WO2021051900A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2021051900A1
WO2021051900A1 PCT/CN2020/095831 CN2020095831W WO2021051900A1 WO 2021051900 A1 WO2021051900 A1 WO 2021051900A1 CN 2020095831 W CN2020095831 W CN 2020095831W WO 2021051900 A1 WO2021051900 A1 WO 2021051900A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarization beam
splitting prism
beam splitting
polarization
Prior art date
Application number
PCT/CN2020/095831
Other languages
English (en)
French (fr)
Inventor
孙飞龙
刘湘容
慕建伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910872795.8A external-priority patent/CN110596829B/zh
Priority claimed from CN201910871996.6A external-priority patent/CN110596828A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021051900A1 publication Critical patent/WO2021051900A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • This application relates to the field of optical communication technology, and in particular to an optical module.
  • OTDR Optical Time Domain Reflectometer
  • the OTDR uses its laser light source to send a light pulse to the optical fiber under test.
  • the light pulse will reflect the optical signal back to the OTDR on the optical fiber itself and each characteristic point, and the reflected optical signal is coupled to the OTDE receiver through the directional coupling, and here It is converted into an electrical signal, and the result curve is finally displayed on the display screen. Therefore, the built-in OTDR in the optical module requires a single-fiber bidirectional, same-wavelength optical transceiver component.
  • the traditional solution is: a 45° filter + a light-absorbing filter, and the 45° filter is a semi-transmissive and semi-reflective wave plate, which absorbs light. The sheet is located below the filter. After the light emitted by the laser light source reaches the filter, part of the light passes through the filter, and part of the tube is reflected. The reflected light is absorbed by the absorber, and then enters the OTDR for detection.
  • the current optical transceiver components have the same wavelength, the light emitted by the laser light source will cause crosstalk to the reflected light. This crosstalk will affect the attenuation blind zone of the OTDR, causing the OTDR to have a large attenuation blind zone, which seriously affects the performance of the OTDR optical receiving device .
  • optical module including a data optical receiving end and an optical transceiver component, wherein:
  • the optical transceiving assembly includes a housing and a light transmitting end, a light transmitting and receiving integrated end, and a detecting light receiving end respectively connected to the housing.
  • the data light receiving end and the light transmitting and receiving integrated end are located on the same side and are separated from each other. Preset distance
  • An avoiding end surface is provided on the housing close to the data light receiving end for avoiding the data light receiving end;
  • the detection light receiving end is arranged on the side of the avoiding end face away from the data light receiving end;
  • the housing is provided with a displacement prism and a light splitting/combining device, the light from the light transmitting and receiving integrated end exits through the light splitting/combining device, and the light exiting the light splitting/combining device enters one end of the displacement prism and passes through the light splitting/combining device.
  • the other end of the displacement prism is directed toward the detection light receiving end.
  • the embodiment of the application also discloses an optical module with OTDR function, including a circuit board and an optical transceiver component electrically connected to the circuit board, wherein:
  • the optical transceiving assembly includes a housing, a light emitting end, a light transmitting and receiving integrated end, and a detecting light receiving end respectively connected to the housing, and the light emitting end emits data light and detecting light of the same wavelength;
  • the housing is provided with a first polarization splitting prism assembly, a Faraday rotator, a half-wave plate, and a second polarization splitting prism assembly.
  • the first polarization splitting prism assembly is used for polarization splitting of incident data light or detection light, Or perform polarization combining of the polarization splitting light from the second polarization splitting prism assembly;
  • the Faraday rotator is arranged in the magnetic block, and the Faraday rotator is applied to the polarization splitting light under the action of the external magnetic field applied by the magnetic block.
  • the half-wave plate is used to rotate the incident polarization beam splitter clockwise along the light propagation direction;
  • the second polarization beam splitting prism assembly is used to polarize the rotated light Split the light for polarization and combine light, or perform polarization splitting for the reflected detection light;
  • the data light or the detection light emitted by the light emitting end is polarized and split through the first polarization beam splitting prism, the split lights are respectively rotated clockwise through the Faraday rotating plate, and the split lights after the rotation are respectively passed through the half-wave plate and then clockwise again.
  • the split light after re-rotation passes through the second polarization splitting prism assembly for polarization and light combining, and the combined data light or detection light enters the optical transceiver integrated end;
  • the detected light reflected back from the optical transceiver is polarized and split through the second polarization beam splitting prism assembly, the split light is rotated clockwise through the half-wave plate, and the rotated light split is performed through the Faraday rotating plate.
  • the split light after rotating again passes through the first polarization beam splitting prism assembly to polarize and combine the light, and the reflected detection light and combined light enters the detection light receiving end.
  • FIG. 1 is a schematic structural diagram of an optical module with OTDR function provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of an exploded structure of an optical module with OTDR function provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of a partial structure of an optical module with OTDR function provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of a partial structure of an optical module with OTDR function from another angle according to an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of an optical transceiver component in an optical module with OTDR function provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of an exploded structure of an optical transceiver component in an optical module with OTDR function provided by an embodiment of the application;
  • FIG. 7 is a cross-sectional view of an optical transceiver component in an optical module with OTDR function provided by an embodiment of the application;
  • FIG. 8 is a schematic structural diagram of an optical splitting and combining device in an optical module with OTDR function provided by an embodiment of the application;
  • FIG. 9 is a schematic diagram of an exploded structure of an optical splitting and combining device in an optical module with OTDR function provided by an embodiment of the application.
  • FIG. 10 is a partial exploded structural schematic diagram of an optical splitting and combining device in an optical module with OTDR function provided by an embodiment of the application;
  • FIG. 11 is a transmission route diagram of transmitted light of an optical transceiver component in an optical module with OTDR function provided by an embodiment of the application;
  • FIG. 12 is a transmission route diagram of reflected light of an optical transceiver component in an optical module with OTDR function provided by an embodiment of the application;
  • FIG. 13 is a schematic structural diagram of a housing in an optical module with ODTR function provided by an embodiment of the application.
  • FIG. 14 is a cross-sectional view of a housing in an optical module with OTDR function provided by an embodiment of the application;
  • 15 is a schematic diagram of assembling the housing and the optical splitting/combining device in the optical module with OTDR function provided by an embodiment of the application;
  • 16 is an assembly cross-sectional view of the housing and the optical splitting and combining device in the optical module with OTDR function provided by an embodiment of the application;
  • FIG. 17 is a schematic structural diagram of an optical transceiver assembly of another optical module with OTDR function provided by an embodiment of the application.
  • optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides.
  • the passive transmission characteristics of light in optical fibers can realize low-cost and low-loss information transmission.
  • information processing equipment such as computers uses electrical signals, which requires mutual conversion between electrical signals and optical signals in the signal transmission process.
  • the optical module implements the above-mentioned photoelectric conversion function in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on the circuit board.
  • the main electrical connections include power supply, I2C signal, data signal transmission and grounding, etc.
  • the electrical connection method realized by the golden finger has become the optical module industry.
  • the standard method, based on this, the circuit board is a necessary technical feature in most optical modules.
  • the optical port of the optical module is connected with the external optical fiber to establish a bidirectional optical signal connection with the external optical fiber;
  • the electrical port of the optical module is connected to the optical network unit to establish a bidirectional electrical signal connection with the optical network unit;
  • the optical module realizes optical signal and electrical
  • the mutual conversion of signals realizes the establishment of connection between the optical fiber and the optical network unit. Specifically, the optical signal from the external optical fiber is converted into an electrical signal by the optical module and then input into the optical network unit, and the electrical signal from the optical network unit is converted into an optical signal by the optical module and input into the external optical fiber.
  • the optical module is a tool that realizes the mutual conversion of photoelectric signals and does not have the function of processing data. In the above photoelectric conversion process, the information has not changed.
  • FIG. 1 is a schematic structural diagram of an optical module with OTDR function provided in an embodiment of the application
  • FIG. 2 is a schematic diagram of an exploded structure of an optical module with OTDR function provided in an embodiment of the application.
  • the optical module with OTDR function provided in the embodiments of the present application includes an upper housing 10, a lower housing 20, an unlocking handle 30, a circuit board 40, and an optical transceiver component 50, among which,
  • the upper casing 10 and the lower casing 20 form a wrapping cavity with two openings, which can be open at both ends (60, 70) in the same direction, or two openings in different directions; one of the openings
  • the electrical port 70 is used to insert into the upper computer such as the optical network unit, and the other opening is the optical port 60, which is used for external optical fiber access to connect the internal optical fiber.
  • the circuit board 40, optical transceiver component 50 and other optoelectronic devices are located in the package cavity in.
  • the upper shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; the assembly method of the upper shell and the lower shell is used to facilitate the installation of circuit boards and other components into the shell. Generally, optical modules are not used.
  • the shell is made into an integral structure, so that when assembling circuit boards and other devices, positioning components, heat dissipation and electromagnetic shielding structures cannot be installed, and it is not conducive to production automation.
  • the unlocking handle 30 is located on the outer wall of the wrapping cavity/lower housing 20. Pulling the end of the unlocking handle can make the unlocking handle move relative to the outer wall surface; when the optical module is inserted into the upper computer, the unlocking handle fixes the optical module in the cage of the upper computer. By pulling the unlocking handle to release the engagement relationship between the optical module and the host computer, the optical module can be withdrawn from the cage of the host computer.
  • FIG. 3 is a schematic diagram of a partial structure of an optical module with OTDR function provided by an embodiment of this application
  • FIG. 4 is a schematic diagram of a partial structure of an optical module with OTDR function provided by an embodiment of this application from another angle
  • FIG. 5 is an implementation of this application
  • the example provides a structural schematic diagram of the optical transceiver component in the optical module with OTDR function.
  • the optical transceiver component 50 of the optical module is electrically connected to the circuit board 40.
  • the optical transceiver component 50 includes a data optical receiving terminal 501, an optical transceiver integrated terminal 502, an optical transmitting terminal 503, and a detection light.
  • the receiving end 504 and the housing 505, the data light receiving end 501 is connected with a light transmission component, the light transmission component is connected to an optical fiber, and is used to receive the data light transmitted by the optical fiber;
  • the transceiver integrated end 502 is connected with a light transmission component, and the light transmission component is connected
  • the optical fiber is used to transmit data light to the optical fiber and receive the detection light reflected by the optical fiber;
  • the light emitting end 503 is equipped with a laser emitting component, and the data light and detection light of the same wavelength are emitted through the laser emitting component, and the emitted detection light is transmitted to the connecting light
  • the optical fiber of the transceiver end 502 is used to detect whether there is a breakpoint in the optical fiber;
  • the detection light receiving end 504 is provided with a detection receiving component for receiving the detection light reflected by the optical fiber, that is, the detection light emitted by the laser emitting component is transmitted to the optical fiber Inside, the optical fiber reflects the detection light, the reflected detection
  • the transmission routes of the emitted light and the received light are different, that is, the light emitted by the laser emitting component and the light received by the detection receiving component are at a certain angle.
  • the emitted light and the received light are perpendicular to each other.
  • the optical transmitting terminal 503 emits the data light and detection light of the same wavelength, but the data light or the detection light is emitted at a different time, and the information carried is also different; the data light received at the data light receiving terminal 501 is integrated with the optical transceiver The wavelength of the data light received at 502 is different, which realizes the integrated function of the transceiver of the optical module, and at the same time increases the OTDR function, and integrates the detection light reception into the light emitting device.
  • the laser emitting component may include a separate laser emitting chip or a laser emitting integrated component TO-CAN; the optical transmission component may be an optical waveguide or an optical fiber as the core component.
  • FIG. 6 is a schematic diagram of an exploded structure of an optical transceiver component in an optical module with OTDR function provided in an embodiment of the application
  • FIG. 7 is a cross-sectional view of an optical transceiver component in an optical module with OTDR function provided in an embodiment of the application.
  • an optical splitting and combining device 80 is provided in the housing 505, and the optical splitting and combining device 80 has one incident light surface and one The light-receiving surface and one light-emitting surface enable the optical signal to be transmitted in sequence along the specified optical surface, which is used to separate the optical signal transmitted in the forward direction and the reverse direction in the same optical fiber, and reduce the effect of the emitted light on the receiving Crosstalk of reflected light.
  • the data light or detection light emitted by the light emitting end 503 enters the light splitting and combining device 80 from the incident light surface, and then the data light or detecting light is emitted from the light splitting and combining device 80 from the light receiving and emitting surface, and enters the connecting light receiving and transmitting integrated end 502.
  • the data light is transmitted through the optical fiber, and the detection light detects the breakpoint of the optical fiber.
  • the detection light is reflected in the optical fiber, the reflected detection light enters the light splitting and combining device 80 from the light-emitting surface, and then the reflected light is emitted from the light splitting and combining device 80 from the exit light surface, and enters the detection light receiving end 504.
  • FIG. 8 is a schematic diagram of the structural position distribution of optical transceiver components in an optical module with OTDR function provided by an embodiment of the application
  • FIG. 9 is a schematic diagram of the structure of an optical splitting and combining device in an optical module with OTDR function provided by an embodiment of the application
  • 10 is a schematic diagram of an exploded structure of an optical splitting and combining device in an optical module with OTDR function provided by an embodiment of the application.
  • the light splitting and combining device 80 provided in the housing 505 is composed of a first polarization splitting prism assembly 803, a Faraday rotator 804, a half-wave plate 805, and a second polarization splitting prism assembly 806
  • the Faraday rotator 804 is embedded in the U-shaped magnetic block 807.
  • the first polarization beam splitting prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805 and the second polarization beam splitting prism assembly 806 can be glued to each other.
  • the prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805, and the second polarization splitting prism assembly 806 are respectively installed in the housing 505 through the bottom surface thereof. There may also be gaps between the first polarization splitting prism assembly 803, the Faraday rotator 804, the half-wave plate 805, and the second polarization splitting prism assembly 806, which are installed in the housing 505 through the bottom surface.
  • the Faraday rotator 804 changes the polarization direction of light under the action of a magnetic field.
  • the function of the magnetic block is to provide the magnetic field required by the Faraday rotator.
  • the magnetic block for providing the magnetic field can be U-shaped or other shapes.
  • the incident light surface of the light splitting and combining device 80 is the light receiving surface of the first polarization beam splitting prism component 803, and the light receiving and emitting surface of the light splitting and combining device 80 is the light emitting and receiving surface of the second polarization beam splitting prism component 806 ( The light exiting and receiving surfaces of the second polarization beam splitting prism assembly 806 are the same light surface), and the exiting light surface of the light splitting and combining device 80 is the reflected light exiting surface of the first polarization beam splitting prism assembly 803.
  • the first polarization splitting prism component 803 can be formed by combining a first polarization splitting prism 8031 and a second polarization splitting prism 8032.
  • the first polarization splitting prism 8031 is located in the light emitting direction of the light emitting end 503, and the optical axis of the second polarization splitting prism 8032 Parallel to the first polarization beam splitting prism 8031, that is, the data light or detection light emitted by the light emitting end 503 enters the first polarization beam splitting prism 8031 through the light incident surface of the first polarization beam splitting prism 8031 (the light incident surface is the light receiving surface of the first polarization beam splitting prism 8031)
  • a polarization beam splitting prism 8031, the first polarization beam splitting prism 8031 splits the data light or the detection light.
  • the second polarization splitting prism component 806 can be formed by combining a third polarization splitting prism 8061 and a fourth polarization splitting prism 8062.
  • the third polarization splitting prism 8061 is located in the light incident direction of the optical transceiver end 502, and the fourth polarization splitting prism 8062
  • the optical axis is parallel to the optical axis of the third polarization beam splitting prism 8061, that is, the data light or detection light emitted by the light emitting end 503 enters the first polarization beam splitting prism 8031 for splitting, and then the data light or detection light sequentially passes through the Faraday rotating plate 804, half-wave
  • the sheet 805 and the second polarization beam splitting prism assembly 806 combine light at the third polarization beam splitting prism 8061, and the combined light is emitted from the light exit surface of the third polarization beam splitting prism 8061 and enters the optical fiber at the optical transceiver end 502.
  • the data light is transmitted in the optical fiber, and the detection light is reflected in the optical fiber.
  • the reflected detection light sequentially passes through the second polarization beam splitting prism assembly 806, the half-wave plate 805, the Faraday rotator 804 and the first polarization beam splitting prism assembly 803,
  • the reflected light is emitted from the light exit surface of the first polarization beam splitting prism 8031 and enters the detection light receiving end 504.
  • the first polarization beam splitting prism 8031 and the fourth polarization beam splitting prism 8062 are arranged coaxially, and the second polarization beam splitting prism 8032 and the third polarization beam splitting prism 8061 are arranged coaxially to realize polarization splitting and polarization combining of light.
  • the first polarization beam splitting prism component 803 and the second polarization beam splitting prism component 806 can also be combined by a polarization beam splitting prism and a high reflection mirror.
  • the polarization beam splitting prism is used to divide the incident light into P-polarized light and S-polarized light. P-polarized light or S-polarized light is reflected to realize light splitting and combining.
  • the polarizing beam splitter is provided on the light incident surface of the polarizing beam splitting prism, which is used to divide the incident non-polarized light into two perpendicular linearly polarized beams, namely P polarized light and S polarized light.
  • the Faraday rotator 804 can make the polarization direction of the light passing through it clockwise or rotate (preferably by 45°) in the light propagation direction under the action of the magnetic field applied by the U-shaped magnetic block 807, that is, the U-shaped magnetic block 807 is opposite to the Faraday rotator.
  • the Faraday rotator 804 applies an external magnetic field, and the Faraday rotator 804 rotates the P-polarized and S-polarized light in the forward direction under the action of the external magnetic field to rotate clockwise (preferably 45°), and counterclockwise when passing in the reverse direction (preferably 45°) ,
  • the light transmission direction remains unchanged.
  • the half-wave plate 805 rotates clockwise (preferably 45°) when the light passes in the forward or reverse direction, that is, when the light propagates from the Faraday rotator 804 to the half-wave plate 805, it rotates clockwise (preferably rotates 45°).
  • the P-polarized light and S-polarized light continue to rotate clockwise (preferably 45°), so that the polarization directions of the rotated P-polarized light and the un-rotated P-polarized light are perpendicular to each other, and the P-polarized light is converted to S-polarized light.
  • the polarization directions of the S-polarized light before rotation are perpendicular to each other, and the S-polarized light is transformed into P-polarized light; when the light propagates from the half-wave plate 805 to the Faraday rotator, the P-polarized light and S-polarized light will rotate clockwise after passing through the half-wave plate 805 (preferably rotated 45 °), then the rotated P-polarized light and S-polarized light enter the Faraday rotator 804, and the Faraday rotator 804 rotates the rotated P-polarized and S-polarized light counterclockwise (preferably rotated by 45°) under the action of an external magnetic field, so that P After the polarized light passes through the half-wave plate 805 and the Faraday rotator 804, its polarization direction remains unchanged and remains P-polarized. After the S-polarized light passes through the half-wave plate 805 and the Faraday rotator 804, its polarization direction does not change and remains S-polarized.
  • FIG. 11 is a transmission route diagram of data light or detection light in an optical module with OTDR function provided in an embodiment of the application
  • FIG. 12 is a transmission route diagram of detection light reflected in an optical module with OTDR function provided in an embodiment of the application.
  • the data light or detection light emitted by the light emitting end 503 enters the first polarization beam splitting prism assembly 803 through the light incident surface of the first polarization beam splitting prism 8031, and the first polarization beam splitting prism 8031 carries out the data light or detection light.
  • Light splitting is divided into P-polarized light and S-polarized light.
  • P-polarized light passes through the first polarization beam splitting prism 8031, while S-polarized light is reflected at a certain angle (preferably at an angle of 45°) at the first polarization beam splitting prism 8031, and the exit direction is the same as that of P-polarized light.
  • the direction is different (in an embodiment of the present application, the exit direction of S-polarized light and the exit direction of P-polarized light are at an angle of 90°); then, the P-polarized light enters the Faraday rotator 804 and the half-wave plate 805 in sequence, and passes through the Faraday rotator 804 and After the half-wave plate 805, the P-polarized light is converted into S-polarized light, and the reflected S-polarized light enters the second polarization beam splitting prism 8032, and is reflected again at a certain angle (preferably at an angle of 45°) at the second polarization beam splitting prism 8032, and the exit direction is the same as
  • the P-polarized light is parallel, and the S-polarized light reflected again enters the Faraday rotator 804 and the half-wave plate 805 in turn.
  • the S-polarized light is converted into P-polarized light; the converted S-polarized light emitted by the half-wave plate 805 enters the second polarization beam splitting prism assembly 806 for conversion
  • the S-polarized light is reflected at a certain angle (preferably at an angle of 45°) at the fourth polarization beam splitting prism 8062, and the exit direction is perpendicular to the P-polarized light; the converted P-polarized light emitted by the half-wave plate 805 enters the third polarization beam splitting prism 8061.
  • the light splitting prism 8061 is combined with the converted S-polarized light after reflection, and the combined data light or detection light enters the light transmitting and receiving integrated end 502. That is to say, the data light or detection light emitted by the light transmitting end 503 enters the optical transceiver integrated end 502 after polarization splitting and polarization combining light, and enters the optical fiber.
  • the third polarization beam splitting prism 8061 is provided with a polarization beam splitting film on the side facing the light transmitting and receiving integrated end 502, and the second polarization beam splitting prism 8032 is provided with a P light reflecting film on the side facing the third polarization beam splitting prism 8061.
  • the side of the polarization beam splitting prism 8031 facing the third polarization beam splitting prism 8061 is provided with an S light reflection film.
  • the detection light reflected in the fiber enters the third polarization beam splitting prism 8061, and the third polarization beam splitting prism 8061 reflects The light is split, and the reflected light is divided into P-polarized light and S-polarized light.
  • the P-polarized light passes through the third polarization beam splitting prism 8061, and the S-polarized light is reflected at a certain angle (preferably at an angle of 45°) at the third polarization beam splitting prism 8061 and exits.
  • the direction is different from the exit direction of the P polarized light (in an embodiment of the present application, the exit direction of the S polarized light and the exit direction of the P polarized light form a 90° angle); then the P polarized light enters the half-wave plate 805 and the Faraday rotator plate 804 in turn.
  • the polarization direction has not changed, it is still P-polarized light, and the reflected S-polarized light enters the fourth polarization beam splitting prism 8062, and is reflected again at a certain angle (preferably at an angle of 45°) at the fourth polarization beam splitting prism 8062, and the exit direction is the same as that of P
  • the polarized light is parallel, and the S-polarized light reflected again enters the half-wave plate 805 and the Faraday rotator 804 in turn, and its polarization direction has not changed, and is still S-polarized; the P-polarized light emitted by the Faraday rotator 804 enters the second polarization beam splitting prism 8032 Since the second polarization beam splitting prism 8032 is provided with a P light reflection film, the P polarized light is reflected at a certain angle (preferably at an angle of 45°) at the second polarization beam splitting prism 8032, and the reflected P-polarized light exits the direction perpendicular to the P
  • the S-polarized light is at a certain angle (preferably at an angle of 45°) at the first polarization beam splitting prism 8031. ) Is reflected, the reflected S-polarized light and the reflected P-polarized light are combined at the first polarization beam splitting prism 8031, and the combined reflected light enters the detection light receiving end 504. That is, the detection light reflected by the optical fiber is polarized After splitting and combining the polarized light, it enters the detection light receiving end 504 to analyze and process the reflected light.
  • the reflected light exit surface of the first polarization beam splitting prism 8031 is provided with a filter 810.
  • the filter 810 filters the incident reflected light, that is, allows light of a specific wavelength to pass through the filter 810 to prevent interference light from entering the detection Light receiving end 504.
  • the filter 810 is a 0° filter.
  • the light splitting and combining device 80 also includes a first lens assembly 802 and a second lens assembly 808.
  • the light incident surface of the first lens assembly 802 corresponds to the light emitting end 503, and the light exit surface of the first lens assembly 802 corresponds to the first polarization splitting prism assembly 803.
  • Corresponding to the light incident surface, that is, the light emitting end 503, the first lens assembly 802 and the first polarization beam splitting prism 8031 are coaxially arranged.
  • the light incident surface of the second lens assembly 808 corresponds to the optical transceiver integrated end 502, that is, the optical transceiver integrated end 502, the second lens assembly 808 and the third polarization beam splitting prism 8061 are coaxially arranged.
  • the data light or detection light emitted by the light emitting end 503 enters the first lens assembly 802.
  • the data light or the detection light may be divergent light, convergent light, or parallel light. If the data or detection light is divergent or convergent light , After the data light or the detection light enters the first lens assembly 802, the first lens assembly 802 converts the divergent light or the convergent light into parallel light, and the converted parallel light enters the first polarization beam splitting prism assembly 803. Similarly, the light reflected by the optical fiber enters the second lens assembly 808, the second lens assembly 808 converts the reflected light into parallel light, and the converted parallel light enters the second polarization beam splitting prism assembly 806.
  • the optical splitting and combining device 80 also includes a bracket 801.
  • the first lens assembly 802, the first polarization splitting prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805, the second polarization splitting prism assembly 806 and the second lens assembly 808 are all installed ⁇ 801 ⁇ On the support 801.
  • the bracket 801 is provided with a first limiting slot 8011 and a second limiting slot 8012, and there is a height difference between the first limiting slot 8011 and the second limiting slot 8012, the first lens assembly 802, the first polarization beam splitting prism assembly 803, U-shaped magnetic block 807, half-wave plate 805, and second polarization beam splitter prism assembly 806 are installed on the bracket 801 through the first limiting slot 8011, and the second lens assembly 808 is installed on the bracket 801 through the second limiting slot 8012 .
  • the bottom surface of the first lens component 802, the bottom surface of the first polarization beam splitter prism component 803, the bottom surface of the U-shaped magnetic block 807, the bottom surface of the half-wave plate 805 and the bottom surface of the second polarization beam splitter prism component 806 can be connected by glue.
  • first lens assembly 802 the first polarization beam splitting prism assembly 803, the U-shaped magnetic block 807, the half wave plate 805 and the second polarization beam splitting prism assembly 806 on the bracket 801 on.
  • the first lens assembly 802, the first polarization splitting prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805 and the second polarization splitting prism assembly 806 can also be fixed on the bracket 801 by metal solder eutectic technology or laser electric welding technology. .
  • the first lens assembly 802 When the first lens assembly 802 is fixed with glue, it may be a metal structural member, or a glass material or other structural members of various materials that are convenient for supporting and fixing.
  • the second polarization splitting prism component 806 polarizes and combines the data light or the detection light, so that the light emitted by the first lens component 802 and the second lens component
  • the bottom surface of the second lens assembly 808 and the bottom surface of the second limiting groove 8012 are connected to fix the second lens assembly 808 on the bracket 801.
  • the second lens assembly 808 can also be fixed on the bracket 801 by metal solder eutectic technology or laser electric welding technology.
  • the second lens assembly 808 When the second lens assembly 808 is fixed by glue, it may be a metal structural member, or a glass material or other structural members of various materials that are convenient for supporting and fixing.
  • the bracket 801 is further provided with a third limiting slot 8013, and the filter 810 is installed on the bracket 801 through the third limiting slot 8013.
  • the bottom surface of the third limiting groove 8013 is lower than the bottom surface of the first limiting groove 8011, the bottom surface of the third limiting groove 8013 is in contact with the bottom surface of the filter 810, and the side adjacent to the bottom surface faces the side of the filter 810. After limiting the position, the bottom surface of the filter 810 can be bonded to the bottom surface of the third limiting groove 8013 by glue, so that the filter 810 is fixed on the bracket 801.
  • the first limiting slot 8011, the second limiting slot 8012, and the third limiting slot 8013 are not limited to square grooves, but can also be round grooves or convex grooves or other irregular grooves or grooves, as long as they
  • the first lens assembly 802, the first polarization splitting prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805, the second polarization splitting prism assembly 806, and the second lens assembly 808 can be mechanically positioned. All belong to the protection scope of the embodiments of the present application.
  • the first lens assembly 802 and the second lens assembly 808 can be limited by optical image recognition technology, spot imaging technology, or beam coupling technology, besides being limited by the first limiting slot 8011 and the second limiting slot 8012. Bit installation.
  • first lens assembly 802 ensure that the center of the optical lens of the first lens assembly 802 coincides with the emission center of the laser emitting assembly.
  • first lens assembly 802 is limited by a mechanical limiting structure, processing errors are likely to occur As a result, the two do not overlap, but the use of optical image recognition technology or spot imaging technology or beam coupling technology can ensure that the incident center of the optical lens of the first lens assembly coincides with the exit center of the laser emitting assembly, thus ensuring the first lens assembly Accurate installation of 802.
  • the second lens assembly 808 when installing the second lens assembly 808, using optical image recognition technology, spot imaging technology, or beam coupling technology can ensure that the exit center of the optical lens of the second lens assembly 808 coincides with the incident center of the optical transceiver end. The precise installation of the second lens assembly 808 is achieved.
  • the limit structure on the bracket 801 can also be adjusted to a non-contact structure with a small gap, that is, the two sides of the groove in the first limit groove 8011 and the first lens assembly 802 are limited by a non-compact structure, and optical Projection recognition technology or spot coupling technology realizes high-precision and precise assembly of the first lens assembly 802. That is to say, a groove is provided on the bracket 801, the first lens assembly 802 is placed in the groove, and the first lens assembly 802 is moved by optical projection recognition technology or spot coupling technology, so that the optical lens of the first lens assembly is incident The center coincides with the exit center of the laser emitting component, and then the first lens component 802 is pasted in the groove.
  • the side surface of the first lens component 802 does not contact the side surface of the groove, and then according to the first lens component 802
  • the first polarization splitting prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805 and the second polarization splitting prism assembly 806 can be assembled with high precision and precision.
  • a groove is provided on the bracket 801, the second lens assembly 808 is placed in the groove, and the second lens assembly 808 is moved by optical recognition technology or spot coupling technology, so that the exit center of the optical lens of the second lens assembly 808 It coincides with the incident center of the optical transceiver end 502, and then the second lens assembly 808 is pasted in the groove.
  • the second lens assembly 808 is moved by optical recognition technology or spot coupling technology, so that the exit center of the optical lens of the second lens assembly 808 It coincides with the incident center of the optical transceiver end 502, and then the second lens assembly 808 is pasted in the groove.
  • the lens assembly After adopting optical image recognition technology or spot imaging technology or beam coupling technology to perform high-precision positioning and installation of the lens assembly and the bracket, the lens assembly can be fixed on the surface of the bracket by glue, and the thickness of the glue layer between the lens assembly and the surface of the bracket is less than Or equal to 15 microns.
  • the installation between the lens assembly and the bracket can also be fixed by laser welding.
  • two concave structures can be designed on the side of the bracket 801. These two concave structures are connected to the first lens.
  • the vertical thickness of the component 802 and the second lens component 808 is 0.3 mm, and the first lens component 802, the second lens component 808 and the bracket 801 are connected by laser electric welding, and the electric welding method is a two-row multi-row method.
  • the first lens assembly 802 and the second lens assembly 808 can also be combined to form an integral part, that is, the bracket 801 has two boss structures.
  • the bracket 801 has two boss structures.
  • the optical lenses of the component 808 are respectively mounted on the two boss structures of the bracket 801, which can be pasted by glue or laser spot welding.
  • the optical lens of the first lens assembly 802 and the optical lens of the second lens assembly 808 have the conversion function of a condensed beam and a collimated beam, and may include various non-gradual refractive index spherical or aspherical glass or plastic lenses.
  • a third lens assembly 90 can be provided between the detection light receiving end 504 and the detection receiving assembly.
  • the third lens assembly 90 is fixedly installed on the bracket in the same manner as the first lens assembly 802 and the second lens assembly 808.
  • the reflected light emitted by the first polarization beam splitting prism component 803 enters the third lens component 90, and the third lens component 90 converts the emitted collimated light into convergent light, and then the converged light is received by the detection receiving component.
  • the first lens assembly 802, the first polarization splitting prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805, the second polarization splitting prism assembly 806, and the second lens assembly 808 are all installed in the cavity of the housing 505, as shown in the figure 13.
  • the side 5051 of the housing 505 is provided with a lateral cover hole through which the housing 505 communicates with the outside; the lateral cover hole of the housing 505 is provided with a movable end cover.
  • the movable end cover can be opened, and the first lens assembly 802, the first polarization splitting prism assembly 803, the Faraday rotator 804, the U-shaped magnetic block 807, the half wave plate 805, the second polarization splitting prism assembly 806, and the second lens assembly can be opened 808 and the like are installed in the housing 505.
  • the housing 505 is provided with a light transmitting and receiving end surface 5052, a light incident end surface 5053 and a light receiving end surface 5054.
  • the light transmitting and receiving end surface 5052, the light incident end surface 5053 and the light receiving end surface 5054 are all adjacent to the side surface 5051, and the light transmitting end 503 passes through the light
  • the incident end surface 5053 is connected to the housing 505
  • the optical transceiver integrated end 502 is connected to the housing 505 through the optical transceiver integrated end surface 5052
  • the detection light receiving end 504 is connected to the housing 505 through the light receiving end surface 5054.
  • the light incident end surface 5053 is provided with an incident light hole, and the data light or detection light emitted by the light emitting end 503 enters the light splitting and combining device 80 through the incident light hole;
  • the light emitted by the combining device 80 enters the light receiving end 502 through the light receiving and receiving integrated light hole;
  • the light receiving end surface 5054 is provided with a light receiving hole, and the reflected light emitted by the light splitting and combining device 80 enters the detecting light receiving end 504 through the light receiving light hole.
  • a downwardly inclined avoiding end surface 5055 is provided between the light receiving end surface 5054 and the optical transceiver integrated end surface 5052.
  • the avoiding end surface 5055 is close to the data light receiving end 501 and is used to avoid the data light receiving end 501 of the optical module.
  • the data optical receiving terminal 501 and the optical transceiver integrated terminal 502 are located on the same side, and they are separated by a preset distance. There is a distance requirement between the optical fiber interface connecting the data optical receiving end 501 and the optical fiber interface connecting the optical transceiver terminal 502. Therefore, the data optical receiving terminal 501 and the optical transceiver integrated terminal 502 in the optical module also need to have a distance requirement, which needs to be met.
  • the avoiding end surface 5055 is set on the housing 505 to meet the protocol requirements of the optical module.
  • the avoiding end surface 5055 includes a first end surface 101, a second end surface 102, and a third end surface 103.
  • One end of the first end surface 101 is connected to the light receiving end surface 5054, the other end is connected to one end of the second end surface 102, and the other end of the second end surface 102 Connected to one end of the third end surface 103, the other end of the third end surface 103 is connected to the optical transceiver end surface 5052, and the inclination of the first end surface 101 is greater than the inclination of the second end surface 102, and the third end surface 103 is perpendicular to the optical transceiver integration
  • the end surface 5052 avoids the data light receiving end 501 to the greatest extent.
  • the detection light receiving end 504 is set on the side that avoids the end surface 5055 away from the data light receiving end 501, that is, the receiving light hole on the light receiving end surface 5054 is relatively left, and the receiving light hole is opposite to the first polarization.
  • a displacement prism 809 is provided between the reflected light exit surfaces of the light splitting prism assembly 803. The light from the light transmitting and receiving integrated end 502 exits through the light splitting and combining device 80, and the light exiting from the light splitting and combining device 80 enters one end of the displacement prism 809 and is displaced The other end of the prism 809 is directed toward the detection light receiving end 504.
  • the filter 810 is located between the first polarization splitting prism 8031 and the displacement prism 809.
  • the reflected light emitted by the first polarization splitting prism 8031 enters the filter 810.
  • the filter 810 filters the incident reflected light.
  • the reflected light enters one end of the displacement prism 809, and is directed toward the detection light receiving end 504 through the other end of the displacement prism 809.
  • the cavity of the housing 505 is provided with a first positioning groove 5056 and a second positioning groove 5057.
  • the first positioning groove 5056 includes a first side surface 104, a first bottom surface 105 and a second side surface 106
  • the second positioning groove 5057 includes a first side surface. 104.
  • the second bottom surface 108 and the third side surface 107, the first bottom surface 105 is lower than the second bottom surface 108, and the top end of the first side surface 104 and the second bottom surface 108 are located in the same plane.
  • the bracket 801 is installed in the housing 505 through the first positioning groove 5056, the bottom surface of the bracket 801 is in contact with the first bottom surface 105, the first side 104 and the second side 106 are connected to the two sides of the bracket 801 Abutting to limit the bracket 801; the bottom surface of the bracket 801 can be glued to the first bottom surface 105 to realize the fixing of the bracket 801.
  • bracket 801 When installing the bracket 801, it is necessary to ensure that the incident light hole on the light incident end surface 5053 and the first lens assembly 802 on the bracket 801 are arranged coaxially, and the light transmitting and receiving integrated optical hole on the optical transceiver end surface 5052 is coaxial with the second lens assembly 808 on the bracket 801 Set up.
  • the displacement prism 809 may be a parallelogram displacement prism, the displacement prism 809 is installed in the housing 505 through the second positioning groove 5057, the bottom surface of the displacement prism 809 is in contact with the second bottom surface 108, and the light exit surface of the displacement prism 809 is in contact with the second bottom surface 108.
  • the third side surface 107 abuts against each other, and the third side surface 107 is the inner side surface of the light receiving end surface 5054.
  • a boss 5058 is provided on the second bottom surface 108 near the light receiving hole.
  • the boss 5058 includes a fourth side surface 109 and a fifth side surface 110, and the fourth side surface 109 and the first side surface 104 are located in the same plane.
  • the displacement prism 809 includes a sixth side surface 111.
  • the sixth side surface 111 is respectively connected to the light incident surface and the light exit surface of the displacement prism 809.
  • the sixth side surface 111 is an inclined surface
  • the fifth side surface 110 of the boss 5058 is an inclined surface.
  • the side surface 110 abuts the sixth side surface 111 to realize the positioning of the displacement prism 809; the bottom surface of the displacement prism 809 can be bonded to the second bottom surface 108, and the displacement prism 809 is clamped by the third side surface 107 and the boss 5058 to achieve Fixing of displacement prism 809.
  • the displacement prism 809 can also be fixed by glue bonding. Specifically, glue is applied between the second positioning groove 5057 and the displacement prism 809, and the displacement prism 809 is directly bonded to the surface of the second positioning groove 5057, in order to avoid glue It flows freely, and a glue collecting groove can be set on the surface of the second positioning groove 5057.
  • the first lens assembly 802, the U-shaped magnetic block 807 and the second lens assembly 808 can be installed on the bracket 801 first, and then the assembled bracket 801 is inserted into the first positioning slot 5056 of the housing 505. It is also possible to directly install the first lens assembly 802, the first polarization splitting prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805, the second polarization splitting prism assembly 806 and the second lens assembly 808 in the housing 505, namely Two positioning grooves are sequentially arranged in the cavity of the housing 505. The first lens assembly 802 and the second lens assembly 808 are respectively installed in the housing 505 through the positioning grooves.
  • the second polarization splitting prism assembly 806 performs polarization and combination of the data light or the detection light, so that the light emitted by the first lens assembly 802 and the light incident by the second lens assembly 808 have a height difference, so the first lens assembly is assembled
  • the positioning groove of 802 is higher than the positioning groove of the second lens assembly 808.
  • first lens assembly 802 is coaxially arranged with the incident light hole of the light incident end surface 5053, and the first lens assembly 802 is coaxial with the first polarization beam splitter prism assembly 803
  • the second polarizing beam splitter prism assembly 806 is coaxially arranged with the second lens assembly 808, and the second lens assembly 808 is coaxially arranged with the light transceiving integrated optical hole of the light transceiving integrated end surface 5052.
  • the bottom surface of the first lens assembly 802 can be bonded to the bottom surface of the positioning groove, and the bottom surface of the second lens assembly 808 is bonded to the bottom surface of the positioning groove.
  • the positioning method of the displacement prism 809 is the same as the above-mentioned embodiment, and will not be repeated here.
  • the first lens assembly 802, the first polarization splitting prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805, the second polarization splitting prism assembly 806, and the second lens assembly 808 are installed in the housing 505 in a manner that is not limited to the above implementation
  • the positioning methods described in the examples are within the protection scope of the embodiments of the present application as long as they can achieve the effects of polarization splitting and polarization combining.
  • FIG. 17 is a schematic structural diagram of another optical transceiver assembly provided by an embodiment of the application.
  • the light path of the S-polarized light entering the first polarization splitting prism assembly 803 is the same as the exiting optical path of the data light or detection light of the first lens assembly 802. , It may appear that the reflected light enters the laser emitting component along the exit optical path of the data light or the detection light, which affects the emitting performance of the laser emitting component.
  • the first polarization beam splitting prism assembly 803, the U-shaped magnetic block 807, the half-wave plate 805, the second polarization beam splitting prism assembly 806 and the connecting surface of the support 801 It is set as an inclined surface, that is, the bottom surface of the first limiting groove 8011 is set to form an angle ⁇ with the horizontal axis.
  • the beam splitting prism component 806 is pasted on the inclined bottom surface, so that the exit optical path of the laser emitting component is inconsistent with the incident optical path of the reflected light in the first polarization beam splitting prism, and the reflected light cannot enter the laser emitting component, realizing the anti-reflection performance of the laser emitting component .
  • the optical module with OTDR function provided in the embodiments of the application is provided with an optical transceiver assembly, which is composed of a laser emitting assembly, a first lens assembly, a first polarization beam splitter prism, a Faraday rotator, a half-wave plate, a second lens assembly, It is composed of magnetic block, light transmission component, detection receiving component, etc.
  • the laser emitting component is used to emit data light and detection light.
  • the emitted data light or detection light enters the first lens component, and the first lens component is calibrated to collimated light.
  • the collimated light enters the first polarization beam splitting prism for light splitting, and then passes through the Faraday rotator, half-wave plate, and second polarization beam splitting prism in sequence.
  • the light is combined at the second polarization beam splitting prism, and the combined collimated light passes through the second lens assembly It enters the light transmission component and is transmitted to the optical fiber through the light transmission component.
  • the data light is emitted through the optical fiber.
  • the detection light is reflected in the optical fiber.
  • the reflected detection light enters the second lens component and is calibrated into collimated light by the second lens component.
  • the collimated light enters the second polarization beam splitting prism for light splitting, and then passes through the half-wave plate, Faraday rotator, and first polarization beam splitting prism in sequence.
  • the light is combined at the first polarization beam splitting prism, and the combined reflected light enters the detection receiving component.
  • the optical module realizes the separation of data light and reflected light through polarization beam splitting prism, Faraday rotator and half-wave plate, which reduces the crosstalk of data light to reflected light, shortens the attenuation blind zone of OTDR, and measures the light reflected by optical fiber more clearly , which greatly improves the optical receiving performance of OTDR.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,包括光收发组件(50),光收发组件(50)包括壳体(505)及分别与壳体(505)连接的光发射端(503)、光收发一体端(502)、检测光接收端(504),壳体(505)内设有第一偏振分光棱镜组件(803)、法拉第旋转片(804)、半波片(805)与第二偏振分光棱镜组件(806),光发射端(503)发射的数据光或检测光依次经过第一偏振分光棱镜组件(803)、法拉第旋转片(804)、半波片(805)与第二偏振分光棱镜组件(806)进行偏振分光与偏振合光,合光后的数据光或检测光进入光收发一体端(502);来自光收发一体端(502)的反射回的检测光依次经过第二偏振分光棱镜组件(806)、半波片(805)、法拉第旋转片(804)与第一偏振分光棱镜组件(803)进行偏振分光与偏振合光,合光后进入检测光接收端(504)。光模块的发射光与接收光的传输路线不相同,使得发射光对接收光造成的串扰较小。

Description

光模块
本申请要求在2019年09月16日提交中国专利局、申请号为201910872795.8、发明名称为“一种具有OTDR功能的光模块”,在2019年09月16日提交中国专利局、申请号为201910871996.6、发明名称为“一种光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着光通信发展越来越迅速,光纤铺设越来越多,对光纤资源进行智能监控已经越来越迫切,因此,大多的光模块都开始内置OTDR(Optical Time Domain Reflectometer,光时域检测)功能,通过OTDR技术对光纤性能进行监测,以判断光纤熔接点、连接器或断裂等事件。
OTDR利用其激光光源向被测光纤发送一光脉冲,光脉冲在光纤本身及各特征点上会有光信号反射回OTDR,反射回的光信号又通过定向耦合到OTDE的接收器,并在这里转换成电信号,最终在显示屏上显示出结果曲线。因此,在光模块中内置OTDR需要一种单纤双向、同波长光收发组件,传统的方案为:45°滤波片+吸光片的滤波方式,45°滤波片为半透射半反射波片,吸光片位于滤波片的下方,激光光源发射的光到达滤波片后部分光透过滤波片,部分管被反射,反射后的光被吸光片吸收,之后进入OTDR进行检测。
但是,目前光收发组件由于波长相同,激光光源发射的光会对反射回的光造 成串扰,这种串扰会影响OTDR的衰减盲区,造成OTDR的衰减盲区较大,严重影响OTDR光接收器件的性能。
发明内容
本申请实施例公开了一种光模块,包括数据光接收端与光收发组件,其中,
所述光收发组件包括壳体及分别与所述壳体连接的光发射端、光收发一体端与检测光接收端,所述数据光接收端与所述光收发一体端位于同一侧,且相距预设的距离;
所述壳体靠近所述数据光接收端处设有避让端面,用于避让所述数据光接收端;
所述检测光接收端设置在所述避让端面远离所述数据光接收端的一侧;
所述壳体内设有位移棱镜与光分合器件,来自所述光收发一体端的光经所述光分合器件出射,所述光分合器件出射的光进入所述位移棱镜的一端,经所述位移棱镜的另一端射向所述检测光接收端。
本申请实施例还公开了一种具有OTDR功能的光模块,包括电路板及与所述电路板电连接的光收发组件,其中,
所述光收发组件包括壳体及分别与所述壳体连接的光发射端、光收发一体端、检测光接收端,所述光发射端发射同波长的数据光与检测光;
所述壳体内设有第一偏振分光棱镜组件、法拉第旋转片、半波片与第二偏振分光棱镜组件,所述第一偏振分光棱镜组件用于对入射的数据光或检测光进行偏振分光,或对来自第二偏振分光棱镜组件的偏振分光进行偏振合光;所述法拉第旋转片设置在磁块内,所述法拉第旋转片在所述磁块施加的外加磁场作用下 对偏振分光后的光沿着光传播方向进行顺时针或逆时针旋转;所述半波片用于对入射的偏振分光沿着光传播方向进行顺时针旋转;所述第二偏振分光棱镜组件用于对旋转后的偏振分光进行偏振合光,或对反射回的检测光进行偏振分光;
所述光发射端发射的数据光或检测光通过所述第一偏振分光棱镜进行偏振分光,分光分别通过所述法拉第旋转片进行顺时针旋转,旋转后的分光分别通过所述半波片再次顺时针旋转,再次旋转后的分光通过所述第二偏振分光棱镜组件进行偏振合光,合光后的数据光或检测光进入光收发一体端;
来自所述光收发一体端的反射回的检测光通过所述第二偏振分光棱镜组件进行偏振分光,分光分别通过所述半波片进行顺时针旋转,旋转后的分光分别通过所述法拉第旋转片进行逆时针旋转,再次旋转后的分光通过所述第一偏振分光棱镜组件进行偏振合光,反射回的检测光合光后进入检测光接收端。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种具有OTDR功能的光模块的结构示意图;
图2为本申请实施例提供的具有OTDR功能的光模块的分解结构示意图;
图3为本申请实施例提供的具有OTDR功能的光模块的局部结构示意图;
图4为本申请实施例提供的另一角度的具有OTDR功能的光模块局部结构示意图;
图5为本申请实施例提供的具有OTDR功能的光模块中光收发组件的结构示意图;
图6为本申请实施例提供的具有OTDR功能的光模块中光收发组件的分解结构示意图;
图7为本申请实施例提供的具有OTDR功能的光模块中光收发组件的剖视图;
图8为本申请实施例提供的具有OTDR功能的光模块中光分合器件的结构示意图;
图9为本申请实施例提供的具有OTDR功能的光模块中光分合器件的分解结构示意图;
图10为本申请实施例提供的具有OTDR功能的光模块中光分合器件的局部分解结构示意图;
图11为本申请实施例提供的具有OTDR功能的光模块中光收发组件的发射光传输路线图;
图12为本申请实施例提供的具有OTDR功能的光模块中光收发组件的反射光传输路线图;
图13为本申请实施例提供的具有ODTR功能的光模块中壳体的结构示意图;
图14为本申请实施例提供的具有OTDR功能的光模块中壳体的剖视图;
图15为本申请实施例提供的具有OTDR功能的光模块中壳体与光分合器件的装配示意图;
图16为本申请实施例提供的具有OTDR功能的光模块中壳体与光分合器件的装配剖视图;
图17为本申请实施例提供的另一种具有OTDR功能的光模块的光收发组件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
光纤通信的核心环节之一是光电信号的转换,光纤通信使用携带信息的光信号在光纤/光波导中传输,利用光在光纤中的无源传输特性可以实现低成本、低损耗的信息传输。而计算机等信息处理设备采用的是电信号,这就需要在信号传输过程中实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光电转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、传输数据信号以及接地等,金手指实现的电连接方式已经成为光模块行业的标准方式,以此为基础,电路板是大部分光模块中必备的技术特征。
光模块的光口与外部光纤连接,与外部光纤建立双向的光信号连接;光模块的电口接入光网络单元中,与光网络单元建立双向的电信号连接;光模块实现光信号与电信号的相互转换,从而实现在光纤与光网络单元之间建立连接。具体地,来自外部光纤的光信号由光模块转换为电信号后输入至光网络单元中,来自光网络单元的电信号由光模块转换为光信号输入至外部光纤中。光模块是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
图1为本申请实施例提供的一种具有OTDR功能的光模块结构示意图,图2为本申请实施例提供的具有OTDR功能的光模块分解结构示意图。
如图1、图2所示,本申请实施例提供的具有OTDR功能的光模块包括上壳体10、下壳体20、解锁手柄30、电路板40及光收发组件50,其中,
上壳体10与下壳体20形成具有两个开口的包裹腔体,具体可以是在同一方向的两端开口(60、70),也可以是在不同方向上的两处开口;其中一个开口为电口70,用于插入光网络单元等上位机中,另一个开口为光口60,用于外部光纤接入以连接内部光纤,电路板40、光收发组件50等光电器件位于包裹腔体中。
上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;采用上壳体、下壳体结合的装配方式,便于将电路板等器件安装到壳体中,一般不会将光模块的壳体做成一体结构,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽结构无法安装,也不利于生产自动化。
解锁手柄30位于包裹腔体/下壳体20的外壁,拉动解锁手柄的末端可以使解锁手柄在外壁表面相对移动;光模块插入上位机时由解锁手柄将光模块固定在上位机的笼子里,通过拉动解锁手柄以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
图3为本申请实施例提供的具有OTDR功能的光模块的局部结构示意图;图4为本申请实施例提供的具有OTDR功能的光模块的另一角度的局部结构示意图;图5为本申请实施例提供的具有OTDR功能的光模块中光收发组件的结构示意图。如图3、图4、图5所示,光模块的光收发组件50与电路板40电连接,光收发组件50包括数据光接收端501、光收发一体端502、光发射端503、检测光 接收端504及壳体505,数据光接收端501处连接有光传导组件,光传导组件连接光纤,用于接收光纤传输的数据光;收发一体端502处连接有光传导组件,光传导组件连接光纤,用于向光纤发射数据光及接收光纤反射的检测光;光发射端503处设有激光发射组件,通过激光发射组件发射同波长的数据光与检测光,发射的检测光传输至连接光收发一体端502的光纤内,用于检测光纤内是否出现断点;检测光接收端504处设有探测接收组件,用于接收光纤反射的检测光,即激光发射组件发射的检测光传输至光纤内,光纤反射该检测光,反射后的检测光传输至探测接收组件,探测接收组件接收反射光,对接收到的反射光进行检测分析,以判断光纤内是否出现断点。本示例中,
发射光与接收光的传输路线不相同,即激光发射组件发射的光与探测接收组件接收的光成一定角度,在本申请的某一实施例中,发射光与接收光相互垂直。
本示例中,光发射端503发射同波长的数据光与检测光,而数据光或检测光发射的时间不同,携带的信息也不同;数据光接收端501处接收的数据光与光收发一体端502处接收的数据光的波长不相同,实现光模块的收发一体功能,同时增加OTDR功能,并将检测光接收集成于光发射器件。
本示例中,激光发射组件可包括单独的激光器发射芯片,也可包括激光器发射集成组件TO-CAN;光传导组件可为光波导或光纤为核心的组件。
图6为本申请实施例提供的具有OTDR功能的光模块中光收发组件的分解结构示意图;图7为本申请实施例提供的具有OTDR功能的光模块中光收发组件的剖视图。如图6、图7所示,为了实现光收发组件50的单纤双向、同波长传输,壳体505内设有光分合器件80,光分合器件80具有1个入射光面、1个收发光面与1个出射光面,使得光信号只能沿规定的光面顺序传输,从而用于将同一 根光纤中正向传输和反向传输的光信号分开,减小发射的光对接收的反射光的串扰。
光发射端503发射的数据光或检测光由入射光面进入光分合器件80,之后数据光或检测光由收发光面从光分合器件80中射出,进入连接光收发一体端502处的光纤内,数据光通过光纤传输,检测光对光纤进行断点检测。检测光在光纤内发生反射,反射后的检测光由收发光面进入光分合器件80,之后反射光由出射光面从光分合器件80中射出,进入检测光接收端504。
图8为本申请实施例提供的具有OTDR功能的光模块中光收发组件的结构位置分布示意图,图9为本申请实施例提供的具有OTDR功能的光模块中光分合器件的结构示意图,图10为本申请实施例提供的具有OTDR功能的光模块中光分合器件分解结构示意图。如图8、图9、图10所示,壳体505内设置的光分合器件80由第一偏振分光棱镜组件803、法拉第旋转片804、半波片805与第二偏振分光棱镜组件806组成,法拉第旋转片804嵌在U型磁块807内,第一偏振分光棱镜组件803、U型磁块807、半波片805与第二偏振分光棱镜组件806之间可相互胶合,第一偏振分光棱镜组件803、U型磁块807、半波片805与第二偏振分光棱镜组件806分别通过其底面安装于壳体505内。第一偏振分光棱镜组件803、法拉第旋转片804、半波片805与第二偏振分光棱镜组件806之间也可存在间隙,通过其底面安装于壳体505内。
法拉第旋转片804在磁场的作用下改变光的偏振方向,磁块的作用是提供法拉第旋转片所需的磁场,提供磁场的磁块可以是U型,也可以是其他形状。
本示例中,光分合器件80的入射光面为第一偏振分光棱镜组件803的光接收面,光分合器件80的收发光面为第二偏振分光棱镜组件806的光出射、接收 面(第二偏振分光棱镜组件806的光出射、接收面为同一光面),光分合器件80的出射光面为第一偏振分光棱镜组件803的反射光出射面。
第一偏振分光棱镜组件803可由第一偏振分光棱镜8031与第二偏振分光棱镜8032组合而成,第一偏振分光棱镜8031位于光发射端503的出光方向上,第二偏振分光棱镜8032的光轴平行于第一偏振分光棱镜8031,即光发射端503发射的数据光或检测光经第一偏振分光棱镜8031的入光面(入光面为第一偏振分光棱镜8031的光接收面)进入第一偏振分光棱镜8031,第一偏振分光棱镜8031对数据光或检测光进行分光。
第二偏振分光棱镜组件806可由第三偏振分光棱镜8061与第四偏振分光棱镜8062组合而成,第三偏振分光棱镜8061位于光收发一体端502的入光方向上,第四偏振分光棱镜8062的光轴平行于第三偏振分光棱镜8061的光轴,即光发射端503发射的数据光或检测光进入第一偏振分光棱镜8031分光,之后数据光或检测光依次经过法拉第旋转片804、半波片805与第二偏振分光棱镜组件806,在第三偏振分光棱镜8061合光,合光后由第三偏振分光棱镜8061的出光面射出,进入光收发一体端502处的光纤内。
数据光在光纤内进行传输,而检测光在光纤内发生反射,反射后的检测光依次经过第二偏振分光棱镜组件806、半波片805、法拉第旋转片804与第一偏振分光棱镜组件803,反射光由第一偏振分光棱镜8031的出光面射出,进入检测光接收端504。
本示例中,第一偏振分光棱镜8031与第四偏振分光棱镜8062同轴设置,第二偏振分光棱镜8032与第三偏振分光棱镜8061同轴设置,以实现光的偏振分光与偏振合光。
第一偏振分光棱镜组件803与第二偏振分光棱镜组件806也可由偏振分光棱镜与高反射镜组合而成,偏振分光棱镜用于将入射光分为P偏光与S偏光,高反射镜用于将P偏光或S偏光反射,实现光的分光与合光。
偏振分光棱镜的入光面上设有偏振分光膜,用于将入射的非偏振光分成两束垂直的线偏光,即P偏光与S偏光。法拉第旋转片804能在U型磁块807施加的磁场作用下使通过它的光的偏振方向在光传播方向进行顺时针或旋转(优选旋转45°),即U型磁块807对法拉第旋转片804施加外加磁场,法拉第旋转片804在外加磁场作用下将P偏光与S偏光在正向通过时进行顺时针旋转(优选旋转45°),在逆向通过时进行逆时针旋转(优选旋转45°),光传输方向不变。半波片805将光在正向或逆向通过时进行顺时针旋转(优选旋转45°),即光由法拉第旋转片804向半波片805方向传播时,顺时针旋转(优选旋转45°)后的P偏光与S偏光继续顺时针旋转(优选旋转45°),使得旋转后的P偏光与未旋转前的P偏光的偏振方向相互垂直,P偏光变换为S偏光,旋转后的S偏光与未旋转前的S偏光的偏振方向相互垂直,S偏光变换为P偏光;光由半波片805向法拉第旋转片方向传播时,P偏光与S偏光经过半波片805后顺时针旋转(优选旋转45°),之后旋转后的P偏光与S偏光进入法拉第旋转片804,法拉第旋转片804在外加磁场作用下将旋转后的P偏光与S偏光进行逆时针旋转(优选旋转45°),如此,P偏光经过半波片805与法拉第旋转片804后其偏振方向未发生改变,仍为P偏光,S偏光经过半波片805与法拉第旋转片804后其偏振方向未发生改变,仍为S偏光。
图11为本申请实施例提供的具有OTDR功能的光模块中数据光或检测光传输路线图,图12为本申请实施例提供的具有OTDR功能的光模块中反射的检测 光传输路线图。
如图11所示,光发射端503发射的数据光或检测光经由第一偏振分光棱镜8031的入光面进入第一偏振分光棱镜组件803,第一偏振分光棱镜8031将数据光或检测光进行分光,分为P偏光与S偏光,P偏光透过该第一偏振分光棱镜8031,而S偏光在第一偏振分光棱镜8031处以一定角度(优选角度45°)被反射,出射方向与P偏光出射方向不同(在本申请的某一实施例中S偏光的出射方向与P偏光的出射方向成90°角);之后P偏光依次进入法拉第旋转片804与半波片805,通过法拉第旋转片804与半波片805后P偏光转换为S偏光,而反射后的S偏光进入第二偏振分光棱镜8032,在第二偏振分光棱镜8032处再次以一定角度(优选角度45°)被反射,出射方向与P偏光平行,再次反射后的S偏光依次进入法拉第旋转片804与半波片805,S偏光被转换为P偏光;由半波片805出射的转换S偏光进入第二偏振分光棱镜组件806,转换S偏光在第四偏振分光棱镜8062处以一定角度(优选角度45°)被反射,出射方向与P偏光垂直;由半波片805出射的转换P偏光进入第三偏振分光棱镜8061,在第三偏振分光棱镜8061处与反射后的转换S偏光进行合光,合光后的数据光或检测光进入光收发一体端502。也就是说,光发射端503发射的数据光或检测光经由偏振分光与偏振合光后进入光收发一体端502,进入光纤内。
本示例中,第三偏振分光棱镜8061朝向光收发一体端502的一侧设有偏振分光膜,第二偏振分光棱镜8032朝向第三偏振分光棱镜8061的一侧设有P光反射膜,第一偏振分光棱镜8031朝向第三偏振分光棱镜8061的一侧设有S光反射膜,如图12所示,光纤内反射的检测光进入第三偏振分光棱镜8061处,第三偏振分光棱镜8061对反射光进行分光,将反射光分为P偏光与S偏光,P偏 光透过该第三偏振分光棱镜8061,而S偏光在第三偏振分光棱镜8061处以一定角度(优选角度45°)被反射,出射方向与P偏光出射方向不同(在本申请的某一实施例中S偏光的出射方向与P偏光的出射方向成90°角);之后P偏光依次进入半波片805与法拉第旋转片804,其偏振方向未发生改变,仍为P偏光,而反射后的S偏光进入第四偏振分光棱镜8062,在第四偏振分光棱镜8062处再次以一定角度(优选角度45°)被反射,出射方向与P偏光平行,再次反射后的S偏光依次进入半波片805与法拉第旋转片804,其偏振方向未发生改变,仍为S偏光;由法拉第旋转片804射出的P偏光进入第二偏振分光棱镜8032处,由于第二偏振分光棱镜8032处设有P光反射膜,P偏光在第二偏振分光棱镜8032处以一定角度(优选角度45°)被反射,反射后的P偏光的出射方向与P偏光垂直;由法拉第旋转片804射出的S偏光进入第一偏振分光棱镜8031处,由于第一偏振分光棱镜8031处设有S光反射膜,S偏光在第一偏振分光棱镜8031处以一定角度(优选角度45°)被反射,反射后的S偏光与反射后的P偏光在第一偏振分光棱镜8031处合光,合光后的反射光进入检测光接收端504.也就是说,光纤反射的检测光经由偏振分光与偏振合光后进入检测光接收端504,进行反射光的分析处理。
第一偏振分光棱镜8031的反射光出光面处设有滤光片810,滤光片810对入射的反射光进行滤光,即允许特定波长的光通过滤光片810,避免有干扰光进入检测光接收端504。本示例中,滤光片810为0°滤光片。
光分合器件80还包括第一透镜组件802与第二透镜组件808,第一透镜组件802的入光面和光发射端503对应,第一透镜组件802的出光面与第一偏振分光棱镜组件803的入光面对应,即光发射端503、第一透镜组件802与第一偏 振分光棱镜8031同轴设置。第二透镜组件808的入光面与光收发一体端502对应,即光收发一体端502、第二透镜组件808与第三偏振分光棱镜8061同轴设置。
光发射端503发射的数据光或检测光进入第一透镜组件802中,该数据光或检测光可能是发散光、会聚光或是平行光,若数据光或检测光是发散光或是会聚光,则数据光或检测光进入第一透镜组件802后,第一透镜组件802将发散光或是会聚光转换为平行光,转换后的平行光进入第一偏振分光棱镜组件803。同理,光纤反射的光进入第二透镜组件808中,第二透镜组件808将反射光转换为平行光,转换后的平行光进入第二偏振分光棱镜组件806。
光分合器件80还包括支架801,第一透镜组件802、第一偏振分光棱镜组件803、U型磁块807、半波片805、第二偏振分光棱镜组件806与第二透镜组件808均安装于支架801上。支架801上设有第一限位槽8011与第二限位槽8012且第一限位槽8011与第二限位槽8012之间具有高度差,第一透镜组件802、第一偏振分光棱镜组件803、U型磁块807、半波片805与第二偏振分光棱镜组件806通过第一限位槽8011安装于支架801上,第二透镜组件808通过第二限位槽8012安装于支架801上。第一限位槽8011的底面分别与第一透镜组件802的底面、第一偏振分光棱镜组件803的底面、U型磁块807的底面、半波片805的底面与第二偏振分光棱镜组件806的底面接触,可通过胶水将第一透镜组件802的底面、第一偏振分光棱镜组件803的底面、U型磁块807的底面、半波片805的底面与第二偏振分光棱镜组件806的底面分别粘接于第一限位槽8011的底面,从而将第一透镜组件802、第一偏振分光棱镜组件803、U型磁块807、半波片805与第二偏振分光棱镜组件806固定在支架801上。也可通过金属焊料 共晶技术或激光电焊技术将第一透镜组件802、第一偏振分光棱镜组件803、U型磁块807、半波片805与第二偏振分光棱镜组件806固定于支架801上。
第一透镜组件802采用胶水粘贴固定时,其可为金属结构件,也可为玻璃材质或其他方便用于支撑固定的各类材质的结构件。
由于第一偏振分光棱镜组件803对数据光或检测光进行偏振分光,第二偏振分光棱镜组件806对数据光或检测光进行偏振合光,使得第一透镜组件802出射的光与第二透镜组件808入射的光存在高度差,从而第二限位槽8012的底面低于第一限位槽8011的底面,第二透镜组件808的底面与第二限位槽8012的底面接触,可通过胶水粘接第二透镜组件808的底面与第二限位槽8012的底面,从而将第二透镜组件808固定在支架801上。也可通过金属焊料共晶技术或激光电焊技术将第二透镜组件808固定于支架801上。
第二透镜组件808采用胶水粘贴固定时,其可为金属结构件,也可为玻璃材质或其他方便用于支撑固定的各类材质的结构件。
支架801上还设有第三限位槽8013,滤光片810通过第三限位槽8013安装于支架801上。第三限位槽8013的底面低于第一限位槽8011的底面,第三限位槽8013的底面与滤光片810的底面接触,与底面相邻的侧面对滤光片810的侧面进行限位,之后可通过胶水将滤光片810的底面粘接于第三限位槽8013的底面上,从而将滤光片810固定在支架801上。
第一限位槽8011、第二限位槽8012与第三限位槽8013不仅限于方形凹槽,也可为圆形凹槽或凸槽或其他不规则的凹槽或凸槽形状,只要其能对第一透镜组件802、第一偏振分光棱镜组件803、U型磁块807、半波片805、第二偏振分光棱镜组件806与第二透镜组件808起到机械定位的作用即可,其均属本申请 实施例的保护范围。
第一透镜组件802与第二透镜组件808除了通过上述第一限位槽8011与第二限位槽8012进行限位安装外,还可通过光学影像识别技术或光斑成像技术或光束耦合技术进行限位安装。安装第一透镜组件802时,要保证第一透镜组件802的光学透镜的中心与激光发射组件的出射中心相重合,采用机械限位结构对第一透镜组件802进行限位时,容易出现加工误差导致两者不重合,但采用光学影像识别技术或光斑成像技术或光束耦合技术,可保证第一透镜组件的光学透镜的入射中心与激光发射组件的出射中心相重合,如此保证了第一透镜组件802的精确安装。
同理,安装第二透镜组件808时,采用光学影像识别技术或光斑成像技术或光束耦合技术,可保证第二透镜组件808的光学透镜的出射中心与光收发一体端的入射中心相重合,如此保证了第二透镜组件808的精确安装。
也可将支架801上的限位结构调整为具备小间隙的非接触结构,即将第一限位槽8011中凹槽的两侧面与第一透镜组件802之间采用非紧密结构限位,采用光学投影识别技术或光斑耦合技术实现第一透镜组件802的高精度精准装配。也就是说,在支架801上设置凹槽,将第一透镜组件802放置于凹槽内,通过光学投影识别技术或光斑耦合技术移动第一透镜组件802,使得第一透镜组件的光学透镜的入射中心与激光发射组件的出射中心相重合,之后将第一透镜组件802粘贴在凹槽内,此时第一透镜组件802的侧面与凹槽的侧面之间不接触,之后根据第一透镜组件802实现第一偏振分光棱镜组件803、U型磁块807、半波片805与第二偏振分光棱镜组件806的高精度精准装配。
同理,在支架801上设置凹槽,将第二透镜组件808放置于凹槽内,通过光学识别技术或光斑耦合技术移动第二透镜组件808,使得第二透镜组件808的光学透镜的出射中心与光收发一体端502的入射中心相重合,之后将第二透镜组件808粘贴在凹槽内,此时第二透镜组件808的侧面与凹槽的侧面之间不接触,实现第二透镜组件808的高精度精准装配。
采用光学影像识别技术或光斑成像技术或光束耦合技术对透镜组件与支架进行高精度定位安装后,透镜组件可通过胶水粘贴固定于支架表面上,且透镜组件与支架表面之间的胶层厚度小于或等于15微米。
透镜组件与支架之间的安装除了上述胶水固定外,还可采用激光焊接的方式进行固定,具体地,可在支架801一侧设计2个内凹结构,这2个内凹结构与第一透镜组件802、第二透镜组件808的垂直厚度为0.3mm,第一透镜组件802、第二透镜组件808与支架801之间通过激光电焊连接,电焊方式为2排多列方式。
为了保证第一透镜组件802与第二透镜组件808的安装固定,也可将第一透镜组件802、第二透镜组件808与支架801结合形成一体成型件,即支架801具备2个凸台结构用来放置第一透镜组件802的光学透镜与第二透镜组件808的光学透镜,之后通过机械定位或光学影像识别技术或光斑成像技术或光束耦合技术将第一透镜组件802的光学透镜、第二透镜组件808的光学透镜分别安装于支架801的两个凸台结构上,可采用胶水粘贴,也可采用激光点焊。
本示例中,第一透镜组件802的光学透镜与第二透镜组件808的光学透镜具备会聚光束与准直光束的转换作用,可包括各种非折射率渐变的球面或非球面的玻璃或塑料透镜,也可包括渐变折射率透镜,从而可将激光发射组件发射的 检测光束转换为平行光束,将光纤反射的光束转换为平行光束。
本示例中,可在检测光接收端504与探测接收组件之间设置第三透镜组件90,第三透镜组件90采用与第一透镜组件802、第二透镜组件808同样的安装方式固定安装于支架801上,由第一偏振分光棱镜组件803射出的反射光进入第三透镜组件90内,第三透镜组件90将出射的准直光转化为会聚光,之后会聚光被探测接收组件接收。
第一透镜组件802、第一偏振分光棱镜组件803、U型磁块807、半波片805、第二偏振分光棱镜组件806、第二透镜组件808均安装于壳体505的腔体内,如图13、图14所示,壳体505的侧面5051设有侧向盖孔,壳体505通过该侧向盖孔与外界连通;壳体505的侧向盖孔处设有活动端盖,装配时,可打开活动端盖,将第一透镜组件802、第一偏振分光棱镜组件803、法拉第旋转片804、U型磁块807、半波片805、第二偏振分光棱镜组件806、第二透镜组件808等安装至壳体505内。
壳体505上设有光收发一体端面5052、光入射端面5053与光接收端面5054,光收发一体端面5052、光入射端面5053与光接收端面5054均与侧面5051相邻,光发射端503通过光入射端面5053与壳体505连接,光收发一体端502通过光收发一体端面5052与壳体505连接,检测光接收端504通过光接收端面5054与壳体505连接。且光入射端面5053上设有入射光孔,光发射端503发射的数据光或检测光通过入射光孔进入光分合器件80;光收发一体端面5052上设有光收发一体光孔,光分合器件80出射的光通过光收发一体光孔进入光收发一体端502;光接收端面5054上设有接收光孔,光分合器件80出射的反射光通过接收光孔进入检测光接收端504。
光接收端面5054与光收发一体端面5052之间设有向下倾斜的避让端面5055,该避让端面5055靠近数据光接收端501,用于避让光模块的数据光接收端501。本示例提供的光模块,数据光接收端501与光收发一体端502位于同一侧,且两者相距预设的距离。连接数据光接收端501的光纤接口与连接光收发一体端502的光纤接口之间有距离要求,因此光模块内数据光接收端501与光收发一体端502之间也需要有距离要求,需要满足预设的距离,因此在壳体505上设置避让端面5055,以满足光模块的协议要求。
避让端面5055包括第一端面101、第二端面102与第三端面103,第一端面101的一端与光接收端面5054连接、另一端与第二端面102的一端连接,第二端面102的另一端与第三端面103的一端连接,第三端面103的另一端与光收发一体端面5052连接,且第一端面101的倾斜度大于第二端面102的倾斜度,第三端面103垂直于光收发一体端面5052,以最大程度的对数据光接收端501进行避让。
为了避让数据光接收端501,检测光接收端504设置在避让端面5055远离数据光接收端501的一侧,即光接收端面5054上的接收光孔相对左移,在接收光孔与第一偏振分光棱镜组件803的反射光出光面之间设有位移棱镜809,来自光收发一体端502的光经光分合器件80出射,光分合器件80出射的光进入位移棱镜809的一端,经位移棱镜809的另一端射向检测光接收端504。
滤光片810位于第一偏振分光棱镜8031与位移棱镜809之间,第一偏振分光棱镜8031射出的反射光进入滤光片810,滤光片对入射的反射光进行滤光,滤光后的反射光进入位移棱镜809的一端,经位移棱镜809的另一端射向检测光接收端504。
壳体505的腔体内设有第一定位槽5056与第二定位槽5057,第一定位槽5056包括第一侧面104、第一底面105与第二侧面106,第二定位槽5057包括第一侧面104、第二底面108与第三侧面107,第一底面105低于第二底面108,第一侧面104的顶端与第二底面108位于同一平面内。如图15、图16所示,支架801通过第一定位槽5056安装于壳体505内,支架801的底面与第一底面105接触,第一侧面104与第二侧面106与支架801的两侧面相抵接,对支架801进行限位;可将支架801的底面粘接于第一底面105上,实现支架801的固定。
安装支架801时,需保证光入射端面5053上入射光孔与支架801上第一透镜组件802同轴设置,光收发一体端面5052上光收发一体光孔与支架801上第二透镜组件808同轴设置。
本示例中,位移棱镜809可为平行四边形的位移棱镜,位移棱镜809通过第二定位槽5057安装于壳体505内,位移棱镜809的底面与第二底面108接触,位移棱镜809的出光面与第三侧面107相抵接,第三侧面107为光接收端面5054的内侧面。
第二底面108靠近接收光孔处设有凸台5058,凸台5058包括第四侧面109与第五侧面110,第四侧面109与第一侧面104位于同一平面内。位移棱镜809包括第六侧面111,第六侧面111分别与位移棱镜809的入光面、出光面连接,且第六侧面111为倾斜面,凸台5058的第五侧面110为倾斜面,第五侧面110与第六侧面111相抵接,实现对位移棱镜809的定位;位移棱镜809的底面可粘接于第二底面108上,通过第三侧面107与凸台5058来夹持位移棱镜809,实现位移棱镜809的固定。
位移棱镜809还可以采用胶水粘接实现固定,具体地,在第二定位槽5057与位移棱镜809之间涂敷胶水,将位移棱镜809直接粘接在第二定位槽5057的表面,为了避免胶水随意流动,在第二定位槽5057的表面可以开设胶水收集槽。
可将第一透镜组件802、U型磁块807与第二透镜组件808先安装于支架801上,之后将装配好的支架801嵌入壳体505的第一定位槽5056内。也可直接将第一透镜组件802、第一偏振分光棱镜组件803、U型磁块807、半波片805、第二偏振分光棱镜组件806与第二透镜组件808安装于壳体505内,即在壳体505的腔体内依次设置两个定位槽,第一透镜组件802与第二透镜组件808分别通过定位槽安装于壳体505内,由于第一偏振分光棱镜组件803对数据光或检测光进行偏振分光,第二偏振分光棱镜组件806对数据光或检测光进行偏振合光,使得第一透镜组件802出射的光与第二透镜组件808入射的光存在高度差,因此装配第一透镜组件802的定位槽高于第二透镜组件808的定位槽,需保证第一透镜组件802与光入射端面5053的入射光孔同轴设置,第一透镜组件802与第一偏振分光棱镜组件803同轴设置,第二偏振分光棱镜组件806与第二透镜组件808同轴设置,第二透镜组件808与光收发一体端面5052的光收发一体光孔同轴设置。
通过定位槽对第一透镜组件802与第二透镜组件808的定位后,可将第一透镜组件802的底面粘接于定位槽的底面,第二透镜组件808的底面粘接于定位槽的底面。
位移棱镜809的定位方式与上述实施例一致,此处不再赘述。
第一透镜组件802、第一偏振分光棱镜组件803、U型磁块807、半波片805、第二偏振分光棱镜组件806与第二透镜组件808安装于壳体505内的方式不仅 限于上述实施例所述的定位方式,只要能实现偏振分光与偏振合光效果的方式均属于本申请实施例的保护范围。
图17为本申请实施例提供的另一种光收发组件的结构示意图。如图12所示,光纤反射后的光经第二偏振分光棱镜组件806分光后,S偏光入射第一偏振分光棱镜组件803的光路与第一透镜组件802的数据光或检测光出射光路一致,有可能出现反射光沿着数据光或检测光出射光路进入激光发射组件,影响激光发射组件的发射性能。本示例中,为了解决这一问题,如图17所示,将第一偏振分光棱镜组件803、U型磁块807、半波片805、第二偏振分光棱镜组件806与支架801接触的连接面设置为倾斜面,即将第一限位槽8011的底面设置成与水平轴成某一夹角α的方式,第一偏振分光棱镜组件803、U型磁块807、半波片805、第二偏振分光棱镜组件806粘贴于该倾斜底面上,如此激光发射组件出射光路与第一偏振分光棱镜内反射光的入射光路不一致,反射光无法进入激光发射组件内,实现了激光发射组件的抗反射性能。
本申请实施例提供的具有OTDR功能的光模块设置光收发组件,该光收发组件由激光发射组件、第一透镜组件、第一偏振分光棱镜、法拉第旋转片、半波片、第二透镜组件、磁块、光传导组件、探测接收组件等组成,激光发射组件用于发射数据光与检测光,发射后的数据光或检测光进入第一透镜组件,由第一透镜组件校为准直光,准直光进入第一偏振分光棱镜进行分光,之后依次经过法拉第旋转片、半波片与第二偏振分光棱镜,在第二偏振分光棱镜合光,合光后的准直光经由第二透镜组件进入光传导组件,通过光传导组件传输至光纤内,数据光通过光纤发射出去,检测光在光纤内发生反射,反射后的检测光进入第二透镜组件,由第二透镜组件校为准直光,准直光进入第二偏振分光棱镜进行分光,之后依次 经过半波片、法拉第旋转片、第一偏振分光棱镜,在第一偏振分光棱镜合光,合光后的反射光进入探测接收组件,对接收的反射光进行分析,判定光纤内是否存在断点。该光模块通过偏振分光棱镜、法拉第旋转片与半波片实现数据光与反射光的分离,减小了数据光对反射光的串扰,缩短OTDR的衰减盲区,更清晰的测得光纤反射的光,极大地提高了OTDR光接收性能。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种光模块,其特征在于,包括数据光接收端与光收发组件,其中,
    所述光收发组件包括壳体及分别与所述壳体连接的光发射端、光收发一体端与检测光接收端,所述数据光接收端与所述光收发一体端位于同一侧,且相距预设的距离;
    所述壳体靠近所述数据光接收端处设有避让端面,用于避让所述数据光接收端;所述检测光接收端设置在所述避让端面远离所述数据光接收端的一侧;
    所述壳体内设有位移棱镜与光分合器件,来自所述光收发一体端的光经所述光分合器件出射,所述光分合器件出射的光进入所述位移棱镜的一端,经所述位移棱镜的另一端射向所述检测光接收端。
  2. 根据权利要求1所述的光模块,其特征在于,所述壳体包括光入射端面、光收发一体端面与光接收端面,所述光发射端通过所述光入射端面与所述壳体连接,所述光收发一体端通过所述光收发一体端面与所述壳体连接,所述检测光接收端通过所述光接收端面与所述壳体连接;
    所述避让端面的两端分别与所述光收发一体端面、光接收端面连接。
  3. 根据权利要求2所述的光模块,其特征在于,所述避让端面包括第一端面、第二端面与第三端面,所述第一端面的一端与所述光接收端面连接、另一端与所述第二端面的一端连接;所述第二端面的另一端与所述第三端面的一端连接,所述第三端面的另一端与所述光收发一体端面连接;
    所述第一端面的倾斜度大于所述第二端面的倾斜度,所述第三端面垂直于所述光收发一体端面。
  4. 根据权利要求1所述的光模块,其特征在于,所述壳体内设有第一定位槽与 第二定位槽,所述光分合组件通过所述第一定位槽安装于所述壳体内,所述位移棱镜通过所述第二定位槽安装于所述壳体内。
  5. 根据权利要求4所述的光模块,其特征在于,所述第一定位槽包括第一侧面、第一底面与第二侧面,所述第二定位槽包括第一侧面、第二底面与第三侧面,所述第一底面低于所述第二底面,所述第一侧面的顶端与所述第二底面位于同一平面内;
    所述第一侧面与所述第二侧面分别与所述光分合器件的侧面抵接,所述第三侧面与所述位移棱镜的出光面抵接。
  6. 根据权利要求5所述的光模块,其特征在于,所述第三侧面为所述光接收端面的内侧面。
  7. 根据权利要求6所述的光模块,其特征在于,所述第二底面上靠近所述接收光孔处设有凸台,所述凸台与所述位移棱镜的侧面相抵接。
  8. 根据权利要求7所述的光模块,其特征在于,所述凸台包括第四侧面与第五侧面,所述第四侧面与所述第一侧面位于同一平面内;
    所述位移棱镜包括第六侧面,所述第六侧面分别与所述位移棱镜的入光面、出光面连接,所述第五侧面与所述第六侧面相抵接。
  9. 根据权利要求1所述的光模块,其特征在于,所述光分合器件包括第一偏振分光棱镜组件、法拉第旋转片、U型磁块、半波片与第二偏振分光棱镜组件,所述法拉第旋转片嵌在所述U型磁块内;
    所述第一偏振分光棱镜组件、所述U型磁块、所述半波片与所述第二偏振分光棱镜组件依次安装于所述壳体内。
  10. 根据权利要求2所述的光模块,其特征在于,所述壳体上分别与所述光入射 端面、光收发一体端面、光接收端面连接的侧面上设有侧向盖孔,所述侧向盖孔处设有活动端盖。
  11. 一种具有OTDR功能的光模块,其特征在于,包括电路板及与所述电路板电连接的光收发组件,其中,
    所述光收发组件包括壳体及分别与所述壳体连接的光发射端、光收发一体端、检测光接收端,所述光发射端发射同波长的数据光与检测光;
    所述壳体内设有第一偏振分光棱镜组件、法拉第旋转片、半波片与第二偏振分光棱镜组件,所述第一偏振分光棱镜组件用于对入射的数据光或检测光进行偏振分光,或对来自所述第二偏振分光棱镜组件的偏振分光进行偏振合光;所述法拉第旋转片设置在磁块内,所述法拉第旋转片在所述磁块施加的外加磁场作用下对偏振分光后的光沿着光传播方向进行顺时针或逆时针旋转;所述半波片用于对入射的偏振分光沿着光传播方向进行顺时针旋转;所述第二偏振分光棱镜组件用于对旋转后的偏振分光进行偏振合光,或对反射回的检测光进行偏振分光;所述光发射端发射的数据光或检测光通过所述第一偏振分光棱镜进行偏振分光,分光分别通过所述法拉第旋转片进行顺时针旋转,旋转后的分光分别通过所述半波片再次顺时针旋转,再次旋转后的分光通过所述第二偏振分光棱镜组件进行偏振合光,合光后的数据光或检测光进入光收发一体端;
    来自所述光收发一体端的反射回的检测光通过所述第二偏振分光棱镜组件进行偏振分光,分光分别通过所述半波片进行顺时针旋转,旋转后的分光分别通过所述法拉第旋转片进行逆时针旋转,再次旋转后的分光通过所述第一偏振分光棱镜组件进行偏振合光,反射回的检测光合光后进入检测光接收端。
  12. 根据权利要求11所述的光模块,其特征在于,所述第一偏振分光棱镜组件 包括第一偏振分光棱镜与第二偏振分光棱镜,所述第一偏振分光棱镜位于所述光发射端的出光方向上;
    所述第一偏振分光棱镜的入光面设有偏振分光膜,所述第一偏振分光棱镜的出光面设有反射膜;所述第二偏振分光棱镜的入光面设有反射膜。
  13. 根据权利要求11所述的光模块,其特征在于,所述第一偏振分光棱镜组件包括第一偏振分光棱镜与第一反射镜,所述第一偏振分光棱镜位于所述光发射端的出光方向上;所述第一偏振分光棱镜的入光面设有偏振分光膜,所述第一偏振分光棱镜的出光面设有反射膜;
    所述第一偏振分光棱镜的光轴平行于所述第一反射镜的光轴。
  14. 根据权利要求12所述的光模块,其特征在于,所述第二偏振分光棱镜组件包括第三偏振分光棱镜与第四偏振分光棱镜,所述第三偏振分光棱镜位于所述光收发一体端的入光方向上;
    所述第一偏振分光棱镜与所述第四偏振分光棱镜同轴设置,所述第二偏振分光棱镜与所述第三偏振分光棱镜同轴设置。
  15. 根据权利要求13所述的光模块,其特征在于,所述第二偏振分光棱镜组件包括第三偏振分光棱镜与第二反射镜,所述第三偏振分光棱镜位于所述光收发一体端的入光方向;
    所述第一偏振分光棱镜与所述第二反射镜同轴设置,所述第一反射镜与所述第三偏振分光棱镜同轴设置。
  16. 根据权利要求11-15任一项所述的光模块,其特征在于,所述壳体内还设有第一透镜组件与第二透镜组件,所述第一透镜组件的出光面靠近所述第一偏振分光棱镜的入光面,所述第二透镜组件的入光面靠近所述第三偏振分光棱镜的 出光面;
    所述第一透镜组件与所述第一偏振分光棱镜同轴设置,所述第二透镜组件与所述第三偏振分光棱镜同轴设置。
  17. 根据权利要求16所述的光模块,其特征在于,所述壳体内还设有支架,所述支架上设有高度不同的定位槽,所述第一透镜组件、所述磁块与所述第二透镜组件分别通过所述定位槽固定于所述支架上。
  18. 根据权利要求17所述的光模块,其特征在于,所述第一透镜组件、所述第二透镜组件与所述支架为一体式结构。
  19. 根据权利要求17所述的光模块,其特征在于,所述支架上与所述磁块接触的定位槽底面为倾斜面,所述磁块安装于所述倾斜面上。
  20. 根据权利要求11所述的光模块,其特征在于,所述光发射端的出光方向和所述检测光接收端的入光方向相垂直。
PCT/CN2020/095831 2019-09-16 2020-06-12 光模块 WO2021051900A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910872795.8A CN110596829B (zh) 2019-09-16 2019-09-16 一种具有otdr功能的光模块
CN201910871996.6A CN110596828A (zh) 2019-09-16 2019-09-16 一种光模块
CN201910871996.6 2019-09-16
CN201910872795.8 2019-09-16

Publications (1)

Publication Number Publication Date
WO2021051900A1 true WO2021051900A1 (zh) 2021-03-25

Family

ID=74883948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095831 WO2021051900A1 (zh) 2019-09-16 2020-06-12 光模块

Country Status (1)

Country Link
WO (1) WO2021051900A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990053044A (ko) * 1997-12-23 1999-07-15 윤종용 광 서큘레이터
CN101762850A (zh) * 2008-12-26 2010-06-30 华为技术有限公司 一种光模块
CN106646775A (zh) * 2016-10-26 2017-05-10 青岛海信宽带多媒体技术有限公司 一种双纤光模块
CN208721840U (zh) * 2018-09-12 2019-04-09 河北志方通信设备有限公司 一种单纤双向光组件及双发双收光模块
CN109814214A (zh) * 2019-04-11 2019-05-28 武汉英飞光创科技有限公司 一种光学器件及准直光束定位系统
CN110596829A (zh) * 2019-09-16 2019-12-20 青岛海信宽带多媒体技术有限公司 一种具有otdr功能的光模块
CN110596828A (zh) * 2019-09-16 2019-12-20 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990053044A (ko) * 1997-12-23 1999-07-15 윤종용 광 서큘레이터
CN101762850A (zh) * 2008-12-26 2010-06-30 华为技术有限公司 一种光模块
CN106646775A (zh) * 2016-10-26 2017-05-10 青岛海信宽带多媒体技术有限公司 一种双纤光模块
CN208721840U (zh) * 2018-09-12 2019-04-09 河北志方通信设备有限公司 一种单纤双向光组件及双发双收光模块
CN109814214A (zh) * 2019-04-11 2019-05-28 武汉英飞光创科技有限公司 一种光学器件及准直光束定位系统
CN110596829A (zh) * 2019-09-16 2019-12-20 青岛海信宽带多媒体技术有限公司 一种具有otdr功能的光模块
CN110596828A (zh) * 2019-09-16 2019-12-20 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN110596828A (zh) 一种光模块
CN110596829B (zh) 一种具有otdr功能的光模块
US5499309A (en) Method of fabricating optical component including first and second optical waveguide chips having opposed inclined surfaces
US9939593B2 (en) Light steering for silicon photonic devices
US5497438A (en) Optical transmission and reception module having coupled optical waveguide chips
US6501876B1 (en) Bidirectional optical communication device and bidirectional optical communication apparatus
US6854897B2 (en) Ferrule part and optical communications module
CN112558238A (zh) 一种光模块
WO2022088412A1 (zh) 单光纤双向收发装置及光纤通信系统
CN210775927U (zh) 一种光模块
CN112698451A (zh) 一种光模块
CN112698450B (zh) 一种光模块
US11959822B2 (en) Optical integrated device and optical time domain reflectometer
US20080252961A1 (en) Optical transceiver
WO2021051900A1 (zh) 光模块
CN217606135U (zh) 光模块
CN217606136U (zh) 光模块
WO2021057291A1 (zh) 一种光模块
JP2001324654A (ja) 双方向光通信装置の組立て方法および双方向光通信装置
JP3709313B2 (ja) 双方向通信光モジュール用素子及びその検査方法
JP2005134803A (ja) 光アイソレータ付きフェルール及びそれを備えた光送受信モジュール
JP5502271B2 (ja) 双方向光モジュールおよび光パルス試験器
JP2000214345A (ja) 光通信デバイスおよび双方向光通信装置
WO2021042775A1 (zh) 一种光模块
JP2000338359A (ja) 光モニタモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864728

Country of ref document: EP

Kind code of ref document: A1