WO2016031674A1 - Error correction device, rotational-angle detection device, rotational-angle sensor, error correction method, and program - Google Patents

Error correction device, rotational-angle detection device, rotational-angle sensor, error correction method, and program Download PDF

Info

Publication number
WO2016031674A1
WO2016031674A1 PCT/JP2015/073402 JP2015073402W WO2016031674A1 WO 2016031674 A1 WO2016031674 A1 WO 2016031674A1 JP 2015073402 W JP2015073402 W JP 2015073402W WO 2016031674 A1 WO2016031674 A1 WO 2016031674A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
magnetic field
error
unit
mode
Prior art date
Application number
PCT/JP2015/073402
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 岡武
片岡 誠
準也 田島
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Publication of WO2016031674A1 publication Critical patent/WO2016031674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Definitions

  • the present invention relates to an error correction device, a rotation angle detection device, a rotation angle sensor, an error correction method, and a program.
  • Patent Document 1 JP 2002-71381 A Patent Document 2 JP 2011-158488 A Patent Document 3 US Patent Application Publication No. 2006/0290545 Patent Document 4 JP 9-196699 A Patent Document 5 JP 2010 No. -217151 Patent Document 6 JP 2010-164449 A Patent Document 7 US Pat. No.
  • Patent Document 8 JP 2010-217150 JP Patent Document 9 JP 2012-181188 Patent Document 10 US Patent No. No. 6288533 Non-Patent Document 1 RS Popovic, “Hall Effect Devices”, Inst of Physics Pub Inc, May 1991 Non-Patent Document 2 Bilotti et al., “Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation”, IEEE Journal of Solid-State Circuits, Vol.32, No.6, 1997, P. 829-836 Non-Patent Literature 3 by Udo Ausserlechner, “Limits of offset cancellation by the principle of spinning current Hall probe”, Proceedings of IEEE Sensors 2004, Vol. 3, P.
  • the angle non-linearity error fluctuates according to a change in temperature, etc.
  • an error may occur according to a change in the ambient temperature or the like if the sensor continues to operate.
  • a package stress variation or the like due to aging of the package resin occurs, and the angle nonlinearity error may vary.
  • the rotation angle sensor is difficult to detect such a variation in angular nonlinearity error after being mounted on a system or the like, and it has been desired to maintain the angular nonlinearity error while being reduced.
  • the signal detection device outputs the angle signal and the amplitude signal of the rotating body in accordance with the detection signal of the magnetic field detection unit that detects the magnetic field of the first axis and the magnetic field of the second axis.
  • a correlation signal calculation unit that calculates a correlation signal between a signal to be measured based on the amplitude signal, a predetermined periodic function corresponding to the error mode of the magnetic field detection unit, and a correlation signal
  • An error correction apparatus, an error correction method, and a program are provided that include a correction unit that corrects a detection signal corresponding to an error mode.
  • the angle of the rotating body is determined according to the detection signal of the error correction device of the first aspect and the magnetic field detection unit that detects the magnetic field of the first axis and the magnetic field of the second axis.
  • a rotation angle detection device including a signal detection device that outputs a signal and an amplitude signal.
  • the rotation angle detection device of the second aspect is provided, and the angle signal and the amplitude signal of the rotator according to the detection results of the magnetic field of the first axis and the magnetic field of the second axis.
  • a rotation angle sensor is provided.
  • the error correction device acquires the output of the signal detection device that outputs the angle signal and the amplitude signal of the rotating body according to the detection signal of the magnetic field detection unit that detects the magnetic field of the first axis and the magnetic field of the second axis.
  • An acquisition unit may be provided.
  • the error correction apparatus may include a correlation signal calculation unit that calculates a correlation signal between a predetermined periodic function corresponding to the error mode of the magnetic field detection unit and a signal under measurement based on the amplitude signal.
  • the error correction device may include a correction unit that corrects the detection signal corresponding to the error mode based on the correlation signal.
  • the correction unit may correct the detection signal acquired by the acquisition unit, and the corrected detection signal may be supplied to the signal detection device.
  • the error mode may include a first mode in which the magnetic field detection unit includes an offset component of a signal corresponding to the first axial direction.
  • the error mode may include a second mode in which the magnetic field detection unit includes an offset component of a signal corresponding to the second axial direction.
  • the error mode may include a third mode in which the magnetic field detection unit includes a magnetic sensitivity mismatch between the signal corresponding to the first axis and the signal corresponding to the second axis.
  • the error mode may include a fourth mode in which the magnetic field detection unit includes a non-orthogonal error between a signal corresponding to the first axis and a signal corresponding to the second axis.
  • the correlation signal calculation unit may calculate a correlation signal with the signal under measurement using the periodic function as a cosine of 1 ⁇ square.
  • the correlation signal calculation unit may calculate a correlation signal with the signal under measurement using the periodic function as a sine of a single angle.
  • the correlation signal calculation unit may calculate a correlation signal with the signal under measurement using the double function cosine as a periodic function.
  • the correlation signal calculation unit may calculate a correlation signal with the signal under measurement using the periodic function as a sine of a double angle.
  • the correlation signal calculation unit may calculate the Nth power signal of the amplitude signal (N is a natural number of 1 or more) as the signal under measurement.
  • the acquisition unit may acquire the output of the non-contact rotation angle sensor.
  • the rotation angle detection device may include an error correction device.
  • the rotation angle detection device may include a signal detection device that outputs an angle signal and an amplitude signal of the rotating body according to detection signals of a magnetic field detection unit that detects a magnetic field of the first axis and a magnetic field of the second axis. .
  • the signal detection apparatus may include a first AD conversion unit that converts a detection result of the magnetic field of the first axis into a digital signal.
  • the signal detection apparatus may include a second AD conversion unit that converts a detection result of the magnetic field of the second axis into a digital signal.
  • the correction unit may supply a correction signal for correcting the detection signal to the first AD conversion unit and the second AD conversion unit, respectively.
  • the first AD conversion unit may output a first 1-bit ⁇ signal corresponding to the detection result of the magnetic field of the first axis.
  • the second AD conversion unit may output a second 1-bit ⁇ signal corresponding to the detection result of the magnetic field of the second axis.
  • the signal detection device may include a servo loop that calculates an angle signal based on the first and second 1-bit ⁇ signals.
  • the signal detection device may be a CORDIC.
  • the rotation angle sensor may include a rotation angle detection device.
  • the rotation angle sensor may output an angle signal and an amplitude signal of the rotating body according to the detection results of the magnetic field of the first axis and the magnetic field of the second axis.
  • An error correction method for a detection signal of a magnetic field detection unit that detects a magnetic field of a first axis and a magnetic field of a second axis that change according to the rotation of the rotating body is calculated according to the detection signal.
  • An angle signal and an amplitude signal may be acquired.
  • the error correction method may calculate a correlation signal between a predetermined periodic function corresponding to the error mode of the magnetic field detection unit and a signal under measurement based on the amplitude signal.
  • the detection signal corresponding to the error mode may be corrected based on the correlation signal. It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
  • the structural example of the magnetic field detection part 100 which concerns on this embodiment is shown.
  • An example in which the first Hall element pair 110 according to the present embodiment detects a magnetic field in the first direction is shown.
  • the structural example of the signal detection apparatus 200 which concerns on this embodiment is shown.
  • the structural example of the error correction apparatus 300 which concerns on this embodiment is shown with the magnetic field detection part 100 and the signal detection apparatus 200.
  • FIG. The operation
  • An example of Hall electromotive force signals (V X , V Y ) is shown.
  • An example of the amplitude of the Hall electromotive force signal (V X , V Y ) is shown.
  • An example of the angle nonlinearity error of the Hall electromotive force signal (V X , V Y ) is shown.
  • An example of Hall electromotive force signals (V X , V Y ) is shown.
  • An example of the amplitude of the Hall electromotive force signal (V X , V Y ) is shown.
  • An example of the angle nonlinearity error of the Hall electromotive force signal (V X , V Y ) is shown.
  • the modification of the error correction apparatus 300 which concerns on this embodiment is shown.
  • An example of the rotation angle sensor module 400 concerning this embodiment is shown.
  • An example of an assembly error in which a center axis shift has occurred in the rotation angle sensor module 400 according to the present embodiment is shown.
  • An example of an assembly error in which eccentricity has occurred in the rotation angle sensor module 400 according to the present embodiment is shown.
  • An example of an assembly error in which the rotation magnet 410 is inclined in the rotation angle sensor module 400 according to the present embodiment is shown.
  • the example which applied the magnetic field of 8 directions to the magnetic field detection part 100 of the ideal rotation angle sensor module 400 is shown, respectively.
  • shaft deviation is shown, respectively.
  • An example of magnetic field detection signals (V X ( ⁇ ), V Y ( ⁇ )) when a center axis shift occurs between the rotating magnet 410 and the magnetic field detection unit 100 is shown.
  • An example of an amplitude signal A ( ⁇ ) when a center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100 is shown.
  • An example of an angle nonlinearity error ( ⁇ ( ⁇ ) ⁇ ) when a center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100 is shown.
  • An example of the result of correcting the angle nonlinearity error when the center axis deviation occurs is shown.
  • An example of a hardware configuration of a computer 1900 functioning as the error correction apparatus 300 according to the present embodiment is shown.
  • FIG. 1 shows a configuration example of a magnetic field detection unit 100 according to the present embodiment.
  • the magnetic field detection unit 100 detects the rotation angle of a rotating magnet that rotates around the rotation axis in the vicinity of the sensor in a non-contact manner.
  • the magnetic field detection unit 100 includes a substrate 10, a first Hall element pair 110, a second Hall element pair 120, and a magnetic convergence plate 130.
  • the substrate 10 is formed of a semiconductor such as silicon and includes a semiconductor circuit and a semiconductor element.
  • the substrate 10 may be an IC chip.
  • the substrate 10 includes a terminal and is electrically connected to an external substrate, circuit, wiring, and the like.
  • one surface of the substrate 10 is an XY plane having an X axis and a Y axis, and an axis perpendicular to the XY plane is a Z axis. That is, the X, Y, and Z axes are coordinate systems orthogonal to each other.
  • the first Hall element pair 110 is formed on the substrate 10 and connected to a circuit or the like formed on the substrate 10. As an example, the first Hall element pair 110 is arranged in the first direction.
  • the first direction in the present embodiment is the X-axis direction (first axis) in FIG.
  • the first Hall element pair 110 includes a first Hall element 112 and a second Hall element 114, and the two Hall elements are arranged in parallel to the X axis (for example, on the X axis).
  • the first Hall element 112 and the second Hall element 114 are elements that generate an electromotive force (Hall effect) in the Y-axis direction corresponding to a magnetic field input in the Z-axis direction when a current flows in the X-axis direction.
  • the first hall element 112 and the second hall element 114 may be formed of a semiconductor or the like.
  • first Hall element 112 and the second Hall element 114 are arranged in line symmetry with respect to the Y axis on the substrate 10.
  • first Hall element 112 and the second Hall element 114 may be arranged point-symmetrically with respect to the origin on the substrate 10.
  • an example in which the first Hall element 112 and the second Hall element 114 are arranged symmetrically with respect to the Y axis will be described.
  • the second Hall element pair 120 is formed on the substrate 10 and connected to a circuit or the like formed on the substrate 10.
  • the second Hall element pair 120 is arranged in the second direction.
  • the second direction in the present embodiment is the Y-axis direction (second axis) in FIG.
  • the third direction is the Z-axis direction (third axis) in FIG.
  • the second Hall element pair 120 includes a third Hall element 122 and a fourth Hall element 124, and the two Hall elements are arranged in parallel to the Y axis (for example, on the Y axis).
  • the third Hall element 122 and the fourth Hall element 124 are elements that generate an electromotive force (Hall effect) in the X-axis direction corresponding to a magnetic field input in the Z-axis direction when a current flows in the Y-axis direction.
  • the third Hall element 122 and the fourth Hall element 124 are arranged symmetrically with respect to the X axis on the substrate 10.
  • the third Hall element 122 and the fourth Hall element 124 may be arranged point-symmetrically with respect to the origin on the substrate 10. In the present embodiment, an example in which the third Hall element 122 and the fourth Hall element 124 are arranged symmetrically with respect to the X axis will be described.
  • the first Hall element pair 110 and the second Hall element pair 120 described above may be alternately energized in the X-axis direction and in the Y-axis direction in order to cancel the offset output.
  • Such an offset canceling method is known as the Spinning Current method as described in Non-Patent Document 5.
  • the magnetic convergence plate 130 is disposed above the first Hall element pair 110 and the second Hall element pair 120 and bends the magnetic field input to the magnetic field detection unit 100.
  • the magnetic converging plate 130 is formed of a magnetic material or the like, and for example, a first hole having a sensitivity in the Z-axis direction by bending a magnetic field in the X-axis direction and / or the Y-axis direction so as to generate a component in the Z-axis direction. Input is made to the element pair 110 and the second Hall element pair 120.
  • the magnetic flux concentrating plate 130 may be formed on the upper surface of the substrate 10, or alternatively, may be formed above the substrate 10 via an insulating layer or the like.
  • the magnetic field detection unit 100 described above outputs output signals (Hall electromotive force) from the first Hall element pair 110 and the second Hall element pair 120 to the outside.
  • output signals from the first Hall element pair 110 and the second Hall element pair 120 are output according to the rotation angle of the rotating magnet. The output signal will be described with reference to FIG.
  • FIG. 2 shows an example when the first Hall element pair 110 according to the present embodiment detects a magnetic field in the first direction.
  • the horizontal direction (the horizontal direction of the paper surface) is the X axis
  • the vertical direction (the vertical direction of the paper surface) is the Z axis direction.
  • the magnetic field vector H (H X , H Y , H Z ) input to the magnetic field detection unit 100 is bent by the magnetic convergence plate 130 and input to the first Hall element 112, the magnetic flux density vector B (Hall, X 1). Is expressed by the following equation using the magnetic permeability Mu (Hall, X1) at the position of the first Hall element 112.
  • the magnetic permeability Mu (Hall, X1) is a second-order tensor (matrix with 3 rows and 3 columns).
  • the magnetic flux density vector B (Hall, X2) input to the second Hall element 114 is expressed by the following equation using the magnetic permeability Mu (Hall, X2) at the position of the second Hall element 114.
  • the first hall element 112 and the second hall element 114 detect a magnetic field in the Z-axis direction. Therefore, the first Hall element 112 and the second Hall element 114, as shown in the following equation, thereby to detect the magnetic flux density B Z of the Z-axis direction that is bent by the magnetic flux concentrator 130.
  • the magnetic converging plate 130 bends the input magnetic field as shown by a magnetic flux density vector B in the drawing, and causes the first Hall element 112 to input a magnetic flux in the + Z-axis direction.
  • the magnetic flux in the magnetic converging plate 130 is compared with the magnetic flux density in the air. Density increases. For example, the magnetic flux density in the Z-axis direction at the position of the first Hall element 112 is approximately 1. as compared with the magnetic flux density obtained by multiplying the input magnetic field HZ by the air permeability ⁇ , as shown by the following equation. About 4 times higher.
  • the magnetic flux concentrating plate 130 causes the second Hall element 114 to generate a magnetic flux in the ⁇ Z-axis direction, and the magnetic flux density in the Z-axis direction at the position of the second Hall element 114 is expressed by the following equation.
  • the first Hall element 112 and the second Hall element 114 generate Hall electromotive force according to the magnetic flux density input in the Z-axis direction as described above.
  • each magnetic sensitivity becomes substantially equal.
  • the generated hall electromotive forces have different signs.
  • the Hall electromotive force signal V X of the first Hall element pair 110 is converted into the Hall electromotive force V sig (Hall, X1) of the first Hall element 112 and the Hall electromotive force of the second Hall element 114. It can be defined as the following equation, which is the difference between the power V sig (Hall, X2).
  • the magnetic field detection unit 100 outputs the Hall electromotive force according to the magnetic field vector H in (H X , 0, 0) input in the X-axis direction by calculating the Hall electromotive force signal V X. be able to. Further, since the Hall electromotive force signal V X is the difference between the Hall electromotive forces of the Hall elements, the first Hall element 112 and the second Hall element 114 are in the same direction (+ Z-axis direction or ⁇ Z-axis direction), and The Hall electromotive force generated by the magnetic field having substantially the same absolute value is canceled out and becomes substantially zero.
  • the magnetic field detection unit 100 calculates the Hall electromotive force signal V X , so that the magnetic field vector H XZ (H X , 0, H Z ) in the direction parallel to the XZ plane is input.
  • the Hall electromotive force corresponding to the magnetic field vector component H X (H X , 0, 0) can be calculated.
  • the first Hall element 112 and the second Hall element 114 are insensitive to the magnetic field in the Y-axis direction, and the magnetic focusing plate 130 ideally converts the magnetic field in the Y-axis direction into the Z-axis direction. do not do.
  • the magnetic field detection unit 100 calculates the Hall electromotive force signal V X so that the three orthogonal components are not zero (arbitrary direction) magnetic field vector H XYZ (H X , H Y , H Z ). Is input, it is possible to detect the Hall electromotive force according to the component H X (H X , 0, 0) of the magnetic field vector in the X-axis direction.
  • the second Hall element pair 120 arranged in the Y-axis direction can calculate the magnetic field in the Y-axis direction. That is, the magnetic field detection unit 100 uses the second Hall element pair 120 to calculate a Hall electromotive force signal V Y of the following expression, thereby inputting a magnetic field vector H XYZ (H X , H Y , H Z ). However, it is possible to calculate the Hall electromotive force according to the component H Y (0, H Y , 0) of the magnetic field vector in the Y-axis direction.
  • the first Hall element 112 and the second Hall element 114 generate Hall electromotive force according to the magnetic flux density input in the Z-axis direction. Then, the Hall electromotive force signal V Z of the first hall element pair 110, Hall electromotive force V sig of the first Hall element 112 (Hall, X1) and Hall electromotive force V sig of the second Hall element 114 (Hall, X2) May be calculated as the sum of.
  • the magnetic field detection unit 100 of the present embodiment will describe an example in which the Hall electromotive force signals V X and V Y are output, and the Hall electromotive force signal V Z will be omitted. for even V Z, it may be output like the Hall electromotive force signal V X and V Y.
  • the magnetic field detection unit 100 is based on the output signals of the first Hall element pair 110 and the second Hall element pair 120, and the X-axis component of the input magnetic field vector H XYZ (H X , H Y , H Z ).
  • Hall electromotive force signals V X and V Y corresponding to H X (H X , 0,0) and Y axis component H Y (0, H Y , 0) are output. That is, the magnetic field detection unit 100 can calculate the Hall electromotive force corresponding to the magnetic field in the direction parallel to the XY plane by decomposing the Hall electromotive force into an X-axis component and a Y-axis component.
  • the magnetic field detection unit 100 can detect a magnetic field caused by rotation of a rotating magnet whose rotation axis is parallel to the Z axis in a plane parallel to the XY plane, and output a Hall electromotive force signal corresponding to the rotation angle. it can.
  • the magnetic field detection unit 100 outputs a Hall electromotive force signal (V X , V Y ) represented by the following equation.
  • a x and A y are amplitude values of each signal
  • is a rotation angle of the rotating magnet
  • is a non-orthogonality error between signals
  • V os_x and V os_y are offsets of each signal.
  • V X ( ⁇ ) A x ⁇ cos ( ⁇ ) + V os — x
  • V Y ( ⁇ ) A y ⁇ sin ( ⁇ + ⁇ ) + V os_y
  • an angle signal ⁇ ( ⁇ ) corresponding to the rotation angle ⁇ of the rotating magnet can be calculated by the following equation as an example.
  • the magnetic field detection unit 100 detects a magnetic field in a plane parallel to the XY plane, a change in the magnetic field in another plane may be detected.
  • the magnetic field detection unit 100 can also detect a magnetic field in the Z-axis direction.
  • the magnetic field detection unit 100 detects a magnetic field caused by rotation of a rotating magnet whose rotation axis is parallel to the Y-axis in a plane parallel to the XZ plane.
  • a Hall electromotive force signal corresponding to the angle ⁇ can be output.
  • the magnetic field detection unit 100 detects a magnetic field caused by rotation of a rotating magnet whose rotation axis is parallel to the X axis in a plane parallel to the YZ plane, and outputs a Hall electromotive force signal corresponding to the rotation angle ⁇ .
  • the magnetic field detection unit 100 can detect a three-dimensional magnetic field of the XYZ axes, it detects a magnetic field due to rotation in a plane that can be expressed by the XYZ axes, and outputs a Hall electromotive force signal corresponding to the rotation angle ⁇ . can do.
  • An example in which the magnetic field detection unit 100 according to the present embodiment outputs a Hall electromotive force signal expressed by Equation (8) will be described.
  • FIG. 3 shows a configuration example of the signal detection apparatus 200 according to the present embodiment.
  • Signal detection apparatus 200 includes a first pair of Hall effect devices 110 and the second Hall electromotive force signal from the Hall element pair 120 (V X, V Y) receives the angle signal corresponding to the Hall electromotive force signal (V X, V Y) Output ⁇ ( ⁇ ). Further, the signal detection device 200 outputs an amplitude signal A ( ⁇ ) corresponding to the Hall electromotive force signal (V X , V Y ).
  • the signal detection apparatus 200 includes an amplification unit 210, an amplification unit 212, an AD conversion unit 220, an AD conversion unit 222, a multiplication unit 230, a multiplication unit 232, an accumulation unit 240, an accumulation unit 242, an accumulation unit 244, a phase compensation unit 250, and A storage unit 260 is provided.
  • Amplifying unit 210 is connected to the first Hall element pair 110 receives the Hall electromotive force signal V X, amplified by a predetermined amplification degree.
  • the amplification unit 210 supplies the amplified Hall electromotive force signal V X to the AD conversion unit 220.
  • AD conversion unit 220 is connected to the amplifying section 210, converts the Hall electromotive force signal V X received into a digital signal.
  • the AD conversion unit 220 supplies the converted digital signal V X to the multiplication unit 230.
  • the amplifier 212 is connected to a second pair of Hall effect devices 120, receives Hall electromotive force signal V Y, amplified by a predetermined amplification degree.
  • the amplification unit 212 supplies the amplified Hall electromotive force signal VY to the AD conversion unit 222.
  • the AD conversion unit 222 is connected to the amplification unit 212 and converts the received Hall electromotive force signal VY into a digital signal.
  • the AD conversion unit 222 supplies the converted digital signal V Y to the multiplication unit 230.
  • Multiplying unit 230 multiplies the sine wave signal sin (phi) into a digital signal V X. Further, the multiplier 230 multiplies the digital signal VY by the cosine wave signal cos ( ⁇ ). The multiplier 230 outputs the difference between the two multiplication results as an angle error signal ⁇ , as shown by the following equation.
  • the angle error signal ⁇ is expressed as follows.
  • the multiplication unit 230 supplies the calculated angle error signal ⁇ to the integration unit 240.
  • the integrating unit 240 is connected to the multiplying unit 230, integrates the received angle error signal ⁇ , and supplies the integrated angle error signal ⁇ to the phase compensating unit 250.
  • the phase compensation unit 250 is connected to the integration unit 240 and performs phase compensation so as to ensure the phase stability of the closed loop circuit.
  • the signal detection device 200 shown in FIG. 3 is a so-called type 2 servo circuit including two integration units (time integration) in a closed loop circuit. Is an angular velocity signal that is a time derivative of the angle ⁇ .
  • the phase compensation unit 250 supplies the angular velocity signal to the integrating unit 242.
  • the accumulator 242 is connected to the phase compensator 250 and accumulates the received angular velocity signals to generate an angle signal ⁇ .
  • the integration unit 242 may be a circuit configured by a DCO (Digitally Controlled Oscillator) circuit and an up-down counter that performs an up-count / down-count operation on an output signal of the DCO.
  • DCO Digitally Controlled Oscillator
  • the storage unit 260 previously stores a sine wave signal sin ( ⁇ ) and a cosine wave signal cos ( ⁇ ) corresponding to a plurality of angle signals ⁇ .
  • the storage unit 260 is connected to the integration unit 242 and supplies the multiplication unit 230 with a sine wave signal sin ( ⁇ ) and a cosine wave signal cos ( ⁇ ) corresponding to the received angle signal ⁇ . That is, the storage unit 260 feeds back the corresponding sine wave signal sin ( ⁇ ) and cosine wave signal cos ( ⁇ ) to the multiplication unit 230 in accordance with the acquired angle signal ⁇ .
  • the signal detection apparatus 200 of the present embodiment described above causes the integrating unit 242 to output the angle signal ⁇ that is closer to ⁇ by a feedback loop that has passed from the multiplying unit 230 through the phase compensating unit 250 and the storage unit 260. Further, the signal detection device 200 outputs an amplitude signal A ( ⁇ ) of the angle error signal ⁇ based on the angle signal ⁇ .
  • the AD conversion unit 220 supplies the digital signal V X converted from the Hall electromotive force signal V X to the multiplication unit 230 and also to the multiplication unit 232.
  • the AD conversion unit 222 supplies the digital signal V Y converted from the Hall electromotive force signal V Y to the multiplication unit 230 and also to the multiplication unit 232.
  • Multiplying unit 232 multiplies the cosine wave signal cos (phi) into a digital signal V X. Further, the multiplier 232 multiplies the digital signal VY by the sine wave signal sin ( ⁇ ). The multiplication unit 232 outputs the sum of two multiplication results as an amplitude signal A ( ⁇ ) via the integration unit 244, as shown by the following equation.
  • the amplitude signal A ( ⁇ ) is expressed as follows.
  • the signal detection device 200 outputs the angle signal ⁇ ( ⁇ ) and the amplitude signal A ( ⁇ ) according to the input Hall electromotive force signals (V X , V Y ).
  • the signal detection device 200 can output an angle signal ⁇ ( ⁇ ) that is substantially the same as the rotation angle ⁇ of the rotating magnet.
  • the signal detection device 200 outputs an angle signal ⁇ ( ⁇ ) different from the rotation angle ⁇ (that is, the angle nonlinearity error). ( ⁇ ( ⁇ ) ⁇ ) becomes non-zero).
  • Such angular non-linearity errors are due to mismatch in amplitude of the two Hall electromotive force signals (ie, mismatch in magnetic detection sensitivity of the first Hall element pair 110 and the second Hall element pair 120), non-orthogonality, and offset. to cause. Since these factors have temperature dependence, the angle nonlinearity error also varies according to the ambient temperature. Such temperature fluctuations of the angle non-linearity error can be measured at the manufacturing stage and the shipping stage of the magnetic field detection unit 100, so that it can be measured in advance before being mounted on a system or the like, and calibration and correction can be performed. preferable. However, for example, when the magnetic field detection unit 100 is deteriorated, the temperature fluctuation of such an angle nonlinearity error may exceed an error range required for a system or the like on which the magnetic field detection unit 100 is mounted. It may affect the operation.
  • the error correction apparatus detects an angular non-linearity error based on the detection result of the rotation angle sensor in which the magnetic field detection unit 100 is mounted in a system or the like, and a hole that is a detection signal of the magnetic field detection unit 100. Correct the electromotive force signal.
  • FIG. 4 shows a configuration example of the error correction apparatus 300 according to the present embodiment, together with the magnetic field detection unit 100 and the signal detection apparatus 200.
  • the magnetic field detection unit 100 and the signal detection apparatus 200 have been described with reference to FIGS.
  • the error correction device 300 detects an angle nonlinearity error based on the angle signal ⁇ and the amplitude signal A ( ⁇ ) output according to the Hall electromotive force signals (V X , V Y ), and Hall according to the detection result.
  • the electromotive force signal (V X , V Y ) is corrected.
  • the error correction apparatus 300 includes an acquisition unit 310, a storage unit 320, a correlation signal calculation unit 330, and a correction unit 340.
  • the acquisition unit 310 outputs an angle signal ⁇ ( ⁇ ) and an amplitude signal A ( ⁇ ) of the rotating body according to the detection signal of the magnetic field detection unit 100 that detects the magnetic field of the first axis and the magnetic field of the second axis.
  • the output of the signal detection device 200 is acquired.
  • the acquisition unit 310 is connected to the signal detection device 200 and acquires the angle signal ⁇ and the amplitude signal A ( ⁇ ).
  • the acquisition unit 310 may acquire the angle signal ⁇ and the amplitude signal A ( ⁇ ) from the magnetic field detection unit 100.
  • the acquisition unit 310 may acquire the output of the non-contact rotation angle sensor.
  • the acquisition unit 310 may be connected to the magnetic field detection unit 100, the signal detection device 200, or the like by wire, wireless, or a network, and may acquire the angle signal ⁇ and the amplitude signal A ( ⁇ ).
  • the acquisition unit 310 may be connected to a storage device or the like, and may acquire an output of a rotation angle sensor stored in the storage device or the like.
  • the acquisition unit 310 supplies the acquired angle signal ⁇ and amplitude signal A ( ⁇ ) to the correlation signal calculation unit 330.
  • the acquisition unit 310 may supply the acquired angle signal ⁇ and amplitude signal A ( ⁇ ) to the storage unit 320.
  • the storage unit 320 stores a predetermined periodic function corresponding to the error mode of the magnetic field detection unit 100.
  • the storage unit 320 stores a sine function and a cosine function as a periodic function. The periodic function will be described later.
  • the storage unit 320 may store data or the like generated by the error correction device 300.
  • the storage unit 320 may store intermediate data to be processed in the process of generating the data.
  • the storage unit 320 may supply the stored data to the request source in response to a request from each unit in the error correction apparatus 300.
  • the storage unit 320 when the storage unit 320 is connected to the acquisition unit 310 and receives the angle signal ⁇ and the amplitude signal A ( ⁇ ) from the acquisition unit 310, the storage unit 320 stores the angle signal ⁇ and the amplitude signal A ( ⁇ ). Then, the storage unit 320 supplies the angle signal ⁇ and the amplitude signal A ( ⁇ ) stored in response to the request from the correlation signal calculation unit 330 to the correlation signal calculation unit 330.
  • Correlation signal calculation section 330 is connected to acquisition section 310 and storage section 320, respectively, and a predetermined periodic function corresponding to the error mode of magnetic field detection section 100 and a signal under measurement based on amplitude signal A ( ⁇ ). A correlation signal is calculated.
  • the correlation signal calculation unit 330 applies the value of the angle signal ⁇ acquired by the acquisition unit 310 to the periodic function, and calculates a correlation signal using the applied periodic function and the amplitude signal A ( ⁇ ).
  • the correlation signal calculation unit 330 calculates the Nth power signal of the amplitude signal (N is a natural number of 1 or more) as the signal under measurement. For example, the correlation signal calculation unit 330 uses the amplitude signal A ( ⁇ ) as a signal under measurement. Instead, the correlation signal calculation unit 330 may use the square of the amplitude signal A ( ⁇ ) as the signal under measurement. The correlation signal calculation unit 330 supplies the calculated correlation function to the correction unit 340.
  • the correction unit 340 is connected to the correlation signal calculation unit 330 and corrects the detection signal corresponding to the error mode based on the received correlation signal. Since the correction unit 340 is connected to the signal detection device 200 and corrects the detection signal acquired by the acquisition unit 310, the corrected detection signal is supplied to the signal detection device 200.
  • the detection signal corrected by the correction unit 340 includes a signal based on the detection signal, such as a detection signal output from the magnetic field detection unit 100, a signal obtained by amplifying the detection signal, and a signal obtained by converting the detection signal into a digital signal. Shall be included.
  • the correction unit 340 is connected to, for example, the AD conversion unit 220 and the AD conversion unit 222 of the signal detection device 200, respectively, and superimposes correction values on analog signals, threshold values, offsets, and the like when converted into digital signals.
  • the correction unit 340 may be connected to the amplification unit 210 and the amplification unit 212, respectively, and change the amplification degree according to the correction value.
  • the correction unit 340 is connected to the input of the amplification unit 210 and the amplification unit 212 (that is, the input of the signal detection device 200), and corrects the analog signal of the Hall electromotive force signal (V X , V Y ). You may have a circuit part which superimposes a value. Instead, the correction unit 340 is connected between the amplification unit 210 and the AD conversion unit 220, and between the amplification unit 212 and the AD conversion unit 222, and analog of the Hall electromotive force signals (V X , V Y ). You may have a circuit part which superimposes a correction value on a signal.
  • the correction unit 340 is connected between the AD conversion unit 220 and the multiplication unit 230, and between the AD conversion unit 222 and the multiplication unit 230, and is digital of the Hall electromotive force signals (V X , V Y ). You may have a circuit part which superimposes a correction value on a signal. In this case, the Hall electromotive force signal (V X , V Y ) on which the correction value is superimposed may be connected to be input to the multiplier 230 and the multiplier 232. As described above, since the correction unit 340 corrects the Hall electromotive force signal (V X , V Y ), the signal detection device 200 uses the corrected detection signal to accurately detect the angle signal ⁇ ( ⁇ ) and the amplitude. Signal A ( ⁇ ) can be output.
  • FIG. 5 shows an operation flow of the error correction apparatus 300 according to the present embodiment.
  • the error correction apparatus 300 executes the operation flow shown in FIG. 5, detects the angle nonlinearity error of the magnetic field detection unit 100, and corrects the detection signal of the magnetic field detection unit 100.
  • the acquisition unit 310 acquires the angle signal ⁇ and the amplitude signal A ( ⁇ ) (S400).
  • the acquisition unit 310 is connected to the integration unit 244 of the signal detection device 200 described with reference to FIG. 3 and acquires the amplitude signal A ( ⁇ ) output from the integration unit 244.
  • the amplitude signal A ( ⁇ ) acquired by the acquisition unit 310 can be approximated by the following equation.
  • the error correction apparatus 300 detects an offset V os_x of the X axis that is the first axis (S410).
  • the correlation signal calculation unit 330 calculates a correlation signal between an amplitude signal and a predetermined periodic function corresponding to an error mode for detecting an X-axis offset.
  • the error correction apparatus 300 sets the error mode as a first mode in which the magnetic field detection unit 100 includes an offset component of a signal corresponding to the first axial direction.
  • the offset V os_x of the X axis increases, so that the Hall electromotive force signal (V X , V Y ) in Equation (8) is It can be handled as follows:
  • a avg was an average value of A x and A y .
  • V X ( ⁇ ) A avg ⁇ cos ( ⁇ ) + V os — x
  • V Y ( ⁇ ) A avg ⁇ sin ( ⁇ )
  • the amplitude signal A ( ⁇ ) in the equation (14) is calculated as the following equation.
  • C X represents a constant.
  • the amplitude signal A ( ⁇ ) has a component that varies like a cosine function in accordance with the rotation angle ⁇ . Therefore, by taking a correlation with the cosine function cos ( ⁇ ), the offset V os_x of the X axis is obtained. It is possible to detect a signal corresponding to. That is, when the error mode is the first mode, the correlation signal calculation unit 330 calculates a correlation signal with the signal under measurement using the periodic function as a cosine of 1 ⁇ square.
  • the rotation angle ⁇ is a 360 ° (2 ⁇ ) cycle
  • the correlation signal is expressed by the following equation.
  • FIG. 6 shows an example of a calculation circuit included in the correlation signal calculation unit 330 according to the present embodiment.
  • the correlation signal calculation unit 330 includes a buffer memory 332, a multiplication unit 334, and an addition unit 336.
  • the buffer memory 332 shows an example in which the acquired amplitude signal A ( ⁇ ) is stored as data of 8 points every 45 °. That is, FIG. 6 shows an example when M in the equation (17) is set to 8.
  • the multiplication unit 334 includes a number of multipliers corresponding to the number of buffer memories 332 (that is, the number corresponding to the resolution of the rotation angle sensor).
  • the multiplier 334 is preferably connected to the storage unit 320 and the buffer memory 332 and includes at least the same number of multipliers as the number of the buffer memories 332.
  • Each of the multipliers corresponds to a periodic function value obtained by substituting eight angle signals ⁇ at 45 ° intervals into the periodic function received from the storage unit 320 (in the case of the first mode, a cosine function of a single angle).
  • the value of the amplitude signal A ( ⁇ ) is multiplied and the multiplication result is supplied to the adder 336.
  • the adder 336 is connected to the multiplier 334 and calculates the sum of the received multiplication results.
  • the adder 336 outputs the sum of the multiplication results as a correlation signal calculation result.
  • the correlation signal calculation unit 330 of the present embodiment calculates the correlation signal of the amplitude signal A ( ⁇ ) and the cosine function when detecting the error in the first mode. It has been described using the equations (16) and (17) that such a correlation signal becomes a signal corresponding to the offset V os_x of the X axis. In addition, the angle nonlinearity error in this case will be described with reference to FIGS.
  • FIG. 7 shows an example of the Hall electromotive force signal (V X , V Y ).
  • the horizontal axis shows the Hall electromotive force signal V X of the X-axis direction
  • the vertical axis represents the Hall electromotive force signal V Y of the Y-axis direction.
  • a signal indicated by a dotted line is an ideal Hall electromotive force signal, and has a substantially circular shape on the XY plane.
  • a signal indicated by a solid line is a Hall electromotive force signal having an X-axis offset V os_x , and shows an example in which a substantially circular shape is translated in the V X direction by a distance corresponding to the offset V os_x .
  • the amplitude of the Hall electromotive force signal (V X , V Y ) in the example shown in FIG. 7 will be described.
  • FIG. 8 shows an example of the amplitude of the Hall electromotive force signal (V X , V Y ).
  • the magnetic field detection unit 100 In response to the rotation of the rotating magnet by 360 °, the magnetic field detection unit 100 outputs a Hall electromotive force signal (V X , V Y ) having a cycle of 360 °.
  • FIG. 8 shows Hall electromotive force signals (V X , V Y ) in this case, where the horizontal axis is the angular position ⁇ of the rotating magnet and the vertical axis is the amplitude.
  • the amplitude A is constant.
  • one of the Hall electromotive force signal V X may include an offset V Os_x
  • the amplitude A will vary depending on ⁇ as indicated by one-dot chain lines.
  • the fluctuation is generated by the sum of the cosine wave signal having an offset and the sine wave signal. Therefore, the fluctuation is synchronized with the cosine signal having a period of 360 °, and the fluctuation with the cosine signal having a period of 360 °. Correlation becomes stronger.
  • FIG. 9 shows an example of the angle nonlinearity error of the Hall electromotive force signals (V X , V Y ) shown in FIGS.
  • the horizontal axis represents the angular position ⁇ of the rotating magnet, and the vertical axis represents the angle nonlinearity error ( ⁇ ).
  • the error is a value smaller than 0 °.
  • the sex error is a value greater than 0 °.
  • the angle nonlinearity error fluctuates so as to indicate ⁇ sin ( ⁇ ) with respect to the angle position ⁇ . Since the fluctuation of the angle nonlinearity error shown in FIG. 9 and the fluctuation of the amplitude A shown in FIG. 8 are caused by the offset V os_x of the Hall electromotive force signal, it is impossible to detect the fluctuation of the amplitude A from the correlation signal. This corresponds to detecting a variation in angular nonlinearity error.
  • the correlation signal calculation unit 330 calculates the correlation signal and supplies the calculation result to the correction unit 340 as described with reference to FIG. In this way, the correction unit 340 can detect an angular non-linearity error corresponding to the magnitude of the correlation signal.
  • the correction unit 340 calculates a correction amount of the Hall electromotive force signal (V X ) corresponding to the detected angular nonlinearity error in order to reduce the angular nonlinearity error (S420).
  • the correction unit 340 may calculate the correction amount using the Hall electromotive force signals (V X , V Y ), and instead of this, the correction amount may be determined with reference to a predetermined table or the like. In this case, a predetermined table may be stored in the storage unit 320 in advance.
  • the error correction apparatus 300 detects an offset V os_y of the Y axis that is the second axis (S430).
  • the correlation signal calculation unit 330 calculates a correlation signal between the predetermined periodic function corresponding to the error mode for detecting the Y-axis offset and the amplitude signal.
  • the error correction apparatus 300 sets the error mode as a second mode in which the magnetic field detection unit 100 includes an offset component in the second axial direction.
  • the Hall electromotive force signal (V X , V Y ) in Equation (8) is expressed by the following equation as in the error in the first mode. Can be handled as follows. (Equation 18)
  • V X ( ⁇ ) A avg ⁇ cos ( ⁇ )
  • V Y ( ⁇ ) A avg ⁇ sin ( ⁇ ) + V os_y
  • the amplitude signal A ( ⁇ ) in the equation (14) is calculated as the following equation.
  • CY represents a constant.
  • the amplitude signal A ( ⁇ ) has a component that varies like a sine function in accordance with the rotation angle ⁇ . Therefore, by taking a correlation with the sine function sin ( ⁇ ), the offset V os_y of the Y axis is obtained. It is possible to detect a signal corresponding to. That is, when the error mode is the second mode, the correlation signal calculation unit 330 calculates a correlation signal with the signal under measurement using the periodic function as a sine of a single angle.
  • the correlation signal is expressed by the following equation.
  • the correlation signal is calculated by changing the coefficient corresponding to the angle every 45 ° (that is, the periodic function received from the storage unit 320) from cos ( ⁇ ) to sin ( ⁇ ). Can be executed.
  • the correlation signal calculation unit 330 calculates a correlation signal and supplies the calculation result to the correction unit 340. In this way, the correction unit 340 can detect an angular non-linearity error corresponding to the magnitude of the correlation signal.
  • the correction unit 340 calculates a correction amount of the Hall electromotive force signal (V Y ) corresponding to the detected angular nonlinearity error in order to reduce the angular nonlinearity error (S440).
  • the correction unit 340 may calculate the correction amount using the Hall electromotive force signals (V X , V Y ), and instead of this, the correction amount may be determined with reference to a predetermined table or the like.
  • the error correction apparatus 300 detects an error of an amplitude value difference (A x ⁇ A y ) indicating a magnetic sensitivity mismatch between the first Hall element pair 110 and the second Hall element pair 120 (S450).
  • the correlation signal calculation unit 330 calculates a correlation signal between a predetermined periodic function corresponding to a magnetic sensitivity mismatch error mode and an amplitude signal.
  • the error correction apparatus 300 sets the error mode to a third mode in which the magnetic field detection unit 100 includes a magnetic sensitivity mismatch between a signal corresponding to the first axis and a signal corresponding to the second axis.
  • the amplitude signal A ( ⁇ ) has a component that varies like a double angle cosine function in accordance with the rotation angle ⁇ . Therefore, by taking a correlation with the double angle cosine function cos (2 ⁇ ), A signal corresponding to the magnetic sensitivity mismatch (A x -A y ) can be detected. That is, when the error mode is the third mode, the correlation signal calculation unit 330 calculates a correlation signal with the signal under measurement using the periodic function as a cosine of double angle.
  • the correlation signal is expressed by the following equation.
  • Such correlation signal calculation can be executed by changing the coefficient corresponding to the angle of every 45 ° from cos ( ⁇ ) to cos (2 ⁇ ) in the circuit shown in FIG.
  • the angle nonlinearity error in this case will be described with reference to FIGS.
  • FIG. 10 shows an example of the Hall electromotive force signal (V X , V Y ).
  • Figure 10 is similar to FIG. 7, the horizontal axis represents the Hall electromotive force signal V X of the X-axis direction, the vertical axis represents the Hall electromotive force signal V Y of the Y-axis direction.
  • a signal indicated by a dotted line is an ideal Hall electromotive force signal, and has a substantially circular shape on the XY plane.
  • a signal indicated by a solid line is a Hall electromotive force signal having a magnetic sensitivity mismatch, and shows an example in which (A x ⁇ A y ) / A y is 0.1.
  • the amplitude of the Hall electromotive force signal (V X , V Y ) in the example shown in FIG. 10 will be described.
  • FIG. 11 shows an example of the amplitude of the Hall electromotive force signal (V X , V Y ).
  • the magnetic field detection unit 100 In response to the rotation of the rotating magnet by 360 °, the magnetic field detection unit 100 outputs a Hall electromotive force signal (V X , V Y ) having a cycle of 360 °.
  • FIG. 11 shows the Hall electromotive force signals (V X , V Y ) with the horizontal axis representing the angular position ⁇ of the rotating magnet and the vertical axis representing the amplitude, as in FIG.
  • the amplitude A is constant.
  • the amplitude of the Hall electromotive force signal V X indicated by a dotted line when about 10% greater than the amplitude of the Hall electromotive force signal V Y, amplitude A varies depending on ⁇ as indicated by one-dot chain lines.
  • the fluctuation is caused by the sum of a sine wave signal and a cosine wave signal having different amplitude values, so that the fluctuation is synchronized with the cosine signal having a period of 180 ° and is correlated with the double angle cosine signal. Becomes stronger.
  • FIG. 12 shows an example of the angular nonlinearity error of the Hall electromotive force signals (V X , V Y ) shown in FIGS.
  • the horizontal axis represents the angular position ⁇ of the rotating magnet
  • the vertical axis represents the angle nonlinearity error ( ⁇ ).
  • the angle nonlinearity error Becomes 0 °.
  • the angle signal ⁇ ( ⁇ ) calculated according to the Hall electromotive force signal is also 0 °, and the angle nonlinearity error is 0 °.
  • the angle nonlinearity error fluctuates so as to indicate ⁇ sin (2 ⁇ ) with respect to the angle position ⁇ .
  • the fluctuation of the angle nonlinearity error shown in FIG. 12 and the fluctuation of the amplitude A shown in FIG. 11 are caused by the magnetic sensitivity mismatch (A x ⁇ A y ) of the Hall electromotive force signal. Is detected from the correlation signal is equivalent to detecting a magnetic sensitivity mismatch (A x -A y ) component of the angular nonlinearity error.
  • the correlation signal calculation unit 330 calculates a correlation signal and supplies the calculation result to the correction unit 340.
  • the correction unit 340 can detect an angular non-linearity error corresponding to the magnitude of the correlation signal.
  • the correction unit 340 calculates a correction amount of the Hall electromotive force signal (V X , V Y ) corresponding to the detected angular nonlinearity error in order to reduce the angular nonlinearity error (S460).
  • the correction unit 340 may calculate the correction amount using the Hall electromotive force signals (V X , V Y ), and instead of this, the correction amount may be determined with reference to a predetermined table or the like.
  • the error correction apparatus 300 detects the non-orthogonality error ⁇ between the Hall electromotive force signals (V X , V Y ) (S470).
  • the correlation signal calculation unit 330 calculates a correlation signal between a predetermined periodic function corresponding to a non-orthogonal error mode and an amplitude signal.
  • the error correction apparatus 300 sets the error mode to a fourth mode in which the magnetic field detection unit 100 includes a non-orthogonal error between a signal corresponding to the first axis and a signal corresponding to the second axis.
  • the Hall electromotive force signal (V X , V Y ) in Expression (8) can be handled as the following expression.
  • V X ( ⁇ ) A avg ⁇ cos ( ⁇ )
  • V Y ( ⁇ ) A avg ⁇ sin ( ⁇ + ⁇ )
  • the amplitude signal A ( ⁇ ) in the equation (14) is calculated as the following equation.
  • the correlation signal calculation unit 330 calculates the correlation signal with the signal under measurement using the periodic function as a double angle sine.
  • the correlation signal is expressed by the following equation.
  • Such correlation signal calculation can be executed by changing a coefficient corresponding to an angle of every 45 ° from cos ( ⁇ ) to sin (2 ⁇ ) in the circuit shown in FIG. Therefore, the correlation signal calculation unit 330 calculates a correlation signal and supplies the calculation result to the correction unit 340. In this way, the correction unit 340 can detect an angular non-linearity error corresponding to the magnitude of the correlation signal.
  • the correction unit 340 calculates a correction amount of the Hall electromotive force signal (V X , V Y ) corresponding to the detected angular nonlinearity error in order to reduce the angular nonlinearity error (S480).
  • the correction unit 340 may calculate the correction amount using the Hall electromotive force signals (V X , V Y ), and instead of this, the correction amount may be determined with reference to a predetermined table or the like.
  • the correction unit 340 corrects the Hall electromotive force signal (V X , V Y ) based on the calculated correction amount (S490). For example, the correction unit 340 supplies a correction signal to the AD conversion unit 220 and the AD conversion unit 222, and superimposes the correction value on the input analog signal, threshold value, offset, and the like in the process of converting into a digital signal.
  • the AD conversion unit 220 is a first AD conversion unit that converts the detection result of the magnetic field of the first axis into a digital signal, and as an example, the first 1 corresponding to the detection result of the magnetic field of the first axis. This is a ⁇ AD converter that outputs a bit ⁇ signal.
  • the AD conversion unit 222 is a second AD conversion unit that converts the detection result of the magnetic field of the second axis into a digital signal.
  • the AD conversion unit 222 converts the second 1-bit ⁇ signal corresponding to the detection result of the magnetic field of the second axis. This is a ⁇ AD converter that outputs.
  • the signal detection device 200 has a servo loop that calculates the angle signal ⁇ based on the first and second 1-bit ⁇ signals.
  • the correction unit 340 may supply a correction signal for correcting the detection signal to the first AD conversion unit and the second AD conversion unit, respectively.
  • the correction unit 340 can adjust the offset of the first AD conversion unit and / or the second AD conversion unit by supplying the modulated reference current as a correction signal to the first AD conversion unit and / or the second AD conversion unit.
  • the operation of adjusting the offset by supplying the modulated reference current to the ⁇ AD converter is known as described in Non-Patent Document 5, for example, and thus detailed description thereof is omitted here. .
  • the correction unit 340 generates a correction voltage by modulating a predetermined voltage from a reference voltage or the like with a duty corresponding to the voltage to be corrected, and adds the correction voltage to the input voltage of the AD conversion unit, thereby performing the AD conversion.
  • the offset of the part may be adjusted.
  • the correction unit generates the modulation signal by adjusting the duty so that the time average of the correction voltage becomes a voltage corresponding to the correction amount.
  • the correction unit 340 can correct the errors in the first mode and the second mode, respectively.
  • the correction unit 340 may correct the magnetic sensitivity mismatch by adjusting the amplification degree of the first AD conversion unit and / or the second AD conversion unit.
  • the correction unit 340 may adjust the amplification degree using, for example, a variable capacitor or a variable resistor.
  • movement which adjusts the amplification degree of a delta-sigma type AD conversion part is known as it describes, for example in patent document 9, detailed description is abbreviate
  • the correction unit 340 an input as an example, to switch the input connections of the first 2AD conversion unit Hall electromotive force signal V Y is input, only the predetermined time the Hall electromotive force signal V X to the 2AD conversion unit Thus, the non-orthogonal error ⁇ may be corrected.
  • the non-orthogonal error ⁇ is generated by mixing a signal corresponding to the magnetic field in the second axial direction into the Hall electromotive force signal Vx that should originally correspond to the magnetic field in the first axial direction (and / or inherently in the second axial direction). This is an error caused by mixing a signal corresponding to the magnetic field in the first axial direction into the Hall electromotive force signal Vy that should correspond to the magnetic field.
  • the correction of the non-orthogonal error ⁇ can be realized by calculating an appropriate linear sum (linear combination) between the Hall electromotive force signals Vx and Vy so as to cancel the error.
  • the operation of the correction unit 340 is a method for realizing a coupling coefficient on the time axis when calculating the linear sum (linear combination) of the Hall electromotive force signals Vy and Vx.
  • the correction unit 340 by inputting the hole electromotive force signal V X or Hall electromotive force signal V Y in one AD conversion section (first 2AD conversion unit as an example), to correct the non-orthogonality error ⁇ it can.
  • the correction unit 340 corrects the non-orthogonality error ⁇ by switching the input of the one AD conversion unit according to the correction amount.
  • the correction unit 340 can correct the error in the fourth mode.
  • the error correction apparatus 300 determines whether or not the correction of the angle non-linearity error is finished (S500). When the correction of the angle nonlinearity error is continued (S500: No), the error correction apparatus 300 returns to the step of obtaining the angle signal and the amplitude signal (S400) and continues the correction of the angle nonlinearity error. The error correction apparatus 300 stops the above process when the correction of the angle non-linearity error is terminated by an input from the user or the like (S500: Yes).
  • the error correction apparatus 300 has the angle nonlinearity caused by the X-axis offset, the Y-axis offset, the magnetic detection sensitivity mismatch, and the non-orthogonality error of the magnetic field detection unit 100 in operation. An error can be detected and fed back to the rotational angle sensor in operation to correct the detection signal. Therefore, the error correction apparatus 300 can detect an error for each error mode even when the magnetic field detection unit 100 is mounted on a rotation angle sensor, a system, and the like, and performs appropriate correction according to the error mode. be able to.
  • the correlation signal calculation unit 330 has been described as an example in which the first signal of the amplitude signal A ( ⁇ ) (that is, the amplitude signal itself) is the signal under measurement. Instead, the correlation signal calculation unit 330 may use a square signal of the amplitude signal A ( ⁇ ) as the signal under measurement.
  • the signal under measurement A 2 ( ⁇ ) has a component that varies like a cosine function in accordance with the rotation angle ⁇ , by taking a correlation with the cosine function cos ( ⁇ ), it corresponds to the X-axis offset V os_x . Signal can be detected.
  • a specific correlation signal is expressed by the following equation.
  • the signal under measurement A 2 ( ⁇ ) has a component that varies like a sine function in accordance with the rotation angle ⁇ , by taking a correlation with the sine function sin ( ⁇ ), the signal under measurement A 2 ( ⁇ ) corresponds to the offset V os_y of the Y axis. Signal can be detected.
  • a specific correlation signal is expressed by the following equation.
  • the signal under measurement A 2 ( ⁇ ) may be used as the signal under measurement in the third mode and the fourth mode.
  • the periodic function corresponding to the error mode may be a periodic function when the signal under measurement is A ( ⁇ ).
  • the correlation signal of the third mode shown in (Expression 23) is expressed by (Expression 31)
  • the correlation signal of the fourth mode shown in (Expression 26) is expressed by (Expression 32). As shown.
  • the correlation signal calculation unit 330 can calculate the periodic function corresponding to the signal under measurement and the error mode for each mode. Therefore, the correlation signal calculation unit 330 can also calculate the Nth power signal (N is a natural number of 1 or more) of the amplitude signal A ( ⁇ ) as the signal under measurement.
  • the error correction apparatus 300 of the present embodiment has the error modes from the first mode to the fourth mode.
  • the error correction apparatus 300 may have at least one of the error modes from the first mode to the fourth mode, and correct the error in at least one mode.
  • the error correction apparatus 300 of the present embodiment is connected to the signal detection apparatus 200 .
  • the error correction device 300 may be a part of the signal detection device 200.
  • the angle signal ⁇ and the amplitude signal A ( ⁇ ) of the rotating body are obtained according to the detection signals of the error correction device 300 and the magnetic field detection unit 100 that detects the magnetic field of the first axis and the magnetic field of the second axis.
  • a rotation angle detection device including the signal detection device 200 for outputting may be configured.
  • the error correction device 300 may be provided in the magnetic field detection unit 100.
  • the error correction device 300 is preferably provided in the magnetic field detection unit 100 together with the signal detection device 200. That is, the magnetic field detection unit 100 in this case includes a rotation angle detection device including the signal detection device 200 and the error correction device 300, and rotates according to the detection results of the first axis magnetic field and the second axis magnetic field.
  • the body angle signal ⁇ and the amplitude signal A ( ⁇ ) are output.
  • the error correction apparatus 300 is connected to the signal detection apparatus 200 illustrated in FIG. 3 and the example in which the angle signal ⁇ and the amplitude signal A ( ⁇ ) are acquired has been described. Since the error correction device 300 can detect an error if the angle signal ⁇ and the amplitude signal A ( ⁇ ) can be acquired, the signal detection device 200 is not limited to the example of FIG.
  • the signal detection device 200 may be a calculation circuit such as a CORDIC based on a trigonometric function calculation model.
  • FIG. 13 shows a modification of the error correction apparatus 300 according to this embodiment.
  • the error correction apparatus 300 of the present modification obtains the angle signal ⁇ and the amplitude signal A ( ⁇ ) from the signal calculation circuit 500.
  • the signal calculation circuit 500 includes an amplification unit 510, an amplification unit 512, an AD conversion unit 520, an AD conversion unit 522, and a CORDIC circuit unit 530.
  • the amplification unit 510, amplification unit 512, AD conversion unit 520, and AD conversion unit 522 perform substantially the same operations as the amplification unit 210, amplification unit 212, AD conversion unit 220, and AD conversion unit 222 described in FIG. Therefore, the description is omitted here.
  • the CORDIC (Coordinate Rotation Digital Computing) circuit unit 530 generates an angle signal ⁇ and an amplitude signal A ( ⁇ ) from the Hall electromotive force signal as an input signal based on an algorithm that performs various operations such as trigonometric functions, multiplication, and division. calculate.
  • the CORDIC circuit unit 530 may be an integrated circuit such as an FPGA (Field-Programmable Gate Array) on which the CORDIC algorithm is mounted, and an ASIC (Application Specific Integrated Circuit).
  • the CORDIC circuit unit 530 executes a predetermined CORDIC algorithm to calculate the angle signal ⁇ and the amplitude signal A ( ⁇ ).
  • the CORDIC circuit unit 530 outputs an amplitude signal that is about 1.6 times larger than the amplitude signal output by the signal detection device 200 shown in FIG.
  • the correlation signal calculation unit 330 calculates the correlation between the signal under measurement based on the amplitude signal and a predetermined periodic function corresponding to the error mode, the amplitude signal is (1.6 times). Correlation signals that have almost no effect even if they become a constant multiple (about) are calculated. Therefore, the error correction apparatus 300 according to the present modification can detect the angular non-linearity error of the magnetic field detection unit 100 with substantially the same operation as the error correction apparatus 300 described with reference to FIGS.
  • the correction unit 340 may correct the detection signal of the magnetic field detection unit 100 by substantially the same operation as the error correction device 300 described with reference to FIGS. Further, the correction unit 340 may include a correction circuit 342 inside the signal calculation circuit 500 and supply the correction signal to the correction circuit 342 to correct the detection signal.
  • the correction circuit 342 is connected to the AD conversion unit 520 and the AD conversion unit 522, and receives the Hall electromotive force signals (ADC (V X ), ADC (V Y )) converted from digital signals.
  • Correction circuit 342 the Hall electromotive force signal in accordance with the correction amount received from the correction unit 340 corrects the (ADC (V X), ADC (V Y)), hole corrected electromotive force signal (ADC (V X ) ′, ADC (V Y ) ′) is supplied to the CORDIC circuit unit 530.
  • the correction circuit 342 may also be incorporated in the integrated circuit.
  • the signal calculation circuit 500 can execute the signal correction process and the signal calculation process by digital signal processing in one integrated circuit, and the apparatus can be downsized.
  • the error correction device 300 of the present embodiment described above may be a device independent of the rotation angle sensor and may be a part of the magnetic field detection unit 100 instead.
  • the error correction device 300 may be a part of a system or the like in which the magnetic field detection unit 100 is mounted.
  • the error correction apparatus 300 may be a part of a control circuit that controls the system or the like.
  • the error correction apparatus 300 calculates an error based on the output signal of the rotation angle sensor that outputs the angle signal and the amplitude signal of the rotating body according to the detection results of the magnetic field of the first axis and the magnetic field of the second axis. Since it detects, the detection element of a magnetic field is not limited to a Hall element.
  • the magnetic field detection unit 100 may include a plurality of GMR (Giant Magneto-Resistance) elements and / or TMR (Tunnel Magneto-Resistance) elements that detect the magnetic field of the first axis and the magnetic field of the second axis. Good.
  • GMR Global Magneto-Resistance
  • TMR Tunnelnel Magneto-Resistance
  • the error correction apparatus 300 of the present embodiment described above can detect an error for each error mode and execute an appropriate correction according to the error mode even when the magnetic field detection unit 100 is mounted on a system or the like. I explained what I can do. Instead of this or in addition to this, the error correction device 300 may detect an error of the magnetic field detection unit 100 in a state of being incorporated in the rotation angle sensor module or the like, and execute correction according to the error. Good.
  • FIG. 14 shows an example of the rotation angle sensor module 400 according to the present embodiment.
  • the rotation angle sensor module 400 includes a magnetic field detection unit 100, a rotating magnet 410, a rotating shaft 412, and a motor 420. Since the magnetic field detection unit 100 has been described with reference to FIGS. 1 to 13, description thereof is omitted here. In this example, it is assumed that the signal detection device 200 is formed inside the magnetic field detection unit 100.
  • FIG. 14 shows an example in which the rotating magnet 410 is provided above the magnetic field detection unit 100.
  • the rotating magnet 410 has a disk shape and rotates on a plane substantially parallel to the XY plane.
  • the rotating magnet 410 may be divided into two regions each having a semicircular cross section substantially parallel to the XY plane, and forms a magnet in which one region is an S pole and the other region is an N pole.
  • the rotating magnet 410 ideally causes the magnetic field detection unit 100 to generate a rotating magnetic field represented by, for example, Equation (33) by rotating on a plane substantially parallel to the XY plane.
  • the rotating shaft 412 is formed in a direction substantially perpendicular to the XY plane.
  • the rotation axis 412 has an intersection of the X axis passing through the first Hall element pair 110 and the Y axis passing through the second Hall element pair 120 on the extension line of the central axis on the magnetic field detection unit 100 side.
  • the rotating shaft 412 has one end connected to the rotating magnet 410 and the other end connected to the motor 420.
  • the motor 420 rotates the rotating shaft 412 and the rotating magnet 410 connected to the rotating shaft.
  • the rotation angle sensor module 400 is formed by assembling the magnetic field detection unit 100 and the rotating magnet 410 that rotates about the rotation axis 412. That is, the magnetic field detection unit 100 detects the magnetic field in the X-axis direction and the magnetic field in the Y-axis direction on the XY plane, and detects the rotation angle on the XY plane of the rotating magnet 410 that rotates about the rotation axis 412.
  • FIGS. 15 to 17 show examples when such an assembly error occurs.
  • FIG. 15 shows an example of an assembly error in which the center axis shift occurs in the rotation angle sensor module 400 according to the present embodiment.
  • FIG. 16 shows an example of an assembly error in which eccentricity occurs in the rotation angle sensor module 400 according to the present embodiment.
  • FIG. 17 shows an example of an assembly error in which the rotation magnet 410 is inclined in the rotation angle sensor module 400 according to the present embodiment.
  • the magnetic field detection unit 100 generates an angular non-linearity error that varies so as to indicate a periodic function according to the angular position ⁇ of the rotating magnet 410. Therefore, the error correction apparatus 300 according to the present embodiment reduces the angle nonlinearity error caused by the assembly error of the rotation angle sensor module 400, as in the case of reducing the angle nonlinearity error of the magnetic field detection unit 100.
  • FIG. 18 shows an example in which magnetic fields in eight directions are applied to the magnetic field detector 100 of the ideal rotation angle sensor module 400, respectively. That is, FIG. 18 shows, by arrows, the directions of magnetic fields generated on the XY plane where the magnetic field detector 100 is installed when the rotating magnet 410 rotates at 45 ° intervals. A plurality of circles in FIG. 18 respectively indicate the rotating magnets 410, and a square indicated by a dotted line in the circle indicates the position of the magnetic field detection unit 100. Since the rotation angle sensor module 400 has an ideal arrangement relationship, the center of the circle coincides with the center of the quadrangular region indicated by the dotted line. It can be seen that as the rotation angle changes from 0 ° to 315 ° by 45 °, the direction of the magnetic field vector generated in the region where the magnetic field detection unit 100 is located also rotates by 45 °.
  • FIG. 19 shows an example in which magnetic fields in eight directions are respectively applied to the magnetic field detection unit 100 of the rotation angle sensor module 400 having an assembly error of the center axis deviation. That is, FIG. 19 shows the magnetic field generated in the XY plane on which the magnetic field detector 100 is installed when the rotating magnet 410 rotates at 45 ° intervals in the rotation angle sensor module 400 in which the center axis deviation shown in FIG. The direction is indicated by arrows.
  • a plurality of circles in FIG. 19 respectively indicate the rotating magnets 410 as in FIG. 18, and a square indicated by a dotted line in the circle indicates the position of the magnetic field detection unit 100. Since the center axis shift has occurred, a shift has occurred between the center of the circle and the center of the quadrangular region indicated by the dotted line.
  • the magnetic field detection unit 100 incorporated in the rotation angle sensor module 400 having the assembly error of the center axis deviation has an angular non-linearity error indicating the fluctuation of the periodic function. Therefore, a correlation signal can be calculated by taking a correlation with the periodic function.
  • the rotation angle sensor module 400 has an assembly error that causes eccentricity and inclination of the rotating magnet 410, when the fluctuation of the generated angle nonlinearity error shows a periodic function, (Equation 17), (Equation 17) 20), (Equation 23), and (Equation 26) can be used to calculate the correlation signal (or (Equation 28) and (Equation 30) to (Equation 32)).
  • the simulation is a result calculated assuming that a center axis deviation of 2 mm occurs between the magnetic field detection unit 100 and the rotating magnet 410 in the X-axis direction and the Y-axis direction, respectively.
  • FIG. 20 shows an example of the magnetic field detection signals (V X ( ⁇ ), V Y ( ⁇ )) when a center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100.
  • the horizontal axis in FIG. 20 indicates the angular position ⁇ of the rotating magnet, and the vertical axis indicates the signal amplitude.
  • the magnetic field detection unit 100 detects magnetic field detection signals (V X ( ⁇ ), V Y ( ⁇ )) that change periodically according to the rotating magnetic field. Note that it is difficult to read the influence of the center axis deviation from the signal.
  • FIG. 21 shows an example of the amplitude signal A ( ⁇ ) when the center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100.
  • the horizontal axis in FIG. 21 indicates the angular position ⁇ of the rotating magnet, and the vertical axis indicates the amplitude signal intensity.
  • the amplitude signal A ( ⁇ ) fluctuates so as to indicate ⁇ sin (2 ⁇ ). Thereby, it can be predicted that an angle nonlinearity error has occurred in the magnetic field detection unit 100.
  • FIG. 22 shows an example of an angular non-linearity error ( ⁇ ( ⁇ ) ⁇ ) when a center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100.
  • the horizontal axis of FIG. 22 indicates the angular position ⁇ of the rotating magnet, and the vertical axis indicates the angle nonlinearity error ( ⁇ ( ⁇ ) ⁇ ). From FIG. 22, it can be seen that the angle nonlinearity error fluctuates to indicate cos (2 ⁇ ). It can be seen from the fluctuation that the center axis deviation is an error that can be handled in the same manner as the non-orthogonal error.
  • FIG. 23 shows an example of the result of correcting the angle nonlinearity error when the center axis deviation occurs.
  • the horizontal axis represents the angular position ⁇ of the rotating magnet
  • the vertical axis represents the angle nonlinearity error ( ⁇ ( ⁇ ) ⁇ ).
  • the error correction device 300 corrects the magnetic field detection signal from the error parameter (0, 0, 0, 1.7 °), thereby changing the angle nonlinearity error shown in FIG. 22 into the angle nonlinearity error shown in FIG. It can be seen from the simulation that this can be reduced.
  • the error correction apparatus 300 can reduce the angle nonlinearity error caused by the assembly error when the magnetic field detection unit 100 is incorporated in the rotation angle sensor module 400. Since the error correction device 300 can dynamically reduce the angle nonlinearity error of the magnetic field detection unit 100 according to the output of the rotation angle sensor, even if the assembly error varies with time, Angular nonlinearity errors can also be reduced. Further, the error correction apparatus 300 can collectively calibrate the angle nonlinearity error caused by the angle nonlinearity error of the magnetic field detection unit 100 and the assembly error of the rotation angle sensor module 400.
  • FIG. 24 shows an example of a hardware configuration of a computer 1900 that functions as the error correction apparatus 300 according to the present embodiment.
  • a computer 1900 according to this embodiment is connected to a CPU peripheral unit having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080 that are connected to each other by a host controller 2082, and to the host controller 2082 by an input / output controller 2084.
  • An input / output unit having a communication interface 2030, a hard disk drive 2040, and a DVD drive 2060; a legacy input / output unit having a ROM 2010, a flexible disk drive 2050, and an input / output chip 2070 connected to the input / output controller 2084; Is provided.
  • the host controller 2082 connects the RAM 2020 to the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate.
  • the CPU 2000 operates based on programs stored in the ROM 2010 and the RAM 2020 and controls each unit.
  • the graphic controller 2075 acquires image data generated by the CPU 2000 or the like on a frame buffer provided in the RAM 2020 and displays it on the display device 2080.
  • the graphic controller 2075 may include a frame buffer for storing image data generated by the CPU 2000 or the like.
  • the input / output controller 2084 connects the host controller 2082 to the communication interface 2030, the hard disk drive 2040, and the DVD drive 2060, which are relatively high-speed input / output devices.
  • the communication interface 2030 communicates with other devices via a network.
  • the hard disk drive 2040 stores programs and data used by the CPU 2000 in the computer 1900.
  • the DVD drive 2060 reads a program or data from the DVD-ROM 2095 and provides it to the hard disk drive 2040 via the RAM 2020.
  • the ROM 2010, the flexible disk drive 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084.
  • the ROM 2010 stores a boot program that the computer 1900 executes at startup and / or a program that depends on the hardware of the computer 1900.
  • the flexible disk drive 2050 reads a program or data from the flexible disk 2090 and provides it to the hard disk drive 2040 via the RAM 2020.
  • the input / output chip 2070 connects the flexible disk drive 2050 to the input / output controller 2084 and inputs / outputs various input / output devices via, for example, a parallel port, a serial port, a keyboard port, a mouse port, and the like. Connect to controller 2084.
  • the program provided to the hard disk drive 2040 via the RAM 2020 is stored in a recording medium such as the flexible disk 2090, the DVD-ROM 2095, or an IC card and provided by the user.
  • the program is read from the recording medium, installed in the hard disk drive 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000.
  • the program is installed in the computer 1900, and causes the computer 1900 to function as the acquisition unit 310, the storage unit 320, the correlation signal calculation unit 330, and the correction unit 340.
  • the information processing described in the program is read into the computer 1900, whereby the acquisition unit 310, the storage unit 320, and the correlation signal calculation unit 330 are specific means in which the software and the various hardware resources described above cooperate. , And the correction unit 340.
  • the specific error correction apparatus 300 according to the purpose of use is constructed by realizing calculation or processing of information according to the purpose of use of the computer 1900 in this embodiment by this specific means.
  • the CPU 2000 executes a communication program loaded on the RAM 2020 and executes a communication interface based on the processing content described in the communication program.
  • a communication process is instructed to 2030.
  • the communication interface 2030 reads transmission data stored in a transmission buffer area or the like provided on a storage device such as the RAM 2020, the hard disk drive 2040, the flexible disk 2090, or the DVD-ROM 2095, and sends it to the network.
  • the reception data transmitted or received from the network is written into a reception buffer area or the like provided on the storage device.
  • the communication interface 2030 may transfer transmission / reception data to / from the storage device by the DMA (Direct Memory Access) method. Instead, the CPU 2000 transfers the storage device or the communication interface 2030 as the transfer source.
  • the transmission / reception data may be transferred by reading the data from the data and writing the data to the communication interface 2030 or the storage device of the transfer destination.
  • the CPU 2000 also includes all or necessary portions of files or databases stored in an external storage device such as the hard disk drive 2040, DVD drive 2060 (DVD-ROM 2095), and flexible disk drive 2050 (flexible disk 2090).
  • an external storage device such as the hard disk drive 2040, DVD drive 2060 (DVD-ROM 2095), and flexible disk drive 2050 (flexible disk 2090).
  • CPU 2000 writes the processed data back to the external storage device by DMA transfer or the like.
  • the RAM 2020 and the external storage device are collectively referred to as a memory, a storage unit, or a storage device.
  • the CPU 2000 can also store a part of the RAM 2020 in the cache memory and perform reading and writing on the cache memory. Even in such a form, the cache memory bears a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
  • the CPU 2000 performs various operations, such as various operations, information processing, condition determination, information search / replacement, etc., described in the present embodiment, specified for the data read from the RAM 2020 by the instruction sequence of the program. Is written back to the RAM 2020. For example, when performing the condition determination, the CPU 2000 determines whether the various variables shown in the present embodiment satisfy the conditions such as large, small, above, below, equal, etc., compared to other variables or constants. When the condition is satisfied (or not satisfied), the program branches to a different instruction sequence or calls a subroutine.
  • the CPU 2000 can search for information stored in a file or database in the storage device. For example, in the case where a plurality of entries in which the attribute value of the second attribute is associated with the attribute value of the first attribute are stored in the storage device, the CPU 2000 displays the plurality of entries stored in the storage device. The entry that matches the condition in which the attribute value of the first attribute is specified is retrieved, and the attribute value of the second attribute that is stored in the entry is read, thereby associating with the first attribute that satisfies the predetermined condition The attribute value of the specified second attribute can be obtained.
  • the programs or modules shown above may be stored in an external recording medium.
  • a recording medium in addition to the flexible disk 2090 and the DVD-ROM 2095, an optical recording medium such as a DVD, Blu-ray (registered trademark) or CD, a magneto-optical recording medium such as an MO, a tape medium, a semiconductor such as an IC card, etc.
  • a memory or the like can be used.
  • a storage device such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium, and the program may be provided to the computer 1900 via the network.

Abstract

This invention, which detects and corrects nonlinear error in the angle outputted by an active rotational-angle sensor, provides an error correction device, an error correction method, and a program. The error correction device is provided with the following: an acquisition unit that acquires the amplitude signal from a signal detection device that outputs an amplitude signal and an angle signal for a rotating body in accordance with detection signals from a magnetic-field detection unit that detects a magnetic field along a first axis and a magnetic field along a second axis; a correlation-signal computation unit that computes a correlation signal between a predetermined periodic function corresponding to an error mode of the magnetic-field detection unit and a measurement-target signal based on the aforementioned amplitude signal; and a correction unit that corrects the detection signal corresponding to the aforementioned error mode on the basis of the aforementioned correlation signal.

Description

誤差補正装置、回転角検出装置、回転角センサ、誤差補正方法、およびプログラムError correction device, rotation angle detection device, rotation angle sensor, error correction method, and program
 本発明は、誤差補正装置、回転角検出装置、回転角センサ、誤差補正方法、およびプログラムに関する。 The present invention relates to an error correction device, a rotation angle detection device, a rotation angle sensor, an error correction method, and a program.
 従来、X方向およびY方向の磁場の変化を検出し、当該検出結果に基づき、回転磁石等の回転位置を検出する非接触回転角センサが知られていた。そして、このような回転角センサは、角度非線形性誤差を有するので、誤差の調整および校正等が実行されていた(例えば、特許文献1~9参照)。
 特許文献1 特開2002-71381号公報
 特許文献2 特開2011-158488号公報
 特許文献3 米国特許出願公開第2006/0290545号明細書
 特許文献4 特開平9-196699号公報
 特許文献5 特開2010-217151号公報
 特許文献6 特開2010-164449号公報
 特許文献7 米国特許第6426712号明細書
 特許文献8 特開2010-217150号公報
 特許文献9 特開2012-181188号公報
 特許文献10 米国特許第6288533号明細書
 非特許文献1 R.S. Popovic著、「Hall Effect Devices」、Inst of Physics Pub Inc、1991年5月
 非特許文献2 Bilotti他著、「Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation」、IEEE Journal of Solid-State Circuits、Vol.32、 No.6、 1997年、 P. 829-836
 非特許文献3 Udo Ausserlechner著、「Limits of offset cancellation by the principle of spinning current Hall probe」、Proceedings of IEEE Sensors 2004、Vol.3、P. 1117-1120
 非特許文献4 一松信著、「初等関数の数値計算」、教育出版、1974年1月
 非特許文献5 Gert van der Horn、Johan L.Huijsing著、「Integrated Smart Sensors, Design and Calibration」、Springer、1997年12月
Conventionally, a non-contact rotation angle sensor that detects a change in a magnetic field in the X direction and the Y direction and detects a rotation position of a rotating magnet or the like based on the detection result has been known. Since such a rotation angle sensor has an angle nonlinearity error, adjustment and calibration of the error have been performed (see, for example, Patent Documents 1 to 9).
Patent Document 1 JP 2002-71381 A Patent Document 2 JP 2011-158488 A Patent Document 3 US Patent Application Publication No. 2006/0290545 Patent Document 4 JP 9-196699 A Patent Document 5 JP 2010 No. -217151 Patent Document 6 JP 2010-164449 A Patent Document 7 US Pat. No. 6,426,712 Patent Document 8 JP 2010-217150 JP Patent Document 9 JP 2012-181188 Patent Document 10 US Patent No. No. 6288533 Non-Patent Document 1 RS Popovic, “Hall Effect Devices”, Inst of Physics Pub Inc, May 1991 Non-Patent Document 2 Bilotti et al., “Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation”, IEEE Journal of Solid-State Circuits, Vol.32, No.6, 1997, P. 829-836
Non-Patent Literature 3 by Udo Ausserlechner, “Limits of offset cancellation by the principle of spinning current Hall probe”, Proceedings of IEEE Sensors 2004, Vol. 3, P. 1117-1120
Non-patent document 4 Shin Ichimatsu, “Numerical calculation of elementary functions”, Education Publishing, January 1974 Non-patent document 5 Gert van der Horn, Johan L. Huijsing, “Integrated Smart Sensors, Design and Calibration”, Springer, December 1997
 しかしながら、角度非線形性誤差は、温度の変化等に応じて変動するので、出荷段階においてセンサを調整しても、センサを動作し続けると周囲温度の変化等に応じて誤差が生じる場合があった。また、回転角センサは、パッケージ樹脂の経年変化によるパッケージ応力変動等が生じ、角度非線形性誤差が変動することもある。回転角センサは、システム等に実装した後に、このような角度非線形性誤差の変動を検出することが困難であり、角度非線形性誤差を低減させたまま維持することが望まれていた。 However, since the angle non-linearity error fluctuates according to a change in temperature, etc., even if the sensor is adjusted at the shipping stage, an error may occur according to a change in the ambient temperature or the like if the sensor continues to operate. . In addition, in the rotation angle sensor, a package stress variation or the like due to aging of the package resin occurs, and the angle nonlinearity error may vary. The rotation angle sensor is difficult to detect such a variation in angular nonlinearity error after being mounted on a system or the like, and it has been desired to maintain the angular nonlinearity error while being reduced.
 本発明の第1の態様においては、第1の軸の磁場と第2の軸の磁場を検出する磁場検出部の検出信号に応じて、回転体の角度信号および振幅信号を出力する信号検出装置の振幅信号を取得する取得部と、磁場検出部の誤差モードに対応する予め定められた周期関数と、振幅信号に基づく被測定信号との相関信号を算出する相関信号算出部と、相関信号に基づいて、誤差モードに対応する検出信号を補正する補正部と、を備える誤差補正装置、誤差補正方法、およびプログラムを提供する。 In the first aspect of the present invention, the signal detection device outputs the angle signal and the amplitude signal of the rotating body in accordance with the detection signal of the magnetic field detection unit that detects the magnetic field of the first axis and the magnetic field of the second axis. A correlation signal calculation unit that calculates a correlation signal between a signal to be measured based on the amplitude signal, a predetermined periodic function corresponding to the error mode of the magnetic field detection unit, and a correlation signal An error correction apparatus, an error correction method, and a program are provided that include a correction unit that corrects a detection signal corresponding to an error mode.
 本発明の第2の態様においては、第1の態様の誤差補正装置と、第1の軸の磁場と第2の軸の磁場を検出する磁場検出部の検出信号に応じて、回転体の角度信号および振幅信号を出力する信号検出装置と、を備える回転角検出装置を提供する。 In the second aspect of the present invention, the angle of the rotating body is determined according to the detection signal of the error correction device of the first aspect and the magnetic field detection unit that detects the magnetic field of the first axis and the magnetic field of the second axis. There is provided a rotation angle detection device including a signal detection device that outputs a signal and an amplitude signal.
 本発明の第3の態様においては、第2の態様の回転角検出装置を備え、第1の軸の磁場と第2の軸の磁場の検出結果に応じて、回転体の角度信号および振幅信号を出力する、回転角センサを提供する。 In the third aspect of the present invention, the rotation angle detection device of the second aspect is provided, and the angle signal and the amplitude signal of the rotator according to the detection results of the magnetic field of the first axis and the magnetic field of the second axis. A rotation angle sensor is provided.
(一般的開示)
(項目1)
 誤差補正装置は、第1の軸の磁場と第2の軸の磁場を検出する磁場検出部の検出信号に応じて、回転体の角度信号および振幅信号を出力する信号検出装置の出力を取得する取得部を備えてよい。
 誤差補正装置は、磁場検出部の誤差モードに対応する予め定められた周期関数と、振幅信号に基づく被測定信号との相関信号を算出する相関信号算出部を備えてよい。
 誤差補正装置は、相関信号に基づいて、誤差モードに対応する検出信号を補正する補正部を備えてよい。
(項目2)
 補正部は、取得部が取得した検出信号を補正し、補正後の検出信号が信号検出装置に供給されてよい。
(項目3)
 誤差モードは、磁場検出部が第1の軸方向に対応する信号のオフセット成分を含む第1モードを有してよい。
 誤差モードは、磁場検出部が第2の軸方向に対応する信号のオフセット成分を含む第2モードを有してよい。
 誤差モードは、磁場検出部が第1の軸に対応する信号および第2の軸に対応する信号の間の磁気感度ミスマッチを含む第3モードを有してよい。
 誤差モードは、磁場検出部が第1の軸に対応する信号および第2の軸に対応する信号の間の非直交性誤差を含む第4モードを有してよい。
(項目4)
 相関信号算出部は、誤差モードが第1モードの場合に、周期関数を1倍角の余弦として、被測定信号との相関信号を算出してよい。
 相関信号算出部は、誤差モードが第2モードの場合に、周期関数を1倍角の正弦として、被測定信号との相関信号を算出してよい。
 相関信号算出部は、誤差モードが第3モードの場合に、周期関数を2倍角の余弦として、被測定信号との相関信号を算出してよい。
 相関信号算出部は、誤差モードが第4モードの場合に、周期関数を2倍角の正弦として、被測定信号との相関信号を算出してよい。
(項目5)
 相関信号算出部は、振幅信号のN乗信号(Nは1以上の自然数)を被測定信号として算出してよい。
(項目6)
 取得部は、非接触回転角センサの出力を取得してよい。
(項目7)
 回転角検出装置は、誤差補正装置を備えてよい。
 回転角検出装置は、第1の軸の磁場と第2の軸の磁場を検出する磁場検出部の検出信号に応じて、回転体の角度信号および振幅信号を出力する信号検出装置を備えてよい。
(項目8)
 信号検出装置は、第1の軸の磁場の検知結果をデジタル信号に変換する第1AD変換部を有してよい。
 信号検出装置は、第2の軸の磁場の検知結果をデジタル信号に変換する第2AD変換部を有してよい。
 補正部は、第1AD変換部および第2AD変換部に、検出信号を補正する補正信号をそれぞれ供給してよい。
(項目9)
 第1AD変換部は、第1の軸の磁場の検知結果に応じた第1の1ビットΔΣ信号を出力してよい。
 第2AD変換部は、第2の軸の磁場の検知結果に応じた第2の1ビットΔΣ信号を出力してよい。
 信号検出装置は、第1および第2の1ビットΔΣ信号に基づいて、角度信号を算出するサーボループを有してよい。
(項目10)
 信号検出装置は、CORDICでよい。
(項目11)
 回転角センサは、回転角検出装置を備えてよい。
 回転角センサは、第1の軸の磁場と第2の軸の磁場の検出結果に応じて、回転体の角度信号および振幅信号を出力してよい。
(項目12)
 回転体の回転に応じて変化する第1の軸の磁場と第2の軸の磁場を検出する、磁場検出部の検出信号の誤差補正方法は、検出信号に応じて算出される、回転体の角度信号と振幅信号を取得してよい。
 誤差補正方法は、磁場検出部の誤差モードに対応する予め定められた周期関数と、振幅信号に基づく被測定信号との相関信号を算出してよい。
 誤差補正方法は、相関信号に基づいて、誤差モードに対応する検出信号を補正してよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
(General disclosure)
(Item 1)
The error correction device acquires the output of the signal detection device that outputs the angle signal and the amplitude signal of the rotating body according to the detection signal of the magnetic field detection unit that detects the magnetic field of the first axis and the magnetic field of the second axis. An acquisition unit may be provided.
The error correction apparatus may include a correlation signal calculation unit that calculates a correlation signal between a predetermined periodic function corresponding to the error mode of the magnetic field detection unit and a signal under measurement based on the amplitude signal.
The error correction device may include a correction unit that corrects the detection signal corresponding to the error mode based on the correlation signal.
(Item 2)
The correction unit may correct the detection signal acquired by the acquisition unit, and the corrected detection signal may be supplied to the signal detection device.
(Item 3)
The error mode may include a first mode in which the magnetic field detection unit includes an offset component of a signal corresponding to the first axial direction.
The error mode may include a second mode in which the magnetic field detection unit includes an offset component of a signal corresponding to the second axial direction.
The error mode may include a third mode in which the magnetic field detection unit includes a magnetic sensitivity mismatch between the signal corresponding to the first axis and the signal corresponding to the second axis.
The error mode may include a fourth mode in which the magnetic field detection unit includes a non-orthogonal error between a signal corresponding to the first axis and a signal corresponding to the second axis.
(Item 4)
When the error mode is the first mode, the correlation signal calculation unit may calculate a correlation signal with the signal under measurement using the periodic function as a cosine of 1 × square.
When the error mode is the second mode, the correlation signal calculation unit may calculate a correlation signal with the signal under measurement using the periodic function as a sine of a single angle.
When the error mode is the third mode, the correlation signal calculation unit may calculate a correlation signal with the signal under measurement using the double function cosine as a periodic function.
When the error mode is the fourth mode, the correlation signal calculation unit may calculate a correlation signal with the signal under measurement using the periodic function as a sine of a double angle.
(Item 5)
The correlation signal calculation unit may calculate the Nth power signal of the amplitude signal (N is a natural number of 1 or more) as the signal under measurement.
(Item 6)
The acquisition unit may acquire the output of the non-contact rotation angle sensor.
(Item 7)
The rotation angle detection device may include an error correction device.
The rotation angle detection device may include a signal detection device that outputs an angle signal and an amplitude signal of the rotating body according to detection signals of a magnetic field detection unit that detects a magnetic field of the first axis and a magnetic field of the second axis. .
(Item 8)
The signal detection apparatus may include a first AD conversion unit that converts a detection result of the magnetic field of the first axis into a digital signal.
The signal detection apparatus may include a second AD conversion unit that converts a detection result of the magnetic field of the second axis into a digital signal.
The correction unit may supply a correction signal for correcting the detection signal to the first AD conversion unit and the second AD conversion unit, respectively.
(Item 9)
The first AD conversion unit may output a first 1-bit ΔΣ signal corresponding to the detection result of the magnetic field of the first axis.
The second AD conversion unit may output a second 1-bit ΔΣ signal corresponding to the detection result of the magnetic field of the second axis.
The signal detection device may include a servo loop that calculates an angle signal based on the first and second 1-bit ΔΣ signals.
(Item 10)
The signal detection device may be a CORDIC.
(Item 11)
The rotation angle sensor may include a rotation angle detection device.
The rotation angle sensor may output an angle signal and an amplitude signal of the rotating body according to the detection results of the magnetic field of the first axis and the magnetic field of the second axis.
(Item 12)
An error correction method for a detection signal of a magnetic field detection unit that detects a magnetic field of a first axis and a magnetic field of a second axis that change according to the rotation of the rotating body is calculated according to the detection signal. An angle signal and an amplitude signal may be acquired.
The error correction method may calculate a correlation signal between a predetermined periodic function corresponding to the error mode of the magnetic field detection unit and a signal under measurement based on the amplitude signal.
In the error correction method, the detection signal corresponding to the error mode may be corrected based on the correlation signal.
It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態に係る磁場検出部100の構成例を示す。The structural example of the magnetic field detection part 100 which concerns on this embodiment is shown. 本実施形態に係る第1ホール素子対110が第1方向の磁界を検出する場合の一例を示す。An example in which the first Hall element pair 110 according to the present embodiment detects a magnetic field in the first direction is shown. 本実施形態に係る信号検出装置200の構成例を示す。The structural example of the signal detection apparatus 200 which concerns on this embodiment is shown. 本実施形態に係る誤差補正装置300の構成例を、磁場検出部100および信号検出装置200と共に示す。The structural example of the error correction apparatus 300 which concerns on this embodiment is shown with the magnetic field detection part 100 and the signal detection apparatus 200. FIG. 本実施形態に係る誤差補正装置300の動作フローを示す。The operation | movement flow of the error correction apparatus 300 which concerns on this embodiment is shown. 本実施形態に係る相関信号算出部330が有する計算回路の一例を示す。An example of the calculation circuit which the correlation signal calculation part 330 which concerns on this embodiment has is shown. ホール起電力信号(V,V)の一例を示す。An example of Hall electromotive force signals (V X , V Y ) is shown. ホール起電力信号(V,V)の振幅の一例を示す。An example of the amplitude of the Hall electromotive force signal (V X , V Y ) is shown. ホール起電力信号(V,V)の角度非線形性誤差の一例を示す。An example of the angle nonlinearity error of the Hall electromotive force signal (V X , V Y ) is shown. ホール起電力信号(V,V)の一例を示す。An example of Hall electromotive force signals (V X , V Y ) is shown. ホール起電力信号(V,V)の振幅の一例を示す。An example of the amplitude of the Hall electromotive force signal (V X , V Y ) is shown. ホール起電力信号(V,V)の角度非線形性誤差の一例を示す。An example of the angle nonlinearity error of the Hall electromotive force signal (V X , V Y ) is shown. 本実施形態に係る誤差補正装置300の変形例を示す。The modification of the error correction apparatus 300 which concerns on this embodiment is shown. 本実施形態に係る回転角センサモジュール400の一例を示す。An example of the rotation angle sensor module 400 concerning this embodiment is shown. 本実施形態に係る回転角センサモジュール400に中心軸ずれが生じた組み立て誤差の一例を示す。An example of an assembly error in which a center axis shift has occurred in the rotation angle sensor module 400 according to the present embodiment is shown. 本実施形態に係る回転角センサモジュール400に偏芯が生じた組み立て誤差の一例を示す。An example of an assembly error in which eccentricity has occurred in the rotation angle sensor module 400 according to the present embodiment is shown. 本実施形態に係る回転角センサモジュール400に回転磁石410の傾きが生じた組み立て誤差の一例を示す。An example of an assembly error in which the rotation magnet 410 is inclined in the rotation angle sensor module 400 according to the present embodiment is shown. 理想的な回転角センサモジュール400の磁場検出部100に、8方向の磁場をそれぞれ印加した例を示す。The example which applied the magnetic field of 8 directions to the magnetic field detection part 100 of the ideal rotation angle sensor module 400 is shown, respectively. 中心軸ずれの組み立て誤差を有する回転角センサモジュール400の磁場検出部100に、8方向の磁場をそれぞれ印加した例を示す。The example which applied the magnetic field of 8 directions to the magnetic field detection part 100 of the rotation angle sensor module 400 which has an assembly error of a center axis | shaft deviation is shown, respectively. 回転磁石410と、磁場検出部100との間に、中心軸ずれが発生した場合の磁場検出信号(V(θ),V(θ))の一例を示す。An example of magnetic field detection signals (V X (θ), V Y (θ)) when a center axis shift occurs between the rotating magnet 410 and the magnetic field detection unit 100 is shown. 回転磁石410と、磁場検出部100との間に、中心軸ずれが発生した場合の振幅信号A(θ)の一例を示す。An example of an amplitude signal A (θ) when a center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100 is shown. 回転磁石410と、磁場検出部100との間に、中心軸ずれが発生した場合の角度非線形性誤差(φ(θ)-θ)の一例を示す。An example of an angle nonlinearity error (φ (θ) −θ) when a center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100 is shown. 中心軸ずれが発生した場合の角度非線形性誤差を補正した結果の一例を示す。An example of the result of correcting the angle nonlinearity error when the center axis deviation occurs is shown. 本実施形態に係る誤差補正装置300として機能するコンピュータ1900のハードウェア構成の一例を示す。An example of a hardware configuration of a computer 1900 functioning as the error correction apparatus 300 according to the present embodiment is shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、本実施形態に係る磁場検出部100の構成例を示す。磁場検出部100は、例えば、当該センサの近傍において回転軸を中心に回転する回転磁石の回転角を非接触で検出する。磁場検出部100は、基板10と、第1ホール素子対110と、第2ホール素子対120と、磁気収束板130と、を備える。 FIG. 1 shows a configuration example of a magnetic field detection unit 100 according to the present embodiment. For example, the magnetic field detection unit 100 detects the rotation angle of a rotating magnet that rotates around the rotation axis in the vicinity of the sensor in a non-contact manner. The magnetic field detection unit 100 includes a substrate 10, a first Hall element pair 110, a second Hall element pair 120, and a magnetic convergence plate 130.
 基板10は、シリコン等の半導体によって形成され、半導体回路および半導体素子等を含む。基板10は、ICチップであってよく、この場合、端子を備え、外部の基板、回路、および配線等と電気的に接続される。図1において、基板10の一方の表面を、X軸およびY軸を有するXY面とし、XY面に垂直な軸をZ軸とした。即ち、X、Y、Z軸は互いに直交する座標系である。 The substrate 10 is formed of a semiconductor such as silicon and includes a semiconductor circuit and a semiconductor element. The substrate 10 may be an IC chip. In this case, the substrate 10 includes a terminal and is electrically connected to an external substrate, circuit, wiring, and the like. In FIG. 1, one surface of the substrate 10 is an XY plane having an X axis and a Y axis, and an axis perpendicular to the XY plane is a Z axis. That is, the X, Y, and Z axes are coordinate systems orthogonal to each other.
 第1ホール素子対110は、基板10上に形成され、当該基板10に形成された回路等と接続される。第1ホール素子対110は、一例として、第1方向に配置される。ここで、本実施形態における第1方向は、図1におけるX軸方向(第1の軸)である。第1ホール素子対110は、第1ホール素子112と第2ホール素子114とを有し、X軸に平行に(例えばX軸上に)当該2つのホール素子が配置される。 The first Hall element pair 110 is formed on the substrate 10 and connected to a circuit or the like formed on the substrate 10. As an example, the first Hall element pair 110 is arranged in the first direction. Here, the first direction in the present embodiment is the X-axis direction (first axis) in FIG. The first Hall element pair 110 includes a first Hall element 112 and a second Hall element 114, and the two Hall elements are arranged in parallel to the X axis (for example, on the X axis).
 第1ホール素子112および第2ホール素子114は、一例として、X軸方向に電流を流すとZ軸方向に入力する磁場に応じたY軸方向の起電力(ホール効果)を発生させる素子である。第1ホール素子112および第2ホール素子114は、半導体等で形成されてよい。 As an example, the first Hall element 112 and the second Hall element 114 are elements that generate an electromotive force (Hall effect) in the Y-axis direction corresponding to a magnetic field input in the Z-axis direction when a current flows in the X-axis direction. . The first hall element 112 and the second hall element 114 may be formed of a semiconductor or the like.
 第1ホール素子112および第2ホール素子114は、一例として、基板10上において、Y軸に対して線対称に配置される。これに代えて、第1ホール素子112および第2ホール素子114は、基板10上において、原点に対して点対称に配置されてもよい。本実施例において、第1ホール素子112および第2ホール素子114がY軸に対して線対称に配置される例を説明する。 As an example, the first Hall element 112 and the second Hall element 114 are arranged in line symmetry with respect to the Y axis on the substrate 10. Alternatively, the first Hall element 112 and the second Hall element 114 may be arranged point-symmetrically with respect to the origin on the substrate 10. In the present embodiment, an example in which the first Hall element 112 and the second Hall element 114 are arranged symmetrically with respect to the Y axis will be described.
 第2ホール素子対120は、第1ホール素子対110と同様に、基板10上に形成され、当該基板10に形成された回路等と接続される。第2ホール素子対120は、一例として、第2方向に配置される。ここで、本実施形態における第2方向は、図1におけるY軸方向(第2の軸)である。また、第3方向は、図1におけるZ軸方向(第3の軸)である。第2ホール素子対120は、第3ホール素子122と第4ホール素子124とを有し、Y軸に平行に(例えばY軸上に)当該2つのホール素子が配置される。 As with the first Hall element pair 110, the second Hall element pair 120 is formed on the substrate 10 and connected to a circuit or the like formed on the substrate 10. For example, the second Hall element pair 120 is arranged in the second direction. Here, the second direction in the present embodiment is the Y-axis direction (second axis) in FIG. The third direction is the Z-axis direction (third axis) in FIG. The second Hall element pair 120 includes a third Hall element 122 and a fourth Hall element 124, and the two Hall elements are arranged in parallel to the Y axis (for example, on the Y axis).
 第3ホール素子122および第4ホール素子124は、一例として、Y軸方向に電流を流すとZ軸方向に入力する磁場に応じたX軸方向の起電力(ホール効果)を生じさせる素子である。第3ホール素子122および第4ホール素子124は、一例として、基板10上において、X軸に対して線対称に配置される。これに代えて、第3ホール素子122および第4ホール素子124は、基板10上において、原点に対して点対称に配置されてもよい。本実施例において、第3ホール素子122および第4ホール素子124がX軸に対して線対称に配置される例を説明する。 As an example, the third Hall element 122 and the fourth Hall element 124 are elements that generate an electromotive force (Hall effect) in the X-axis direction corresponding to a magnetic field input in the Z-axis direction when a current flows in the Y-axis direction. . As an example, the third Hall element 122 and the fourth Hall element 124 are arranged symmetrically with respect to the X axis on the substrate 10. Alternatively, the third Hall element 122 and the fourth Hall element 124 may be arranged point-symmetrically with respect to the origin on the substrate 10. In the present embodiment, an example in which the third Hall element 122 and the fourth Hall element 124 are arranged symmetrically with respect to the X axis will be described.
 以上の第1ホール素子対110および第2ホール素子対120は、オフセット出力をキャンセルすべく、X軸方向の通電およびY軸方向の通電をそれぞれ交互に実行されてもよい。このようなオフセットのキャンセル方法は、非特許文献5に記載されているように、Spinning Current法として知られている。 The first Hall element pair 110 and the second Hall element pair 120 described above may be alternately energized in the X-axis direction and in the Y-axis direction in order to cancel the offset output. Such an offset canceling method is known as the Spinning Current method as described in Non-Patent Document 5.
 磁気収束板130は、第1ホール素子対110および第2ホール素子対120の上方に配置され、磁場検出部100に入力する磁場を曲げる。磁気収束板130は、磁性材料等で形成され、例えば、X軸方向および/またはY軸方向の磁場を、Z軸方向の成分が発生するように曲げ、Z軸方向に感度を有する第1ホール素子対110および第2ホール素子対120に入力させる。磁気収束板130は、基板10の上面に形成されてよく、これに代えて、基板10の上方に、絶縁層等を介して形成されてもよい。 The magnetic convergence plate 130 is disposed above the first Hall element pair 110 and the second Hall element pair 120 and bends the magnetic field input to the magnetic field detection unit 100. The magnetic converging plate 130 is formed of a magnetic material or the like, and for example, a first hole having a sensitivity in the Z-axis direction by bending a magnetic field in the X-axis direction and / or the Y-axis direction so as to generate a component in the Z-axis direction. Input is made to the element pair 110 and the second Hall element pair 120. The magnetic flux concentrating plate 130 may be formed on the upper surface of the substrate 10, or alternatively, may be formed above the substrate 10 via an insulating layer or the like.
 以上の磁場検出部100は、第1ホール素子対110および第2ホール素子対120からの出力信号(ホール起電力)を外部に出力する。ここで、第1ホール素子対110および第2ホール素子対120からの出力信号は、回転磁石の回転角に応じて出力される。当該出力信号について、図2を用いて説明する。 The magnetic field detection unit 100 described above outputs output signals (Hall electromotive force) from the first Hall element pair 110 and the second Hall element pair 120 to the outside. Here, output signals from the first Hall element pair 110 and the second Hall element pair 120 are output according to the rotation angle of the rotating magnet. The output signal will be described with reference to FIG.
 図2は、本実施形態に係る第1ホール素子対110が第1方向の磁界を検出する場合の一例を示す。図2において、水平方向(紙面の横方向)をX軸、垂直方向(紙面の縦方向)をZ軸方向とする。 FIG. 2 shows an example when the first Hall element pair 110 according to the present embodiment detects a magnetic field in the first direction. In FIG. 2, the horizontal direction (the horizontal direction of the paper surface) is the X axis, and the vertical direction (the vertical direction of the paper surface) is the Z axis direction.
 ここで、磁場検出部100に入力する磁場ベクトルH(H,H,H)が、磁気収束板130で曲げられ、第1ホール素子112に入力する磁束密度ベクトルB(Hall,X1)は、第1ホール素子112の位置における透磁率Mu(Hall,X1)を用いて、次式で示される。ここで、透磁率Mu(Hall,X1)は、2階のテンソル(3行3列の行列)となる。
Figure JPOXMLDOC01-appb-M000001
Here, the magnetic field vector H (H X , H Y , H Z ) input to the magnetic field detection unit 100 is bent by the magnetic convergence plate 130 and input to the first Hall element 112, the magnetic flux density vector B (Hall, X 1). Is expressed by the following equation using the magnetic permeability Mu (Hall, X1) at the position of the first Hall element 112. Here, the magnetic permeability Mu (Hall, X1) is a second-order tensor (matrix with 3 rows and 3 columns).
Figure JPOXMLDOC01-appb-M000001
 同様に、第2ホール素子114に入力する磁束密度ベクトルB(Hall,X2)は、第2ホール素子114の位置における透磁率Mu(Hall,X2)を用いて、次式で示される。
Figure JPOXMLDOC01-appb-M000002
Similarly, the magnetic flux density vector B (Hall, X2) input to the second Hall element 114 is expressed by the following equation using the magnetic permeability Mu (Hall, X2) at the position of the second Hall element 114.
Figure JPOXMLDOC01-appb-M000002
 第1ホール素子112および第2ホール素子114は、Z軸方向の磁場を検出する。したがって、第1ホール素子112および第2ホール素子114は、次式で示すように、磁気収束板130で曲げられたZ軸方向の磁束密度Bを検出することになる。
Figure JPOXMLDOC01-appb-M000003
The first hall element 112 and the second hall element 114 detect a magnetic field in the Z-axis direction. Therefore, the first Hall element 112 and the second Hall element 114, as shown in the following equation, thereby to detect the magnetic flux density B Z of the Z-axis direction that is bent by the magnetic flux concentrator 130.
Figure JPOXMLDOC01-appb-M000003
 ここで、図2に示すように、磁場検出部100の上方に+X軸方向の磁場ベクトルHin(H,0,0)が入力する例を説明する。磁気収束板130は、一例として、図中の磁束密度ベクトルBのように、入力した磁場を曲げ、第1ホール素子112に+Z軸方向の磁束を入力させる。 Here, as shown in FIG. 2, an example in which a magnetic field vector H in (H X , 0, 0) in the + X axis direction is input above the magnetic field detection unit 100 will be described. As an example, the magnetic converging plate 130 bends the input magnetic field as shown by a magnetic flux density vector B in the drawing, and causes the first Hall element 112 to input a magnetic flux in the + Z-axis direction.
 また、磁性材料等で形成された磁気収束板130の透磁率は、空気の透磁率と比較して値が高くなるので、空気中の磁束密度と比較して、当該磁気収束板130内の磁束密度は高くなる。例えば、第1ホール素子112の位置におけるZ軸方向の磁束密度は、次式で示すように、入力磁場Hに空気の透磁率μを乗じて得られる磁束密度に比較して、略1.4倍程度高くなる。
Figure JPOXMLDOC01-appb-M000004
Further, since the magnetic permeability of the magnetic flux concentrating plate 130 made of a magnetic material or the like is higher than the magnetic permeability of air, the magnetic flux in the magnetic converging plate 130 is compared with the magnetic flux density in the air. Density increases. For example, the magnetic flux density in the Z-axis direction at the position of the first Hall element 112 is approximately 1. as compared with the magnetic flux density obtained by multiplying the input magnetic field HZ by the air permeability μ, as shown by the following equation. About 4 times higher.
Figure JPOXMLDOC01-appb-M000004
 同様に、磁気収束板130は、一例として、第2ホール素子114に-Z軸方向の磁束を発生させ、第2ホール素子114の位置におけるZ軸方向の磁束密度は、次式で示される。
Figure JPOXMLDOC01-appb-M000005
Similarly, as an example, the magnetic flux concentrating plate 130 causes the second Hall element 114 to generate a magnetic flux in the −Z-axis direction, and the magnetic flux density in the Z-axis direction at the position of the second Hall element 114 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000005
 第1ホール素子112および第2ホール素子114は、このようにZ軸方向に入力する磁束密度に応じて、ホール起電力を発生させる。ここで、第1ホール素子112および第2ホール素子114が略同一形状、略同一材料で形成される場合、それぞれの磁気感度は略等しくなる。また、第1ホール素子112および第2ホール素子114に入力する磁束密度は互いに逆向きとなるので、発生するそれぞれのホール起電力は正負の符号が異なる。 The first Hall element 112 and the second Hall element 114 generate Hall electromotive force according to the magnetic flux density input in the Z-axis direction as described above. Here, when the 1st Hall element 112 and the 2nd Hall element 114 are formed with substantially the same shape and the substantially same material, each magnetic sensitivity becomes substantially equal. Further, since the magnetic flux densities input to the first Hall element 112 and the second Hall element 114 are opposite to each other, the generated hall electromotive forces have different signs.
 そこで、当該磁気感度をSとすると、第1ホール素子対110のホール起電力信号Vを、第1ホール素子112のホール起電力Vsig(Hall,X1)および第2ホール素子114のホール起電力Vsig(Hall,X2)の差分である次式のように定めることができる。
Figure JPOXMLDOC01-appb-M000006
Therefore, when the magnetic sensitivity is S, the Hall electromotive force signal V X of the first Hall element pair 110 is converted into the Hall electromotive force V sig (Hall, X1) of the first Hall element 112 and the Hall electromotive force of the second Hall element 114. It can be defined as the following equation, which is the difference between the power V sig (Hall, X2).
Figure JPOXMLDOC01-appb-M000006
 このように、磁場検出部100は、ホール起電力信号Vを算出することで、X軸方向に入力される磁場ベクトルHin(H,0,0)に応じたホール起電力を出力することができる。また、ホール起電力信号Vを、各ホール素子のホール起電力の差分としたので、第1ホール素子112および第2ホール素子114に同一方向(+Z軸方向または-Z軸方向)で、かつ、絶対値が略同一の磁場によって生じるホール起電力は、相殺されて略零となる。 Thus, the magnetic field detection unit 100 outputs the Hall electromotive force according to the magnetic field vector H in (H X , 0, 0) input in the X-axis direction by calculating the Hall electromotive force signal V X. be able to. Further, since the Hall electromotive force signal V X is the difference between the Hall electromotive forces of the Hall elements, the first Hall element 112 and the second Hall element 114 are in the same direction (+ Z-axis direction or −Z-axis direction), and The Hall electromotive force generated by the magnetic field having substantially the same absolute value is canceled out and becomes substantially zero.
 即ち、磁場検出部100は、ホール起電力信号Vを算出することで、XZ面に平行な方向の磁場ベクトルHXZ(H,0,H)が入力しても、X軸方向の磁場ベクトルの成分H(H,0,0)に応じたホール起電力を算出することができる。また、第1ホール素子112および第2ホール素子114は、Y軸方向の磁場には感度がなく、また、磁気収束板130は、理想的にはY軸方向の磁場をZ軸方向には変換しない。したがって、磁場検出部100は、ホール起電力信号Vを算出することで、直交する3つの各成分が零ではない(任意の方向の)磁場ベクトルHXYZ(H,H,H)が入力しても、X軸方向の磁場ベクトルの成分H(H,0,0)に応じたホール起電力を検出することができる。 That is, the magnetic field detection unit 100 calculates the Hall electromotive force signal V X , so that the magnetic field vector H XZ (H X , 0, H Z ) in the direction parallel to the XZ plane is input. The Hall electromotive force corresponding to the magnetic field vector component H X (H X , 0, 0) can be calculated. The first Hall element 112 and the second Hall element 114 are insensitive to the magnetic field in the Y-axis direction, and the magnetic focusing plate 130 ideally converts the magnetic field in the Y-axis direction into the Z-axis direction. do not do. Therefore, the magnetic field detection unit 100 calculates the Hall electromotive force signal V X so that the three orthogonal components are not zero (arbitrary direction) magnetic field vector H XYZ (H X , H Y , H Z ). Is input, it is possible to detect the Hall electromotive force according to the component H X (H X , 0, 0) of the magnetic field vector in the X-axis direction.
 同様に、Y軸方向に配列した第2ホール素子対120は、Y軸方向の磁場を算出することができる。即ち、磁場検出部100は、第2ホール素子対120を用いて、次式のホール起電力信号Vを算出することで、磁場ベクトルHXYZ(H,H,H)が入力しても、Y軸方向の磁場ベクトルの成分H(0,H,0)に応じたホール起電力を算出することができる。
Figure JPOXMLDOC01-appb-M000007
Similarly, the second Hall element pair 120 arranged in the Y-axis direction can calculate the magnetic field in the Y-axis direction. That is, the magnetic field detection unit 100 uses the second Hall element pair 120 to calculate a Hall electromotive force signal V Y of the following expression, thereby inputting a magnetic field vector H XYZ (H X , H Y , H Z ). However, it is possible to calculate the Hall electromotive force according to the component H Y (0, H Y , 0) of the magnetic field vector in the Y-axis direction.
Figure JPOXMLDOC01-appb-M000007
 また、同様に、第1ホール素子112および第2ホール素子114は、Z軸方向に入力する磁束密度に応じて、ホール起電力が発生する。そして、第1ホール素子対110のホール起電力信号Vを、第1ホール素子112のホール起電力Vsig(Hall,X1)および第2ホール素子114のホール起電力Vsig(Hall,X2)の和として算出してもよい。本実施形態の磁場検出部100は、ホール起電力信号VおよびVを出力する例を説明し、ホール起電力信号Vについては省略するが、磁場検出部100は、当該ホール起電力信号Vについても、ホール起電力信号VおよびVと同様に出力してもよい。 Similarly, the first Hall element 112 and the second Hall element 114 generate Hall electromotive force according to the magnetic flux density input in the Z-axis direction. Then, the Hall electromotive force signal V Z of the first hall element pair 110, Hall electromotive force V sig of the first Hall element 112 (Hall, X1) and Hall electromotive force V sig of the second Hall element 114 (Hall, X2) May be calculated as the sum of. The magnetic field detection unit 100 of the present embodiment will describe an example in which the Hall electromotive force signals V X and V Y are output, and the Hall electromotive force signal V Z will be omitted. for even V Z, it may be output like the Hall electromotive force signal V X and V Y.
 以上のように、磁場検出部100は、第1ホール素子対110および第2ホール素子対120の出力信号に基づき、入力する磁場ベクトルHXYZ(H,H,H)のX軸成分H(H,0,0)およびY軸成分H(0,H,0)に対応するホール起電力信号VおよびVを出力する。即ち、磁場検出部100は、XY面と水平な方向の磁場に対応するホール起電力を、X軸成分およびY軸成分に分解して算出することができる。 As described above, the magnetic field detection unit 100 is based on the output signals of the first Hall element pair 110 and the second Hall element pair 120, and the X-axis component of the input magnetic field vector H XYZ (H X , H Y , H Z ). Hall electromotive force signals V X and V Y corresponding to H X (H X , 0,0) and Y axis component H Y (0, H Y , 0) are output. That is, the magnetic field detection unit 100 can calculate the Hall electromotive force corresponding to the magnetic field in the direction parallel to the XY plane by decomposing the Hall electromotive force into an X-axis component and a Y-axis component.
 磁場検出部100は、例えば、回転軸をZ軸と平行にした回転磁石の、XY面と平行な面における回転による磁場を検出して、回転角に応じたホール起電力信号を出力することができる。ここで、磁場検出部100は、一例として、次式で示されるホール起電力信号(V,V)を出力する。ここで、AおよびAは各信号の振幅値、θは回転磁石の回転角、αは信号間の非直交性誤差、Vos_xおよびVos_yは各信号のオフセットである。
 (数8)
 V(θ)=A・cos(θ)+Vos_x
 V(θ)=A・sin(θ+α)+Vos_y
For example, the magnetic field detection unit 100 can detect a magnetic field caused by rotation of a rotating magnet whose rotation axis is parallel to the Z axis in a plane parallel to the XY plane, and output a Hall electromotive force signal corresponding to the rotation angle. it can. Here, as an example, the magnetic field detection unit 100 outputs a Hall electromotive force signal (V X , V Y ) represented by the following equation. Here, A x and A y are amplitude values of each signal, θ is a rotation angle of the rotating magnet, α is a non-orthogonality error between signals, and V os_x and V os_y are offsets of each signal.
(Equation 8)
V X (θ) = A x · cos (θ) + V osx
V Y (θ) = A y · sin (θ + α) + V os_y
 以上のホール起電力信号(V,V)を用いて、回転磁石の回転角θに対応する角度信号φ(θ)は、一例として、次式により算出することができる。
 (数9)
 φ(θ)=tan-1{V(θ)/V(θ)}
Using the Hall electromotive force signals (V X , V Y ) as described above, an angle signal φ (θ) corresponding to the rotation angle θ of the rotating magnet can be calculated by the following equation as an example.
(Equation 9)
φ (θ) = tan −1 {V Y (θ) / V X (θ)}
 ここで、磁場検出部100は、XY面と平行な面における磁場を検出することを説明したが、他の面における磁場の変化を検出してもよい。磁場検出部100は、Z軸方向の磁場を検出することもできるので、例えば、回転軸をY軸と平行にした回転磁石の、XZ面と平行な面における回転による磁場を検出して、回転角θに応じたホール起電力信号を出力することができる。磁場検出部100は、同様に、回転軸をX軸と平行にした回転磁石の、YZ面と平行な面における回転による磁場を検出して、回転角θに応じたホール起電力信号を出力することもできる。 Here, although it has been described that the magnetic field detection unit 100 detects a magnetic field in a plane parallel to the XY plane, a change in the magnetic field in another plane may be detected. The magnetic field detection unit 100 can also detect a magnetic field in the Z-axis direction. For example, the magnetic field detection unit 100 detects a magnetic field caused by rotation of a rotating magnet whose rotation axis is parallel to the Y-axis in a plane parallel to the XZ plane. A Hall electromotive force signal corresponding to the angle θ can be output. Similarly, the magnetic field detection unit 100 detects a magnetic field caused by rotation of a rotating magnet whose rotation axis is parallel to the X axis in a plane parallel to the YZ plane, and outputs a Hall electromotive force signal corresponding to the rotation angle θ. You can also
 また、磁場検出部100は、XYZ軸の三次元の磁場を検出することができるので、XYZ軸で表現できる面における回転による磁場を検出して、回転角θに応じたホール起電力信号を出力することができる。本実施形態の磁場検出部100は、(数8)式で示されるホール起電力信号を出力する例を説明する。 Further, since the magnetic field detection unit 100 can detect a three-dimensional magnetic field of the XYZ axes, it detects a magnetic field due to rotation in a plane that can be expressed by the XYZ axes, and outputs a Hall electromotive force signal corresponding to the rotation angle θ. can do. An example in which the magnetic field detection unit 100 according to the present embodiment outputs a Hall electromotive force signal expressed by Equation (8) will be described.
 (数8)式において、例えば、Vos_xおよびVos_yが略零であり、αが略零であり、AがAに略等しい場合、即ち、理想的なホール起電力信号(V,V)が得られる場合、(数9)式の角度信号φ(θ)は回転角θと略一致する。しかしながら、振幅値の差分(A-A)、非直交性誤差α、およびオフセットVos_x、Vos_yが略零でない場合、φ(θ)およびθは一致せず、φ(θ)およびθの差異(φ(θ)-θ)が磁場検出部100の角度非線形性誤差となる。 In the equation (8), for example, when V os_x and V os_y are approximately zero, α is approximately zero, and A x is approximately equal to A y , that is, an ideal Hall electromotive force signal (V X , When V Y ) is obtained, the angle signal φ (θ) in the equation (9) substantially coincides with the rotation angle θ. However, when the amplitude value difference (A x −A y ), non-orthogonality error α, and offsets V os_x and V os_y are not substantially zero, φ (θ) and θ do not match, and φ (θ) and θ (Φ (θ) −θ) is an angle nonlinearity error of the magnetic field detection unit 100.
 図3は、本実施形態に係る信号検出装置200の構成例を示す。信号検出装置200は、角度誤差信号ε(=φ(θ)-θ)を低減させるように閉ループ処理を実行して、磁場検出部100の角度信号φ(θ)を検出する。即ち、磁場検出部100および信号検出装置200は、回転磁石の回転による磁場を検出して回転角を出力する回転角センサとして機能する。信号検出装置200は、第1ホール素子対110および第2ホール素子対120からホール起電力信号(V,V)を受け取り、ホール起電力信号(V,V)に応じた角度信号φ(θ)を出力する。また、信号検出装置200は、ホール起電力信号(V,V)に応じた振幅信号A(φ)を出力する。 FIG. 3 shows a configuration example of the signal detection apparatus 200 according to the present embodiment. The signal detection device 200 detects the angle signal φ (θ) of the magnetic field detection unit 100 by executing a closed loop process so as to reduce the angle error signal ε (= φ (θ) −θ). That is, the magnetic field detection unit 100 and the signal detection device 200 function as a rotation angle sensor that detects a magnetic field generated by rotation of a rotating magnet and outputs a rotation angle. Signal detection apparatus 200 includes a first pair of Hall effect devices 110 and the second Hall electromotive force signal from the Hall element pair 120 (V X, V Y) receives the angle signal corresponding to the Hall electromotive force signal (V X, V Y) Output φ (θ). Further, the signal detection device 200 outputs an amplitude signal A (φ) corresponding to the Hall electromotive force signal (V X , V Y ).
 信号検出装置200は、増幅部210、増幅部212、AD変換部220、AD変換部222、乗算部230、乗算部232、積算部240、積算部242、積算部244、位相補償部250、および記憶部260を備える。増幅部210は、第1ホール素子対110に接続され、ホール起電力信号Vを受け取り、予め定められた増幅度で増幅する。増幅部210は、増幅したホール起電力信号VをAD変換部220に供給する。AD変換部220は、増幅部210に接続され、受け取ったホール起電力信号Vをデジタル信号に変換する。AD変換部220は、変換したデジタル信号Vを乗算部230に供給する。 The signal detection apparatus 200 includes an amplification unit 210, an amplification unit 212, an AD conversion unit 220, an AD conversion unit 222, a multiplication unit 230, a multiplication unit 232, an accumulation unit 240, an accumulation unit 242, an accumulation unit 244, a phase compensation unit 250, and A storage unit 260 is provided. Amplifying unit 210 is connected to the first Hall element pair 110 receives the Hall electromotive force signal V X, amplified by a predetermined amplification degree. The amplification unit 210 supplies the amplified Hall electromotive force signal V X to the AD conversion unit 220. AD conversion unit 220 is connected to the amplifying section 210, converts the Hall electromotive force signal V X received into a digital signal. The AD conversion unit 220 supplies the converted digital signal V X to the multiplication unit 230.
 同様に、増幅部212は、第2ホール素子対120に接続され、ホール起電力信号Vを受け取り、予め定められた増幅度で増幅する。増幅部212は、増幅したホール起電力信号VをAD変換部222に供給する。AD変換部222は、増幅部212に接続され、受け取ったホール起電力信号Vをデジタル信号に変換する。AD変換部222は、変換したデジタル信号Vを乗算部230に供給する。 Similarly, the amplifier 212 is connected to a second pair of Hall effect devices 120, receives Hall electromotive force signal V Y, amplified by a predetermined amplification degree. The amplification unit 212 supplies the amplified Hall electromotive force signal VY to the AD conversion unit 222. The AD conversion unit 222 is connected to the amplification unit 212 and converts the received Hall electromotive force signal VY into a digital signal. The AD conversion unit 222 supplies the converted digital signal V Y to the multiplication unit 230.
 乗算部230は、デジタル信号Vに正弦波信号sin(φ)を乗算する。また、乗算部230は、デジタル信号Vに余弦波信号cos(φ)を乗算する。乗算部230は、次式で示すように、2つの乗算結果の差分を角度誤差信号εとして出力する。ここで、増幅部210および増幅部212の増幅度を1とした。
 (数10)
 ε=-sin(φ)・V+cos(φ)・V
Multiplying unit 230 multiplies the sine wave signal sin (phi) into a digital signal V X. Further, the multiplier 230 multiplies the digital signal VY by the cosine wave signal cos (φ). The multiplier 230 outputs the difference between the two multiplication results as an angle error signal ε, as shown by the following equation. Here, the amplification degree of the amplification unit 210 and the amplification unit 212 is set to 1.
(Equation 10)
ε = -sin (φ) · V X + cos (φ) · V Y
 ホール起電力信号(V,V)が理想的な信号の場合、角度誤差信号εは次のように表される。ここで、振幅信号A=A=Aとした。
 (数11)
 ε=-A・sin(φ)・cos(θ)+A・cos(φ)・sin(θ)
 =A・sin(θ-φ)
When the Hall electromotive force signals (V X , V Y ) are ideal signals, the angle error signal ε is expressed as follows. Here, the amplitude signal A = A x = A y .
(Equation 11)
ε = −A · sin (φ) · cos (θ) + A · cos (φ) · sin (θ)
= A · sin (θ-φ)
 乗算部230は、算出した角度誤差信号εを積算部240に供給する。積算部240は、乗算部230に接続され、受け取った角度誤差信号εを積算し、積算した角度誤差信号εを位相補償部250に供給する。 The multiplication unit 230 supplies the calculated angle error signal ε to the integration unit 240. The integrating unit 240 is connected to the multiplying unit 230, integrates the received angle error signal ε, and supplies the integrated angle error signal ε to the phase compensating unit 250.
 位相補償部250は、積算部240に接続され、閉ループ回路の位相安定性を確保する様に位相補償を行う。図3に示す信号検出装置200は、一例として、閉ループ回路のなかに2つの積算部(時間積分)を備えたことを特徴とする、所謂、2型サーボ回路であることから、位相補償部250の出力は角度φの時間微分である角速度信号となる。位相補償部250は、角速度信号を積算部242に供給する。 The phase compensation unit 250 is connected to the integration unit 240 and performs phase compensation so as to ensure the phase stability of the closed loop circuit. As an example, the signal detection device 200 shown in FIG. 3 is a so-called type 2 servo circuit including two integration units (time integration) in a closed loop circuit. Is an angular velocity signal that is a time derivative of the angle φ. The phase compensation unit 250 supplies the angular velocity signal to the integrating unit 242.
 積算部242は、位相補償部250に接続され、受け取った角速度信号を積算して角度信号φを生成する。積算部242は、一例として、DCO(Digitally Controlled Oscillator)回路とDCOの出力信号に対してアップカウント/ダウンカウント動作を行うアップダウンカウンターから構成される回路であってもよい。 The accumulator 242 is connected to the phase compensator 250 and accumulates the received angular velocity signals to generate an angle signal φ. For example, the integration unit 242 may be a circuit configured by a DCO (Digitally Controlled Oscillator) circuit and an up-down counter that performs an up-count / down-count operation on an output signal of the DCO.
 記憶部260は、複数の角度信号φに対応する正弦波信号sin(φ)および余弦波信号cos(φ)を予めそれぞれ記憶する。記憶部260は、積算部242に接続され、受け取った角度信号φに対応する正弦波信号sin(φ)および余弦波信号cos(φ)を、乗算部230に供給する。即ち、記憶部260は、取得した角度信号φに応じて、対応する正弦波信号sin(φ)および余弦波信号cos(φ)を乗算部230にフィードバックする。 The storage unit 260 previously stores a sine wave signal sin (φ) and a cosine wave signal cos (φ) corresponding to a plurality of angle signals φ. The storage unit 260 is connected to the integration unit 242 and supplies the multiplication unit 230 with a sine wave signal sin (φ) and a cosine wave signal cos (φ) corresponding to the received angle signal φ. That is, the storage unit 260 feeds back the corresponding sine wave signal sin (φ) and cosine wave signal cos (φ) to the multiplication unit 230 in accordance with the acquired angle signal φ.
 以上の本実施形態の信号検出装置200は、乗算部230から位相補償部250および記憶部260を経たフィードバックループにより、θにより近づけた角度信号φを積算部242から出力させる。また、信号検出装置200は、角度信号φに基づいて、角度誤差信号εの振幅信号A(φ)を出力する。 The signal detection apparatus 200 of the present embodiment described above causes the integrating unit 242 to output the angle signal φ that is closer to θ by a feedback loop that has passed from the multiplying unit 230 through the phase compensating unit 250 and the storage unit 260. Further, the signal detection device 200 outputs an amplitude signal A (φ) of the angle error signal ε based on the angle signal φ.
 この場合、AD変換部220は、ホール起電力信号Vから変換したデジタル信号Vを、乗算部230に供給すると共に、乗算部232にも供給する。同様に、AD変換部222は、ホール起電力信号VYから変換したデジタル信号Vを、乗算部230に供給すると共に、乗算部232にも供給する。 In this case, the AD conversion unit 220 supplies the digital signal V X converted from the Hall electromotive force signal V X to the multiplication unit 230 and also to the multiplication unit 232. Similarly, the AD conversion unit 222 supplies the digital signal V Y converted from the Hall electromotive force signal V Y to the multiplication unit 230 and also to the multiplication unit 232.
 乗算部232は、デジタル信号Vに余弦波信号cos(φ)を乗算する。また、乗算部232は、デジタル信号Vに正弦波信号sin(φ)を乗算する。乗算部232は、次式で示すように、2つの乗算結果の和を振幅信号A(φ)として積算部244を介して出力する。ここで、増幅部210および増幅部212の増幅度を1とした。
 (数12)
 A(φ)=cos(φ)・V+sin(φ)・V
Multiplying unit 232 multiplies the cosine wave signal cos (phi) into a digital signal V X. Further, the multiplier 232 multiplies the digital signal VY by the sine wave signal sin (φ). The multiplication unit 232 outputs the sum of two multiplication results as an amplitude signal A (φ) via the integration unit 244, as shown by the following equation. Here, the amplification degree of the amplification unit 210 and the amplification unit 212 is set to 1.
(Equation 12)
A (φ) = cos (φ) · V X + sin (φ) · V Y
 ホール起電力信号(V,V)が理想的な信号で、かつ、角度信号φがθに略等しい値となった場合、振幅信号A(φ)は次のように表される。ここで、振幅信号A=A=Aとした。
 (数13)
 A(φ)=[A ・{cos(φ)}+A ・{sin(φ)}1/2=A
When the Hall electromotive force signals (V X , V Y ) are ideal signals and the angle signal φ is substantially equal to θ, the amplitude signal A (φ) is expressed as follows. Here, the amplitude signal A = A x = A y .
(Equation 13)
A (φ) = [A x 2 · {cos (φ)} 2 + A y 2 · {sin (φ)} 2 ] 1/2 = A
 以上のように、本実施形態の信号検出装置200は、入力されるホール起電力信号(V,V)に応じて、角度信号φ(θ)および振幅信号A(φ)を出力する。そして、信号検出装置200は、ホール起電力信号(V,V)が理想的な信号の場合、回転磁石の回転角θと略同一な角度信号φ(θ)を出力することができる。また、信号検出装置200は、ホール起電力信号(V,V)が理想からずれている場合は、回転角θとは異なる角度信号φ(θ)を出力する(即ち、角度非線形性誤差(φ(θ)-θ)が非零となる)。 As described above, the signal detection device 200 according to the present embodiment outputs the angle signal φ (θ) and the amplitude signal A (φ) according to the input Hall electromotive force signals (V X , V Y ). When the Hall electromotive force signals (V X , V Y ) are ideal signals, the signal detection device 200 can output an angle signal φ (θ) that is substantially the same as the rotation angle θ of the rotating magnet. In addition, when the Hall electromotive force signal (V X , V Y ) is deviated from the ideal, the signal detection device 200 outputs an angle signal φ (θ) different from the rotation angle θ (that is, the angle nonlinearity error). (Φ (θ) −θ) becomes non-zero).
 このような角度非線形性誤差は、2つのホール起電力信号の振幅のミスマッチ(即ち、第1ホール素子対110および第2ホール素子対120の磁気検出感度のミスマッチ)、非直交性、およびオフセットに起因する。そして、これらの要因は温度依存性を有するので、当該角度非線形性誤差も周囲温度に応じて変動する。このような角度非線形性誤差の温度変動は、磁場検出部100の製造段階および出荷段階で計測することができるので、システム等に搭載する前に予め計測し、校正および補正等を実行することが好ましい。しかしながら、例えば、磁場検出部100が劣化すると、このような角度非線形性誤差の温度変動が当該磁場検出部100を搭載するシステム等に要求される誤差範囲を超えてしまう場合が生じ、システム全体の動作に影響を及ぼしてしまうことがある。 Such angular non-linearity errors are due to mismatch in amplitude of the two Hall electromotive force signals (ie, mismatch in magnetic detection sensitivity of the first Hall element pair 110 and the second Hall element pair 120), non-orthogonality, and offset. to cause. Since these factors have temperature dependence, the angle nonlinearity error also varies according to the ambient temperature. Such temperature fluctuations of the angle non-linearity error can be measured at the manufacturing stage and the shipping stage of the magnetic field detection unit 100, so that it can be measured in advance before being mounted on a system or the like, and calibration and correction can be performed. preferable. However, for example, when the magnetic field detection unit 100 is deteriorated, the temperature fluctuation of such an angle nonlinearity error may exceed an error range required for a system or the like on which the magnetic field detection unit 100 is mounted. It may affect the operation.
 このような磁場検出部100の劣化、および経時変化等は、製造段階および出荷段階においては予測することが困難なので、当該磁場検出部100がシステム等に搭載された状態であっても、角度非線形性誤差の変動を検出し、補正できることが望ましい。そこで、本実施形態の誤差補正装置は、磁場検出部100がシステム等に搭載された回転角センサの検出結果に基づき、角度非線形性誤差を検出し、当該磁場検出部100の検出信号であるホール起電力信号を補正する。 Such deterioration of the magnetic field detection unit 100, change with time, and the like are difficult to predict at the manufacturing stage and the shipping stage, and therefore, even when the magnetic field detection unit 100 is mounted on the system or the like, the angle nonlinearity It is desirable to be able to detect and correct variations in sex errors. Therefore, the error correction apparatus according to the present embodiment detects an angular non-linearity error based on the detection result of the rotation angle sensor in which the magnetic field detection unit 100 is mounted in a system or the like, and a hole that is a detection signal of the magnetic field detection unit 100. Correct the electromotive force signal.
 図4は、本実施形態に係る誤差補正装置300の構成例を、磁場検出部100および信号検出装置200と共に示す。磁場検出部100および信号検出装置200は、図1から図3で説明したのでここでは説明を省略する。誤差補正装置300は、ホール起電力信号(V,V)に応じて出力される角度信号φおよび振幅信号A(φ)に基づき、角度非線形性誤差を検出し、検出結果に応じてホール起電力信号(V,V)を補正する。誤差補正装置300は、取得部310と、記憶部320と、相関信号算出部330と、補正部340とを備える。 FIG. 4 shows a configuration example of the error correction apparatus 300 according to the present embodiment, together with the magnetic field detection unit 100 and the signal detection apparatus 200. The magnetic field detection unit 100 and the signal detection apparatus 200 have been described with reference to FIGS. The error correction device 300 detects an angle nonlinearity error based on the angle signal φ and the amplitude signal A (φ) output according to the Hall electromotive force signals (V X , V Y ), and Hall according to the detection result. The electromotive force signal (V X , V Y ) is corrected. The error correction apparatus 300 includes an acquisition unit 310, a storage unit 320, a correlation signal calculation unit 330, and a correction unit 340.
 取得部310は、第1の軸の磁場と第2の軸の磁場を検出する磁場検出部100の検出信号に応じて、回転体の角度信号φ(θ)および振幅信号A(φ)を出力する信号検出装置200の出力を取得する。例えば、取得部310は、信号検出装置200に接続され、角度信号φおよび振幅信号A(φ)を取得する。また、磁場検出部100が図3で説明した信号検出装置200等を備える場合、取得部310は、磁場検出部100から角度信号φおよび振幅信号A(φ)を取得してよい。ここで、取得部310は、非接触回転角センサの出力を取得してよい。 The acquisition unit 310 outputs an angle signal φ (θ) and an amplitude signal A (φ) of the rotating body according to the detection signal of the magnetic field detection unit 100 that detects the magnetic field of the first axis and the magnetic field of the second axis. The output of the signal detection device 200 is acquired. For example, the acquisition unit 310 is connected to the signal detection device 200 and acquires the angle signal φ and the amplitude signal A (φ). When the magnetic field detection unit 100 includes the signal detection device 200 described with reference to FIG. 3, the acquisition unit 310 may acquire the angle signal φ and the amplitude signal A (φ) from the magnetic field detection unit 100. Here, the acquisition unit 310 may acquire the output of the non-contact rotation angle sensor.
 取得部310は、磁場検出部100または信号検出装置200等と、有線、無線またはネットワーク等で接続され、角度信号φおよび振幅信号A(φ)を取得してよい。また、取得部310は、記憶装置等に接続され、当該記憶装置等に記憶された回転角センサの出力を取得してもよい。取得部310は、取得した角度信号φおよび振幅信号A(φ)を相関信号算出部330に供給する。また、取得部310は、取得した角度信号φおよび振幅信号A(φ)を記憶部320に供給してもよい。 The acquisition unit 310 may be connected to the magnetic field detection unit 100, the signal detection device 200, or the like by wire, wireless, or a network, and may acquire the angle signal φ and the amplitude signal A (φ). The acquisition unit 310 may be connected to a storage device or the like, and may acquire an output of a rotation angle sensor stored in the storage device or the like. The acquisition unit 310 supplies the acquired angle signal φ and amplitude signal A (φ) to the correlation signal calculation unit 330. In addition, the acquisition unit 310 may supply the acquired angle signal φ and amplitude signal A (φ) to the storage unit 320.
 記憶部320は、磁場検出部100の誤差モードに対応する予め定められた周期関数を記憶する。記憶部320は、周期関数として、正弦関数および余弦関数を記憶する。周期関数については後述する。記憶部320は、誤差補正装置300が生成するデータ等を記憶してよい。また、記憶部320は、当該データ等を生成する過程において処理する中間データ等を記憶してもよい。また、記憶部320は、誤差補正装置300内の各部の要求に応じて、記憶したデータを要求元に供給してよい。 The storage unit 320 stores a predetermined periodic function corresponding to the error mode of the magnetic field detection unit 100. The storage unit 320 stores a sine function and a cosine function as a periodic function. The periodic function will be described later. The storage unit 320 may store data or the like generated by the error correction device 300. The storage unit 320 may store intermediate data to be processed in the process of generating the data. In addition, the storage unit 320 may supply the stored data to the request source in response to a request from each unit in the error correction apparatus 300.
 例えば、記憶部320は、取得部310に接続され、取得部310から角度信号φおよび振幅信号A(φ)を受け取る場合、当該角度信号φおよび振幅信号A(φ)を記憶する。そして、記憶部320は、相関信号算出部330の要求に応じて記憶した角度信号φおよび振幅信号A(φ)を当該相関信号算出部330に供給する。 For example, when the storage unit 320 is connected to the acquisition unit 310 and receives the angle signal φ and the amplitude signal A (φ) from the acquisition unit 310, the storage unit 320 stores the angle signal φ and the amplitude signal A (φ). Then, the storage unit 320 supplies the angle signal φ and the amplitude signal A (φ) stored in response to the request from the correlation signal calculation unit 330 to the correlation signal calculation unit 330.
 相関信号算出部330は、取得部310および記憶部320にそれぞれ接続され、磁場検出部100の誤差モードに対応する予め定められた周期関数と、振幅信号A(φ)に基づく被測定信号との相関信号を算出する。相関信号算出部330は、取得部310が取得した角度信号φの値を周期関数に適用し、適用した周期関数および振幅信号A(φ)を用いて相関信号を算出する。 Correlation signal calculation section 330 is connected to acquisition section 310 and storage section 320, respectively, and a predetermined periodic function corresponding to the error mode of magnetic field detection section 100 and a signal under measurement based on amplitude signal A (φ). A correlation signal is calculated. The correlation signal calculation unit 330 applies the value of the angle signal φ acquired by the acquisition unit 310 to the periodic function, and calculates a correlation signal using the applied periodic function and the amplitude signal A (φ).
 相関信号算出部330は、振幅信号のN乗信号(Nは1以上の自然数)を被測定信号として算出する。例えば、相関信号算出部330は、振幅信号A(φ)を被測定信号とする。これに代えて、相関信号算出部330は、振幅信号A(φ)の2乗を被測定信号としてよい。相関信号算出部330は、算出した相関関数を補正部340に供給する。 The correlation signal calculation unit 330 calculates the Nth power signal of the amplitude signal (N is a natural number of 1 or more) as the signal under measurement. For example, the correlation signal calculation unit 330 uses the amplitude signal A (φ) as a signal under measurement. Instead, the correlation signal calculation unit 330 may use the square of the amplitude signal A (φ) as the signal under measurement. The correlation signal calculation unit 330 supplies the calculated correlation function to the correction unit 340.
 補正部340は、相関信号算出部330に接続され、受け取った相関信号に基づいて、誤差モードに対応する検出信号を補正する。補正部340は、信号検出装置200に接続され、取得部310が取得した検出信号を補正するので、補正後の検出信号が信号検出装置200に供給される。なお、補正部340が補正する検出信号は、磁場検出部100が出力する検出信号、当該検出信号を増幅した信号、および当該検出信号をデジタル信号に変換した信号等の、検出信号に基づく信号も含むものとする。 The correction unit 340 is connected to the correlation signal calculation unit 330 and corrects the detection signal corresponding to the error mode based on the received correlation signal. Since the correction unit 340 is connected to the signal detection device 200 and corrects the detection signal acquired by the acquisition unit 310, the corrected detection signal is supplied to the signal detection device 200. The detection signal corrected by the correction unit 340 includes a signal based on the detection signal, such as a detection signal output from the magnetic field detection unit 100, a signal obtained by amplifying the detection signal, and a signal obtained by converting the detection signal into a digital signal. Shall be included.
 補正部340は、例えば、信号検出装置200のAD変換部220およびAD変換部222にそれぞれ接続され、デジタル信号に変換する場合のアナログ信号、閾値、およびオフセット等に補正値を重畳する。これに代えて、補正部340は、増幅部210および増幅部212にそれぞれ接続され、補正値に応じて増幅度を変更してもよい。 The correction unit 340 is connected to, for example, the AD conversion unit 220 and the AD conversion unit 222 of the signal detection device 200, respectively, and superimposes correction values on analog signals, threshold values, offsets, and the like when converted into digital signals. Instead, the correction unit 340 may be connected to the amplification unit 210 and the amplification unit 212, respectively, and change the amplification degree according to the correction value.
 これに代えて、補正部340は、増幅部210および増幅部212の入力(即ち、信号検出装置200の入力)にそれぞれ接続され、ホール起電力信号(V,V)のアナログ信号に補正値を重畳する回路部を有してもよい。これに代えて、補正部340は、増幅部210とAD変換部220の間、および増幅部212とAD変換部222の間にそれぞれ接続され、ホール起電力信号(V,V)のアナログ信号に補正値を重畳する回路部を有してもよい。 Instead, the correction unit 340 is connected to the input of the amplification unit 210 and the amplification unit 212 (that is, the input of the signal detection device 200), and corrects the analog signal of the Hall electromotive force signal (V X , V Y ). You may have a circuit part which superimposes a value. Instead, the correction unit 340 is connected between the amplification unit 210 and the AD conversion unit 220, and between the amplification unit 212 and the AD conversion unit 222, and analog of the Hall electromotive force signals (V X , V Y ). You may have a circuit part which superimposes a correction value on a signal.
 これに代えて、補正部340は、AD変換部220と乗算部230の間、およびAD変換部222と乗算部230の間にそれぞれ接続され、ホール起電力信号(V,V)のデジタル信号に補正値を重畳する回路部を有してもよい。この場合、補正値が重畳されたホール起電力信号(V,V)が、乗算部230および乗算部232に入力されるように接続されてよい。このように、補正部340がホール起電力信号(V,V)を補正するので、信号検出装置200は、補正された検出信号を用いて、精度の高い角度信号φ(θ)および振幅信号A(φ)を出力することができる。 Instead, the correction unit 340 is connected between the AD conversion unit 220 and the multiplication unit 230, and between the AD conversion unit 222 and the multiplication unit 230, and is digital of the Hall electromotive force signals (V X , V Y ). You may have a circuit part which superimposes a correction value on a signal. In this case, the Hall electromotive force signal (V X , V Y ) on which the correction value is superimposed may be connected to be input to the multiplier 230 and the multiplier 232. As described above, since the correction unit 340 corrects the Hall electromotive force signal (V X , V Y ), the signal detection device 200 uses the corrected detection signal to accurately detect the angle signal φ (θ) and the amplitude. Signal A (φ) can be output.
 以上の本実施形態に係る誤差補正装置300の動作について、図5を用いて説明する。図5は、本実施形態に係る誤差補正装置300の動作フローを示す。誤差補正装置300は、図5に示す動作フローを実行して、磁場検出部100の角度非線形性誤差を検出し、当該磁場検出部100の検出信号を補正する。 The operation of the error correction apparatus 300 according to this embodiment will be described with reference to FIG. FIG. 5 shows an operation flow of the error correction apparatus 300 according to the present embodiment. The error correction apparatus 300 executes the operation flow shown in FIG. 5, detects the angle nonlinearity error of the magnetic field detection unit 100, and corrects the detection signal of the magnetic field detection unit 100.
 まず、取得部310は、角度信号φおよび振幅信号A(φ)を取得する(S400)。取得部310は、一例として、図3で説明した信号検出装置200の積算部244に接続され、積算部244が出力する振幅信号A(φ)を取得する。ここで、取得部310が取得する振幅信号A(φ)は、次式で近似することができる。
 (数14)
 A(φ)≒A(θ)={V(θ)+V(θ)1/2
 =[{A・cos(θ)+Vos_x
 +{A・sin(θ+α)+Vos_y1/2
First, the acquisition unit 310 acquires the angle signal φ and the amplitude signal A (φ) (S400). For example, the acquisition unit 310 is connected to the integration unit 244 of the signal detection device 200 described with reference to FIG. 3 and acquires the amplitude signal A (φ) output from the integration unit 244. Here, the amplitude signal A (φ) acquired by the acquisition unit 310 can be approximated by the following equation.
(Equation 14)
A (φ) ≈A (θ) = {V X (θ) 2 + V Y (θ) 2 } 1/2
= [{A x · cos (θ) + V os — x } 2
+ {A y · sin (θ + α) + V os — y } 2 ] 1/2
 次に、誤差補正装置300は、第1の軸であるX軸のオフセットVos_xを検出する(S410)。この場合、相関信号算出部330は、X軸のオフセットを検出する誤差モードに対応する予め定められた周期関数と、振幅信号との相関信号を算出する。 Next, the error correction apparatus 300 detects an offset V os_x of the X axis that is the first axis (S410). In this case, the correlation signal calculation unit 330 calculates a correlation signal between an amplitude signal and a predetermined periodic function corresponding to an error mode for detecting an X-axis offset.
 ここで、誤差補正装置300は、当該誤差モードを、磁場検出部100が第1の軸方向に対応する信号のオフセット成分を含む第1モードとする。磁場検出部100において、このような第1モードの誤差が増化する場合、X軸のオフセットVos_xが大きくなるので、(数8)式のホール起電力信号(V,V)は、次式のように取り扱うことができる。ここで、Aavgは、AおよびAの平均値とした。
 (数15)
 V(θ)=Aavg・cos(θ)+Vos_x
 V(θ)=Aavg・sin(θ)
Here, the error correction apparatus 300 sets the error mode as a first mode in which the magnetic field detection unit 100 includes an offset component of a signal corresponding to the first axial direction. In the magnetic field detector 100, when such an error in the first mode increases, the offset V os_x of the X axis increases, so that the Hall electromotive force signal (V X , V Y ) in Equation (8) is It can be handled as follows: Here, A avg was an average value of A x and A y .
(Equation 15)
V X (θ) = A avg · cos (θ) + V os — x
V Y (θ) = A avg · sin (θ)
 したがって、(数14)式の振幅信号A(θ)は、次式のように算出される。ここで、Cは、定数を示す。
 (数16)
 A(θ)={V(θ)+V(θ)1/2
 ={Aavg +Vos_x +2・Aavg・Vos_x・cos(θ)}1/2
 ≒C+Vos_x・cos(θ)
Therefore, the amplitude signal A (θ) in the equation (14) is calculated as the following equation. Here, C X represents a constant.
(Equation 16)
A (θ) = {V X (θ) 2 + V Y (θ) 2 } 1/2
= {A avg 2 + V os — x 2 + 2 · A avg · V osx · cos (θ)} 1/2
≒ C X + V os_x · cos (θ)
 このように、振幅信号A(θ)は、回転角θに応じて余弦関数のように変動する成分を有するので、余弦関数cos(θ)との相関を取ることにより、X軸のオフセットVos_xに応じた信号を検出することができる。即ち、相関信号算出部330は、誤差モードが第1モードの場合に、周期関数を1倍角の余弦として、被測定信号との相関信号を算出する。 As described above, the amplitude signal A (θ) has a component that varies like a cosine function in accordance with the rotation angle θ. Therefore, by taking a correlation with the cosine function cos (θ), the offset V os_x of the X axis is obtained. It is possible to detect a signal corresponding to. That is, when the error mode is the first mode, the correlation signal calculation unit 330 calculates a correlation signal with the signal under measurement using the periodic function as a cosine of 1 × square.
 より具体的には、回転角θは、360°(2π)周期であり、相関信号算出部330が、当該周期をMで離散化した場合、相関信号は、次式で示される。
Figure JPOXMLDOC01-appb-M000008
More specifically, the rotation angle θ is a 360 ° (2π) cycle, and when the correlation signal calculation unit 330 discretizes the cycle by M, the correlation signal is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000008
 このような相関信号の計算は、一例として、図6に示す回路で実行できる。図6は、本実施形態に係る相関信号算出部330が有する計算回路の一例を示す。相関信号算出部330は、バッファメモリ332と、乗算部334と、加算部336とを有する。 Such correlation signal calculation can be executed by the circuit shown in FIG. 6 as an example. FIG. 6 shows an example of a calculation circuit included in the correlation signal calculation unit 330 according to the present embodiment. The correlation signal calculation unit 330 includes a buffer memory 332, a multiplication unit 334, and an addition unit 336.
 バッファメモリ332は、一例として、取得した振幅信号A(φ)を、45°おきの8点のデータとして記憶する例を示す。即ち、図6は、(数17)式のMを8にした場合の一例を示す。 As an example, the buffer memory 332 shows an example in which the acquired amplitude signal A (φ) is stored as data of 8 points every 45 °. That is, FIG. 6 shows an example when M in the equation (17) is set to 8.
 乗算部334は、バッファメモリ332の数(即ち、回転角センサの分解能に対応する数)に応じた数の乗算器を含む。乗算部334は、記憶部320およびバッファメモリ332に接続され、バッファメモリ332の数と少なくとも同数の乗算器を含むことが望ましい。乗算器のそれぞれは、記憶部320から受け取る周期関数(第1モードの場合は1倍角の余弦関数)に、45°おきの8点の角度信号φをそれぞれ代入した周期関数の値と、対応する振幅信号A(φ)の値とを乗算し、乗算結果を加算部336にそれぞれ供給する。 The multiplication unit 334 includes a number of multipliers corresponding to the number of buffer memories 332 (that is, the number corresponding to the resolution of the rotation angle sensor). The multiplier 334 is preferably connected to the storage unit 320 and the buffer memory 332 and includes at least the same number of multipliers as the number of the buffer memories 332. Each of the multipliers corresponds to a periodic function value obtained by substituting eight angle signals φ at 45 ° intervals into the periodic function received from the storage unit 320 (in the case of the first mode, a cosine function of a single angle). The value of the amplitude signal A (φ) is multiplied and the multiplication result is supplied to the adder 336.
 加算部336は、乗算部334に接続され、受け取ったそれぞれの乗算結果の総和を算出する。加算部336は、乗算結果の総和を、相関信号の算出結果として出力する。以上のように、本実施形態の相関信号算出部330は、第1モードの誤差を検出する場合、振幅信号A(φ)と余弦関数の相関信号を算出する。このような相関信号が、X軸のオフセットVos_xに応じた信号となることは、(数16)および(数17)式を用いて説明した。これに加えて、この場合における角度非線形性誤差について、図7から図9を用いて説明する。 The adder 336 is connected to the multiplier 334 and calculates the sum of the received multiplication results. The adder 336 outputs the sum of the multiplication results as a correlation signal calculation result. As described above, the correlation signal calculation unit 330 of the present embodiment calculates the correlation signal of the amplitude signal A (φ) and the cosine function when detecting the error in the first mode. It has been described using the equations (16) and (17) that such a correlation signal becomes a signal corresponding to the offset V os_x of the X axis. In addition, the angle nonlinearity error in this case will be described with reference to FIGS.
 図7は、ホール起電力信号(V,V)の一例を示す。図7の横軸はX軸方向のホール起電力信号Vを示し、縦軸はY軸方向のホール起電力信号Vを示す。点線で示す信号は、理想的なホール起電力信号であり、XY平面において略円形の形状を有する信号となる。実線で示す信号は、X軸のオフセットVos_xを有するホール起電力信号であり、略円形の形状がオフセットVos_xに対応する距離だけV方向に平行移動した例を示す。図7に示した例におけるホール起電力信号(V,V)の振幅を次に説明する。 FIG. 7 shows an example of the Hall electromotive force signal (V X , V Y ). 7, the horizontal axis shows the Hall electromotive force signal V X of the X-axis direction, the vertical axis represents the Hall electromotive force signal V Y of the Y-axis direction. A signal indicated by a dotted line is an ideal Hall electromotive force signal, and has a substantially circular shape on the XY plane. A signal indicated by a solid line is a Hall electromotive force signal having an X-axis offset V os_x , and shows an example in which a substantially circular shape is translated in the V X direction by a distance corresponding to the offset V os_x . Next, the amplitude of the Hall electromotive force signal (V X , V Y ) in the example shown in FIG. 7 will be described.
 図8は、ホール起電力信号(V,V)の振幅の一例を示す。回転磁石が360°回転することに応じて、磁場検出部100は、360°周期のホール起電力信号(V,V)を出力する。図8は、横軸を回転磁石の角度位置θ、縦軸を振幅として、この場合のホール起電力信号(V,V)を示す。 FIG. 8 shows an example of the amplitude of the Hall electromotive force signal (V X , V Y ). In response to the rotation of the rotating magnet by 360 °, the magnetic field detection unit 100 outputs a Hall electromotive force signal (V X , V Y ) having a cycle of 360 °. FIG. 8 shows Hall electromotive force signals (V X , V Y ) in this case, where the horizontal axis is the angular position θ of the rotating magnet and the vertical axis is the amplitude.
 理想的なホール起電力信号の場合、振幅Aは一定となる。しかしながら、点線で示すホール起電力信号Vのように、一方のホール起電力信号VがオフセットVos_xを含む場合、振幅Aは一点鎖線で示すようにθに応じて変動する。図8の例に示すように、当該変動は、オフセットを有する余弦波信号と正弦波信号との和によって生じるので、周期360°の余弦信号と同期した変動となり、周期360°の余弦信号との相関が強くなる。 In the case of an ideal Hall electromotive force signal, the amplitude A is constant. However, as the Hall electromotive force signal V X indicated by the dotted line, one of the Hall electromotive force signal V X may include an offset V Os_x, the amplitude A will vary depending on θ as indicated by one-dot chain lines. As shown in the example of FIG. 8, the fluctuation is generated by the sum of the cosine wave signal having an offset and the sine wave signal. Therefore, the fluctuation is synchronized with the cosine signal having a period of 360 °, and the fluctuation with the cosine signal having a period of 360 °. Correlation becomes stronger.
 図9は、図7および図8に示すホール起電力信号(V,V)の角度非線形性誤差の一例を示す。横軸は回転磁石の角度位置θ、縦軸は角度非線形性誤差(φ-θ)を示す。例えば、角度位置θが0°の場合、ホール起電力信号(V=A+Vos_x,V=0)に応じて算出される角度信号φ(0°)も0°となり、角度非線形性誤差は0°となる。また、角度位置θが90°の場合、ホール起電力信号(V=Vos_x,V=A)に応じて算出される角度信号φ(90°)は90°より小さくなり、角度非線形性誤差は0°より小さい値となる。 FIG. 9 shows an example of the angle nonlinearity error of the Hall electromotive force signals (V X , V Y ) shown in FIGS. The horizontal axis represents the angular position θ of the rotating magnet, and the vertical axis represents the angle nonlinearity error (φ−θ). For example, when the angle position θ is 0 °, the angle signal φ (0 °) calculated according to the Hall electromotive force signal (V X = A + V os — x , V Y = 0) is also 0 °, and the angle nonlinearity error is 0 °. When the angle position θ is 90 °, the angle signal φ (90 °) calculated according to the Hall electromotive force signal (V X = V osx , V Y = A) is smaller than 90 °, and the angle nonlinearity The error is a value smaller than 0 °.
 また、角度位置θが180°の場合、ホール起電力信号(V=-A+Vos_x,V=0)に応じて算出される角度信号φ(180°)も180°となり、角度非線形性誤差は0°となる。また、角度位置θが270°の場合、ホール起電力信号(V=Vos_x,V=-A)に応じて算出される角度信号φ(270°)は270°より大きくなり、角度非線形性誤差は0°より大きい値となる。このように、角度非線形性誤差は、角度位置θに対して-sin(θ)を示すように変動する。図9に示す角度非線形性誤差の変動、および図8に示す振幅Aの変動は、ホール起電力信号のオフセットVos_xに起因するものであるから、振幅Aの変動を相関信号より検出することは、角度非線形性誤差の変動を検出することに相当する。 Further, when the angular position θ is 180 °, the angle signal φ (180 °) calculated according to the Hall electromotive force signal (V X = −A + V osx , V Y = 0) is also 180 °, and the angle nonlinearity error Becomes 0 °. When the angular position θ is 270 °, the angle signal φ (270 °) calculated in accordance with the Hall electromotive force signal (V X = V osx , V Y = −A) is larger than 270 °, and the angle nonlinearity The sex error is a value greater than 0 °. Thus, the angle nonlinearity error fluctuates so as to indicate −sin (θ) with respect to the angle position θ. Since the fluctuation of the angle nonlinearity error shown in FIG. 9 and the fluctuation of the amplitude A shown in FIG. 8 are caused by the offset V os_x of the Hall electromotive force signal, it is impossible to detect the fluctuation of the amplitude A from the correlation signal. This corresponds to detecting a variation in angular nonlinearity error.
 そこで、相関信号算出部330は、図6で説明したように、相関信号を算出し、算出結果を補正部340に供給する。このようにして、補正部340は、相関信号の大きさに対応する角度非線形性誤差を検出することができる。 Therefore, the correlation signal calculation unit 330 calculates the correlation signal and supplies the calculation result to the correction unit 340 as described with reference to FIG. In this way, the correction unit 340 can detect an angular non-linearity error corresponding to the magnitude of the correlation signal.
 次に、補正部340は、角度非線形性誤差を低減させるべく、検出した角度非線形性誤差に対応するホール起電力信号(V)の補正量を算出する(S420)。補正部340は、ホール起電力信号(V,V)を用いて補正量を算出してよく、これに代えて、予め定められたテーブル等を参照して補正量を定めてもよい。この場合、予め定められたテーブルは、記憶部320に予め記憶されてよい。 Next, the correction unit 340 calculates a correction amount of the Hall electromotive force signal (V X ) corresponding to the detected angular nonlinearity error in order to reduce the angular nonlinearity error (S420). The correction unit 340 may calculate the correction amount using the Hall electromotive force signals (V X , V Y ), and instead of this, the correction amount may be determined with reference to a predetermined table or the like. In this case, a predetermined table may be stored in the storage unit 320 in advance.
 次に、誤差補正装置300は、第2の軸であるY軸のオフセットVos_yを検出する(S430)。この場合、相関信号算出部330は、Y軸のオフセットを検出する誤差モードに対応する予め定められた周期関数と、振幅信号との相関信号を算出する。誤差補正装置300は、当該誤差モードを、磁場検出部100が第2の軸方向のオフセット成分を含む第2モードとする。磁場検出部100において、このような第2モードの誤差が増大した場合、第1モードの誤差と同様に、(数8)式のホール起電力信号(V,V)は、次式のように取り扱うことができる。
 (数18)
 V(θ)=Aavg・cos(θ)
 V(θ)=Aavg・sin(θ)+Vos_y
Next, the error correction apparatus 300 detects an offset V os_y of the Y axis that is the second axis (S430). In this case, the correlation signal calculation unit 330 calculates a correlation signal between the predetermined periodic function corresponding to the error mode for detecting the Y-axis offset and the amplitude signal. The error correction apparatus 300 sets the error mode as a second mode in which the magnetic field detection unit 100 includes an offset component in the second axial direction. When the error in the second mode increases in the magnetic field detection unit 100, the Hall electromotive force signal (V X , V Y ) in Equation (8) is expressed by the following equation as in the error in the first mode. Can be handled as follows.
(Equation 18)
V X (θ) = A avg · cos (θ)
V Y (θ) = A avg · sin (θ) + V os_y
 したがって、(数14)式の振幅信号A(θ)は、次式のように算出される。ここで、Cは、定数を示す。
 (数19)
 A(θ)={V(θ)+V(θ)1/2
 ={Aavg +Vos_y +2・Aavg・Vos_y・sin(θ)}1/2
 ≒C+Vos_y・sin(θ)
Therefore, the amplitude signal A (θ) in the equation (14) is calculated as the following equation. Here, CY represents a constant.
(Equation 19)
A (θ) = {V X (θ) 2 + V Y (θ) 2 } 1/2
= {A avg 2 + V os — y 2 + 2 · A avg · V osy · sin (θ)} 1/2
≒ C Y + V os_y · sin (θ)
 このように、振幅信号A(θ)は、回転角θに応じて正弦関数のように変動する成分を有するので、正弦関数sin(θ)との相関を取ることにより、Y軸のオフセットVos_yに応じた信号を検出することができる。即ち、相関信号算出部330は、誤差モードが第2モードの場合に、周期関数を1倍角の正弦として、被測定信号との相関信号を算出する。 As described above, the amplitude signal A (θ) has a component that varies like a sine function in accordance with the rotation angle θ. Therefore, by taking a correlation with the sine function sin (θ), the offset V os_y of the Y axis is obtained. It is possible to detect a signal corresponding to. That is, when the error mode is the second mode, the correlation signal calculation unit 330 calculates a correlation signal with the signal under measurement using the periodic function as a sine of a single angle.
 より具体的には、相関信号は、次式で示される。
Figure JPOXMLDOC01-appb-M000009
More specifically, the correlation signal is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000009
 このような相関信号の計算は、図6に示す回路において、45°おきの角度に対応した係数(即ち、記憶部320から受け取る周期関数)をcos(θ)からsin(θ)に変えることによって実行することができる。相関信号算出部330は、相関信号を算出し、算出結果を補正部340に供給する。このようにして、補正部340は、相関信号の大きさに対応する角度非線形性誤差を検出することができる。 In the circuit shown in FIG. 6, the correlation signal is calculated by changing the coefficient corresponding to the angle every 45 ° (that is, the periodic function received from the storage unit 320) from cos (θ) to sin (θ). Can be executed. The correlation signal calculation unit 330 calculates a correlation signal and supplies the calculation result to the correction unit 340. In this way, the correction unit 340 can detect an angular non-linearity error corresponding to the magnitude of the correlation signal.
 次に、補正部340は、角度非線形性誤差を低減させるべく、検出した角度非線形性誤差に対応するホール起電力信号(V)の補正量を算出する(S440)。補正部340は、ホール起電力信号(V,V)を用いて補正量を算出してよく、これに代えて、予め定められたテーブル等を参照して補正量を定めてもよい。 Next, the correction unit 340 calculates a correction amount of the Hall electromotive force signal (V Y ) corresponding to the detected angular nonlinearity error in order to reduce the angular nonlinearity error (S440). The correction unit 340 may calculate the correction amount using the Hall electromotive force signals (V X , V Y ), and instead of this, the correction amount may be determined with reference to a predetermined table or the like.
 次に、誤差補正装置300は、第1ホール素子対110および第2ホール素子対120の磁気感度のミスマッチを示す振幅値の差分(A-A)の誤差を検出する(S450)。相関信号算出部330は、磁気感度のミスマッチの誤差モードに対応する予め定められた周期関数と、振幅信号との相関信号を算出する。誤差補正装置300は、当該誤差モードを、磁場検出部100が第1の軸に対応する信号および第2の軸に対応する信号の間の磁気感度ミスマッチを含む第3モードとする。磁場検出部100において、このような第3モードの誤差が増大した場合、(数8)式のホール起電力信号(V,V)は、次式のように取り扱うことができる。
 (数21)
 V(θ)={Aavg+(A-A)/2}・cos(θ)
 V(θ)={Aavg+(A+A)/2}・sin(θ)
Next, the error correction apparatus 300 detects an error of an amplitude value difference (A x −A y ) indicating a magnetic sensitivity mismatch between the first Hall element pair 110 and the second Hall element pair 120 (S450). The correlation signal calculation unit 330 calculates a correlation signal between a predetermined periodic function corresponding to a magnetic sensitivity mismatch error mode and an amplitude signal. The error correction apparatus 300 sets the error mode to a third mode in which the magnetic field detection unit 100 includes a magnetic sensitivity mismatch between a signal corresponding to the first axis and a signal corresponding to the second axis. In the magnetic field detection unit 100, when such an error in the third mode increases, the Hall electromotive force signal (V X , V Y ) in Expression (8) can be handled as the following expression.
(Equation 21)
V X (θ) = {A avg + (A x −A y ) / 2} · cos (θ)
V Y (θ) = {A avg + (A x + A y ) / 2} · sin (θ)
 したがって、(数14)式の振幅信号A(θ)は、次式のように算出される。
 (数22)
 A(θ)={V(θ)+V(θ)1/2
 ≒Aavg+{(A-A)/2}・cos(2θ)
Therefore, the amplitude signal A (θ) in the equation (14) is calculated as the following equation.
(Equation 22)
A (θ) = {V X (θ) 2 + V Y (θ) 2 } 1/2
≒ A avg + {(A x -A y ) / 2} · cos (2θ)
 このように、振幅信号A(θ)は、回転角θに応じて2倍角の余弦関数のように変動する成分を有するので、2倍角の余弦関数cos(2θ)との相関を取ることにより、磁気感度のミスマッチ(A-A)に応じた信号を検出することができる。即ち、相関信号算出部330は、誤差モードが第3モードの場合に、周期関数を2倍角の余弦として、被測定信号との相関信号を算出する。 As described above, the amplitude signal A (θ) has a component that varies like a double angle cosine function in accordance with the rotation angle θ. Therefore, by taking a correlation with the double angle cosine function cos (2θ), A signal corresponding to the magnetic sensitivity mismatch (A x -A y ) can be detected. That is, when the error mode is the third mode, the correlation signal calculation unit 330 calculates a correlation signal with the signal under measurement using the periodic function as a cosine of double angle.
 より具体的には、相関信号は、次式で示される。
Figure JPOXMLDOC01-appb-M000010
More specifically, the correlation signal is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000010
 このような相関信号の計算は、図6に示す回路において、45°おきの角度に対応した係数をcos(θ)からcos(2θ)に変えることによって実行することができる。ここで、この場合における角度非線形性誤差について、図10から図12を用いて説明する。 Such correlation signal calculation can be executed by changing the coefficient corresponding to the angle of every 45 ° from cos (θ) to cos (2θ) in the circuit shown in FIG. Here, the angle nonlinearity error in this case will be described with reference to FIGS.
 図10は、ホール起電力信号(V,V)の一例を示す。図10は、図7と同様に、横軸がX軸方向のホール起電力信号Vを示し、縦軸がY軸方向のホール起電力信号Vを示す。点線で示す信号は、理想的なホール起電力信号であり、XY平面において略円形の形状を有する信号となる。実線で示す信号は、磁気感度のミスマッチを有するホール起電力信号であり、(A-A)/Aが0.1となる例を示す。図10に示した例におけるホール起電力信号(V,V)の振幅を次に説明する。 FIG. 10 shows an example of the Hall electromotive force signal (V X , V Y ). Figure 10 is similar to FIG. 7, the horizontal axis represents the Hall electromotive force signal V X of the X-axis direction, the vertical axis represents the Hall electromotive force signal V Y of the Y-axis direction. A signal indicated by a dotted line is an ideal Hall electromotive force signal, and has a substantially circular shape on the XY plane. A signal indicated by a solid line is a Hall electromotive force signal having a magnetic sensitivity mismatch, and shows an example in which (A x −A y ) / A y is 0.1. Next, the amplitude of the Hall electromotive force signal (V X , V Y ) in the example shown in FIG. 10 will be described.
 図11は、ホール起電力信号(V,V)の振幅の一例を示す。回転磁石が360°回転することに応じて、磁場検出部100は、360°周期のホール起電力信号(V,V)を出力する。図11は、図8と同様に、横軸を回転磁石の角度位置θ、縦軸を振幅として、ホール起電力信号(V,V)を示す。 FIG. 11 shows an example of the amplitude of the Hall electromotive force signal (V X , V Y ). In response to the rotation of the rotating magnet by 360 °, the magnetic field detection unit 100 outputs a Hall electromotive force signal (V X , V Y ) having a cycle of 360 °. FIG. 11 shows the Hall electromotive force signals (V X , V Y ) with the horizontal axis representing the angular position θ of the rotating magnet and the vertical axis representing the amplitude, as in FIG.
 理想的なホール起電力信号の場合、振幅Aは一定となる。しかしながら、点線で示すホール起電力信号Vの振幅が、ホール起電力信号Vの振幅よりも10%程度大きい場合、振幅Aは一点鎖線で示すようにθに応じて変動する。図11の例に示すように、当該変動は、振幅値の異なる正弦波信号および余弦波信号の和によって生じるので、周期180°の余弦信号と同期した変動となり、2倍角の余弦信号との相関が強くなる。 In the case of an ideal Hall electromotive force signal, the amplitude A is constant. However, the amplitude of the Hall electromotive force signal V X indicated by a dotted line, when about 10% greater than the amplitude of the Hall electromotive force signal V Y, amplitude A varies depending on θ as indicated by one-dot chain lines. As shown in the example of FIG. 11, the fluctuation is caused by the sum of a sine wave signal and a cosine wave signal having different amplitude values, so that the fluctuation is synchronized with the cosine signal having a period of 180 ° and is correlated with the double angle cosine signal. Becomes stronger.
 図12は、図10および図11に示すホール起電力信号(V,V)の角度非線形性誤差の一例を示す。図12は、図9と同様に、横軸は回転磁石の角度位置θ、縦軸は角度非線形性誤差(φ-θ)を示す。例えば、角度位置θが0°の場合、ホール起電力信号(V=1.1A,V=0)に応じて算出される角度信号φ(0°)も0°となり、角度非線形性誤差は0°となる。同様に、角度位置θが90°、180°、270°の場合、ホール起電力信号に応じて算出される角度信号φ(θ)も0°となり、角度非線形性誤差は0°となる。 FIG. 12 shows an example of the angular nonlinearity error of the Hall electromotive force signals (V X , V Y ) shown in FIGS. In FIG. 12, as in FIG. 9, the horizontal axis represents the angular position θ of the rotating magnet, and the vertical axis represents the angle nonlinearity error (φ−θ). For example, when the angular position θ is 0 °, the angle signal φ (0 °) calculated according to the Hall electromotive force signal (V X = 1.1A, V Y = 0) is also 0 °, and the angle nonlinearity error Becomes 0 °. Similarly, when the angular position θ is 90 °, 180 °, or 270 °, the angle signal φ (θ) calculated according to the Hall electromotive force signal is also 0 °, and the angle nonlinearity error is 0 °.
 また、角度位置θが45°の場合、ホール起電力信号(V=1.1・2-1/2,V=2-1/2)に応じて算出される角度信号φ(45°)は45°より小さくなり、角度非線形性誤差は0°より小さい値となる。また、角度位置θが135°の場合、ホール起電力信号(V=-1.1・2-1/2,V=2-1/2)に応じて算出される角度信号φ(135°)は135°より大きくなり、角度非線形性誤差は0°より大きい値となる。このように、角度非線形性誤差は、角度位置θに対して-sin(2θ)を示すように変動する。図12に示す角度非線形性誤差の変動、および図11に示す振幅Aの変動は、ホール起電力信号の磁気感度のミスマッチ(A-A)に起因するものであるから、振幅Aの変動を相関信号より検出することは、角度非線形性誤差のうちの磁気感度のミスマッチ(A-A)成分を検出することに相当する。 When the angular position θ is 45 °, the angle signal φ (45 ° calculated according to the Hall electromotive force signal (V X = 1.1 · 2 −1/2 , V Y = 2 −1/2 ) ) Is smaller than 45 °, and the angle nonlinearity error is smaller than 0 °. When the angular position θ is 135 °, the angle signal φ (135 calculated based on the Hall electromotive force signal (V X = −1.1 · 2 −1/2 , V Y = 2 −1/2 ). °) is greater than 135 °, and the angle nonlinearity error is greater than 0 °. Thus, the angle nonlinearity error fluctuates so as to indicate −sin (2θ) with respect to the angle position θ. The fluctuation of the angle nonlinearity error shown in FIG. 12 and the fluctuation of the amplitude A shown in FIG. 11 are caused by the magnetic sensitivity mismatch (A x −A y ) of the Hall electromotive force signal. Is detected from the correlation signal is equivalent to detecting a magnetic sensitivity mismatch (A x -A y ) component of the angular nonlinearity error.
 そこで、相関信号算出部330は、相関信号を算出し、算出結果を補正部340に供給する。このようにして、補正部340は、相関信号の大きさに対応する角度非線形性誤差を検出することができる。 Therefore, the correlation signal calculation unit 330 calculates a correlation signal and supplies the calculation result to the correction unit 340. In this way, the correction unit 340 can detect an angular non-linearity error corresponding to the magnitude of the correlation signal.
 次に、補正部340は、角度非線形性誤差を低減させるべく、検出した角度非線形性誤差に対応するホール起電力信号(V,V)の補正量を算出する(S460)。補正部340は、ホール起電力信号(V,V)を用いて補正量を算出してよく、これに代えて、予め定められたテーブル等を参照して補正量を定めてもよい。 Next, the correction unit 340 calculates a correction amount of the Hall electromotive force signal (V X , V Y ) corresponding to the detected angular nonlinearity error in order to reduce the angular nonlinearity error (S460). The correction unit 340 may calculate the correction amount using the Hall electromotive force signals (V X , V Y ), and instead of this, the correction amount may be determined with reference to a predetermined table or the like.
 次に、誤差補正装置300は、ホール起電力信号(V,V)間の非直交性誤差αを検出する(S470)。相関信号算出部330は、非直交性誤差の誤差モードに対応する予め定められた周期関数と、振幅信号との相関信号を算出する。誤差補正装置300は、当該誤差モードを、磁場検出部100が第1の軸に対応する信号および第2の軸に対応する信号の間の非直交性誤差を含む第4モードとする。磁場検出部100において、このような第4モードの誤差が増大した場合、(数8)式のホール起電力信号(V,V)は、次式のように取り扱うことができる。
 (数24)
 V(θ)=Aavg・cos(θ)
 V(θ)=Aavg・sin(θ+α)
Next, the error correction apparatus 300 detects the non-orthogonality error α between the Hall electromotive force signals (V X , V Y ) (S470). The correlation signal calculation unit 330 calculates a correlation signal between a predetermined periodic function corresponding to a non-orthogonal error mode and an amplitude signal. The error correction apparatus 300 sets the error mode to a fourth mode in which the magnetic field detection unit 100 includes a non-orthogonal error between a signal corresponding to the first axis and a signal corresponding to the second axis. When the error in the fourth mode increases in the magnetic field detection unit 100, the Hall electromotive force signal (V X , V Y ) in Expression (8) can be handled as the following expression.
(Equation 24)
V X (θ) = A avg · cos (θ)
V Y (θ) = A avg · sin (θ + α)
 したがって、(数14)式の振幅信号A(θ)は、次式のように算出される。
 (数25)
 A(θ)={V(θ)+V(θ)1/2
 =Aavg・{cos(θ)+sin(θ+α)}1/2
 ≒Aavg・[1+α・{sin(2θ)}/2]
Therefore, the amplitude signal A (θ) in the equation (14) is calculated as the following equation.
(Equation 25)
A (θ) = {V X (θ) 2 + V Y (θ) 2 } 1/2
= A avg · {cos 2 (θ) + sin 2 (θ + α)} 1/2
≈ A avg · [1 + α · {sin (2θ)} / 2]
 このように、振幅信号A(θ)は、回転角θに応じて2倍角の正弦関数のように変動する成分を有するので、2倍角の正弦関数sin(2θ)との相関を取ることにより、非直交性誤差αに応じた信号を検出することができる。即ち、相関信号算出部330は、誤差モードが第4モードの場合に、周期関数を2倍角の正弦として、被測定信号との相関信号を算出する。 Thus, since the amplitude signal A (θ) has a component that varies like a double angle sine function in accordance with the rotation angle θ, by taking a correlation with the double angle sine function sin (2θ), A signal corresponding to the non-orthogonal error α can be detected. That is, when the error mode is the fourth mode, the correlation signal calculation unit 330 calculates the correlation signal with the signal under measurement using the periodic function as a double angle sine.
 より具体的には、相関信号は、次式で示される。
Figure JPOXMLDOC01-appb-M000011
More specifically, the correlation signal is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000011
 このような相関信号の計算は、図6に示す回路において、45°おきの角度に対応した係数をcos(θ)からsin(2θ)に変えることによって実行することができる。そこで、相関信号算出部330は、相関信号を算出し、算出結果を補正部340に供給する。このようにして、補正部340は、相関信号の大きさに対応する角度非線形性誤差を検出することができる。 Such correlation signal calculation can be executed by changing a coefficient corresponding to an angle of every 45 ° from cos (θ) to sin (2θ) in the circuit shown in FIG. Therefore, the correlation signal calculation unit 330 calculates a correlation signal and supplies the calculation result to the correction unit 340. In this way, the correction unit 340 can detect an angular non-linearity error corresponding to the magnitude of the correlation signal.
 次に、補正部340は、角度非線形性誤差を低減させるべく、検出した角度非線形性誤差に対応するホール起電力信号(V,V)の補正量を算出する(S480)。補正部340は、ホール起電力信号(V,V)を用いて補正量を算出してよく、これに代えて、予め定められたテーブル等を参照して補正量を定めてもよい。 Next, the correction unit 340 calculates a correction amount of the Hall electromotive force signal (V X , V Y ) corresponding to the detected angular nonlinearity error in order to reduce the angular nonlinearity error (S480). The correction unit 340 may calculate the correction amount using the Hall electromotive force signals (V X , V Y ), and instead of this, the correction amount may be determined with reference to a predetermined table or the like.
 次に、補正部340は、算出した補正量に基づき、ホール起電力信号(V,V)を補正する(S490)。補正部340は、一例として、AD変換部220およびAD変換部222に補正信号を供給して、デジタル信号に変換する処理における入力アナログ信号、閾値、およびオフセット等に補正値を重畳する。 Next, the correction unit 340 corrects the Hall electromotive force signal (V X , V Y ) based on the calculated correction amount (S490). For example, the correction unit 340 supplies a correction signal to the AD conversion unit 220 and the AD conversion unit 222, and superimposes the correction value on the input analog signal, threshold value, offset, and the like in the process of converting into a digital signal.
 ここで、AD変換部220は、第1の軸の磁場の検知結果をデジタル信号に変換する第1AD変換部であり、一例として、第1の軸の磁場の検知結果に応じた第1の1ビットΔΣ信号を出力するΔΣ型AD変換部である。また、AD変換部222は、第2の軸の磁場の検知結果をデジタル信号に変換する第2AD変換部であり、第2の軸の磁場の検知結果に応じた第2の1ビットΔΣ信号を出力するΔΣ型AD変換部である。この場合、信号検出装置200は、第1および第2の1ビットΔΣ信号に基づいて、角度信号φを算出するサーボループを有する。 Here, the AD conversion unit 220 is a first AD conversion unit that converts the detection result of the magnetic field of the first axis into a digital signal, and as an example, the first 1 corresponding to the detection result of the magnetic field of the first axis. This is a ΔΣ AD converter that outputs a bit ΔΣ signal. The AD conversion unit 222 is a second AD conversion unit that converts the detection result of the magnetic field of the second axis into a digital signal. The AD conversion unit 222 converts the second 1-bit ΔΣ signal corresponding to the detection result of the magnetic field of the second axis. This is a ΔΣ AD converter that outputs. In this case, the signal detection device 200 has a servo loop that calculates the angle signal φ based on the first and second 1-bit ΔΣ signals.
 また、この場合、補正部340は、第1AD変換部および第2AD変換部に、検出信号の補正する補正信号をそれぞれ供給してよい。補正部340は、例えば、変調した参照電流を補正信号として第1AD変換部および/または第2AD変換部に供給することで、当該第1AD変換部および/または第2AD変換部のオフセットを調整できる。なお、ΔΣ型AD変換部に変調した参照電流を供給することでオフセットを調整する動作は、例えば、非特許文献5に記載されているように既知であるので、ここでは詳細な説明を省略する。 In this case, the correction unit 340 may supply a correction signal for correcting the detection signal to the first AD conversion unit and the second AD conversion unit, respectively. For example, the correction unit 340 can adjust the offset of the first AD conversion unit and / or the second AD conversion unit by supplying the modulated reference current as a correction signal to the first AD conversion unit and / or the second AD conversion unit. The operation of adjusting the offset by supplying the modulated reference current to the ΔΣ AD converter is known as described in Non-Patent Document 5, for example, and thus detailed description thereof is omitted here. .
 また、補正部340は、基準電圧等からの予め定められた電圧を補正すべき電圧に応じたデューティーで変調して補正電圧を生成し、AD変換部の入力電圧に加えることで、当該AD変換部のオフセットを調節してもよい。この場合、補正部は、補正電圧の時間平均が補正量に応じた電圧となるように、デューティーを調節して変調信号を生成する。このように、補正部340は、第1モードおよび第2モードの誤差をそれぞれ補正することができる。 Further, the correction unit 340 generates a correction voltage by modulating a predetermined voltage from a reference voltage or the like with a duty corresponding to the voltage to be corrected, and adds the correction voltage to the input voltage of the AD conversion unit, thereby performing the AD conversion. The offset of the part may be adjusted. In this case, the correction unit generates the modulation signal by adjusting the duty so that the time average of the correction voltage becomes a voltage corresponding to the correction amount. As described above, the correction unit 340 can correct the errors in the first mode and the second mode, respectively.
 また、補正部340は、第1AD変換部および/または第2AD変換部の増幅度を調節することで、磁気感度のミスマッチを補正してよい。補正部340は、例えば、可変容量または可変抵抗等を用いて、増幅度を調節してよい。なお、ΔΣ型AD変換部の増幅度を調整する動作は、例えば、特許文献9に記載されているように既知であるので、ここでは詳細な説明を省略する。以上のように、補正部340は、第3モードの誤差を補正することができる。 Further, the correction unit 340 may correct the magnetic sensitivity mismatch by adjusting the amplification degree of the first AD conversion unit and / or the second AD conversion unit. The correction unit 340 may adjust the amplification degree using, for example, a variable capacitor or a variable resistor. In addition, since the operation | movement which adjusts the amplification degree of a delta-sigma type AD conversion part is known as it describes, for example in patent document 9, detailed description is abbreviate | omitted here. As described above, the correction unit 340 can correct the error in the third mode.
 また、補正部340は、一例として、ホール起電力信号Vが入力される第2AD変換部の入力接続を切り換えて、予め定められた時間だけホール起電力信号Vを第2AD変換部に入力させて、非直交性誤差αを補正してよい。非直交性誤差αは、本来第1の軸方向の磁場に対応するべきホール起電力信号Vxに、第2の軸方向の磁場に対応した信号が混入(および/または本来第2の軸方向の磁場に対応するべきホール起電力信号Vyに、第1の軸方向の磁場に対応した信号が混入)することによって生じる誤差である。このため、非直交性誤差αの補正は、ホール起電力信号VxとVyの間において、当該誤差を相殺するように適切な線形和(線形結合)を計算することにより実現可能である。上記の補正部340の動作は、ホール起電力信号Vy、Vxの線形和(線形結合)を計算する際に、時間軸上で結合係数を実現する方法である。 The correction unit 340, an input as an example, to switch the input connections of the first 2AD conversion unit Hall electromotive force signal V Y is input, only the predetermined time the Hall electromotive force signal V X to the 2AD conversion unit Thus, the non-orthogonal error α may be corrected. The non-orthogonal error α is generated by mixing a signal corresponding to the magnetic field in the second axial direction into the Hall electromotive force signal Vx that should originally correspond to the magnetic field in the first axial direction (and / or inherently in the second axial direction). This is an error caused by mixing a signal corresponding to the magnetic field in the first axial direction into the Hall electromotive force signal Vy that should correspond to the magnetic field. Therefore, the correction of the non-orthogonal error α can be realized by calculating an appropriate linear sum (linear combination) between the Hall electromotive force signals Vx and Vy so as to cancel the error. The operation of the correction unit 340 is a method for realizing a coupling coefficient on the time axis when calculating the linear sum (linear combination) of the Hall electromotive force signals Vy and Vx.
 即ち、補正部340は、ホール起電力信号Vまたはホール起電力信号Vを一方のAD変換部(一例として第2AD変換部)に入力させることで、非直交性誤差αを補正することができる。この場合、補正部340は、補正量に応じて、当該一方のAD変換部の入力を切り換えて、非直交性誤差αを補正する。以上のように、補正部340は、第4モードの誤差を補正することができる。 That is, the correction unit 340, by inputting the hole electromotive force signal V X or Hall electromotive force signal V Y in one AD conversion section (first 2AD conversion unit as an example), to correct the non-orthogonality error α it can. In this case, the correction unit 340 corrects the non-orthogonality error α by switching the input of the one AD conversion unit according to the correction amount. As described above, the correction unit 340 can correct the error in the fourth mode.
 誤差補正装置300は、角度非線形性誤差の補正を終了するか否かを判断する(S500)。誤差補正装置300は、角度非線形性誤差の補正を続行する場合(S500:No)、角度信号および振幅信号の取得の段階(S400)に戻り、角度非線形性誤差の補正を続ける。誤差補正装置300は、ユーザ等の入力により、角度非線形性誤差の補正を終了する場合(S500:Yes)は、以上の処理を停止する。 The error correction apparatus 300 determines whether or not the correction of the angle non-linearity error is finished (S500). When the correction of the angle nonlinearity error is continued (S500: No), the error correction apparatus 300 returns to the step of obtaining the angle signal and the amplitude signal (S400) and continues the correction of the angle nonlinearity error. The error correction apparatus 300 stops the above process when the correction of the angle non-linearity error is terminated by an input from the user or the like (S500: Yes).
 以上のように、本実施形態の誤差補正装置300は、動作中の磁場検出部100のX軸のオフセット、Y軸のオフセット、磁気検出感度のミスマッチ、および非直交性誤差に起因する角度非線形性誤差を検出し、動作中の回転角センサにフィードバックして検出信号を補正することができる。したがって、誤差補正装置300は、磁場検出部100が回転角センサおよびシステム等に搭載された状態においても、誤差モード毎に誤差を検出することができ、誤差モードに応じて適切な補正を実行することができる。 As described above, the error correction apparatus 300 according to the present embodiment has the angle nonlinearity caused by the X-axis offset, the Y-axis offset, the magnetic detection sensitivity mismatch, and the non-orthogonality error of the magnetic field detection unit 100 in operation. An error can be detected and fed back to the rotational angle sensor in operation to correct the detection signal. Therefore, the error correction apparatus 300 can detect an error for each error mode even when the magnetic field detection unit 100 is mounted on a rotation angle sensor, a system, and the like, and performs appropriate correction according to the error mode. be able to.
 以上の本実施形態の誤差補正装置300は、相関信号算出部330が、振幅信号A(φ)の1乗信号(即ち、振幅信号そのもの)を被測定信号とする例を説明した。これに代えて、相関信号算出部330は、振幅信号A(φ)の2乗信号を被測定信号としてもよい。 In the error correction apparatus 300 of this embodiment described above, the correlation signal calculation unit 330 has been described as an example in which the first signal of the amplitude signal A (φ) (that is, the amplitude signal itself) is the signal under measurement. Instead, the correlation signal calculation unit 330 may use a square signal of the amplitude signal A (φ) as the signal under measurement.
 この場合、(数16)式で示された被測定信号は、次式のように算出される。
 (数27)
 A(θ)=V(θ)+V(θ)
 =Aavg +Vos_x +2・Aavg・Vos_x・cos(θ)
In this case, the signal under measurement shown by the equation (16) is calculated as the following equation.
(Equation 27)
A 2 (θ) = V X (θ) 2 + V Y (θ) 2
= A avg 2 + V os_x 2 + 2 · A avg · V os_x · cos (θ)
 被測定信号A(θ)は、回転角θに応じて余弦関数のように変動する成分を有するので、余弦関数cos(θ)との相関を取ることにより、X軸のオフセットVos_xに応じた信号を検出することができる。具体的な相関信号は、次式で示される。
Figure JPOXMLDOC01-appb-M000012
Since the signal under measurement A 2 (θ) has a component that varies like a cosine function in accordance with the rotation angle θ, by taking a correlation with the cosine function cos (θ), it corresponds to the X-axis offset V os_x . Signal can be detected. A specific correlation signal is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000012
 同様に、(数19)式で示された被測定信号は、次式のように算出される。
 (数29)
 A(θ)=V(θ)+V(θ)
 =Aavg +Vos_y +2・Aavg・Vos_y・sin(θ)
Similarly, the signal under measurement shown by the equation (19) is calculated as the following equation.
(Equation 29)
A 2 (θ) = V X (θ) 2 + V Y (θ) 2
= A avg 2 + V os_y 2 + 2 · A avg · V os_y · sin (θ)
 被測定信号A(θ)は、回転角θに応じて正弦関数のように変動する成分を有するので、正弦関数sin(θ)との相関を取ることにより、Y軸のオフセットVos_yに応じた信号を検出することができる。具体的な相関信号は、次式で示される。
Figure JPOXMLDOC01-appb-M000013
Since the signal under measurement A 2 (θ) has a component that varies like a sine function in accordance with the rotation angle θ, by taking a correlation with the sine function sin (θ), the signal under measurement A 2 (θ) corresponds to the offset V os_y of the Y axis. Signal can be detected. A specific correlation signal is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000013
 以上の第1モードおよび第2モードの誤差モードと同様に、第3モードおよび第4モードも、被測定信号A(θ)を被測定信号としてよい。この場合、誤差モードに対応する周期関数は、被測定信号をA(θ)とした場合の周期関数としてよい。この場合、(数23)式に示された第3モードの相関信号は(数31)式のように、(数26)式に示された第4モードの相関信号は(数32)式のように示される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Similarly to the error modes of the first mode and the second mode described above, the signal under measurement A 2 (θ) may be used as the signal under measurement in the third mode and the fourth mode. In this case, the periodic function corresponding to the error mode may be a periodic function when the signal under measurement is A (θ). In this case, the correlation signal of the third mode shown in (Expression 23) is expressed by (Expression 31), and the correlation signal of the fourth mode shown in (Expression 26) is expressed by (Expression 32). As shown.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 以上のように、相関信号算出部330は、各モード毎に、被測定信号および誤差モードに対応する周期関数を算出することができる。したがって、相関信号算出部330は、振幅信号A(φ)のN乗信号(Nは1以上の自然数)を被測定信号として算出することもできる。 As described above, the correlation signal calculation unit 330 can calculate the periodic function corresponding to the signal under measurement and the error mode for each mode. Therefore, the correlation signal calculation unit 330 can also calculate the Nth power signal (N is a natural number of 1 or more) of the amplitude signal A (φ) as the signal under measurement.
 また、本実施形態の誤差補正装置300は、第1モードから第4モードの誤差モードを有する例を説明した。これに代えて、誤差補正装置300は、第1モードから第4モードの誤差モードのうちの少なくとも1つのモードを有し、少なくとも1つのモードの誤差を補正してもよい。 Further, the example in which the error correction apparatus 300 of the present embodiment has the error modes from the first mode to the fourth mode has been described. Instead, the error correction apparatus 300 may have at least one of the error modes from the first mode to the fourth mode, and correct the error in at least one mode.
 また、本実施形態の誤差補正装置300は、信号検出装置200と接続される例を説明した。これに代えて、誤差補正装置300は、信号検出装置200の一部であってもよい。この場合、誤差補正装置300と、第1の軸の磁場と第2の軸の磁場を検出する磁場検出部100の検出信号に応じて、回転体の角度信号φおよび振幅信号A(φ)を出力する信号検出装置200と、を備える回転角検出装置が構成されてよい。 Further, the example in which the error correction apparatus 300 of the present embodiment is connected to the signal detection apparatus 200 has been described. Instead of this, the error correction device 300 may be a part of the signal detection device 200. In this case, the angle signal φ and the amplitude signal A (φ) of the rotating body are obtained according to the detection signals of the error correction device 300 and the magnetic field detection unit 100 that detects the magnetic field of the first axis and the magnetic field of the second axis. A rotation angle detection device including the signal detection device 200 for outputting may be configured.
 これに代えて、誤差補正装置300は、磁場検出部100に設けられてもよい。この場合、誤差補正装置300は、信号検出装置200と共に磁場検出部100に設けられることが望ましい。即ち、この場合の磁場検出部100は、信号検出装置200および誤差補正装置300を有する回転角検出装置を備え、第1の軸の磁場と第2の軸の磁場の検出結果に応じて、回転体の角度信号φおよび振幅信号A(φ)を出力する。 Alternatively, the error correction device 300 may be provided in the magnetic field detection unit 100. In this case, the error correction device 300 is preferably provided in the magnetic field detection unit 100 together with the signal detection device 200. That is, the magnetic field detection unit 100 in this case includes a rotation angle detection device including the signal detection device 200 and the error correction device 300, and rotates according to the detection results of the first axis magnetic field and the second axis magnetic field. The body angle signal φ and the amplitude signal A (φ) are output.
 また、本実施形態の誤差補正装置300は、図3に示す信号検出装置200に接続され、角度信号φおよび振幅信号A(φ)を取得する例を説明した。誤差補正装置300は、角度信号φおよび振幅信号A(φ)を取得できれば、誤差を検出することができるので、信号検出装置200は図3の例に限定されない。例えば、信号検出装置200は、三角関数計算モデルに基づくCORDIC等の計算回路等であってよい。 In addition, the error correction apparatus 300 according to the present embodiment is connected to the signal detection apparatus 200 illustrated in FIG. 3 and the example in which the angle signal φ and the amplitude signal A (φ) are acquired has been described. Since the error correction device 300 can detect an error if the angle signal φ and the amplitude signal A (φ) can be acquired, the signal detection device 200 is not limited to the example of FIG. For example, the signal detection device 200 may be a calculation circuit such as a CORDIC based on a trigonometric function calculation model.
 図13は、本実施形態に係る誤差補正装置300の変形例を示す。本変形例の誤差補正装置300は、信号算出回路500から角度信号φおよび振幅信号A(φ)を取得する。信号算出回路500は、増幅部510、増幅部512、AD変換部520、AD変換部522、およびCORDIC回路部530を備える。増幅部510、増幅部512、AD変換部520、およびAD変換部522は、図3で説明した増幅部210、増幅部212、AD変換部220、およびAD変換部222と略同一の動作を実行するので、ここでは説明を省略する。 FIG. 13 shows a modification of the error correction apparatus 300 according to this embodiment. The error correction apparatus 300 of the present modification obtains the angle signal φ and the amplitude signal A (φ) from the signal calculation circuit 500. The signal calculation circuit 500 includes an amplification unit 510, an amplification unit 512, an AD conversion unit 520, an AD conversion unit 522, and a CORDIC circuit unit 530. The amplification unit 510, amplification unit 512, AD conversion unit 520, and AD conversion unit 522 perform substantially the same operations as the amplification unit 210, amplification unit 212, AD conversion unit 220, and AD conversion unit 222 described in FIG. Therefore, the description is omitted here.
 CORDIC(Coordinate Rotation Digital Computing)回路部530は、三角関数、乗算、および除算等の各種演算を実行するアルゴリズムに基づき、入力信号であるホール起電力信号から角度信号φおよび振幅信号A(φ)を算出する。CORDIC回路部530は、CORDICアルゴリズムが搭載されたFPGA(Field-Programable Gate Array)、およびASIC(Application Specific Integrated Circuit)等の集積回路でよい。 The CORDIC (Coordinate Rotation Digital Computing) circuit unit 530 generates an angle signal φ and an amplitude signal A (φ) from the Hall electromotive force signal as an input signal based on an algorithm that performs various operations such as trigonometric functions, multiplication, and division. calculate. The CORDIC circuit unit 530 may be an integrated circuit such as an FPGA (Field-Programmable Gate Array) on which the CORDIC algorithm is mounted, and an ASIC (Application Specific Integrated Circuit).
 CORDIC回路部530は、予め定められたCORDICアルゴリズムを実行して、角度信号φおよび振幅信号A(φ)を算出する。ここで、CORDIC回路部530は、図3に示す信号検出装置200が出力する振幅信号と比較して、1.6倍程度大きい振幅信号を出力することが知られている。 The CORDIC circuit unit 530 executes a predetermined CORDIC algorithm to calculate the angle signal φ and the amplitude signal A (φ). Here, it is known that the CORDIC circuit unit 530 outputs an amplitude signal that is about 1.6 times larger than the amplitude signal output by the signal detection device 200 shown in FIG.
 しかしながら、本実施形態の相関信号算出部330は、当該振幅信号に基づく被測定信号と、誤差モードに対応する予め定められた周期関数との相関を算出するので、振幅信号が(1.6倍程度の)定数倍になっても、ほとんど影響のない相関信号を算出する。したがって、本変形例の誤差補正装置300は、図4から図12で説明した誤差補正装置300と略同一の動作で、磁場検出部100の角度非線形性誤差を検出することができる。 However, since the correlation signal calculation unit 330 according to the present embodiment calculates the correlation between the signal under measurement based on the amplitude signal and a predetermined periodic function corresponding to the error mode, the amplitude signal is (1.6 times). Correlation signals that have almost no effect even if they become a constant multiple (about) are calculated. Therefore, the error correction apparatus 300 according to the present modification can detect the angular non-linearity error of the magnetic field detection unit 100 with substantially the same operation as the error correction apparatus 300 described with reference to FIGS.
 ここで、補正部340は、図4から図12で説明した誤差補正装置300と略同一の動作で、磁場検出部100の検出信号を補正してよい。また、補正部340は、信号算出回路500の内部に、補正回路342を有し、補正回路342に補正信号を供給して検出信号を補正してもよい。補正回路342は、AD変換部520およびAD変換部522に接続され、デジタル信号の変換されたホール起電力信号(ADC(V),ADC(V))を受けとる。補正回路342は、補正部340から受けとった補正量に応じてホール起電力信号(ADC(V),ADC(V))を補正して、補正後のホール起電力信号(ADC(V)',ADC(V)')をCORDIC回路部530に供給する。 Here, the correction unit 340 may correct the detection signal of the magnetic field detection unit 100 by substantially the same operation as the error correction device 300 described with reference to FIGS. Further, the correction unit 340 may include a correction circuit 342 inside the signal calculation circuit 500 and supply the correction signal to the correction circuit 342 to correct the detection signal. The correction circuit 342 is connected to the AD conversion unit 520 and the AD conversion unit 522, and receives the Hall electromotive force signals (ADC (V X ), ADC (V Y )) converted from digital signals. Correction circuit 342, the Hall electromotive force signal in accordance with the correction amount received from the correction unit 340 corrects the (ADC (V X), ADC (V Y)), hole corrected electromotive force signal (ADC (V X ) ′, ADC (V Y ) ′) is supplied to the CORDIC circuit unit 530.
 ここで、CORDIC回路部530がFPGAおよびASIC等の集積回路の場合、補正回路342も当該集積回路に組み込まれてよい。この場合、信号算出回路500は、信号補正処理および信号算出処理を1つの集積回路内のデジタル信号処理で実行することができ、装置を小型化することもできる。 Here, when the CORDIC circuit unit 530 is an integrated circuit such as an FPGA and an ASIC, the correction circuit 342 may also be incorporated in the integrated circuit. In this case, the signal calculation circuit 500 can execute the signal correction process and the signal calculation process by digital signal processing in one integrated circuit, and the apparatus can be downsized.
 以上の本実施形態の誤差補正装置300は、回転角センサとは別個独立の装置であってよく、これに代えて、磁場検出部100の一部であってもよいことは説明した。これに代えて、誤差補正装置300は、磁場検出部100が搭載されるシステム等の一部であってもよい。また、誤差補正装置300は、システム等を制御する制御回路の一部であってもよい。 It has been described that the error correction device 300 of the present embodiment described above may be a device independent of the rotation angle sensor and may be a part of the magnetic field detection unit 100 instead. Instead of this, the error correction device 300 may be a part of a system or the like in which the magnetic field detection unit 100 is mounted. Further, the error correction apparatus 300 may be a part of a control circuit that controls the system or the like.
 以上の本実施形態の誤差補正装置300は、磁場検出部100が第1ホール素子対110および第2ホール素子対120を備える例を説明した。ここで、誤差補正装置300は、第1の軸の磁場と第2の軸の磁場の検出結果に応じて、回転体の角度信号および振幅信号を出力する回転角センサの出力信号に基づき誤差を検出するので、磁場の検出素子はホール素子に限定されない。例えば、磁場検出部100は、第1の軸の磁場と第2の軸の磁場を検出する複数のGMR(Giant Magneto-Resistance)素子および/またはTMR(Tunnel Magneto-Resistance)素子等を備えてもよい。 In the error correction apparatus 300 of the present embodiment described above, the example in which the magnetic field detection unit 100 includes the first Hall element pair 110 and the second Hall element pair 120 has been described. Here, the error correction apparatus 300 calculates an error based on the output signal of the rotation angle sensor that outputs the angle signal and the amplitude signal of the rotating body according to the detection results of the magnetic field of the first axis and the magnetic field of the second axis. Since it detects, the detection element of a magnetic field is not limited to a Hall element. For example, the magnetic field detection unit 100 may include a plurality of GMR (Giant Magneto-Resistance) elements and / or TMR (Tunnel Magneto-Resistance) elements that detect the magnetic field of the first axis and the magnetic field of the second axis. Good.
 以上の本実施形態の誤差補正装置300は、磁場検出部100がシステム等に搭載された状態においても、誤差モード毎に誤差を検出し、当該誤差モードに応じて適切な補正を実行することができることを説明した。これに代えて、または、これに加えて、誤差補正装置300は、回転角センサモジュール等に組み込まれた状態における磁場検出部100の誤差を検出し、当該誤差に応じて補正を実行してもよい。 The error correction apparatus 300 of the present embodiment described above can detect an error for each error mode and execute an appropriate correction according to the error mode even when the magnetic field detection unit 100 is mounted on a system or the like. I explained what I can do. Instead of this or in addition to this, the error correction device 300 may detect an error of the magnetic field detection unit 100 in a state of being incorporated in the rotation angle sensor module or the like, and execute correction according to the error. Good.
 図14は、本実施形態に係る回転角センサモジュール400の一例を示す。回転角センサモジュール400は、磁場検出部100と、回転磁石410と、回転軸412と、モーター420とを備える。磁場検出部100は、図1から図13で説明したので、ここでは説明を省略する。なお、本例において、信号検出装置200は、磁場検出部100の内部に形成されているものとする。 FIG. 14 shows an example of the rotation angle sensor module 400 according to the present embodiment. The rotation angle sensor module 400 includes a magnetic field detection unit 100, a rotating magnet 410, a rotating shaft 412, and a motor 420. Since the magnetic field detection unit 100 has been described with reference to FIGS. 1 to 13, description thereof is omitted here. In this example, it is assumed that the signal detection device 200 is formed inside the magnetic field detection unit 100.
 回転磁石410は、回転軸412回りに回転する。図14は、回転磁石410が磁場検出部100の上方に設けられる例を示す。回転磁石410は、一例として、円盤状の形状を有し、XY平面と略平行な面で回転する。回転磁石410は、XY平面と略平行な断面がそれぞれ半円形状となる2つの領域に分割されてよく、一方の領域がS極であり、他方の領域がN極である磁石を形成する。回転磁石410は、XY平面と略平行な面で回転することにより、理想的には、例えば、(数33)式で示される回転磁場を磁場検出部100に発生させる。
Figure JPOXMLDOC01-appb-M000016
The rotating magnet 410 rotates around the rotating shaft 412. FIG. 14 shows an example in which the rotating magnet 410 is provided above the magnetic field detection unit 100. For example, the rotating magnet 410 has a disk shape and rotates on a plane substantially parallel to the XY plane. The rotating magnet 410 may be divided into two regions each having a semicircular cross section substantially parallel to the XY plane, and forms a magnet in which one region is an S pole and the other region is an N pole. The rotating magnet 410 ideally causes the magnetic field detection unit 100 to generate a rotating magnetic field represented by, for example, Equation (33) by rotating on a plane substantially parallel to the XY plane.
Figure JPOXMLDOC01-appb-M000016
 回転軸412は、XY平面と略垂直な方向に形成される。回転軸412は、一例として、中心軸の磁場検出部100側の延長線上に、第1ホール素子対110を通過するX軸と第2ホール素子対120を通過するY軸との交点が位置するように、形成される。回転軸412は、一端が回転磁石410に接続され、他端がモーター420に接続される。モーター420は、回転軸412および当該回転軸に接続された回転磁石410を回転させる。 The rotating shaft 412 is formed in a direction substantially perpendicular to the XY plane. For example, the rotation axis 412 has an intersection of the X axis passing through the first Hall element pair 110 and the Y axis passing through the second Hall element pair 120 on the extension line of the central axis on the magnetic field detection unit 100 side. Formed. The rotating shaft 412 has one end connected to the rotating magnet 410 and the other end connected to the motor 420. The motor 420 rotates the rotating shaft 412 and the rotating magnet 410 connected to the rotating shaft.
 このように、回転角センサモジュール400は、磁場検出部100と、回転軸412回りに回転する回転磁石410と、を組み立てて形成される。即ち、磁場検出部100は、XY平面におけるX軸方向の磁場およびY軸方向の磁場を検出して、回転軸412回りに回転する回転磁石410のXY平面における回転角を検出する。 As described above, the rotation angle sensor module 400 is formed by assembling the magnetic field detection unit 100 and the rotating magnet 410 that rotates about the rotation axis 412. That is, the magnetic field detection unit 100 detects the magnetic field in the X-axis direction and the magnetic field in the Y-axis direction on the XY plane, and detects the rotation angle on the XY plane of the rotating magnet 410 that rotates about the rotation axis 412.
 このような回転角センサモジュール等を組み立てる過程において、組み立て誤差等が生じると、磁場検出部100は、(数33)式とは異なる方向の磁場が印加されることになり、当該組み立て誤差に起因する角度非線形性誤差を発生してしまう。図15から図17には、このような組み立て誤差が生じた場合の例を示す。 When an assembly error or the like occurs in the process of assembling such a rotation angle sensor module or the like, the magnetic field detection unit 100 is applied with a magnetic field in a direction different from the equation (33), which is caused by the assembly error. An angle nonlinearity error occurs. FIGS. 15 to 17 show examples when such an assembly error occurs.
 図15は、本実施形態に係る回転角センサモジュール400に中心軸ずれが生じた組み立て誤差の一例を示す。図16は、本実施形態に係る回転角センサモジュール400に偏芯が生じた組み立て誤差の一例を示す。図17は、本実施形態に係る回転角センサモジュール400に回転磁石410の傾きが生じた組み立て誤差の一例を示す。 FIG. 15 shows an example of an assembly error in which the center axis shift occurs in the rotation angle sensor module 400 according to the present embodiment. FIG. 16 shows an example of an assembly error in which eccentricity occurs in the rotation angle sensor module 400 according to the present embodiment. FIG. 17 shows an example of an assembly error in which the rotation magnet 410 is inclined in the rotation angle sensor module 400 according to the present embodiment.
 このような誤差が生じた場合においても、磁場検出部100は、回転磁石410の角度位置θに応じて周期関数を示すように変動する角度非線形性誤差を発生させる。そこで、本実施形態の誤差補正装置300は、磁場検出部100の角度非線形性誤差を低減させる場合と同様に、回転角センサモジュール400の組み立て誤差に起因する角度非線形性誤差を低減させる。 Even when such an error occurs, the magnetic field detection unit 100 generates an angular non-linearity error that varies so as to indicate a periodic function according to the angular position θ of the rotating magnet 410. Therefore, the error correction apparatus 300 according to the present embodiment reduces the angle nonlinearity error caused by the assembly error of the rotation angle sensor module 400, as in the case of reducing the angle nonlinearity error of the magnetic field detection unit 100.
 図18は、理想的な回転角センサモジュール400の磁場検出部100に、8方向の磁場をそれぞれ印加した例を示す。即ち、図18は、回転磁石410が45°間隔で回転した場合に、磁場検出部100が設置されるXY平面に生じる磁場の向きを矢印でそれぞれ示す。図18の複数の円は、回転磁石410をそれぞれ示し、円内の点線で示された四角形は、磁場検出部100の位置を示す。回転角センサモジュール400は、理想的な配置関係にあるので、円の中心と、点線で示された四角形の領域の中心とが一致する。回転角が0°から315°に45°ずつ変化することに応じて、磁場検出部100が位置する領域に発生する磁場ベクトルの向きも対応して45°ずつ回転することがわかる。 FIG. 18 shows an example in which magnetic fields in eight directions are applied to the magnetic field detector 100 of the ideal rotation angle sensor module 400, respectively. That is, FIG. 18 shows, by arrows, the directions of magnetic fields generated on the XY plane where the magnetic field detector 100 is installed when the rotating magnet 410 rotates at 45 ° intervals. A plurality of circles in FIG. 18 respectively indicate the rotating magnets 410, and a square indicated by a dotted line in the circle indicates the position of the magnetic field detection unit 100. Since the rotation angle sensor module 400 has an ideal arrangement relationship, the center of the circle coincides with the center of the quadrangular region indicated by the dotted line. It can be seen that as the rotation angle changes from 0 ° to 315 ° by 45 °, the direction of the magnetic field vector generated in the region where the magnetic field detection unit 100 is located also rotates by 45 °.
 図19は、中心軸ずれの組み立て誤差を有する回転角センサモジュール400の磁場検出部100に、8方向の磁場をそれぞれ印加した例を示す。即ち、図19は、図15に示す中心軸ずれが生じた回転角センサモジュール400において、回転磁石410が45°間隔で回転した場合に、磁場検出部100が設置されるXY平面に生じる磁場の向きを矢印でそれぞれ示す。図19の複数の円は、図18と同様に、回転磁石410をそれぞれ示し、円内の点線で示された四角形は、磁場検出部100の位置を示す。中心軸ずれが生じているので、円の中心と、点線で示された四角形の領域の中心には、ずれが生じている。 FIG. 19 shows an example in which magnetic fields in eight directions are respectively applied to the magnetic field detection unit 100 of the rotation angle sensor module 400 having an assembly error of the center axis deviation. That is, FIG. 19 shows the magnetic field generated in the XY plane on which the magnetic field detector 100 is installed when the rotating magnet 410 rotates at 45 ° intervals in the rotation angle sensor module 400 in which the center axis deviation shown in FIG. The direction is indicated by arrows. A plurality of circles in FIG. 19 respectively indicate the rotating magnets 410 as in FIG. 18, and a square indicated by a dotted line in the circle indicates the position of the magnetic field detection unit 100. Since the center axis shift has occurred, a shift has occurred between the center of the circle and the center of the quadrangular region indicated by the dotted line.
 そして、回転磁石410を回転させると、回転角度θが45°、135°、225°、315°の場合、四角形の領域には回転磁石410の回転角度θとは異なる方向の磁場ベクトルが発生し、角度非線形性誤差が発生することがわかる。一方、回転角度θが0°、90°、180°、270°の場合、四角形の領域に発生する磁場ベクトルの向きと印加する磁場の向きとが略一致するので、角度非線形性誤差が低減することがわかる。即ち、磁場検出部100に入力する磁場の方向が、回転磁石410の回転角度θに応じて変動し、当該変動が角度θに対してsin(2θ)を示すように変動することがわかる。 When the rotating magnet 410 is rotated, when the rotation angle θ is 45 °, 135 °, 225 °, or 315 °, a magnetic field vector in a direction different from the rotation angle θ of the rotating magnet 410 is generated in the rectangular region. It can be seen that an angle nonlinearity error occurs. On the other hand, when the rotation angle θ is 0 °, 90 °, 180 °, or 270 °, the direction of the magnetic field vector generated in the rectangular region and the direction of the applied magnetic field substantially coincide with each other, so that the angle nonlinearity error is reduced. I understand that. That is, it can be seen that the direction of the magnetic field input to the magnetic field detection unit 100 varies according to the rotation angle θ of the rotating magnet 410, and the variation varies so as to indicate sin (2θ) with respect to the angle θ.
 即ち、中心軸ずれの組み立て誤差を有する回転角センサモジュール400に組み込まれた磁場検出部100は、周期関数の変動を示す角度非線形性誤差を有することになる。したがって、周期関数との相関を取ることにより、相関信号を算出することができる。同様に、回転角センサモジュール400は、回転磁石410に偏芯および傾きが生じる組み立て誤差を有しても、発生する角度非線形性誤差の変動が周期関数を示す場合、(数17)、(数20)、(数23)、および(数26)を用いて、(または(数28)、および(数30)から(数32)式を用いて、)相関信号を算出することができる。 That is, the magnetic field detection unit 100 incorporated in the rotation angle sensor module 400 having the assembly error of the center axis deviation has an angular non-linearity error indicating the fluctuation of the periodic function. Therefore, a correlation signal can be calculated by taking a correlation with the periodic function. Similarly, even if the rotation angle sensor module 400 has an assembly error that causes eccentricity and inclination of the rotating magnet 410, when the fluctuation of the generated angle nonlinearity error shows a periodic function, (Equation 17), (Equation 17) 20), (Equation 23), and (Equation 26) can be used to calculate the correlation signal (or (Equation 28) and (Equation 30) to (Equation 32)).
 図20から23は、本実施形態に係る回転角センサモジュール400が発生させる角度非線形性誤差の補正をシミュレーションした結果の一例を示す。当該シミュレーションは、一例として、磁場検出部100と回転磁石410との間に、X軸方向およびY軸方向にそれぞれ2mmの中心軸ずれが生じた場合を想定して算出した結果である。 20 to 23 show an example of the result of simulating the correction of the angle nonlinearity error generated by the rotation angle sensor module 400 according to the present embodiment. As an example, the simulation is a result calculated assuming that a center axis deviation of 2 mm occurs between the magnetic field detection unit 100 and the rotating magnet 410 in the X-axis direction and the Y-axis direction, respectively.
 図20は、回転磁石410と、磁場検出部100との間に、中心軸ずれが発生した場合の磁場検出信号(V(θ),V(θ))の一例を示す。図20の横軸は回転磁石の角度位置θを示し、縦軸は信号振幅を示す。磁場検出部100は、回転磁場に応じて周期的に変化する磁場検出信号(V(θ),V(θ))を検出する。なお、当該信号からは、中心軸ずれによる影響を読み取ることは困難である。 FIG. 20 shows an example of the magnetic field detection signals (V X (θ), V Y (θ)) when a center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100. The horizontal axis in FIG. 20 indicates the angular position θ of the rotating magnet, and the vertical axis indicates the signal amplitude. The magnetic field detection unit 100 detects magnetic field detection signals (V X (θ), V Y (θ)) that change periodically according to the rotating magnetic field. Note that it is difficult to read the influence of the center axis deviation from the signal.
 図21は、回転磁石410と、磁場検出部100との間に、中心軸ずれが発生した場合の振幅信号A(θ)の一例を示す。図21の横軸は回転磁石の角度位置θを示し、縦軸は振幅信号強度を示す。図19で説明したように、振幅信号A(θ)は、-sin(2θ)を示すように変動することがわかる。これにより、磁場検出部100に角度非線形性誤差が生じたことが予測できる。 FIG. 21 shows an example of the amplitude signal A (θ) when the center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100. The horizontal axis in FIG. 21 indicates the angular position θ of the rotating magnet, and the vertical axis indicates the amplitude signal intensity. As described with reference to FIG. 19, it can be seen that the amplitude signal A (θ) fluctuates so as to indicate −sin (2θ). Thereby, it can be predicted that an angle nonlinearity error has occurred in the magnetic field detection unit 100.
 実際に、(数17)、(数20)、(数23)、および(数26)を用いて、角度非線形性誤差の誤差要因となる誤差パラメータ(Vos_x,Vos_y,A-A,α)を算出すると、(0(%F.S.),0(%F.S.),0(%F.S.),1.7°)となった。ここで、「F.S.」はフルスケールを意味し、「%F.S.」はフルスケールに対するパーセンテージ強度を示す。算出結果より、本シミュレーションの中心軸ずれによる角度非線形性誤差は、非直交性誤差として取り扱うことができることがわかる。 Actually, using ( Equation 17), ( Equation 20), ( Equation 23), and ( Equation 26), error parameters (V osx , V osy , A x −A y ) that cause an error in the angle nonlinearity error are used. , Α) was calculated to be (0 (% FS), 0 (% FS), 0 (% FS), 1.7 °). Here, “FS” means full scale, and “% FS” indicates percentage intensity with respect to full scale. From the calculation result, it can be seen that the angle nonlinearity error due to the deviation of the central axis in this simulation can be treated as a non-orthogonality error.
 図22は、回転磁石410と、磁場検出部100との間に、中心軸ずれが発生した場合の角度非線形性誤差(φ(θ)-θ)の一例を示す。図22の横軸は回転磁石の角度位置θを示し、縦軸は角度非線形性誤差(φ(θ)-θ)を示す。図22より、角度非線形性誤差は、cos(2θ)を示すように変動することがわかる。当該変動からも、中心軸ずれは、非直交性誤差と同様に取り扱える誤差であることがわかる。 FIG. 22 shows an example of an angular non-linearity error (φ (θ) −θ) when a center axis deviation occurs between the rotating magnet 410 and the magnetic field detection unit 100. The horizontal axis of FIG. 22 indicates the angular position θ of the rotating magnet, and the vertical axis indicates the angle nonlinearity error (φ (θ) −θ). From FIG. 22, it can be seen that the angle nonlinearity error fluctuates to indicate cos (2θ). It can be seen from the fluctuation that the center axis deviation is an error that can be handled in the same manner as the non-orthogonal error.
 図23は、中心軸ずれが発生した場合の角度非線形性誤差を補正した結果の一例を示す。図23の横軸は回転磁石の角度位置θを示し、縦軸は角度非線形性誤差(φ(θ)-θ)を示す。誤差補正装置300は、誤差パラメータ(0,0,0,1.7°)より、磁場検出信号を補正することで、図22に示す角度非線形性誤差を、図23に示す角度非線形性誤差のように低減できることが当該シミュレーションによりわかる。 FIG. 23 shows an example of the result of correcting the angle nonlinearity error when the center axis deviation occurs. In FIG. 23, the horizontal axis represents the angular position θ of the rotating magnet, and the vertical axis represents the angle nonlinearity error (φ (θ) −θ). The error correction device 300 corrects the magnetic field detection signal from the error parameter (0, 0, 0, 1.7 °), thereby changing the angle nonlinearity error shown in FIG. 22 into the angle nonlinearity error shown in FIG. It can be seen from the simulation that this can be reduced.
 以上のように、本実施形態に係る誤差補正装置300は、磁場検出部100が回転角センサモジュール400に組み込まれた場合の、組み立て誤差に起因する角度非線形性誤差を低減できる。誤差補正装置300は、回転角センサの出力に応じて、動的に磁場検出部100の角度非線形性誤差を低減できるので、当該組み立て誤差が経時的に変動しても、当該変動に応じて、角度非線形性誤差を低減することもできる。また、誤差補正装置300は、磁場検出部100の角度非線形性誤差および回転角センサモジュール400の組み立て誤差に起因する角度非線形性誤差を、まとめて較正することもできる。 As described above, the error correction apparatus 300 according to the present embodiment can reduce the angle nonlinearity error caused by the assembly error when the magnetic field detection unit 100 is incorporated in the rotation angle sensor module 400. Since the error correction device 300 can dynamically reduce the angle nonlinearity error of the magnetic field detection unit 100 according to the output of the rotation angle sensor, even if the assembly error varies with time, Angular nonlinearity errors can also be reduced. Further, the error correction apparatus 300 can collectively calibrate the angle nonlinearity error caused by the angle nonlinearity error of the magnetic field detection unit 100 and the assembly error of the rotation angle sensor module 400.
 図24は、本実施形態に係る誤差補正装置300として機能するコンピュータ1900のハードウェア構成の一例を示す。本実施形態に係るコンピュータ1900は、ホスト・コントローラ2082により相互に接続されるCPU2000、RAM2020、グラフィック・コントローラ2075、および表示装置2080を有するCPU周辺部と、入出力コントローラ2084によりホスト・コントローラ2082に接続される通信インターフェイス2030、ハードディスクドライブ2040、およびDVDドライブ2060を有する入出力部と、入出力コントローラ2084に接続されるROM2010、フレキシブルディスク・ドライブ2050、および入出力チップ2070を有するレガシー入出力部と、を備える。 FIG. 24 shows an example of a hardware configuration of a computer 1900 that functions as the error correction apparatus 300 according to the present embodiment. A computer 1900 according to this embodiment is connected to a CPU peripheral unit having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080 that are connected to each other by a host controller 2082, and to the host controller 2082 by an input / output controller 2084. An input / output unit having a communication interface 2030, a hard disk drive 2040, and a DVD drive 2060; a legacy input / output unit having a ROM 2010, a flexible disk drive 2050, and an input / output chip 2070 connected to the input / output controller 2084; Is provided.
 ホスト・コントローラ2082は、RAM2020と、高い転送レートでRAM2020をアクセスするCPU2000およびグラフィック・コントローラ2075とを接続する。CPU2000は、ROM2010およびRAM2020に格納されたプログラムに基づいて動作し、各部の制御を行う。グラフィック・コントローラ2075は、CPU2000等がRAM2020内に設けたフレーム・バッファ上に生成する画像データを取得し、表示装置2080上に表示させる。これに代えて、グラフィック・コントローラ2075は、CPU2000等が生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。 The host controller 2082 connects the RAM 2020 to the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate. The CPU 2000 operates based on programs stored in the ROM 2010 and the RAM 2020 and controls each unit. The graphic controller 2075 acquires image data generated by the CPU 2000 or the like on a frame buffer provided in the RAM 2020 and displays it on the display device 2080. Instead of this, the graphic controller 2075 may include a frame buffer for storing image data generated by the CPU 2000 or the like.
 入出力コントローラ2084は、ホスト・コントローラ2082と、比較的高速な入出力装置である通信インターフェイス2030、ハードディスクドライブ2040、DVDドライブ2060を接続する。通信インターフェイス2030は、ネットワークを介して他の装置と通信する。ハードディスクドライブ2040は、コンピュータ1900内のCPU2000が使用するプログラムおよびデータを格納する。DVDドライブ2060は、DVD-ROM2095からプログラムまたはデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。 The input / output controller 2084 connects the host controller 2082 to the communication interface 2030, the hard disk drive 2040, and the DVD drive 2060, which are relatively high-speed input / output devices. The communication interface 2030 communicates with other devices via a network. The hard disk drive 2040 stores programs and data used by the CPU 2000 in the computer 1900. The DVD drive 2060 reads a program or data from the DVD-ROM 2095 and provides it to the hard disk drive 2040 via the RAM 2020.
 また、入出力コントローラ2084には、ROM2010と、フレキシブルディスク・ドライブ2050、および入出力チップ2070の比較的低速な入出力装置とが接続される。ROM2010は、コンピュータ1900が起動時に実行するブート・プログラム、および/または、コンピュータ1900のハードウェアに依存するプログラム等を格納する。フレキシブルディスク・ドライブ2050は、フレキシブルディスク2090からプログラムまたはデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。入出力チップ2070は、フレキシブルディスク・ドライブ2050を入出力コントローラ2084へと接続すると共に、例えばパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポート等を介して各種の入出力装置を入出力コントローラ2084へと接続する。 Also, the ROM 2010, the flexible disk drive 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084. The ROM 2010 stores a boot program that the computer 1900 executes at startup and / or a program that depends on the hardware of the computer 1900. The flexible disk drive 2050 reads a program or data from the flexible disk 2090 and provides it to the hard disk drive 2040 via the RAM 2020. The input / output chip 2070 connects the flexible disk drive 2050 to the input / output controller 2084 and inputs / outputs various input / output devices via, for example, a parallel port, a serial port, a keyboard port, a mouse port, and the like. Connect to controller 2084.
 RAM2020を介してハードディスクドライブ2040に提供されるプログラムは、フレキシブルディスク2090、DVD-ROM2095、またはICカード等の記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM2020を介してコンピュータ1900内のハードディスクドライブ2040にインストールされ、CPU2000において実行される。 The program provided to the hard disk drive 2040 via the RAM 2020 is stored in a recording medium such as the flexible disk 2090, the DVD-ROM 2095, or an IC card and provided by the user. The program is read from the recording medium, installed in the hard disk drive 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000.
 プログラムは、コンピュータ1900にインストールされ、コンピュータ1900を取得部310、記憶部320、相関信号算出部330、および補正部340として機能させる。 The program is installed in the computer 1900, and causes the computer 1900 to function as the acquisition unit 310, the storage unit 320, the correlation signal calculation unit 330, and the correction unit 340.
 プログラムに記述された情報処理は、コンピュータ1900に読込まれることにより、ソフトウェアと上述した各種のハードウェア資源とが協働した具体的手段である取得部310、記憶部320、相関信号算出部330、および補正部340として機能する。そして、この具体的手段によって、本実施形態におけるコンピュータ1900の使用目的に応じた情報の演算または加工を実現することにより、使用目的に応じた特有の誤差補正装置300が構築される。 The information processing described in the program is read into the computer 1900, whereby the acquisition unit 310, the storage unit 320, and the correlation signal calculation unit 330 are specific means in which the software and the various hardware resources described above cooperate. , And the correction unit 340. The specific error correction apparatus 300 according to the purpose of use is constructed by realizing calculation or processing of information according to the purpose of use of the computer 1900 in this embodiment by this specific means.
 一例として、コンピュータ1900と外部の装置等との間で通信を行う場合には、CPU2000は、RAM2020上にロードされた通信プログラムを実行し、通信プログラムに記述された処理内容に基づいて、通信インターフェイス2030に対して通信処理を指示する。通信インターフェイス2030は、CPU2000の制御を受けて、RAM2020、ハードディスクドライブ2040、フレキシブルディスク2090、またはDVD-ROM2095等の記憶装置上に設けた送信バッファ領域等に記憶された送信データを読み出してネットワークへと送信し、もしくは、ネットワークから受信した受信データを記憶装置上に設けた受信バッファ領域等へと書き込む。このように、通信インターフェイス2030は、DMA(ダイレクト・メモリ・アクセス)方式により記憶装置との間で送受信データを転送してもよく、これに代えて、CPU2000が転送元の記憶装置または通信インターフェイス2030からデータを読み出し、転送先の通信インターフェイス2030または記憶装置へとデータを書き込むことにより送受信データを転送してもよい。 As an example, when communication is performed between the computer 1900 and an external device or the like, the CPU 2000 executes a communication program loaded on the RAM 2020 and executes a communication interface based on the processing content described in the communication program. A communication process is instructed to 2030. Under the control of the CPU 2000, the communication interface 2030 reads transmission data stored in a transmission buffer area or the like provided on a storage device such as the RAM 2020, the hard disk drive 2040, the flexible disk 2090, or the DVD-ROM 2095, and sends it to the network. The reception data transmitted or received from the network is written into a reception buffer area or the like provided on the storage device. As described above, the communication interface 2030 may transfer transmission / reception data to / from the storage device by the DMA (Direct Memory Access) method. Instead, the CPU 2000 transfers the storage device or the communication interface 2030 as the transfer source. The transmission / reception data may be transferred by reading the data from the data and writing the data to the communication interface 2030 or the storage device of the transfer destination.
 また、CPU2000は、ハードディスクドライブ2040、DVDドライブ2060(DVD-ROM2095)、フレキシブルディスク・ドライブ2050(フレキシブルディスク2090)等の外部記憶装置に格納されたファイルまたはデータベース等の中から、全部または必要な部分をDMA転送等によりRAM2020へと読み込ませ、RAM2020上のデータに対して各種の処理を行う。そして、CPU2000は、処理を終えたデータを、DMA転送等により外部記憶装置へと書き戻す。このような処理において、RAM2020は、外部記憶装置の内容を一時的に保持するものとみなせるから、本実施形態においてはRAM2020および外部記憶装置等をメモリ、記憶部、または記憶装置等と総称する。本実施形態における各種のプログラム、データ、テーブル、データベース等の各種の情報は、このような記憶装置上に格納されて、情報処理の対象となる。なお、CPU2000は、RAM2020の一部をキャッシュメモリに保持し、キャッシュメモリ上で読み書きを行うこともできる。このような形態においても、キャッシュメモリはRAM2020の機能の一部を担うから、本実施形態においては、区別して示す場合を除き、キャッシュメモリもRAM2020、メモリ、および/または記憶装置に含まれるものとする。 The CPU 2000 also includes all or necessary portions of files or databases stored in an external storage device such as the hard disk drive 2040, DVD drive 2060 (DVD-ROM 2095), and flexible disk drive 2050 (flexible disk 2090). Are read into the RAM 2020 by DMA transfer or the like, and various processes are performed on the data on the RAM 2020. Then, CPU 2000 writes the processed data back to the external storage device by DMA transfer or the like. In such processing, since the RAM 2020 can be regarded as temporarily holding the contents of the external storage device, in the present embodiment, the RAM 2020 and the external storage device are collectively referred to as a memory, a storage unit, or a storage device. Various types of information such as various programs, data, tables, and databases in the present embodiment are stored on such a storage device and are subjected to information processing. Note that the CPU 2000 can also store a part of the RAM 2020 in the cache memory and perform reading and writing on the cache memory. Even in such a form, the cache memory bears a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
 また、CPU2000は、RAM2020から読み出したデータに対して、プログラムの命令列により指定された、本実施形態中に記載した各種の演算、情報の加工、条件判断、情報の検索・置換等を含む各種の処理を行い、RAM2020へと書き戻す。例えば、CPU2000は、条件判断を行う場合においては、本実施形態において示した各種の変数が、他の変数または定数と比較して、大きい、小さい、以上、以下、等しい等の条件を満たすかどうかを判断し、条件が成立した場合(または不成立であった場合)に、異なる命令列へと分岐し、またはサブルーチンを呼び出す。 In addition, the CPU 2000 performs various operations, such as various operations, information processing, condition determination, information search / replacement, etc., described in the present embodiment, specified for the data read from the RAM 2020 by the instruction sequence of the program. Is written back to the RAM 2020. For example, when performing the condition determination, the CPU 2000 determines whether the various variables shown in the present embodiment satisfy the conditions such as large, small, above, below, equal, etc., compared to other variables or constants. When the condition is satisfied (or not satisfied), the program branches to a different instruction sequence or calls a subroutine.
 また、CPU2000は、記憶装置内のファイルまたはデータベース等に格納された情報を検索することができる。例えば、第1属性の属性値に対し第2属性の属性値がそれぞれ対応付けられた複数のエントリが記憶装置に格納されている場合において、CPU2000は、記憶装置に格納されている複数のエントリの中から第1属性の属性値が指定された条件と一致するエントリを検索し、そのエントリに格納されている第2属性の属性値を読み出すことにより、所定の条件を満たす第1属性に対応付けられた第2属性の属性値を得ることができる。 Further, the CPU 2000 can search for information stored in a file or database in the storage device. For example, in the case where a plurality of entries in which the attribute value of the second attribute is associated with the attribute value of the first attribute are stored in the storage device, the CPU 2000 displays the plurality of entries stored in the storage device. The entry that matches the condition in which the attribute value of the first attribute is specified is retrieved, and the attribute value of the second attribute that is stored in the entry is read, thereby associating with the first attribute that satisfies the predetermined condition The attribute value of the specified second attribute can be obtained.
 以上に示したプログラムまたはモジュールは、外部の記録媒体に格納されてもよい。記録媒体としては、フレキシブルディスク2090、DVD-ROM2095の他に、DVD、Blu-ray(登録商標)、またはCD等の光学記録媒体、MO等の光磁気記録媒体、テープ媒体、ICカード等の半導体メモリ等を用いることができる。また、専用通信ネットワークまたはインターネットに接続されたサーバシステムに設けたハードディスクまたはRAM等の記憶装置を記録媒体として使用し、ネットワークを介してプログラムをコンピュータ1900に提供してもよい。 The programs or modules shown above may be stored in an external recording medium. As a recording medium, in addition to the flexible disk 2090 and the DVD-ROM 2095, an optical recording medium such as a DVD, Blu-ray (registered trademark) or CD, a magneto-optical recording medium such as an MO, a tape medium, a semiconductor such as an IC card, etc. A memory or the like can be used. Further, a storage device such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium, and the program may be provided to the computer 1900 via the network.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 基板、100 磁場検出部、110 第1ホール素子対、112 第1ホール素子、114 第2ホール素子、120 第2ホール素子対、122 第3ホール素子、124 第4ホール素子、130 磁気収束板、200 信号検出装置、210 増幅部、212 増幅部、220 AD変換部、222 AD変換部、230 乗算部、232 乗算部、240 積算部、242 積算部、244 積算部、250 位相補償部、260 記憶部、300 誤差補正装置、310 取得部、320 記憶部、330 相関信号算出部、332 バッファメモリ、334 乗算部、336 加算部、340 補正部、342 補正回路、400 回転角センサモジュール、410 回転磁石、412 回転軸、420 モーター、500 信号算出回路、510 増幅部、512 増幅部、520 AD変換部、522 AD変換部、530 CORDIC回路部、1900 コンピュータ、2000 CPU、2010 ROM、2020 RAM、2030 通信インターフェイス、2040 ハードディスクドライブ、2050 フレキシブルディスク・ドライブ、2060 DVDドライブ、2070 入出力チップ、2075 グラフィック・コントローラ、2080 表示装置、2082 ホスト・コントローラ、2084 入出力コントローラ、2090 フレキシブルディスク、2095 DVD-ROM 10 substrate, 100 magnetic field detector, 110 first hall element pair, 112 first hall element, 114 second hall element, 120 second hall element pair, 122 third hall element, 124 fourth hall element, 130 magnetic convergence plate , 200 signal detection device, 210 amplification unit, 212 amplification unit, 220 AD conversion unit, 222 AD conversion unit, 230 multiplication unit, 232 multiplication unit, 240 accumulation unit, 242 accumulation unit, 244 accumulation unit, 250 phase compensation unit, 260 Storage unit, 300 error correction device, 310 acquisition unit, 320 storage unit, 330 correlation signal calculation unit, 332 buffer memory, 334 multiplication unit, 336 addition unit, 340 correction unit, 342 correction circuit, 400 rotation angle sensor module, 410 rotation Magnet, 412 rotary shaft, 420 motor, 50 Signal calculation circuit, 510 amplification unit, 512 amplification unit, 520 AD conversion unit, 522 AD conversion unit, 530 CORDIC circuit unit, 1900 computer, 2000 CPU, 2010 ROM, 2020 RAM, 2030 communication interface, 2040 hard disk drive, 2050 flexible disk Drive, 2060 DVD drive, 2070 input / output chip, 2075 graphic controller, 2080 display device, 2082, host controller, 2084 input / output controller, 2090 flexible disk, 2095 DVD-ROM

Claims (16)

  1.  第1の軸の磁場と第2の軸の磁場を検出する磁場検出部の検出信号に応じて、回転体の角度信号および振幅信号を出力する信号検出装置の出力を取得する取得部と、
     前記磁場検出部の誤差モードに対応する予め定められた周期関数と、前記振幅信号に基づく被測定信号との相関信号を算出する相関信号算出部と、
     前記相関信号に基づいて、前記誤差モードに対応する前記検出信号を補正する補正部と、
     を備える
     誤差補正装置。
    An acquisition unit that acquires an output of a signal detection device that outputs an angle signal and an amplitude signal of a rotating body in response to a detection signal of a magnetic field detection unit that detects a magnetic field of a first axis and a magnetic field of a second axis;
    A correlation signal calculation unit for calculating a correlation signal between a predetermined periodic function corresponding to an error mode of the magnetic field detection unit and a signal under measurement based on the amplitude signal;
    A correction unit that corrects the detection signal corresponding to the error mode based on the correlation signal;
    An error correction device comprising:
  2.  前記補正部は、前記取得部が取得した前記検出信号を補正し、補正後の前記検出信号が前記信号検出装置に供給される、請求項1に記載の誤差補正装置。 The error correction device according to claim 1, wherein the correction unit corrects the detection signal acquired by the acquisition unit, and the corrected detection signal is supplied to the signal detection device.
  3.  前記誤差モードは、
     前記磁場検出部が前記第1の軸方向に対応する信号のオフセット成分を含む第1モードと、
     前記磁場検出部が前記第2の軸方向に対応する信号のオフセット成分を含む第2モードと、
     前記磁場検出部が前記第1の軸に対応する信号および前記第2の軸に対応する信号の間の磁気感度ミスマッチを含む第3モードと、
     前記磁場検出部が前記第1の軸に対応する信号および前記第2の軸に対応する信号の間の非直交性誤差を含む第4モードと、
     のうちの少なくとも1つのモードを有する、請求項1または2に記載の誤差補正装置。
    The error mode is
    A first mode in which the magnetic field detector includes an offset component of a signal corresponding to the first axial direction;
    A second mode in which the magnetic field detector includes an offset component of a signal corresponding to the second axial direction;
    A third mode in which the magnetic field detector includes a magnetic sensitivity mismatch between a signal corresponding to the first axis and a signal corresponding to the second axis;
    A fourth mode in which the magnetic field detector includes a non-orthogonal error between a signal corresponding to the first axis and a signal corresponding to the second axis;
    The error correction device according to claim 1, wherein the error correction device has at least one mode.
  4.  前記相関信号算出部は、
     前記誤差モードが前記第1モードの場合に、前記周期関数を1倍角の余弦として、前記被測定信号との相関信号を算出し、
     前記誤差モードが前記第2モードの場合に、前記周期関数を1倍角の正弦として、前記被測定信号との相関信号を算出し、
     前記誤差モードが前記第3モードの場合に、前記周期関数を2倍角の余弦として、前記被測定信号との相関信号を算出し、
     前記誤差モードが前記第4モードの場合に、前記周期関数を2倍角の正弦として、前記被測定信号との相関信号を算出する、請求項3に記載の誤差補正装置。
    The correlation signal calculation unit
    When the error mode is the first mode, a correlation signal with the signal under measurement is calculated using the periodic function as a cosine of 1 × square,
    When the error mode is the second mode, a correlation signal with the signal under measurement is calculated with the periodic function as a sine of 1 ×
    When the error mode is the third mode, a correlation signal with the signal under measurement is calculated using the periodic function as a cosine of a double angle,
    The error correction apparatus according to claim 3, wherein when the error mode is the fourth mode, a correlation signal with the signal under measurement is calculated using the periodic function as a sine of a double angle.
  5.  前記相関信号算出部は、前記振幅信号のN乗信号(Nは1以上の自然数)を前記被測定信号として算出する、請求項1から4のいずれか一項に記載の誤差補正装置。 The error correction device according to any one of claims 1 to 4, wherein the correlation signal calculation unit calculates an N-th power signal (N is a natural number of 1 or more) of the amplitude signal as the signal under measurement.
  6.  前記取得部は、非接触回転角センサの出力を取得する、請求項1から5のいずれか一項に記載の誤差補正装置。 The error correction device according to any one of claims 1 to 5, wherein the acquisition unit acquires an output of a non-contact rotation angle sensor.
  7.  請求項1から6のいずれか一項に記載の誤差補正装置と、
     第1の軸の磁場と第2の軸の磁場を検出する前記磁場検出部の検出信号に応じて、回転体の角度信号および振幅信号を出力する信号検出装置と、
     を備える
     回転角検出装置。
    The error correction apparatus according to any one of claims 1 to 6,
    A signal detection device that outputs an angle signal and an amplitude signal of the rotating body according to a detection signal of the magnetic field detection unit that detects a magnetic field of the first axis and a magnetic field of the second axis;
    A rotation angle detector.
  8.  前記信号検出装置は、
     前記第1の軸の磁場の検知結果をデジタル信号に変換する第1AD変換部と、
     前記第2の軸の磁場の検知結果をデジタル信号に変換する第2AD変換部と、
     を有し、
     前記補正部は、前記第1AD変換部および前記第2AD変換部に、前記検出信号を補正する補正信号をそれぞれ供給する、
     請求項7に記載の回転角検出装置。
    The signal detection device includes:
    A first AD converter that converts a detection result of the magnetic field of the first axis into a digital signal;
    A second AD converter for converting the detection result of the magnetic field of the second axis into a digital signal;
    Have
    The correction unit supplies a correction signal for correcting the detection signal to the first AD conversion unit and the second AD conversion unit, respectively.
    The rotation angle detection device according to claim 7.
  9.  第1AD変換部は、前記第1の軸の磁場の検知結果に応じた第1の1ビットΔΣ信号を出力し、
     第2AD変換部は、前記第2の軸の磁場の検知結果に応じた第2の1ビットΔΣ信号を出力し、
     前記信号検出装置は、前記第1および第2の1ビットΔΣ信号に基づいて、前記角度信号を算出するサーボループを有する、請求項7または8に記載の回転角検出装置。
    The first AD conversion unit outputs a first 1-bit ΔΣ signal corresponding to the detection result of the magnetic field of the first axis,
    The second AD converter outputs a second 1-bit ΔΣ signal corresponding to the detection result of the magnetic field of the second axis,
    The rotation angle detection device according to claim 7 or 8, wherein the signal detection device includes a servo loop that calculates the angle signal based on the first and second 1-bit ΔΣ signals.
  10.  前記信号検出装置は、CORDICである請求項7または8に記載の回転角検出装置。 The rotation angle detection device according to claim 7 or 8, wherein the signal detection device is a CORDIC.
  11.  請求項7から10のいずれか一項に記載の回転角検出装置を備え、
     第1の軸の磁場と第2の軸の磁場の検出結果に応じて、回転体の角度信号および振幅信号を出力する、
     回転角センサ。
    A rotation angle detection device according to any one of claims 7 to 10,
    According to the detection result of the magnetic field of the first axis and the magnetic field of the second axis, the angle signal and the amplitude signal of the rotating body are output.
    Rotation angle sensor.
  12.  回転体の回転に応じて変化する第1の軸の磁場と第2の軸の磁場を検出する、磁場検出部の検出信号の誤差補正方法であって、
     前記検出信号に応じて算出される、前記回転体の角度信号と振幅信号を取得し、
     前記磁場検出部の誤差モードに対応する予め定められた周期関数と、前記振幅信号に基づく被測定信号との相関信号を算出し、
     前記相関信号に基づいて、前記誤差モードに対応する前記検出信号を補正する、
     誤差補正方法。
    An error correction method for a detection signal of a magnetic field detection unit that detects a magnetic field of a first axis and a magnetic field of a second axis that change according to rotation of a rotating body,
    Obtaining an angle signal and an amplitude signal of the rotating body, which are calculated according to the detection signal;
    Calculating a correlation signal between a predetermined periodic function corresponding to the error mode of the magnetic field detector and the signal under measurement based on the amplitude signal;
    Correcting the detection signal corresponding to the error mode based on the correlation signal;
    Error correction method.
  13.  前記誤差モードは、
     前記磁場検出部が前記第1の軸方向のオフセット成分を含む第1モードと、
     前記磁場検出部が前記第2の軸方向のオフセット成分を含む第2モードと、
     前記磁場検出部が前記第1の軸および前記第2の軸の間の磁気感度ミスマッチを含む第3モードと、
     前記磁場検出部が非直交性誤差を含む第4モードと、
     のうちの少なくとも1つのモードを有する、請求項12に記載の誤差補正方法。
    The error mode is
    A first mode in which the magnetic field detector includes an offset component in the first axial direction;
    A second mode in which the magnetic field detector includes an offset component in the second axial direction;
    A third mode in which the magnetic field detector includes a magnetic sensitivity mismatch between the first axis and the second axis;
    A fourth mode in which the magnetic field detector includes a non-orthogonal error;
    The error correction method according to claim 12, comprising at least one mode.
  14.  前記相関信号を算出することは、
     前記誤差モードが前記第1モードの場合に、前記周期関数を1倍角の余弦として、前記被測定信号との相関信号を算出し、
     前記誤差モードが前記第2モードの場合に、前記周期関数を1倍角の正弦として、前記被測定信号との相関信号を算出し、
     前記誤差モードが前記第3モードの場合に、前記周期関数を2倍角の余弦として、前記被測定信号との相関信号を算出し、
     前記誤差モードが前記第4モードの場合に、前記周期関数を2倍角の正弦として、前記被測定信号との相関信号を算出する、請求項13に記載の誤差補正方法。
    Calculating the correlation signal is
    When the error mode is the first mode, a correlation signal with the signal under measurement is calculated using the periodic function as a cosine of 1 × square,
    When the error mode is the second mode, a correlation signal with the signal under measurement is calculated with the periodic function as a sine of 1 ×
    When the error mode is the third mode, a correlation signal with the signal under measurement is calculated using the periodic function as a cosine of a double angle,
    14. The error correction method according to claim 13, wherein when the error mode is the fourth mode, a correlation signal with the signal under measurement is calculated using the periodic function as a sine of a double angle.
  15.  コンピュータに、請求項12から14のいずれか一項に記載の誤差補正方法を実行させるプログラム。 A program for causing a computer to execute the error correction method according to any one of claims 12 to 14.
  16.  請求項15に記載のプログラムを記憶する媒体。 A medium for storing the program according to claim 15.
PCT/JP2015/073402 2014-08-26 2015-08-20 Error correction device, rotational-angle detection device, rotational-angle sensor, error correction method, and program WO2016031674A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014171297 2014-08-26
JP2014-171297 2014-08-26
JP2014191653 2014-09-19
JP2014-191653 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016031674A1 true WO2016031674A1 (en) 2016-03-03

Family

ID=55399568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073402 WO2016031674A1 (en) 2014-08-26 2015-08-20 Error correction device, rotational-angle detection device, rotational-angle sensor, error correction method, and program

Country Status (1)

Country Link
WO (1) WO2016031674A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505538A (en) * 2020-03-17 2020-08-07 天津中科华誉科技有限公司 Magnetic field direction sensor correction and calculation method, device, storage medium and equipment
CN112146688A (en) * 2019-06-28 2020-12-29 三菱电机株式会社 Rotation angle detecting device
CN112215403A (en) * 2020-09-16 2021-01-12 深圳市兆威机电股份有限公司 Method and device for determining angle
CN114076906A (en) * 2021-11-16 2022-02-22 吉林大学 Non-orthogonal error correction method for high-temperature superconducting full-tensor magnetic gradient probe
CN114301352A (en) * 2021-11-25 2022-04-08 广州极飞科技股份有限公司 Motor speed measuring method, speed measuring device and speed measuring system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191101A (en) * 2002-12-09 2004-07-08 Asahi Kasei Electronics Co Ltd Integrated circuit for processing magnetic sensor signal, its rotation angle measuring method, and rotation angle sensor
JP2010190872A (en) * 2009-02-20 2010-09-02 Asahi Kasei Electronics Co Ltd Angle error reduction
JP2010261898A (en) * 2009-05-11 2010-11-18 Nikon Corp Device for detection of magnetic rotation angle, and encoder
JP2011169814A (en) * 2010-02-19 2011-09-01 Nikon Corp Magnetic encoder
JP2013002835A (en) * 2011-06-13 2013-01-07 Asahi Kasei Electronics Co Ltd Rotation angle detecting device
JP2014016166A (en) * 2012-07-05 2014-01-30 Asahi Kasei Electronics Co Ltd Rotation angle detection device and failure detection method of the same
JP2014025871A (en) * 2012-07-30 2014-02-06 Mitsutoyo Corp Encoder output signal correction apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191101A (en) * 2002-12-09 2004-07-08 Asahi Kasei Electronics Co Ltd Integrated circuit for processing magnetic sensor signal, its rotation angle measuring method, and rotation angle sensor
JP2010190872A (en) * 2009-02-20 2010-09-02 Asahi Kasei Electronics Co Ltd Angle error reduction
JP2010261898A (en) * 2009-05-11 2010-11-18 Nikon Corp Device for detection of magnetic rotation angle, and encoder
JP2011169814A (en) * 2010-02-19 2011-09-01 Nikon Corp Magnetic encoder
JP2013002835A (en) * 2011-06-13 2013-01-07 Asahi Kasei Electronics Co Ltd Rotation angle detecting device
JP2014016166A (en) * 2012-07-05 2014-01-30 Asahi Kasei Electronics Co Ltd Rotation angle detection device and failure detection method of the same
JP2014025871A (en) * 2012-07-30 2014-02-06 Mitsutoyo Corp Encoder output signal correction apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112146688A (en) * 2019-06-28 2020-12-29 三菱电机株式会社 Rotation angle detecting device
CN111505538A (en) * 2020-03-17 2020-08-07 天津中科华誉科技有限公司 Magnetic field direction sensor correction and calculation method, device, storage medium and equipment
CN111505538B (en) * 2020-03-17 2022-12-09 天津中科华誉科技有限公司 Magnetic field direction sensor correction and calculation method, device, storage medium and equipment
CN112215403A (en) * 2020-09-16 2021-01-12 深圳市兆威机电股份有限公司 Method and device for determining angle
CN114076906A (en) * 2021-11-16 2022-02-22 吉林大学 Non-orthogonal error correction method for high-temperature superconducting full-tensor magnetic gradient probe
CN114076906B (en) * 2021-11-16 2023-10-17 吉林大学 Non-orthogonal error correction method for high-temperature superconductive full tensor magnetic gradient probe
CN114301352A (en) * 2021-11-25 2022-04-08 广州极飞科技股份有限公司 Motor speed measuring method, speed measuring device and speed measuring system
CN114301352B (en) * 2021-11-25 2023-12-26 广州极飞科技股份有限公司 Motor speed measuring method and device and system

Similar Documents

Publication Publication Date Title
WO2016031674A1 (en) Error correction device, rotational-angle detection device, rotational-angle sensor, error correction method, and program
JP2016061708A (en) Calibration method of rotation angle sensor, calibration method of rotation angle sensor module, calibration parameter generation device, rotation angle sensor, rotation angle sensor module and program
JP4689435B2 (en) Angle detection sensor
WO2016027838A1 (en) Failure diagnosis device, rotation angle sensor, failure diagnosis method, and program
WO2010010811A1 (en) Geomagnetic sensor control device
US10782131B2 (en) Quadrature ADC feedback compensation for capacitive-based MEMS gyroscope
US10884092B2 (en) Non-orthogonality compensation of a magnetic field sensor
JP6530245B2 (en) Detection device, magnetic sensor, detection method, and program
JP2009229171A (en) Synchronous detection circuit, detection circuit, physical quantity measuring device, gyroscope sensor, and electronic device
JP2016102659A (en) Hall sensor, rotation angle sensor, offset adjustment device, and offset adjustment method
JP5173884B2 (en) Angular error reduction
US10438835B2 (en) System reference with compensation of electrical and mechanical stress and life-time drift effects
JP5176208B2 (en) Rotation angle detection method and rotation angle sensor
JP2005061969A (en) Azimuthal angle measuring instrument and azimuthal angle measuring method
WO2016204205A1 (en) Detection device, rotation angle detection device, detection method, and program
JP2019028037A (en) Rotation angle sensor calibration method, module calibration method, calibration parameter generation device, rotation angle sensor, rotation angle sensor module and program
JP6535292B2 (en) Abnormality diagnosis device, abnormality diagnosis method, and program
JP6477718B2 (en) Current detection method, current detection device, current detection device signal correction method, and current detection device signal correction device
JP2019035629A (en) Calibration device, calibration method, rotational angle detector, and program
JP6653336B2 (en) Angle detecting device and method
JP2006170837A (en) Angle detection sensor with compensation function
JP4559888B2 (en) Geomagnetism measuring apparatus and geomagnetism measuring method
US20220364891A1 (en) Device and method for calibrating a magnetic angle sensor
JP2011095144A (en) Rotation angle sensor and rotation angle calculation method
JP5376338B2 (en) Rotation angle detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP