, a second plane perpendicularly connected to the first plane, and a slope connecting the first plane and the second plane, wherein the slope is the splitting surface; a supporting platform is disposed on the opposite side wall of the slot, the supporting platform is formed with a supporting inclined surface inclined with respect to the bottom wall of the slot, the wavelength splitter is received in the receiving slot, the supporting inclined surface and the branch
  • the wavefront resists the first plane being parallel to the bottom wall of the trough, and the second plane being disposed opposite the laser such that the speed of light is incident from the second plane into the splitting plane.
  • the wavelength splitter is a rectangular block
  • the wavelength splitter includes a plane and a diagonal bevel inside the wavelength splitter, and the diagonal bevel is connected to one side of the plane, the diagonal bevel a surface of the two opposite grooves of the receiving groove
  • the support table is formed with a support plane parallel to the bottom wall of the groove, the support plane supporting the wavelength branch
  • the apparatus is disposed such that the splitting surface is at an angle to the bottom wall of the trough, the plane being disposed perpendicular to the bottom wall of the trough and opposite to the laser.
  • the surface of the pedestal is provided with a first groove, the first groove is located on one side of the accommodating groove and penetrates with the accommodating groove, and the laser is placed in the first groove.
  • the single-fiber bidirectional component includes a preamplifier, and the surface of the pedestal is provided with a second concave a slot, the second recess is opposite to the first recess on the other side of the receiving slot, and the preamplifier is placed in the second recess and electrically connected to the optical receiver.
  • the single-fiber bidirectional component includes a backlight detector disposed in the first recess, and the backlight detector is located on a side of the laser facing away from the wavelength splitter.
  • the sealing cover includes a top wall and a peripheral wall disposed around the top wall, and the lens is spherical and disposed at a center position of the top wall.
  • the single-fiber bidirectional assembly further includes a housing disposed outside the sealing cover and disposed coaxially with the sealing cover, the housing has a through hole at one end facing the lens, and the other end is provided The port optical path and the through hole center line coincide with the lens center line at the port of the optical fiber.
  • the splitting surface is a reflecting surface formed by an optical film attached to the wavelength splitter.
  • the angle between the wave dividing surface and the bottom wall of the groove is 45 degrees.
  • a side of the pedestal opposite to the surface is further provided with a plurality of pins.
  • the single-fiber bidirectional component of the present invention places the optical receiver in the receiving slot, and the splitting surface of the wavelength splitter is disposed at an angle with the bottom wall of the slot to prevent the optical receiver from being in the same plane as the laser, and the high frequency interference It is difficult for the signal to enter the receiving slot to prevent the interference signal from entering the optical receiver, thereby avoiding the photoelectric crosstalk in the single-fiber bidirectional component.
  • FIG. 1 is a plan view showing the internal structure of a single-fiber bidirectional component according to a first embodiment of the present invention.
  • FIG. 2 is a partial structural schematic view of the single-fiber bidirectional assembly shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view of the single-fiber bidirectional assembly shown in FIG. 1.
  • FIG. 4 is a schematic cross-sectional view of a single-fiber bidirectional assembly in accordance with a second embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a wavelength splitter of the single-fiber bidirectional component shown in FIG. 4.
  • FIG. 5 is a schematic structural view of a wavelength splitter of the single-fiber bidirectional component shown in FIG. 4.
  • FIG. 6 is a schematic cross-sectional view of a single-fiber bidirectional assembly according to a third embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a single-fiber bidirectional assembly according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a single-fiber bidirectional assembly according to a fifth embodiment of the present invention.
  • the present invention provides a single fiber bidirectional component for transmission and reception of optical signals.
  • the single-fiber bidirectional component comprises a base, a laser, a light receiver, a wavelength splitter and a sealing cover provided with a lens;
  • the base comprises a surface, the surface is recessed with a receiving groove, and the receiving groove comprises a bottom wall parallel to the surface,
  • the wavelength splitter is provided with a splitting surface, the light receiver is placed on the bottom wall of the slot, the wavelength splitter is installed in the receiving slot and shields the light receiver, and the laser is located on one side of the receiving slot and faces the splitting surface, the splitting surface and the light
  • the bottom wall of the slot where the receiver is located is disposed at an angle;
  • the sealing cover is disposed on the base and houses the laser, the light receiver and the wavelength splitter, and the beam of the laser is reflected by the splitting surface to the lens, and the light receiver receives and transmits through the lens and The optical signal transmitted by the wavelength splitter.
  • the single-fiber bidirectional assembly includes a base 10, a laser 21, a light receiver 23, a wavelength splitter 25, and a sealing cover 30 provided with a lens 31.
  • the base 10 includes a surface 11.
  • the surface 11 is recessed with a rectangular receiving groove 13.
  • the receiving groove 13 includes a groove bottom wall 131 parallel to the surface 11 and two opposite groove side walls 132.
  • the sealing cover 30 includes a top wall 301 and a peripheral wall 302 disposed around the top wall.
  • the lens 31 is spherical and disposed at a central position of the top wall 301.
  • the peripheral wall 302 of the seal cover 30 abuts against the periphery of the surface 11 and accommodates the laser 21, the light receiver 23, and the wavelength splitter 25 therein simultaneously with the top wall 301.
  • the lens 31 is spherical and disposed at the center of the top wall; the center line of the lens 31 is parallel to the line of the optical path passing through the branching surface 251 to the light receiver 23.
  • the wavelength splitter 25 is in the form of a sheet, and includes a wave splitting surface 251 and a plane 252 that is parallel to the splitting surface 251.
  • Each of the groove side walls 132 is provided with a support table 134 facing the receiving groove, and the support table 134 is formed with a supporting inclined surface 133 inclined with respect to the groove bottom wall 131.
  • the support slope 133 faces the slot of the receiving groove 13.
  • the support table is a support body integrally formed with the base 10 and disposed in the receiving groove 13 .
  • the light receiver 23 is placed on the bottom wall 131 of the groove and located between the support tables on the side walls of the two grooves.
  • the wavelength splitter 25 is mounted in the accommodating groove 13 and supported by the support table 134 and shields the light receiver 23.
  • the plane abuts against the support slope 133 such that the wave splitting surface 251 is disposed at an angle to the groove bottom wall 131.
  • the angle is 45 degrees, that is, the angle between the support slope 133 and the bottom wall of the groove is 45 degrees.
  • the surface 11 of the susceptor 10 is provided with a first recess 14 on the side of the accommodating groove 13 and penetrates the accommodating groove 13 .
  • the laser 21 is a fiber laser and is placed in the first groove 14 . Inside and toward the splitting surface 251, according to the design dimension of the groove depth of the receiving groove 13 of the present invention, the laser 21 is placed in the first groove 14 to adjust the height of the laser 21 relative to the wavelength splitter 25 to ensure that the speed of light of the laser 21 can be All are incident on the polarization surface 251 and are reflected by the polarization surface 251 to the lens 31.
  • the height of the bottom wall of the first groove 14 is higher than the bottom wall of the receiving groove 13.
  • a support body is provided on the bottom wall of the first recess 14 to support the laser 21.
  • the laser 21 is placed in the first recess 14 and faces the splitting surface 251.
  • the beam of the laser 21 is incident on the splitting surface 251 and reflected by the splitting surface to the lens 31. After being concentrated by the lens 31, it enters the optical fiber connected to the sealing cover.
  • the signal fed back by the server after receiving the signal is returned by the same optical path and converges through the lens 31, passes through the branching surface 251 and the entire wavelength splitter 25, and the signal is received and transmitted by the optical receiver 23. user terminal.
  • the susceptor 10 of the single-fiber bidirectional component of the present invention is provided with a receiving groove 13 for accommodating the light receiver 23, and the splitting surface 251 of the wavelength splitter 25 is disposed at an angle with the bottom wall of the groove carrying the light receiver 23, and the wavelength The splitter 25 is covered above the light receiver 23, thereby preventing the light receiver 23 from being in the same plane as the laser 21, even if there is interference light that is incident on the light receiver 23 many times in the seal cover, due to the light receiver 23 in the accommodating groove 13 and the wavelength splitter 25 is covered above the light receiver 23, the high-frequency interference signal hardly enters the accommodating groove 13, preventing the light beam from entering the light receiver 23, thereby avoiding the photoelectric crosstalk phenomenon in the single-fiber bidirectional component. .
  • the single-fiber bidirectional component includes a preamplifier 26, and the surface 11 of the base 10 is provided with a second recess 17 opposite to the first recess 14 on the other side of the receiving slot 13.
  • the preamplifier 26 is placed in the second recess 17 and is electrically connected to the optical receiver 23. Specifically, the second recess 17 is penetrated from the receiving slot 13, and the preamplifier 26 is placed on the bottom wall of the second recess and connected to the optical receiver 23 through a wire.
  • the optical receiver 23 receives the external feedback via the optical fiber. The signal is then sent to the preamplifier 26, which is converted into a voltage signal output by the preamplifier 26.
  • the optical receiver 23 receives the optical signal and transmits it to the preamplifier 16, which is converted into a voltage signal through the preamplifier 26 through the preamplifier.
  • the 26 connected pins are output to a board such as a single-fiber bidirectional component.
  • the single-fiber bidirectional component includes a backlight detector 28 disposed within the first recess 14 and the backlight detector 28 is located on a side of the laser 21 facing away from the wavelength splitter 25.
  • the backlight detector 28 is mounted in the first recess 14 through the bracket 181 and faces the laser 21, The backlight detector 28 is for monitoring the luminosity of the laser 21.
  • the base 10 is generally a truncated cone body that includes a back surface 111 opposite the surface 11.
  • the surface 11 and the back surface 111 are circular planes, and a plurality of pins 19 are disposed on the back surface 111 and one end is inserted into the susceptor 10.
  • the laser 21, the light receiver 23, the preamplifier 26 and the backlight detector 28 are respectively connected to one lead.
  • the foot 19 has a portion of the pin 19 for connection to the client connector to effect transmission of the signal concentrated by the lens returned by the optical pickup received by the optical receiver 23.
  • the polarization surface 251 is a reflection surface formed of an optical film formed on the wavelength splitter 25.
  • the light beam of the laser 21 reaches the splitting surface 251 and is reflected to the lens 31, and prevents the light beam from directly passing through the wavelength splitter into the light receiver 23.
  • the single-fiber bidirectional assembly further includes a housing 40 that is disposed outside the sealing cover 30 and disposed coaxially with the sealing cover 30.
  • a through hole 41 is formed in one end of the outer casing 40 facing the lens 31, and a port 42 for inserting the optical fiber 50 is disposed at the other end.
  • the light beam transmitted by the port 42 and the center line of the through hole 41 coincide with the center line of the lens 31.
  • the optical fiber 50 mainly refers to an adapter including a fiber ferrule and a casing.
  • the outer casing 40 has a cylindrical shape, and a baffle 401 is disposed therein.
  • the through hole 41 is disposed in the middle of the baffle 401.
  • the other end of the outer casing 40 is provided with a port 402.
  • the optical fiber 50 is soldered and fixed to the outer casing to insert the optical fiber ferrule into the port.
  • the outer casing 40 is provided with one end of the baffle 401 and is sleeved on the sealing cover 30 to close the sealing cover 30.
  • the difference from the first embodiment is that the wavelength splitter 25 is supported by the support 15 of the susceptor 10.
  • the support body 15 and the base 10 are independently provided.
  • the support body 15 includes two spaced apart support arms 151 and a connecting rod 152 connecting the two support arms 151.
  • the support arm 151 is provided with a supporting inclined surface 153.
  • the plane of the wavelength splitter 25 is attached to the supporting inclined surface 153 for supporting
  • the body 15 is disposed in the accommodating groove 13 so that the wave splitting surface 251 is disposed at an angle with the groove bottom wall 131, and the light receiver is located between the two support arms.
  • the support body 15 is a right-angled tripod structure, and the support arm 151 is a right-angled triangular block, and supports a sloped surface of 153 triangular faces.
  • the connecting rod 152 connects the non-orthogonal corner positions of the two supporting arms 151 so that the supporting body 15 can be laid flat on the bottom wall 131 and the supporting inclined surface 153 is at an angle of 45 degrees with the bottom wall of the groove, that is, the connecting rod 152 is provided.
  • One side abuts against the groove bottom wall 131.
  • the wavelength splitter 25 is first mounted on the support slope 153, and then the support body 15 is mounted in the accommodating groove 13 and fixed so that the polarization surface 251 faces the laser 21.
  • the support body 15 and the base 10 are respectively disposed to facilitate mounting the wavelength splitter 25 on the support body 15, that is, the wavelength splitter 25 can be first mounted on the support body 15 and then the support body 15 is mounted on the base.
  • the assembly accuracy of the wavelength splitter 25 and the support 15 is ensured, thereby ensuring the positional accuracy of the wavelength splitter 25 with respect to components such as lasers.
  • the wavelength splitter 45 includes a first plane 452, a second plane 453 perpendicularly connected to the first plane 452, and a first plane connected thereto.
  • the slope of the 452 and the second plane 453 is a wave splitting surface 451.
  • the wavelength splitter 45 is received in the accommodating groove 13, and the supporting inclined surface 133 is abutted against the wave splitting surface 451 so that the wave splitting surface 451 is disposed at an angle with the groove bottom wall 131; the first plane 452 is parallel to the groove bottom wall 131, and the second plane 453 is disposed opposite to the laser 21 to cause the speed of light to enter the splitting surface 451 from the second plane.
  • the first plane 452 faces the slot of the receiving slot 13 and is parallel to the plane of the light receiver 23.
  • the wavelength splitter 35 is a transparent right-angled triangle, and the first plane 452 and the second plane 453 are surfaces on two right-angle sides of the right-angled triangle, and the wave-dividing surface 351 is a slope of a right-angled triangle.
  • the second plane 453 and the branching surface 351 are partially located in the accommodating groove 13, and the second plane 453 is adjacent to the laser 21.
  • the wavelength splitter 35 is a right-angled triangle body, which is convenient for assembly and can ensure assembly precision, thereby ensuring smooth signal transmission of the single-fiber bidirectional component.
  • the wavelength splitter 35 includes a plane 352 and a slope connected at an angle to the plane 352.
  • the slope is a wave splitting surface 351.
  • the two opposite groove side walls 132 of the accommodating groove 13 are provided with a support table (not shown), and the support table is formed with a support plane 137 parallel to the groove bottom wall 131, and the support plane 137 abuts the support wavelength splitter 35 for accommodating In the slot 131, the plane 352 abuts against the support plane 137 and faces the light receiver 23.
  • the plane 352 is parallel to the groove bottom wall 131, and the wave splitting surface faces the organiser 21.
  • the support plane may be disposed outside the receiving slot and parallel to the surface, the wavelength splitter 35 is supported directly above the outside of the receiving slot 13, and the plane 352 of the wavelength splitter 35 is located in the receiving slot 13.
  • the notch is located parallel to the surface 11, and the splitting surface 351 is located above the outer surface 11 of the receiving groove 13 and faces the laser 21, in which the laser need not be placed in the first recess.
  • the right-angled triangular-shaped wavelength splitter 35 is disposed above the outside of the accommodating groove by the support body to cover the light receiver 23, thereby realizing the protection of the optical receiver 23 by the splitting surface 351 and the accommodating groove 13, and the laser 21 can be directly disposed.
  • the difference from the fourth embodiment is that the wavelength splitter 55 is a rectangular block, and the wavelength splitter 55 includes a plane 552 and is located inside the wavelength splitter 55.
  • the diagonal bevel is connected to one side of the plane 552, and the diagonal bevel is a demultiplexing surface 551.
  • the support plane 137 supports the wavelength splitter 55 such that the splitting surface 551 is disposed at an angle to the bottom wall 131 of the slot, and the plane 552 is disposed perpendicular to the bottom wall 131 of the slot and opposed to the laser 21.
  • the wavelength splitter 55 is a glass of a rectangular block
  • the plane 551 is a surface of a rectangular block of the wavelength splitter 55
  • the splitting surface 552 is a diagonal surface of the rectangular block, specifically by a rectangular block.
  • the optical film is formed on the diagonal surface.
  • the plane 552 and the branching surface 551 are partially housed in the accommodating groove 13. It can be understood that in other embodiments, the plane 551 of the wavelength splitter 55 is located at the slot position of the accommodating groove 13 and is parallel to the surface 11, and the branching surface 552 is located above the outer surface 11 of the accommodating groove 13 and faces the laser 21.

Abstract

一种单纤双向组件,其包括基座(10)、激光器(21)、光接收器(23)、波长分路器(25)及设有透镜(31)的密封罩(30);所述基座(10)包括表面(11),所述表面(11)上凹设有容纳槽(13),所述容纳槽(13)包括与所述表面(11)平行的槽底壁(131),所述波长分路器(25)设有分波面(251),所述光接收器(23)放置于所述槽底壁(131)上,所述波长分路器(25)装设于所述容纳槽(13)内并遮蔽所述光接收器(23),所述激光器(21)位于所述容纳槽(13)一侧,所述分波面(251)朝向所述激光器(21)并与所述光接收器(23)所在槽底壁(131)呈夹角设置;所述密封罩(30)罩于所述基座(10)上并收容激光器(21)、光接收器(23)及波长分路器(25),所述激光器(21)的光束由所述分波面(251)反射至所述透镜(31),所述光接收器(23)接收并传输经过所述透镜(31)及所述波长分路器(25)传递的光信号。

Description

单纤双向组件 技术领域
本发明涉及光通信技术领域,尤其涉及一种单纤双向组件。
背景技术
在光通信系统中,光模块主要用来实现光电、电光转换,即把发送的数据信号转换成光信号并通过光纤发送给对端,及从光纤接收对端发送的光信号并把光信号转换成电信号之后,从电信号中恢复接收数据。在单纤双向系统(单根光纤同时传输双向数据信号)中,光模块主要由BOSA(Bidirectional Optical Subassembly module,单纤双向光组件)、LA(Limiting Amplifier,限幅放大器)和LDD(Laser Diode Driver,激光驱动器)组成。目前业界常使用的BOSA都是由发射器和接收器组成,外部再用一个配套的金属部件把发射器和接收器和光纤连接器固定好,使发射器的发射的激光可以耦合到光纤中,光纤过来的光可以到接收器里面,被PD(Photodiode,光探测器)接收。
目前常见用的单纤双向器件的一种设计方向是基于传统的金属件加工成型方案,是把激光器,前置放大器等元件放置于单向收发器的金属基座上面,并配置一个在光轴上的45度滤光片及一根光纤插芯。这种结构的单纤双向器件的激光器、光收发器及前置放大器在同一平台上,光路输送都是在一个隔离罩的腔室内完成,激光器发射光在传送过程中,会在腔室内不同介质面产生反射,由于光收发器是没有被保护,因此容易产生光电串扰现象。
发明内容
本发明实施例提供一种单纤双向组件,解决现有单纤双向光组件在发射或接受光信号时产生光电串扰的技术问题。
本发明提供一种单纤双向组件,其包括基座、激光器、光接收器、波长分路器及设有透镜的密封罩;所述基座包括表面,所述表面上凹设有容纳槽,所述容纳槽包括与所述表面平行的槽底壁,所述波长分路器设有分波面,所述光接收器放置于所述槽底壁上,所述波长分路器装设于所述容纳槽内并遮蔽所述光接收器,所述激光器位于所述容纳槽一侧,所述分波面朝向所述激光器并与 所述光接收器所在槽底壁呈夹角设置;所述密封罩罩于所述基座上并收容激光器、光接收器及波长分路器,所述激光器的光束由所述分波面反射至所述透镜,所述光接收器接收并传输经过所述透镜及所述波长分路器传递的光信号。
其中,所述波长分路器包括与所述分波面平行相对的平面,所述容纳槽的两个相对槽侧壁上设有支撑台,所述支撑台形成有相对所述槽底壁倾斜的支撑斜面,所述平面与所述支撑斜面抵持以使所述分波面与所述槽底壁呈所述夹角设置。
其中,所述基座包括支撑体,所述支撑体包括括两个间隔设置的支撑臂及连接两个支撑臂的连接杆,所述支撑斜面设于支撑臂上,所述平面贴于所述支撑斜面上,所述支撑体设置于所述容纳槽内使所述分波面与所述槽底壁呈所述夹角设置,所述光接收器位于所述两个支撑臂之间。
其中,所述波长分路器包括一平面及与平面成夹角连接的斜面,所述斜面为所述分波面;所述容纳槽的两个相对槽侧壁上设有支撑台,所述支撑台形成有与所述槽底壁平行的支撑平面,所述支撑平面支撑所述波长分路器,所述平面与所述支撑平面抵持并朝向所述光接收器。
其中,所述波长分路器包括第一平面、与第一平面垂直连接的第二平面及连接第一平面与第二平面的斜面,所述斜面为所述分波面;所述容纳槽的两个相对槽侧壁上设有支撑台,所述支撑台形成有相对所述槽底壁倾斜的支撑斜面,所述波长分路器收容于所述容纳槽内,所述支撑斜面与所述分波面抵持,所述第一平面与所述槽底壁平行,所述第二平面与所述激光器相对设置以使光速从第二平面射入所述分波面。
其中,所述波长分路器为矩形块体,所述波长分路器包括一平面及位于波长分路器内部的对角斜面,对角斜面与所述平面一侧连接,所述对角斜面为所述分波面,所述容纳槽的两个相对槽侧壁上设有支撑台,所述支撑台形成有与所述槽底壁平行的支撑平面,所述支撑平面支撑所述波长分路器以使所述分波面与所述槽底壁呈所述夹角设置,所述平面与所述槽底壁垂直设置并与所述激光器相对。
其中,所述基座的表面上设有第一凹槽,所述第一凹槽位于所述容纳槽一侧并与所述容纳槽贯通,所述激光器放置于所述第一凹槽内。
其中,所述单纤双向组件包括前置放大器,所述基座的表面上设有第二凹 槽,所述第二凹槽与第一凹槽相对设于所述容纳槽另一侧,所述前置放大器放置于所述第二凹槽内并与所述光接收器电性连接。
其中,所述单纤双向组件包括背光探测器,所述背光探测器设于所述第一凹槽内,并且所述背光探测器位于所述激光器背向所述波长分路器的一侧。
其中,所述密封罩包括顶壁及围绕顶壁设置的周壁,所述透镜为球状且设于所述顶壁中心位置。
其中,所述单纤双向组件还包括外壳,所述外壳罩设于所述密封罩外侧并与所述密封罩同轴设置,所述外壳上朝向透镜的一端设有通孔,另一端设有用于插接光纤的端口,所述端口光路、通孔中心线与所述透镜中心线重合。
其中,所述分波面为贴于所述波长分路器上的光学薄膜形成的反射面。所在分波面与所述槽底壁的夹角为45度。
其中,所述基座上与所述表面相反的一侧还设有数个引脚。
本发明的单纤双向组件将光接收器放置于容纳槽内,而且所述波长分路器的分波面与槽底壁呈夹角设置,避免光接收器与激光器位于同一平面,高频的干扰信号很难进入容纳槽,防止干扰信号进入光接收器,进而避免单纤双向组件内光电串扰现象。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例的单纤双向组件的内部结构平面示意图。
图2是图1所示的单纤双向组件的部分结构示意图。
图3是图1所示的单纤双向组件的截面示意图。
图4是本发明第二实施例的单纤双向组件的截面示意图。
图5是图4所示的单纤双向组件的波长分路器结构示意图。
图6是本发明第三实施例提供的单纤双向组件的截面示意图。
图7是本发明第四实施例提供的单纤双向组件的截面示意图。
图8是本发明第五实施例提供的单纤双向组件的截面示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。
本发明提供了一种单纤双向组件,其用于光信号的传输及接收。
单纤双向组件包括基座、激光器、光接收器、波长分路器及设有透镜的密封罩;基座包括表面,表面上凹设有容纳槽,容纳槽包括与表面平行的槽底壁,波长分路器设有分波面,光接收器放置于槽底壁上,波长分路器装设于容纳槽内并遮蔽光接收器,激光器位于容纳槽一侧且朝向分波面,分波面与光接收器所在槽底壁呈夹角设置;密封罩罩于基座上并收容激光器、光接收器及波长分路器,激光器的光束由分波面反射至透镜,光接收器接收并传输经过透镜及波长分路器传递的光信号。
请参阅图1至图3,本发明第一实施例中,单纤双向组件包括基座10、激光器21、光接收器23、波长分路器25及设有透镜31的密封罩30。基座10包括表面11。表面11上凹设有矩形的容纳槽13。容纳槽13包括与表面11平行的槽底壁131及两个相对的槽侧壁132。密封罩30包括顶壁301及围绕顶壁设置的周壁302,透镜31为球状且设于顶壁301中心位置。密封罩30的周壁302与表面11周缘抵持并与顶壁301同时将激光器21、光接收器23及波长分路器25收容于其内。透镜31为球状且设于顶壁中心位置;透镜31的中心线与经过分波面251至光接收器23的光路所在直线平行。
本实施例中,如图3所示,波长分路器25为片状,其包括分波面251及与分波面251平行相对的平面252。每一槽侧壁132上设有朝向容纳槽槽口的支撑台134,支撑台134形成有相对槽底壁131倾斜的支撑斜面133。支撑斜面133朝向容纳槽13槽口方向。可以理解,支撑台是与基座10一体成型的支撑体并设于容纳槽13内。光接收器23放置于槽底壁131上并位于两个槽侧壁上的支撑台之间。波长分路器25装设于容纳槽13内由支撑台134支撑并遮蔽光接收器23。平面与支撑斜面133抵持,以使分波面251与槽底壁131呈夹角设置。本实施例中,夹角为45度,即支撑斜面133与槽底壁的夹角为45度。
进一步的,基座10的表面11上设有第一凹槽14,第一凹槽14位于容纳槽13一侧并与容纳槽13贯通,激光器21为光纤激光器,其放置于第一凹槽14内且朝向分波面251,根据本发明容纳槽13的槽深度的设计尺寸,将激光器21放置于第一凹槽14内以调整激光器21相对波长分路器25的高度,保证激光器21的光速可以全部入射到分波面251上并由分波面251反射至透镜31。本实施例中第一凹槽14的槽底壁的高度高于容纳槽13的槽底壁。为了便于调节激光器21的高度以适应分波面251,在第一凹槽14的底壁上设置支撑体以支撑激光器21。
激光器21放置于第一凹槽14内且朝向分波面251,激光器21的光束射入分波面251并由分波面反射至透镜31,经过透镜31汇聚后进入与密封罩连接的光纤中,由光纤传输至外界,比如服务端,服务端接收到信号后反馈的信号以同样的光路返回并经透镜31汇聚后穿过分波面251及整个波长分路器25,由光接收器23接收并传输信号给用户端。本发明的单纤双向组件的基座10上设置容纳槽13以收容光接收器23,而且波长分路器25的分波面251与承载光接收器23的槽底壁呈夹角设置,并且波长分路器25遮盖于光接收器23上方,进而避免光接收器23与激光器21位于同一平面,即使在密封罩内存在多次改变路径而射向光接收器23的干扰光,由于光接收器23在容纳槽13内且波长分路器25遮盖于光接收器23上方,高频的干扰信号很难进入容纳槽13,防止光束进入光接收器23,进而避免单纤双向组件内光电串扰现象。
进一步的,单纤双向组件包括前置放大器26,基座10的表面11上设有第二凹槽17,第二凹槽17与第一凹槽14相对设于容纳槽13另一侧。前置放大器26放置于第二凹槽17内并与光接收器23电性连接。具体的,第二凹槽17与容纳槽13贯通,前置放大器26放置于第二凹槽的槽底壁上通过导线与光接收器23连接,当光接收器23接收外界经光纤反馈回来的信号后输送给前置放大器26,由前置放大器26转换成电压信号输出;光接收器23接收光信号后先传输给前置放大器16,经前置放大器26转换成电压信号通过与前置放大器26连接的引脚输出至如承载单纤双向组件的电路板。
进一步的,单纤双向组件包括背光探测器28,背光探测器28设于第一凹槽14内,并且背光探测器28位于激光器21背向波长分路器25的一侧。本实施例中,背光探测器28通过支架181装设于第一凹槽14内并朝向激光器21, 背光探测器28为用于监控激光器21的发光率。
进一步的,基座10上与表面11相反的一侧还设有数个引脚19。基座10大致为圆台体,其包括与表面11相反的背面111。表面11与背面111为圆形平面,数个引脚19设于背面111并且一端插入基座10内,激光器21、光接收器23、前置放大器26及背光探测器28均对应单独连接一个引脚19,并且有部分引脚19用于与客户端连接器连接以实现光接收器23接收的由光纤返回的透镜汇聚的信号的传递。
进一步的,分波面251为形成于波长分路器25上的光学薄膜而构成的反射面。激光器21的光束到达分波面251后反射至透镜31,并阻止光束直接穿过波长分离器进入光接收器23内。
进一步的,单纤双向组件还包括外壳40,外壳40罩设于密封罩30外侧并与密封罩30同轴设置。外壳40上朝向透镜31的一端设有通孔41,另一端设有用于插接光纤50的端口42,端口42传输的光束、通孔41中心线与透镜31中心线重合。具体的,光纤50主要是指包括光纤插芯及壳体的适配器。外壳40为圆筒状,其内部设有挡板401,通孔41设于挡板401中部,外壳40另一端设有端口402,光纤50通过壳体与外壳焊接固定以使光纤插芯插入端口402内。外壳40设有挡板401的一端套设于密封罩30上已将密封罩30封闭。
请参阅图4与图5,本发明的第二实施例中,与第一实施例不同之处在于:波长分路器25由基座10的支撑体15支撑。支撑体15与基座10为独立设置。支撑体15包括括两个间隔设置的支撑臂151及连接两个支撑臂151的连接杆152,支撑臂151上设有支撑斜面153,波长分路器25的平面贴于支撑斜面153上,支撑体15设置于容纳槽13内使分波面251与槽底壁131呈夹角设置,光接收器位于两个支撑臂之间。
本实施例中,支撑体15为直角三角架结构,支撑臂151为直角三角形块体,支撑斜面153位三角形的斜面。连接杆152连接两个支撑臂151的非直角的一角位置,使支撑体15可以平放于槽底壁131上并且使支撑斜面153与槽底壁夹角为45度,即设有连接杆152的一侧与槽底壁131抵持。波长分路器25先装于支撑斜面153上,然后将支撑体15装于容纳槽13内并固定,使分波面251朝向激光器21。
本实施例中,支撑体15与基座10分别设置,便于安装波长分路器25于支撑体15上,即可以先将波长分路器25装于支撑体15后将支撑体15装于基座10上,保证波长分路器25与支撑体15的装配精度,进而保证波长分路器25相对激光器等元件的位置精度。
请参阅图6,本发明第三实施例中,与第一实施例不同的是:波长分路器45包括第一平面452、与第一平面452垂直连接的第二平面453及连接第一平面452与第二平面453的斜面,斜面为分波面451。波长分路器45收容于容纳槽13内,支撑斜面133与分波面451抵持以使分波面451与槽底壁131呈夹角设置;第一平面452与槽底壁131平行,第二平面453与激光器21相对设置以使光速从第二平面射入分波面451。本实施例中,第一平面452朝向容纳槽13槽口方向且与光接收器23所在平面平行。
具体的,波长分路器35为透明直角三角体,第一平面452与第二平面453为直角三角体的两个直角侧的表面,分波面351即为直角三角体的斜面。第二平面453及分波面351部分位于容纳槽13内,第二平面453靠近激光器21。本是实例中的波长分路器35为直角三角体,便于装配的同时可以保证装配精度,进而保证单纤双向组件信号传递流畅。
请参阅图7,本发明第四实施例中,与第一实施例不同的是:波长分路器35包括一平面352及与平面352成夹角连接的斜面,斜面即为分波面351。容纳槽13的两个相对槽侧壁132上设有支撑台(图未标),支撑台形成有与槽底壁131平行的支撑平面137,支撑平面137抵持支撑波长分路器35于容纳槽131内,平面352与支撑平面137抵持并朝向光接收器23。具体的,平面352与槽底壁131平行,分波面朝向机关器21。
可以理解,其他实施方式中,支撑平面可以设于容纳槽槽口外部与表面平行,波长分路器35支撑于容纳槽13外部的正上方,波长分路器35的平面352位于容纳槽13的槽口位置并与表面11平行,分波面351位于容纳槽13的外部表面11的上方并朝向激光器21,此结构中,激光器不需要放置于第一凹槽内。选用直角三角体波长分路器35通过支撑体装设于容纳槽外部上方遮盖于光接收器23上方,实现分波面351及容纳槽13对光接收器23的保护,同时可以直接将激光器21设于表面11上,不需要针对激光器21及背光探测器28的位置配合容纳槽再额外设置容纳激光器21的凹槽,减少加工工艺。
请参阅图8,本发明第五实施例中,与第四实施例不同的是:波长分路器55为矩形块体,波长分路器55包括一平面552及位于波长分路器55内部的对角斜面,对角斜面与平面552一侧连接,对角斜面为分波面551。支撑平面137支撑波长分路器55以使分波面551与槽底壁131呈夹角设置,平面552与槽底壁131垂直设置并与激光器21相对。
具体的,波长分路器55为矩形块体的玻璃,平面551为矩形块体的波长分路器55的表面,分波面552为矩形块体的对角面,具体的是通过在矩形块体的对角面上贴设光学薄膜而形成。平面552与分波面551部分收容于容纳槽13内。可以理解,其他实施方式中波长分路器55的平面551位于容纳槽13的槽口位置并与表面11平行,分波面552位于容纳槽13的外部表面11的上方并朝向激光器21。
以上是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (11)

  1. 一种单纤双向组件,其特征在于,包括基座、激光器、光接收器、波长分路器及设有透镜的密封罩;所述基座包括表面,所述表面上凹设有容纳槽,所述容纳槽包括与所述表面平行的槽底壁,所述波长分路器设有分波面,所述光接收器放置于所述槽底壁上,所述波长分路器装设于所述容纳槽内并遮蔽所述光接收器,所述激光器位于所述容纳槽一侧,所述分波面朝向所述激光器并与所述光接收器所在槽底壁呈夹角设置;
    所述密封罩罩于所述基座上并收容所述激光器、光接收器及波长分路器,所述激光器的光束由所述分波面反射至所述透镜,所述光接收器接收并传输经过所述透镜及所述波长分路器传递的光信号。
  2. 如权利要求1所述的单纤双向组件,其特征在于,所述波长分路器包括与所述分波面平行相对的平面,所述容纳槽的两个相对槽侧壁上设有支撑台,所述支撑台形成有相对所述槽底壁倾斜的支撑斜面,所述平面与所述支撑斜面抵持以使所述分波面与所述槽底壁呈所述夹角设置。
  3. 如权利要求1所述的单纤双向组件,其特征在于,所述基座包括支撑体,所述支撑体包括括两个间隔设置的支撑臂及连接两个支撑臂的连接杆,所述支撑斜面设于支撑臂上,所述平面贴于所述支撑斜面上,所述支撑体设置于所述容纳槽内使所述分波面与所述槽底壁呈所述夹角设置,所述光接收器位于所述两个支撑臂之间。
  4. 如权利要求1所述的单纤双向组件,其特征在于,所述波长分路器包括一平面及与平面成夹角连接的斜面,所述斜面为所述分波面;所述容纳槽的两个相对槽侧壁上设有支撑台,所述支撑台形成有与所述槽底壁平行的支撑平面,所述支撑平面支撑所述波长分路器,所述平面与所述支撑平面抵持并朝向所述光接收器。
  5. 如权利要求1所述的单纤双向组件,其特征在于,所述波长分路器包括第一平面、与所述第一平面垂直连接的第二平面及连接所述第一平面与所述第二平面的斜面,所述斜面为所述分波面;所述容纳槽的两个相对槽侧壁上设有支撑台,所述支撑台形成有相对所述槽底壁倾斜的支撑斜面,所述波长分路器收容于所述容纳槽内,所述支撑斜面与所述分波面抵持,所述第一平面与所 述槽底壁平行,所述第二平面与所述激光器相对设置以使光速从所述第二平面射入所述分波面。
  6. 如权利要求1所述的单纤双向组件,其特征在于,所述波长分路器为矩形块体,所述波长分路器包括一平面及位于波长分路器内部的对角斜面,所述对角斜面与所述平面一侧连接,所述对角斜面为所述分波面,所述容纳槽的两个相对槽侧壁上设有支撑台,所述支撑台形成有与所述槽底壁平行的支撑平面,所述支撑平面支撑所述波长分路器以使所述分波面与所述槽底壁呈所述夹角设置,所述平面与所述槽底壁垂直设置并与所述激光器相对。
  7. 如权利要求2至6任一项所述的单纤双向组件,其特征在于,所述基座的表面上设有第一凹槽,所述第一凹槽位于所述容纳槽一侧并与所述容纳槽贯通,所述激光器放置于所述第一凹槽内。
  8. 如权利要求7所述的单纤双向组件,其特征在于,所述单纤双向组件包括前置放大器,所述基座的表面上设有第二凹槽,所述第二凹槽与第一凹槽相对设于所述容纳槽另一侧,所述前置放大器放置于所述第二凹槽内并与所述光接收器电性连接。
  9. 如权利要求7所述的单纤双向组件,其特征在于,所述单纤双向组件包括背光探测器,所述背光探测器设于所述第一凹槽内,并且所述背光探测器位于所述激光器背向所述波长分路器的一侧。
  10. 如权利要求1-9任一项所述的单纤双向组件,其特征在于,所述密封罩包括顶壁及围绕所述顶壁设置的周壁,所述透镜为球状且设于所述顶壁中心位置。
  11. 如权利要求10所述的单纤双向组件,其特征在于,所述单纤双向组件还包括外壳,所述外壳罩设于所述密封罩外侧并与所述密封罩同轴设置,所述外壳上朝向透镜的一端设有通孔,另一端设有用于插接光纤的端口,所述端口光路、所述通孔中心线与所述透镜中心线重合。
PCT/CN2016/073200 2016-02-02 2016-02-02 单纤双向组件 WO2017132834A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2016391182A AU2016391182B2 (en) 2016-02-02 2016-02-02 Single optical fiber bi-directional sub-assembly
CN201680077868.9A CN108474917A (zh) 2016-02-02 2016-02-02 单纤双向组件
JP2018558459A JP2019503518A (ja) 2016-02-02 2016-02-02 シングルファイバー双方向サブアセンブリ
PCT/CN2016/073200 WO2017132834A1 (zh) 2016-02-02 2016-02-02 单纤双向组件
EP16888659.6A EP3404459A4 (en) 2016-02-02 2016-02-02 BIDIRECTIONAL SUB-ASSEMBLY OF A SINGLE OPTICAL FIBER
CA3013511A CA3013511A1 (en) 2016-02-02 2016-02-02 Single-fiber bidirectional sub assembly
US16/051,715 US20180341073A1 (en) 2016-02-02 2018-08-01 Single-Fiber Bidirectional Sub Assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073200 WO2017132834A1 (zh) 2016-02-02 2016-02-02 单纤双向组件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/051,715 Continuation US20180341073A1 (en) 2016-02-02 2018-08-01 Single-Fiber Bidirectional Sub Assembly

Publications (1)

Publication Number Publication Date
WO2017132834A1 true WO2017132834A1 (zh) 2017-08-10

Family

ID=59499218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073200 WO2017132834A1 (zh) 2016-02-02 2016-02-02 单纤双向组件

Country Status (7)

Country Link
US (1) US20180341073A1 (zh)
EP (1) EP3404459A4 (zh)
JP (1) JP2019503518A (zh)
CN (1) CN108474917A (zh)
AU (1) AU2016391182B2 (zh)
CA (1) CA3013511A1 (zh)
WO (1) WO2017132834A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427161A (zh) * 2018-03-19 2018-08-21 青岛海信宽带多媒体技术有限公司 一种收发一体光器件及其光模块
US10761278B2 (en) 2018-03-19 2020-09-01 Hisense Broadband Multimedia Technologies Co., Ltd. Optical subassembly and optical module
CN111868590A (zh) * 2018-03-15 2020-10-30 华为技术有限公司 收发光器件、光模块及通讯设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541762A (zh) * 2018-12-29 2019-03-29 广东瑞谷光网通信股份有限公司 同轴封装的高速单to-can光收发器件及其加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084188A (ja) * 2003-09-05 2005-03-31 Sumitomo Electric Ind Ltd 光フィルタ保持部材及び光送受信モジュール
CN2766254Y (zh) * 2005-01-14 2006-03-22 武汉光迅科技有限责任公司 新型单纤双向器件
JP2007017903A (ja) * 2005-07-11 2007-01-25 Furukawa Electric Co Ltd:The 一芯双方向光モジュール
CN2876807Y (zh) * 2006-04-07 2007-03-07 深圳飞通光电子技术有限公司 单纤双向三端口组件
CN102118194A (zh) * 2010-12-28 2011-07-06 聚信科技有限公司 一种单纤双向光组件及其封装方法
CN202334536U (zh) * 2011-12-07 2012-07-11 华为技术有限公司 光收发组件和采用该光收发组件的无源光网络系统及设备
CN204790089U (zh) * 2015-07-13 2015-11-18 深圳市源度通信有限公司 单纤双向光组件

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774343A (ja) * 1993-08-31 1995-03-17 Fujitsu Ltd 集積化光装置及びその製造方法
US6480639B2 (en) * 1997-09-26 2002-11-12 Nippon Telegraph And Telephone Corp. Optical module
JP2002090560A (ja) * 2000-09-13 2002-03-27 Nec Corp 光通信モジュールとその製造方法
DE10196464D2 (de) * 2001-05-23 2004-04-15 Infineon Technologies Ag Elektro-optisches Modul zum Senden und/oder Empfangen optischer Signale mindestens zweier optischer Datenkanäle
JP3750649B2 (ja) * 2001-12-25 2006-03-01 住友電気工業株式会社 光通信装置
JP3858995B2 (ja) * 2002-07-02 2006-12-20 オムロン株式会社 光導波路装置の製造方法
JP2004271921A (ja) * 2003-03-10 2004-09-30 Matsushita Electric Ind Co Ltd 双方向光モジュール及び光伝送装置
US7010013B2 (en) * 2003-05-02 2006-03-07 Applied Optoelectronics, Inc. Assembly with tapered, threaded ferrule housing for improved alignment of fiber with laser
KR100703464B1 (ko) * 2005-10-31 2007-04-03 삼성전자주식회사 양방향 광 송수신기
TW200722805A (en) * 2005-12-09 2007-06-16 Ind Tech Res Inst Canted-fiber base duplex optical subassembly
US20070274644A1 (en) * 2006-04-24 2007-11-29 Arnd Kilian Optical communication with wavelength separation
JP5029193B2 (ja) * 2007-07-31 2012-09-19 日本電気株式会社 光送受信サブアセンブリ、及び光送受信モジュール
JP2010164818A (ja) * 2009-01-16 2010-07-29 Sumitomo Electric Ind Ltd 一芯双方向光モジュール
KR101041570B1 (ko) * 2009-08-24 2011-06-15 한국전자통신연구원 광통신 모듈
EP2312352B1 (en) * 2009-09-07 2018-04-18 Electronics and Telecommunications Research Institute Multi-wavelength optical transmitting and receiving modules
JP2011203458A (ja) * 2010-03-25 2011-10-13 Sumitomo Electric Ind Ltd 発光モジュール
KR101144665B1 (ko) * 2010-09-20 2012-05-24 옵티시스 주식회사 파장 분할 다중화 및 역다중화 장치
KR101342097B1 (ko) * 2011-10-26 2013-12-18 한국전자통신연구원 다채널 광모듈
US9372315B2 (en) * 2013-05-31 2016-06-21 Futurewei Technologies, Inc. Micro bi-directional optical sub-assembly
WO2015021634A1 (zh) * 2013-08-15 2015-02-19 华为技术有限公司 一种光组件、内置式光时域反射计及光网络设备
CN108476066A (zh) * 2015-12-30 2018-08-31 华为技术有限公司 光收发组件
US10191233B2 (en) * 2017-03-29 2019-01-29 Applied Optoelectronics, Inc. Mirror device with visual indicator to enable identification of highly-reflective region to ensure correct orientation of the same when disposed in an optical subassembly
US10193302B2 (en) * 2017-05-10 2019-01-29 Applied Optoelectronics, Inc. Light engine with integrated turning mirror for direct coupling to photonically-enabled complementary metal-oxide semiconductor (CMOS) die

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084188A (ja) * 2003-09-05 2005-03-31 Sumitomo Electric Ind Ltd 光フィルタ保持部材及び光送受信モジュール
CN2766254Y (zh) * 2005-01-14 2006-03-22 武汉光迅科技有限责任公司 新型单纤双向器件
JP2007017903A (ja) * 2005-07-11 2007-01-25 Furukawa Electric Co Ltd:The 一芯双方向光モジュール
CN2876807Y (zh) * 2006-04-07 2007-03-07 深圳飞通光电子技术有限公司 单纤双向三端口组件
CN102118194A (zh) * 2010-12-28 2011-07-06 聚信科技有限公司 一种单纤双向光组件及其封装方法
CN202334536U (zh) * 2011-12-07 2012-07-11 华为技术有限公司 光收发组件和采用该光收发组件的无源光网络系统及设备
CN204790089U (zh) * 2015-07-13 2015-11-18 深圳市源度通信有限公司 单纤双向光组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404459A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868590A (zh) * 2018-03-15 2020-10-30 华为技术有限公司 收发光器件、光模块及通讯设备
CN111868590B (zh) * 2018-03-15 2021-10-22 华为技术有限公司 收发光器件、光模块及通讯设备
CN108427161A (zh) * 2018-03-19 2018-08-21 青岛海信宽带多媒体技术有限公司 一种收发一体光器件及其光模块
US10761278B2 (en) 2018-03-19 2020-09-01 Hisense Broadband Multimedia Technologies Co., Ltd. Optical subassembly and optical module

Also Published As

Publication number Publication date
EP3404459A4 (en) 2019-02-20
US20180341073A1 (en) 2018-11-29
JP2019503518A (ja) 2019-02-07
CN108474917A (zh) 2018-08-31
AU2016391182A1 (en) 2018-08-23
EP3404459A1 (en) 2018-11-21
AU2016391182B2 (en) 2019-07-25
CA3013511A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US10454586B2 (en) Integrated transceiver with lightpipe coupler
US9363021B2 (en) Receiver optical module including optical de-multiplexer, lenses, and photodiodes vertically arranged to each other within housing
US8121484B2 (en) Bi-direction optical module installing light-emitting device and light-receiving device in signal package
JP5723028B2 (ja) マルチレーザ送信機光学サブアセンブリ及び光電送受信機モジュール
US8469610B2 (en) Optical connection system with plug having optical turn
US7008120B2 (en) High frequency emmitter and detector packaging scheme for 10GB/S transceiver
US10191232B2 (en) Optical module
WO2017132834A1 (zh) 单纤双向组件
CN107076942B (zh) 用于光接收器的光学子器件,包含该器件的光接收器和/或收发器,及其制造和使用方法
WO2019100703A1 (zh) 一种光学耦合模块及电子设备
WO2021012591A1 (zh) 一种单纤双向多模波分复用光电转换装置及制备方法
WO2017113227A1 (zh) 光收发组件
CN115097579A (zh) 光模块
US9385829B2 (en) Optical transceiver having optics with rotated optical path
CN112444926B (zh) 具有倾斜的输出界面以增加耦合效率的光转向镜及使用其的多频道光次组件
CN108292020B (zh) 光学接收器及其装配方法
CN114895411A (zh) 光模块
CN112904494B (zh) 一种光模块
WO2019173999A1 (zh) 收发光器件、光模块及通讯设备
CN217981938U (zh) 一种单纤bosa结构及光通信装置
WO2021051900A1 (zh) 光模块
WO2021057291A1 (zh) 一种光模块
TWM536366U (zh) 雙向式光收發器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558459

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3013511

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888659

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016391182

Country of ref document: AU

Date of ref document: 20160202

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016888659

Country of ref document: EP

Effective date: 20180814