WO2017130984A1 - Angle detection device and method - Google Patents

Angle detection device and method Download PDF

Info

Publication number
WO2017130984A1
WO2017130984A1 PCT/JP2017/002404 JP2017002404W WO2017130984A1 WO 2017130984 A1 WO2017130984 A1 WO 2017130984A1 JP 2017002404 W JP2017002404 W JP 2017002404W WO 2017130984 A1 WO2017130984 A1 WO 2017130984A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
unit
detection
signal
magnetic field
Prior art date
Application number
PCT/JP2017/002404
Other languages
French (fr)
Japanese (ja)
Inventor
智史 深瀬
片岡 誠
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to JP2017564278A priority Critical patent/JP6653336B2/en
Priority to DE112017000564.7T priority patent/DE112017000564B4/en
Publication of WO2017130984A1 publication Critical patent/WO2017130984A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/032Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure affecting incoming signal, e.g. by averaging; gating undesired signals

Definitions

  • the present invention relates to an angle detection apparatus and method.
  • Patent Document 1 Japanese Patent No. 5043878 Patent Document 2 Japanese Patent No. 542045 Patent Document 3 Japanese Patent No. 5449417 Patent Document 4 Japanese Patent No. 5687223 Patent Document 5 Japanese Patent No. 4111813
  • the conventional adjustment of the angle nonlinearity error described in Patent Documents 3, 4, and 5 is performed by the AD conversion unit such as the delta-sigma modulator, which causes the occurrence of the angle nonlinearity error (offset, sensitivity mismatch, other axis). It is advocated to correct (sensitivity).
  • the AD conversion unit such as the delta-sigma modulator
  • sensitivity causes the occurrence of the angle nonlinearity error (offset, sensitivity mismatch, other axis).
  • correction by an analog circuit, for example, correction in a delta-sigma modulator, reduces the effect of oversampling and causes noise aliasing.
  • the output modulation signal is converted into multi-bit digital data through a decimation filter, and then the multi-bit data is operated to correct the cause of the angle nonlinearity error. It is also possible to do.
  • the number of multi-bit operations increases as the resolution becomes higher.
  • the circuit scale increases. Although it depends on the circuit configuration, in general, a 1-bit ⁇ 16-bit multiplier and a 16-bit ⁇ 16-bit multiplier increase the number of gates by about 10 times and increase the circuit area. Therefore, a high-resolution rotation angle sensor with a small angle nonlinearity error and low noise is provided while suppressing an increase in circuit area.
  • the angle detection device may detect the angle of the magnetic field.
  • the angle detection device may include a first delta-sigma modulation unit that delta-sigma modulates the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputs the first modulation signal.
  • the angle detection device may include a second delta-sigma modulation unit that delta-sigma-modulates a second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputs a second modulation signal.
  • the angle detection device may include a loop control unit that causes the detection angle to follow the first modulation signal and the second modulation signal by loop control.
  • the loop control unit may include a phase difference detection unit that detects a phase difference of a detection angle with respect to an angle indicated by the first modulation signal and the second modulation signal.
  • the phase difference detection unit may adjust the error of the detection angle with respect to the angle of the magnetic field.
  • the phase difference detection unit may output a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle.
  • the phase difference detection unit may adjust at least one of the first feedback signal, the second feedback signal, and the phase difference signal so that the error is reduced.
  • the phase difference detection unit may calculate an outer product of a set of the first modulation signal and the second modulation signal and a set of the first feedback signal and the second feedback signal and output a phase difference signal.
  • the phase difference detection unit may include a first angle addition unit that adds the first adjustment angle to the detection angle.
  • the phase difference detection unit includes a first amplitude adjustment unit that generates a first feedback signal for adjusting an amplitude error between the first modulation signal and the second modulation signal, using the angle output from the first angle addition unit. It's okay.
  • the phase difference detection unit may include a first angle subtraction unit that subtracts the first adjustment angle from the detection angle.
  • the first amplitude adjusting unit uses the sin value corresponding to the angle output from the first angle adding unit and the sin value corresponding to the angle output from the first angle subtracting unit, to calculate the first modulation signal and the second modulation signal.
  • a first feedback signal for adjusting the amplitude error may be generated.
  • the angle detection device may include a storage unit that can input an address based on an angle and output a sin value and a cos value corresponding to the angle as data corresponding to each angle.
  • the first angle addition unit and the first angle subtraction unit input an address based on an angle obtained by adding the first adjustment angle to the detection angle and an address based on an angle obtained by subtracting the first adjustment angle from the detection angle to the storage unit in different cycles. You can do it.
  • the first amplitude adjustment unit may receive the sin value according to the angle output from the first angle addition unit and the sin value according to the angle output from the first angle subtraction unit from the storage unit in different cycles.
  • the first amplitude adjustment unit may generate a first feedback signal for adjusting an amplitude error between the first modulation signal and the second modulation signal.
  • the phase difference detection unit may include a second angle addition unit that adds the second adjustment angle to the detection angle.
  • the phase difference detection unit includes a second amplitude adjustment unit that generates a second feedback signal for adjusting an amplitude error between the first modulation signal and the second modulation signal, using the angle output from the second angle addition unit. It's okay.
  • the phase difference detection unit may include a second angle subtraction unit that subtracts the second adjustment angle from the detection angle.
  • the second amplitude adjustment unit uses the cos value according to the angle output from the second angle addition unit and the cos value according to the angle output from the second angle subtraction unit, to generate the first modulation signal and the second modulation signal.
  • a second feedback signal for adjusting the amplitude error may be generated.
  • the phase difference detection unit may include an offset adjustment unit that multiplies the first feedback adjustment signal by the first offset adjustment value for adjusting the offset of the first modulation signal and adds or subtracts the phase difference.
  • the offset adjustment unit may add or subtract the phase difference by multiplying the bit stream having the same weight as the first offset adjustment value by the first feedback signal for each bit.
  • the offset adjustment unit may add or subtract the phase difference by multiplying the second feedback signal by a second offset adjustment value for adjusting the offset of the second modulation signal.
  • the phase difference detection unit may include a third angle addition unit that adds the third adjustment angle to the detection angle.
  • the phase difference detection unit may include a third angle subtraction unit that subtracts the third adjustment angle from the detection angle.
  • the phase difference detection unit generates a first feedback signal using a detection angle to which the third adjustment angle is added in order to adjust the other-axis sensitivity between the first modulation signal and the second modulation signal.
  • An other-axis sensitivity adjustment unit that generates the second feedback signal using the detected angle from which is subtracted may be included.
  • the other-axis sensitivity adjustment unit may generate a first feedback signal based on a sin value corresponding to a detection angle to which the third adjustment angle is added.
  • the other-axis sensitivity adjustment unit may generate the second feedback signal based on the cos value corresponding to the detection angle obtained by subtracting the third adjustment angle.
  • the phase difference detection unit sequentially inputs the bit stream of the first modulation signal and the bit stream of the second modulation signal for each bit, and calculates a cross product for each bit between the pair of the first feedback signal and the second feedback signal.
  • An outer product calculation unit may be included.
  • the loop control unit may include a loop filter that allows a frequency component equal to or lower than a predetermined frequency in the phase difference to pass.
  • the loop control unit may include an angle update unit that increases or decreases the detection angle according to the phase difference that has passed through the loop filter.
  • the angle detection device may include a first magnetic sensing unit that outputs a first magnetic field detection signal corresponding to the first direction component of the magnetic field.
  • the angle detection device may include a second magnetic sense unit that outputs a second magnetic field detection signal corresponding to the second direction component of the magnetic field.
  • the method may adjust the error of the detection angle of the angle detection device that detects the angle of the magnetic field.
  • the method may comprise the step of delta-sigma modulating the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputting the first modulated signal.
  • the method may comprise the step of delta-sigma modulating the second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputting a second modulated signal.
  • the method may comprise the step of causing the detection angle to follow the first modulation signal and the second modulation signal by loop control.
  • the step of following may include a step of detecting a phase difference of a detection angle with respect to an angle indicated by the first modulation signal and the second modulation signal. The step of detecting the phase difference may adjust an error of the detection angle with respect to the angle of the magnetic field.
  • the angle detection device may detect the angle of the magnetic field.
  • the angle detection device may include a first delta-sigma modulation unit that delta-sigma modulates the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputs the first modulation signal.
  • the angle detection device may include a second delta-sigma modulation unit that delta-sigma-modulates a second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputs a second modulation signal.
  • the angle detection device may include a loop control unit that causes the detection angle to follow the first modulation signal and the second modulation signal by loop control. The loop control unit may adjust the error of the detection angle with respect to the angle of the magnetic field using a preset adjustment value.
  • the method may adjust the error of the detection angle of the angle detection device that detects the angle of the magnetic field.
  • the method may comprise the step of delta-sigma modulating the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputting the first modulated signal.
  • the method may comprise the step of delta-sigma modulating the second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputting a second modulated signal.
  • the method may comprise the step of causing the detection angle to follow the first modulation signal and the second modulation signal by loop control. In the following step, the error of the detected angle with respect to the angle of the magnetic field may be adjusted using a preset adjustment value.
  • the structural example of the rotation angle sensor 1000 which concerns on this embodiment is shown.
  • the 1st structural example of the angle detection apparatus 10 which concerns on this embodiment is shown.
  • 2 shows a first example of a first magnetic field detection signal Vx and a second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 according to the present embodiment.
  • the 2nd structural example of the angle detection apparatus 10 which concerns on this embodiment is shown.
  • the 3rd structural example of the angle detection apparatus 10 which concerns on this embodiment is shown.
  • the 2nd example of the 1st magnetic field detection signal Vx and the 2nd magnetic field detection signal Vy which the 1st magnetic sense part 30 and the 2nd magnetic sense part 32 concerning this embodiment output is shown.
  • the 4th structural example of the angle detection apparatus 10 which concerns on this embodiment is shown.
  • the 3rd example of the 1st magnetic field detection signal Vx and the 2nd magnetic field detection signal Vy which the 1st magnetic sense part 30 and the 2nd magnetic sense part 32 concerning this embodiment output is shown.
  • the 5th structural example of the angle detection apparatus 10 which concerns on this embodiment is shown.
  • the 1st modification of the phase difference detection part 210 which concerns on this embodiment is shown.
  • the 2nd modification of the phase difference detection part 210 which concerns on this embodiment is shown.
  • FIG. 1 shows a configuration example of a rotation angle sensor 1000 according to the present embodiment.
  • the rotation angle sensor 1000 detects the rotation angle of the magnetic field rotating about the rotation axis in a non-contact manner.
  • FIG. 1 shows an example of detecting the rotation angle of a magnetic field that rotates in a plane parallel to the XY plane.
  • the rotation angle sensor 1000 includes an angle detection device 10 and a rotating magnet 20.
  • the angle detection device 10 detects the rotation angle of the rotating magnetic field generated by the rotating magnet 20.
  • the angle detection device 10 is, for example, a semiconductor chip having an integrated circuit or the like.
  • the angle detection device 10 is formed of a semiconductor such as silicon and includes a semiconductor circuit and a semiconductor element.
  • the angle detection device 10 includes a plurality of terminals, and is electrically connected to an external substrate, circuit, wiring, and the like. A more specific configuration of the angle detection device 10 will be described later.
  • Rotating magnet 20 generates a rotating magnetic field.
  • the rotating magnet 20 includes a magnet 22, a rotating shaft 24, and a motor 26.
  • the magnet 22 rotates around the rotation shaft 24.
  • FIG. 1 shows an example in which the magnet 22 is provided above the Z axis of the angle detection device 10.
  • the magnet 22 has a disk shape and rotates on a plane substantially parallel to the XY plane.
  • the magnet 22 may be divided into two regions each having a semicircular cross section substantially parallel to the XY plane, and forms a magnet in which one region is an S pole and the other region is an N pole.
  • the magnet 22 in the angle detection device 10, the magnet 22 generates a rotating magnetic field represented by the formula (1) by rotating in a plane substantially parallel to the XY plane.
  • B indicates the absolute value of the magnetic field detected by being placed on the angle detection device 10.
  • B is assumed to be substantially constant and handled as a constant.
  • represents an angle of the magnetic field direction of the rotating magnetic field with respect to a predetermined direction or a reference direction on the surface where the magnetic field rotates.
  • the rotating shaft 24 is provided in a direction substantially perpendicular to the XY plane.
  • the rotating shaft 24 has one end connected to the magnet 22 and the other end connected to the motor 26.
  • the motor 26 rotates the rotating shaft 24 and the magnet 22 connected to the rotating shaft 24.
  • the rotation angle sensor 1000 is formed by assembling the angle detection device 10 that detects a magnetic field parallel to the XY plane and the rotation magnet 20 that rotates the magnet around the Z axis.
  • the angle detection device 10 detects, for example, the first direction component and the second direction component in the XY plane of the rotating magnetic field generated by the rotating magnet 20, respectively, and determines the rotation angle ⁇ of the rotating magnet 20 at the detection timing as the first direction component. And calculating and outputting based on the second direction component.
  • the first direction and the second direction may be different directions.
  • the first direction and the second direction are preferably two directions orthogonal to each other on the XY plane. In the present embodiment, the first direction is described as the X-axis direction, and the second direction is described as the Y-axis direction.
  • FIG. 2 shows a first configuration example of the angle detection apparatus 10 according to the present embodiment.
  • the angle detection device 10 detects the angle of the input magnetic field.
  • the angle detection device 10 of the first configuration example includes a first magnetic sense unit 30, a second magnetic sense unit 32, a first amplification unit 40, a second amplification unit 42, a first delta-sigma modulation unit 50, A second delta-sigma modulation unit 52 and a loop control unit 100 are provided.
  • the first magnetic sense unit 30 outputs a first magnetic field detection signal Vx corresponding to the first direction component of the input magnetic field.
  • the second magnetic sense unit 32 outputs a second magnetic field detection signal Vy corresponding to the second direction component of the input magnetic field.
  • Each of the first magnetic sense unit 30 and the second magnetic sense unit 32 includes a magnetic sensor that detects a magnetic field in one direction.
  • the first magnetic sense unit 30 outputs the first magnetic field detection signal Vx corresponding to the magnetic field Bx ( ⁇ ) expressed by the formula (1)
  • the second magnetic sense unit 32 uses the formula (1).
  • a second magnetic field detection signal Vy corresponding to the indicated magnetic field By ( ⁇ ) is output.
  • Each of the first magnetic sense unit 30 and the second magnetic sense unit 32 preferably outputs a detection signal proportional to the input magnetic field.
  • the first magnetic sense unit 30 and the second magnetic sense unit 32 include a Hall element, a magnetoresistive element (MR), a giant magnetoresistive element (GMR), a tunnel effect magnetoresistive element (TMR), a magnetoimpedance element (MI element), And / or an inductance sensor or the like.
  • the first magnetic sense unit 30 and the second magnetic sense unit 32 may further include a magnetic converging plate that converges the input magnetic field.
  • the first amplifying unit 40 amplifies the first magnetic field detection signal Vx output from the first magnetic sense unit 30.
  • the first amplification unit 40 supplies the amplified signal to the first delta sigma modulation unit 50.
  • the amplitude value of the input magnetic field may be normalized.
  • the signal amplified by the first amplifying unit 40 is substantially equal to the magnetic field Bx ( ⁇ ), and the second amplification.
  • the signal amplified by the unit 42 is assumed to be substantially equal to the magnetic field By ( ⁇ ). That is, the angle ⁇ of the rotating magnetic field is indicated by using the first magnetic field detection signal Vx and the second magnetic field detection signal Vy.
  • the first delta-sigma modulation unit 50 delta-sigma-modulates the first magnetic field detection signal Vx corresponding to the first direction component of the input magnetic field and outputs a first modulation signal.
  • the second delta sigma modulation unit 52 performs delta sigma modulation on the second magnetic field detection signal Vy corresponding to the second direction component of the input magnetic field and outputs a second modulation signal.
  • the first delta sigma modulation unit 50 and the second delta sigma modulation unit 52 each output a bit stream having a predetermined number of 1-bit data as modulation signals.
  • the bit stream is a signal including a predetermined number of 1-bit data, and a value obtained by integrating the 1-bit data is proportional to or substantially coincides with the amplitude value of the input signal. That is, the first delta-sigma modulation unit 50 outputs a bit stream corresponding to the magnetic field Bx ( ⁇ ) as a first modulation signal, and the second delta-sigma modulation unit 52 outputs a bit stream corresponding to the magnetic field By ( ⁇ ). Output as the second modulated signal.
  • the loop control unit 100 receives the first modulation signal and the second modulation signal output from the first delta sigma modulation unit 50 and the second delta sigma modulation unit 52, respectively, and corresponds to the received first modulation signal and second modulation signal.
  • the angle information to be output is output as the detected angle ⁇ .
  • the loop control unit 100 may sequentially update and output the detection angle ⁇ according to a clock signal or the like.
  • the loop control unit 100 may update and output the detection angle ⁇ by causing the detection angle to follow the first modulation signal and the second modulation signal by loop control.
  • the loop control unit 100 includes a phase difference detection unit 110, a loop filter 140, and an angle update unit 150.
  • the phase difference detection unit 110 detects the phase difference of the detection angle ⁇ with respect to the angle ⁇ indicated by the first modulation signal and the second modulation signal.
  • the phase difference detection unit 110 detects the phase difference between the detection angle ⁇ output from the loop control unit 100 and the angle information ⁇ corresponding to the first modulation signal and the second modulation signal, and then the loop control unit 100 detects the phase difference.
  • the phase difference is output to update the angle.
  • the phase difference detection unit 110 includes a storage unit 120 and an outer product calculation unit 130.
  • the storage unit 120 can input as an address based on an angle, and can output a sin value and a cos value corresponding to the angle as data corresponding to each angle.
  • the storage unit 120 stores a sin value and a cos value respectively corresponding to a plurality of angles.
  • the storage unit 120 may store a sin value and a cos value for each address corresponding to a plurality of angles.
  • the storage unit 120 includes, for example, a conversion unit that receives a detection angle output from the loop control unit 100 and converts the detection angle into an address corresponding to the detection angle. That is, the storage unit 120 outputs sin ⁇ and cos ⁇ in response to the input of the detection angle ⁇ .
  • the storage unit 120 supplies the value of sin ⁇ corresponding to the input detection angle ⁇ as the first feedback signal, and supplies the corresponding cos ⁇ as the second feedback signal to the outer product calculation unit 130.
  • the storage unit 120 supplies 1 as a first feedback signal and 0 as a second feedback signal with respect to an input of ⁇ / 2 radians (or an address value corresponding to ⁇ / 2 radians).
  • the storage unit 120 may output the first feedback signal and the second feedback signal as digital values having a predetermined number of bits.
  • the outer product calculation unit 130 calculates the outer product P represented by the following equation using the first feedback signal and the second feedback signal output from the storage unit 120, and the first modulation signal and the second modulation signal.
  • the first modulation signal is B ⁇ cos ⁇
  • the second modulation signal is B ⁇ sin ⁇ .
  • the outer product calculation unit 130 includes, for example, a first multiplication unit 132, a second multiplication unit 134, and a subtraction unit 136.
  • the first multiplier 132 multiplies the first modulated signal and the first feedback signal to calculate B ⁇ cos ⁇ ⁇ sin ⁇ .
  • the second multiplier 134 multiplies the second modulated signal and the second feedback signal to calculate B ⁇ sin ⁇ ⁇ cos ⁇ .
  • the subtracting unit 136 subtracts the product calculated by the first multiplying unit 132 from the product calculated by the second multiplying unit 134, and calculates the outer product P expressed by Equation (2).
  • the phase difference detection unit 110 calculates the outer product of the set of the first modulation signal and the second modulation signal and the set of the first feedback signal and the second feedback signal, and outputs the result as a phase difference signal.
  • the loop control unit 100 outputs the detection angle ⁇ so as to follow the angle ⁇ indicated by the first modulation signal and the second modulation signal, the value of ⁇ is sin ( ⁇ ) ⁇ ( The value is small enough to approximate ⁇ ). Therefore, the outer product P calculated by the outer product calculation unit 130 can be approximated to a value B ⁇ ( ⁇ ) that is proportional to the phase difference of the detected angle ⁇ with respect to the angle ⁇ , as shown in Equation (2). Since the value of B is a constant, the phase difference detection unit 110 detects the phase difference ( ⁇ ) between the angle ⁇ and the detection angle ⁇ . The phase difference detection unit 110 supplies the detected phase difference to the loop filter 140.
  • the loop filter 140 passes a frequency component equal to or lower than a predetermined frequency in the phase difference received from the phase difference detection unit 110.
  • the loop filter 140 may be a low pass filter.
  • the loop filter 140 may reduce quantization noise generated by the first delta sigma modulation unit 50 and the second delta sigma modulation unit 52.
  • the first magnetic field detection signal Vx and the second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 are modulated to obtain the first magnetic field detection signal Vx and the second magnetic field detection signal Vy.
  • the loop filter 140 may also reduce the harmonic component.
  • the angle update unit 150 increases or decreases the detection angle ⁇ according to the phase difference ( ⁇ ) that has passed through the loop filter.
  • the angle updater 150 updates the detected angle ⁇ so that the phase difference ( ⁇ ) approaches zero.
  • the angle update unit 150 may include, for example, two integration units.
  • the loop control unit 100 is a two-type servo circuit including two integration units in a closed loop circuit.
  • the angle updating unit 150 includes two integrating units and a DCO (Digitally Controlled Oscillator) circuit.
  • the angle update unit 150 when the signal of the phase difference ( ⁇ ) input to the angle update unit 150 is a signal calculated using the first modulation signal and the second modulation signal of the bit stream, the angle update unit 150 The phase difference signal may be accumulated by the first accumulation unit to be a phase difference signal for each clock. Further, the phase difference for each clock (that is, for each unit time) has a dimension of an angular velocity ⁇ (rad / s) that is a time derivative of the angle. In this case, the angle update unit 150 supplies the signal of the angular velocity ⁇ to the DCO circuit, outputs a frequency signal corresponding to the angular velocity ⁇ , and the second integration unit integrates the frequency signal to detect the detection angle ⁇ . Is generated.
  • the second integration unit may include an up / down counter that performs up-counting and down-counting operations, and the current count value is integrated with the count value of the frequency signal up to the previous time to generate the detection angle ⁇ . . That is, the angle updater 150 adds the current phase difference ( ⁇ ) to the previous detection angle ⁇ , and calculates the detection angle ⁇ closer to the current magnetic field rotation angle ⁇ .
  • the angle detection apparatus 10 can output a more accurate detection angle ⁇ that follows the angle ⁇ by the feedback loop by the loop control unit 100.
  • the loop control unit 100 feeds back the sine wave signal sin ( ⁇ ) and the cosine wave signal cos ( ⁇ ) corresponding to the detection angle ⁇ to the outer product calculation unit 130, and the first modulation signal and the second modulation signal Multiply.
  • the outer product P shown in the equation (2) is the first modulation signal.
  • the value is any one of P1 to P4 expressed by the following equation. Note that the bit value of the first modulation signal is S1, and the bit value of the second modulation signal is S2.
  • the angle detection apparatus 10 can calculate the outer product P by adding and subtracting the first feedback signal and the second feedback signal by supplying the first modulation signal and the second modulation signal to the outer product calculation unit 130 as a bit stream. It can. That is, the outer product calculation unit 130 sequentially inputs the bit stream of the first modulation signal and the bit stream of the second modulation signal for each bit, and performs addition / subtraction for each bit between the pair of the first feedback signal and the second feedback signal. To calculate the outer product. Thereby, the outer product calculation unit 130 can use an adder and a subtracter instead of the first multiplication unit 132 and the second multiplication unit 134, and can reduce the mounting area.
  • the detection angle ⁇ may include errors such as sensitivity mismatch, offset error, and other axis sensitivity.
  • the angle detection device 10 measures these errors in the manufacturing stage and / or in a state where the detection operation is not performed, and adjusts the error of the detection angle ⁇ according to the measurement result.
  • an angle non-linearity error adjustment is applied to an analog circuit, such as a delta-sigma modulation unit, the effect of oversampling is reduced and noise aliasing occurs. there were.
  • the loop control unit 200 adjusts the angular non-linearity error so as to realize noise reduction that cannot be realized by adjustment using an analog signal, thereby enabling high resolution.
  • the angle nonlinearity error is adjusted without using a multiplier to prevent the circuit scale from increasing as the resolution increases. That is, the loop control unit 200 adjusts the error of the detected angle ⁇ with respect to the magnetic field angle ⁇ by addition and subtraction using a preset adjustment value.
  • the angle detection apparatus 10 including such a loop control unit 200 will be described.
  • FIG. 3 shows a first example of the first magnetic field detection signal Vx and the second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 according to the present embodiment.
  • FIG. 3 shows the first magnetic field detection signal Vx of the first magnetic sensing unit 30 in which the horizontal axis detects the first direction (X-axis direction), and the vertical axis indicates the second direction (Y-axis direction).
  • the 2nd magnetic field detection signal Vy of the magnetic sense part 32 is shown.
  • a signal indicated by a dotted line is an ideal magnetic field detection signal and has a substantially circular shape on the XY plane. That is, FIG. 3 shows an example in which the ideal first magnetic field detection signal Vx is B ⁇ cos ⁇ and the ideal second magnetic field detection signal Vy is B ⁇ sin ⁇ .
  • a signal indicated by a solid line indicates a magnetic field detection signal when a magnetic sensitivity mismatch occurs in the first magnetic sense unit 30 and the second magnetic sense unit 32.
  • FIG. 3 shows a magnetic field detection signal when the first magnetic sense unit 30 has higher magnetic sensitivity than the second magnetic sense unit 32.
  • the first magnetic field detection signal Vx can be represented as B ⁇ A ⁇ cos ⁇ and A> 1.
  • the angle detection device 10 cannot output an accurate detection angle ⁇ .
  • the angle detection device 10 when the angle ⁇ of the rotating magnetic field is in the range of 0 ⁇ ⁇ / 2 (and ⁇ ⁇ ⁇ 3 ⁇ / 2), the first magnetic field detection signal Vx is larger than the second magnetic field detection signal Vy. The angle detection device 10 outputs a detection angle ⁇ smaller than ⁇ . Similarly, when the angle ⁇ of the rotating magnetic field is in the range of ⁇ / 2 ⁇ ⁇ (and 3 ⁇ / 2 ⁇ ⁇ 2 ⁇ ), the first magnetic field detection signal Vx is smaller than the second magnetic field detection signal Vy. The angle detection device 10 outputs a detection angle ⁇ larger than ⁇ .
  • the outer product P shown by the equation (2) becomes as the following equation.
  • the outer product P sometimes has a value even when the phase difference ( ⁇ ) is set to 0. Therefore, the detection angle ⁇ includes an error corresponding to a magnetic sensitivity mismatch. .
  • the first magnetic field detection signal Vx is multiplied by the correction value 1 / A
  • the first magnetic field detection signal Vx becomes B ⁇ cos ⁇ .
  • the adjustment of the angle error can be realized by adding a multiplication circuit that multiplies the first magnetic field detection signal Vx by the correction value 1 / A.
  • the circuit scale may increase.
  • the angle detection apparatus 10 can reduce the angle error according to the magnetic sensitivity mismatch by making the detection angle ⁇ follow ⁇ .
  • Equation 7 indicates that a multiplication such as sin ⁇ ⁇ cos ⁇ can be calculated from an addition such as sin ( ⁇ + ⁇ ) + sin ( ⁇ ).
  • the loop control unit 200 adjusts the error without using a multiplication circuit by using a circuit that executes the calculation of Equation (7).
  • FIG. 4 shows a second configuration example of the angle detection apparatus 10 according to the present embodiment.
  • the angle detection device 10 of the second configuration example includes a loop control unit 200.
  • the loop control unit 200 includes a phase difference detection unit 210, a loop filter 140, and an angle update unit 150.
  • the loop filter 140 and the angle updating unit 150 have been described with reference to FIG.
  • the phase difference detection unit 210 adjusts the error of the detection angle ⁇ with respect to the magnetic field angle ⁇ .
  • the phase difference detection unit 210 may adjust so that the error of the detection angle ⁇ is small.
  • FIG. 4 shows an example in which the phase difference detection unit 210 adjusts an angular error when the first magnetic sense unit 30 has a higher magnetic sensitivity than the second magnetic sense unit 32. That is, the phase difference detection unit 210 outputs a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle ⁇ . The first feedback signal is adjusted.
  • the phase difference detection unit 210 includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, a first addition / subtraction unit 230, and a first amplitude adjustment unit 240.
  • the correction value storage unit 220 stores a correction value ⁇ for adjusting the error of the detection angle ⁇ .
  • the correction value storage unit 220 may store + ⁇ and ⁇ .
  • the correction value ⁇ is the first adjustment angle.
  • the first addition / subtraction unit 230 adds and subtracts the detected angle ⁇ based on the first adjustment angle ⁇ of the correction value storage unit 220.
  • the first addition / subtraction unit 230 includes a first angle addition unit 232 and a first angle subtraction unit 234.
  • the first angle addition unit 232 adds the first adjustment angle ⁇ to the detection angle ⁇ .
  • the first angle addition unit 232 supplies the addition result ( ⁇ + ⁇ ) to the storage unit 120.
  • the first angle subtracting unit 234 subtracts the first adjustment angle ⁇ from the detected angle ⁇ .
  • the first angle subtraction unit 234 supplies the subtraction result ( ⁇ ) to the storage unit 120.
  • the first angle addition unit 232 and the first angle subtraction unit 234 may supply an address based on the angle to the storage unit 120.
  • the first angle adding unit 232 and the first angle subtracting unit 234 also have an address based on an angle obtained by adding the first adjustment angle ⁇ to the detection angle ⁇ and an address based on an angle obtained by subtracting the first adjustment angle ⁇ from the detection angle ⁇ . May be input to the storage unit 120 in different cycles. That is, the first addition / subtraction unit 230 may sequentially supply the address value based on the angle to the storage unit 120 according to a clock signal or the like.
  • the storage unit 120 outputs a sine wave signal corresponding to an angle determined by the detection angle ⁇ and the first adjustment angle ⁇ in addition to the operation described in FIG. That is, the storage unit 120 stores the value of the sine wave signal sin ( ⁇ + ⁇ ) corresponding to the addition result ( ⁇ + ⁇ ) of the first angle addition unit 232 and the sine corresponding to the subtraction result ( ⁇ ) of the first angle subtraction unit 234. The value of the wave signal sin ( ⁇ ) and the value of the cosine wave signal cos ⁇ corresponding to the detection angle ⁇ are output. Note that the value of the cosine wave signal cos ⁇ is the second feedback signal as described with reference to FIG.
  • the first amplitude adjustment unit 240 uses the angles output by the first angle addition unit 232 and the first angle subtraction unit 234 to adjust the first feedback signal for adjusting the amplitude error of the first modulation signal and the second modulation signal. Is generated.
  • the first amplitude adjusting unit 240 uses the sin value corresponding to the angle output from the first angle adding unit 232 and the sin value corresponding to the angle output from the first angle subtracting unit 234 to use the first modulation signal and the second A first feedback signal for adjusting the amplitude error of the modulation signal is generated.
  • the first amplitude adjustment unit 240 obtains the sin value according to the angle output from the first angle addition unit 232 and the sin value according to the angle output from the first angle subtraction unit 234 from the storage unit 120 in different cycles.
  • a first feedback signal for adjusting the amplitude error of the first modulated signal and the second modulated signal may be received.
  • the first amplitude adjustment unit 240 includes an addition unit 242 and an amplification unit 244.
  • the addition unit 242 adds the values of sin ( ⁇ + ⁇ ) and sin ( ⁇ ) received from the storage unit 120.
  • the amplifying unit 244 amplifies the addition result of the adding unit 242 at a predetermined constant magnification.
  • the amplification unit 244 may amplify the addition result of the addition unit 242 by 0.5 times. That is, the first amplitude adjusting unit 240 generates a signal obtained by halving the sum of sin ( ⁇ + ⁇ ) and sin ( ⁇ ) as the first feedback signal. As a result, the first feedback signal becomes ⁇ sin ( ⁇ + ⁇ ) + sin ( ⁇ ) ⁇ / 2.
  • the area does not increase.
  • the outer product calculation unit 130 calculates the outer product P using the first feedback signal and the second feedback signal, and the first modulation signal and the second modulation signal.
  • the first feedback signal is ⁇ sin ( ⁇ + ⁇ ) + sin ( ⁇ ) ⁇ / 2
  • the outer product calculation unit 130 of the present embodiment calculates the outer product P shown in Equation (7). It will be. Further, the outer product P shown in the equation (7) can be approximated to the phase difference ( ⁇ ) as shown in the equation (6). Therefore, the outer product calculation unit 130 supplies the calculation result of the outer product P to the loop filter 140, so that the loop control unit 200 can output the detection angle ⁇ that follows the angle ⁇ of the rotating magnetic field.
  • the outer product calculation unit 130 can calculate the outer product P by adding and subtracting the first feedback signal and the second feedback signal, as described in FIG. Therefore, the phase difference detection unit 210 can calculate the outer product P by addition and subtraction based on the detection angle ⁇ and the first adjustment angle ⁇ . Further, the phase difference detection unit 210 may use the sine wave signal sin ( ⁇ + ⁇ ) and the sine wave signal sin ( ⁇ ) used for generating the first feedback signal as the sine wave signal stored in the storage unit 120. it can. That is, since the phase difference detection unit 210 uses data whose address value is shifted from the detection angle ⁇ by the first adjustment angle ⁇ , the phase difference detection unit 210 calculates the outer product P without increasing the data to be stored in the storage unit 120. be able to.
  • the loop control unit 200 adjusts the angle error according to the magnetic sensitivity mismatch while preventing an increase in circuit scale and preventing an increase in data to be handled. Can do. Since the angle detection apparatus 10 shown in FIG. 4 includes such a loop control unit 200, non-contact rotation with reduced sensitivity mismatch while preventing an increase in circuit scale and an increase in data to be handled. An angle sensor can be provided.
  • the angle detection apparatus 10 is an example in which the first magnetic sense unit 30 adjusts the angular error with respect to the magnetic sensitivity mismatch when the magnetic sensitivity is higher than that of the second magnetic sense unit 32.
  • the angle detection device 10 may adjust the angle error with respect to a magnetic sensitivity mismatch when the first magnetic sense unit 30 has a lower magnetic sensitivity than the second magnetic sense unit 32.
  • the outer product P shown by the equation (4) is expressed as the following equation.
  • the outer product P is calculated by multiplying the second feedback signal by the correction value cos ⁇ .
  • the outer product P can be set to 0 when the phase difference ( ⁇ ) is set to 0, similarly to the equation (6). Therefore, the angle detection apparatus 10 can reduce the angle error according to the magnetic sensitivity mismatch by making the detection angle ⁇ follow ⁇ .
  • Equation 10 indicates that multiplication such as cos ⁇ ⁇ cos ⁇ can be calculated from addition such as cos ( ⁇ + ⁇ ) + cos ( ⁇ ).
  • the loop control unit 200 can reduce an angular error corresponding to a magnetic sensitivity mismatch by using a circuit that performs the calculation of Expression (10). Such a loop control unit 200 will be described next.
  • FIG. 5 shows a third configuration example of the angle detection apparatus 10 according to the present embodiment.
  • the loop control unit 200 of the third configuration example includes a phase difference detection unit 210, a loop filter 140, and an angle update unit 150.
  • the loop filter 140 and the angle updating unit 150 have been described with reference to FIG.
  • FIG. 5 shows an example in which the phase difference detection unit 210 adjusts an angle error when the first magnetic sense unit 30 has a lower magnetic sensitivity than the second magnetic sense unit 32. That is, the phase difference detection unit 210 outputs a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle ⁇ . And adjusting the second feedback signal.
  • the phase difference detection unit 210 includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, a second addition / subtraction unit 330, and a second amplitude adjustment unit 340.
  • the correction value storage unit 220 stores the second adjustment angle ⁇ .
  • the second addition / subtraction unit 330 adds and subtracts the detected angle ⁇ based on the second adjustment angle ⁇ of the correction value storage unit 220.
  • the second addition / subtraction unit 330 includes a second angle addition unit 332 and a second angle subtraction unit 334.
  • the second angle addition unit 332 adds the second adjustment angle ⁇ to the detection angle ⁇ .
  • the second angle addition unit 332 supplies the addition result ( ⁇ + ⁇ ) to the storage unit 120.
  • the second angle subtraction unit 334 subtracts the second adjustment angle ⁇ from the detection angle ⁇ .
  • the second angle subtraction unit 334 supplies the subtraction result ( ⁇ ) to the storage unit 120.
  • the second angle addition unit 332 and the second angle subtraction unit 334 may supply an address based on the angle to the storage unit 120. Further, the second angle addition unit 332 and the second angle subtraction unit 334 have an address based on an angle obtained by adding the second adjustment angle ⁇ to the detection angle ⁇ and an address based on an angle obtained by subtracting the second adjustment angle ⁇ from the detection angle ⁇ . May be input to the storage unit 120 in different cycles. That is, the second addition / subtraction unit 330 may sequentially supply the address value based on the angle to the storage unit 120 according to the clock signal or the like.
  • the storage unit 120 outputs a cosine wave signal corresponding to an angle determined by the detection angle ⁇ and the second adjustment angle ⁇ in addition to the operation described in FIG. That is, the storage unit 120 stores the value of the cosine wave signal cos ( ⁇ + ⁇ ) corresponding to the addition result ( ⁇ + ⁇ ) of the second angle addition unit 332 and the cosine corresponding to the subtraction result ( ⁇ ) of the second angle subtraction unit 334.
  • the value of the wave signal cos ( ⁇ ) and the value of the sine wave signal sin ⁇ corresponding to the detection angle ⁇ are output.
  • the sine wave signal sin ⁇ is the first feedback signal as described in FIG.
  • the second amplitude adjustment unit 340 uses the angles output by the second angle addition unit 332 and the second angle subtraction unit 334 to adjust the second feedback signal for adjusting the amplitude error of the first modulation signal and the second modulation signal. Is generated.
  • the second amplitude adjustment unit 340 uses the cos value corresponding to the angle output from the second angle addition unit 332 and the cos value corresponding to the angle output from the second angle subtraction unit 334, and uses the first modulation signal and the second modulation signal.
  • a second feedback signal for adjusting the amplitude error of the modulation signal is generated.
  • Second amplitude adjustment unit 340 includes an addition unit 342 and an amplification unit 344.
  • the addition unit 342 adds the values of cos ( ⁇ + ⁇ ) and cos ( ⁇ ) received from the storage unit 120.
  • the amplifying unit 344 amplifies the addition result of the adding unit 342 at a predetermined constant magnification.
  • the amplification unit 344 may amplify the addition result of the addition unit 342 by 0.5 times. That is, the second amplitude adjustment unit 340 generates a signal obtained by halving the sum of cos ( ⁇ + ⁇ ) and cos ( ⁇ ) as the second feedback signal. As a result, the second feedback signal becomes ⁇ cos ( ⁇ + ⁇ ) + cos ( ⁇ ) ⁇ / 2.
  • the area does not increase.
  • the outer product calculation unit 130 calculates the outer product P using the first feedback signal and the second feedback signal, and the first modulation signal and the second modulation signal.
  • the second feedback signal is ⁇ cos ( ⁇ + ⁇ ) + cos ( ⁇ ) ⁇ / 2
  • the outer product calculation unit 130 of the present embodiment calculates the outer product P shown in the equation (10). It will be. Further, the outer product P shown in the equation (10) can be approximated to a value based on the phase difference ( ⁇ ) as shown in the equation (9). Therefore, the outer product calculation unit 130 supplies the calculation result of the outer product P to the loop filter 140, so that the loop control unit 200 can output the detection angle ⁇ that follows the angle ⁇ of the rotating magnetic field.
  • the outer product calculation unit 130 can calculate the outer product P by adding and subtracting the first feedback signal and the second feedback signal, as described in FIG. Further, since the phase difference detection unit 210 uses data in which the address value is shifted from the detection angle ⁇ by the second adjustment angle ⁇ , the phase difference detection unit 210 calculates the outer product P without increasing the data to be stored in the storage unit 120. be able to. Therefore, the loop control unit 200 according to the present embodiment adjusts the angle error according to the magnetic sensitivity mismatch while preventing an increase in circuit scale and preventing an increase in data to be handled. Can do.
  • the angle detection device 10 has been described with respect to an example in which the angle error is adjusted with respect to the magnetic sensitivity mismatch. Instead, the angle detection device 10 may adjust the angle error with respect to the offset error. First, the offset error will be described next.
  • FIG. 6 shows a second example of the first magnetic field detection signal Vx and the second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 according to the present embodiment.
  • FIG. 6 shows the first magnetic field detection signal Vx of the first magnetic sensing unit 30 in which the horizontal axis detects the first direction (X-axis direction), and the vertical axis indicates the second direction (Y-axis direction).
  • the 2nd magnetic field detection signal Vy of the magnetic sense part 32 is shown.
  • a signal indicated by a dotted line is an ideal magnetic field detection signal and has a substantially circular shape on the XY plane. That is, FIG. 6 shows an example in which the ideal first magnetic field detection signal Vx is B ⁇ cos ⁇ and the ideal second magnetic field detection signal Vy is B ⁇ sin ⁇ .
  • a signal indicated by a solid line indicates a magnetic field detection signal when an offset error occurs in the first magnetic sense unit 30 and the second magnetic sense unit 32.
  • FIG. 6 shows a magnetic field detection signal when the first magnetic field detection signal Vx includes an offset error of + Ox and the first magnetic field detection signal Vx includes + Oy.
  • the angle detection apparatus 10 adjusts the angle error by subtracting Oy ⁇ cos ⁇ Ox ⁇ sin ⁇ due to the offset error from the outer product P.
  • FIG. 7 shows a fourth configuration example of the angle detection apparatus 10 according to the present embodiment.
  • the angle detection device 10 of the fourth configuration example includes a loop control unit 200.
  • the loop control unit 200 includes a phase difference detection unit 210, a loop filter 140, and an angle update unit 150.
  • the loop filter 140 and the angle updating unit 150 have been described with reference to FIG.
  • FIG. 7 shows an example in which the phase difference detection unit 210 adjusts the offset error of the first magnetic sense unit 30 and the second magnetic sense unit 32. That is, the phase difference detection unit 210 outputs a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle ⁇ . Adjust the phase difference signal.
  • the phase difference detection unit 210 includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, and an offset adjustment unit 410.
  • the storage unit 120 supplies the offset adjustment unit 410 with the value of the cosine wave signal cos ⁇ and the value of the sine wave signal sin ⁇ corresponding to the detection angle ⁇ in addition to the operation described in FIG.
  • the outer product calculation unit 130 calculates the outer product P using the first feedback signal and the second feedback signal, and the first modulation signal and the second modulation signal.
  • the outer product calculation unit 130 outputs the outer product P shown in Equation (11).
  • the correction value storage unit 220 stores correction values Ox and Oy for adjusting the error of the detected angle ⁇ .
  • the correction value Ox is the first offset adjustment value
  • the correction value Oy is the second offset adjustment value.
  • the offset adjustment unit 410 may multiply the first feedback signal by the first offset adjustment value for adjusting the offset of the first modulation signal, and add or subtract the phase difference.
  • the phase difference indicates the calculation result of Equation (11).
  • the offset adjustment unit 410 may multiply the second feedback signal by a second offset adjustment value for adjusting the offset of the second modulation signal and add or subtract the phase difference.
  • the offset adjustment unit 410 includes a first multiplication unit 412, a second multiplication unit 414, and an addition unit 416.
  • the first multiplication unit 412 multiplies the value of sin ⁇ received from the storage unit 120 by the first offset adjustment value received from the correction value storage unit 220.
  • the second multiplication unit 414 multiplies the value of cos ⁇ received from the storage unit 120 by the second offset adjustment value received from the correction value storage unit 220.
  • the addition unit 416 adds the multiplication result of the first multiplication unit 412 to the calculation result of the outer product P received from the outer product calculation unit 130. Further, the addition unit 416 subtracts the multiplication result of the second multiplication unit 414 from the calculation result of the outer product P received from the outer product calculation unit 130.
  • the offset adjustment unit 410 adjusts the outer product P calculated by the outer product calculation unit 130 to an adjustment value P ′ represented by the following equation.
  • the offset adjustment unit 410 can adjust the adjustment value P ′ so as to substantially match the value based on the phase difference ( ⁇ ). Therefore, when the phase difference detection unit 210 supplies the calculation result of the adjustment value P ′ to the loop filter 140, the loop control unit 200 can output the detection angle ⁇ that follows the angle ⁇ of the rotating magnetic field.
  • the offset adjustment unit 410 has been described using the first multiplication unit 412 and the second multiplication unit 414 to adjust the offset error.
  • the correction value storage unit 220 may supply the first offset adjustment value and the second offset adjustment value to the offset adjustment unit 410 as a bit stream.
  • the correction value storage unit 220 supplies, for example, a bit stream having the same weight in which each bit corresponds to the correction value Ox as the first offset adjustment value.
  • the correction value storage unit 220 may supply a bit stream having the same weight in which each bit corresponds to the correction value Oy as the second offset adjustment value.
  • the offset adjustment unit 410 multiplies the bit stream of the first offset adjustment value received from the correction value storage unit 220 by the first feedback signal for each bit and adds it to the phase difference. Similarly, the offset adjustment unit 410 multiplies the bit stream of the second offset adjustment value received from the correction value storage unit 220 by the second feedback signal for each bit and subtracts it from the phase difference.
  • the multiplication using the bit stream executed by the offset adjustment unit 410 can be executed by addition / subtraction processing, similar to the operation of calculating the outer product P by addition / subtraction of the outer product calculation unit 130 described in FIG. Therefore, the offset adjustment unit 410 can adjust the offset error while preventing the mounting area from increasing. Therefore, the loop control unit 200 according to the present embodiment can adjust the detection angle error according to the offset error while preventing the circuit scale from increasing.
  • the angle detection apparatus 10 has been described with reference to an example of adjusting the detection angle error corresponding to the magnetic sensitivity mismatch and the offset error. Instead of this, the angle detection device 10 may adjust the error of the detection angle corresponding to the other-axis sensitivity. First, the other axis sensitivity will be described next.
  • FIG. 8 shows a third example of the first magnetic field detection signal Vx and the second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 according to this embodiment.
  • FIG. 8 shows the first magnetic field detection signal Vx of the first magnetic sensing unit 30 in which the horizontal axis detects the first direction (X-axis direction), and the vertical axis indicates the second direction (Y-axis direction).
  • the 2nd magnetic field detection signal Vy of the magnetic sense part 32 is shown.
  • a signal indicated by a dotted line is an ideal magnetic field detection signal and has a substantially circular shape on the XY plane. That is, FIG. 8 shows an example in which the ideal first magnetic field detection signal Vx is B ⁇ cos ⁇ and the ideal second magnetic field detection signal Vy is B ⁇ sin ⁇ .
  • a signal indicated by a solid line indicates a magnetic field detection signal when the other axis sensitivity occurs in the first magnetic sense unit 30 and the second magnetic sense unit 32.
  • FIG. 8 shows a magnetic field detection signal when the first magnetic field detection signal Vx includes + B ⁇ ⁇ ⁇ sin ⁇ and the first magnetic field detection signal Vx includes the other axis sensitivity of + B ⁇ ⁇ ⁇ cos ⁇ .
  • the outer product P sometimes has a value even when the phase difference ( ⁇ ) is set to 0. Therefore, the detected angle ⁇ includes an angle error corresponding to the sensitivity of the other axis. . Therefore, the angle detection apparatus 10 according to the present embodiment adjusts so as to reduce the angle error according to the other-axis sensitivity.
  • the angle detection apparatus 10 adjusts the phases of the first feedback signal and the second feedback signal using ⁇ as follows. Here, it approximated as ⁇ 0.
  • the angle detection device 10 can reduce the angle error according to the sensitivity of the other axis by causing the detection angle ⁇ to follow ⁇ .
  • the angle detection apparatus 10 reduces the angle error according to the other-axis sensitivity by using a circuit that executes the calculation of Expression (15). Such an angle detection device 10 will be described next.
  • FIG. 9 shows a fifth configuration example of the angle detection apparatus 10 according to the present embodiment.
  • the angle detection device 10 of the fifth configuration example includes a loop control unit 200.
  • the loop control unit 200 includes a phase difference detection unit 210, a loop filter 140, and an angle update unit 150.
  • the loop filter 140 and the angle updating unit 150 have been described with reference to FIG.
  • FIG. 9 shows an example in which the phase difference detection unit 210 adjusts the other axis sensitivity of the first magnetic sense unit 30 and the second magnetic sense unit 32. That is, the phase difference detection unit 210 outputs a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle ⁇ . The first feedback signal and the second feedback signal are adjusted.
  • the phase difference detection unit 210 includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, and an other-axis sensitivity adjustment unit 510.
  • the correction value storage unit 220 stores a correction value ⁇ for adjusting the error of the detected angle ⁇ .
  • the correction value storage unit 220 may store values of + ⁇ and ⁇ , respectively.
  • the correction value ⁇ is the third adjustment angle.
  • the other axis sensitivity adjustment unit 510 adds and subtracts the detected angle ⁇ based on the third adjustment angle ⁇ of the correction value storage unit 220.
  • the other-axis sensitivity adjustment unit 510 includes a third angle addition unit 512 and a third angle subtraction unit 514.
  • the third angle addition unit 512 adds the third adjustment angle ⁇ to the detection angle ⁇ .
  • the third angle addition unit 512 supplies the addition result ( ⁇ + ⁇ ) to the storage unit 120.
  • the third angle subtraction unit 514 subtracts the third adjustment angle ⁇ from the detection angle ⁇ .
  • the third angle subtraction unit 514 supplies the subtraction result ( ⁇ ) to the storage unit 120.
  • the third angle addition unit 512 and the third angle subtraction unit 514 may supply an address based on the angle to the storage unit 120. Further, the third angle addition unit 512 and the third angle subtraction unit 514 are an address based on an angle obtained by adding the third adjustment angle ⁇ to the detection angle ⁇ and an address based on an angle obtained by subtracting the third adjustment angle ⁇ from the detection angle ⁇ . May be input to the storage unit 120 in different cycles. That is, the other-axis sensitivity adjustment unit 510 may sequentially supply the address value based on the angle to the storage unit 120 according to the clock signal or the like.
  • the storage unit 120 outputs a sin value and a cos value corresponding to an angle determined by the detection angle ⁇ and the third adjustment angle ⁇ . That is, the storage unit 120 stores the value of sin ( ⁇ + ⁇ ) corresponding to the addition result ( ⁇ + ⁇ ) of the third angle addition unit 512 and the cos (corresponding to the subtraction result ( ⁇ ) of the third angle subtraction unit 514. Output the value of ⁇ - ⁇ ).
  • the other axis sensitivity adjustment unit 510 generates the first feedback signal using the detected angle ⁇ + ⁇ added with the third adjustment angle ⁇ to adjust the other axis sensitivity between the first modulation signal and the second modulation signal. Then, the second feedback signal is generated using the detected angle ⁇ obtained by subtracting the third adjustment angle ⁇ .
  • the other-axis sensitivity adjustment unit 510 generates a first feedback signal based on the sin value corresponding to the detection angle ⁇ + ⁇ to which the third adjustment angle ⁇ is added, and the detection angle ⁇ from which the third adjustment angle ⁇ is subtracted. A second feedback signal based on a cos value corresponding to ⁇ is generated.
  • FIG. 9 illustrates an example in which the other-axis sensitivity adjustment unit 510 outputs sin ( ⁇ + ⁇ ) from the storage unit 120 as the first feedback signal and outputs cos ( ⁇ ) from the storage unit 120 as the second feedback signal. .
  • the outer product calculation unit 130 calculates the outer product P using the first feedback signal and the second feedback signal, and the first modulation signal and the second modulation signal.
  • the other-axis sensitivity adjustment unit 510 adjusts the first feedback signal and the second feedback signal based on the third adjustment angle ⁇ .
  • the outer product P shown in the equation is calculated. Therefore, the outer product calculation unit 130 supplies the calculation result of the outer product P to the loop filter 140, so that the loop control unit 200 can output the detection angle ⁇ that follows the angle ⁇ of the rotating magnetic field.
  • the outer product calculation unit 130 can calculate the outer product P by adding and subtracting the first feedback signal and the second feedback signal, as described in FIG. Further, since the other axis sensitivity adjustment unit 510 uses data in which the address value is shifted from the detection angle ⁇ by the third adjustment angle ⁇ , the first feedback signal is not increased without increasing the data to be stored in the storage unit 120. And the second feedback signal can be adjusted. Therefore, the loop control unit 200 according to the present embodiment can adjust the angle error according to the sensitivity of the other axis while preventing an increase in circuit scale and preventing an increase in data to be handled. it can.
  • the angle detection apparatus 10 has been described with an example in which the detection angle error corresponding to any one of the magnetic sensitivity mismatch, the offset error, and the other axis sensitivity is adjusted. Instead of or in addition to this, the angle detection device 10 adjusts two or more errors among detection angle errors corresponding to any one of magnetic sensitivity mismatch, offset error, and other axis sensitivity. May be. Next, the phase difference detection unit 210 provided in the angle detection device 10 will be described.
  • FIG. 10 shows a first modification of the phase difference detection unit 210 according to this embodiment.
  • the phase difference detection unit 210 of the first modification includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, a first addition / subtraction unit 230, a first amplitude adjustment unit 240, and an offset adjustment unit 410.
  • the other axis sensitivity adjustment unit 510 is included.
  • the correction value storage unit 220 stores the first adjustment angle ⁇ , the first offset adjustment value Ox, the second offset adjustment value Oy, and the third adjustment angle ⁇ .
  • the correction value storage unit 220 adjusts the first adjustment angle ⁇ to the first addition / subtraction unit 230, the first offset adjustment value Ox and the second offset adjustment value Oy to the offset adjustment unit 410, and the third adjustment angle ⁇ to other axis sensitivity adjustment. Each is supplied to the unit 510.
  • the first addition / subtraction unit 230 and the first amplitude adjustment unit 240 can adjust the first feedback signal to adjust the angle error according to the magnetic sensitivity mismatch.
  • the offset adjusting unit 410 can adjust the outer product P calculated by the outer product calculating unit 130 to adjust the angle error according to the offset error.
  • the other-axis sensitivity adjustment unit 510 can adjust the first feedback signal and the second feedback signal to adjust the angle error according to the other-axis sensitivity.
  • the phase difference detection unit 210 can adjust the magnetic sensitivity mismatch, the offset error, and the detection angle error corresponding to the other axis sensitivity, respectively.
  • FIG. 10 shows an example in which the phase difference detection unit 210 adjusts the angle error when the magnetic sensitivity in the first direction is larger than that in the second direction. Instead of this, the phase difference detection unit 210 may adjust the angle error when the magnetic sensitivity in the first direction is smaller than that in the second direction. The phase difference detection unit 210 will be described next.
  • FIG. 11 shows a second modification of the phase difference detection unit 210 according to this embodiment.
  • the phase difference detection unit 210 of the second modified example includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, a second addition / subtraction unit 330, a second amplitude adjustment unit 340, and an offset adjustment unit 410.
  • the other axis sensitivity adjustment unit 510 is included.
  • phase difference detection unit 210 of the second modification example is replaced with the second addition / subtraction unit 330 in place of the first addition / subtraction unit 230 and the first amplitude adjustment unit 240 of the phase difference detection unit 210 of the first modification example shown in FIG. And a second amplitude adjustment unit 340.
  • the correction value storage unit 220 stores the second adjustment angle ⁇ , and the correction value storage unit 220 supplies the second adjustment angle ⁇ to the second addition / subtraction unit 330.
  • the second addition / subtraction unit 330 and the second amplitude adjustment unit 340 can adjust the second feedback signal to adjust the angle error according to the magnetic sensitivity mismatch.
  • the other operations of the phase difference detection unit 210 of the second modification example are substantially the same as the operations of the phase difference detection unit 210 of the first modification example shown in FIG.
  • the phase difference detection unit 210 can adjust the magnetic sensitivity mismatch, the offset error, and the detection angle error corresponding to the other axis sensitivity.
  • the phase difference detection unit 210 described with reference to FIGS. 10 and 11 adjusts either the first feedback signal or the second feedback signal to adjust the angle error according to the magnetic sensitivity mismatch.
  • the phase difference detection unit 210 may include a first addition / subtraction unit 230, a first amplitude adjustment unit 240, a second addition / subtraction unit 330, and a second amplitude adjustment unit 340.
  • the phase difference detection unit 210 adjusts the first feedback signal by the first addition / subtraction unit 230 and the first amplitude adjustment unit 240 according to the magnitudes of the magnetic sensitivities in the first direction and the second direction, and performs the second addition / subtraction.
  • the adjustment of the second feedback signal by the unit 330 and the second amplitude adjustment unit 340 may be switched.
  • the phase difference detection unit 210 can adjust the mismatch of the two types of magnetic sensitivities, the offset error, and the detection angle error corresponding to the other axis sensitivity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Errors in the detected angle of an angle detection device are adjusted using a simple circuit configuration. Provided are an angle detection device for detecting the angle of a magnetic field, and a method therefor, wherein: the angle detection device is provided with a first delta-sigma modulator for performing delta-sigma modulation on a first magnetic field detection signal that corresponds to the first directional component of a magnetic field and outputting a first modulated signal, a second delta-sigma modulator for performing delta-sigma modulation on a second magnetic field detection signal that corresponds to the second directional component of the magnetic field and outputting a second modulated signal, and a loop control unit whereby a detected angle is caused by loop control to follow the first modulated signal and the second modulated signal; the loop control unit has a phase difference detection unit for detecting the phase difference of the detected angle relative to the angle indicated by the first modulated signal and the second modulated signal; and the phase difference detection unit adjusts errors in the detected angle relative to the angle of the magnetic field.

Description

角度検出装置および方法Angle detection apparatus and method
 本発明は、角度検出装置および方法に関する。 The present invention relates to an angle detection apparatus and method.
 従来、X方向およびY方向の磁場の変化を検出し、当該検出結果に基づき、回転磁石の回転角を検出する非接触回転角センサが知られていた。また、このような回転角センサは、感度ミスマッチ、オフセット誤差、および他軸感度等による角度非線形性誤差を有するので、誤差の調整等が実行されていた(例えば、特許文献1~5参照)。
 特許文献1 特許第5043878号公報
 特許文献2 特許第5342045号公報
 特許文献3 特許第5449417号公報
 特許文献4 特許第5687223号公報
 特許文献5 特許第4111813号公報
Conventionally, a non-contact rotation angle sensor that detects a change in a magnetic field in the X direction and the Y direction and detects a rotation angle of a rotating magnet based on the detection result has been known. Further, since such a rotation angle sensor has an angle nonlinearity error due to sensitivity mismatch, offset error, and other-axis sensitivity, etc., adjustment of the error has been performed (see, for example, Patent Documents 1 to 5).
Patent Document 1 Japanese Patent No. 5043878 Patent Document 2 Japanese Patent No. 542045 Patent Document 3 Japanese Patent No. 5449417 Patent Document 4 Japanese Patent No. 5687223 Patent Document 5 Japanese Patent No. 4111813
解決しようとする課題Challenges to be solved
 例えば、特許文献3、4、5に記載されている従来の角度非線形性誤差の調整は、デルタシグマ変調器などのAD変換部にて角度非線形性誤差の発生原因(オフセット、感度ミスマッチ、他軸感度)の補正を行うことを提唱している。しかしながら、このようなアナログ回路での補正、例えばデルタシグマ変調器内部での補正では、オーバーサンプリングの効果が低下し、ノイズの折り返しが発生してしまう。 For example, the conventional adjustment of the angle nonlinearity error described in Patent Documents 3, 4, and 5 is performed by the AD conversion unit such as the delta-sigma modulator, which causes the occurrence of the angle nonlinearity error (offset, sensitivity mismatch, other axis). It is advocated to correct (sensitivity). However, such correction by an analog circuit, for example, correction in a delta-sigma modulator, reduces the effect of oversampling and causes noise aliasing.
 また、デルタシグマ変調器後での信号処理として、出力された変調信号を、デシメーションフィルタを通して多ビット化したデジタルデータとしてから多ビットデータ同士の演算を実行して角度非線形性誤差の発生原因を補正することも考えられる。しかしながらデシメーションフィルタ後に回転角センサの補正を実行する場合、高分解能になるほど多ビット演算が増え、特に乗算器のような回路を用いて演算する場合、回路規模が増大してしまう。回路構成にもよるが、一般的に1bit×16bitの乗算器と16bit×16bitの乗算器では、約10倍程度ゲート数が増え、回路面積が大きくなってしまう。そこで、角度非線形性誤差が小さく、かつ、低ノイズな高分解能の回転角センサを、回路面積の増大を抑制しつつ提供する。 Also, as signal processing after the delta-sigma modulator, the output modulation signal is converted into multi-bit digital data through a decimation filter, and then the multi-bit data is operated to correct the cause of the angle nonlinearity error. It is also possible to do. However, when correction of the rotation angle sensor is performed after the decimation filter, the number of multi-bit operations increases as the resolution becomes higher. In particular, when the operation is performed using a circuit such as a multiplier, the circuit scale increases. Although it depends on the circuit configuration, in general, a 1-bit × 16-bit multiplier and a 16-bit × 16-bit multiplier increase the number of gates by about 10 times and increase the circuit area. Therefore, a high-resolution rotation angle sensor with a small angle nonlinearity error and low noise is provided while suppressing an increase in circuit area.
一般的開示General disclosure
 (項目1)
 角度検出装置は、磁場の角度を検出してよい。
 角度検出装置は、磁場の第1方向成分に応じた第1磁場検出信号をデルタシグマ変調して第1変調信号を出力する第1デルタシグマ変調部を備えてよい。
 角度検出装置は、磁場の第2方向成分に応じた第2磁場検出信号をデルタシグマ変調して第2変調信号を出力する第2デルタシグマ変調部を備えてよい。
 角度検出装置は、検出角度をループ制御により第1変調信号および第2変調信号に対して追従させるループ制御部を備えてよい。
 ループ制御部は、第1変調信号および第2変調信号が示す角度に対する検出角度の位相差を検出する位相差検出部を有してよい。
 位相差検出部は、磁場の角度に対する検出角度の誤差を調整してよい。
 (項目2)
 位相差検出部は、第1変調信号および第2変調信号と、検出角度に応じた第1フィードバック信号および第2フィードバック信号とに基づいて、位相差を示す位相差信号を出力してよい。
 位相差検出部は、第1フィードバック信号、第2フィードバック信号、および位相差信号の少なくとも1つを、誤差が小さくなるように調整してよい。
 (項目3)
 位相差検出部は、第1変調信号および第2変調信号の組と、第1フィードバック信号および第2フィードバック信号の組との外積を演算して位相差信号を出力してよい。
 (項目4)
 位相差検出部は、検出角度に第1調整角度を加算する第1角度加算部を含んでよい。
 位相差検出部は、第1角度加算部が出力する角度を用いて、第1変調信号および第2変調信号の振幅誤差を調整するための第1フィードバック信号を生成する第1振幅調整部を含んでよい。
 (項目5)
 位相差検出部は、検出角度から第1調整角度を減算する第1角度減算部を含んでよい。
 第1振幅調整部は、第1角度加算部が出力する角度に応じたsin値および第1角度減算部が出力する角度に応じたsin値を用いて、第1変調信号および第2変調信号の振幅誤差を調整するための第1フィードバック信号を生成してよい。
 (項目6)
 角度検出装置は、角度に基づくアドレスとして入力し、各角度に対応するデータとして当該角度に対応するsin値およびcos値を出力可能な記憶部を備えてよい。
 第1角度加算部および第1角度減算部は、検出角度に第1調整角度を加算した角度に基づくアドレスおよび検出角度に第1調整角度を減算した角度に基づくアドレスを異なるサイクルで記憶部に入力してよい。
 第1振幅調整部は、第1角度加算部が出力する角度に応じたsin値および第1角度減算部が出力する角度に応じたsin値を異なるサイクルで記憶部から受け取ってよい。
 第1振幅調整部は、第1変調信号および第2変調信号の振幅誤差を調整するための第1フィードバック信号を生成してよい。
 (項目7)
 位相差検出部は、検出角度に第2調整角度を加算する第2角度加算部を含んでよい。
 位相差検出部は、第2角度加算部が出力する角度を用いて、第1変調信号および第2変調信号の振幅誤差を調整するための第2フィードバック信号を生成する第2振幅調整部を含んでよい。
 (項目8)
 位相差検出部は、検出角度から第2調整角度を減算する第2角度減算部を含んでよい。
 第2振幅調整部は、第2角度加算部が出力する角度に応じたcos値および第2角度減算部が出力する角度に応じたcos値を用いて、第1変調信号および第2変調信号の振幅誤差を調整するための第2フィードバック信号を生成してよい。
 (項目9)
 位相差検出部は、第1変調信号のオフセットを調整するための第1オフセット調整値を第1フィードバック信号に乗じて位相差に対して加算または減算するオフセット調整部を備えてよい。
 (項目10)
 オフセット調整部は、第1オフセット調整値として各ビットが同一の重みを有するビットストリームをビット毎に第1フィードバック信号と乗算して、位相差に加算または減算していってよい。
 (項目11)
 オフセット調整部は、第2変調信号のオフセットを調整するための第2オフセット調整値を第2フィードバック信号に乗じて位相差に対して加算または減算してよい。
 (項目12)
 位相差検出部は、検出角度に第3調整角度を加算する第3角度加算部を含んでよい。
 位相差検出部は、検出角度から第3調整角度を減算する第3角度減算部を含んでよい。
 位相差検出部は、第1変調信号および第2変調信号間の他軸感度を調整するべく、第3調整角度が加算された検出角度を用いて第1フィードバック信号を生成し、第3調整角度が減算された検出角度を用いて第2フィードバック信号を生成する他軸感度調整部を含んでよい。
 (項目13)
 他軸感度調整部は、第3調整角度が加算された検出角度に応じたsin値に基づく第1フィードバック信号を生成してよい。
 他軸感度調整部は、第3調整角度が減算された検出角度に応じたcos値に基づく第2フィードバック信号を生成してよい。
 (項目14)
 位相差検出部は、第1変調信号のビットストリームおよび第2変調信号のビットストリームをビット毎に順次入力し、第1フィードバック信号および第2フィードバック信号の組との間でビット毎に外積を演算する外積演算部を含んでよい。
 (項目15)
 ループ制御部は、位相差における予め定められた周波数以下の周波数成分を通過させるループフィルタを有してよい。
 ループ制御部は、ループフィルタを通過した位相差に応じて検出角度を増減する角度更新部を有してよい。
 (項目16)
 角度検出装置は、磁場の第1方向成分に応じた第1磁場検出信号を出力する第1磁気センス部を備えてよい。
 角度検出装置は、磁場の第2方向成分に応じた第2磁場検出信号を出力する第2磁気センス部を備えてよい。
 (項目17)
 方法は、磁場の角度を検出する角度検出装置の検出角度の誤差を調整してよい。
 方法は、磁場の第1方向成分に応じた第1磁場検出信号をデルタシグマ変調して第1変調信号を出力する段階を備えてよい。
 方法は、磁場の第2方向成分に応じた第2磁場検出信号をデルタシグマ変調して第2変調信号を出力する段階を備えてよい。
 方法は、検出角度をループ制御により第1変調信号および第2変調信号に対して追従させる段階を備えてよい。
 追従させる段階は、第1変調信号および第2変調信号が示す角度に対する検出角度の位相差を検出する段階を有してよい。
 位相差を検出する段階は、磁場の角度に対する検出角度の誤差を調整してよい。
(Item 1)
The angle detection device may detect the angle of the magnetic field.
The angle detection device may include a first delta-sigma modulation unit that delta-sigma modulates the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputs the first modulation signal.
The angle detection device may include a second delta-sigma modulation unit that delta-sigma-modulates a second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputs a second modulation signal.
The angle detection device may include a loop control unit that causes the detection angle to follow the first modulation signal and the second modulation signal by loop control.
The loop control unit may include a phase difference detection unit that detects a phase difference of a detection angle with respect to an angle indicated by the first modulation signal and the second modulation signal.
The phase difference detection unit may adjust the error of the detection angle with respect to the angle of the magnetic field.
(Item 2)
The phase difference detection unit may output a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle.
The phase difference detection unit may adjust at least one of the first feedback signal, the second feedback signal, and the phase difference signal so that the error is reduced.
(Item 3)
The phase difference detection unit may calculate an outer product of a set of the first modulation signal and the second modulation signal and a set of the first feedback signal and the second feedback signal and output a phase difference signal.
(Item 4)
The phase difference detection unit may include a first angle addition unit that adds the first adjustment angle to the detection angle.
The phase difference detection unit includes a first amplitude adjustment unit that generates a first feedback signal for adjusting an amplitude error between the first modulation signal and the second modulation signal, using the angle output from the first angle addition unit. It's okay.
(Item 5)
The phase difference detection unit may include a first angle subtraction unit that subtracts the first adjustment angle from the detection angle.
The first amplitude adjusting unit uses the sin value corresponding to the angle output from the first angle adding unit and the sin value corresponding to the angle output from the first angle subtracting unit, to calculate the first modulation signal and the second modulation signal. A first feedback signal for adjusting the amplitude error may be generated.
(Item 6)
The angle detection device may include a storage unit that can input an address based on an angle and output a sin value and a cos value corresponding to the angle as data corresponding to each angle.
The first angle addition unit and the first angle subtraction unit input an address based on an angle obtained by adding the first adjustment angle to the detection angle and an address based on an angle obtained by subtracting the first adjustment angle from the detection angle to the storage unit in different cycles. You can do it.
The first amplitude adjustment unit may receive the sin value according to the angle output from the first angle addition unit and the sin value according to the angle output from the first angle subtraction unit from the storage unit in different cycles.
The first amplitude adjustment unit may generate a first feedback signal for adjusting an amplitude error between the first modulation signal and the second modulation signal.
(Item 7)
The phase difference detection unit may include a second angle addition unit that adds the second adjustment angle to the detection angle.
The phase difference detection unit includes a second amplitude adjustment unit that generates a second feedback signal for adjusting an amplitude error between the first modulation signal and the second modulation signal, using the angle output from the second angle addition unit. It's okay.
(Item 8)
The phase difference detection unit may include a second angle subtraction unit that subtracts the second adjustment angle from the detection angle.
The second amplitude adjustment unit uses the cos value according to the angle output from the second angle addition unit and the cos value according to the angle output from the second angle subtraction unit, to generate the first modulation signal and the second modulation signal. A second feedback signal for adjusting the amplitude error may be generated.
(Item 9)
The phase difference detection unit may include an offset adjustment unit that multiplies the first feedback adjustment signal by the first offset adjustment value for adjusting the offset of the first modulation signal and adds or subtracts the phase difference.
(Item 10)
The offset adjustment unit may add or subtract the phase difference by multiplying the bit stream having the same weight as the first offset adjustment value by the first feedback signal for each bit.
(Item 11)
The offset adjustment unit may add or subtract the phase difference by multiplying the second feedback signal by a second offset adjustment value for adjusting the offset of the second modulation signal.
(Item 12)
The phase difference detection unit may include a third angle addition unit that adds the third adjustment angle to the detection angle.
The phase difference detection unit may include a third angle subtraction unit that subtracts the third adjustment angle from the detection angle.
The phase difference detection unit generates a first feedback signal using a detection angle to which the third adjustment angle is added in order to adjust the other-axis sensitivity between the first modulation signal and the second modulation signal. An other-axis sensitivity adjustment unit that generates the second feedback signal using the detected angle from which is subtracted may be included.
(Item 13)
The other-axis sensitivity adjustment unit may generate a first feedback signal based on a sin value corresponding to a detection angle to which the third adjustment angle is added.
The other-axis sensitivity adjustment unit may generate the second feedback signal based on the cos value corresponding to the detection angle obtained by subtracting the third adjustment angle.
(Item 14)
The phase difference detection unit sequentially inputs the bit stream of the first modulation signal and the bit stream of the second modulation signal for each bit, and calculates a cross product for each bit between the pair of the first feedback signal and the second feedback signal. An outer product calculation unit may be included.
(Item 15)
The loop control unit may include a loop filter that allows a frequency component equal to or lower than a predetermined frequency in the phase difference to pass.
The loop control unit may include an angle update unit that increases or decreases the detection angle according to the phase difference that has passed through the loop filter.
(Item 16)
The angle detection device may include a first magnetic sensing unit that outputs a first magnetic field detection signal corresponding to the first direction component of the magnetic field.
The angle detection device may include a second magnetic sense unit that outputs a second magnetic field detection signal corresponding to the second direction component of the magnetic field.
(Item 17)
The method may adjust the error of the detection angle of the angle detection device that detects the angle of the magnetic field.
The method may comprise the step of delta-sigma modulating the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputting the first modulated signal.
The method may comprise the step of delta-sigma modulating the second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputting a second modulated signal.
The method may comprise the step of causing the detection angle to follow the first modulation signal and the second modulation signal by loop control.
The step of following may include a step of detecting a phase difference of a detection angle with respect to an angle indicated by the first modulation signal and the second modulation signal.
The step of detecting the phase difference may adjust an error of the detection angle with respect to the angle of the magnetic field.
 (項目18)
 角度検出装置は、磁場の角度を検出してよい。
 角度検出装置は、磁場の第1方向成分に応じた第1磁場検出信号をデルタシグマ変調して第1変調信号を出力する第1デルタシグマ変調部を備えてよい。
 角度検出装置は、磁場の第2方向成分に応じた第2磁場検出信号をデルタシグマ変調して第2変調信号を出力する第2デルタシグマ変調部を備えてよい。
 角度検出装置は、検出角度をループ制御により第1変調信号および第2変調信号に対して追従させるループ制御部を備えてよい。
 ループ制御部は、磁場の角度に対する検出角度の誤差を、予め設定された調整値を用いて調整してよい。
 (項目19)
 方法は、磁場の角度を検出する角度検出装置の検出角度の誤差を調整してよい。
 方法は、磁場の第1方向成分に応じた第1磁場検出信号をデルタシグマ変調して第1変調信号を出力する段階を備えてよい。
 方法は、磁場の第2方向成分に応じた第2磁場検出信号をデルタシグマ変調して第2変調信号を出力する段階を備えてよい。
 方法は、検出角度をループ制御により第1変調信号および第2変調信号に対して追従させる段階を備えてよい。
 追従させる段階は、磁場の角度に対する検出角度の誤差を、予め設定された調整値を用いて調整してよい。
(Item 18)
The angle detection device may detect the angle of the magnetic field.
The angle detection device may include a first delta-sigma modulation unit that delta-sigma modulates the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputs the first modulation signal.
The angle detection device may include a second delta-sigma modulation unit that delta-sigma-modulates a second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputs a second modulation signal.
The angle detection device may include a loop control unit that causes the detection angle to follow the first modulation signal and the second modulation signal by loop control.
The loop control unit may adjust the error of the detection angle with respect to the angle of the magnetic field using a preset adjustment value.
(Item 19)
The method may adjust the error of the detection angle of the angle detection device that detects the angle of the magnetic field.
The method may comprise the step of delta-sigma modulating the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputting the first modulated signal.
The method may comprise the step of delta-sigma modulating the second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputting a second modulated signal.
The method may comprise the step of causing the detection angle to follow the first modulation signal and the second modulation signal by loop control.
In the following step, the error of the detected angle with respect to the angle of the magnetic field may be adjusted using a preset adjustment value.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態に係る回転角センサ1000の構成例を示す。The structural example of the rotation angle sensor 1000 which concerns on this embodiment is shown. 本実施形態に係る角度検出装置10の第1構成例を示す。The 1st structural example of the angle detection apparatus 10 which concerns on this embodiment is shown. 本実施形態に係る第1磁気センス部30および第2磁気センス部32が出力する第1磁場検出信号Vxおよび第2磁場検出信号Vyの第1例を示す。2 shows a first example of a first magnetic field detection signal Vx and a second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 according to the present embodiment. 本実施形態に係る角度検出装置10の第2構成例を示す。The 2nd structural example of the angle detection apparatus 10 which concerns on this embodiment is shown. 本実施形態に係る角度検出装置10の第3構成例を示す。The 3rd structural example of the angle detection apparatus 10 which concerns on this embodiment is shown. 本実施形態に係る第1磁気センス部30および第2磁気センス部32が出力する第1磁場検出信号Vxおよび第2磁場検出信号Vyの第2例を示す。The 2nd example of the 1st magnetic field detection signal Vx and the 2nd magnetic field detection signal Vy which the 1st magnetic sense part 30 and the 2nd magnetic sense part 32 concerning this embodiment output is shown. 本実施形態に係る角度検出装置10の第4構成例を示す。The 4th structural example of the angle detection apparatus 10 which concerns on this embodiment is shown. 本実施形態に係る第1磁気センス部30および第2磁気センス部32が出力する第1磁場検出信号Vxおよび第2磁場検出信号Vyの第3例を示す。The 3rd example of the 1st magnetic field detection signal Vx and the 2nd magnetic field detection signal Vy which the 1st magnetic sense part 30 and the 2nd magnetic sense part 32 concerning this embodiment output is shown. 本実施形態に係る角度検出装置10の第5構成例を示す。The 5th structural example of the angle detection apparatus 10 which concerns on this embodiment is shown. 本実施形態に係る位相差検出部210の第1変形例を示す。The 1st modification of the phase difference detection part 210 which concerns on this embodiment is shown. 本実施形態に係る位相差検出部210の第2変形例を示す。The 2nd modification of the phase difference detection part 210 which concerns on this embodiment is shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、本実施形態に係る回転角センサ1000の構成例を示す。回転角センサ1000は、回転軸を中心に回転する磁場の回転角を非接触で検出する。図1は、XY平面と平行な面において回転する磁場の回転角を検出する例を示す。回転角センサ1000は、角度検出装置10と、回転磁石20とを備える。 FIG. 1 shows a configuration example of a rotation angle sensor 1000 according to the present embodiment. The rotation angle sensor 1000 detects the rotation angle of the magnetic field rotating about the rotation axis in a non-contact manner. FIG. 1 shows an example of detecting the rotation angle of a magnetic field that rotates in a plane parallel to the XY plane. The rotation angle sensor 1000 includes an angle detection device 10 and a rotating magnet 20.
 角度検出装置10は、回転磁石20が発生する回転磁場の回転角を検出する。角度検出装置10は、一例として、集積回路等を有する半導体チップ等である。この場合、角度検出装置10は、シリコン等の半導体によって形成され、半導体回路および半導体素子等を含む。角度検出装置10は、複数の端子を備え、外部の基板、回路、および配線等と電気的に接続される。角度検出装置10のより具体的な構成については、後述する。 The angle detection device 10 detects the rotation angle of the rotating magnetic field generated by the rotating magnet 20. The angle detection device 10 is, for example, a semiconductor chip having an integrated circuit or the like. In this case, the angle detection device 10 is formed of a semiconductor such as silicon and includes a semiconductor circuit and a semiconductor element. The angle detection device 10 includes a plurality of terminals, and is electrically connected to an external substrate, circuit, wiring, and the like. A more specific configuration of the angle detection device 10 will be described later.
 回転磁石20は、回転磁場を発生させる。回転磁石20は、磁石22と、回転軸24と、モーター26とを有する。磁石22は、回転軸24回りに回転する。図1は、磁石22が角度検出装置10のZ軸上方に設けられる例を示す。磁石22は、一例として、円盤状の形状を有し、XY平面と略平行な面で回転する。磁石22は、XY平面と略平行な断面がそれぞれ半円形状となる2つの領域に分割されてよく、一方の領域がS極であり、他方の領域がN極である磁石を形成する。 Rotating magnet 20 generates a rotating magnetic field. The rotating magnet 20 includes a magnet 22, a rotating shaft 24, and a motor 26. The magnet 22 rotates around the rotation shaft 24. FIG. 1 shows an example in which the magnet 22 is provided above the Z axis of the angle detection device 10. For example, the magnet 22 has a disk shape and rotates on a plane substantially parallel to the XY plane. The magnet 22 may be divided into two regions each having a semicircular cross section substantially parallel to the XY plane, and forms a magnet in which one region is an S pole and the other region is an N pole.
 磁石22は、XY平面と略平行な面で回転することにより、例えば、角度検出装置10において、(数1)式で示される回転磁場を発生させる。ここで、Bは、角度検出装置10に置いて検出される磁場の絶対値を示す。本実施形態において、Bは、略一定とし、定数として取り扱うこととする。また、θは、磁場が回転する面における予め定められた方向または基準の方向に対する、回転磁場の磁場方向の角度を示す。
 (数1)
 Bx(θ)=B・cosθ
 By(θ)=B・sinθ
For example, in the angle detection device 10, the magnet 22 generates a rotating magnetic field represented by the formula (1) by rotating in a plane substantially parallel to the XY plane. Here, B indicates the absolute value of the magnetic field detected by being placed on the angle detection device 10. In the present embodiment, B is assumed to be substantially constant and handled as a constant. Further, θ represents an angle of the magnetic field direction of the rotating magnetic field with respect to a predetermined direction or a reference direction on the surface where the magnetic field rotates.
(Equation 1)
Bx (θ) = B · cos θ
By (θ) = B · sin θ
 回転軸24は、XY平面と略垂直な方向に設けられる。回転軸24は、一端が磁石22に接続され、他端がモーター26に接続される。モーター26は、回転軸24および当該回転軸24に接続された磁石22を回転させる。このように、回転角センサ1000は、XY平面と平行な磁場を検出する角度検出装置10と、Z軸回りに磁石を回転させる回転磁石20と、を組み立てて形成される。 The rotating shaft 24 is provided in a direction substantially perpendicular to the XY plane. The rotating shaft 24 has one end connected to the magnet 22 and the other end connected to the motor 26. The motor 26 rotates the rotating shaft 24 and the magnet 22 connected to the rotating shaft 24. Thus, the rotation angle sensor 1000 is formed by assembling the angle detection device 10 that detects a magnetic field parallel to the XY plane and the rotation magnet 20 that rotates the magnet around the Z axis.
 角度検出装置10は、例えば、回転磁石20が発生させる回転磁場のXY平面における第1方向成分および第2方向成分をそれぞれ検出し、検出タイミングにおける回転磁石20の回転角θを、第1方向成分および第2方向成分に基づいて算出して出力する。ここで、第1方向および第2方向は、互いに異なる方向であればよい。なお、第1方向および第2方向は、XY平面において直交する2つの方向であることが望ましい。本実施形態において、第1方向はX軸方向、第2方向はY軸方向として説明する。 The angle detection device 10 detects, for example, the first direction component and the second direction component in the XY plane of the rotating magnetic field generated by the rotating magnet 20, respectively, and determines the rotation angle θ of the rotating magnet 20 at the detection timing as the first direction component. And calculating and outputting based on the second direction component. Here, the first direction and the second direction may be different directions. The first direction and the second direction are preferably two directions orthogonal to each other on the XY plane. In the present embodiment, the first direction is described as the X-axis direction, and the second direction is described as the Y-axis direction.
 図2は、本実施形態に係る角度検出装置10の第1構成例を示す。角度検出装置10は、入力する磁場の角度を検出する。第1構成例の角度検出装置10は、第1磁気センス部30と、第2磁気センス部32と、第1増幅部40と、第2増幅部42と、第1デルタシグマ変調部50と、第2デルタシグマ変調部52と、ループ制御部100と、を備える。 FIG. 2 shows a first configuration example of the angle detection apparatus 10 according to the present embodiment. The angle detection device 10 detects the angle of the input magnetic field. The angle detection device 10 of the first configuration example includes a first magnetic sense unit 30, a second magnetic sense unit 32, a first amplification unit 40, a second amplification unit 42, a first delta-sigma modulation unit 50, A second delta-sigma modulation unit 52 and a loop control unit 100 are provided.
 第1磁気センス部30は、入力する磁場の第1方向成分に応じた第1磁場検出信号Vxを出力する。第2磁気センス部32は、入力する磁場の第2方向成分に応じた第2磁場検出信号Vyを出力する。第1磁気センス部30および第2磁気センス部32は、それぞれ、一方向の磁場を検出する磁気センサを有する。例えば、第1磁気センス部30は、(数1)式で示される磁場Bx(θ)に応じた第1磁場検出信号Vxを出力し、第2磁気センス部32は、(数1)式で示される磁場By(θ)に応じた第2磁場検出信号Vyを出力する。第1磁気センス部30および第2磁気センス部32は、それぞれ、入力する磁場に比例した検出信号を出力することが好ましい。 The first magnetic sense unit 30 outputs a first magnetic field detection signal Vx corresponding to the first direction component of the input magnetic field. The second magnetic sense unit 32 outputs a second magnetic field detection signal Vy corresponding to the second direction component of the input magnetic field. Each of the first magnetic sense unit 30 and the second magnetic sense unit 32 includes a magnetic sensor that detects a magnetic field in one direction. For example, the first magnetic sense unit 30 outputs the first magnetic field detection signal Vx corresponding to the magnetic field Bx (θ) expressed by the formula (1), and the second magnetic sense unit 32 uses the formula (1). A second magnetic field detection signal Vy corresponding to the indicated magnetic field By (θ) is output. Each of the first magnetic sense unit 30 and the second magnetic sense unit 32 preferably outputs a detection signal proportional to the input magnetic field.
 第1磁気センス部30および第2磁気センス部32は、ホール素子、磁気抵抗素子(MR)、巨大磁気抵抗素子(GMR)、トンネル効果磁気抵抗素子(TMR)、マグネトインピーダンス素子(MI素子)、および/またはインダクタンスセンサ等をそれぞれ有してよい。また、第1磁気センス部30および第2磁気センス部32は、入力する磁場を収束させる磁気収束板を更に有してもよい。 The first magnetic sense unit 30 and the second magnetic sense unit 32 include a Hall element, a magnetoresistive element (MR), a giant magnetoresistive element (GMR), a tunnel effect magnetoresistive element (TMR), a magnetoimpedance element (MI element), And / or an inductance sensor or the like. The first magnetic sense unit 30 and the second magnetic sense unit 32 may further include a magnetic converging plate that converges the input magnetic field.
 第1増幅部40は、第1磁気センス部30が出力する第1磁場検出信号Vxを増幅する。第1増幅部40は、増幅した信号を第1デルタシグマ変調部50に供給する。なお、磁場の回転角を検出する場合、入力する磁場の振幅値は規格化されてよく、ここで、第1増幅部40が増幅した信号は、磁場Bx(θ)と略等しく、第2増幅部42が増幅した信号は、磁場By(θ)と略等しいとする。即ち、回転磁場の角度θは、第1磁場検出信号Vxおよび第2磁場検出信号Vyを用いて示されることとする。 The first amplifying unit 40 amplifies the first magnetic field detection signal Vx output from the first magnetic sense unit 30. The first amplification unit 40 supplies the amplified signal to the first delta sigma modulation unit 50. When the rotation angle of the magnetic field is detected, the amplitude value of the input magnetic field may be normalized. Here, the signal amplified by the first amplifying unit 40 is substantially equal to the magnetic field Bx (θ), and the second amplification. The signal amplified by the unit 42 is assumed to be substantially equal to the magnetic field By (θ). That is, the angle θ of the rotating magnetic field is indicated by using the first magnetic field detection signal Vx and the second magnetic field detection signal Vy.
 第1デルタシグマ変調部50は、入力磁場の第1方向成分に応じた第1磁場検出信号Vxをデルタシグマ変調して第1変調信号を出力する。第2デルタシグマ変調部52は、入力磁場の第2方向成分に応じた第2磁場検出信号Vyをデルタシグマ変調して第2変調信号を出力する。第1デルタシグマ変調部50および第2デルタシグマ変調部52は、一例として、予め定められた数の1ビットデータを有するビットストリームを、変調信号としてそれぞれ出力する。 The first delta-sigma modulation unit 50 delta-sigma-modulates the first magnetic field detection signal Vx corresponding to the first direction component of the input magnetic field and outputs a first modulation signal. The second delta sigma modulation unit 52 performs delta sigma modulation on the second magnetic field detection signal Vy corresponding to the second direction component of the input magnetic field and outputs a second modulation signal. As an example, the first delta sigma modulation unit 50 and the second delta sigma modulation unit 52 each output a bit stream having a predetermined number of 1-bit data as modulation signals.
 なお、ビットストリームは、予め定められた数の1ビットデータを含み、当該1ビットデータを積算した値が入力信号の振幅値に比例または略一致する信号である。即ち、第1デルタシグマ変調部50は、磁場Bx(θ)に応じたビットストリームを第1変調信号として出力し、第2デルタシグマ変調部52は、磁場By(θ)に応じたビットストリームを第2変調信号として出力する。 Note that the bit stream is a signal including a predetermined number of 1-bit data, and a value obtained by integrating the 1-bit data is proportional to or substantially coincides with the amplitude value of the input signal. That is, the first delta-sigma modulation unit 50 outputs a bit stream corresponding to the magnetic field Bx (θ) as a first modulation signal, and the second delta-sigma modulation unit 52 outputs a bit stream corresponding to the magnetic field By (θ). Output as the second modulated signal.
 ループ制御部100は、第1デルタシグマ変調部50および第2デルタシグマ変調部52が出力する第1変調信号および第2変調信号をそれぞれ受け取り、受け取った第1変調信号および第2変調信号に対応する角度情報を検出角度φとして出力する。ループ制御部100は、クロック信号等に応じて、順次、検出角度φを更新して出力してよい。ループ制御部100は、検出角度をループ制御により第1変調信号および第2変調信号に対して追従させて、検出角度φを更新して出力してよい。ループ制御部100は、位相差検出部110と、ループフィルタ140と、角度更新部150と、を有する。 The loop control unit 100 receives the first modulation signal and the second modulation signal output from the first delta sigma modulation unit 50 and the second delta sigma modulation unit 52, respectively, and corresponds to the received first modulation signal and second modulation signal. The angle information to be output is output as the detected angle φ. The loop control unit 100 may sequentially update and output the detection angle φ according to a clock signal or the like. The loop control unit 100 may update and output the detection angle φ by causing the detection angle to follow the first modulation signal and the second modulation signal by loop control. The loop control unit 100 includes a phase difference detection unit 110, a loop filter 140, and an angle update unit 150.
 位相差検出部110は、第1変調信号および第2変調信号が示す角度θに対する検出角度φの位相差を検出する。位相差検出部110は、ループ制御部100が出力した検出角度φと、第1変調信号および第2変調信号に対応する角度情報θとの位相差を検出し、次にループ制御部100が検出角度を更新すべく、当該位相差を出力する。位相差検出部110は、記憶部120と、外積演算部130と、を含む。 The phase difference detection unit 110 detects the phase difference of the detection angle φ with respect to the angle θ indicated by the first modulation signal and the second modulation signal. The phase difference detection unit 110 detects the phase difference between the detection angle φ output from the loop control unit 100 and the angle information θ corresponding to the first modulation signal and the second modulation signal, and then the loop control unit 100 detects the phase difference. The phase difference is output to update the angle. The phase difference detection unit 110 includes a storage unit 120 and an outer product calculation unit 130.
 記憶部120は、角度に基づくアドレスとして入力し、各角度に対応するデータとして当該角度に対応するsin値およびcos値を出力可能である。記憶部120は、複数の角度にそれぞれ対応するsin値およびcos値を記憶する。記憶部120は、複数の角度に対応するアドレス毎に、sin値およびcos値を記憶してよい。記憶部120は、例えば、ループ制御部100が出力する検出角度が入力され、当該検出角度に対応するアドレスに変換する変換部を含む。即ち、記憶部120は、検出角度φの入力に対して、sinφおよびcosφを出力する。 The storage unit 120 can input as an address based on an angle, and can output a sin value and a cos value corresponding to the angle as data corresponding to each angle. The storage unit 120 stores a sin value and a cos value respectively corresponding to a plurality of angles. The storage unit 120 may store a sin value and a cos value for each address corresponding to a plurality of angles. The storage unit 120 includes, for example, a conversion unit that receives a detection angle output from the loop control unit 100 and converts the detection angle into an address corresponding to the detection angle. That is, the storage unit 120 outputs sin φ and cos φ in response to the input of the detection angle φ.
 記憶部120は、入力する検出角度φに対応するsinφの値を第1フィードバック信号とし、対応するcosφを第2フィードバック信号として、外積演算部130に供給する。記憶部120は、一例として、π/2ラジアン(またはπ/2ラジアンに対応するアドレス値)の入力に対して、1を第1フィードバック信号とし、0を第2フィードバック信号として、供給する。記憶部120は、予め定められたビット数のデジタル値で、第1フィードバック信号および第2フィードバック信号を出力してよい。 The storage unit 120 supplies the value of sin φ corresponding to the input detection angle φ as the first feedback signal, and supplies the corresponding cos φ as the second feedback signal to the outer product calculation unit 130. For example, the storage unit 120 supplies 1 as a first feedback signal and 0 as a second feedback signal with respect to an input of π / 2 radians (or an address value corresponding to π / 2 radians). The storage unit 120 may output the first feedback signal and the second feedback signal as digital values having a predetermined number of bits.
 外積演算部130は、記憶部120が出力する第1フィードバック信号および第2フィードバック信号と、第1変調信号および第2変調信号とを用いて、次式に示す外積Pを演算する。なお、第1変調信号をB・cosθ、第2変調信号をB・sinθとした。
 (数2)
 P=-B・cosθ・sinφ+B・sinθ・cosφ
 =B・sin(θ-φ)
 ≒B・(θ-φ)
The outer product calculation unit 130 calculates the outer product P represented by the following equation using the first feedback signal and the second feedback signal output from the storage unit 120, and the first modulation signal and the second modulation signal. The first modulation signal is B · cos θ, and the second modulation signal is B · sin θ.
(Equation 2)
P = -B · cosθ · sinφ + B · sinθ · cosφ
= B · sin (θ-φ)
≒ B ・ (θ-φ)
 外積演算部130は、例えば、第1乗算部132と、第2乗算部134と、減算部136を含む。第1乗算部132は、第1変調信号および第1フィードバック信号を乗じて、B・cosθ・sinφを算出する。第2乗算部134は、第2変調信号および第2フィードバック信号を乗じて、B・sinθ・cosφを算出する。減算部136は、第2乗算部134が算出した積から、第1乗算部132が算出した積を減算して、(数2)式で示す外積Pを演算する。このように、位相差検出部110は、第1変調信号および第2変調信号の組と、第1フィードバック信号および第2フィードバック信号の組との外積を演算し、位相差信号として出力する。 The outer product calculation unit 130 includes, for example, a first multiplication unit 132, a second multiplication unit 134, and a subtraction unit 136. The first multiplier 132 multiplies the first modulated signal and the first feedback signal to calculate B · cos θ · sin φ. The second multiplier 134 multiplies the second modulated signal and the second feedback signal to calculate B · sin θ · cos φ. The subtracting unit 136 subtracts the product calculated by the first multiplying unit 132 from the product calculated by the second multiplying unit 134, and calculates the outer product P expressed by Equation (2). As described above, the phase difference detection unit 110 calculates the outer product of the set of the first modulation signal and the second modulation signal and the set of the first feedback signal and the second feedback signal, and outputs the result as a phase difference signal.
 ここで、ループ制御部100は、第1変調信号および第2変調信号が示す角度θに追随するように検出角度φを出力するので、θ-φの値は、sin(θ-φ)≒(θ-φ)と近似できる程度に小さい値となる。したがって、外積演算部130が演算する外積Pは、(数2)式で示すように、角度θに対する検出角度φの位相差に比例する値B・(θ-φ)に近似できる。Bの値は定数なので、位相差検出部110は、角度θおよび検出角度φの位相差(θ-φ)を検出することになる。位相差検出部110は、検出した位相差をループフィルタ140に供給する。 Here, since the loop control unit 100 outputs the detection angle φ so as to follow the angle θ indicated by the first modulation signal and the second modulation signal, the value of θ−φ is sin (θ−φ) ≈ ( The value is small enough to approximate θ−φ). Therefore, the outer product P calculated by the outer product calculation unit 130 can be approximated to a value B · (θ−φ) that is proportional to the phase difference of the detected angle φ with respect to the angle θ, as shown in Equation (2). Since the value of B is a constant, the phase difference detection unit 110 detects the phase difference (θ−φ) between the angle θ and the detection angle φ. The phase difference detection unit 110 supplies the detected phase difference to the loop filter 140.
 ループフィルタ140は、位相差検出部110から受け取った位相差における予め定められた周波数以下の周波数成分を通過させる。ループフィルタ140は、ローパスフィルタでよい。ループフィルタ140は、第1デルタシグマ変調部50および第2デルタシグマ変調部52が発生させる量子化ノイズを低減させてよい。また、第1磁気センス部30および第2磁気センス部32が出力する第1磁場検出信号Vxおよび第2磁場検出信号Vyを変調して、第1磁場検出信号Vxおよび第2磁場検出信号Vyに含まれるDCオフセット信号を高調波成分に変換した場合、ループフィルタ140は、当該高調波成分も低減させてよい。 The loop filter 140 passes a frequency component equal to or lower than a predetermined frequency in the phase difference received from the phase difference detection unit 110. The loop filter 140 may be a low pass filter. The loop filter 140 may reduce quantization noise generated by the first delta sigma modulation unit 50 and the second delta sigma modulation unit 52. In addition, the first magnetic field detection signal Vx and the second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 are modulated to obtain the first magnetic field detection signal Vx and the second magnetic field detection signal Vy. When the included DC offset signal is converted into a harmonic component, the loop filter 140 may also reduce the harmonic component.
 角度更新部150は、ループフィルタを通過した位相差(θ-φ)に応じて検出角度φを増減する。角度更新部150は、位相差(θ-φ)を0に近づけるように、検出角度φを更新する。角度更新部150は、例えば、2つの積算部を含んでよく、この場合、ループ制御部100は、閉ループ回路のなかに2つの積算部を備える2型サーボ回路となる。角度更新部150は、一例として、2つの積算部とDCO(Digitally Controlled Oscillator)回路を含む。 The angle update unit 150 increases or decreases the detection angle φ according to the phase difference (θ−φ) that has passed through the loop filter. The angle updater 150 updates the detected angle φ so that the phase difference (θ−φ) approaches zero. The angle update unit 150 may include, for example, two integration units. In this case, the loop control unit 100 is a two-type servo circuit including two integration units in a closed loop circuit. As an example, the angle updating unit 150 includes two integrating units and a DCO (Digitally Controlled Oscillator) circuit.
 角度更新部150に入力する位相差(θ-φ)の信号が、一例として、ビットストリームの第1変調信号および第2変調信号を用いて演算された信号の場合、角度更新部150は、当該位相差信号を第1の積算部が積算してクロック毎の位相差信号にしてよい。また、クロック毎(即ち、単位時間毎)の位相差は、角度の時間微分である角速度ω(rad/s)のディメンジョンを有する。この場合、角度更新部150は、当該角速度ωの信号をDCO回路に供給して、当該角速度ωに対応する周波数信号を出力させ、当該周波数信号を第2の積算部が積算して検出角度φを生成する。 For example, when the signal of the phase difference (θ−φ) input to the angle update unit 150 is a signal calculated using the first modulation signal and the second modulation signal of the bit stream, the angle update unit 150 The phase difference signal may be accumulated by the first accumulation unit to be a phase difference signal for each clock. Further, the phase difference for each clock (that is, for each unit time) has a dimension of an angular velocity ω (rad / s) that is a time derivative of the angle. In this case, the angle update unit 150 supplies the signal of the angular velocity ω to the DCO circuit, outputs a frequency signal corresponding to the angular velocity ω, and the second integration unit integrates the frequency signal to detect the detection angle φ. Is generated.
 なお、第2の積算部は、アップカウントおよびダウンカウント動作を行うアップダウンカウンターを含んでよく、前回までの周波数信号のカウント値に今回のカウント値が積算されて、検出角度φが生成される。即ち、角度更新部150は、前回の検出角度φに、今回の位相差(θ-φ)が積算して、今回の磁場の回転角θにより近い検出角度φを算出する。 The second integration unit may include an up / down counter that performs up-counting and down-counting operations, and the current count value is integrated with the count value of the frequency signal up to the previous time to generate the detection angle φ. . That is, the angle updater 150 adds the current phase difference (θ−φ) to the previous detection angle φ, and calculates the detection angle φ closer to the current magnetic field rotation angle θ.
 以上のように、本実施形態に係る角度検出装置10は、ループ制御部100によるフィードバックループにより、角度θに追従させたより正確な検出角度φを出力することができる。ループ制御部100は、フィードバックループにおいて、検出角度φに対応する正弦波信号sin(φ)および余弦波信号cos(φ)を外積演算部130にフィードバックし、第1変調信号および第2変調信号と乗算する。 As described above, the angle detection apparatus 10 according to the present embodiment can output a more accurate detection angle φ that follows the angle θ by the feedback loop by the loop control unit 100. In the feedback loop, the loop control unit 100 feeds back the sine wave signal sin (φ) and the cosine wave signal cos (φ) corresponding to the detection angle φ to the outer product calculation unit 130, and the first modulation signal and the second modulation signal Multiply.
 ここで、第1変調信号および第2変調信号が+1および-1のいずれかの値が時間的に並ぶ符号付きビットストリームの場合、(数2)式に示した外積Pは、第1変調信号および第2変調信号のビット値に応じて、次式で示されるP1からP4のいずれかの値となる。なお、第1変調信号のビット値をS1、第2変調信号のビット値をS2とする。
 (数3)
 P1=-B・sinφ+B・cosφ  S1=+1、S2=+1
 P2= B・sinφ+B・cosφ  S1=-1、S2=+1
 P3=-B・sinφ-B・cosφ  S1=+1、S2=-1
 P4= B・sinφ-B・cosφ  S1=-1、S2=-1
Here, when the first modulation signal and the second modulation signal are signed bitstreams in which one of the values +1 and −1 is temporally aligned, the outer product P shown in the equation (2) is the first modulation signal. Depending on the bit value of the second modulation signal, the value is any one of P1 to P4 expressed by the following equation. Note that the bit value of the first modulation signal is S1, and the bit value of the second modulation signal is S2.
(Equation 3)
P1 = −B · sinφ + B · cosφ S1 = + 1, S2 = + 1
P2 = B · sinφ + B · cosφ S1 = −1, S2 = + 1
P3 = −B · sinφ−B · cosφ S1 = + 1, S2 = −1
P4 = B · sinφ−B · cosφ S1 = −1, S2 = −1
 即ち、角度検出装置10は、第1変調信号および第2変調信号をビットストリームで外積演算部130に供給することにより、第1フィードバック信号および第2フィードバック信号の加減算によって外積Pを算出することができる。即ち、外積演算部130は、第1変調信号のビットストリームおよび第2変調信号のビットストリームをビット毎に順次入力し、第1フィードバック信号および第2フィードバック信号の組との間でビット毎に加減算を実行して、外積を演算する。これにより、外積演算部130は、第1乗算部132および第2乗算部134に代えて、加算器および減算器を用いることができ、実装面積を低減させることができる。 That is, the angle detection apparatus 10 can calculate the outer product P by adding and subtracting the first feedback signal and the second feedback signal by supplying the first modulation signal and the second modulation signal to the outer product calculation unit 130 as a bit stream. it can. That is, the outer product calculation unit 130 sequentially inputs the bit stream of the first modulation signal and the bit stream of the second modulation signal for each bit, and performs addition / subtraction for each bit between the pair of the first feedback signal and the second feedback signal. To calculate the outer product. Thereby, the outer product calculation unit 130 can use an adder and a subtracter instead of the first multiplication unit 132 and the second multiplication unit 134, and can reduce the mounting area.
 このような角度検出装置10は、検出角度φに感度ミスマッチ、オフセット誤差、および他軸感度等の誤差が含まれる場合がある。この場合、角度検出装置10は、製造段階および/または検出動作をしていない状態において、これらの誤差を測定し、測定結果に応じて検出角度φの誤差を調整していた。しかしながら、このような角度非線形性誤差の調整をアナログ回路、例えばデルタシグマ変調部等に施すと、オーバーサンプリングの効果が低下し、ノイズの折り返しが発生してしまうため、低ノイズ化には不向きであった。 In such an angle detection device 10, the detection angle φ may include errors such as sensitivity mismatch, offset error, and other axis sensitivity. In this case, the angle detection device 10 measures these errors in the manufacturing stage and / or in a state where the detection operation is not performed, and adjusts the error of the detection angle φ according to the measurement result. However, if such an angle non-linearity error adjustment is applied to an analog circuit, such as a delta-sigma modulation unit, the effect of oversampling is reduced and noise aliasing occurs. there were.
 そこで、本実施形態に係るループ制御部200は、当該角度非線形性誤差を調整して、アナログ信号による調整では実現できない程度の低ノイズ化を実現し、高分解能化を可能にする。また、乗算器を用いずに当該角度非線形性誤差を調整して、高分解能化に伴って回路規模が増大することを防止する。即ち、ループ制御部200は、磁場の角度θに対する検出角度φの誤差を、予め設定された調整値を用いて加算および減算により調整する。このようなループ制御部200を備える角度検出装置10について、次に説明する。 Therefore, the loop control unit 200 according to the present embodiment adjusts the angular non-linearity error so as to realize noise reduction that cannot be realized by adjustment using an analog signal, thereby enabling high resolution. In addition, the angle nonlinearity error is adjusted without using a multiplier to prevent the circuit scale from increasing as the resolution increases. That is, the loop control unit 200 adjusts the error of the detected angle φ with respect to the magnetic field angle θ by addition and subtraction using a preset adjustment value. Next, the angle detection apparatus 10 including such a loop control unit 200 will be described.
 図3は、本実施形態に係る第1磁気センス部30および第2磁気センス部32が出力する第1磁場検出信号Vxおよび第2磁場検出信号Vyの第1例を示す。図3は、横軸が第1方向(X軸方向)を検出する第1磁気センス部30の第1磁場検出信号Vxを示し、縦軸が第2方向(Y軸方向)を検出する第2磁気センス部32の第2磁場検出信号Vyを示す。点線で示す信号は、理想的な磁場検出信号であり、XY平面において略円形の形状を有する信号となる。即ち、図3は、理想的な第1磁場検出信号VxをB・cosθとし、理想的な第2磁場検出信号VyをB・sinθとした例を示す。 FIG. 3 shows a first example of the first magnetic field detection signal Vx and the second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 according to the present embodiment. FIG. 3 shows the first magnetic field detection signal Vx of the first magnetic sensing unit 30 in which the horizontal axis detects the first direction (X-axis direction), and the vertical axis indicates the second direction (Y-axis direction). The 2nd magnetic field detection signal Vy of the magnetic sense part 32 is shown. A signal indicated by a dotted line is an ideal magnetic field detection signal and has a substantially circular shape on the XY plane. That is, FIG. 3 shows an example in which the ideal first magnetic field detection signal Vx is B · cos θ and the ideal second magnetic field detection signal Vy is B · sin θ.
 実線で示す信号は、第1磁気センス部30および第2磁気センス部32に磁気感度のミスマッチが生じた場合の磁場検出信号を示す。図3は、第1磁気センス部30が第2磁気センス部32と比較して磁気感度が大きい場合の磁場検出信号を示す。この場合、第1磁場検出信号Vxは、B・A・cosθとし、A>1と示すことができる。このように、第1磁気センス部30および第2磁気センス部32に磁気感度のミスマッチが生じると、角度検出装置10は、正確な検出角度φを出力することができなくなる。 A signal indicated by a solid line indicates a magnetic field detection signal when a magnetic sensitivity mismatch occurs in the first magnetic sense unit 30 and the second magnetic sense unit 32. FIG. 3 shows a magnetic field detection signal when the first magnetic sense unit 30 has higher magnetic sensitivity than the second magnetic sense unit 32. In this case, the first magnetic field detection signal Vx can be represented as B · A · cos θ and A> 1. As described above, when a magnetic sensitivity mismatch occurs in the first magnetic sense unit 30 and the second magnetic sense unit 32, the angle detection device 10 cannot output an accurate detection angle φ.
 例えば、回転磁場の角度θが、0<θ<π/2(およびπ<θ<3π/2)の範囲の場合、第1磁場検出信号Vxが第2磁場検出信号Vyよりも大きくなるので、角度検出装置10は、θよりも小さい検出角度φを出力する。同様に、回転磁場の角度θが、π/2<θ<π(および3π/2<θ<2π)の範囲の場合、第1磁場検出信号Vxが第2磁場検出信号Vyよりも小さくなるので、角度検出装置10は、θよりも大きい検出角度φを出力する。 For example, when the angle θ of the rotating magnetic field is in the range of 0 <θ <π / 2 (and π <θ <3π / 2), the first magnetic field detection signal Vx is larger than the second magnetic field detection signal Vy. The angle detection device 10 outputs a detection angle φ smaller than θ. Similarly, when the angle θ of the rotating magnetic field is in the range of π / 2 <θ <π (and 3π / 2 <θ <2π), the first magnetic field detection signal Vx is smaller than the second magnetic field detection signal Vy. The angle detection device 10 outputs a detection angle φ larger than θ.
 より具体的には、(数2)式で示す外積Pが、次式のようになってしまう。ここで、θ≒φであることから、sin(θ-φ)=0および2・cosφ・sinθ=sin2θとした。
 (数4)
 P=-B・A・cosθ・sinφ+B・sinθ・cosφ
 =B・{-A・cosθ・sinφ+sinθ・cosφ}
 =B・{A・sin(θ-φ)+(1-A)・sinθ・cosφ}
 ≒-0.5・B・(-1+A)・sin2θ
More specifically, the outer product P shown by the equation (2) becomes as the following equation. Here, since θ≈φ, sin (θ−φ) = 0 and 2 · cos φ · sin θ = sin 2θ were set.
(Equation 4)
P = -B · A · cosθ · sinφ + B · sinθ · cosφ
= B · {−A · cosθ · sinφ + sinθ · cosφ}
= B · {A · sin (θ−φ) + (1−A) · sinθ · cosφ}
≒ -0.5 ・ B ・ (-1 + A) ・ sin2θ
 以上のように、外積Pは、位相差(θ-φ)を0にしても値を有する場合が生じるので、検出角度φは、磁気感度のミスマッチに応じた誤差が含まれてしまうことになる。このような角度誤差を調整すべく、第1磁場検出信号Vxに補正値1/Aを乗じれば、第1磁場検出信号Vxは、B・cosθとなるので、(数2)式の外積Pを算出することができる。即ち、角度誤差の調整は、第1磁場検出信号Vxに補正値1/Aを乗じる乗算回路を追加することで実現することができる。しかしながら、乗算回路は、実装面積が大きいので、回路規模が増大してしまうことがあった。 As described above, the outer product P sometimes has a value even when the phase difference (θ−φ) is set to 0. Therefore, the detection angle φ includes an error corresponding to a magnetic sensitivity mismatch. . In order to adjust such an angle error, if the first magnetic field detection signal Vx is multiplied by the correction value 1 / A, the first magnetic field detection signal Vx becomes B · cos θ. Can be calculated. That is, the adjustment of the angle error can be realized by adding a multiplication circuit that multiplies the first magnetic field detection signal Vx by the correction value 1 / A. However, since the multiplication circuit has a large mounting area, the circuit scale may increase.
 そこで、乗算回路を用いないで角度誤差を調整すべく、まずは、第1フィードバック信号に補正値cosβを乗じて外積Pを算出する。
 (数5)
 P=-B・A・cosθ・sinφ・cosβ+B・sinθ・cosφ
Therefore, in order to adjust the angle error without using the multiplication circuit, first, the outer product P is calculated by multiplying the first feedback signal by the correction value cos β.
(Equation 5)
P = −B · A · cosθ · sinφ · cosβ + B · sinθ · cosφ
 ここで、A=1/cosαとする。なお、Aおよびcosβは、ともに1に近い値なので、α≒β、即ち、cosβ/cosα≒1と近似することができる。これにより、(数5)式は次式のように表される。
 (数6)
 P=-B・cosθ・sinφ・cosβ/cosα+B・sinθ・cosφ
 ≒-B・cosθ・sinφ+B・sinθ・cosφ
 =B・sin(θ-φ)
 ≒B・(θ-φ)
Here, A = 1 / cos α. Since A and cos β are both close to 1, α≈β, that is, cos β / cos α≈1 can be approximated. Thereby, (Formula 5) Formula is expressed as the following formula.
(Equation 6)
P = −B · cos θ · sin φ · cos β / cos α + B · sin θ · cos φ
≒ -B ・ cosθ ・ sinφ + B ・ sinθ ・ cosφ
= B · sin (θ-φ)
≒ B ・ (θ-φ)
 以上のように、補正値cosβを用いることにより、(数2)式と同様に、位相差(θ-φ)を0にすると、外積Pを0にすることができる。したがって、角度検出装置10は、検出角度φをθに追従させることで、磁気感度のミスマッチに応じた角度誤差を低減させることができる。 As described above, by using the correction value cos β, the outer product P can be set to 0 when the phase difference (θ−φ) is set to 0, similarly to the equation (2). Therefore, the angle detection apparatus 10 can reduce the angle error according to the magnetic sensitivity mismatch by making the detection angle φ follow θ.
 次に、(数5)式の乗算を次のように変形する。
 (数7)
 P=-B・A・cosθ・sinφ・cosβ+B・sinθ・cosφ
 =-B・A・cosθ・{sin(φ+β)+sin(φ-β)}/2
 +B・sinθ・cosφ
Next, the multiplication of equation (5) is modified as follows.
(Equation 7)
P = −B · A · cosθ · sinφ · cosβ + B · sinθ · cosφ
= −B · A · cos θ · {sin (φ + β) + sin (φ−β)} / 2
+ B · sinθ · cosφ
 (数7)式は、sinφ・cosβといった乗算を、sin(φ+β)+sin(φ-β)といった加算から演算できることを示す。本実施形態に係るループ制御部200は、(数7)式の演算を実行する回路を用いることで、乗算回路を用いずに誤差を調整する。 (Equation 7) indicates that a multiplication such as sin φ · cos β can be calculated from an addition such as sin (φ + β) + sin (φ−β). The loop control unit 200 according to the present embodiment adjusts the error without using a multiplication circuit by using a circuit that executes the calculation of Equation (7).
 図4は、本実施形態に係る角度検出装置10の第2構成例を示す。第2構成例の角度検出装置10において、図2に示された第1構成例の角度検出装置10の動作と略同一のものには同一の符号を付け、説明を省略する。第2構成例の角度検出装置10は、ループ制御部200を備える。ループ制御部200は、位相差検出部210と、ループフィルタ140と、角度更新部150と、を有する。ループフィルタ140および角度更新部150は、図2で説明したので、ここでは説明を省略する。 FIG. 4 shows a second configuration example of the angle detection apparatus 10 according to the present embodiment. In the angle detection device 10 of the second configuration example, the same reference numerals are given to substantially the same operations as those of the angle detection device 10 of the first configuration example shown in FIG. The angle detection device 10 of the second configuration example includes a loop control unit 200. The loop control unit 200 includes a phase difference detection unit 210, a loop filter 140, and an angle update unit 150. The loop filter 140 and the angle updating unit 150 have been described with reference to FIG.
 位相差検出部210は、磁場の角度θに対する検出角度φの誤差を調整する。位相差検出部210は、検出角度φの誤差が小さくなるように調整してよい。図4は、第1磁気センス部30が第2磁気センス部32と比較して磁気感度が大きい場合の角度誤差を、位相差検出部210が調整する例を示す。即ち、位相差検出部210は、第1変調信号および第2変調信号と、検出角度φに応じた第1フィードバック信号および第2フィードバック信号とに基づいて、位相差を示す位相差信号を出力し、第1フィードバック信号を調整する。位相差検出部210は、記憶部120と、外積演算部130と、補正値記憶部220と、第1加減算部230と、第1振幅調整部240と、を含む。 The phase difference detection unit 210 adjusts the error of the detection angle φ with respect to the magnetic field angle θ. The phase difference detection unit 210 may adjust so that the error of the detection angle φ is small. FIG. 4 shows an example in which the phase difference detection unit 210 adjusts an angular error when the first magnetic sense unit 30 has a higher magnetic sensitivity than the second magnetic sense unit 32. That is, the phase difference detection unit 210 outputs a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle φ. The first feedback signal is adjusted. The phase difference detection unit 210 includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, a first addition / subtraction unit 230, and a first amplitude adjustment unit 240.
 補正値記憶部220は、検出角度φの誤差を調整する補正値βを記憶する。補正値記憶部220は、+βおよび-βを記憶してもよい。なお、本実施形態において、補正値βを第1調整角度とする。 The correction value storage unit 220 stores a correction value β for adjusting the error of the detection angle φ. The correction value storage unit 220 may store + β and −β. In the present embodiment, the correction value β is the first adjustment angle.
 第1加減算部230は、補正値記憶部220の第1調整角度βに基づき、検出角度φを加算および減算する。第1加減算部230は、第1角度加算部232および第1角度減算部234を含む。第1角度加算部232は、検出角度φに第1調整角度βを加算する。第1角度加算部232は、加算結果(φ+β)を、記憶部120に供給する。第1角度減算部234は、検出角度φから第1調整角度βを減算する。第1角度減算部234は、減算結果(φ-β)を、記憶部120に供給する。 The first addition / subtraction unit 230 adds and subtracts the detected angle φ based on the first adjustment angle β of the correction value storage unit 220. The first addition / subtraction unit 230 includes a first angle addition unit 232 and a first angle subtraction unit 234. The first angle addition unit 232 adds the first adjustment angle β to the detection angle φ. The first angle addition unit 232 supplies the addition result (φ + β) to the storage unit 120. The first angle subtracting unit 234 subtracts the first adjustment angle β from the detected angle φ. The first angle subtraction unit 234 supplies the subtraction result (φ−β) to the storage unit 120.
 第1角度加算部232および第1角度減算部234は、角度に基づくアドレスを記憶部120に供給してもよい。また、第1角度加算部232および第1角度減算部234は、検出角度φに第1調整角度βを加算した角度に基づくアドレスおよび検出角度φに第1調整角度βを減算した角度に基づくアドレスを、異なるサイクルで記憶部120に入力してよい。即ち、第1加減算部230は、クロック信号等に応じて、角度に基づくアドレス値を、順次、記憶部120に供給してよい。 The first angle addition unit 232 and the first angle subtraction unit 234 may supply an address based on the angle to the storage unit 120. The first angle adding unit 232 and the first angle subtracting unit 234 also have an address based on an angle obtained by adding the first adjustment angle β to the detection angle φ and an address based on an angle obtained by subtracting the first adjustment angle β from the detection angle φ. May be input to the storage unit 120 in different cycles. That is, the first addition / subtraction unit 230 may sequentially supply the address value based on the angle to the storage unit 120 according to a clock signal or the like.
 記憶部120は、図2で説明した動作に加え、検出角度φおよび第1調整角度βによって定まる角度に対応する正弦波信号を出力する。即ち、記憶部120は、第1角度加算部232の加算結果(φ+β)に対応する正弦波信号sin(φ+β)の値、第1角度減算部234の減算結果(φ-β)に対応する正弦波信号sin(φ-β)の値、および検出角度φに対応する余弦波信号cosφの値を、それぞれ出力する。なお、余弦波信号cosφの値は、図2で説明したように、第2フィードバック信号となる。 The storage unit 120 outputs a sine wave signal corresponding to an angle determined by the detection angle φ and the first adjustment angle β in addition to the operation described in FIG. That is, the storage unit 120 stores the value of the sine wave signal sin (φ + β) corresponding to the addition result (φ + β) of the first angle addition unit 232 and the sine corresponding to the subtraction result (φ−β) of the first angle subtraction unit 234. The value of the wave signal sin (φ−β) and the value of the cosine wave signal cos φ corresponding to the detection angle φ are output. Note that the value of the cosine wave signal cosφ is the second feedback signal as described with reference to FIG.
 第1振幅調整部240は、第1角度加算部232および第1角度減算部234が出力する角度を用いて、第1変調信号および第2変調信号の振幅誤差を調整するための第1フィードバック信号を生成する。第1振幅調整部240は、第1角度加算部232が出力する角度に応じたsin値および第1角度減算部234が出力する角度に応じたsin値を用いて、第1変調信号および第2変調信号の振幅誤差を調整するための第1フィードバック信号を生成する。 The first amplitude adjustment unit 240 uses the angles output by the first angle addition unit 232 and the first angle subtraction unit 234 to adjust the first feedback signal for adjusting the amplitude error of the first modulation signal and the second modulation signal. Is generated. The first amplitude adjusting unit 240 uses the sin value corresponding to the angle output from the first angle adding unit 232 and the sin value corresponding to the angle output from the first angle subtracting unit 234 to use the first modulation signal and the second A first feedback signal for adjusting the amplitude error of the modulation signal is generated.
 また、第1振幅調整部240は、第1角度加算部232が出力する角度に応じたsin値および第1角度減算部234が出力する角度に応じたsin値を、異なるサイクルで記憶部120から受け取って、第1変調信号および第2変調信号の振幅誤差を調整するための第1フィードバック信号を生成してよい。第1振幅調整部240は、加算部242および増幅部244を含む。 In addition, the first amplitude adjustment unit 240 obtains the sin value according to the angle output from the first angle addition unit 232 and the sin value according to the angle output from the first angle subtraction unit 234 from the storage unit 120 in different cycles. A first feedback signal for adjusting the amplitude error of the first modulated signal and the second modulated signal may be received. The first amplitude adjustment unit 240 includes an addition unit 242 and an amplification unit 244.
 加算部242は、記憶部120から受け取ったsin(φ+β)およびsin(φ-β)の値を加算する。増幅部244は、加算部242の加算結果を予め定められた一定の倍率で増幅する。増幅部244は、一例として、加算部242の加算結果を0.5倍に増幅してよい。即ち、第1振幅調整部240は、sin(φ+β)およびsin(φ-β)の和を1/2にした信号を、第1フィードバック信号として生成する。これにより、第1フィードバック信号は、{sin(φ+β)+sin(φ-β)}/2となる。なお、デジタル演算における0.5倍はビットシフトで実現できるため、面積の増加にはならない。 The addition unit 242 adds the values of sin (φ + β) and sin (φ−β) received from the storage unit 120. The amplifying unit 244 amplifies the addition result of the adding unit 242 at a predetermined constant magnification. As an example, the amplification unit 244 may amplify the addition result of the addition unit 242 by 0.5 times. That is, the first amplitude adjusting unit 240 generates a signal obtained by halving the sum of sin (φ + β) and sin (φ−β) as the first feedback signal. As a result, the first feedback signal becomes {sin (φ + β) + sin (φ−β)} / 2. In addition, since 0.5 times in digital calculation can be realized by bit shift, the area does not increase.
 外積演算部130は、第1フィードバック信号および第2フィードバック信号と、第1変調信号および第2変調信号とを用いて、外積Pを演算する。ここで、第1フィードバック信号が{sin(φ+β)+sin(φ-β)}/2となっているので、本実施形態の外積演算部130は、(数7)式に示す外積Pを演算することになる。また、(数7)式に示す外積Pは、(数6)式に示すように、位相差(θ-φ)に近似できる。したがって、外積演算部130は、外積Pの演算結果をループフィルタ140に供給することにより、ループ制御部200は、回転磁場の角度θに追従する検出角度φを出力することができる。 The outer product calculation unit 130 calculates the outer product P using the first feedback signal and the second feedback signal, and the first modulation signal and the second modulation signal. Here, since the first feedback signal is {sin (φ + β) + sin (φ−β)} / 2, the outer product calculation unit 130 of the present embodiment calculates the outer product P shown in Equation (7). It will be. Further, the outer product P shown in the equation (7) can be approximated to the phase difference (θ−φ) as shown in the equation (6). Therefore, the outer product calculation unit 130 supplies the calculation result of the outer product P to the loop filter 140, so that the loop control unit 200 can output the detection angle φ that follows the angle θ of the rotating magnetic field.
 なお、外積演算部130は、図2で説明したように、第1フィードバック信号および第2フィードバック信号の加減算によって外積Pを算出することができる。したがって、位相差検出部210は、検出角度φおよび第1調整角度βに基づき、加算および減算によって、外積Pを算出することができる。また、位相差検出部210は、第1フィードバック信号の生成に用いる正弦波信号sin(φ+β)および正弦波信号sin(φ-β)を、記憶部120に記憶された正弦波信号を用いることができる。即ち、位相差検出部210は、検出角度φから第1調整角度βの分だけアドレス値をずらしたデータを用いるので、記憶部120に記憶すべきデータを増加させずに、外積Pを算出することができる。 It should be noted that the outer product calculation unit 130 can calculate the outer product P by adding and subtracting the first feedback signal and the second feedback signal, as described in FIG. Therefore, the phase difference detection unit 210 can calculate the outer product P by addition and subtraction based on the detection angle φ and the first adjustment angle β. Further, the phase difference detection unit 210 may use the sine wave signal sin (φ + β) and the sine wave signal sin (φ−β) used for generating the first feedback signal as the sine wave signal stored in the storage unit 120. it can. That is, since the phase difference detection unit 210 uses data whose address value is shifted from the detection angle φ by the first adjustment angle β, the phase difference detection unit 210 calculates the outer product P without increasing the data to be stored in the storage unit 120. be able to.
 したがって、本実施形態に係るループ制御部200は、回路規模を増加することを防止しつつ、また、取り扱うデータが増加することも防止しつつ、磁気感度のミスマッチに応じた角度誤差を調整することができる。図4に示す角度検出装置10は、このようなループ制御部200を備えるので、回路規模の増大を防止しつつ、また、取り扱うデータの増加も防止しつつ、感度ミスマッチを低減させた非接触回転角センサを提供することができる。 Therefore, the loop control unit 200 according to the present embodiment adjusts the angle error according to the magnetic sensitivity mismatch while preventing an increase in circuit scale and preventing an increase in data to be handled. Can do. Since the angle detection apparatus 10 shown in FIG. 4 includes such a loop control unit 200, non-contact rotation with reduced sensitivity mismatch while preventing an increase in circuit scale and an increase in data to be handled. An angle sensor can be provided.
 以上の本実施形態に係る角度検出装置10は、第1磁気センス部30が第2磁気センス部32と比較して磁気感度が大きい場合の磁気感度のミスマッチに対して、角度誤差を調整する例を説明した。これに代えて、角度検出装置10は、第1磁気センス部30が第2磁気センス部32と比較して磁気感度が小さい場合の磁気感度のミスマッチに対して、角度誤差を調整してもよい。この場合、(数4)式で示した外積Pは、次式のように表される。
 (数8)
 P=-B・cosθ・sinφ+B・A・sinθ・cosφ
 =B・{A・sin(θ-φ)+(-1+A)・cosθ・sinφ}
 ≒0.5・B・(-1+A)・sin2θ
The angle detection apparatus 10 according to the present embodiment described above is an example in which the first magnetic sense unit 30 adjusts the angular error with respect to the magnetic sensitivity mismatch when the magnetic sensitivity is higher than that of the second magnetic sense unit 32. Explained. Alternatively, the angle detection device 10 may adjust the angle error with respect to a magnetic sensitivity mismatch when the first magnetic sense unit 30 has a lower magnetic sensitivity than the second magnetic sense unit 32. . In this case, the outer product P shown by the equation (4) is expressed as the following equation.
(Equation 8)
P = -B · cosθ · sinφ + B · A · sinθ · cosφ
= B · {A · sin (θ−φ) + (− 1 + A) · cos θ · sinφ}
≒ 0.5 ・ B ・ (-1 + A) ・ sin2θ
 この場合においても、第2フィードバック信号に補正値cosβを乗じて外積Pを算出する。このように、補正値cosβを用いることにより、(数6)式と同様に、位相差(θ-φ)を0にすると、外積Pを0にすることができる。したがって、角度検出装置10は、検出角度φをθに追従させることで、磁気感度のミスマッチに応じた角度誤差を低減させることができる。
 (数9)
 P=-B・cosθ・sinφ+B・A・sinθ・cosφ・cosβ
 ≒-B・cosθ・sinφ+B・sinθ・cosφ
 =B・sin(θ-φ)
 ≒B・(θ-φ)
Also in this case, the outer product P is calculated by multiplying the second feedback signal by the correction value cos β. In this way, by using the correction value cos β, the outer product P can be set to 0 when the phase difference (θ−φ) is set to 0, similarly to the equation (6). Therefore, the angle detection apparatus 10 can reduce the angle error according to the magnetic sensitivity mismatch by making the detection angle φ follow θ.
(Equation 9)
P = −B · cosθ · sinφ + B · A · sinθ · cosφ · cosβ
≒ -B ・ cosθ ・ sinφ + B ・ sinθ ・ cosφ
= B · sin (θ-φ)
≒ B ・ (θ-φ)
 また、(数9)式は、次のように変形することができる。
 (数10)
 P=-B・cosθ・sinφ+B・A・sinθ・cosφ・cosβ
 =-B・cosθ・sinφ
 +B・A・sinθ・{cos(φ+β)+cos(φ-β)}/2
The equation (9) can be modified as follows.
(Equation 10)
P = −B · cosθ · sinφ + B · A · sinθ · cosφ · cosβ
= -B ・ cosθ ・ sinφ
+ B · A · sin θ · {cos (φ + β) + cos (φ−β)} / 2
 (数10)式は、cosφ・cosβといった乗算を、cos(φ+β)+cos(φ-β)といった加算から演算できることを示す。本実施形態に係るループ制御部200は、(数10)式の演算を実行する回路を用いることで、磁気感度のミスマッチに応じた角度誤差を低減させることもできる。このようなループ制御部200について、次に説明する。 (Equation 10) indicates that multiplication such as cos φ · cos β can be calculated from addition such as cos (φ + β) + cos (φ−β). The loop control unit 200 according to the present embodiment can reduce an angular error corresponding to a magnetic sensitivity mismatch by using a circuit that performs the calculation of Expression (10). Such a loop control unit 200 will be described next.
 図5は、本実施形態に係る角度検出装置10の第3構成例を示す。第3構成例の角度検出装置10において、図2および図4に示された第1構成例および第2構成例の角度検出装置10の動作と略同一のものには同一の符号を付け、説明を省略する。第3構成例のループ制御部200は、位相差検出部210と、ループフィルタ140と、角度更新部150と、を有する。ループフィルタ140および角度更新部150は、図2で説明したので、ここでは説明を省略する。 FIG. 5 shows a third configuration example of the angle detection apparatus 10 according to the present embodiment. In the angle detection device 10 of the third configuration example, the same reference numerals are given to substantially the same operations as those of the angle detection device 10 of the first configuration example and the second configuration example shown in FIGS. Is omitted. The loop control unit 200 of the third configuration example includes a phase difference detection unit 210, a loop filter 140, and an angle update unit 150. The loop filter 140 and the angle updating unit 150 have been described with reference to FIG.
 図5は、第1磁気センス部30が第2磁気センス部32と比較して磁気感度が小さい場合の角度誤差を、位相差検出部210が調整する例を示す。即ち、位相差検出部210は、第1変調信号および第2変調信号と、検出角度φに応じた第1フィードバック信号および第2フィードバック信号とに基づいて、位相差を示す位相差信号を出力し、第2フィードバック信号を調整する。位相差検出部210は、記憶部120と、外積演算部130と、補正値記憶部220と、第2加減算部330と、第2振幅調整部340と、を含む。 FIG. 5 shows an example in which the phase difference detection unit 210 adjusts an angle error when the first magnetic sense unit 30 has a lower magnetic sensitivity than the second magnetic sense unit 32. That is, the phase difference detection unit 210 outputs a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle φ. And adjusting the second feedback signal. The phase difference detection unit 210 includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, a second addition / subtraction unit 330, and a second amplitude adjustment unit 340.
 補正値記憶部220は、第2調整角度βを記憶する。第2加減算部330は、補正値記憶部220の第2調整角度βに基づき、検出角度φを加算および減算する。第2加減算部330は、第2角度加算部332および第2角度減算部334を含む。第2角度加算部332は、検出角度φに第2調整角度βを加算する。第2角度加算部332は、加算結果(φ+β)を、記憶部120に供給する。第2角度減算部334は、検出角度φから第2調整角度βを減算する。第2角度減算部334は、減算結果(φ-β)を、記憶部120に供給する。 The correction value storage unit 220 stores the second adjustment angle β. The second addition / subtraction unit 330 adds and subtracts the detected angle φ based on the second adjustment angle β of the correction value storage unit 220. The second addition / subtraction unit 330 includes a second angle addition unit 332 and a second angle subtraction unit 334. The second angle addition unit 332 adds the second adjustment angle β to the detection angle φ. The second angle addition unit 332 supplies the addition result (φ + β) to the storage unit 120. The second angle subtraction unit 334 subtracts the second adjustment angle β from the detection angle φ. The second angle subtraction unit 334 supplies the subtraction result (φ−β) to the storage unit 120.
 第2角度加算部332および第2角度減算部334は、角度に基づくアドレスを記憶部120に供給してもよい。また、第2角度加算部332および第2角度減算部334は、検出角度φに第2調整角度βを加算した角度に基づくアドレスおよび検出角度φに第2調整角度βを減算した角度に基づくアドレスを、異なるサイクルで記憶部120に入力してよい。即ち、第2加減算部330は、クロック信号等に応じて、角度に基づくアドレス値を、順次、記憶部120に供給してよい。 The second angle addition unit 332 and the second angle subtraction unit 334 may supply an address based on the angle to the storage unit 120. Further, the second angle addition unit 332 and the second angle subtraction unit 334 have an address based on an angle obtained by adding the second adjustment angle β to the detection angle φ and an address based on an angle obtained by subtracting the second adjustment angle β from the detection angle φ. May be input to the storage unit 120 in different cycles. That is, the second addition / subtraction unit 330 may sequentially supply the address value based on the angle to the storage unit 120 according to the clock signal or the like.
 記憶部120は、図2で説明した動作に加え、検出角度φおよび第2調整角度βによって定まる角度に対応する余弦波信号を出力する。即ち、記憶部120は、第2角度加算部332の加算結果(φ+β)に対応する余弦波信号cos(φ+β)の値、第2角度減算部334の減算結果(φ-β)に対応する余弦波信号cos(φ-β)の値、および検出角度φに対応する正弦波信号sinφの値を、それぞれ出力する。なお、正弦波信号sinφは、図2で説明したように、第1フィードバック信号となる。 The storage unit 120 outputs a cosine wave signal corresponding to an angle determined by the detection angle φ and the second adjustment angle β in addition to the operation described in FIG. That is, the storage unit 120 stores the value of the cosine wave signal cos (φ + β) corresponding to the addition result (φ + β) of the second angle addition unit 332 and the cosine corresponding to the subtraction result (φ−β) of the second angle subtraction unit 334. The value of the wave signal cos (φ−β) and the value of the sine wave signal sinφ corresponding to the detection angle φ are output. Note that the sine wave signal sinφ is the first feedback signal as described in FIG.
 第2振幅調整部340は、第2角度加算部332および第2角度減算部334が出力する角度を用いて、第1変調信号および第2変調信号の振幅誤差を調整するための第2フィードバック信号を生成する。第2振幅調整部340は、第2角度加算部332が出力する角度に応じたcos値および第2角度減算部334が出力する角度に応じたcos値を用いて、第1変調信号および第2変調信号の振幅誤差を調整するための第2フィードバック信号を生成する。第2振幅調整部340は、加算部342および増幅部344を含む。 The second amplitude adjustment unit 340 uses the angles output by the second angle addition unit 332 and the second angle subtraction unit 334 to adjust the second feedback signal for adjusting the amplitude error of the first modulation signal and the second modulation signal. Is generated. The second amplitude adjustment unit 340 uses the cos value corresponding to the angle output from the second angle addition unit 332 and the cos value corresponding to the angle output from the second angle subtraction unit 334, and uses the first modulation signal and the second modulation signal. A second feedback signal for adjusting the amplitude error of the modulation signal is generated. Second amplitude adjustment unit 340 includes an addition unit 342 and an amplification unit 344.
 加算部342は、記憶部120から受け取ったcos(φ+β)およびcos(φ-β)の値を加算する。増幅部344は、加算部342の加算結果を予め定められた一定の倍率で増幅する。増幅部344は、一例として、加算部342の加算結果を0.5倍に増幅してよい。即ち、第2振幅調整部340は、cos(φ+β)およびcos(φ-β)の和を1/2にした信号を、第2フィードバック信号として生成する。これにより、第2フィードバック信号は、{cos(φ+β)+cos(φ-β)}/2となる。なお、デジタル演算における0.5倍はビットシフトで実現できるため、面積の増加にはならない。 The addition unit 342 adds the values of cos (φ + β) and cos (φ−β) received from the storage unit 120. The amplifying unit 344 amplifies the addition result of the adding unit 342 at a predetermined constant magnification. As an example, the amplification unit 344 may amplify the addition result of the addition unit 342 by 0.5 times. That is, the second amplitude adjustment unit 340 generates a signal obtained by halving the sum of cos (φ + β) and cos (φ−β) as the second feedback signal. As a result, the second feedback signal becomes {cos (φ + β) + cos (φ−β)} / 2. In addition, since 0.5 times in digital calculation can be realized by bit shift, the area does not increase.
 外積演算部130は、第1フィードバック信号および第2フィードバック信号と、第1変調信号および第2変調信号とを用いて、外積Pを演算する。ここで、第2フィードバック信号が{cos(φ+β)+cos(φ-β)}/2となっているので、本実施形態の外積演算部130は、(数10)式に示す外積Pを演算することになる。また、(数10)式に示す外積Pは、(数9)式に示すように、位相差(θ-φ)に基づく値に近似できる。したがって、外積演算部130は、外積Pの演算結果をループフィルタ140に供給することにより、ループ制御部200は、回転磁場の角度θに追従する検出角度φを出力することができる。 The outer product calculation unit 130 calculates the outer product P using the first feedback signal and the second feedback signal, and the first modulation signal and the second modulation signal. Here, since the second feedback signal is {cos (φ + β) + cos (φ−β)} / 2, the outer product calculation unit 130 of the present embodiment calculates the outer product P shown in the equation (10). It will be. Further, the outer product P shown in the equation (10) can be approximated to a value based on the phase difference (θ−φ) as shown in the equation (9). Therefore, the outer product calculation unit 130 supplies the calculation result of the outer product P to the loop filter 140, so that the loop control unit 200 can output the detection angle φ that follows the angle θ of the rotating magnetic field.
 なお、外積演算部130は、図2で説明したように、第1フィードバック信号および第2フィードバック信号の加減算によって外積Pを算出することができる。また、位相差検出部210は、検出角度φから第2調整角度βの分だけアドレス値をずらしたデータを用いるので、記憶部120に記憶すべきデータを増加させずに、外積Pを算出することができる。したがって、本実施形態に係るループ制御部200は、回路規模を増加することを防止しつつ、また、取り扱うデータが増加することも防止しつつ、磁気感度のミスマッチに応じた角度誤差を調整することができる。 It should be noted that the outer product calculation unit 130 can calculate the outer product P by adding and subtracting the first feedback signal and the second feedback signal, as described in FIG. Further, since the phase difference detection unit 210 uses data in which the address value is shifted from the detection angle φ by the second adjustment angle β, the phase difference detection unit 210 calculates the outer product P without increasing the data to be stored in the storage unit 120. be able to. Therefore, the loop control unit 200 according to the present embodiment adjusts the angle error according to the magnetic sensitivity mismatch while preventing an increase in circuit scale and preventing an increase in data to be handled. Can do.
 以上の本実施形態に係る角度検出装置10は、磁気感度のミスマッチに対して、角度誤差を調整する例を説明した。これに代えて、角度検出装置10は、オフセット誤差に対して、角度誤差を調整してもよい。そこでまず、オフセット誤差について次に説明する。 The angle detection device 10 according to this embodiment described above has been described with respect to an example in which the angle error is adjusted with respect to the magnetic sensitivity mismatch. Instead, the angle detection device 10 may adjust the angle error with respect to the offset error. First, the offset error will be described next.
 図6は、本実施形態に係る第1磁気センス部30および第2磁気センス部32が出力する第1磁場検出信号Vxおよび第2磁場検出信号Vyの第2例を示す。図6は、横軸が第1方向(X軸方向)を検出する第1磁気センス部30の第1磁場検出信号Vxを示し、縦軸が第2方向(Y軸方向)を検出する第2磁気センス部32の第2磁場検出信号Vyを示す。点線で示す信号は、理想的な磁場検出信号であり、XY平面において略円形の形状を有する信号となる。即ち、図6は、理想的な第1磁場検出信号VxをB・cosθとし、理想的な第2磁場検出信号VyをB・sinθとした例を示す。 FIG. 6 shows a second example of the first magnetic field detection signal Vx and the second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 according to the present embodiment. FIG. 6 shows the first magnetic field detection signal Vx of the first magnetic sensing unit 30 in which the horizontal axis detects the first direction (X-axis direction), and the vertical axis indicates the second direction (Y-axis direction). The 2nd magnetic field detection signal Vy of the magnetic sense part 32 is shown. A signal indicated by a dotted line is an ideal magnetic field detection signal and has a substantially circular shape on the XY plane. That is, FIG. 6 shows an example in which the ideal first magnetic field detection signal Vx is B · cos θ and the ideal second magnetic field detection signal Vy is B · sin θ.
 実線で示す信号は、第1磁気センス部30および第2磁気センス部32にオフセット誤差が生じた場合の磁場検出信号を示す。図6は、第1磁場検出信号Vxに+Ox、第1磁場検出信号Vxに+Oyのオフセット誤差が含まれる場合の磁場検出信号を示す。このように、第1磁気センス部30および第2磁気センス部32にオフセット誤差が生じると、角度検出装置10は、正確な検出角度φを出力することができなくなる。 A signal indicated by a solid line indicates a magnetic field detection signal when an offset error occurs in the first magnetic sense unit 30 and the second magnetic sense unit 32. FIG. 6 shows a magnetic field detection signal when the first magnetic field detection signal Vx includes an offset error of + Ox and the first magnetic field detection signal Vx includes + Oy. Thus, when an offset error occurs in the first magnetic sense unit 30 and the second magnetic sense unit 32, the angle detection device 10 cannot output an accurate detection angle φ.
 より具体的には、(数2)式で示す外積Pが、次式のようになってしまう。ここで、θ≒φであることから、sin(θ-φ)=0とした。
 (数11)
 P=-(B・cosθ+Ox)・sinφ+(B・sinθ+Oy)・cosφ
 =B・sin(θ-φ)-Ox・sinφ+Oy・cosφ
 ≒Oy・cosφ-Ox・sinφ
More specifically, the outer product P shown by the equation (2) becomes as the following equation. Here, since θ≈φ, sin (θ−φ) = 0.
(Equation 11)
P = − (B · cos θ + Ox) · sin φ + (B · sin θ + Oy) · cos φ
= B · sin (θ-φ) -Ox · sinφ + Oy · cosφ
≒ Oy · cosφ-Ox · sinφ
 以上のように、外積Pは、位相差(θ-φ)を0にしても値を有する場合が生じるので、検出角度φは、オフセット誤差に応じた角度誤差が含まれてしまうことになる。そこで、本実施形態に係る角度検出装置10は、オフセット誤差に起因するOy・cosφ-Ox・sinφを外積Pから差し引くことにより、角度誤差を調整する。 As described above, the outer product P sometimes has a value even when the phase difference (θ−φ) is set to 0. Therefore, the detected angle φ includes an angle error corresponding to the offset error. Therefore, the angle detection apparatus 10 according to the present embodiment adjusts the angle error by subtracting Oy · cos φ−Ox · sin φ due to the offset error from the outer product P.
 図7は、本実施形態に係る角度検出装置10の第4構成例を示す。第4構成例の角度検出装置10において、図2に示された第1構成例の角度検出装置10の動作と略同一のものには同一の符号を付け、説明を省略する。第4構成例の角度検出装置10は、ループ制御部200を備える。ループ制御部200は、位相差検出部210と、ループフィルタ140と、角度更新部150と、を有する。ループフィルタ140および角度更新部150は、図2で説明したので、ここでは説明を省略する。 FIG. 7 shows a fourth configuration example of the angle detection apparatus 10 according to the present embodiment. In the angle detection device 10 of the fourth configuration example, the same reference numerals are given to substantially the same operations as those of the angle detection device 10 of the first configuration example shown in FIG. The angle detection device 10 of the fourth configuration example includes a loop control unit 200. The loop control unit 200 includes a phase difference detection unit 210, a loop filter 140, and an angle update unit 150. The loop filter 140 and the angle updating unit 150 have been described with reference to FIG.
 図7は、第1磁気センス部30および第2磁気センス部32のオフセット誤差を、位相差検出部210が調整する例を示す。即ち、位相差検出部210は、第1変調信号および第2変調信号と、検出角度φに応じた第1フィードバック信号および第2フィードバック信号とに基づいて、位相差を示す位相差信号を出力し、位相差信号を調整する。位相差検出部210は、記憶部120と、外積演算部130と、補正値記憶部220と、オフセット調整部410と、を含む。 FIG. 7 shows an example in which the phase difference detection unit 210 adjusts the offset error of the first magnetic sense unit 30 and the second magnetic sense unit 32. That is, the phase difference detection unit 210 outputs a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle φ. Adjust the phase difference signal. The phase difference detection unit 210 includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, and an offset adjustment unit 410.
 記憶部120は、図2で説明した動作に加え、検出角度φ対応する余弦波信号cosφの値および正弦波信号sinφの値を、オフセット調整部410に供給する。外積演算部130は、図2で説明したように、第1フィードバック信号および第2フィードバック信号と、第1変調信号および第2変調信号とを用いて、外積Pを演算する。外積演算部130は、(数11)式に示す外積Pを出力する。 The storage unit 120 supplies the offset adjustment unit 410 with the value of the cosine wave signal cosφ and the value of the sine wave signal sinφ corresponding to the detection angle φ in addition to the operation described in FIG. As described with reference to FIG. 2, the outer product calculation unit 130 calculates the outer product P using the first feedback signal and the second feedback signal, and the first modulation signal and the second modulation signal. The outer product calculation unit 130 outputs the outer product P shown in Equation (11).
 補正値記憶部220は、検出角度φの誤差を調整する補正値OxおよびOyを記憶する。なお、本実施形態において、補正値Oxを第1オフセット調整値とし、補正値Oyを第2オフセット調整値とする。 The correction value storage unit 220 stores correction values Ox and Oy for adjusting the error of the detected angle φ. In the present embodiment, the correction value Ox is the first offset adjustment value, and the correction value Oy is the second offset adjustment value.
 オフセット調整部410は、第1変調信号のオフセットを調整するための第1オフセット調整値を第1フィードバック信号に乗じて、位相差に対して加算または減算してよい。ここで、位相差は、(数11)式の演算結果を示す。また、オフセット調整部410は、第2変調信号のオフセットを調整するための第2オフセット調整値を第2フィードバック信号に乗じて位相差に対して加算または減算してもよい。オフセット調整部410は、一例として、第1乗算部412、第2乗算部414、および加算部416を含む。 The offset adjustment unit 410 may multiply the first feedback signal by the first offset adjustment value for adjusting the offset of the first modulation signal, and add or subtract the phase difference. Here, the phase difference indicates the calculation result of Equation (11). Further, the offset adjustment unit 410 may multiply the second feedback signal by a second offset adjustment value for adjusting the offset of the second modulation signal and add or subtract the phase difference. For example, the offset adjustment unit 410 includes a first multiplication unit 412, a second multiplication unit 414, and an addition unit 416.
 第1乗算部412は、記憶部120から受け取ったsinφの値に、補正値記憶部220から受け取った第1オフセット調整値を乗じる。第2乗算部414は、記憶部120から受け取ったcosφの値に、補正値記憶部220から受け取った第2オフセット調整値を乗じる。加算部416は、外積演算部130から受け取った外積Pの演算結果に、第1乗算部412の乗算結果を加える。また、加算部416は、外積演算部130から受け取った外積Pの演算結果に、第2乗算部414の乗算結果を減じる。 The first multiplication unit 412 multiplies the value of sin φ received from the storage unit 120 by the first offset adjustment value received from the correction value storage unit 220. The second multiplication unit 414 multiplies the value of cos φ received from the storage unit 120 by the second offset adjustment value received from the correction value storage unit 220. The addition unit 416 adds the multiplication result of the first multiplication unit 412 to the calculation result of the outer product P received from the outer product calculation unit 130. Further, the addition unit 416 subtracts the multiplication result of the second multiplication unit 414 from the calculation result of the outer product P received from the outer product calculation unit 130.
 これにより、オフセット調整部410は、外積演算部130が演算した外積Pを、次式で示す調整値P'に調整する。
 (数12)
 P'=P+Ox・sinφ-Oy・cosφ
 =Bsin(θ-φ)
 ≒B・(θ-φ)
Thereby, the offset adjustment unit 410 adjusts the outer product P calculated by the outer product calculation unit 130 to an adjustment value P ′ represented by the following equation.
(Equation 12)
P ′ = P + Ox · sinφ−Oy · cosφ
= Bsin (θ-φ)
≒ B ・ (θ-φ)
 即ち、オフセット調整部410は、調整値P'を位相差(θ-φ)に基づく値に略一致するように調整することができる。したがって、位相差検出部210が調整値P'の演算結果をループフィルタ140に供給することにより、ループ制御部200は、回転磁場の角度θに追従する検出角度φを出力することができる。 That is, the offset adjustment unit 410 can adjust the adjustment value P ′ so as to substantially match the value based on the phase difference (θ−φ). Therefore, when the phase difference detection unit 210 supplies the calculation result of the adjustment value P ′ to the loop filter 140, the loop control unit 200 can output the detection angle φ that follows the angle θ of the rotating magnetic field.
 なお、オフセット調整部410は、第1乗算部412および第2乗算部414を用いて、オフセット誤差を調整することを説明した。この場合、乗算回路が2つ増加するので、角度検出装置10は、実装面積が増加してしまうことがある。そこで、補正値記憶部220は、第1オフセット調整値および第2オフセット調整値を、ビットストリームでオフセット調整部410に供給してよい。補正値記憶部220は、例えば、第1オフセット調整値として各ビットが補正値Oxに相当する同一の重みを有するビットストリームを供給する。補正値記憶部220は、同様に、第2オフセット調整値として各ビットが補正値Oyに相当する同一の重みを有するビットストリームを供給してよい。 The offset adjustment unit 410 has been described using the first multiplication unit 412 and the second multiplication unit 414 to adjust the offset error. In this case, since the number of multiplication circuits increases by 2, the mounting area of the angle detection device 10 may increase. Therefore, the correction value storage unit 220 may supply the first offset adjustment value and the second offset adjustment value to the offset adjustment unit 410 as a bit stream. The correction value storage unit 220 supplies, for example, a bit stream having the same weight in which each bit corresponds to the correction value Ox as the first offset adjustment value. Similarly, the correction value storage unit 220 may supply a bit stream having the same weight in which each bit corresponds to the correction value Oy as the second offset adjustment value.
 この場合、オフセット調整部410は、補正値記憶部220から受け取った第1オフセット調整値のビットストリームを、ビット毎に第1フィードバック信号と乗算して、位相差に加算していく。同様に、オフセット調整部410は、補正値記憶部220から受け取った第2オフセット調整値のビットストリームを、ビット毎に第2フィードバック信号と乗算して、位相差に減算していく。 In this case, the offset adjustment unit 410 multiplies the bit stream of the first offset adjustment value received from the correction value storage unit 220 by the first feedback signal for each bit and adds it to the phase difference. Similarly, the offset adjustment unit 410 multiplies the bit stream of the second offset adjustment value received from the correction value storage unit 220 by the second feedback signal for each bit and subtracts it from the phase difference.
 以上のオフセット調整部410が実行するビットストリームを用いた乗算は、図2で説明した外積演算部130の加減算によって外積Pを算出する動作と同様に、加減算処理で実行することができる。したがって、オフセット調整部410は、実装面積が増加することを防止しつつ、オフセット誤差を調整することができる。したがって、本実施形態に係るループ制御部200は、回路規模を増加することを防止しつつ、オフセット誤差に応じた検出角度の誤差を調整することができる。 The multiplication using the bit stream executed by the offset adjustment unit 410 can be executed by addition / subtraction processing, similar to the operation of calculating the outer product P by addition / subtraction of the outer product calculation unit 130 described in FIG. Therefore, the offset adjustment unit 410 can adjust the offset error while preventing the mounting area from increasing. Therefore, the loop control unit 200 according to the present embodiment can adjust the detection angle error according to the offset error while preventing the circuit scale from increasing.
 以上の本実施形態に係る角度検出装置10は、磁気感度のミスマッチおよびオフセット誤差に対応する検出角度の誤差を調整する例を説明した。これに代えて、角度検出装置10は、他軸感度に対応する検出角度の誤差を調整してもよい。そこでまず、他軸感度について次に説明する。 The angle detection apparatus 10 according to the present embodiment has been described with reference to an example of adjusting the detection angle error corresponding to the magnetic sensitivity mismatch and the offset error. Instead of this, the angle detection device 10 may adjust the error of the detection angle corresponding to the other-axis sensitivity. First, the other axis sensitivity will be described next.
 図8は、本実施形態に係る第1磁気センス部30および第2磁気センス部32が出力する第1磁場検出信号Vxおよび第2磁場検出信号Vyの第3例を示す。図8は、横軸が第1方向(X軸方向)を検出する第1磁気センス部30の第1磁場検出信号Vxを示し、縦軸が第2方向(Y軸方向)を検出する第2磁気センス部32の第2磁場検出信号Vyを示す。点線で示す信号は、理想的な磁場検出信号であり、XY平面において略円形の形状を有する信号となる。即ち、図8は、理想的な第1磁場検出信号VxをB・cosθとし、理想的な第2磁場検出信号VyをB・sinθとした例を示す。 FIG. 8 shows a third example of the first magnetic field detection signal Vx and the second magnetic field detection signal Vy output from the first magnetic sense unit 30 and the second magnetic sense unit 32 according to this embodiment. FIG. 8 shows the first magnetic field detection signal Vx of the first magnetic sensing unit 30 in which the horizontal axis detects the first direction (X-axis direction), and the vertical axis indicates the second direction (Y-axis direction). The 2nd magnetic field detection signal Vy of the magnetic sense part 32 is shown. A signal indicated by a dotted line is an ideal magnetic field detection signal and has a substantially circular shape on the XY plane. That is, FIG. 8 shows an example in which the ideal first magnetic field detection signal Vx is B · cos θ and the ideal second magnetic field detection signal Vy is B · sin θ.
 実線で示す信号は、第1磁気センス部30および第2磁気センス部32に他軸感度が生じた場合の磁場検出信号を示す。図8は、第1磁場検出信号Vxに+B・γ・sinθ、第1磁場検出信号Vxに+B・γ・cosθの他軸感度が含まれる場合の磁場検出信号を示す。このように、第1磁気センス部30および第2磁気センス部32に他軸感度が生じると、角度検出装置10は、正確な検出角度φを出力することができなくなる。 A signal indicated by a solid line indicates a magnetic field detection signal when the other axis sensitivity occurs in the first magnetic sense unit 30 and the second magnetic sense unit 32. FIG. 8 shows a magnetic field detection signal when the first magnetic field detection signal Vx includes + B · γ · sin θ and the first magnetic field detection signal Vx includes the other axis sensitivity of + B · γ · cos θ. Thus, when the other axis sensitivity is generated in the first magnetic sense unit 30 and the second magnetic sense unit 32, the angle detection device 10 cannot output an accurate detection angle φ.
 ここで、他軸感度が含まれる場合の磁場検出信号を次式のように近似する。他軸感度による角度誤差が5度程度までであれば、このような近似の精度は高いと考えられる。
 (数13)
 Vx=B・(cosθ+γ・sinθ)
 ≒B・(cosγ・cosθ+sinγ・sinθ)
 =B・cos(θ-γ)
 Vy=B・(sinθ+γ・cosθ)
 ≒B・(cosγ・sinθ+sinγ・cosθ)
 =B・sin(θ+γ)
Here, the magnetic field detection signal in the case where the other-axis sensitivity is included is approximated as follows. If the angle error due to the other axis sensitivity is up to about 5 degrees, it is considered that the accuracy of such approximation is high.
(Equation 13)
Vx = B · (cos θ + γ · sin θ)
≒ B ・ (cosγ ・ cosθ + sinγ ・ sinθ)
= B · cos (θ-γ)
Vy = B · (sin θ + γ · cos θ)
≒ B ・ (cosγ ・ sinθ + sinγ ・ cosθ)
= B · sin (θ + γ)
 この場合、(数2)式で示す外積Pは、次式のように算出される。ここで、γ≒0と近似した。
 (数14)
 P=-B・cos(θ-γ)・sinφ+B・sin(θ+γ)・cosφ
 =B・[-0.5・{sin(θ-γ+φ)-sin(θ-γ-φ)}
 +0.5・{sin(θ+γ+φ)+sin(θ+γ-φ)}]
 =B・[0.5・{-sin(θ+φ-γ)+sin(θ+γ+φ)}
 +0.5・{sin(θ-φ-γ)+sin(θ-φ+γ)}]
 =B・{cos(θ+φ)・sinγ+sin(θ-φ)・cosγ}
 ≒B・{cos(θ+φ)・γ+sin(θ-φ)・1}
 =B・γ・cos2θ
In this case, the outer product P shown by the equation (2) is calculated as the following equation. Here, it was approximated as γ≈0.
(Equation 14)
P = −B · cos (θ−γ) · sinφ + B · sin (θ + γ) · cosφ
= B · [−0.5 · {sin (θ−γ + φ) −sin (θ−γ−φ)}
+ 0.5 · {sin (θ + γ + φ) + sin (θ + γ−φ)}]
= B · [0.5 · {−sin (θ + φ−γ) + sin (θ + γ + φ)}
+ 0.5 · {sin (θ−φ−γ) + sin (θ−φ + γ)}]
= B · {cos (θ + φ) · sinγ + sin (θ−φ) · cosγ}
≒ B ・ {cos (θ + φ) ・ γ + sin (θ−φ) ・ 1}
= B ・ γ ・ cos2θ
 以上のように、外積Pは、位相差(θ-φ)を0にしても値を有する場合が生じるので、検出角度φは、他軸感度に応じた角度誤差が含まれてしまうことになる。そこで、本実施形態に係る角度検出装置10は、他軸感度に応じた角度誤差を低減させるように調整する。 As described above, the outer product P sometimes has a value even when the phase difference (θ−φ) is set to 0. Therefore, the detected angle φ includes an angle error corresponding to the sensitivity of the other axis. . Therefore, the angle detection apparatus 10 according to the present embodiment adjusts so as to reduce the angle error according to the other-axis sensitivity.
 角度検出装置10は、一例として、第1フィードバック信号および第2フィードバック信号の位相をδを用いて次式のように調節する。ここで、γ≒δ≒0と近似した。
 (数15)
 P=-B・cos(θ-γ)・sin(φ+δ)
 +B・sin(θ+γ)・cos(φ-δ)
 =B・[-0.5・{sin(θ-γ+φ+δ)-sin(θ-γ-φ-δ)}
 +0.5・{sin(θ+γ+φ-δ)+sin(θ+γ-φ+δ)}]
 =B・[0.5・{-sin(θ+φ-γ+δ)+sin(θ+γ+φ-δ)}
 +0.5・{sin(θ-φ-γ-δ)+sin(θ-φ+γ+δ)}]
 =B・{cos(θ+φ)・sin(γ-δ)+sin(θ-φ)・cos(γ+δ)}
 ≒B・{cos(θ+φ)・0+sin(θ-φ)・1}
 =B・sin(θ-φ)
 ≒B・(θ-φ)
As an example, the angle detection apparatus 10 adjusts the phases of the first feedback signal and the second feedback signal using δ as follows. Here, it approximated as γ≈δ≈0.
(Equation 15)
P = −B · cos (θ−γ) · sin (φ + δ)
+ B · sin (θ + γ) · cos (φ-δ)
= B · [−0.5 · {sin (θ−γ + φ + δ) −sin (θ−γ−φ−δ)}}
+ 0.5 · {sin (θ + γ + φ−δ) + sin (θ + γ−φ + δ)}]
= B · [0.5 · {−sin (θ + φ−γ + δ) + sin (θ + γ + φ−δ)}
+ 0.5 · {sin (θ−φ−γ−δ) + sin (θ−φ + γ + δ)}}
= B · {cos (θ + φ) · sin (γ−δ) + sin (θ−φ) · cos (γ + δ)}
≒ B ・ {cos (θ + φ) ・ 0 + sin (θ−φ) ・ 1}
= B · sin (θ-φ)
≒ B ・ (θ-φ)
 以上のように、補正値δを用いることにより、(数6)式と同様に、位相差(θ-φ)を0にすると、外積Pを0にすることができる。したがって、角度検出装置10は、検出角度φをθに追従させることで、他軸感度に応じた角度誤差を低減させることができる。本実施形態に係る角度検出装置10は、(数15)式の演算を実行する回路を用いることで、他軸感度に応じた角度誤差を低減させる。このような角度検出装置10について、次に説明する。 As described above, by using the correction value δ, the outer product P can be set to 0 when the phase difference (θ−φ) is set to 0, similarly to the equation (6). Therefore, the angle detection device 10 can reduce the angle error according to the sensitivity of the other axis by causing the detection angle φ to follow θ. The angle detection apparatus 10 according to the present embodiment reduces the angle error according to the other-axis sensitivity by using a circuit that executes the calculation of Expression (15). Such an angle detection device 10 will be described next.
 図9は、本実施形態に係る角度検出装置10の第5構成例を示す。第5構成例の角度検出装置10において、図2に示された第1構成例の角度検出装置10の動作と略同一のものには同一の符号を付け、説明を省略する。第5構成例の角度検出装置10は、ループ制御部200を備える。ループ制御部200は、位相差検出部210と、ループフィルタ140と、角度更新部150と、を有する。ループフィルタ140および角度更新部150は、図2で説明したので、ここでは説明を省略する。 FIG. 9 shows a fifth configuration example of the angle detection apparatus 10 according to the present embodiment. In the angle detection device 10 of the fifth configuration example, the same reference numerals are given to substantially the same operations as those of the angle detection device 10 of the first configuration example shown in FIG. The angle detection device 10 of the fifth configuration example includes a loop control unit 200. The loop control unit 200 includes a phase difference detection unit 210, a loop filter 140, and an angle update unit 150. The loop filter 140 and the angle updating unit 150 have been described with reference to FIG.
 図9は、第1磁気センス部30および第2磁気センス部32の他軸感度を、位相差検出部210が調整する例を示す。即ち、位相差検出部210は、第1変調信号および第2変調信号と、検出角度φに応じた第1フィードバック信号および第2フィードバック信号とに基づいて、位相差を示す位相差信号を出力し、第1フィードバック信号および第2フィードバック信号を調整する。位相差検出部210は、記憶部120と、外積演算部130と、補正値記憶部220と、他軸感度調整部510と、を含む。 FIG. 9 shows an example in which the phase difference detection unit 210 adjusts the other axis sensitivity of the first magnetic sense unit 30 and the second magnetic sense unit 32. That is, the phase difference detection unit 210 outputs a phase difference signal indicating a phase difference based on the first modulation signal and the second modulation signal and the first feedback signal and the second feedback signal corresponding to the detection angle φ. The first feedback signal and the second feedback signal are adjusted. The phase difference detection unit 210 includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, and an other-axis sensitivity adjustment unit 510.
 補正値記憶部220は、検出角度φの誤差を調整する補正値δを記憶する。補正値記憶部220は、+δおよび-δの値をそれぞれ記憶してもよい。なお、本実施形態において、補正値δを第3調整角度とする。 The correction value storage unit 220 stores a correction value δ for adjusting the error of the detected angle φ. The correction value storage unit 220 may store values of + δ and −δ, respectively. In the present embodiment, the correction value δ is the third adjustment angle.
 他軸感度調整部510は、補正値記憶部220の第3調整角度δに基づき、検出角度φを加算および減算する。他軸感度調整部510は、第3角度加算部512および第3角度減算部514を含む。第3角度加算部512は、検出角度φに第3調整角度δを加算する。第3角度加算部512は、加算結果(φ+δ)を、記憶部120に供給する。第3角度減算部514は、検出角度φから第3調整角度δを減算する。第3角度減算部514は、減算結果(φ-δ)を、記憶部120に供給する。 The other axis sensitivity adjustment unit 510 adds and subtracts the detected angle φ based on the third adjustment angle δ of the correction value storage unit 220. The other-axis sensitivity adjustment unit 510 includes a third angle addition unit 512 and a third angle subtraction unit 514. The third angle addition unit 512 adds the third adjustment angle δ to the detection angle φ. The third angle addition unit 512 supplies the addition result (φ + δ) to the storage unit 120. The third angle subtraction unit 514 subtracts the third adjustment angle δ from the detection angle φ. The third angle subtraction unit 514 supplies the subtraction result (φ−δ) to the storage unit 120.
 第3角度加算部512および第3角度減算部514は、角度に基づくアドレスを記憶部120に供給してもよい。また、第3角度加算部512および第3角度減算部514は、検出角度φに第3調整角度δを加算した角度に基づくアドレスおよび検出角度φに第3調整角度δを減算した角度に基づくアドレスを、異なるサイクルで記憶部120に入力してよい。即ち、他軸感度調整部510は、クロック信号等に応じて、角度に基づくアドレス値を、順次、記憶部120に供給してよい。 The third angle addition unit 512 and the third angle subtraction unit 514 may supply an address based on the angle to the storage unit 120. Further, the third angle addition unit 512 and the third angle subtraction unit 514 are an address based on an angle obtained by adding the third adjustment angle δ to the detection angle φ and an address based on an angle obtained by subtracting the third adjustment angle δ from the detection angle φ. May be input to the storage unit 120 in different cycles. That is, the other-axis sensitivity adjustment unit 510 may sequentially supply the address value based on the angle to the storage unit 120 according to the clock signal or the like.
 記憶部120は、検出角度φおよび第3調整角度δによって定まる角度に対応するsin値およびcos値を出力する。即ち、記憶部120は、第3角度加算部512の加算結果(φ+δ)に対応するsin(φ+δ)の値、および、第3角度減算部514の減算結果(φ-δ)に対応するcos(φ-δ)の値を、それぞれ出力する。 The storage unit 120 outputs a sin value and a cos value corresponding to an angle determined by the detection angle φ and the third adjustment angle δ. That is, the storage unit 120 stores the value of sin (φ + δ) corresponding to the addition result (φ + δ) of the third angle addition unit 512 and the cos (corresponding to the subtraction result (φ−δ) of the third angle subtraction unit 514. Output the value of φ-δ).
 即ち、他軸感度調整部510は、第1変調信号および第2変調信号間の他軸感度を調整するべく、第3調整角度δが加算された検出角度φ+δを用いて第1フィードバック信号を生成し、第3調整角度δが減算された検出角度φ-δを用いて第2フィードバック信号を生成する。また、他軸感度調整部510は、第3調整角度δが加算された検出角度φ+δに応じたsin値に基づく第1フィードバック信号を生成し、第3調整角度δが減算された検出角度φ-δに応じたcos値に基づく第2フィードバック信号を生成する。図9は、他軸感度調整部510が、sin(φ+δ)を第1フィードバック信号として記憶部120から出力させ、cos(φ-δ)を第2フィードバック信号として記憶部120から出力させる例を示す。 That is, the other axis sensitivity adjustment unit 510 generates the first feedback signal using the detected angle φ + δ added with the third adjustment angle δ to adjust the other axis sensitivity between the first modulation signal and the second modulation signal. Then, the second feedback signal is generated using the detected angle φ−δ obtained by subtracting the third adjustment angle δ. The other-axis sensitivity adjustment unit 510 generates a first feedback signal based on the sin value corresponding to the detection angle φ + δ to which the third adjustment angle δ is added, and the detection angle φ− from which the third adjustment angle δ is subtracted. A second feedback signal based on a cos value corresponding to δ is generated. FIG. 9 illustrates an example in which the other-axis sensitivity adjustment unit 510 outputs sin (φ + δ) from the storage unit 120 as the first feedback signal and outputs cos (φ−δ) from the storage unit 120 as the second feedback signal. .
 外積演算部130は、第1フィードバック信号および第2フィードバック信号と、第1変調信号および第2変調信号とを用いて、外積Pを演算する。本実施形態の外積演算部130は、他軸感度調整部510が、第1フィードバック信号および第2フィードバック信号を第3調整角度δに基づいて調整するので、外積演算部130は、(数15)式に示す外積Pを演算することになる。したがって、外積演算部130は、外積Pの演算結果をループフィルタ140に供給することにより、ループ制御部200は、回転磁場の角度θに追従する検出角度φを出力することができる。 The outer product calculation unit 130 calculates the outer product P using the first feedback signal and the second feedback signal, and the first modulation signal and the second modulation signal. In the outer product calculation unit 130 of the present embodiment, the other-axis sensitivity adjustment unit 510 adjusts the first feedback signal and the second feedback signal based on the third adjustment angle δ. The outer product P shown in the equation is calculated. Therefore, the outer product calculation unit 130 supplies the calculation result of the outer product P to the loop filter 140, so that the loop control unit 200 can output the detection angle φ that follows the angle θ of the rotating magnetic field.
 なお、外積演算部130は、図2で説明したように、第1フィードバック信号および第2フィードバック信号の加減算によって外積Pを算出することができる。また、他軸感度調整部510は、検出角度φから第3調整角度δの分だけアドレス値をずらしたデータを用いるので、記憶部120に記憶すべきデータを増加させずに、第1フィードバック信号および第2フィードバック信号を調整することができる。したがって、本実施形態に係るループ制御部200は、回路規模を増加することを防止しつつ、また、取り扱うデータが増加することも防止しつつ、他軸感度に応じた角度誤差を調整することができる。 It should be noted that the outer product calculation unit 130 can calculate the outer product P by adding and subtracting the first feedback signal and the second feedback signal, as described in FIG. Further, since the other axis sensitivity adjustment unit 510 uses data in which the address value is shifted from the detection angle φ by the third adjustment angle δ, the first feedback signal is not increased without increasing the data to be stored in the storage unit 120. And the second feedback signal can be adjusted. Therefore, the loop control unit 200 according to the present embodiment can adjust the angle error according to the sensitivity of the other axis while preventing an increase in circuit scale and preventing an increase in data to be handled. it can.
 以上の本実施形態に係る角度検出装置10は、磁気感度のミスマッチ、オフセット誤差、および他軸感度のいずれかに対応する検出角度の誤差を、それぞれ調整する例を説明した。これに代えて、または、これに加えて、角度検出装置10は、磁気感度のミスマッチ、オフセット誤差、および他軸感度のいずれかに対応する検出角度の誤差のうち、2以上の誤差を調整してもよい。このような角度検出装置10に設けられる位相差検出部210について、次に説明する。 The angle detection apparatus 10 according to the present embodiment has been described with an example in which the detection angle error corresponding to any one of the magnetic sensitivity mismatch, the offset error, and the other axis sensitivity is adjusted. Instead of or in addition to this, the angle detection device 10 adjusts two or more errors among detection angle errors corresponding to any one of magnetic sensitivity mismatch, offset error, and other axis sensitivity. May be. Next, the phase difference detection unit 210 provided in the angle detection device 10 will be described.
 図10は、本実施形態に係る位相差検出部210の第1変形例を示す。第1変形例の位相差検出部210において、図4、図7、および図9に示された位相差検出部210の動作と略同一のものには同一の符号を付け、説明を省略する。第1変形例の位相差検出部210は、記憶部120と、外積演算部130と、補正値記憶部220と、第1加減算部230と、第1振幅調整部240と、オフセット調整部410と、他軸感度調整部510を含む。 FIG. 10 shows a first modification of the phase difference detection unit 210 according to this embodiment. In the phase difference detection unit 210 of the first modification, the same reference numerals are given to the substantially same operations as those of the phase difference detection unit 210 shown in FIGS. 4, 7, and 9, and the description thereof is omitted. The phase difference detection unit 210 of the first modification includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, a first addition / subtraction unit 230, a first amplitude adjustment unit 240, and an offset adjustment unit 410. The other axis sensitivity adjustment unit 510 is included.
 補正値記憶部220は、第1調整角度β、第1オフセット調整値Ox、第2オフセット調整値Oy、および第3調整角度δを記憶する。補正値記憶部220は、第1調整角度βを第1加減算部230に、第1オフセット調整値Oxおよび第2オフセット調整値Oyをオフセット調整部410に、第3調整角度δを他軸感度調整部510に、それぞれ供給する。 The correction value storage unit 220 stores the first adjustment angle β, the first offset adjustment value Ox, the second offset adjustment value Oy, and the third adjustment angle δ. The correction value storage unit 220 adjusts the first adjustment angle β to the first addition / subtraction unit 230, the first offset adjustment value Ox and the second offset adjustment value Oy to the offset adjustment unit 410, and the third adjustment angle δ to other axis sensitivity adjustment. Each is supplied to the unit 510.
 第1加減算部230および第1振幅調整部240は、図4で説明したように、第1フィードバック信号を調整して、磁気感度のミスマッチに応じた角度誤差を調整できる。オフセット調整部410は、図7で説明したように、外積演算部130が演算した外積Pを調整して、オフセット誤差に応じた角度誤差を調整できる。他軸感度調整部510は、図9で説明したように、第1フィードバック信号および第2フィードバック信号を調整して、他軸感度に応じた角度誤差を調整できる。 As described with reference to FIG. 4, the first addition / subtraction unit 230 and the first amplitude adjustment unit 240 can adjust the first feedback signal to adjust the angle error according to the magnetic sensitivity mismatch. As described with reference to FIG. 7, the offset adjusting unit 410 can adjust the outer product P calculated by the outer product calculating unit 130 to adjust the angle error according to the offset error. As described with reference to FIG. 9, the other-axis sensitivity adjustment unit 510 can adjust the first feedback signal and the second feedback signal to adjust the angle error according to the other-axis sensitivity.
 したがって、本実施形態に係る位相差検出部210は、磁気感度のミスマッチ、オフセット誤差、および他軸感度に対応する検出角度の誤差を、それぞれ調整することができる。なお、図10は、第1方向の磁気感度が第2方向と比較して大きい場合の角度誤差を、位相差検出部210が調整する例を示す。これに代えて、位相差検出部210は、第1方向の磁気感度が第2方向と比較して小さい場合の角度誤差を調整してもよい。このような位相差検出部210を次に説明する。 Therefore, the phase difference detection unit 210 according to the present embodiment can adjust the magnetic sensitivity mismatch, the offset error, and the detection angle error corresponding to the other axis sensitivity, respectively. FIG. 10 shows an example in which the phase difference detection unit 210 adjusts the angle error when the magnetic sensitivity in the first direction is larger than that in the second direction. Instead of this, the phase difference detection unit 210 may adjust the angle error when the magnetic sensitivity in the first direction is smaller than that in the second direction. The phase difference detection unit 210 will be described next.
 図11は、本実施形態に係る位相差検出部210の第2変形例を示す。第2変形例の位相差検出部210において、図5、図7、および図9に示された位相差検出部210の動作と略同一のものには同一の符号を付け、説明を省略する。第2変形例の位相差検出部210は、記憶部120と、外積演算部130と、補正値記憶部220と、第2加減算部330と、第2振幅調整部340と、オフセット調整部410と、他軸感度調整部510を含む。 FIG. 11 shows a second modification of the phase difference detection unit 210 according to this embodiment. In the phase difference detection unit 210 of the second modified example, the same reference numerals are given to the substantially same operations as those of the phase difference detection unit 210 shown in FIGS. 5, 7, and 9, and the description thereof is omitted. The phase difference detection unit 210 of the second modification includes a storage unit 120, an outer product calculation unit 130, a correction value storage unit 220, a second addition / subtraction unit 330, a second amplitude adjustment unit 340, and an offset adjustment unit 410. The other axis sensitivity adjustment unit 510 is included.
 即ち、第2変形例の位相差検出部210は、図10に示す第1変形例の位相差検出部210の第1加減算部230および第1振幅調整部240に代えて、第2加減算部330および第2振幅調整部340を備える。補正値記憶部220は、第2調整角度βを記憶し、補正値記憶部220は、第2調整角度βを第2加減算部330に供給する。第2加減算部330および第2振幅調整部340は、図5で説明したように、第2フィードバック信号を調整して、磁気感度のミスマッチに応じた角度誤差を調整できる。第2変形例の位相差検出部210の他の動作は、図10に示す第1変形例の位相差検出部210の動作と略同一なので、ここでは説明を省略する。 That is, the phase difference detection unit 210 of the second modification example is replaced with the second addition / subtraction unit 330 in place of the first addition / subtraction unit 230 and the first amplitude adjustment unit 240 of the phase difference detection unit 210 of the first modification example shown in FIG. And a second amplitude adjustment unit 340. The correction value storage unit 220 stores the second adjustment angle β, and the correction value storage unit 220 supplies the second adjustment angle β to the second addition / subtraction unit 330. As described with reference to FIG. 5, the second addition / subtraction unit 330 and the second amplitude adjustment unit 340 can adjust the second feedback signal to adjust the angle error according to the magnetic sensitivity mismatch. The other operations of the phase difference detection unit 210 of the second modification example are substantially the same as the operations of the phase difference detection unit 210 of the first modification example shown in FIG.
 以上により、本実施形態に係る位相差検出部210は、磁気感度のミスマッチ、オフセット誤差、および他軸感度に対応する検出角度の誤差を、それぞれ調整することができる。なお、図10および図11で説明した位相差検出部210は、第1フィードバック信号および第2フィードバック信号のいずれかを調整して、磁気感度のミスマッチに応じた角度誤差を調整することを説明した。これに代えて、位相差検出部210は、第1加減算部230、第1振幅調整部240、第2加減算部330、および第2振幅調整部340を含んでもよい。 As described above, the phase difference detection unit 210 according to the present embodiment can adjust the magnetic sensitivity mismatch, the offset error, and the detection angle error corresponding to the other axis sensitivity. Note that the phase difference detection unit 210 described with reference to FIGS. 10 and 11 adjusts either the first feedback signal or the second feedback signal to adjust the angle error according to the magnetic sensitivity mismatch. . Instead of this, the phase difference detection unit 210 may include a first addition / subtraction unit 230, a first amplitude adjustment unit 240, a second addition / subtraction unit 330, and a second amplitude adjustment unit 340.
 この場合、位相差検出部210は、第1方向および第2方向の磁気感度の大小に応じて、第1加減算部230および第1振幅調整部240による第1フィードバック信号の調整と、第2加減算部330および第2振幅調整部340による第2フィードバック信号の調整とを、切り換えてよい。これにより、位相差検出部210は、2種類の磁気感度のミスマッチ、オフセット誤差、および他軸感度に対応する検出角度の誤差を、それぞれ調整することができる。 In this case, the phase difference detection unit 210 adjusts the first feedback signal by the first addition / subtraction unit 230 and the first amplitude adjustment unit 240 according to the magnitudes of the magnetic sensitivities in the first direction and the second direction, and performs the second addition / subtraction. The adjustment of the second feedback signal by the unit 330 and the second amplitude adjustment unit 340 may be switched. As a result, the phase difference detection unit 210 can adjust the mismatch of the two types of magnetic sensitivities, the offset error, and the detection angle error corresponding to the other axis sensitivity.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 角度検出装置、20 回転磁石、22 磁石、24 回転軸、26 モーター、30 第1磁気センス部、32 第2磁気センス部、40 第1増幅部、42 第2増幅部、50 第1デルタシグマ変調部、52 第2デルタシグマ変調部、100 ループ制御部、110 位相差検出部、120 記憶部、130 外積演算部、132 第1乗算部、134 第2乗算部、136 減算部、140 ループフィルタ、150 角度更新部、200 ループ制御部、210 位相差検出部、220 補正値記憶部、230 第1加減算部、232 第1角度加算部、234 第1角度減算部、240 第1振幅調整部、242 加算部、244 増幅部、330 第2加減算部、332 第2角度加算部、334 第2角度減算部、340 第2振幅調整部、342 加算部、344 増幅部、410 オフセット調整部、412 第1乗算部、414 第2乗算部、416 加算部、510 他軸感度調整部、512 第3角度加算部、514 第3角度減算部、1000 回転角センサ 10 angle detector, 20 rotating magnets, 22 magnets, 24 rotating shafts, 26 motors, 30 first magnetic sensing unit, 32 second magnetic sensing unit, 40 first amplification unit, 42 second amplification unit, 50 first delta sigma Modulation unit, 52 second delta sigma modulation unit, 100 loop control unit, 110 phase difference detection unit, 120 storage unit, 130 outer product calculation unit, 132 first multiplication unit, 134 second multiplication unit, 136 subtraction unit, 140 loop filter , 150 angle update unit, 200 loop control unit, 210 phase difference detection unit, 220 correction value storage unit, 230 first addition / subtraction unit, 232 first angle addition unit, 234 first angle subtraction unit, 240 first amplitude adjustment unit, 242 addition unit, 244 amplification unit, 330 second addition / subtraction unit, 332 second angle addition unit, 334 second angle subtraction unit, 3 0 second amplitude adjustment unit, 342 addition unit, 344 amplification unit, 410 offset adjustment unit, 412 first multiplication unit, 414 second multiplication unit, 416 addition unit, 510 other axis sensitivity adjustment unit, 512 third angle addition unit, 514 Third angle subtraction unit, 1000 rotation angle sensor

Claims (19)

  1.  磁場の角度を検出する角度検出装置であって、
     磁場の第1方向成分に応じた第1磁場検出信号をデルタシグマ変調して第1変調信号を出力する第1デルタシグマ変調部と、
     磁場の第2方向成分に応じた第2磁場検出信号をデルタシグマ変調して第2変調信号を出力する第2デルタシグマ変調部と、
     検出角度をループ制御により前記第1変調信号および前記第2変調信号に対して追従させるループ制御部と、
     を備え、
     前記ループ制御部は、前記第1変調信号および前記第2変調信号が示す角度に対する前記検出角度の位相差を検出する位相差検出部を有し、
     前記位相差検出部は、前記磁場の角度に対する前記検出角度の誤差を調整する
     角度検出装置。
    An angle detection device for detecting the angle of a magnetic field,
    A first delta-sigma modulation unit that delta-sigma-modulates a first magnetic field detection signal corresponding to a first direction component of the magnetic field and outputs a first modulation signal;
    A second delta-sigma modulation unit that delta-sigma-modulates the second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputs a second modulation signal;
    A loop control unit for causing a detection angle to follow the first modulation signal and the second modulation signal by loop control;
    With
    The loop control unit includes a phase difference detection unit that detects a phase difference of the detection angle with respect to an angle indicated by the first modulation signal and the second modulation signal,
    The phase difference detection unit adjusts an error of the detection angle with respect to an angle of the magnetic field.
  2.  前記位相差検出部は、
     前記第1変調信号および前記第2変調信号と、前記検出角度に応じた第1フィードバック信号および第2フィードバック信号とに基づいて、前記位相差を示す位相差信号を出力し、
     前記第1フィードバック信号、前記第2フィードバック信号、および前記位相差信号の少なくとも1つを、前記誤差が小さくなるように調整する
     請求項1に記載の角度検出装置。
    The phase difference detector is
    Based on the first modulation signal and the second modulation signal, and the first feedback signal and the second feedback signal corresponding to the detection angle, a phase difference signal indicating the phase difference is output,
    The angle detection device according to claim 1, wherein at least one of the first feedback signal, the second feedback signal, and the phase difference signal is adjusted so that the error is reduced.
  3.  前記位相差検出部は、前記第1変調信号および前記第2変調信号の組と、前記第1フィードバック信号および前記第2フィードバック信号の組との外積を演算して前記位相差信号を出力する
     請求項2に記載の角度検出装置。
    The phase difference detection unit calculates an outer product of a set of the first modulation signal and the second modulation signal and a set of the first feedback signal and the second feedback signal, and outputs the phase difference signal. Item 3. The angle detection device according to Item 2.
  4.  前記位相差検出部は、
     前記検出角度に第1調整角度を加算する第1角度加算部と、
     前記第1角度加算部が出力する角度を用いて、前記第1変調信号および前記第2変調信号の振幅誤差を調整するための前記第1フィードバック信号を生成する第1振幅調整部と
     を含む請求項2または3に記載の角度検出装置。
    The phase difference detector is
    A first angle adder for adding a first adjustment angle to the detected angle;
    And a first amplitude adjusting unit that generates the first feedback signal for adjusting an amplitude error between the first modulated signal and the second modulated signal using an angle output from the first angle adding unit. Item 4. The angle detection device according to Item 2 or 3.
  5.  前記位相差検出部は、前記検出角度から前記第1調整角度を減算する第1角度減算部を更に含み、
     前記第1振幅調整部は、前記第1角度加算部が出力する角度に応じたsin値および前記第1角度減算部が出力する角度に応じたsin値を用いて、前記第1変調信号および前記第2変調信号の振幅誤差を調整するための前記第1フィードバック信号を生成する
     請求項4に記載の角度検出装置。
    The phase difference detection unit further includes a first angle subtraction unit that subtracts the first adjustment angle from the detection angle,
    The first amplitude adjustment unit uses the sin value according to the angle output from the first angle addition unit and the sin value according to the angle output from the first angle subtraction unit, and the first modulation signal and the The angle detection device according to claim 4, wherein the first feedback signal for adjusting an amplitude error of the second modulation signal is generated.
  6.  角度に基づくアドレスとして入力し、各角度に対応するデータとして当該角度に対応するsin値およびcos値を出力可能な記憶部を更に備え、
     前記第1角度加算部および前記第1角度減算部は、前記検出角度に前記第1調整角度を加算した角度に基づくアドレスおよび前記検出角度に前記第1調整角度を減算した角度に基づくアドレスを異なるサイクルで前記記憶部に入力し、
     前記第1振幅調整部は、前記第1角度加算部が出力する角度に応じたsin値および前記第1角度減算部が出力する角度に応じたsin値を異なるサイクルで前記記憶部から受け取って、前記第1変調信号および前記第2変調信号の振幅誤差を調整するための前記第1フィードバック信号を生成する
     請求項5に記載の角度検出装置。
    A storage unit capable of inputting an address based on an angle and outputting a sin value and a cos value corresponding to the angle as data corresponding to each angle;
    The first angle addition unit and the first angle subtraction unit differ in an address based on an angle obtained by adding the first adjustment angle to the detection angle and an address based on an angle obtained by subtracting the first adjustment angle from the detection angle. Input to the storage unit in a cycle,
    The first amplitude adjustment unit receives a sin value according to an angle output from the first angle addition unit and a sin value according to an angle output from the first angle subtraction unit from the storage unit in different cycles, The angle detection device according to claim 5, wherein the first feedback signal for adjusting an amplitude error between the first modulation signal and the second modulation signal is generated.
  7.  前記位相差検出部は、
     前記検出角度に第2調整角度を加算する第2角度加算部と、
     前記第2角度加算部が出力する角度を用いて、前記第1変調信号および前記第2変調信号の振幅誤差を調整するための前記第2フィードバック信号を生成する第2振幅調整部と
     を含む請求項2から6のいずれか一項に記載の角度検出装置。
    The phase difference detector is
    A second angle addition unit for adding a second adjustment angle to the detected angle;
    And a second amplitude adjusting unit that generates the second feedback signal for adjusting an amplitude error between the first modulated signal and the second modulated signal, using an angle output from the second angle adding unit. Item 7. The angle detection device according to any one of Items 2 to 6.
  8.  前記位相差検出部は、前記検出角度から前記第2調整角度を減算する第2角度減算部を更に含み、
     前記第2振幅調整部は、前記第2角度加算部が出力する角度に応じたcos値および前記第2角度減算部が出力する角度に応じたcos値を用いて、前記第1変調信号および前記第2変調信号の振幅誤差を調整するための前記第2フィードバック信号を生成する
     請求項7に記載の角度検出装置。
    The phase difference detection unit further includes a second angle subtraction unit that subtracts the second adjustment angle from the detection angle,
    The second amplitude adjustment unit uses the cos value according to the angle output from the second angle addition unit and the cos value according to the angle output from the second angle subtraction unit, and uses the first modulation signal and the The angle detection device according to claim 7, wherein the second feedback signal for adjusting an amplitude error of the second modulation signal is generated.
  9.  前記位相差検出部は、前記第1変調信号のオフセットを調整するための第1オフセット調整値を前記第1フィードバック信号に乗じて前記位相差に対して加算または減算するオフセット調整部を更に備える請求項2から8のいずれか一項に記載の角度検出装置。 The phase difference detection unit further includes an offset adjustment unit that multiplies the first feedback signal by a first offset adjustment value for adjusting an offset of the first modulation signal and adds or subtracts the phase difference. Item 9. The angle detection device according to any one of Items 2 to 8.
  10.  前記オフセット調整部は、前記第1オフセット調整値として各ビットが同一の重みを有するビットストリームをビット毎に前記第1フィードバック信号と乗算して、前記位相差に加算または減算していく請求項9に記載の角度検出装置。 The offset adjustment unit multiplies the bit stream having the same weight as each first offset adjustment value by the first feedback signal for each bit, and adds or subtracts the phase difference to or from the phase difference. The angle detection device described in 1.
  11.  前記オフセット調整部は、前記第2変調信号のオフセットを調整するための第2オフセット調整値を前記第2フィードバック信号に乗じて前記位相差に対して加算または減算する請求項9または10に記載の角度検出装置。 The said offset adjustment part multiplies the said 2nd feedback signal by the 2nd offset adjustment value for adjusting the offset of the said 2nd modulation signal, and adds or subtracts with respect to the said phase difference. Angle detection device.
  12.  前記位相差検出部は、
     前記検出角度に第3調整角度を加算する第3角度加算部と、
     前記検出角度から第3調整角度を減算する第3角度減算部と、
     前記第1変調信号および前記第2変調信号間の他軸感度を調整するべく、前記第3調整角度が加算された前記検出角度を用いて前記第1フィードバック信号を生成し、前記第3調整角度が減算された前記検出角度を用いて前記第2フィードバック信号を生成する他軸感度調整部と
     を含む
     請求項2から11のいずれか一項に記載の角度検出装置。
    The phase difference detector is
    A third angle adder for adding a third adjustment angle to the detected angle;
    A third angle subtraction unit for subtracting a third adjustment angle from the detected angle;
    In order to adjust the other-axis sensitivity between the first modulation signal and the second modulation signal, the first feedback signal is generated using the detection angle added with the third adjustment angle, and the third adjustment angle The angle detection device according to any one of claims 2 to 11, further comprising: another axis sensitivity adjustment unit that generates the second feedback signal using the detection angle obtained by subtracting.
  13.  前記他軸感度調整部は、前記第3調整角度が加算された前記検出角度に応じたsin値に基づく前記第1フィードバック信号を生成し、前記第3調整角度が減算された前記検出角度に応じたcos値に基づく前記第2フィードバック信号を生成する請求項12に記載の角度検出装置。 The other-axis sensitivity adjustment unit generates the first feedback signal based on a sin value corresponding to the detection angle to which the third adjustment angle is added, and according to the detection angle to which the third adjustment angle is subtracted. The angle detection device according to claim 12, wherein the second feedback signal is generated based on a cos value.
  14.  前記位相差検出部は、前記第1変調信号のビットストリームおよび前記第2変調信号のビットストリームをビット毎に順次入力し、前記第1フィードバック信号および前記第2フィードバック信号の組との間でビット毎に外積を演算する外積演算部を含む請求項2から13のいずれか一項に記載の角度検出装置。 The phase difference detection unit sequentially inputs a bit stream of the first modulation signal and a bit stream of the second modulation signal for each bit, and a bit is set between the first feedback signal and the set of the second feedback signal. The angle detection device according to claim 2, further comprising an outer product calculation unit that calculates an outer product every time.
  15.  前記ループ制御部は、前記位相差における予め定められた周波数以下の周波数成分を通過させるループフィルタと、
     前記ループフィルタを通過した前記位相差に応じて前記検出角度を増減する角度更新部と、
     を有する請求項14に記載の角度検出装置。
    The loop control unit is configured to pass a frequency component equal to or lower than a predetermined frequency in the phase difference; and
    An angle updater that increases or decreases the detection angle according to the phase difference that has passed through the loop filter;
    The angle detection device according to claim 14, comprising:
  16.  磁場の前記第1方向成分に応じた前記第1磁場検出信号を出力する第1磁気センス部と、
     磁場の前記第2方向成分に応じた前記第2磁場検出信号を出力する第2磁気センス部と、
     を更に備える請求項1から15のいずれか一項に記載の角度検出装置。
    A first magnetic sense unit that outputs the first magnetic field detection signal corresponding to the first direction component of the magnetic field;
    A second magnetic sense unit that outputs the second magnetic field detection signal corresponding to the second direction component of the magnetic field;
    The angle detection device according to any one of claims 1 to 15, further comprising:
  17.  磁場の角度を検出する角度検出装置の検出角度の誤差を調整する方法であって、
     磁場の第1方向成分に応じた第1磁場検出信号をデルタシグマ変調して第1変調信号を出力する段階と、
     磁場の第2方向成分に応じた第2磁場検出信号をデルタシグマ変調して第2変調信号を出力する段階と、
     検出角度をループ制御により前記第1変調信号および前記第2変調信号に対して追従させる段階と、
     を備え、
     前記追従させる段階は、前記第1変調信号および前記第2変調信号が示す角度に対する前記検出角度の位相差を検出する段階を有し、
     前記位相差を検出する段階は、前記磁場の角度に対する前記検出角度の誤差を調整する
     方法。
    A method of adjusting an error of a detection angle of an angle detection device that detects an angle of a magnetic field,
    Delta-sigma modulating the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputting the first modulation signal;
    Delta-sigma modulating a second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputting a second modulation signal;
    Making a detection angle follow the first modulation signal and the second modulation signal by loop control;
    With
    The step of following includes detecting a phase difference of the detection angle with respect to an angle indicated by the first modulation signal and the second modulation signal;
    The step of detecting the phase difference adjusts an error of the detection angle with respect to an angle of the magnetic field.
  18.  磁場の角度を検出する角度検出装置であって、
     磁場の第1方向成分に応じた第1磁場検出信号をデルタシグマ変調して第1変調信号を出力する第1デルタシグマ変調部と、
     磁場の第2方向成分に応じた第2磁場検出信号をデルタシグマ変調して第2変調信号を出力する第2デルタシグマ変調部と、
     検出角度をループ制御により前記第1変調信号および前記第2変調信号に対して追従させるループ制御部と、
     を備え、
     前記ループ制御部は、前記磁場の角度に対する前記検出角度の誤差を、予め設定された調整値を用いて調整する
     角度検出装置。
    An angle detection device for detecting the angle of a magnetic field,
    A first delta-sigma modulation unit that delta-sigma-modulates a first magnetic field detection signal corresponding to a first direction component of the magnetic field and outputs a first modulation signal;
    A second delta-sigma modulation unit that delta-sigma-modulates the second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputs a second modulation signal;
    A loop control unit for causing a detection angle to follow the first modulation signal and the second modulation signal by loop control;
    With
    The said loop control part adjusts the error of the said detection angle with respect to the angle of the said magnetic field using the preset adjustment value. Angle detection apparatus.
  19.  磁場の角度を検出する角度検出装置の検出角度の誤差を調整する方法であって、
     磁場の第1方向成分に応じた第1磁場検出信号をデルタシグマ変調して第1変調信号を出力する段階と、
     磁場の第2方向成分に応じた第2磁場検出信号をデルタシグマ変調して第2変調信号を出力する段階と、
     検出角度をループ制御により前記第1変調信号および前記第2変調信号に対して追従させる段階と、
     を備え、
     前記追従させる段階は、前記磁場の角度に対する前記検出角度の誤差を、予め設定された調整値を用いて調整する
     方法。
    A method of adjusting an error of a detection angle of an angle detection device that detects an angle of a magnetic field,
    Delta-sigma modulating the first magnetic field detection signal corresponding to the first direction component of the magnetic field and outputting the first modulation signal;
    Delta-sigma modulating a second magnetic field detection signal corresponding to the second direction component of the magnetic field and outputting a second modulation signal;
    Making a detection angle follow the first modulation signal and the second modulation signal by loop control;
    With
    The following step includes adjusting an error in the detection angle with respect to the angle of the magnetic field using a preset adjustment value.
PCT/JP2017/002404 2016-01-29 2017-01-24 Angle detection device and method WO2017130984A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017564278A JP6653336B2 (en) 2016-01-29 2017-01-24 Angle detecting device and method
DE112017000564.7T DE112017000564B4 (en) 2016-01-29 2017-01-24 Angle detection device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016226 2016-01-29
JP2016016226 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130984A1 true WO2017130984A1 (en) 2017-08-03

Family

ID=59398287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002404 WO2017130984A1 (en) 2016-01-29 2017-01-24 Angle detection device and method

Country Status (3)

Country Link
JP (1) JP6653336B2 (en)
DE (1) DE112017000564B4 (en)
WO (1) WO2017130984A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216886A1 (en) * 2018-10-02 2020-04-02 Continental Automotive Gmbh Rotor rotation angle determination unit for determining an angle of rotation in a vehicle
CN112398768A (en) * 2019-08-19 2021-02-23 博通集成电路(上海)股份有限公司 Receiver and method for calibrating frequency offset

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164450A (en) * 2009-01-16 2010-07-29 Toyota Motor Corp Resolver digital converter
JP5342045B2 (en) * 2012-07-11 2013-11-13 旭化成エレクトロニクス株式会社 Angle detection device and angle detection method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531144B2 (en) 1973-08-22 1978-01-14
GB1561806A (en) 1976-09-22 1980-03-05 Post Office Dielectric optical waveguide cables
JPS5449417A (en) 1978-02-20 1979-04-18 Mitsubishi Motors Corp After-burn preventer for engine equipped with air pump
JPS5687223A (en) 1979-12-13 1981-07-15 Sanyo Electric Co Ltd Method of working head material
JP4111813B2 (en) 2002-12-09 2008-07-02 旭化成エレクトロニクス株式会社 Magnetic sensor signal processing integrated circuit, rotation angle measuring method thereof, and rotation angle sensor
FR2938081B1 (en) * 2008-10-31 2020-09-11 Thales Sa PROCESS FOR CORRECTING THE OFF-CENTERS IN AMPLITUDE AND IN PHASE OF A SIGMA-DELTA MODULATOR AND MODULATOR IMPLEMENTING THE PROCESS
JP5043878B2 (en) 2009-03-19 2012-10-10 旭化成エレクトロニクス株式会社 Angle detection device and angle detection method
JP5449417B2 (en) 2011-02-07 2014-03-19 旭化成エレクトロニクス株式会社 Signal processing apparatus and rotation angle detection apparatus
JP5687223B2 (en) 2012-01-27 2015-03-18 旭化成エレクトロニクス株式会社 Signal processing device, rotation angle detection device, and adjustment value setting device
JP6291380B2 (en) 2014-07-31 2018-03-14 旭化成エレクトロニクス株式会社 Non-contact rotation angle sensor
JP2016102659A (en) 2014-11-27 2016-06-02 旭化成エレクトロニクス株式会社 Hall sensor, rotation angle sensor, offset adjustment device, and offset adjustment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164450A (en) * 2009-01-16 2010-07-29 Toyota Motor Corp Resolver digital converter
JP5342045B2 (en) * 2012-07-11 2013-11-13 旭化成エレクトロニクス株式会社 Angle detection device and angle detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216886A1 (en) * 2018-10-02 2020-04-02 Continental Automotive Gmbh Rotor rotation angle determination unit for determining an angle of rotation in a vehicle
CN112398768A (en) * 2019-08-19 2021-02-23 博通集成电路(上海)股份有限公司 Receiver and method for calibrating frequency offset
CN112398768B (en) * 2019-08-19 2024-01-16 博通集成电路(上海)股份有限公司 Receiver and method for calibrating frequency offset

Also Published As

Publication number Publication date
DE112017000564B4 (en) 2022-10-27
JPWO2017130984A1 (en) 2018-10-04
JP6653336B2 (en) 2020-02-26
DE112017000564T5 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
CN110678767B (en) Magnetic field sensor with error calculation
WO2013018347A1 (en) Magnetic field measuring device
JP2017534877A (en) Magnetic field sensor with shared path amplifier and analog to digital converter
JP2017534876A (en) Double path analog to digital converter
US10481220B2 (en) Circular vertical hall (CVH) sensing element with signal processing and arctangent function
US20190113592A1 (en) Non-orthogonality compensation of a magnetic field sensor
US11892325B2 (en) Position sensor devices, methods and systems based on magnetic field gradients
US11099033B2 (en) Position detection system
WO2016031674A1 (en) Error correction device, rotational-angle detection device, rotational-angle sensor, error correction method, and program
JP6653336B2 (en) Angle detecting device and method
US11193794B2 (en) Rotation angle sensor, angle signal calculation method and non-transitory computer readable medium
US11946985B2 (en) Electronic circuit for measuring an angle and an intensity of an external magnetic field
JP2005180941A (en) Angle detection sensor
JP2005180942A (en) Rotational angle detector
JP6535292B2 (en) Abnormality diagnosis device, abnormality diagnosis method, and program
US20230134728A1 (en) Magnetic sensor for measuring an external magnetic field angle in a two-dimensional plane and method for measuring said angle using the magnetic sensor
US11703314B2 (en) Analog angle sensor with digital feedback loop
JP2020016439A (en) Angle sensor correction device and angle sensor
US20220390257A1 (en) Auto-calibration for multi-pole angle sensors with mechanical modulation
JP2020106425A (en) Magnetic sensor and detection method
US11300428B2 (en) Signal processing arrangement and signal processing method
US20230243673A1 (en) Angle sensor apparatus and method
US11493361B2 (en) Stray field immune coil-activated sensor
JP6502707B2 (en) Magnetic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017564278

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112017000564

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744214

Country of ref document: EP

Kind code of ref document: A1