WO2017130590A1 - 電気掃除機 - Google Patents

電気掃除機 Download PDF

Info

Publication number
WO2017130590A1
WO2017130590A1 PCT/JP2016/087307 JP2016087307W WO2017130590A1 WO 2017130590 A1 WO2017130590 A1 WO 2017130590A1 JP 2016087307 W JP2016087307 W JP 2016087307W WO 2017130590 A1 WO2017130590 A1 WO 2017130590A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
body case
main body
vacuum cleaner
unit
Prior art date
Application number
PCT/JP2016/087307
Other languages
English (en)
French (fr)
Inventor
星野 享
Original Assignee
東芝ライフスタイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライフスタイル株式会社 filed Critical 東芝ライフスタイル株式会社
Priority to US16/073,696 priority Critical patent/US20190038099A1/en
Priority to CN201680011927.2A priority patent/CN107405035B/zh
Priority to EP16888174.6A priority patent/EP3409176A4/en
Publication of WO2017130590A1 publication Critical patent/WO2017130590A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/2826Parameters or conditions being sensed the condition of the floor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2894Details related to signal transmission in suction cleaners
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Definitions

  • Embodiment of this invention is related with the vacuum cleaner which can drive
  • Such a vacuum cleaner stores in advance the floor plan of the room to be cleaned, or once travels inside the room to store the floor plan, sets an optimal travel route accordingly, and travels along the travel route. While cleaning. However, if the room to be cleaned changes, the stored room layout differs from the room layout to be cleaned, so a new floor plan must be stored and a travel route created. At this time, since the operation of actually cleaning the room and the operation for storing the room layout are greatly different, it takes time to create a travel route every time the room to be cleaned changes. Not only will cleaning efficiency be reduced.
  • the problem to be solved by the present invention is to provide a vacuum cleaner that can shorten the cleaning time and can be efficiently cleaned according to the cleaning area.
  • the vacuum cleaner of the embodiment includes a main body case, a drive wheel, a cleaning unit, an extraction unit, and a control unit.
  • the drive wheel is allowed to travel in the main body case.
  • the cleaning unit cleans the surface to be cleaned.
  • the extracting means extracts feature points around the main body case.
  • the control means causes the main body case to autonomously travel by controlling driving of the drive wheels. And this control means specifies the present cleaning area
  • FIG. 6 is an explanatory diagram illustrating an example of a distance image generated based on (). It is a flowchart which shows control of the cleaning operation
  • FIG. 9 is an explanatory diagram illustrating an example of an image having feature points extracted based on ().
  • FIG. 4E is a plan view showing an example of a map corrected by the operation of FIG.
  • reference numeral 11 denotes an electric vacuum cleaner.
  • the electric vacuum cleaner 11 is an electric cleaner together with a charging device 12 (charging base) serving as a base device serving as a charging base portion of the electric vacuum cleaner 11. It constitutes a device (electric cleaning system).
  • the vacuum cleaner 11 is a so-called self-propelled robot cleaner (cleaning robot) that cleans the floor surface while autonomously traveling (self-propelled) on the floor surface to be cleaned as a traveling surface. ).
  • the electric vacuum cleaner 11 includes a hollow main body case 20.
  • the vacuum cleaner 11 includes a traveling unit 21 that causes the main body case 20 to travel on the floor surface.
  • the electric vacuum cleaner 11 includes a cleaning unit 22 that cleans dust such as a floor surface.
  • the vacuum cleaner 11 may include a communication unit 23 that communicates with an external device including the charging device 12.
  • the vacuum cleaner 11 may include an imaging unit 25 that captures an image.
  • the vacuum cleaner 11 may include a sensor unit 26.
  • the vacuum cleaner 11 further includes a control means (control unit) 27 that is a controller that controls the traveling unit 21, the cleaning unit 22, the communication unit 23, the imaging unit 25, and the like.
  • the vacuum cleaner 11 may include a secondary battery 28 that supplies power to the traveling unit 21, the cleaning unit 22, the communication unit 23, the imaging unit 25, the sensor unit 26, the control unit 27, and the like.
  • the direction along the traveling direction of the vacuum cleaner 11 (main body case 20) is defined as the front-rear direction (arrow FR, RR direction shown in FIG. 2), and the left-right direction intersecting (orthogonal) with the front-rear direction ( The description will be made assuming that the width direction is the width direction.
  • the main body case 20 is formed in a flat columnar shape (disc shape), for example, with synthetic resin or the like. That is, the main body case 20 includes a side surface portion 20a (FIG. 2), and an upper surface portion 20b (FIG. 2) and a lower surface portion 20c (FIG. 3) that are continuous with the upper and lower portions of the side surface portion 20a, respectively.
  • the side surface portion 20a of the main body case 20 is formed in a substantially cylindrical surface shape, and for example, an imaging unit 25 is disposed on the side surface portion 20a.
  • the upper surface portion 20b and the lower surface portion 20c of the main body case 20 are each formed in a substantially circular shape. As shown in FIG. 3, the lower surface portion 20c facing the floor surface has a suction port that is a dust collection port. 31 and the exhaust port 32 are opened.
  • the traveling unit 21 includes drive wheels 34 and 34 as a plurality (a pair) of drive units, and motors 35 and 35 (FIG. 1) as drive means as drive units for driving the drive wheels 34 and 34.
  • the traveling unit 21 may include a turning wheel 36 for turning.
  • Each drive wheel 34 causes the vacuum cleaner 11 (main body case 20) to travel in the forward and backward directions on the floor (autonomous traveling), that is, for traveling, and rotates not shown along the left-right width direction. It has an axis and is arranged symmetrically in the width direction.
  • Each motor 35 (FIG. 1) is arranged corresponding to each of the drive wheels 34, for example, and can drive each drive wheel 34 independently.
  • the swivel wheel 36 is a driven wheel that is located at the front and substantially at the center in the width direction of the lower surface 20c of the main body case 20, and is capable of swiveling along the floor surface.
  • the cleaning unit 22 is located in the main body case 20, for example, an electric blower 41 that sucks dust together with air from the suction port 31 and exhausts it from the exhaust port 32, and a rotary cleaning body that is rotatably attached to the suction port 31 and scrapes up dust.
  • a side brush 44 that is an auxiliary cleaning unit
  • a side brush motor 45 that drives the side brush 44 (FIG. 1)
  • a dust collecting unit 46 that communicates with the suction port 31 and collects dust (FIG. 2). Yes.
  • the electric blower 41, the rotating brush 42 and the brush motor 43 (FIG. 1), and the side brush 44 and the side brush motor 45 (FIG. 1) may be provided with at least one of them.
  • the communication unit 23 shown in FIG. 1 transmits a wireless signal (infrared signal) to the charging device 12 or the like from a transmitting means (transmitting unit) (not shown) such as an infrared light emitting element, and the charging device 12 or a remote control (not shown).
  • a transmitting means transmitting unit
  • receiving unit receiving unit
  • a phototransistor is provided.
  • the imaging unit 25 includes a plurality of cameras 51a and 51b as, for example, one and the other imaging means (imaging unit main body).
  • the imaging unit 25 may include a lamp 53 such as an LED as an illumination unit (illumination unit) that provides illumination to the cameras 51a and 51b.
  • the cameras 51 a and 51 b are disposed on both sides of the front portion of the side surface portion 20 a of the main body case 20.
  • the cameras 51a and 51b have a predetermined angle (equivalent to the left-right direction) with respect to the center line L in the width direction of the vacuum cleaner 11 (main body case 20) on the side surface portion 20a of the main body case 20. (Acute angle) It is arranged at an inclined position.
  • these cameras 51a and 51b are arranged substantially symmetrically in the width direction with respect to the main body case 20, and the center positions of these cameras 51a and 51b are in the traveling direction of the vacuum cleaner 11 (main body case 20).
  • these cameras 51a and 51b are respectively arranged at substantially equal positions in the vertical direction, that is, at substantially equal height positions. For this reason, these cameras 51a and 51b are set to have substantially the same height from the floor surface with the vacuum cleaner 11 placed on the floor surface. Therefore, the cameras 51a and 51b are arranged to be spaced apart from each other (positions displaced in the left-right direction).
  • these cameras 51a and 51b are arranged in such a way that a digital image is displayed at a predetermined horizontal angle of view (for example, 105 °) at a predetermined time, for example, every several tens of milliseconds, in front of the main body case 20 in the traveling direction. It is a digital camera that takes images every hour or every few seconds. Furthermore, these cameras 51a and 51b have their imaging ranges (fields of view) Va and Vb overlapping (FIG. 4), and images P1 and P2 (one and the other) captured by these cameras 51a and 51b (FIG. 5). (a) and FIG.
  • these cameras 51a and 51b capture an image in the visible light region, for example. Note that images captured by these cameras 51a and 51b can be compressed into a predetermined data format by an image processing circuit (not shown), for example.
  • the lamp 53 outputs illumination light when an image is captured by the cameras 51a and 51b, and is disposed at an intermediate position between the cameras 51a and 51b, that is, a position on the center line L of the side surface portion 20a of the main body case 20.
  • the lamp 53 is disposed at a position substantially equal to the cameras 51a and 51b in the vertical direction, that is, at a substantially equal height. Accordingly, the lamp 53 is disposed at a substantially central portion in the width direction of the cameras 51a and 51b.
  • the lamp 53 illuminates light including a visible light region.
  • the rotation speed sensor 55 such as an optical encoder that detects the rotational speed of each drive wheel 34 (each motor 35).
  • the rotation speed sensor 55 detects the turning angle and travel distance of the vacuum cleaner 11 (main body case 20 (FIG. 3)) based on the measured rotation speed of the drive wheel 34 (FIG. 3) or the motor 35. Yes. Therefore, the rotation speed sensor 55 is a position detection sensor that detects the relative position of the vacuum cleaner 11 (main body case 20 (FIG. 3)) from a reference position such as the charging device 12, for example.
  • the sensor unit 26 is, for example, a contact sensor as an obstacle detection unit that detects an obstacle by contact with an obstacle, and a light as a dust amount detection unit that detects the amount of dust collected by the dust collection unit 46.
  • a sensor or the like may be further provided.
  • the control means 27 includes, for example, a CPU that is a control means main body (control part main body), a ROM that is a storage part that stores fixed data such as a program read by the CPU, and a work area that is a work area for data processing by the program
  • the microcomputer includes a RAM (not shown) that is an area storage unit that dynamically forms various memory areas.
  • the control unit 27 may further include a memory 61 as a storage unit (storage unit) that stores data of images captured by the cameras 51a and 51b, for example.
  • the control unit 27 may include a depth calculation unit 62 as a calculation unit (calculation unit) that calculates the depth of an object from the cameras 51a and 51b based on images captured by the cameras 51a and 51b.
  • control unit 27 may include an image generation unit 63 as an image generation unit (image generation unit) that generates a distance image based on the depth of the object calculated by the depth calculation unit 62.
  • the control unit 27 may include a determination unit 64 as an obstacle determination unit (obstacle determination unit) that determines an obstacle based on the depth calculated by the depth calculation unit 62.
  • the control means 27 may include an extraction unit 65 that extracts feature points from images captured by the cameras 51a and 51b, that is, distance images generated by the image generation unit 63 in this embodiment.
  • control means 27 may include a specifying unit 66 that specifies the cleaning region by comparing the feature points extracted by the extraction unit 65 with the feature points stored (registered) in the memory 61 or the like.
  • control unit 27 may include an image processing unit 67 as a map generation unit (map generation unit) that generates a map of the cleaning area based on the depth of the object calculated by the depth calculation unit 62.
  • the control means 27 may include a travel control unit 71 that controls the operation of the motors 35 and 35 (drive wheels 34 and 34) of the travel unit 21.
  • control means 27 may include a cleaning control unit 72 that controls operations of the electric blower 41, the brush motor 43, and the side brush motor 45 of the cleaning unit 22.
  • control means 27 may include an imaging control unit 73 that controls the cameras 51a and 51b of the imaging unit 25.
  • control unit 27 may include an illumination control unit 74 that controls the lamp 53 of the imaging unit 25.
  • control means 27 is equipped with the driving mode which drives the driving wheels 34 and 34 (motors 35 and 35), for example, and makes the vacuum cleaner 11 (main body case 20) autonomously drive. Further, the control means 27 may have a charging mode for charging the secondary battery 28 via the charging device 12. Further, the control means 27 may be provided with a standby mode during operation standby.
  • the memory 61 is a non-volatile memory such as a flash memory that holds various data stored regardless of whether the electric power of the vacuum cleaner 11 is turned on or off.
  • the depth calculation unit 62 uses a known method for calculating the depth of the object O based on the images captured by the cameras 51a and 51b and the distance between the cameras 51a and 51b (FIG. 5). That is, the depth calculation unit 62 applies triangulation, detects a pixel dot indicating the same position from each image captured by the cameras 51a and 51b, and calculates the vertical and horizontal angles of the pixel dot. From these angles and the distance between the cameras 51a and 51b, the depth from the cameras 51a and 51b at that position is calculated. Therefore, it is preferable that the images captured by the cameras 51a and 51b overlap (wrap) as much as possible.
  • the image generation unit 63 generates a distance image indicating the distance of the object (feature point) calculated by the depth calculation unit 62.
  • the distance image is generated by the image generator 63 by converting the calculated distance of each pixel dot into a gradation that can be identified by visual recognition such as brightness or color tone for each predetermined dot such as one dot. Is done.
  • the image generation unit 63 is a black and white image that has a smaller brightness as the distance increases, that is, the blacker the distance to the front from the vacuum cleaner 11 (main body case 20), the whiter the distance is, for example, 256.
  • this distance image is a visualization of a collection of distance information (distance data) of objects located within the range imaged by the cameras 51a and 51b in the traveling direction of the vacuum cleaner 11 (main body case 20). It is.
  • the image generation unit 63 may generate a distance image only for pixel dots within a predetermined image range in each image captured by the cameras 51a and 51b, or generate a distance image of the entire image. May be.
  • the determination unit 64 determines whether the object is an obstacle based on the depth of the object calculated by the depth calculation unit 62. That is, the determination unit 64 extracts a portion in a predetermined range, for example, a predetermined rectangular image range A (FIG. 5C) in the distance image P3 from the depth calculated by the depth calculation unit 62, The depth of the object O in the image range A is compared with a set distance D (FIG. 4), which is a preset or variably set threshold, and a depth equal to or less than the set distance D (the vacuum cleaner 11 (main body It is determined that the object O located at a distance) from the case 20) is an obstacle.
  • the image range A is set according to the vertical and horizontal sizes of the vacuum cleaner 11 (main body case 20).
  • the image range A is set up, down, left, and right in a range where the vacuum cleaner 11 (main body case 20) is in direct contact with the image range A. Therefore, the cameras 51a and 51b (imaging unit 25), the depth calculation unit 62, the image generation unit 63, and the determination unit 64 constitute an obstacle sensor 76 as an obstacle detection unit that detects an obstacle.
  • the extraction unit 65 performs feature detection (feature extraction) such as edge detection on the images captured by the cameras 51a and 51b, in this embodiment, the distance image generated by the image generation unit 63, and thereby in the distance image. Extract feature points. Any known method can be used as the edge detection method. Therefore, as shown in FIG. 1, the camera 51a, 51b (imaging unit 25), the depth calculation unit 62, the image generation unit 63, and the extraction unit 65 are connected to feature points (cameras) around the vacuum cleaner 11 (main body case 20). Extraction means 77 for extracting (feature points in the images captured by 51a and 51b) is configured.
  • the periphery of the vacuum cleaner 11 refers to not only the vicinity of the vacuum cleaner 11 (main body case 20) but also the vacuum cleaner 11 (main body case 20) such as a ceiling.
  • positions that are far apart positions in a range that can be imaged by the cameras 51a and 51b are also included.
  • the specifying unit 66 compares the feature points extracted by the extraction unit 65 (extraction means 77) with, for example, feature points corresponding to, for example, a map of the cleaning area stored in the memory 61, and calculates a similarity rate. Depending on whether or not the similarity is equal to or greater than a predetermined threshold, it is determined whether or not the cleaning area obtained by capturing the distance image obtained by extracting the feature points with the cameras 51a and 51b matches the stored cleaning area. Identify the current cleaning area.
  • the feature points corresponding to the stored cleaning area may be registered by the owner by inputting a map or the like in the vacuum cleaner 11 in advance or when the vacuum cleaner 11 previously identifies the cleaning area.
  • the feature points may be stored in correspondence with the map of the cleaning area cleaned at that time, the travel route, or the like.
  • the image processing unit 67 calculates the distance between the object around the vacuum cleaner 11 (main body case 20) and the vacuum cleaner 11 (main body case 20) from the depth of the object calculated by the depth calculation unit 62. And the position of the vacuum cleaner 11 (main body case 20) detected by the rotational speed sensor 55 of the sensor unit 26, the cleaning area where the vacuum cleaner 11 (main body case 20) is arranged, and the object located in this cleaning area A map and / or a driving route is generated by calculating a positional relationship such as
  • the traveling control unit 71 controls the driving of the motors 35 and 35 by controlling the magnitude and direction of the current flowing through the motors 35 and 35, thereby rotating the motors 35 and 35 forward or reverse.
  • the drive of drive wheels 34 and 34 (FIG. 3) is controlled by controlling the drive of 35 and 35.
  • the travel control unit 71 is configured to control the travel direction and / or travel speed of the electric vacuum cleaner 11 (main body case 20) according to the determination of the determination unit 64.
  • the cleaning control unit 72 separately controls the conduction angle of the electric blower 41, the brush motor 43, and the side brush motor 45, so that the electric blower 41, the brush motor 43 (the rotating brush 42 (FIG. 3)), and The driving of the side brush motor 45 (side brush 44 (FIG. 3)) is controlled. Further, the cleaning control unit 72 is configured to control the operation of the cleaning unit 22 in accordance with the determination of the determination unit 64.
  • a controller may be provided separately for each of the electric blower 41, the brush motor 43, and the side brush motor 45.
  • the imaging control unit 73 includes a control circuit that controls the operation of the shutters of the cameras 51a and 51b, and controls the cameras 51a and 51b to capture images at predetermined time intervals by operating the shutters at predetermined time intervals. To do.
  • the illumination control unit 74 controls on / off of the lamp 53 through a switch or the like.
  • the illumination control unit 74 includes a sensor that detects the brightness around the vacuum cleaner 11. When the brightness detected by the sensor is equal to or lower than a predetermined level, the lamp 53 is turned on. In this case, the lamp 53 is not turned on.
  • the secondary battery 28 is electrically connected to charging terminals 78 and 78 as connection portions exposed on both sides of the rear portion of the lower surface portion 20c of the main body case 20 shown in FIG. By being electrically and mechanically connected to the charging device 12 side, charging is performed via the charging device 12.
  • the charging device 12 has a built-in charging circuit such as a constant current circuit.
  • the charging device 12 is provided with charging terminals 79 and 79 for charging the secondary battery 28 mechanically and electrically connected to the charging terminals 78 and 78 of the vacuum cleaner 11. These charging terminals 79 and 79 are electrically connected to a charging circuit.
  • the electric vacuum cleaner is roughly classified into a cleaning operation for cleaning with the electric vacuum cleaner 11 and a charging operation for charging the secondary battery 28 with the charging device 12. Since a known method using the charging circuit of the charging device 12 is used for the charging operation, only the cleaning operation will be described. Further, an imaging operation for imaging a predetermined object by at least one of the cameras 51a and 51b in accordance with a command from an external device or the like may be provided.
  • this cleaning operation is roughly as follows.
  • the vacuum cleaner 11 extracts the peripheral feature points by the extracting means 77 (step 1), and the feature points and the pre-stored features are stored. It is determined whether or not the point matches (step 2). If it is determined in step 2 that the feature points match, the control means 27 reads a map or a travel route corresponding to the feature points (step 3), and drives wheels 34, 34 (motors 35, 35). ) To drive the vacuum cleaner 11 (main body case 20) along the map or travel route, and the cleaning unit 22 performs cleaning (step 4).
  • the control means 27 controls the driving of the drive wheels 34, 34 (motors 35, 35) to thereby control the vacuum cleaner 11 (main body case 20).
  • the control means 27 controls the driving of the drive wheels 34, 34 (motors 35, 35) to thereby control the vacuum cleaner 11 (main body case 20).
  • step 6 it is determined whether or not the cleaning is finished, for example, whether the cleaning of the cleaning region is finished or the capacity of the secondary battery 28 is insufficient (step 6). If it is determined that the cleaning is to be finished, the process returns to a predetermined position, for example, the charging device 12 (step 7), and the cleaning operation is finished.
  • the vacuum cleaner 11 is controlled by the control means 27 at timing such as when a preset cleaning start time is reached or when a cleaning start command signal transmitted by a remote controller or an external device is received.
  • the standby mode is switched to the running mode, and cleaning work is started.
  • the vacuum cleaner 11 images the front from the position with the cameras 51a and 51b, and the control means 27 calculates the depth of the object imaged by the depth calculation unit 62 from the images captured by the cameras 51a and 51b. Then, the distance image is generated by the image generation unit 63. At this time, the range captured by the cameras 51a and 51b is within the viewing angle of the cameras 51a and 51b from the current position of the vacuum cleaner 11, as shown in FIG. It is within the range R excluding the resulting blind spot DA.
  • the control means 27 extracts feature points from the generated distance image by the extraction unit 65.
  • FIG. 8C shows a feature point extracted from a distance image generated based on the images P4 and P5 shown in FIGS. 8A and 8B (for example, an object or a floor surface arranged near the wall surface).
  • An image P6 having edges such as irregularities of FIG.
  • the extracted feature point and the feature point corresponding to the stored cleaning area are compared by the specifying unit 66 to calculate the similarity rate. Is equal to or greater than a predetermined value, it is determined that the feature points match. If the similarity is less than the predetermined value, it is determined that the feature points do not match.
  • This determination is sequentially performed on the stored cleaning area. Therefore, when a plurality of cleaning areas are stored, the above determination is continued until the cleaning area is specified, and when the extracted feature points and the feature points of all the cleaning areas do not match, It is determined that the points do not match. Further, when there is no stored cleaning area or its feature point, it is determined that the feature points do not match.
  • control means 27 specifies that the current cleaning region is the stored cleaning region, and a map M (for example, FIG. 7 (b)) or the travel route RT (for example, FIG. 7 (c)) is read out, and the process proceeds to a cleaning mode to be described later.
  • a map M for example, FIG. 7 (b)
  • the travel route RT for example, FIG. 7 (c)
  • the control unit 27 when it is determined that the feature points do not match, that is, when it is determined that the cleaning area information is not stored, the control unit 27 generates a cleaning area map or a travel route by the image processing unit 67. .
  • the vacuum cleaner 11 main body case 20
  • the vacuum cleaner 11 travels along the outer wall of the cleaning area, etc.
  • the distance of the object in the image imaged by 51b is calculated, walls and obstacles are determined from this distance, and a map is generated based on the current position of the vacuum cleaner 11 (map generation mode).
  • a travel route can be generated based on this map.
  • this map generation for example, as shown in FIG. 9 (a), from the state where the vacuum cleaner 11 (main body case 20) is connected to the charging device 12, as shown in FIG. 9 (b), the charging device After leaving a predetermined distance from 12, images are taken by the cameras 51a and 51b while turning at a predetermined angle (super turning). At this time, the turning angle of the electric vacuum cleaner 11 (main body case 20) is, for example, 360 °. Then, the position (coordinates) of the obstacle is recognized based on the distance of the imaged object from the vacuum cleaner 11 (main body case 20) and the current position of the vacuum cleaner 11 (main body case 20). As shown in (c), a map M (indicated by a bold line in the figure) is generated.
  • the position that becomes the blind spot of the cameras 51a and 51b is processed as an obstacle or a wall.
  • the electric vacuum cleaner 11 (main body case 20) is rotated in the same direction at the position where it has traveled in a predetermined direction (super-spinning), and images are taken by the cameras 51a and 51b. Recognize the position (coordinates) of the obstacle based on the distance of the imaged object from the vacuum cleaner 11 (main body case 20) and the current position of the vacuum cleaner 11 (main body case 20).
  • the map M (indicated by the bold line in the figure) is corrected as shown in 9 (e).
  • the predetermined direction is a direction in which no obstacle exists in the initially generated map M.
  • the control unit 27 ends the map generation mode, and generates a travel route based on this map as necessary. After that, it shifts to the following cleaning mode.
  • the travel route is, for example, a route that can efficiently travel in the cleaning region at the shortest distance, or a route that can effectively clean a portion that is assumed to be easily contaminated in the cleaning region.
  • the vacuum cleaner 11 performs cleaning while autonomously traveling in the cleaning area based on the read map or travel route, or the newly generated and stored map or travel route (cleaning mode).
  • the vacuum cleaner 11 calculates the distance of the object in the image captured by the cameras 51a and 51b while moving forward, and based on this distance, the map, and the traveling route, Obstacles are determined, and cleaning is performed by the cleaning unit 22 while traveling while avoiding these walls and obstacles.
  • the map may be corrected based on the obstacles and walls determined during the cleaning.
  • the vacuum cleaner 11 (main body case 20) autonomously travels to the corners while avoiding obstacles on the floor surface in the cleaning area, and controls the cleaning unit 22 to the control means 27 (cleaning control unit 72). ) To clean the floor dust. That is, the electric vacuum cleaner 11 performs a continuous operation such as continuing the cleaning work even if an obstacle is detected.
  • control means 27 corresponds to the feature points around the main body case 20 (the electric vacuum cleaner 11) extracted by the extraction means 77 at the start of cleaning, and the cleaning area stored in advance. If the cleaning area is stored in advance by specifying the current cleaning area by comparing with the feature points to be searched, the time for searching the cleaning area and generating a new map or travel route Cleaning can be started immediately without requiring Therefore, the cleaning time can be shortened and the cleaning can be efficiently performed according to the cleaning area.
  • the drive wheels 34, 34 are based on the previously stored map M of the cleaning area (FIG. 7 (b)) or the travel route RT (FIG. 7 (c)).
  • the cleaning can be efficiently performed according to the layout of the cleaning area, the arrangement of obstacles, and the like.
  • the control means 27 controls the drive of the drive wheels 34 and 34 (motors 35 and 35) when the similarity between the feature points extracted by the extraction means 77 and the feature points of the stored cleaning area is less than a predetermined value.
  • the depth calculation unit 62, the image generation unit 63, the determination unit 64, the extraction unit 65, the cleaning control unit 72, the imaging control unit 73, and the illumination control unit 74 are provided in the control unit 27, respectively. These may be configured separately from each other, any two or more may be arbitrarily combined, and may be provided separately from the control means 27.
  • three or more imaging means may be set. That is, the number of imaging units is not limited as long as there are a plurality of imaging units.
  • a TOF type distance image sensor or the like can be used instead of the cameras 51a and 51b.
  • the cleaning start position can be arbitrarily set.
  • the base device is not limited to the charging device 12, and a base device having any other function such as a dust station for collecting the dust collected in the dust collecting unit 46 can be used.
  • the surrounding feature points are extracted, and the current cleaning region is identified by comparing the extracted feature points with the feature points corresponding to the cleaning region stored in advance. Control method of electric vacuum cleaner.
  • a method for controlling a vacuum cleaner characterized in that, when a cleaning area is specified, autonomous running is performed based on a map of the cleaning area stored in advance.
  • the method of controlling the vacuum cleaner is characterized in that the vehicle autonomously travels based on a travel route corresponding to the cleaning area stored in advance.

Abstract

掃除時間を短縮し、掃除領域に応じて効率よく掃除できる電気掃除機(11)を提供する。電気掃除機(11)は、本体ケースと、駆動輪と、掃除部(22)と、抽出手段(77)と、制御手段(27)とを有する。駆動輪は、本体ケースを走行可能とする。掃除部(22)は、床面を掃除する。抽出手段(77)は、本体ケースの周辺の特徴点を抽出する。制御手段(27)は、駆動輪の駆動を制御することで本体ケースを自律走行させる。制御手段(27)は、掃除の開始時に、抽出手段(77)により抽出した特徴点と、予め記憶された掃除領域に対応する特徴点とを比較することで、現在の掃除領域を特定する。

Description

電気掃除機
 本発明の実施形態は、自律走行可能な電気掃除機に関する。
 従来、被掃除面としての床面上を自律走行しながら床面を掃除する、いわゆる自律走行型の電気掃除機(掃除ロボット)が知られている。
 このような電気掃除機は、掃除する部屋の間取りを予め記憶、または部屋の内部を一旦走行して間取りを記憶し、それに応じて最適な走行ルートを設定し、その走行ルートに沿って走行しながら掃除をする。しかしながら、掃除する部屋が変わると、記憶されている部屋の間取りと掃除する部屋の間取りとが異なるため、新たな間取りを記憶し走行ルートを作成しなければならない。このとき、電気掃除機は、実際に部屋を掃除する際の動作と、部屋の間取りを記憶するための動作とが大きく異なるため、掃除する部屋が変わる度に走行ルートを作成すると、時間を要するだけでなく、掃除の効率が低下する。
特開平8-16241号公報
 本発明が解決しようとする課題は、掃除時間を短縮し、掃除領域に応じて効率よく掃除できる電気掃除機を提供することである。
 実施形態の電気掃除機は、本体ケースと、駆動輪と、掃除部と、抽出手段と、制御手段とを有する。駆動輪は、本体ケースを走行可能とする。掃除部は、被掃除面を掃除する。抽出手段は、本体ケースの周辺の特徴点を抽出する。制御手段は、駆動輪の駆動を制御することで本体ケースを自律走行させる。そして、この制御手段は、掃除の開始時に、抽出手段により抽出した特徴点と、予め記憶された掃除領域に対応する特徴点とを比較することで、現在の掃除領域を特定する。
一実施形態の電気掃除機を示すブロック図である。 同上電気掃除機および基地装置を示す斜視図である。 同上電気掃除機を下方から示す平面図である。 同上電気掃除機による物体の深度の計算方法を模式的に示す説明図である。 (a)は一方の撮像手段により撮像された画像の一例を示す説明図、(b)は他方の撮像手段により撮像された画像の一例を示す説明図、(c)は(a)および(b)に基づいて生成した距離画像の一例を示す説明図である。 同上電気掃除機の掃除作業の制御を示すフローチャートである。 (a)は同上電気掃除機の掃除開始時の動作を模式的に示す説明図、(b)は同上電気掃除機の記憶されている掃除領域のマップの一例を示す説明図、(c)は同上掃除領域の走行ルートの一例を示す説明図である。 (a)は一方の撮像手段により撮像された画像の一例を示す説明図、(b)は他方の撮像手段により撮像された画像の一例を示す説明図、(c)は(a)および(b)に基づいて抽出された特徴点を有する画像の一例を示す説明図である。 (a)は同上電気掃除機の掃除開始時の掃除領域を模式的に示す平面図、(b)は同上電気掃除機のマップまたは走行ルートを生成するときの動作を模式的に示す平面図、(c)は(b)の動作により生成したマップの一例を示す平面図、(d)は同上電気掃除機のマップまたは走行ルートを生成するときの(b)に続く動作を模式的に示す平面図、(e)は(d)の動作により修正したマップの一例を示す平面図である。
実施形態
 以下、一実施形態の構成を、図面を参照して説明する。
 図1ないし図3において、11は電気掃除機であり、この電気掃除機11は、この電気掃除機11の充電用の基地部となる基地装置としての充電装置12(充電台)などとともに電気掃除装置(電気掃除システム)を構成するものである。そして、電気掃除機11は、本実施形態において、走行面としての被掃除面である床面上を自律走行(自走)しつつ床面を掃除する、いわゆる自走式のロボットクリーナ(掃除ロボット)である。
 また、この電気掃除機11は、中空状の本体ケース20を備えている。また、この電気掃除機11は、本体ケース20を床面上で走行させる走行部21を備えている。さらに、この電気掃除機11は、床面などの塵埃を掃除する掃除部22を備えている。また、この電気掃除機11は、充電装置12を含む外部装置と通信する通信部23を備えていてもよい。さらに、この電気掃除機11は、画像を撮像する撮像部25を備えていてもよい。また、この電気掃除機11は、センサ部26を備えていてもよい。さらに、この電気掃除機11は、走行部21、掃除部22、通信部23、および、撮像部25などを制御するコントローラである制御手段(制御部)27を備えている。また、この電気掃除機11は、走行部21、掃除部22、通信部23、撮像部25、センサ部26および制御手段27などに給電する二次電池28を備えていてもよい。なお、以下、電気掃除機11(本体ケース20)の走行方向に沿った方向を前後方向(図2に示す矢印FR,RR方向)とし、この前後方向に対して交差(直交)する左右方向(両側方向)を幅方向として説明する。
 本体ケース20は、例えば合成樹脂などにより扁平な円柱状(円盤状)などに形成されている。すなわち、この本体ケース20は、側面部20a(図2)と、この側面部20aの上部および下部にそれぞれ連続する上面部20b(図2)および下面部20c(図3)とを備えている。この本体ケース20の側面部20aは、略円筒面状に形成されており、この側面部20aには、例えば撮像部25などが配置されている。また、本体ケース20の上面部20bおよび下面部20cは、それぞれ略円形状に形成されており、図3に示すように、床面に対向する下面部20cには、集塵口である吸込口31、および、排気口32などがそれぞれ開口されている。
 走行部21は、複数(一対)の駆動部としての駆動輪34,34、これら駆動輪34,34を駆動させる動作部としての駆動手段であるモータ35,35(図1)を備えている。この走行部21は、旋回用の旋回輪36を備えていてもよい。
 各駆動輪34は、電気掃除機11(本体ケース20)を床面上で前進方向および後退方向に走行(自律走行)させる、すなわち走行用のものであり、左右幅方向に沿って図示しない回転軸を有し、幅方向に対称に配置されている。
 各モータ35(図1)は、例えば駆動輪34のそれぞれに対応して配置されており、各駆動輪34を独立して駆動させることが可能となっている。
 旋回輪36は、本体ケース20の下面部20cの幅方向の略中央部で、かつ、前部に位置しており、床面に沿って旋回可能な従動輪である。
 掃除部22は、例えば本体ケース20内に位置して塵埃を吸込口31から空気とともに吸い込み排気口32から排気する電動送風機41、吸込口31に回転可能に取り付けられて塵埃を掻き上げる回転清掃体としての回転ブラシ42およびこの回転ブラシ42を回転駆動させるブラシモータ43(図1)、本体ケース20の前側などの両側に回転可能に取り付けられて塵埃を掻き集める旋回清掃部としての補助掃除手段(補助掃除部)であるサイドブラシ44およびこのサイドブラシ44を駆動させるサイドブラシモータ45(図1)、および、吸込口31と連通して塵埃を溜める集塵部46(図2)などを備えている。なお、電動送風機41と、回転ブラシ42およびブラシモータ43(図1)と、サイドブラシ44およびサイドブラシモータ45(図1)とは、少なくともいずれかを備えていればよい。
 図1に示す通信部23は、充電装置12などへと無線信号(赤外線信号)を送信する例えば赤外線発光素子などの図示しない送信手段(送信部)、および、充電装置12や図示しないリモコンなどからの無線信号(赤外線信号)を受信する例えばフォトトランジスタなどの図示しない受信手段(受信部)などを備えている。
 撮像部25は、複数、例えば一方および他方の撮像手段(撮像部本体)としてのカメラ51a,51bを備えている。この撮像部25は、カメラ51a,51bに照明を付与する照明手段(照明部)としてのLEDなどのランプ53を備えていてもよい。
 図2に示すように、カメラ51a,51bは、本体ケース20の側面部20aにおいて、前部の両側に配置されている。すなわち、本実施形態では、カメラ51a,51bは、本体ケース20の側面部20aにおいて、電気掃除機11(本体ケース20)の幅方向の中心線Lに対して、左右方向に略等しい所定角度(鋭角)傾斜した位置にそれぞれ配置されている。言い換えると、これらカメラ51a,51bは、本体ケース20に対して幅方向に略対称に配置されており、これらカメラ51a,51bの中心位置が、電気掃除機11(本体ケース20)の走行方向である前後方向と交差(直交)する幅方向の中心位置と略一致している。さらに、これらカメラ51a,51bは、上下方向に略等しい位置、すなわち略等しい高さ位置にそれぞれ配置されている。このため、これらカメラ51a,51bは、電気掃除機11を床面上に載置した状態でこの床面からの高さが互いに略等しく設定されている。したがって、カメラ51a,51bは、互いにずれた位置(左右方向にずれた位置)に離間されて配置されている。また、これらカメラ51a,51bは、本体ケース20の走行方向である前方を、それぞれ所定の水平画角(例えば105°など)でデジタルの画像を所定時間毎、例えば数十ミリ秒毎などの微小時間毎、あるいは数秒毎などに撮像するデジタルカメラである。さらに、これらカメラ51a,51bは、互いの撮像範囲(視野)Va,Vbが重なっており(図4)、これらカメラ51a,51bにより撮像される(一方および他方の)画像P1,P2(図5(a)および図5(b))は、その撮像領域が電気掃除機11(本体ケース20)の幅方向の中心線Lを延長した前方の位置を含む領域で左右方向にラップしている。本実施形態では、これらカメラ51a,51bは、例えば可視光領域の画像を撮像するものとする。なお、これらカメラ51a,51bにより撮像した画像は、例えば図示しない画像処理回路などにより所定のデータ形式に圧縮することもできる。
 ランプ53は、カメラ51a,51bにより画像を撮像する際の照明用の光を出力するもので、カメラ51a,51bの中間位置、すなわち本体ケース20の側面部20aの中心線L上の位置に配置されている。すなわち、ランプ53は、カメラ51a,51bからの距離が略等しくなっている。また、このランプ53は、カメラ51a,51bと上下方向に略等しい位置、すなわち略等しい高さ位置に配置されている。したがって、このランプ53は、カメラ51a,51bの幅方向の略中央部に配置されている。本実施形態では、このランプ53は、可視光領域を含む光を照明するようになっている。
 図1に示すセンサ部26は、例えば各駆動輪34(各モータ35)の回転数を検出する光エンコーダなどの回転数センサ55を備えている。この回転数センサ55は、測定した駆動輪34(図3)またはモータ35の回転数によって、電気掃除機11(本体ケース20(図3))の旋回角度や進行距離を検出するようになっている。したがって、この回転数センサ55は、例えば充電装置12などの基準位置からの電気掃除機11(本体ケース20(図3))の相対位置を検出する、位置検出センサである。なお、このセンサ部26は、例えば障害物との接触により障害物を検出する障害物検出手段としての接触センサ、集塵部46に捕集される塵埃量を検出する塵埃量検出手段としての光センサなどをさらに備えていてもよい。
 制御手段27は、例えば制御手段本体(制御部本体)であるCPU、このCPUによって読み出されるプログラムなどの固定的なデータを格納した格納部であるROM、プログラムによるデータ処理の作業領域となるワークエリアなどの各種メモリエリアを動的に形成するエリア格納部であるRAM(それぞれ図示せず)などを備えるマイコンである。この制御手段27は、さらに、例えばカメラ51a,51bで撮像した画像のデータなどを記憶する記憶手段(記憶部)としてのメモリ61を備えていてもよい。また、この制御手段27は、カメラ51a,51bで撮像した画像に基づいてカメラ51a,51bからの物体の深度を計算する計算手段(計算部)としての深度計算部62を備えていてもよい。さらに、この制御手段27は、深度計算部62により計算した物体の深度に基づいて距離画像を生成する画像生成手段(画像生成部)としての画像生成部63を備えていてもよい。また、この制御手段27は、深度計算部62により計算した深度に基づいて障害物を判定する障害物判定手段(障害物判定部)としての判定部64を備えていてもよい。さらに、この制御手段27は、カメラ51a,51bで撮像した画像、本実施形態では画像生成部63により生成した距離画像から特徴点を抽出する抽出部65を備えていてもよい。また、この制御手段27は、抽出部65で抽出した特徴点とメモリ61などに記憶(登録)された特徴点とを比較することで掃除領域を特定する特定部66を備えていてもよい。さらに、この制御手段27は、深度計算部62により計算した物体の深度に基づいて掃除領域のマップを生成するマップ生成手段(マップ生成部)としての画像処理部67を備えていてもよい。また、この制御手段27は、走行部21のモータ35,35(駆動輪34,34)の動作を制御する走行制御部71を備えていてもよい。さらに、この制御手段27は、掃除部22の電動送風機41、ブラシモータ43およびサイドブラシモータ45の動作を制御する掃除制御部72を備えていてもよい。また、この制御手段27は、撮像部25のカメラ51a,51bを制御する撮像制御部73を備えていてもよい。さらに、この制御手段27は、撮像部25のランプ53を制御する照明制御部74を備えていてもよい。そして、この制御手段27は、例えば駆動輪34,34(モータ35,35)を駆動して電気掃除機11(本体ケース20)を自律走行させる走行モードを備えている。また、この制御手段27は、充電装置12を介して二次電池28を充電する充電モードを備えていてもよい。さらに、この制御手段27は、動作待機中の待機モードを備えていてもよい。
 メモリ61は、電気掃除機11の電源のオンオフに拘らず記憶した各種データを保持する、例えばフラッシュメモリなどの不揮発性のメモリである。
 深度計算部62は、カメラ51a,51bにより撮像した画像と、カメラ51a,51b間の距離とに基づいて物体Oの深度を計算する、既知の方法が用いられる(図5)。すなわち、深度計算部62は、三角測量を応用し、カメラ51a,51bにより撮像した各画像中から同一位置を示す画素ドットを検出し、この画素ドットの上下方向および左右方向の角度を計算して、これら角度とカメラ51a,51b間の距離とからその位置のカメラ51a,51bからの深度を計算する。したがって、カメラ51a,51bにより撮像する画像は、可能な限り範囲が重なって(ラップして)いることが好ましい。
 画像生成部63は、深度計算部62で計算した物体(特徴点)の距離を示す距離画像を生成する。この画像生成部63による距離画像の生成は、計算した各画素ドットの距離を、例えば1ドット毎などの所定ドット毎に明度、あるいは色調などの、視認により識別可能な階調に変換して表示することにより行われる。本実施形態において、画像生成部63は、距離が大きいほど明度が小さい白黒の画像、すなわち電気掃除機11(本体ケース20)からの前方への距離が遠いほど黒く距離が近いほど白い、例えば256階調(8ビット=28)のグレースケールの画像として距離画像を生成する。したがって、この距離画像は、いわば電気掃除機11(本体ケース20)の走行方向前方のカメラ51a,51bによって撮像される範囲内に位置する物体の距離情報(距離データ)の集合体を可視化したものである。なお、この画像生成部63は、カメラ51a,51bにより撮像された各画像中の所定の画像範囲内の画素ドットについてのみの距離画像を生成してもよいし、画像全体の距離画像を生成してもよい。
 判定部64は、深度計算部62により計算した物体の深度に基づいて、物体が障害物であるかどうかを判定する。すなわち、この判定部64は、深度計算部62により計算した深度から、所定の範囲、例えば距離画像P3中の四角形状の所定の画像範囲A(図5(c))中の部分を抽出し、この画像範囲A中の物体Oの深度を、予め設定された、あるいは可変設定された閾値である設定距離D(図4)と比較し、この設定距離D以下の深度(電気掃除機11(本体ケース20)からの距離)に位置する物体Oを障害物であると判定する。画像範囲Aは、電気掃除機11(本体ケース20)の上下左右の大きさに応じて設定される。すなわち、画像範囲Aは、電気掃除機11(本体ケース20)がそのまま直進したときに接触する範囲に上下左右が設定される。したがって、カメラ51a,51b(撮像部25)、深度計算部62、画像生成部63および判定部64により、障害物を検出する障害物検出手段としての障害物センサ76が構成されている。
 抽出部65は、カメラ51a,51bで撮像した画像、本実施形態では画像生成部63により生成した距離画像に対して例えばエッジ検出などの特徴検出(特徴抽出)を行うことで、距離画像中の特徴点を抽出する。このエッジ検出方法は、既知の任意の方法を用いることができる。したがって、図1に示すように、カメラ51a,51b(撮像部25)、深度計算部62、画像生成部63および抽出部65により、電気掃除機11(本体ケース20)の周辺の特徴点(カメラ51a,51bで撮像した画像中の特徴点)を抽出する抽出手段77が構成されている。ここで、電気掃除機11(本体ケース20)の周辺とは、以下、電気掃除機11(本体ケース20)の周囲近傍だけでなく、例えば天井など、電気掃除機11(本体ケース20)に対して距離が離れた位置(カメラ51a,51bにより撮像可能な範囲の位置)も含む。
 特定部66は、抽出部65(抽出手段77)により抽出した特徴点と、例えばメモリ61などに記憶されている掃除領域の例えばマップに対応する特徴点とを比較し、類似率を計算するとともに、この類似率が所定閾値以上であるか否かにより、特徴点を抽出した距離画像をカメラ51a,51bにより撮像した掃除領域が、記憶されている掃除領域と一致しているか否かを判定し、現在の掃除領域を特定する。記憶されている掃除領域に対応する特徴点は、所有者が予め電気掃除機11にマップなどを入力して登録してもよいし、電気掃除機11が以前に掃除領域を特定する際に用いた特徴点を、そのときに掃除した掃除領域のマップや走行ルートなどに対応させて記憶しておいてもよい。
 画像処理部67は、深度計算部62により計算した物体の深度から、電気掃除機11(本体ケース20)の周辺の物体と電気掃除機11(本体ケース20)との距離を計算し、この距離とセンサ部26の回転数センサ55により検出した電気掃除機11(本体ケース20)の位置とから、電気掃除機11(本体ケース20)が配置された掃除領域およびこの掃除領域内に位置する物体などの位置関係を計算してマップおよび/または走行ルートを生成する。
 走行制御部71は、モータ35,35に流れる電流の大きさおよび向きを制御することにより、モータ35,35を正転、あるいは逆転させることで、モータ35,35の駆動を制御し、これらモータ35,35の駆動を制御することで駆動輪34,34(図3)の駆動を制御している。また、この走行制御部71は、判定部64の判定に応じて、電気掃除機11(本体ケース20)の走行方向および/または走行速度を制御するように構成されている。
 掃除制御部72は、電動送風機41、ブラシモータ43、および、サイドブラシモータ45をそれぞれ別個に導通角制御することで、これら電動送風機41、ブラシモータ43(回転ブラシ42(図3))、および、サイドブラシモータ45(サイドブラシ44(図3))の駆動を制御している。また、この掃除制御部72は、判定部64の判定に応じて、掃除部22の動作を制御するように構成されている。なお、これら電動送風機41、ブラシモータ43、および、サイドブラシモータ45のそれぞれに対応して制御部を別個に設けてもよい。
 撮像制御部73は、カメラ51a,51bのシャッタの動作を制御する制御回路を備え、このシャッタを所定時間毎に動作させることで、所定時間毎にカメラ51a,51bにより画像を撮像させるように制御する。
 照明制御部74は、スイッチなどを介してランプ53のオンオフを制御している。この照明制御部74は、本実施形態では、電気掃除機11の周辺の明るさを検出するセンサを備えており、このセンサにより検出した明るさが所定以下の場合にランプ53を点灯させ、その他のときにはランプ53を点灯させないようにするものである。
 二次電池28は、例えば図3に示す本体ケース20の下面部20cの後部の両側に露出する接続部としての充電端子78,78と電気的に接続されており、これら充電端子78,78が充電装置12側と電気的および機械的に接続されることで、この充電装置12を介して充電されるようになっている。
 充電装置12は、定電流回路などの充電回路を内蔵している。また、この充電装置12には、電気掃除機11の充電端子78,78と機械的および電気的に接続される二次電池28の充電用の充電用端子79,79が設けられている。これら充電用端子79,79は、充電回路と電気的に接続されている。
 次に、上記一実施形態の動作を説明する。
 一般に、電気掃除装置は、電気掃除機11によって掃除をする掃除作業と、充電装置12によって二次電池28を充電する充電作業とに大別される。充電作業は、充電装置12の充電回路を用いる既知の方法が用いられるため、掃除作業についてのみ説明する。また、外部装置などからの指令に応じてカメラ51a,51bの少なくともいずれかにより所定の対象物を撮像する撮像作業を別途備えていてもよい。
 この掃除作業は、概略として、図6のフローチャートに示すように、開始時に電気掃除機11が抽出手段77により周辺の特徴点を抽出し(ステップ1)、その特徴点と予め記憶されている特徴点とが一致したか否かを判定する(ステップ2)。このステップ2において、特徴点が一致したと判定した場合には、制御手段27は、その特徴点に対応するマップまたは走行ルートを読み出して(ステップ3)、駆動輪34,34(モータ35,35)を駆動してそのマップまたは走行ルートに沿って電気掃除機11(本体ケース20)を走行させつつ掃除部22により掃除を行う(ステップ4)。一方、ステップ2において、特徴点が一致しないと判定した場合には、制御手段27は、駆動輪34,34(モータ35,35)の駆動を制御することで電気掃除機11(本体ケース20)を走行させつつ障害物センサ76により障害物を検出することで電気掃除機11(本体ケース20)が走行可能な領域と障害物とを認識してマップまたは走行ルートを生成し記憶して(ステップ5)、その生成したマップまたは走行ルートに沿って走行するようにステップ4に進んで駆動輪34,34(モータ35,35)を駆動して電気掃除機11(本体ケース20)を走行させつつ掃除部22により掃除を行う。そして、掃除領域の掃除が終了、または二次電池28の容量が不足したかなど、掃除を終了するか否かを判定し(ステップ6)、掃除を終了しないと判定した場合にはステップ4に戻り、掃除を終了すると判定した場合には、所定の位置、例えば充電装置12に帰還し(ステップ7)、掃除作業を終了する。
 より詳細に、電気掃除機11は、例えば予め設定された掃除開始時刻となったときや、リモコンまたは外部装置によって送信された掃除開始の指令信号を受信したときなどのタイミングで、制御手段27が待機モードから走行モードに切り換わり、掃除作業を開始する。
 次いで、電気掃除機11は、その位置からカメラ51a,51bで前方を撮像し、これらカメラ51a,51bによって撮像した画像から、制御手段27が、深度計算部62により撮像された物体の深度を計算し、画像生成部63により距離画像を生成する。このときカメラ51a,51bにより撮像される範囲は、現在の電気掃除機11の位置からのカメラ51a,51bの視野角内において、図7(a)に示すように、掃除領域CAから物体Oにより生じる死角DAを除いた範囲R内のものとなる。
 さらに、制御手段27は、生成した距離画像から抽出部65により特徴点を抽出する。例えば図8(c)は、図8(a)および図8(b)に示す画像P4,P5に基づいて生成した距離画像から抽出された特徴点(例えば壁面近傍に配置された物体や床面の凹凸などのエッジ)を有する画像P6を示す。そして、この抽出した特徴点と、記憶されている掃除領域(例えば図7(b)に示すマップM)に対応する特徴点とを特定部66により比較して類似率を計算し、その類似率が所定以上であれば、特徴点が一致したと判定し、類似率が所定未満であれば、特徴点が一致しないと判定する。この判定は、記憶されている掃除領域に対して順次行っていく。したがって、複数の掃除領域を記憶している場合には、掃除領域が特定されるまで上記の判定を継続し、抽出された特徴点と全ての掃除領域の特徴点とが一致しない場合に、特徴点が一致しないと判定する。また、記憶されている掃除領域やその特徴点がない場合には、特徴点が一致しないと判定する。
 そして、特徴点が一致したと判定した場合には、制御手段27は、現在の掃除領域がその記憶されている掃除領域であると特定し、この特定した掃除領域に対応するマップM(例えば図7(b))、または走行ルートRT(例えば図7(c))を読み出し、後述する掃除モードに移行する。
 一方、特徴点が一致しないと判定した場合、すなわち掃除領域の情報が記憶されていないと判定した場合には、制御手段27は、画像処理部67により掃除領域のマップ、または走行ルートを生成する。このマップや走行ルートの生成の際には、概略として、電気掃除機11(本体ケース20)は、掃除領域の外壁などに沿って走行したり、その位置で旋回したりしながら、カメラ51a,51bにより撮像した画像中の物体の距離を計算し、この距離から壁や障害物を判定して、現在の電気掃除機11の位置に基づいてマップを生成する(マップ生成モード)。走行ルートは、このマップに基づいて生成することができる。
 このマップ生成の一例として、例えば図9(a)に示すように、電気掃除機11(本体ケース20)が充電装置12に接続された状態から、図9(b)に示すように、充電装置12から所定距離離脱した後、所定角度旋回(超信地旋回)しつつカメラ51a,51bによって画像を撮像する。このとき、電気掃除機11(本体ケース20)の旋回角度は、例えば360°とする。そして、撮像された物体の電気掃除機11(本体ケース20)からの距離と、現在の電気掃除機11(本体ケース20)の位置とにより障害物の位置(座標)を認識して、図9(c)に示すようにマップM(図中の太線に示す)を生成する。このとき、カメラ51a,51bの死角となる位置については、障害物または壁であるものとして処理する。次いで、図9(d)に示すように、電気掃除機11(本体ケース20)は、所定方向へと走行した位置で、同様に旋回(超信地旋回)しつつカメラ51a,51bによって画像を撮像し、撮像された物体の電気掃除機11(本体ケース20)からの距離と、現在の電気掃除機11(本体ケース20)の位置とにより障害物の位置(座標)を認識して、図9(e)に示すようにマップM(図中の太線に示す)を修正する。このとき、所定方向は、最初に生成したマップMにて障害物が存在しない方向とすることが好ましい。この動作を必要に応じて適宜繰り返すことにより、死角となる位置が徐々に減少して、電気掃除機11(本体ケース20)が走行可能な領域と障害物とを認識し、マップMが完成していく。そして、掃除領域全体をマッピングした(掃除領域の所定以上の領域をマッピングした)と判定した場合には、制御手段27がマップ生成モードを終了し、このマップに基づき必要に応じて走行ルートを生成した後、以下の掃除モードに移行する。この走行ルートは、例えば最短距離で効率よく掃除領域を走行できるルート、あるいは掃除領域の中で汚れ易いと想定される箇所を効果的に掃除できるルートなどとする。
 次いで、電気掃除機11は、読み出したマップまたは走行ルート、あるいは新たに生成して記憶したマップまたは走行ルートに基づいて、掃除領域内を自律走行しつつ掃除をする(掃除モード)。この自律走行の際には、概略として、電気掃除機11は、前進しながら、カメラ51a,51bにより撮像した画像中の物体の距離を計算し、この距離やマップや走行ルートに基づいて壁や障害物を判定して、これら壁や障害物を回避しながら走行しつつ、掃除部22によって掃除を行う。なお、この掃除の際に判定した障害物や壁に基づいて、マップを修正してもよい。
 この結果、電気掃除機11(本体ケース20)は、掃除領域内の床面上を、障害物を回避しながら隅々に至るまで自律走行しつつ掃除部22を制御手段27(掃除制御部72)により動作させて床面の塵埃を掃除する。すなわち、電気掃除機11は、障害物を検出しても掃除作業を継続するなど、継続した動作を行う。
 掃除部22では、制御手段27(掃除制御部72)により駆動された電動送風機41、回転ブラシ42(ブラシモータ43)、あるいはサイドブラシ44(サイドブラシモータ45)により床面の塵埃を、吸込口31を介して集塵部46へと捕集する。そして、掃除領域の掃除が完了した場合、あるいは掃除作業中に二次電池28の容量が所定量まで低下して掃除や撮像を完了させるのに不足している(二次電池28の電圧が放電終止電圧近傍まで低下している)場合などの所定条件時には、電気掃除機11では、充電装置12に帰還するように制御手段27(走行制御部71)によってモータ35,35(駆動輪34,34)の動作を制御する。この後、充電端子78,78と充電装置12の充電用端子79,79とが接続されると、掃除作業を終了し、制御手段27が待機モード、あるいは充電モードに移行する。
 以上説明した一実施形態によれば、制御手段27が、掃除の開始時に、抽出手段77により抽出した本体ケース20(電気掃除機11)の周辺の特徴点と、予め記憶された掃除領域に対応する特徴点とを比較することで、現在の掃除領域を特定することにより、予め記憶されている掃除領域であれば、掃除領域内を探索して新たにマップや走行ルートを生成するための時間を要することなく、直ちに掃除を開始できる。したがって、掃除時間を短縮し、掃除領域に応じて効率よく掃除できる。
 そして、制御手段27は、掃除領域を特定すると、予め記憶されたこの掃除領域のマップM(図7(b))、あるいは走行ルートRT(図7(c))に基づいて駆動輪34,34(モータ35,35)の駆動を制御して本体ケース20(電気掃除機11)を走行させることで、掃除領域の間取りや障害物の配置などに応じて効率よく掃除できる。
 また、抽出手段77により抽出した特徴点と記憶した掃除領域の特徴点との類似率が所定未満の場合に、制御手段27が駆動輪34,34(モータ35,35)の駆動を制御することで本体ケース20(電気掃除機11)を走行させつつ障害物センサ76により障害物を検出することで本体ケース20(電気掃除機11)が走行可能な領域と障害物とを認識して掃除領域に対応したマップまたは走行ルートを生成し記憶させることで、この掃除領域を次回以降掃除する際に、この記憶したマップや走行ルートを用いて直ちに掃除を開始できるとともに、掃除領域の間取りや障害物の配置などに応じて、効率よく掃除をすることができる。
 なお、上記一実施形態において、深度計算部62、画像生成部63、判定部64、抽出部65、掃除制御部72、撮像制御部73および照明制御部74はそれぞれ制御手段27中に備えたが、それぞれ互いに別構成としてもよいし、いずれか2つ以上を任意に組み合わせてもよいし、制御手段27とは別個に設けてもよい。
 また、撮像手段は、3つ以上設定されていてもよい。すなわち、撮像手段は、複数であれば、その個数は限定されない。
 さらに、障害物センサ76としては、カメラ51a,51bに代えて、TOF方式の距離画像センサなどを用いることもできる。
 また、充電装置12から掃除を開始する構成としたが、掃除の開始位置は任意に設定できる。
 さらに、基地装置としては、充電装置12に限らず、例えば集塵部46に捕集した塵埃を集めるためのダストステーションなど、他の任意の機能を有する基地装置を用いることができる。
 本発明の一実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 掃除の開始時に、周辺の特徴点を抽出し、この抽出した特徴点と、予め記憶された掃除領域に対応する特徴点とを比較することで、現在の掃除領域を特定することを特徴とした電気掃除機の制御方法。
 掃除領域を特定すると、予め記憶されたこの掃除領域のマップに基づいて自律走行することを特徴とした電気掃除機の制御方法。
 抽出した周辺の特徴点と記憶した掃除領域の特徴点との類似率が所定未満の場合に、自律走行しつつ障害物を検出することで走行可能な領域と障害物とを認識して掃除領域に対応したマップを生成し記憶することを特徴とした電気掃除機の制御方法。
 掃除領域を特定すると、予め記憶されたこの掃除領域に対応する走行ルートに基づいて自律走行することを特徴とした電気掃除機の制御方法。
 抽出した周辺の特徴点と記憶した掃除領域の特徴点との類似率が所定未満の場合に、自律走行しつつ障害物を検出することで走行可能な領域と障害物とを認識して掃除領域に対応した走行ルートを生成し記憶することを特徴とした電気掃除機の制御方法。

Claims (5)

  1.  本体ケースと、
     この本体ケースを走行可能とする駆動輪と、
     被掃除面を掃除する掃除部と、
     前記本体ケースの周辺の特徴点を抽出する抽出手段と、
     前記駆動輪の駆動を制御することで前記本体ケースを自律走行させる制御手段とを具備し、
     前記制御手段は、掃除の開始時に、前記抽出手段により抽出した特徴点と、予め記憶された掃除領域に対応する特徴点とを比較することで、現在の掃除領域を特定する
     ことを特徴とした電気掃除機。
  2.  制御手段は、掃除領域を特定すると、予め記憶されたこの掃除領域のマップに基づいて駆動輪の駆動を制御して本体ケースを走行させる
     ことを特徴とした請求項1記載の電気掃除機。
  3.  障害物を検出する障害物検出手段を具備し、
     制御手段は、抽出手段により抽出した特徴点と記憶した掃除領域の特徴点との類似率が所定未満の場合に、駆動輪の駆動を制御することで本体ケースを走行させつつ前記障害物検出手段により障害物を検出することで前記本体ケースが走行可能な領域と障害物とを認識して掃除領域に対応したマップを生成し記憶させる
     ことを特徴とした請求項2記載の電気掃除機。
  4.  制御手段は、掃除領域を特定すると、予め記憶されたこの掃除領域に対応する走行ルートに基づいて駆動輪の駆動を制御して本体ケースを走行させる
     ことを特徴とした請求項1記載の電気掃除機。
  5.  障害物を検出する障害物検出手段を具備し、
     制御手段は、抽出手段により抽出した特徴点と記憶した掃除領域の特徴点との類似率が所定未満の場合に、駆動輪の駆動を制御することで本体ケースを走行させつつ前記障害物検出手段により障害物を検出することで前記本体ケースが走行可能な領域と障害物とを認識して掃除領域に対応した走行ルートを生成し記憶させる
     ことを特徴とした請求項4記載の電気掃除機。
PCT/JP2016/087307 2016-01-29 2016-12-14 電気掃除機 WO2017130590A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/073,696 US20190038099A1 (en) 2016-01-29 2016-12-14 Vacuum cleaner
CN201680011927.2A CN107405035B (zh) 2016-01-29 2016-12-14 电动扫除机
EP16888174.6A EP3409176A4 (en) 2016-01-29 2016-12-14 ELECTRICAL VACUUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016414 2016-01-29
JP2016016414A JP6864433B2 (ja) 2016-01-29 2016-01-29 電気掃除機

Publications (1)

Publication Number Publication Date
WO2017130590A1 true WO2017130590A1 (ja) 2017-08-03

Family

ID=59397998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087307 WO2017130590A1 (ja) 2016-01-29 2016-12-14 電気掃除機

Country Status (6)

Country Link
US (1) US20190038099A1 (ja)
EP (1) EP3409176A4 (ja)
JP (1) JP6864433B2 (ja)
CN (1) CN107405035B (ja)
TW (1) TWI726031B (ja)
WO (1) WO2017130590A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195483A1 (en) 2018-04-03 2019-10-10 Sharkninja Operating Llc Time of flight sensor arrangement for robot navigation and methods of localization using same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6757423B2 (ja) 2016-05-20 2020-09-16 エルジー エレクトロニクス インコーポレイティド ロボット掃除機
US10398276B2 (en) * 2016-05-20 2019-09-03 Lg Electronics Inc. Autonomous cleaner
JP6827758B2 (ja) 2016-10-12 2021-02-10 東芝映像ソリューション株式会社 移動式アシスト装置及び移動式アシスト方法
TWI664946B (zh) * 2017-08-07 2019-07-11 燕成祥 清潔機器人之噴氣清潔結構
US10513037B2 (en) * 2017-12-15 2019-12-24 Ankobot (Shanghai) Smart Technologies Co., Ltd. Control method and system, and mobile robot using the same
WO2019198188A1 (ja) * 2018-04-11 2019-10-17 東芝映像ソリューション株式会社 移動式アシスト装置及び移動式アシスト方法
KR20210042537A (ko) * 2019-10-10 2021-04-20 엘지전자 주식회사 대면적의 공간에서 로컬 영역별로 위치를 추정하는 방법 및 이를 구현하는 로봇과 클라우드 서버
CN111150331A (zh) * 2019-12-31 2020-05-15 江苏美的清洁电器股份有限公司 信息处理方法、装置、移动清洁设备及计算机可读存储介质
CN113413100A (zh) * 2021-05-28 2021-09-21 温州市职业中等专业学校 基于影像分析的自动清扫机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134912A (ja) * 1986-11-27 1988-06-07 Shinko Electric Co Ltd 移動ロボツトにおける位置検出方法
JPS63213005A (ja) * 1987-03-02 1988-09-05 Hitachi Ltd 移動体誘導方法
JPH0953939A (ja) * 1995-08-18 1997-02-25 Fujitsu Ltd 自走車の自己位置測定装置および自己位置測定方法
JP2002048513A (ja) * 2000-05-26 2002-02-15 Honda Motor Co Ltd 位置検出装置、位置検出方法、及び位置検出プログラム
WO2003102706A1 (fr) * 2002-05-31 2003-12-11 Fujitsu Limited Robot telecommande et procede d'identification automatique de la position de robot.
JP2006209644A (ja) * 2005-01-31 2006-08-10 Matsushita Electric Works Ltd 清掃ロボット
JP2014059737A (ja) * 2012-09-18 2014-04-03 Sharp Corp 自走式機器
JP2015225450A (ja) * 2014-05-27 2015-12-14 村田機械株式会社 自律走行車、及び自律走行車における物体認識方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085305A (ja) * 2000-09-12 2002-03-26 Toshiba Tec Corp ロボットクリーナ及びロボットクリーナシステム
KR101677634B1 (ko) * 2010-07-12 2016-11-18 엘지전자 주식회사 로봇 청소기 및 이의 제어 방법
KR20120044768A (ko) * 2010-10-28 2012-05-08 엘지전자 주식회사 로봇 청소기 및 이의 제어 방법
KR20130089554A (ko) * 2012-02-02 2013-08-12 엘지전자 주식회사 로봇 청소기 및 그 제어 방법
JP2014200449A (ja) * 2013-04-04 2014-10-27 シャープ株式会社 自走式掃除機
KR102093177B1 (ko) * 2013-10-31 2020-03-25 엘지전자 주식회사 이동 로봇 및 그 동작방법
CN104820428B (zh) * 2015-04-20 2017-11-07 余江 一种无人机的记忆型航迹再现方法及其装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134912A (ja) * 1986-11-27 1988-06-07 Shinko Electric Co Ltd 移動ロボツトにおける位置検出方法
JPS63213005A (ja) * 1987-03-02 1988-09-05 Hitachi Ltd 移動体誘導方法
JPH0953939A (ja) * 1995-08-18 1997-02-25 Fujitsu Ltd 自走車の自己位置測定装置および自己位置測定方法
JP2002048513A (ja) * 2000-05-26 2002-02-15 Honda Motor Co Ltd 位置検出装置、位置検出方法、及び位置検出プログラム
WO2003102706A1 (fr) * 2002-05-31 2003-12-11 Fujitsu Limited Robot telecommande et procede d'identification automatique de la position de robot.
JP2006209644A (ja) * 2005-01-31 2006-08-10 Matsushita Electric Works Ltd 清掃ロボット
JP2014059737A (ja) * 2012-09-18 2014-04-03 Sharp Corp 自走式機器
JP2015225450A (ja) * 2014-05-27 2015-12-14 村田機械株式会社 自律走行車、及び自律走行車における物体認識方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3409176A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195483A1 (en) 2018-04-03 2019-10-10 Sharkninja Operating Llc Time of flight sensor arrangement for robot navigation and methods of localization using same
EP3776129A4 (en) * 2018-04-03 2021-12-22 SharkNinja Operating LLC FLIGHT TIME SENSOR SYSTEM INTENDED FOR ROBOTIC NAVIGATION AND LOCATION PROCESS IMPLEMENTING SUCH A SYSTEM
US11525921B2 (en) 2018-04-03 2022-12-13 Sharkninja Operating Llc Time of flight sensor arrangement for robot navigation and methods of localization using same

Also Published As

Publication number Publication date
JP2017131556A (ja) 2017-08-03
EP3409176A4 (en) 2019-08-28
CN107405035A (zh) 2017-11-28
JP6864433B2 (ja) 2021-04-28
TW201726045A (zh) 2017-08-01
EP3409176A1 (en) 2018-12-05
CN107405035B (zh) 2021-02-09
US20190038099A1 (en) 2019-02-07
TWI726031B (zh) 2021-05-01

Similar Documents

Publication Publication Date Title
WO2017130590A1 (ja) 電気掃除機
KR101840158B1 (ko) 전기청소기
KR102003787B1 (ko) 전기청소기
JP6685755B2 (ja) 自律走行体
KR102001422B1 (ko) 전기청소기
CN109922702B (zh) 电清扫机
CN109891348B (zh) 自主行走体
CN110636789B (zh) 电动吸尘器
KR101570377B1 (ko) 단일 카메라를 장착한 로봇 청소기의 3차원 환경 인식 방법
JP6831210B2 (ja) 電気掃除機
JP6814095B2 (ja) 電気掃除機
JP2004240940A (ja) ロボット掃除機の位置認識標識の検出方法及びこの検出方法を適用したロボット掃除機
CN110325089B (zh) 电动吸尘器
JP6912937B2 (ja) 電気掃除機
JP7295657B2 (ja) 自律走行体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888174

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888174

Country of ref document: EP

Effective date: 20180829