WO2017130564A1 - Charging/discharging system - Google Patents

Charging/discharging system Download PDF

Info

Publication number
WO2017130564A1
WO2017130564A1 PCT/JP2016/085788 JP2016085788W WO2017130564A1 WO 2017130564 A1 WO2017130564 A1 WO 2017130564A1 JP 2016085788 W JP2016085788 W JP 2016085788W WO 2017130564 A1 WO2017130564 A1 WO 2017130564A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
charge
discharger
charger
discharge
Prior art date
Application number
PCT/JP2016/085788
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 原
信夫 森部
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017130564A1 publication Critical patent/WO2017130564A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This disclosure relates to a charge / discharge system.
  • Electric vehicles such as electric vehicles (electric vehicles: EV), small electric vehicles (light electric vehicles: LEV), plug-in hybrid vehicles (plug-in hybrid vehicles: PHV) are generally connected to an external charger / discharger.
  • EV electric vehicles
  • LEV small electric vehicles
  • plug-in hybrid vehicles plug-in hybrid vehicles
  • PHV plug-in hybrid vehicles
  • a rapid charging method for shortening the charging time of the storage battery of the vehicle has been studied. Since fast output uses high output and high voltage power, common standards such as CHAdeMO (registered trademark) and Combo have been proposed to ensure the safety of users. By these standards, standardization of connectors used in charge / discharge systems, charging methods, communication methods, etc. are unified.
  • a connector corresponding to the specifications of the common standard includes an electric shock prevention structure such as an electromagnetic lock, a mechanical latch, and a plurality of interface wires.
  • a relatively small vehicle such as LEV can use a storage battery having a relatively small output or a low voltage as a power source. For this reason, it is desirable that the safety of the user can be ensured by a simple configuration such as using a ready-made part without using a dedicated product such as a connector corresponding to the specifications of the common standard.
  • the present disclosure has been made in view of such a problem, and an object thereof is to provide a charge / discharge system that can ensure the safety of the user with a simple configuration.
  • a charging / discharging system (1) removably connects an electric vehicle (20), a charger / discharger (11), and the electric vehicle and the charger / discharger.
  • a connecting portion (40), and the electric vehicle includes a storage battery (21) and a charge / discharge power line (22A, 22B) that supplies power between the charger / discharger and the storage battery via the connection portion. ),
  • a first switch (RL1) and a second switch (RL2) which are arranged in a permutation on the charge / discharge power line, and switch between interruption and energization of the charge / discharge power line by a switching operation, and the first switch and
  • a control unit (27) for controlling the operation of the second switch.
  • the control unit when the electric vehicle and the charger / discharger are connected by the connection unit, the first switch and the first switch and the second switch with a time difference in the closing operation of the first switch and the second switch
  • the second switch is controlled to be closed, the charger / discharger and the storage battery are electrically connected, and when the electric vehicle and the charger / discharger are disconnected by the connecting portion, the first switch The first switch and the second switch are controlled to be open while causing a time difference in the opening operation of the switch and the second switch, and the electrical connection between the charger / discharger and the storage battery is released.
  • FIG. 1 is a diagram illustrating a schematic configuration of a charge / discharge system according to the present embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of the vehicle ECU in FIG.
  • FIG. 3 is a flowchart for explaining an operation at the time of connection between the charge / discharge stand and the electric vehicle in the charge / discharge system according to the present embodiment.
  • FIG. 4 is a timing chart for explaining the operation at the time of connection between the charge / discharge stand and the electric vehicle in the charge / discharge system according to the present embodiment.
  • FIG. 5 is a flowchart for explaining the operation at the time of detachment between the charge / discharge stand and the electric vehicle in the charge / discharge system according to the present embodiment.
  • FIG. 6 is a timing chart for explaining the operation at the time of detachment between the charge / discharge stand and the electric vehicle in the charge / discharge system according to the present embodiment.
  • the charging / discharging system 1 performs charging / discharging of the storage battery 21 mounted on the electric vehicle 20.
  • the charge / discharge system 1 includes a charge / discharge stand 10 and an electric vehicle 20.
  • the charging / discharging stand 10 is a device that is installed in, for example, a parking lot where the electric vehicle 20 is parked, and controls power exchange with the storage battery 21 of the electric vehicle 20 being parked.
  • the charging / discharging stand 10 charges the storage battery 21 of the electric vehicle 20 with, for example, the power of the system, the electric power stored in the battery, or the electric power output from the solar power generation, and the like. Can be supplied.
  • the charging / discharging stand 10 has an external power supply mode, and can supply the electric power discharged from the storage battery 21 of the electric vehicle 20 to the outside at the time of a disaster or a power failure.
  • the charging / discharging stand 10 includes a charging / discharging device 11 and a charging / discharging device ECU 12 as elements for controlling power transmission / reception with the electric vehicle 20 capable of charging / discharging with a DC voltage.
  • the charger / discharger 11 is a power conversion device that performs bidirectional conversion of power between the electric vehicle 20 and the charge / discharge stand 10.
  • the charger / discharger 11 is connected to a pair of power lines 13A and 13B, and a charge / discharge coupler 41 is connected to the tips of the power lines 13A and 13B.
  • the charger / discharger 11 is electrically connected to the storage battery 21 of the electric vehicle 20 via the power lines 13 ⁇ / b> A and 13 ⁇ / b> B when the charge / discharge coupler 41 is attached to the receptacle 42 of the electric vehicle 20. Power can be exchanged.
  • the charger / discharger ECU 12 communicates with the electric vehicle 20 and controls the charger / discharger 11 when charging or discharging with the electric vehicle 20.
  • the charger / discharger ECU 12 is electrically connected to the vehicle ECU 27 of the electric vehicle 20 by allowing the charge / discharge coupler 41 of the charge / discharge stand 10 to be attached to the receptacle 42 of the electric vehicle 20, thereby enabling communication.
  • the charge / discharge coupler 41 of the charge / discharge stand 10 and the receptacle 42 of the electric vehicle 20 function as a connection part 40 that detachably connects the charge / discharge stand 10 (charge / discharge device 11) and the electric vehicle 20. .
  • the electric vehicle 20 is a vehicle that supplies electric power stored in the storage battery 21 to the main machine 30 such as a motor and travels by the driving force generated in the main machine 30.
  • Examples of the electric vehicle 20 include an electric vehicle (EV), a small electric vehicle (LEV), a plug-in hybrid vehicle (PHV), and the like.
  • the LEV is a vehicle that can use the storage battery 21 having a relatively lower output than the common standard such as CHAdeMO (registered trademark) and Combo as a power source. Therefore, the LEV is particularly suitable for the charge / discharge system 1 according to the present embodiment. Yes.
  • the electric vehicle 20 includes a storage battery 21, a vehicle ECU 27 (control unit), a main machine inverter 29, and a main machine 30.
  • the storage battery 21 is a lithium ion battery for storing electric power for running the electric vehicle 20.
  • the rated voltage of the storage battery 21 is, for example, 72 [V] when the electric vehicle 20 is LEV.
  • a pair of power lines 22A and 22B charge / discharge power lines
  • the power line 22 ⁇ / b> A has one end connected to the power line 13 ⁇ / b> A of the charge / discharge stand 10 and the other end connected to the storage battery 21. It has become.
  • the power line 22 ⁇ / b> B has one end connected to the power line 13 ⁇ / b> B of the charging / discharging stand 10 and the other end connected to the storage battery 21.
  • the DC power output from the charger / discharger 11 of the charging / discharging stand 10 is converted into the power lines 13A and 13B on the charging / discharging stand 10 side and the power line 22A on the electric vehicle 20 side. , 22B to the storage battery 21.
  • the DC power output from the storage battery 21 is supplied via the electric power vehicle 20 side power lines 22A and 22B and the charging / discharging stand 10 side power lines 13A and 13B. It is supplied to the charger / discharger 11. That is, the power lines 22 ⁇ / b> A and 22 ⁇ / b> B can supply power between the charger / discharger 11 and the storage battery 21 via the connection unit 40.
  • a relay 23 and a relay 25 that switch off and energize the power line 22A by opening and closing operations are installed in a permutation.
  • the relay 23 is provided on the connecting portion 40 (receptacle 42) side of the power line 22A, and the relay 25 is provided on the storage battery 21 side of the power line 22A.
  • relays 24 and 26 for switching between interruption and energization of the power line 22A by opening and closing operations are installed in a permutation.
  • the relay 24 is provided on the connection portion 40 (receptacle 42) side of the power line 22B, and the relay 26 is provided on the storage battery 21 side of the power line 22B.
  • the relays 23, 24, 25, and 26 are closed when the electric vehicle 20 and the charge / discharge stand 10 are connected by the connecting portion 40 and the storage battery 21 is charged / discharged. Further, when the electric vehicle 20 and the charging / discharging stand 10 are separated by the connecting portion 40, both are opened to prevent voltage application at the receptacle 42.
  • the relay 23 and the relay 24 are configured to operate at the same timing.
  • the relay 23 and the relay 24 are collectively referred to as a first relay RL1 (first switch).
  • the relay 25 and the relay 26 are configured to operate at the same timing.
  • the relay 25 and the relay 26 are collectively referred to as a second relay RL2 (second switch).
  • the opening / closing operation of the relays 23, 24, 25, 26 is controlled by the vehicle ECU 27.
  • One end of a pair of power lines 28A and 28B (main machine power lines) for supplying power to the main machine 30 of the electric vehicle 20 is connected to a position between the installation position of the second relay RL2 and the storage battery 21 among the power lines 22A and 22B.
  • one power line 28A is connected to a position between the installation position of the second relay RL2 and the positive electrode side of the storage battery 21 in the power line 22A, and the installation position of the second relay RL2 and the storage battery 21 in the power line 22B.
  • the other power line 28B is connected to a position between the negative electrode side and the other power line 28B.
  • the other ends of the power lines 28A and 28B are both connected to the main machine inverter 29.
  • the main machine inverter 29 is a power converter that converts DC power supplied from the storage battery 21 via the power lines 22A and 22B and the power lines 28A and 28B into AC power and supplies the AC power to the main machine 30.
  • the main machine 30 is a rotating electrical machine that is driven by electric power supplied from the storage battery 21 such as a motor.
  • the vehicle ECU 27 performs communication with the charging / discharging stand 10 and operation control of the first relay RL1 and the second relay RL2 when charging / discharging the storage battery 21 with the charging / discharging stand 10.
  • the vehicle ECU 27 is electrically connected to the charger / discharger ECU 12 of the charge / discharge stand 10 to enable communication. More specifically, as shown in FIG. 1, the opening / closing operations of the first relay RL1 and the second relay RL2 are individually controlled in response to receiving a charge / discharge coupler connection signal from the charger / discharger ECU 12.
  • the vehicle ECU 27 causes the first relay RL1 to have a time difference in the closing operation of the first relay RL1 and the second relay RL2. And the second relay RL2 is controlled to be closed. More specifically, first, the second relay RL2 is controlled to be closed, and then the first relay RL1 is controlled to be closed, so that the charger / discharger 11 and the storage battery 21 are electrically connected.
  • the vehicle ECU 27 causes the first relay RL1 and the second relay to have a time difference in the opening operation of the first relay RL1 and the second relay RL2.
  • Control RL2 to an open state. More specifically, the first relay RL1 is first controlled to be in the open state, and then the second relay RL2 is controlled to be in the open state, so that the electrical connection between the charger / discharger 11 and the storage battery 21 is released.
  • the vehicle ECU 27 includes a first power conversion device 31, a second power conversion device 32 (power conversion device), a first relay control circuit 33, and a second relay control circuit 34 (switch control circuit).
  • the first power conversion device 31 and the second power conversion device 32 convert the voltage of the DC power supplied from the DC power supply 36 and output it.
  • one of the pair of input terminals is connected to the positive electrode side of the DC power source 36 by the power line 51A
  • the other of the pair of input terminals is connected to the negative electrode side of the DC power source 36 by the power line 51B.
  • the second power conversion device 32 one of the pair of input terminals is connected to the positive electrode side of the DC power source 36 by the power line 53A (first power line), and the other of the pair of input terminals is the power line 53B (second power line). Is connected to the negative electrode side of the DC power source 36.
  • the first relay control circuit 33 controls the operation of the first relay RL1.
  • the first relay control circuit 33 is connected to one of the pair of output terminals of the first power converter 31 by the power line 52A, and is connected to the other of the pair of output terminals of the first power converter 31 by the power line 52B. It operates by direct current power supplied from the first power converter 31.
  • the first relay control circuit 33 outputs to the first relay RL1 a first relay drive signal for causing the first relay RL1 to perform an opening operation or a closing operation based on various input information such as a charge / discharge coupler connection signal.
  • the second relay control circuit 34 controls the operation of the second relay RL2.
  • the second relay control circuit 34 is connected to one of the pair of output terminals of the second power converter 32 by the power line 54A (third power line), and is paired by the power line 54B (fourth power line). It is connected to the other output terminal and is operated by DC power supplied from the second power converter 32.
  • the second relay control circuit 34 outputs, to the second relay RL2, a second relay drive signal for causing the second relay RL2 to perform an opening operation or a closing operation based on various input information such as a charge / discharge coupler connection signal.
  • the first relay control circuit 33 and the second relay control circuit 34 are configured by a microcomputer or the like, and are configured as a computer system including a CPU, a ROM, a RAM, and an input / output interface.
  • the voltages applied to the power line 52A and the power line 54A are respectively supplied to the first relay RL1 and the second relay RL2 as the first relay voltage and the second relay voltage used for driving the first relay RL1 and the second relay RL2. .
  • the first power conversion device 31, the first relay control circuit 33, and the DC power supply 36 function as a first relay control unit 37 (first control unit) that controls the operation of the first relay RL1.
  • the second power converter 32, the second relay control circuit 34, and the DC power supply 36 function as a second relay control unit 38 (second control unit) that controls the operation of the second relay RL2.
  • the second relay control unit 38 has a holding circuit 35 for holding the operating state of the second relay RL2.
  • the holding circuit 35 includes a diode D1 (first diode), a diode D2 (second diode), a resistor R1, a capacitor C0 (first capacitor), and a capacitor C1 (second capacitor).
  • the diode D1 is provided on the power line 53A in a direction in which current flows from the DC power source 36 to the second power conversion device 32.
  • the resistor R1 and the capacitor C1 are connected in series between the position of the power line 53A between the diode D1 and the input terminal of the second power converter 32 and the power line 53B.
  • the diode D2 is configured such that a current flows toward the power line 53A between an intermediate position between the resistor R1 and the capacitor C1 and a position on the second power converter 32 side from a connection position of the resistor R1 in the power line 53A. It is connected.
  • the capacitor C0 is connected between the power line 54A and the power line 54B.
  • the second relay control unit 38 has the holding circuit 35 having such a circuit configuration, so that the output of the second relay drive signal and the second relay voltage is continued for a certain period even when there is no power supply from the DC power supply 36.
  • the operation state of the second relay RL2 can be maintained.
  • step S11 the vehicle ECU 27 determines whether or not the lock of the charge / discharge coupler 41 has been detected.
  • the vehicle ECU 27 can detect that the charge / discharge coupler 41 is attached to the receptacle 42 and locked based on the charge / discharge coupler connection signal input from the charger / discharger ECU 12.
  • the charge / discharge coupler connection signal is a voltage value, for example, and is a signal whose voltage value changes between a state where the charge / discharge coupler 41 is locked to the receptacle 42 and a state where the lock state is released.
  • the vehicle ECU 27 can detect the lock of the charge / discharge coupler 41 by reading the voltage change of the charge / discharge coupler connection signal. As a result of the determination in step S11, if the lock of the charge / discharge coupler 41 is detected, the process proceeds to step S12, and if not, the control flow ends.
  • the charge / discharge coupler connection signal is 0 [V] before time T1, and the charge / discharge coupler 41 is not locked to the receptacle 42. Since the charge / discharge coupler connection signal changes to a positive value after time T1, the vehicle ECU 27 can detect a connection state in which the charge / discharge coupler 41 is locked to the receptacle 42.
  • step S12 the vehicle ECU 27 determines whether or not an execution condition for charge / discharge control (charge / discharge operation) between the electric vehicle 20 and the charger / discharger 11 is established.
  • the charging / discharging control execution conditions may include various conditions such as the charging rate of the storage battery 21 and the operating status of the charging / discharging stand 10.
  • the process proceeds to step S13, and if not, this control flow is terminated.
  • the charging / discharging control conditions are satisfied after time T2.
  • step S13 the vehicle ECU 27 controls the second relay RL2 to be in a closed state (short). For example, the vehicle ECU 27 closes the second relay RL2 after a predetermined first period (T3-T2 in FIG. 4) has elapsed since the time when the charge / discharge control execution condition was satisfied in step S12 (time T2 in FIG. 4). Control.
  • step S13 the process proceeds to step S14.
  • step S14 the first relay RL1 is controlled to be in a closed state (short circuit) by the vehicle ECU 27.
  • the vehicle ECU 27 closes the first relay RL1 after a predetermined second period (T4-T2 in FIG. 4) has elapsed since the time when the charge / discharge control execution condition was satisfied in step S12 (time T2 in FIG. 4). Control.
  • T4-T2 in FIG. 4 a predetermined second period
  • the second relay RL2 is controlled to the closed state at time T3, and is switched from the open state to the moving state.
  • the first relay RL1 is controlled to be in the closed state and switched from the open state to the moving state.
  • step S15 charge / discharge control between the electric vehicle 20 and the charger / discharger 11 is started by the charger / discharger ECU 12. Based on the charge / discharge permission signal, the charger / discharger ECU 12 can determine whether the charge / discharge control is permitted.
  • the charge / discharge permission signal is, for example, a voltage value, and is a signal whose voltage value changes depending on whether the charge / discharge permission state is set.
  • the charge / discharge permission signal is a signal generated by mutual communication between the charger / discharger ECU 12 and the vehicle ECU 27, for example, as shown in FIG.
  • the charging / discharging permission signal can output a voltage value indicating a charging / discharging permission state when the charging / discharging control can be performed by both the charging / discharging device ECU 12 and the vehicle ECU 27, and at least of the charging / discharging device ECU 12 and the vehicle ECU 27.
  • a voltage value indicating a charge / discharge stop state can be output.
  • the charger / discharger ECU 12 can detect the charge / discharge permission state by reading the change in the voltage of the charge / discharge permission signal.
  • the charging / discharging ECU 12 When the charging / discharging ECU 12 detects the charging / discharging permission state, the charging / discharging ECU 12 controls the charging / discharging device 11 to start charging / discharging control with the storage battery 21, and the power lines 13A, 13B on the charging / discharging stand 10 side and electric A charge / discharge current flows through the power lines 22A and 22B on the vehicle 20 side.
  • step S15 this control flow ends.
  • the charge / discharge permission signal changes from 0 [V] to a positive value. Transition from the charge / discharge stop state to the charge / discharge permission state. Then, the charger / discharger ECU 12 starts the operation of the charger / discharger 11 at time T6, and the charging current from the charger / discharger 11 is increased to a predetermined value and supplied to the storage battery 21 at time T7.
  • step S21 the vehicle ECU 27 determines whether or not unlocking of the charge / discharge coupler 41 is detected.
  • the vehicle ECU 27 can detect the unlocking of the charge / discharge coupler 41 based on the charge / discharge coupler connection signal input from the charger / discharger ECU 12. More specifically, when the proximity switch provided in the charge / discharge coupler 41 is pressed, the portion latched by the receptacle 42 is released, so that the charge / discharge coupler 41 can be removed from the receptacle 42.
  • the vehicle ECU 27 can detect the unlocking of the charge / discharge coupler 41 by reading the change in voltage of the charge / discharge coupler connection signal at this time.
  • step S21 if unlocking of the charge / discharge coupler 41 is detected, the process proceeds to step S22, and if not, this control flow ends.
  • the charging / discharging coupler connection signal is a positive value before time T8, and the charging / discharging coupler 41 is locked to the receptacle 42. Since the charge / discharge coupler connection signal decreases and changes stepwise at time T8, the vehicle ECU 27 can detect the removal preparation state in which the charge / discharge coupler 41 is unlocked and is still inserted into the receptacle 42.
  • step S22 charging / discharging control between the electric vehicle 20 and the charger / discharger 11 is stopped by the charger / discharger ECU 12.
  • the vehicle ECU 27 changes the charge / discharge permission signal to the charge / discharge stop state in response to the detection of unlocking in step S21.
  • the charger / discharger ECU 12 controls the charger / discharger 11 according to the change in the charge / discharge permission signal, and stops the charge / discharge control with the storage battery 21.
  • step S23 the vehicle ECU 27 determines whether or not the charge / discharge current has been reduced to 0 [A]. Due to the stop operation of the charge / discharge control in step S22, the charge / discharge current flowing through the power lines 22A, 22B gradually decreases to 0 [A]. The vehicle ECU 27 can detect that the charge / discharge current has been reduced to 0 [A] by monitoring the transition of the charge / discharge current at this time. If the charge / discharge current is reduced to 0 [A] as a result of the determination in step S22, the process proceeds to step S23. Otherwise, the process waits until the charge / discharge current is reduced to 0 [A].
  • the charge / discharge current is changed as shown in FIG. It begins to decrease gradually and decreases to 0 [A] at time T9.
  • step S24 the vehicle ECU 27 controls the first relay RL1 to be in an open state (open).
  • the vehicle ECU 27 performs a predetermined third period (T10-T8 in FIG. 6) from the time when charging / discharging control between the electric vehicle 20 and the charger / discharger 11 is stopped in step S22 (time T8 in FIG. 6).
  • the first relay RL1 is controlled to be in an open state.
  • step S25 the vehicle ECU 27 controls the second relay RL2 to be in an open state (open).
  • the vehicle ECU 27 performs a predetermined fourth period (T11-T8 in FIG. 6) from the time when charging / discharging control between the electric vehicle 20 and the charger / discharger 11 is stopped in step S22 (time T8 in FIG. 6).
  • the second relay RL2 is controlled to be in an open state.
  • the first relay RL1 is controlled to be in the open state, and is switched from the moving state to the released state.
  • the second relay RL2 is controlled to be in the open state, and is switched from the moving state to the released state.
  • the charge / discharge coupler connection signal is switched from the removal preparation state to the unconnected state, and the charge / discharge coupler 41 is in a state where it can be safely removed from the receptacle 42.
  • the vehicle ECU 27 of the electric vehicle 20 includes the first relay RL1 when the electric vehicle 20 and the charging / discharging stand 10 are connected by the connection unit 40 (the charging / discharging coupler 41 and the receptacle 42).
  • the charging / discharging stand 10 is charged / discharged by controlling the first relay RL1 and the second relay RL2 to be closed while giving a time difference to the closing operation of the (relays 23, 24) and the second relay RL2 (relays 25, 26).
  • Electric appliance 11 and storage battery 21 of electric vehicle 20 are electrically connected.
  • the first relay RL1 and the second relay RL2 are opened while a time difference is provided in the opening operation of the first relay RL1 and the second relay RL2.
  • the electrical connection between the charger / discharger 11 and the storage battery 21 is released.
  • the relays 23 and 24 of the first relay RL1 and the relays 25 and 26 of the second relay RL2 are installed in permutations on the power lines 22A and 22B in the electric vehicle 20, respectively.
  • the relays 23 and 24 of the first relay RL1 are provided on the connection part 40 side of the power lines 22A and 22B, and the relays 25 and 26 of the second relay RL2 are on the storage battery 21 side of the power lines 22A and 22B. Is provided.
  • the vehicle ECU 27 first controls the second relay RL2 to the closed state, and then controls the first relay RL1 to the closed state. Then, the charger / discharger 11 and the storage battery 21 are electrically connected.
  • the first relay RL1 is first controlled to be opened, and then the second relay RL2 is controlled to be opened and charged. The electrical connection between the electric appliance 11 and the storage battery 21 is released.
  • contact welding may generally occur in the relays 23 to 26.
  • the contact resistance of the contact surface increases due to the generated arc heat, and the contact surface melts and welds.
  • Contact welding may also occur due to continuous arcs caused by chattering or vibration with high frequency switching.
  • the relay contact does not open, resulting in a return failure. If contact welding occurs in all of the relays 23 to 26 on the circuit, the circuit cannot be sufficiently cut off, and the voltage is output to the receptacle 42, which impairs safety such as electric shock of the user. There is a fear.
  • the relays 23, 24, 25, and 26 provided on the power line 22 are divided into two groups of the first relay RL1 and the second relay RL2, and a time difference is given to the opening / closing operation for each group, and the opening / closing timing is shifted. ing.
  • the other relay group can avoid welding, so that all the relays can be prevented from being welded simultaneously. Therefore, even if a situation occurs where contact welding occurs in one relay group, the other relay group can maintain an operable state, so that the power lines 22A and 22B can be reliably cut off.
  • common standards such as CHAdeMO (registered trademark) and Combo related to the charging method for electric vehicles also standardize the connector standard, charging method and communication method used in the charge / discharge system in order to ensure such safety. Is planned.
  • a connector corresponding to the specifications of this common standard is defined to have an electric shock prevention structure such as an electromagnetic lock, a mechanical latch, and a plurality of interface wires, and requires a complicated configuration.
  • the present embodiment can be configured such that no voltage is generated in the receptacle even when the relay is welded by a simple configuration in which the relays 23 to 26 are provided in duplicate in the existing charge / discharge circuit.
  • the same safety as a dedicated product such as a connector corresponding to the specifications of the common standard can be ensured.
  • the charge / discharge system 1 of the present embodiment can ensure the safety of the user with a simple configuration.
  • the vehicle ECU 27 includes a first relay control unit 37 that controls the operation of the first relay RL1, a second relay control unit 38 that controls the operation of the second relay RL2,
  • the second relay control unit 38 includes a holding circuit 35 that can hold the operation state of the second relay RL2 for a certain period of time.
  • the first relay control unit 37 and the second relay control unit 38 are both configured as a part of a single vehicle ECU 27, and are shared by a common DC power source 36. It works. For this reason, if the power supply from the DC power supply 36 is suddenly stopped, a situation may occur in which both the first relay RL1 and the second relay RL2 cannot operate. At this time, when both the first relay control unit 37 and the second relay control unit 38 do not have the holding circuit 35, a state in which the first relay RL1 and the second relay RL2 simultaneously transition to the closed state is considered. Therefore, the first relay RL1 and the second relay RL2 may be welded at the same time.
  • the second relay control unit 38 can continue the operation control of the second relay RL2 for a certain period after the power supply is stopped. Therefore, in this embodiment, even when the power supply to the first relay control unit 37 and the second relay control unit 38 is both stopped or reduced, the opening operation of the first relay RL1 and the second relay RL2 and It is possible to give a time difference to the closing operation and appropriately shift the operation timing. Thereby, it is possible to more reliably prevent the first relay RL1 and the second relay RL2 from simultaneously welding the contacts, and the electrical connection between the charger / discharger 11 and the storage battery 21 can be reliably released.
  • the electric vehicle 20 is preferably an LEV (Light Electric Vehicle).
  • LEV Light Electric Vehicle
  • a relatively small vehicle such as LEV among the electric vehicles 20 can use a storage battery having a relatively smaller output or a lower voltage than the common standard as a power source. For this reason, the user's safety is ensured with a simple configuration by the charge / discharge system 1 according to the present embodiment, without using a dedicated product such as a connector corresponding to the specifications of the above-mentioned common standard in the charge / discharge system. The effect of the present embodiment can be maximized.
  • first relay control unit 37 and the second relay control unit 38 are both configured as a part of a single vehicle ECU 27 and are operated by a common DC power source 36.
  • Each of the first relay control unit 37 and the second relay control unit 38 may be configured as a part of a different ECU, and may be configured to operate individually by different power sources.
  • the configuration in which the holding circuit 35 is provided only in the second relay control unit 38 is illustrated, but at least one of the first relay control unit 37 and the second relay control unit 38 may include the holding circuit 35. That's fine.
  • the holding circuit 35 may be provided in the first relay control unit 37, or may be provided in both the first relay control unit 37 and the second relay control unit 38 to hold the operation state. It is good also as a structure which makes duration differ.
  • the first relay control unit 37 and the second relay control unit 38 the one that is turned on first when the charge / discharge coupler 41 is mounted (switched to the closed state) and turned off later (when switched to the open state) when removed.
  • a holding circuit 35 is preferably provided in the control unit of the relay.
  • the holding circuit 35 is provided in the second relay control unit 38 that controls the second relay RL2 that is turned on first when the charge / discharge coupler 41 is attached and turned off later when the charge / discharge coupler 41 is removed.
  • the circuit configuration of the holding circuit 35 may be a circuit configuration other than that illustrated in FIG. 2 as long as the function of holding the operation state of the relay to be controlled can be exhibited.
  • the holding circuit 35 exemplifies a configuration including the capacitor C0 provided on the rear stage side (second relay control circuit 34 side) of the second power converter 32, but the capacitor C0 is excluded, It is good also as only the diode D1, the diode D2, resistance R1, and the capacitor
  • the holding circuit 35 can extend the time during which the operation state of the relay can be held by including the capacitor C0.
  • the opening / closing operation of the first relay RL1 and the second relay RL2 only needs to have a time difference in the opening / closing timing of both, and the order may be changed from the above embodiment, and the time difference t may be increased or decreased as appropriate.
  • the installation positions of the first relay RL1 and the second relay RL2 are different from the configuration in which the first relay RL1 and the second relay RL2 are collectively installed on the connection unit 40 side from the connection positions of the power lines 28A and 28B on the power lines 22A and 22B as in the above embodiment. You may change it.
  • both the first relay RL1 and the second relay RL2 may be collectively installed on one of the storage battery 21 side from the connection position of the power lines 28A and 28B on the power lines 22A and 22B.
  • the power lines 28A and 28B are connected to a position between the installation position of the first relay RL1 and the installation position of the second relay RL2 in the power lines 22A and 22B, whereby the first relay RL1 is connected to the power lines 28A and 28B.
  • the connection part 40 side and the second relay RL2 from the connection position may be separately installed on the storage battery 21 side.
  • the number of relays included in the first relay RL1 and the second relay RL2 may be other than two.

Abstract

When a connection part (40) connects an electric vehicle (20) and a charger/discharger (11) to each other, a control unit (27) of a charging/discharging system (1) controls each of a first switch (RL1) and a second switch (RL2) to a closed state while providing a time lag between respective closing operations of the first switch (RL1) and the second switch (RL2), and thereby, electrically connects the charger/discharger (11) and a storage battery (21) to each other. When the connection part (40) disconnects the electric vehicle (20) and the charger/discharger (11) from each other, the control unit (27) controls each of the first switch (RL1) and the second switch (RL2) to an open state while providing a time lag between respective opening operations of the first switch (RL1) and the second switch (RL2), and thereby, cancels the electric connection between the charger/discharger (11) and the battery (21).

Description

充放電システムCharge / discharge system 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年1月26日に出願された日本国特許出願2016-12084号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2016-12084 filed on January 26, 2016, and claims the benefit of its priority. Which is incorporated herein by reference.
 本開示は、充放電システムに関する。 This disclosure relates to a charge / discharge system.
 電気自動車(Electric Vehicle:EV)、小型電動車両(Light Electric Vehicle:LEV)、プラグイン・ハイブリッド車(Plug-in Hybrid Vehicle:PHV)などの電動車両は、一般に外部の充放電器と接続された状態において、車両内の蓄電池と充放電器との間で電力の授受が行われる(例えば特許文献1)。この際の電動車両と充放電器との接続には、脱着自在のコネクタ等を用いて両者が接続される。 Electric vehicles such as electric vehicles (electric vehicles: EV), small electric vehicles (light electric vehicles: LEV), plug-in hybrid vehicles (plug-in hybrid vehicles: PHV) are generally connected to an external charger / discharger. In the state, power is exchanged between the storage battery and the charger / discharger in the vehicle (for example, Patent Document 1). In this case, the electric vehicle and the charger / discharger are connected using a detachable connector or the like.
 このような電動車両の充放電システムにおいて、車両の蓄電池の充電時間を短縮化させる急速充電方式が検討されている。急速充電では高出力・高電圧の電力を用いるため、利用者の安全性を確保すべくCHAdeMO(登録商標)やComboなどの共通規格が提案されている。これらの規格により、充放電システムに用いるコネクタの規格や充電方法、通信方法などの統一化が図られている。例えば、上記の共通規格の仕様に対応するコネクタは、電磁ロックや機械式ラッチ、複数のインタフェース線などの感電防止構造を備える。 In such a charging / discharging system for an electric vehicle, a rapid charging method for shortening the charging time of the storage battery of the vehicle has been studied. Since fast output uses high output and high voltage power, common standards such as CHAdeMO (registered trademark) and Combo have been proposed to ensure the safety of users. By these standards, standardization of connectors used in charge / discharge systems, charging methods, communication methods, etc. are unified. For example, a connector corresponding to the specifications of the common standard includes an electric shock prevention structure such as an electromagnetic lock, a mechanical latch, and a plurality of interface wires.
特開2014-54022号公報JP 2014-54022 A
 上記の電動車両のうちLEVなど比較的小型のものは、比較的出力が小さいまたは、電圧が低い蓄電池を電源として用いることができる。このため、上記の共通規格の仕様に対応するコネクタのような専用品を用いずに、既成部品を用いるなどの簡易な構成によって利用者の安全性を確保できることが望ましい。 Among the above electric vehicles, a relatively small vehicle such as LEV can use a storage battery having a relatively small output or a low voltage as a power source. For this reason, it is desirable that the safety of the user can be ensured by a simple configuration such as using a ready-made part without using a dedicated product such as a connector corresponding to the specifications of the common standard.
 本開示はこのような課題に鑑みてなされたものであり、その目的は、利用者の安全性を簡易な構成で確保できる充放電システムを提供することにある。 The present disclosure has been made in view of such a problem, and an object thereof is to provide a charge / discharge system that can ensure the safety of the user with a simple configuration.
 上記課題を解決するために、本開示に係る充放電システム(1)は、電動車両(20)と、充放電器(11)と、前記電動車両と前記充放電器とを着脱自在に接続する接続部(40)と、を具備し、前記電動車両は、蓄電池(21)と、前記接続部を介して前記充放電器と前記蓄電池との間で電力供給を行う充放電電力線(22A,22B)と、前記充放電電力線上に順列に設置され、開閉動作により前記充放電電力線の遮断及び通電を切り替える第1開閉器(RL1)及び第2開閉器(RL2)と、前記第1開閉器及び前記第2開閉器の動作を制御する制御部(27)と、を備える。前記制御部は、前記接続部により前記電動車両と前記充放電器とが接続されるとき、前記第1開閉器及び前記第2開閉器の閉動作に時間差をもたせつつ前記第1開閉器及び前記第2開閉器を閉状態に制御して、前記充放電器と前記蓄電池とを電気的に接続させ、前記接続部により前記電動車両と前記充放電器とが離脱されるとき、前記第1開閉器及び前記第2開閉器の開動作に時間差をもたせつつ前記第1開閉器及び前記第2開閉器を開状態に制御して、前記充放電器と前記蓄電池との電気的な接続を解除する。 In order to solve the above problems, a charging / discharging system (1) according to the present disclosure removably connects an electric vehicle (20), a charger / discharger (11), and the electric vehicle and the charger / discharger. A connecting portion (40), and the electric vehicle includes a storage battery (21) and a charge / discharge power line (22A, 22B) that supplies power between the charger / discharger and the storage battery via the connection portion. ), A first switch (RL1) and a second switch (RL2), which are arranged in a permutation on the charge / discharge power line, and switch between interruption and energization of the charge / discharge power line by a switching operation, and the first switch and And a control unit (27) for controlling the operation of the second switch. The control unit, when the electric vehicle and the charger / discharger are connected by the connection unit, the first switch and the first switch and the second switch with a time difference in the closing operation of the first switch and the second switch When the second switch is controlled to be closed, the charger / discharger and the storage battery are electrically connected, and when the electric vehicle and the charger / discharger are disconnected by the connecting portion, the first switch The first switch and the second switch are controlled to be open while causing a time difference in the opening operation of the switch and the second switch, and the electrical connection between the charger / discharger and the storage battery is released. .
 この構成により、既存の充放電回路に開閉器を二重化して設けるという簡易な構成によって、開閉器の溶着時であってもレセプタクルに電圧が発生しないように構成でき、上記の共通規格の仕様に対応するコネクタなどの専用品と同様の安全性を確保することができる。 With this configuration, it is possible to configure so that no voltage is generated in the receptacle even when the switch is welded, with a simple configuration in which the switch is doubled in the existing charge / discharge circuit. The same safety as a dedicated product such as a corresponding connector can be ensured.
 本開示によれば、利用者の安全性を簡易な構成で確保できる充放電システムを提供することができる。 According to the present disclosure, it is possible to provide a charge / discharge system that can ensure the safety of the user with a simple configuration.
図1は、本実施形態に係る充放電システムの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a charge / discharge system according to the present embodiment. 図2は、図1中の車両ECUの構成の一例を示す図である。FIG. 2 is a diagram showing an example of the configuration of the vehicle ECU in FIG. 図3は、本実施形態に係る充放電システムにおける、充放電スタンドと電動車両との接続時の動作を説明するためのフローチャートである。FIG. 3 is a flowchart for explaining an operation at the time of connection between the charge / discharge stand and the electric vehicle in the charge / discharge system according to the present embodiment. 図4は、本実施形態に係る充放電システムにおける、充放電スタンドと電動車両との接続時の動作を説明するためのタイミングチャートである。FIG. 4 is a timing chart for explaining the operation at the time of connection between the charge / discharge stand and the electric vehicle in the charge / discharge system according to the present embodiment. 図5は、本実施形態に係る充放電システムにおける、充放電スタンドと電動車両との離脱時の動作を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining the operation at the time of detachment between the charge / discharge stand and the electric vehicle in the charge / discharge system according to the present embodiment. 図6は、本実施形態に係る充放電システムにおける、充放電スタンドと電動車両との離脱時の動作を説明するためのタイミングチャートである。FIG. 6 is a timing chart for explaining the operation at the time of detachment between the charge / discharge stand and the electric vehicle in the charge / discharge system according to the present embodiment.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 まず図1及び図2を参照して、本実施形態に係る充放電システム1の構成について説明する。充放電システム1は、電動車両20に搭載される蓄電池21の充放電を行うものである。図1に示すように、充放電システム1は、充放電スタンド10と、電動車両20とを備える。 First, with reference to FIG.1 and FIG.2, the structure of the charging / discharging system 1 which concerns on this embodiment is demonstrated. The charging / discharging system 1 performs charging / discharging of the storage battery 21 mounted on the electric vehicle 20. As shown in FIG. 1, the charge / discharge system 1 includes a charge / discharge stand 10 and an electric vehicle 20.
 充放電スタンド10は、例えば電動車両20が駐車される駐車場などに設置され、駐車中の電動車両20の蓄電池21との間の電力授受を制御する装置である。充放電スタンド10は、例えば系統の電力や電池に蓄えられた電力、太陽光発電などの電力源から出力される電力を電動車両20の蓄電池21に充電し、電動車両20の移動のエネルギー源を供給することができる。また、充放電スタンド10は、外部給電モードを有し、災害時や停電時には電動車両20の蓄電池21から放電する電力を外部に給電することができる。 The charging / discharging stand 10 is a device that is installed in, for example, a parking lot where the electric vehicle 20 is parked, and controls power exchange with the storage battery 21 of the electric vehicle 20 being parked. The charging / discharging stand 10 charges the storage battery 21 of the electric vehicle 20 with, for example, the power of the system, the electric power stored in the battery, or the electric power output from the solar power generation, and the like. Can be supplied. Moreover, the charging / discharging stand 10 has an external power supply mode, and can supply the electric power discharged from the storage battery 21 of the electric vehicle 20 to the outside at the time of a disaster or a power failure.
 充放電スタンド10は、直流電圧による充放電が可能な電動車両20との間の電力授受を制御する要素として、充放電器11と充放電器ECU12とを備える。充放電器11は、電動車両20と充放電スタンド10との間で電力の双方向変換を行う電力変換装置である。充放電器11は、一対の電力線13A,13Bと接続され、電力線13A,13Bの先端には充放電カプラ41が接続されている。充放電器11は、充放電カプラ41が電動車両20のレセプタクル42に装着されることで、電力線13A,13Bを介して電動車両20の蓄電池21と電気的に接続され、蓄電池21との間で電力授受が可能となる。 The charging / discharging stand 10 includes a charging / discharging device 11 and a charging / discharging device ECU 12 as elements for controlling power transmission / reception with the electric vehicle 20 capable of charging / discharging with a DC voltage. The charger / discharger 11 is a power conversion device that performs bidirectional conversion of power between the electric vehicle 20 and the charge / discharge stand 10. The charger / discharger 11 is connected to a pair of power lines 13A and 13B, and a charge / discharge coupler 41 is connected to the tips of the power lines 13A and 13B. The charger / discharger 11 is electrically connected to the storage battery 21 of the electric vehicle 20 via the power lines 13 </ b> A and 13 </ b> B when the charge / discharge coupler 41 is attached to the receptacle 42 of the electric vehicle 20. Power can be exchanged.
 充放電器ECU12は、電動車両20と充電または放電を行う際に、電動車両20との通信や充放電器11の制御を行う。充放電器ECU12は、充放電スタンド10の充放電カプラ41が電動車両20のレセプタクル42に装着されることで、電動車両20の車両ECU27と電気的に接続されて通信が可能となる。 The charger / discharger ECU 12 communicates with the electric vehicle 20 and controls the charger / discharger 11 when charging or discharging with the electric vehicle 20. The charger / discharger ECU 12 is electrically connected to the vehicle ECU 27 of the electric vehicle 20 by allowing the charge / discharge coupler 41 of the charge / discharge stand 10 to be attached to the receptacle 42 of the electric vehicle 20, thereby enabling communication.
 充放電スタンド10の充放電カプラ41と、電動車両20のレセプタクル42とが、充放電スタンド10(充放電器11)と電動車両20とを着脱自在に接続する接続部40として機能するものである。 The charge / discharge coupler 41 of the charge / discharge stand 10 and the receptacle 42 of the electric vehicle 20 function as a connection part 40 that detachably connects the charge / discharge stand 10 (charge / discharge device 11) and the electric vehicle 20. .
 電動車両20は、蓄電池21に蓄えられた電力をモータなどの主機30に供給し、主機30で生じた駆動力によって走行する車両である。電動車両20としては、電気自動車(EV)、小型電動車両(LEV)、プラグイン・ハイブリッド車(PHV)などが挙げられる。このうちLEVは、CHAdeMO(登録商標)やComboなどの共通規格より比較的低出力の蓄電池21を電源として用いることができる車両であるため、本実施形態に係る充放電システム1には特に適している。 The electric vehicle 20 is a vehicle that supplies electric power stored in the storage battery 21 to the main machine 30 such as a motor and travels by the driving force generated in the main machine 30. Examples of the electric vehicle 20 include an electric vehicle (EV), a small electric vehicle (LEV), a plug-in hybrid vehicle (PHV), and the like. Among these, the LEV is a vehicle that can use the storage battery 21 having a relatively lower output than the common standard such as CHAdeMO (registered trademark) and Combo as a power source. Therefore, the LEV is particularly suitable for the charge / discharge system 1 according to the present embodiment. Yes.
 図1に示すように、電動車両20は、蓄電池21と、車両ECU27(制御部)と、主機インバータ29と、主機30とを備える。 As shown in FIG. 1, the electric vehicle 20 includes a storage battery 21, a vehicle ECU 27 (control unit), a main machine inverter 29, and a main machine 30.
 蓄電池21は、電動車両20の走行用の電力を蓄えるためのリチウムイオンバッテリである。蓄電池21の定格電圧は、電動車両20がLEVの場合、例えば72[V]である。電動車両20の内部には、一対の電力線22A,22B(充放電電力線)が設けられている。充放電スタンド10の充放電カプラ41が電動車両20のレセプタクル42に接続されるときには、電力線22Aはその一端が充放電スタンド10の電力線13Aに接続され、他端が蓄電池21に接続された状態となっている。また、電力線22Bは、その一端が充放電スタンド10の電力線13Bに接続され、他端が蓄電池21に接続された状態となっている。 The storage battery 21 is a lithium ion battery for storing electric power for running the electric vehicle 20. The rated voltage of the storage battery 21 is, for example, 72 [V] when the electric vehicle 20 is LEV. Inside electric vehicle 20, a pair of power lines 22A and 22B (charge / discharge power lines) is provided. When the charge / discharge coupler 41 of the charge / discharge stand 10 is connected to the receptacle 42 of the electric vehicle 20, the power line 22 </ b> A has one end connected to the power line 13 </ b> A of the charge / discharge stand 10 and the other end connected to the storage battery 21. It has become. In addition, the power line 22 </ b> B has one end connected to the power line 13 </ b> B of the charging / discharging stand 10 and the other end connected to the storage battery 21.
 電動車両20への充電が行われる際には、充放電スタンド10の充放電器11から出力された直流電力が、充放電スタンド10側の電力線13A,13B、及び、電動車両20側の電力線22A,22Bを介して蓄電池21へと供給される。また、電動車両20からの放電が行われる際には、蓄電池21から出力された直流電力が、電動車両20側の電力線22A,22B、及び、充放電スタンド10側の電力線13A,13Bを介して充放電器11へと供給される。つまり、電力線22A,22Bは、接続部40を介して充放電器11と蓄電池21との間で電力供給を行うことができる。 When the electric vehicle 20 is charged, the DC power output from the charger / discharger 11 of the charging / discharging stand 10 is converted into the power lines 13A and 13B on the charging / discharging stand 10 side and the power line 22A on the electric vehicle 20 side. , 22B to the storage battery 21. Further, when the electric vehicle 20 is discharged, the DC power output from the storage battery 21 is supplied via the electric power vehicle 20 side power lines 22A and 22B and the charging / discharging stand 10 side power lines 13A and 13B. It is supplied to the charger / discharger 11. That is, the power lines 22 </ b> A and 22 </ b> B can supply power between the charger / discharger 11 and the storage battery 21 via the connection unit 40.
 電力線22A上には、開閉動作により電力線22Aの遮断及び通電を切り替えるリレー23及びリレー25が順列に設置されている。リレー23は、電力線22Aのうち接続部40(レセプタクル42)側に設けられ、リレー25は、電力線22Aのうち蓄電池21側に設けられている。同様に、電力線22B上にも、開閉動作により電力線22Aの遮断及び通電を切り替えるリレー24及びリレー26が順列に設置されている。リレー24は、電力線22Bのうち接続部40(レセプタクル42)側に設けられ、リレー26は、電力線22Bのうち蓄電池21側に設けられている。 On the power line 22A, a relay 23 and a relay 25 that switch off and energize the power line 22A by opening and closing operations are installed in a permutation. The relay 23 is provided on the connecting portion 40 (receptacle 42) side of the power line 22A, and the relay 25 is provided on the storage battery 21 side of the power line 22A. Similarly, on the power line 22B, relays 24 and 26 for switching between interruption and energization of the power line 22A by opening and closing operations are installed in a permutation. The relay 24 is provided on the connection portion 40 (receptacle 42) side of the power line 22B, and the relay 26 is provided on the storage battery 21 side of the power line 22B.
 リレー23,24,25,26は、接続部40により電動車両20と充放電スタンド10とが接続され、蓄電池21の充放電が行われる際にはいずれも閉状態とされる。また、接続部40により電動車両20と充放電スタンド10とが離脱されるとき、レセプタクル42における電圧印加を防止すべくいずれも開状態とされる。リレー23及びリレー24が同じタイミングで動作するよう構成されており、以降ではリレー23及びリレー24を纏めて第1リレーRL1(第1開閉器)ともいう。同様に、リレー25及びリレー26が同じタイミングで動作するよう構成されており、以降ではリレー25及びリレー26を纏めて第2リレーRL2(第2開閉器)ともいう。リレー23,24,25,26の開閉動作は車両ECU27によって制御される。 The relays 23, 24, 25, and 26 are closed when the electric vehicle 20 and the charge / discharge stand 10 are connected by the connecting portion 40 and the storage battery 21 is charged / discharged. Further, when the electric vehicle 20 and the charging / discharging stand 10 are separated by the connecting portion 40, both are opened to prevent voltage application at the receptacle 42. The relay 23 and the relay 24 are configured to operate at the same timing. Hereinafter, the relay 23 and the relay 24 are collectively referred to as a first relay RL1 (first switch). Similarly, the relay 25 and the relay 26 are configured to operate at the same timing. Hereinafter, the relay 25 and the relay 26 are collectively referred to as a second relay RL2 (second switch). The opening / closing operation of the relays 23, 24, 25, 26 is controlled by the vehicle ECU 27.
 電力線22A,22Bのうち第2リレーRL2の設置位置と蓄電池21との間の位置に、電動車両20の主機30へ電力を供給するための一対の電力線28A,28B(主機電力線)の一端が接続されている。より詳細には、電力線22Aのうち第2リレーRL2の設置位置と蓄電池21の正極側との間の位置に一方の電力線28Aが接続され、電力線22Bのうち第2リレーRL2の設置位置と蓄電池21の負極側との間の位置に他方の電力線28Bが接続されている。電力線28A,28Bの他端は、共に主機インバータ29に接続されている。 One end of a pair of power lines 28A and 28B (main machine power lines) for supplying power to the main machine 30 of the electric vehicle 20 is connected to a position between the installation position of the second relay RL2 and the storage battery 21 among the power lines 22A and 22B. Has been. More specifically, one power line 28A is connected to a position between the installation position of the second relay RL2 and the positive electrode side of the storage battery 21 in the power line 22A, and the installation position of the second relay RL2 and the storage battery 21 in the power line 22B. The other power line 28B is connected to a position between the negative electrode side and the other power line 28B. The other ends of the power lines 28A and 28B are both connected to the main machine inverter 29.
 主機インバータ29は、蓄電池21から電力線22A,22B及び電力線28A,28Bを介して供給される直流電力を交流電力に変換して主機30に供給する電力変換装置である。主機30は、例えばモータなど蓄電池21から供給される電力によって駆動する回転電機である。 The main machine inverter 29 is a power converter that converts DC power supplied from the storage battery 21 via the power lines 22A and 22B and the power lines 28A and 28B into AC power and supplies the AC power to the main machine 30. The main machine 30 is a rotating electrical machine that is driven by electric power supplied from the storage battery 21 such as a motor.
 車両ECU27は、充放電スタンド10との間で蓄電池21の充放電を行うときに、充放電スタンド10との通信や第1リレーRL1及び第2リレーRL2の動作制御を行う。車両ECU27は、充放電スタンド10の充放電カプラ41が電動車両20のレセプタクル42に装着されることで、充放電スタンド10の充放電器ECU12と電気的に接続されて通信が可能となる。より詳細には、図1に示すように、充放電器ECU12から充放電カプラ接続信号を受信するのに応じて、第1リレーRL1及び第2リレーRL2の開閉動作を個別に制御する。 The vehicle ECU 27 performs communication with the charging / discharging stand 10 and operation control of the first relay RL1 and the second relay RL2 when charging / discharging the storage battery 21 with the charging / discharging stand 10. When the charge / discharge coupler 41 of the charge / discharge stand 10 is attached to the receptacle 42 of the electric vehicle 20, the vehicle ECU 27 is electrically connected to the charger / discharger ECU 12 of the charge / discharge stand 10 to enable communication. More specifically, as shown in FIG. 1, the opening / closing operations of the first relay RL1 and the second relay RL2 are individually controlled in response to receiving a charge / discharge coupler connection signal from the charger / discharger ECU 12.
 特に本実施形態では、車両ECU27は、接続部40により電動車両20と充放電スタンド10とが接続されるときには、第1リレーRL1及び第2リレーRL2の閉動作に時間差をもたせつつ第1リレーRL1及び第2リレーRL2を閉状態に制御する。より詳細には、先に第2リレーRL2を閉状態に制御し、次に第1リレーRL1を閉状態に制御して、充放電器11と蓄電池21とを電気的に接続させる。 Particularly in the present embodiment, when the electric vehicle 20 and the charging / discharging stand 10 are connected by the connection unit 40, the vehicle ECU 27 causes the first relay RL1 to have a time difference in the closing operation of the first relay RL1 and the second relay RL2. And the second relay RL2 is controlled to be closed. More specifically, first, the second relay RL2 is controlled to be closed, and then the first relay RL1 is controlled to be closed, so that the charger / discharger 11 and the storage battery 21 are electrically connected.
 また、車両ECU27は、接続部40により電動車両20と充放電スタンド10とが離脱されるとき、第1リレーRL1及び第2リレーRL2の開動作に時間差をもたせつつ第1リレーRL1及び第2リレーRL2を開状態に制御する。より詳細には、先に第1リレーRL1を開状態に制御し、次に第2リレーRL2を開状態に制御して、充放電器11と蓄電池21との電気的な接続を解除する。 In addition, when the electric vehicle 20 and the charging / discharging stand 10 are separated by the connection unit 40, the vehicle ECU 27 causes the first relay RL1 and the second relay to have a time difference in the opening operation of the first relay RL1 and the second relay RL2. Control RL2 to an open state. More specifically, the first relay RL1 is first controlled to be in the open state, and then the second relay RL2 is controlled to be in the open state, so that the electrical connection between the charger / discharger 11 and the storage battery 21 is released.
 車両ECU27の具体的な構成の一例を図2に示す。車両ECU27は、第1電力変換装置31と、第2電力変換装置32(電力変換装置)と、第1リレー制御回路33と、第2リレー制御回路34(開閉器制御回路)とを有する。 An example of a specific configuration of the vehicle ECU 27 is shown in FIG. The vehicle ECU 27 includes a first power conversion device 31, a second power conversion device 32 (power conversion device), a first relay control circuit 33, and a second relay control circuit 34 (switch control circuit).
 第1電力変換装置31及び第2電力変換装置32は、直流電源36から供給される直流電力の電圧を変換して出力する。第1電力変換装置31は、一対の入力端子の一方が電力線51Aにより直流電源36の正極側と接続され、一対の入力端子の他方が電力線51Bにより直流電源36の負極側と接続されている。同様に、第2電力変換装置32は、一対の入力端子の一方が電力線53A(第1電力線)により直流電源36の正極側と接続され、一対の入力端子の他方が電力線53B(第2電力線)により直流電源36の負極側と接続されている。 The first power conversion device 31 and the second power conversion device 32 convert the voltage of the DC power supplied from the DC power supply 36 and output it. In the first power converter 31, one of the pair of input terminals is connected to the positive electrode side of the DC power source 36 by the power line 51A, and the other of the pair of input terminals is connected to the negative electrode side of the DC power source 36 by the power line 51B. Similarly, in the second power conversion device 32, one of the pair of input terminals is connected to the positive electrode side of the DC power source 36 by the power line 53A (first power line), and the other of the pair of input terminals is the power line 53B (second power line). Is connected to the negative electrode side of the DC power source 36.
 第1リレー制御回路33は、第1リレーRL1の動作を制御する。第1リレー制御回路33は、電力線52Aにより第1電力変換装置31の一対の出力端子の一方に接続され、電力線52Bにより第1電力変換装置31の一対の出力端子の他方に接続されており、第1電力変換装置31から供給される直流電力によって作動する。第1リレー制御回路33は、充放電カプラ接続信号などの各種入力情報に基づき、第1リレーRL1に開動作または閉動作を行わせるための第1リレードライブ信号を第1リレーRL1に出力する。 The first relay control circuit 33 controls the operation of the first relay RL1. The first relay control circuit 33 is connected to one of the pair of output terminals of the first power converter 31 by the power line 52A, and is connected to the other of the pair of output terminals of the first power converter 31 by the power line 52B. It operates by direct current power supplied from the first power converter 31. The first relay control circuit 33 outputs to the first relay RL1 a first relay drive signal for causing the first relay RL1 to perform an opening operation or a closing operation based on various input information such as a charge / discharge coupler connection signal.
 第2リレー制御回路34は、第2リレーRL2の動作を制御する。第2リレー制御回路34は、電力線54A(第3電力線)により第2電力変換装置32の一対の出力端子の一方に接続され、電力線54B(第4電力線)により第2電力変換装置32の一対の出力端子の他方に接続されており、第2電力変換装置32から供給される直流電力によって作動する。第2リレー制御回路34は、充放電カプラ接続信号などの各種入力情報に基づき、第2リレーRL2に開動作または閉動作を行わせるための第2リレードライブ信号を第2リレーRL2に出力する。第1リレー制御回路33及び第2リレー制御回路34は、マイコンなどで構成されCPU、ROM、RAM、入出力インタフェースを備えたコンピュータシステムとして構成される。 The second relay control circuit 34 controls the operation of the second relay RL2. The second relay control circuit 34 is connected to one of the pair of output terminals of the second power converter 32 by the power line 54A (third power line), and is paired by the power line 54B (fourth power line). It is connected to the other output terminal and is operated by DC power supplied from the second power converter 32. The second relay control circuit 34 outputs, to the second relay RL2, a second relay drive signal for causing the second relay RL2 to perform an opening operation or a closing operation based on various input information such as a charge / discharge coupler connection signal. The first relay control circuit 33 and the second relay control circuit 34 are configured by a microcomputer or the like, and are configured as a computer system including a CPU, a ROM, a RAM, and an input / output interface.
 電力線52A及び電力線54Aに印加される電圧は、第1リレーRL1及び第2リレーRL2の駆動に用いる第1リレー電圧及び第2リレー電圧として、第1リレーRL1及び第2リレーRL2にそれぞれ供給される。 The voltages applied to the power line 52A and the power line 54A are respectively supplied to the first relay RL1 and the second relay RL2 as the first relay voltage and the second relay voltage used for driving the first relay RL1 and the second relay RL2. .
 第1電力変換装置31、第1リレー制御回路33、及び直流電源36が、第1リレーRL1の動作を制御する第1リレー制御部37(第1制御部)として機能するものである。第2電力変換装置32、第2リレー制御回路34、及び直流電源36が、第2リレーRL2の動作を制御する第2リレー制御部38(第2制御部)として機能するものである。 The first power conversion device 31, the first relay control circuit 33, and the DC power supply 36 function as a first relay control unit 37 (first control unit) that controls the operation of the first relay RL1. The second power converter 32, the second relay control circuit 34, and the DC power supply 36 function as a second relay control unit 38 (second control unit) that controls the operation of the second relay RL2.
 図2に示すように、第2リレー制御部38は、第2リレーRL2の動作状態を保持するための保持回路35を有する。保持回路35は、ダイオードD1(第1ダイオード)、ダイオードD2(第2ダイオード)、抵抗R1、コンデンサC0(第1コンデンサ)、及び、コンデンサC1(第2コンデンサ)を有する。ダイオードD1は、電力線53A上において、直流電源36から第2電力変換装置32の方向に電流が流れる向きで設けられる。抵抗R1及びコンデンサC1は、電力線53AにおけるダイオードD1と第2電力変換装置32の入力端子との間の位置と、電力線53Bとの間にて直列に接続されている。ダイオードD2は、抵抗R1とコンデンサC1との中間位置と、電力線53Aにおける抵抗R1の接続位置より第2電力変換装置32側の位置との間にて、電力線53A側に向けて電流が流れるように接続されている。コンデンサC0は、電力線54Aと電力線54Bとの間に接続されている。 2, the second relay control unit 38 has a holding circuit 35 for holding the operating state of the second relay RL2. The holding circuit 35 includes a diode D1 (first diode), a diode D2 (second diode), a resistor R1, a capacitor C0 (first capacitor), and a capacitor C1 (second capacitor). The diode D1 is provided on the power line 53A in a direction in which current flows from the DC power source 36 to the second power conversion device 32. The resistor R1 and the capacitor C1 are connected in series between the position of the power line 53A between the diode D1 and the input terminal of the second power converter 32 and the power line 53B. The diode D2 is configured such that a current flows toward the power line 53A between an intermediate position between the resistor R1 and the capacitor C1 and a position on the second power converter 32 side from a connection position of the resistor R1 in the power line 53A. It is connected. The capacitor C0 is connected between the power line 54A and the power line 54B.
 第2リレー制御部38は、このような回路構成の保持回路35を有することにより、直流電源36からの電力供給が無い状態でも、第2リレードライブ信号及び第2リレー電圧の出力を一定期間継続させることができ、第2リレーRL2の動作状態を保持できる。 The second relay control unit 38 has the holding circuit 35 having such a circuit configuration, so that the output of the second relay drive signal and the second relay voltage is continued for a certain period even when there is no power supply from the DC power supply 36. The operation state of the second relay RL2 can be maintained.
 次に、図3及び図4を参照して、本実施形態に係る充放電システム1における、充放電スタンド10と電動車両20との接続時の動作について説明する。図4のタイミングチャートには、(A)充放電カプラ接続信号、(B)充放電許可信号、(C)充放電電流、(D)第1リレーRL1、(E)第2リレーRL2の時間推移が示されている。図3のフローチャートは、車両ECU27及び充放電器ECU12により例えば所定周期ごとに実施される。以下、図4のタイミングチャートを参照しつつ、図3のフローチャートに沿って説明する。 Next, with reference to FIG.3 and FIG.4, the operation | movement at the time of the connection of the charging / discharging stand 10 and the electric vehicle 20 in the charging / discharging system 1 which concerns on this embodiment is demonstrated. In the timing chart of FIG. 4, (A) charge / discharge coupler connection signal, (B) charge / discharge permission signal, (C) charge / discharge current, (D) first relay RL1, (E) second relay RL2 over time. It is shown. The flowchart of FIG. 3 is implemented by the vehicle ECU 27 and the charger / discharger ECU 12 at predetermined intervals, for example. Hereinafter, description will be made along the flowchart of FIG. 3 with reference to the timing chart of FIG.
 ステップS11では、車両ECU27により、充放電カプラ41のロックを検出したか否かが判定される。車両ECU27は、充放電器ECU12から入力される充放電カプラ接続信号に基づき、充放電カプラ41がレセプタクル42に装着されロックされた状態であることを検出することができる。充放電カプラ接続信号は例えば電圧値であり、充放電カプラ41がレセプタクル42にロックされている状態と、このロック状態が解除されている状態とで電圧値が変化する信号である。車両ECU27は、充放電カプラ接続信号の電圧の変化を読み取ることによって、充放電カプラ41のロックを検出することができる。ステップS11の判定の結果、充放電カプラ41のロックを検出した場合にはステップS12に進み、そうでない場合には本制御フローを終了する。 In step S11, the vehicle ECU 27 determines whether or not the lock of the charge / discharge coupler 41 has been detected. The vehicle ECU 27 can detect that the charge / discharge coupler 41 is attached to the receptacle 42 and locked based on the charge / discharge coupler connection signal input from the charger / discharger ECU 12. The charge / discharge coupler connection signal is a voltage value, for example, and is a signal whose voltage value changes between a state where the charge / discharge coupler 41 is locked to the receptacle 42 and a state where the lock state is released. The vehicle ECU 27 can detect the lock of the charge / discharge coupler 41 by reading the voltage change of the charge / discharge coupler connection signal. As a result of the determination in step S11, if the lock of the charge / discharge coupler 41 is detected, the process proceeds to step S12, and if not, the control flow ends.
 ここで、図4(A)に示すように、時刻T1以前では充放電カプラ接続信号が0[V]であり、充放電カプラ41がレセプタクル42にロックされていない未接続状態である。時刻T1以降において、充放電カプラ接続信号が正値に変化するため、車両ECU27は、充放電カプラ41がレセプタクル42にロックされている接続状態を検知することができる。 Here, as shown in FIG. 4A, the charge / discharge coupler connection signal is 0 [V] before time T1, and the charge / discharge coupler 41 is not locked to the receptacle 42. Since the charge / discharge coupler connection signal changes to a positive value after time T1, the vehicle ECU 27 can detect a connection state in which the charge / discharge coupler 41 is locked to the receptacle 42.
 ステップS12では、車両ECU27により、電動車両20と充放電器11との間の充放電制御(充放電動作)の実施条件が成立しているか否かが判定される。充放電制御の実施条件とは、例えば蓄電池21の充電率や、充放電スタンド10の動作状況などの各種条件を含むことができる。ステップS12の判定の結果、実施条件が成立している場合にはステップS13に進み、そうでない場合には本制御フローを終了する。図4の例では、時刻T2以降において充放電制御の実施条件が成立している。 In step S12, the vehicle ECU 27 determines whether or not an execution condition for charge / discharge control (charge / discharge operation) between the electric vehicle 20 and the charger / discharger 11 is established. The charging / discharging control execution conditions may include various conditions such as the charging rate of the storage battery 21 and the operating status of the charging / discharging stand 10. As a result of the determination in step S12, if the execution condition is satisfied, the process proceeds to step S13, and if not, this control flow is terminated. In the example of FIG. 4, the charging / discharging control conditions are satisfied after time T2.
 ステップS13では、車両ECU27により、第2リレーRL2が閉状態(ショート)に制御される。車両ECU27は、例えば、ステップS12において充放電制御の実施条件が成立した時点(図4の時刻T2)から所定の第1期間(図4ではT3-T2)経過後に第2リレーRL2を閉状態に制御する。ステップS13の処理が完了するとステップS14に進む。 In step S13, the vehicle ECU 27 controls the second relay RL2 to be in a closed state (short). For example, the vehicle ECU 27 closes the second relay RL2 after a predetermined first period (T3-T2 in FIG. 4) has elapsed since the time when the charge / discharge control execution condition was satisfied in step S12 (time T2 in FIG. 4). Control. When the process of step S13 is completed, the process proceeds to step S14.
 ステップS14では、車両ECU27により、第1リレーRL1が閉状態(ショート)に制御される。車両ECU27は、例えば、ステップS12において充放電制御の実施条件が成立した時点(図4の時刻T2)から所定の第2期間(図4ではT4-T2)経過後に第1リレーRL1を閉状態に制御する。ステップS14の処理が完了するとステップS15に進む。 In step S14, the first relay RL1 is controlled to be in a closed state (short circuit) by the vehicle ECU 27. For example, the vehicle ECU 27 closes the first relay RL1 after a predetermined second period (T4-T2 in FIG. 4) has elapsed since the time when the charge / discharge control execution condition was satisfied in step S12 (time T2 in FIG. 4). Control. When the process of step S14 is completed, the process proceeds to step S15.
 ここで、図4(E)に示すように、時刻T3において第2リレーRL2が閉状態に制御され、開放状態から感動状態に切り替えられている。また、図4(D)に示すように、時刻T3より時間tだけ遅い時刻T4において、第1リレーRL1が閉状態に制御され、開放状態から感動状態に切り替えられている。 Here, as shown in FIG. 4E, the second relay RL2 is controlled to the closed state at time T3, and is switched from the open state to the moving state. Further, as shown in FIG. 4D, at the time T4 later by the time t than the time T3, the first relay RL1 is controlled to be in the closed state and switched from the open state to the moving state.
 ステップS15では、充放電器ECU12により、電動車両20と充放電器11との間の充放電制御が開始される。充放電器ECU12は、充放電許可信号に基づき、充放電制御を許可できる状態か否かを判定できる。充放電許可信号は例えば電圧値であり、充放電許可状態か否かで電圧値が変化する信号である。充放電許可信号は、例えば図1に示すように、充放電器ECU12と車両ECU27との間の相互通信によって生成される信号である。充放電許可信号は、充放電器ECU12及び車両ECU27の双方で充放電制御を実施できる状態のとき、充放電許可状態を示す電圧値を出力することができ、充放電器ECU12及び車両ECU27の少なくとも一方で何らかのエラーが発生し、充放電制御を実施できない状態のとき、充放電停止状態を示す電圧値を出力することができる。充放電器ECU12は、充放電許可信号の電圧の変化を読み取ることによって、充放電許可状態を検出することができる。充放電器ECU12は、充放電許可状態を検出すると、充放電器11を制御して、蓄電池21との間で充放電制御を開始し、充放電スタンド10側の電力線13A,13B、及び、電動車両20側の電力線22A,22Bに充放電電流が流れる。ステップS15の処理が完了すると本制御フローを終了する。 In step S15, charge / discharge control between the electric vehicle 20 and the charger / discharger 11 is started by the charger / discharger ECU 12. Based on the charge / discharge permission signal, the charger / discharger ECU 12 can determine whether the charge / discharge control is permitted. The charge / discharge permission signal is, for example, a voltage value, and is a signal whose voltage value changes depending on whether the charge / discharge permission state is set. The charge / discharge permission signal is a signal generated by mutual communication between the charger / discharger ECU 12 and the vehicle ECU 27, for example, as shown in FIG. The charging / discharging permission signal can output a voltage value indicating a charging / discharging permission state when the charging / discharging control can be performed by both the charging / discharging device ECU 12 and the vehicle ECU 27, and at least of the charging / discharging device ECU 12 and the vehicle ECU 27. On the other hand, when an error occurs and charge / discharge control cannot be performed, a voltage value indicating a charge / discharge stop state can be output. The charger / discharger ECU 12 can detect the charge / discharge permission state by reading the change in the voltage of the charge / discharge permission signal. When the charging / discharging ECU 12 detects the charging / discharging permission state, the charging / discharging ECU 12 controls the charging / discharging device 11 to start charging / discharging control with the storage battery 21, and the power lines 13A, 13B on the charging / discharging stand 10 side and electric A charge / discharge current flows through the power lines 22A and 22B on the vehicle 20 side. When the process of step S15 is completed, this control flow ends.
 ここで図4(B)に示すように、第1リレーRL1及び第2リレーRL2が閉状態に制御された後の時刻T5において、充放電許可信号が0[V]から正値に変化して充放電停止状態から充放電許可状態に遷移する。そして、時刻T6において充放電器ECU12により充放電器11の動作が開始され、時刻T7において充放電器11からの充電電流が所定値まで増加されて蓄電池21に供給されている。 Here, as shown in FIG. 4B, at time T5 after the first relay RL1 and the second relay RL2 are controlled to be closed, the charge / discharge permission signal changes from 0 [V] to a positive value. Transition from the charge / discharge stop state to the charge / discharge permission state. Then, the charger / discharger ECU 12 starts the operation of the charger / discharger 11 at time T6, and the charging current from the charger / discharger 11 is increased to a predetermined value and supplied to the storage battery 21 at time T7.
 次に、図5及び図6を参照して、本実施形態に係る充放電システム1における、充放電スタンド10と電動車両20との離脱時の動作について説明する。図6のタイミングチャートの概略構成は図4のタイミングチャートと同様である。以下、図6のタイミングチャートを参照しつつ、図5のフローチャートに沿って説明する。 Next, with reference to FIG. 5 and FIG. 6, the operation when the charge / discharge station 10 and the electric vehicle 20 are detached in the charge / discharge system 1 according to the present embodiment will be described. The schematic configuration of the timing chart of FIG. 6 is the same as the timing chart of FIG. Hereinafter, description will be made along the flowchart of FIG. 5 with reference to the timing chart of FIG.
 ステップS21では、車両ECU27により、充放電カプラ41のロック解除を検出したか否かが判定される。車両ECU27は、充放電器ECU12から入力される充放電カプラ接続信号に基づき、充放電カプラ41のロック解除を検出できる。より詳細には、充放電カプラ41に設けられる近接スイッチが押下されると、レセプタクル42にラッチされている部分が解除されるため、充放電カプラ41をレセプタクル42から抜去することが可能となる。車両ECU27は、このときの充放電カプラ接続信号の電圧の変化を読み取ることによって、充放電カプラ41のロック解除を検出することができる。ステップS21の判定の結果、充放電カプラ41のロック解除を検出した場合にはステップS22に進み、そうでない場合には本制御フローを終了する。 In step S21, the vehicle ECU 27 determines whether or not unlocking of the charge / discharge coupler 41 is detected. The vehicle ECU 27 can detect the unlocking of the charge / discharge coupler 41 based on the charge / discharge coupler connection signal input from the charger / discharger ECU 12. More specifically, when the proximity switch provided in the charge / discharge coupler 41 is pressed, the portion latched by the receptacle 42 is released, so that the charge / discharge coupler 41 can be removed from the receptacle 42. The vehicle ECU 27 can detect the unlocking of the charge / discharge coupler 41 by reading the change in voltage of the charge / discharge coupler connection signal at this time. As a result of the determination in step S21, if unlocking of the charge / discharge coupler 41 is detected, the process proceeds to step S22, and if not, this control flow ends.
 ここで、図6(A)に示すように、時刻T8以前では充放電カプラ接続信号が正値であり、充放電カプラ41がレセプタクル42にロックされている接続状態である。時刻T8において充放電カプラ接続信号がステップ状に減少変化するため、車両ECU27は、充放電カプラ41がロック解除され、かつ、未だレセプタクル42に挿入されている抜去準備状態を検知することができる。 Here, as shown in FIG. 6A, the charging / discharging coupler connection signal is a positive value before time T8, and the charging / discharging coupler 41 is locked to the receptacle 42. Since the charge / discharge coupler connection signal decreases and changes stepwise at time T8, the vehicle ECU 27 can detect the removal preparation state in which the charge / discharge coupler 41 is unlocked and is still inserted into the receptacle 42.
 ステップS22では、充放電器ECU12により、電動車両20と充放電器11との間の充放電制御が停止される。車両ECU27は、ステップS21におけるロック解除の検出に応じて充放電許可信号を充放電停止状態に変化させる。充放電器ECU12は、充放電許可信号の変化に応じて、充放電器11を制御して、蓄電池21との間の充放電制御を停止させる。ステップS22の処理が完了するとステップS23に進む。 In step S22, charging / discharging control between the electric vehicle 20 and the charger / discharger 11 is stopped by the charger / discharger ECU 12. The vehicle ECU 27 changes the charge / discharge permission signal to the charge / discharge stop state in response to the detection of unlocking in step S21. The charger / discharger ECU 12 controls the charger / discharger 11 according to the change in the charge / discharge permission signal, and stops the charge / discharge control with the storage battery 21. When the process of step S22 is completed, the process proceeds to step S23.
 ステップS23では、車両ECU27により、充放電電流が0[A]まで低減したか否かが判定される。ステップS22における充放電制御の停止動作によって、電力線22A,22Bに流れる充放電電流が徐々に0[A]まで減少してゆく。車両ECU27は、このときの充放電電流の推移を監視することで、充放電電流が0[A]まで低減したことを検出できる。ステップS22の判定の結果、充放電電流が0[A]まで低減した場合にはステップS23に進み、そうでない場合には充放電電流が0[A]に低減するまで待機する。 In step S23, the vehicle ECU 27 determines whether or not the charge / discharge current has been reduced to 0 [A]. Due to the stop operation of the charge / discharge control in step S22, the charge / discharge current flowing through the power lines 22A, 22B gradually decreases to 0 [A]. The vehicle ECU 27 can detect that the charge / discharge current has been reduced to 0 [A] by monitoring the transition of the charge / discharge current at this time. If the charge / discharge current is reduced to 0 [A] as a result of the determination in step S22, the process proceeds to step S23. Otherwise, the process waits until the charge / discharge current is reduced to 0 [A].
 ここで、図6(B)に示すように、時刻T8において、充放電許可信号が充放電許可状態から充放電停止状態へ変化するのに伴って、(C)に示すように充放電電流が徐々に減少し始め、時刻T9において0[A]まで低減している。 Here, as shown in FIG. 6B, at time T8, as the charge / discharge permission signal changes from the charge / discharge permission state to the charge / discharge stop state, the charge / discharge current is changed as shown in FIG. It begins to decrease gradually and decreases to 0 [A] at time T9.
 ステップS24では、車両ECU27により、第1リレーRL1が開状態(オープン)に制御される。車両ECU27は、例えば、ステップS22において電動車両20と充放電器11との間の充放電制御が停止された時点(図6の時刻T8)から所定の第3期間(図6ではT10-T8)経過後に第1リレーRL1を開状態に制御する。ステップS24の処理が完了するとステップS25に進む。 In step S24, the vehicle ECU 27 controls the first relay RL1 to be in an open state (open). For example, the vehicle ECU 27 performs a predetermined third period (T10-T8 in FIG. 6) from the time when charging / discharging control between the electric vehicle 20 and the charger / discharger 11 is stopped in step S22 (time T8 in FIG. 6). After the elapse, the first relay RL1 is controlled to be in an open state. When the process of step S24 is completed, the process proceeds to step S25.
 ステップS25では、車両ECU27により、第2リレーRL2が開状態(オープン)に制御される。車両ECU27は、例えば、ステップS22において電動車両20と充放電器11との間の充放電制御が停止された時点(図6の時刻T8)から所定の第4期間(図6ではT11-T8)経過後に第2リレーRL2を開状態に制御する。ステップS25の処理が完了すると、充放電カプラ41がレセプタクル42から安全に抜去できる状態となり、本制御フローを終了する。 In step S25, the vehicle ECU 27 controls the second relay RL2 to be in an open state (open). For example, the vehicle ECU 27 performs a predetermined fourth period (T11-T8 in FIG. 6) from the time when charging / discharging control between the electric vehicle 20 and the charger / discharger 11 is stopped in step S22 (time T8 in FIG. 6). After the elapse, the second relay RL2 is controlled to be in an open state. When the process of step S25 is completed, the charge / discharge coupler 41 can be safely removed from the receptacle 42, and the present control flow ends.
 ここで、図6(D)に示すように、時刻T10において第1リレーRL1が開状態に制御され、感動状態から解放状態に切り替えられている。また、図6(E)に示すように、時刻T10より時間tだけ遅い時刻T11において、第2リレーRL2が開状態に制御され、感動状態から解放状態に切り替えられている。その後、時刻T12において、充放電カプラ接続信号が抜去準備状態から未接続状態に切り替えられ、充放電カプラ41がレセプタクル42から安全に抜去できる状態となっている。 Here, as shown in FIG. 6D, at time T10, the first relay RL1 is controlled to be in the open state, and is switched from the moving state to the released state. Further, as shown in FIG. 6E, at time T11 which is later by time t than time T10, the second relay RL2 is controlled to be in the open state, and is switched from the moving state to the released state. Thereafter, at time T12, the charge / discharge coupler connection signal is switched from the removal preparation state to the unconnected state, and the charge / discharge coupler 41 is in a state where it can be safely removed from the receptacle 42.
 次に、本実施形態に係る充放電システム1の効果について説明する。 Next, effects of the charge / discharge system 1 according to the present embodiment will be described.
 本実施形態の充放電システム1において、電動車両20の車両ECU27は、接続部40(充放電カプラ41及びレセプタクル42)により電動車両20と充放電スタンド10とが接続されるとき、第1リレーRL1(リレー23,24)及び第2リレーRL2(リレー25,26)の閉動作に時間差をもたせつつ、第1リレーRL1及び第2リレーRL2を閉状態に制御して、充放電スタンド10の充放電器11と電動車両20の蓄電池21とを電気的に接続させる。また、接続部40により電動車両20と充放電スタンド10とが離脱されるとき、第1リレーRL1及び第2リレーRL2の開動作に時間差をもたせつつ第1リレーRL1及び第2リレーRL2を開状態に制御して、充放電器11と蓄電池21との電気的な接続を解除する。ここで、第1リレーRL1のリレー23,24と、第2リレーRL2のリレー25,26とは、電動車両20内の電力線22A,22B上にそれぞれ順列に設置される。 In the charging / discharging system 1 of the present embodiment, the vehicle ECU 27 of the electric vehicle 20 includes the first relay RL1 when the electric vehicle 20 and the charging / discharging stand 10 are connected by the connection unit 40 (the charging / discharging coupler 41 and the receptacle 42). The charging / discharging stand 10 is charged / discharged by controlling the first relay RL1 and the second relay RL2 to be closed while giving a time difference to the closing operation of the (relays 23, 24) and the second relay RL2 (relays 25, 26). Electric appliance 11 and storage battery 21 of electric vehicle 20 are electrically connected. Further, when the electric vehicle 20 and the charging / discharging stand 10 are separated by the connecting portion 40, the first relay RL1 and the second relay RL2 are opened while a time difference is provided in the opening operation of the first relay RL1 and the second relay RL2. The electrical connection between the charger / discharger 11 and the storage battery 21 is released. Here, the relays 23 and 24 of the first relay RL1 and the relays 25 and 26 of the second relay RL2 are installed in permutations on the power lines 22A and 22B in the electric vehicle 20, respectively.
 また、本実施形態では、第1リレーRL1のリレー23,24が電力線22A、22Bのうち接続部40側に設けられ、第2リレーRL2のリレー25,26が電力線22A,22Bのうち蓄電池21側に設けられる。車両ECU27は、接続部40により電動車両20と充放電スタンド10とが電気的に接続されるとき、先に第2リレーRL2を閉状態に制御し、次に第1リレーRL1を閉状態に制御して、充放電器11と蓄電池21とを電気的に接続させる。また、接続部40により電動車両20と充放電スタンド10とが離脱されるとき、先に第1リレーRL1を開状態に制御し、次に第2リレーRL2を開状態に制御して、充放電器11と蓄電池21との電気的な接続を解除する。 In the present embodiment, the relays 23 and 24 of the first relay RL1 are provided on the connection part 40 side of the power lines 22A and 22B, and the relays 25 and 26 of the second relay RL2 are on the storage battery 21 side of the power lines 22A and 22B. Is provided. When the electric vehicle 20 and the charging / discharging stand 10 are electrically connected by the connection unit 40, the vehicle ECU 27 first controls the second relay RL2 to the closed state, and then controls the first relay RL1 to the closed state. Then, the charger / discharger 11 and the storage battery 21 are electrically connected. Further, when the electric vehicle 20 and the charging / discharging stand 10 are separated from each other by the connecting portion 40, the first relay RL1 is first controlled to be opened, and then the second relay RL2 is controlled to be opened and charged. The electrical connection between the electric appliance 11 and the storage battery 21 is released.
 上記構成により、接続部40の充放電カプラ41とレセプタクル42が取り外され、電動車両20の蓄電池21と充放電スタンド10の充放電器11とが離脱した状態において、電力線22A,22B上のリレー23~26が開状態とされる。これにより、電力線22A,22Bの通電を遮断でき、電力線22A,22Bの端部に設けられ、このとき外部に露出している電動車両20のレセプタクル42に電圧が印加することを防止できる。 With the above configuration, when the charge / discharge coupler 41 and the receptacle 42 of the connection unit 40 are removed and the storage battery 21 of the electric vehicle 20 and the charger / discharger 11 of the charge / discharge stand 10 are disconnected, the relay 23 on the power lines 22A and 22B. ˜26 are opened. Thereby, it is possible to cut off the energization of the power lines 22A and 22B, and it is possible to prevent the voltage from being applied to the receptacle 42 of the electric vehicle 20 provided at the ends of the power lines 22A and 22B and exposed to the outside at this time.
 ここで、リレー23~26には一般に接点溶着が生じる場合がある。例えば、接点に電流が流れている状態において接点を開放した場合、発生するアーク熱によって接点表面の接触抵抗が増加し、接触面が溶融し溶着する現象が起こる。また、チャタリングやバイブレーションによる高頻度開閉での連続したアークによっても、接点溶着が発生することがある。接点溶着が発生すると、リレーの接点が開離せず復帰不良となる。そして、回路上のリレー23~26すべてに接点溶着が生じると、回路の通電を充分に遮断することができなくなり、レセプタクル42に電圧が出力されるため、利用者の感電など安全性が損なわれる虞がある。 Here, contact welding may generally occur in the relays 23 to 26. For example, when the contact is opened in a state where current is flowing through the contact, the contact resistance of the contact surface increases due to the generated arc heat, and the contact surface melts and welds. Contact welding may also occur due to continuous arcs caused by chattering or vibration with high frequency switching. When contact welding occurs, the relay contact does not open, resulting in a return failure. If contact welding occurs in all of the relays 23 to 26 on the circuit, the circuit cannot be sufficiently cut off, and the voltage is output to the receptacle 42, which impairs safety such as electric shock of the user. There is a fear.
 本実施形態では、電力線22上に設けるリレー23,24,25,26を第1リレーRL1と第2リレーRL2の2群に分け、各郡ごとの開閉動作に時間差を持たせ、開閉タイミングをずらしている。これにより、第1リレーRL1及び第2リレーRL2のうち一方のリレー群が溶着した場合でも、他方のリレー群は溶着を回避できるので、すべてのリレーが同時に溶着するのを防ぐことができる。したがって、一方のリレー群に接点溶着が生じる事態が発生したとしても、他方のリレー群は動作可能な状態を保持できるので、電力線22A,22Bの通電を確実に遮断することができる。この結果、接続部40の充放電カプラ41とレセプタクル42を取り外した状態において、外部に露出するレセプタクル42に電圧が出力されることを確実に防止でき、利用者の安全性を確保できる。 In this embodiment, the relays 23, 24, 25, and 26 provided on the power line 22 are divided into two groups of the first relay RL1 and the second relay RL2, and a time difference is given to the opening / closing operation for each group, and the opening / closing timing is shifted. ing. Thereby, even when one relay group of the first relay RL1 and the second relay RL2 is welded, the other relay group can avoid welding, so that all the relays can be prevented from being welded simultaneously. Therefore, even if a situation occurs where contact welding occurs in one relay group, the other relay group can maintain an operable state, so that the power lines 22A and 22B can be reliably cut off. As a result, in a state where the charge / discharge coupler 41 and the receptacle 42 of the connection part 40 are removed, it is possible to reliably prevent voltage from being output to the receptacle 42 exposed to the outside, and to ensure the safety of the user.
 なお、電動車両の充電方法に係るCHAdeMO(登録商標)やComboなどの共通規格でも、このような安全性を確保すべく、充放電システムに用いるコネクタの規格や充電方法、通信方法などの統一化が図られている。しかし、この共通規格の仕様に対応するコネクタは、電磁ロックや機械式ラッチ、複数のインタフェース線などの感電防止構造を備える旨が規定されており、複雑な構成を要する。これに対して、本実施形態は、既存の充放電回路にリレー23~26を二重化して設けるという簡易な構成によって、リレー溶着時であってもレセプタクルに電圧が発生しないように構成でき、上記の共通規格の仕様に対応するコネクタなどの専用品と同様の安全性を確保することができる。以上より、この結果、本実施形態の充放電システム1は、利用者の安全性を簡易な構成で確保することが可能となる。 In addition, common standards such as CHAdeMO (registered trademark) and Combo related to the charging method for electric vehicles also standardize the connector standard, charging method and communication method used in the charge / discharge system in order to ensure such safety. Is planned. However, a connector corresponding to the specifications of this common standard is defined to have an electric shock prevention structure such as an electromagnetic lock, a mechanical latch, and a plurality of interface wires, and requires a complicated configuration. On the other hand, the present embodiment can be configured such that no voltage is generated in the receptacle even when the relay is welded by a simple configuration in which the relays 23 to 26 are provided in duplicate in the existing charge / discharge circuit. The same safety as a dedicated product such as a connector corresponding to the specifications of the common standard can be ensured. As described above, as a result, the charge / discharge system 1 of the present embodiment can ensure the safety of the user with a simple configuration.
 また、本実施形態の充放電システム1において、車両ECU27は、第1リレーRL1の動作を制御する第1リレー制御部37と、第2リレーRL2の動作を制御する第2リレー制御部38と、を有し、第2リレー制御部38は、第2リレーRL2の動作状態を一定時間保持できる保持回路35を有する。 In the charge / discharge system 1 of the present embodiment, the vehicle ECU 27 includes a first relay control unit 37 that controls the operation of the first relay RL1, a second relay control unit 38 that controls the operation of the second relay RL2, The second relay control unit 38 includes a holding circuit 35 that can hold the operation state of the second relay RL2 for a certain period of time.
 図2を参照して説明したように、本実施形態では、第1リレー制御部37及び第2リレー制御部38は、共に単一の車両ECU27の一部として構成され、共通の直流電源36によって作動するものである。このため、突発的に直流電源36からの電力供給が停止すると、第1リレーRL1及び第2リレーRL2が共に作動できなくなる状況が起こり得る。このとき、第1リレー制御部37及び第2リレー制御部38が両方とも保持回路35を有していない場合には、第1リレーRL1及び第2リレーRL2が同時に閉状態に遷移する状態が考えられ、第1リレーRL1及び第2リレーRL2が同時に接点溶着する虞がある。 As described with reference to FIG. 2, in the present embodiment, the first relay control unit 37 and the second relay control unit 38 are both configured as a part of a single vehicle ECU 27, and are shared by a common DC power source 36. It works. For this reason, if the power supply from the DC power supply 36 is suddenly stopped, a situation may occur in which both the first relay RL1 and the second relay RL2 cannot operate. At this time, when both the first relay control unit 37 and the second relay control unit 38 do not have the holding circuit 35, a state in which the first relay RL1 and the second relay RL2 simultaneously transition to the closed state is considered. Therefore, the first relay RL1 and the second relay RL2 may be welded at the same time.
 これに対して本実施形態では、第1リレー制御部37及び第2リレー制御部38のうち一方の第2リレー制御部38のみが保持回路35を有することにより、突発的に直流電源36からの電力供給が停止する状況が発生したとしても、第2リレー制御部38は第2リレーRL2の動作制御を電力供給停止後の一定期間は継続させることができる。したがって、本実施形態では、第1リレー制御部37及び第2リレー制御部38への電力供給が共に停止されたときや低下したときにおいても、第1リレーRL1及び第2リレーRL2の開動作及び閉動作に時間差をもたせ、動作タイミングを適切にずらすことが可能となる。これにより、第1リレーRL1及び第2リレーRL2が同時に接点溶着することをより一層確実に防止でき、充放電器11と蓄電池21との電気的な接続を確実に解除させることができる。 On the other hand, in the present embodiment, only one of the first relay control unit 37 and the second relay control unit 38 has the holding circuit 35 so that the DC power supply 36 suddenly Even if the situation in which the power supply is stopped occurs, the second relay control unit 38 can continue the operation control of the second relay RL2 for a certain period after the power supply is stopped. Therefore, in this embodiment, even when the power supply to the first relay control unit 37 and the second relay control unit 38 is both stopped or reduced, the opening operation of the first relay RL1 and the second relay RL2 and It is possible to give a time difference to the closing operation and appropriately shift the operation timing. Thereby, it is possible to more reliably prevent the first relay RL1 and the second relay RL2 from simultaneously welding the contacts, and the electrical connection between the charger / discharger 11 and the storage battery 21 can be reliably released.
 また、本実施形態の充放電システム1において、電動車両20は、LEV(Light Electric Vehicle:小型電動車両)であることが好ましい。電動車両20のうちLEVなど比較的小型のものは、上記の共通規格より比較的出力が小さいまたは、電圧が低い蓄電池を電源として用いることができる。このため、充放電システムに上記の共通規格の仕様に対応するコネクタのような専用品を用いることなく、本実施形態に係る充放電システム1により、利用者の安全性を簡易な構成で確保するという本実施形態の効果を最大限に発揮できる。 Moreover, in the charge / discharge system 1 of the present embodiment, the electric vehicle 20 is preferably an LEV (Light Electric Vehicle). A relatively small vehicle such as LEV among the electric vehicles 20 can use a storage battery having a relatively smaller output or a lower voltage than the common standard as a power source. For this reason, the user's safety is ensured with a simple configuration by the charge / discharge system 1 according to the present embodiment, without using a dedicated product such as a connector corresponding to the specifications of the above-mentioned common standard in the charge / discharge system. The effect of the present embodiment can be maximized.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.
 上記実施形態では、第1リレー制御部37及び第2リレー制御部38は、共に単一の車両ECU27の一部として構成され、共通の直流電源36によって作動するものを例示したが、この代わりに、第1リレー制御部37及び第2リレー制御部38のそれぞれが異なるECUの一部として構成され、異なる電源によって個別に作動する構成としてもよい。 In the above embodiment, the first relay control unit 37 and the second relay control unit 38 are both configured as a part of a single vehicle ECU 27 and are operated by a common DC power source 36. Each of the first relay control unit 37 and the second relay control unit 38 may be configured as a part of a different ECU, and may be configured to operate individually by different power sources.
 また、上記実施形態では、保持回路35を第2リレー制御部38のみに設ける構成を例示したが、第1リレー制御部37及び第2リレー制御部38の少なくとも一方が保持回路35を備えていればよい。例えば、上記実施形態とは反対に保持回路35を第1リレー制御部37に設ける構成としてもよいし、第1リレー制御部37及び第2リレー制御部38の両者に設けて動作状態を保持できる持続時間を異ならせる構成としてもよい。なお、第1リレー制御部37及び第2リレー制御部38のうち、充放電カプラ41の装着時に先にオンし(閉状態に切り替え)、抜去時に後からオフする(開状態に切り替える)方のリレーの制御部に保持回路35を設けるのが好ましい。このため、上記実施形態では、充放電カプラ41の装着時に先にオンし、抜去時に後からオフする第2リレーRL2を制御する第2リレー制御部38に保持回路35が設けられている。 In the above embodiment, the configuration in which the holding circuit 35 is provided only in the second relay control unit 38 is illustrated, but at least one of the first relay control unit 37 and the second relay control unit 38 may include the holding circuit 35. That's fine. For example, contrary to the above embodiment, the holding circuit 35 may be provided in the first relay control unit 37, or may be provided in both the first relay control unit 37 and the second relay control unit 38 to hold the operation state. It is good also as a structure which makes duration differ. Of the first relay control unit 37 and the second relay control unit 38, the one that is turned on first when the charge / discharge coupler 41 is mounted (switched to the closed state) and turned off later (when switched to the open state) when removed. A holding circuit 35 is preferably provided in the control unit of the relay. For this reason, in the above-described embodiment, the holding circuit 35 is provided in the second relay control unit 38 that controls the second relay RL2 that is turned on first when the charge / discharge coupler 41 is attached and turned off later when the charge / discharge coupler 41 is removed.
 また、保持回路35の回路構成は、制御対象であるリレーの動作状態を保持できる機能を発揮できれば、図2に例示したもの以外の回路構成としてもよい。例えば、上記実施形態では、保持回路35が、第2電力変換装置32の後段側(第2リレー制御回路34側)に設けられるコンデンサC0を含む構成を例示したが、コンデンサC0を除外し、第2電力変換装置32の前段側(直流電源36側)に設けられるダイオードD1、ダイオードD2、抵抗R1、及び、コンデンサC1のみとしてもよい。なお、保持回路35は、コンデンサC0を含むことにより、リレーの動作状態を保持できる時間を長くすることができる。 Further, the circuit configuration of the holding circuit 35 may be a circuit configuration other than that illustrated in FIG. 2 as long as the function of holding the operation state of the relay to be controlled can be exhibited. For example, in the above embodiment, the holding circuit 35 exemplifies a configuration including the capacitor C0 provided on the rear stage side (second relay control circuit 34 side) of the second power converter 32, but the capacitor C0 is excluded, It is good also as only the diode D1, the diode D2, resistance R1, and the capacitor | condenser C1 provided in the front | former stage side (DC power supply 36 side) of 2 power converter devices 32. In addition, the holding circuit 35 can extend the time during which the operation state of the relay can be held by including the capacitor C0.
 また、第1リレーRL1と第2リレーRL2の開閉動作は、両者の開閉タイミングに時間差があればよく、上記実施形態と順番を入れ替えてもよいし、時間差tを適宜増減してもよい。 In addition, the opening / closing operation of the first relay RL1 and the second relay RL2 only needs to have a time difference in the opening / closing timing of both, and the order may be changed from the above embodiment, and the time difference t may be increased or decreased as appropriate.
 また、第1リレーRL1と第2リレーRL2の設置位置は、上記実施形態のように電力線22A,22B上の電力線28A,28Bの接続位置より接続部40側に纏めて設置する構成とは別のものに変更してもよい。例えば、第1リレーRL1及び第2リレーRL2の両方を、電力線22A,22B上の電力線28A,28Bの接続位置より蓄電池21側の一方に纏めて設置してもよい。または、電力線22A,22Bのうち第1リレーRL1の設置位置と第2リレーRL2の設置位置との間の位置に電力線28A,28Bを接続し、これにより、第1リレーRL1を電力線28A,28Bの接続位置より接続部40側、第2リレーRL2を蓄電池21側に分けて設置してもよい。また、第1リレーRL1と第2リレーRL2に含まれるリレーの数は2個以外としてもよい。 Further, the installation positions of the first relay RL1 and the second relay RL2 are different from the configuration in which the first relay RL1 and the second relay RL2 are collectively installed on the connection unit 40 side from the connection positions of the power lines 28A and 28B on the power lines 22A and 22B as in the above embodiment. You may change it. For example, both the first relay RL1 and the second relay RL2 may be collectively installed on one of the storage battery 21 side from the connection position of the power lines 28A and 28B on the power lines 22A and 22B. Alternatively, the power lines 28A and 28B are connected to a position between the installation position of the first relay RL1 and the installation position of the second relay RL2 in the power lines 22A and 22B, whereby the first relay RL1 is connected to the power lines 28A and 28B. The connection part 40 side and the second relay RL2 from the connection position may be separately installed on the storage battery 21 side. The number of relays included in the first relay RL1 and the second relay RL2 may be other than two.

Claims (7)

  1.  電動車両(20)と、
     充放電器(11)と、
     前記電動車両と前記充放電器とを着脱自在に接続する接続部(40)と、
    を具備し、
     前記電動車両は、
     蓄電池(21)と、
     前記接続部を介して前記充放電器と前記蓄電池との間で電力供給を行う充放電電力線(22A,22B)と、
     前記充放電電力線上に順列に設置され、開閉動作により前記充放電電力線の遮断及び通電を切り替える第1開閉器(RL1)及び第2開閉器(RL2)と、
     前記第1開閉器及び前記第2開閉器の動作を制御する制御部(27)と、
    を備え、
     前記制御部は、
     前記接続部により前記電動車両と前記充放電器とが接続されるとき、前記第1開閉器及び前記第2開閉器の閉動作に時間差をもたせつつ前記第1開閉器及び前記第2開閉器を閉状態に制御して、前記充放電器と前記蓄電池とを電気的に接続させ、
     前記接続部により前記電動車両と前記充放電器とが離脱されるとき、前記第1開閉器及び前記第2開閉器の開動作に時間差をもたせつつ前記第1開閉器及び前記第2開閉器を開状態に制御して、前記充放電器と前記蓄電池との電気的な接続を解除する、
    充放電システム(1)。
    An electric vehicle (20);
    A charger / discharger (11);
    A connection part (40) for detachably connecting the electric vehicle and the charger / discharger;
    Comprising
    The electric vehicle is
    A storage battery (21);
    Charge / discharge power lines (22A, 22B) for supplying power between the charger / discharger and the storage battery via the connection part,
    A first switch (RL1) and a second switch (RL2) that are installed in a permutation on the charge / discharge power line and switch between interruption and energization of the charge / discharge power line by a switching operation;
    A control unit (27) for controlling operations of the first switch and the second switch;
    With
    The controller is
    When the electric vehicle and the charger / discharger are connected by the connecting portion, the first switch and the second switch are provided with a time difference in the closing operation of the first switch and the second switch. Control to a closed state, electrically connect the charger / discharger and the storage battery,
    When the electric vehicle and the charger / discharger are separated from each other by the connecting portion, the first switch and the second switch are opened with a time difference in the opening operation of the first switch and the second switch. Controlling the open state to release the electrical connection between the battery charger and the storage battery,
    Charge / discharge system (1).
  2.  前記制御部は、
     前記第1開閉器の動作を制御する第1制御部(37)と、
     前記第2開閉器の動作を制御する第2制御部(38)と、を有し、
     前記第1制御部及び前記第2制御部の少なくとも一方が、開閉器の動作状態を一定時間保持できる保持回路(35)を有する、
    請求項1に記載の充放電システム。
    The controller is
    A first control unit (37) for controlling the operation of the first switch;
    A second control unit (38) for controlling the operation of the second switch,
    At least one of the first control unit and the second control unit has a holding circuit (35) that can hold the operating state of the switch for a certain period of time.
    The charge / discharge system according to claim 1.
  3.  前記第1制御部及び前記第2制御部が、直流電源(36)と、電力変換装置(31,32)と、開閉器制御回路(33,34)と、を有し、
     前記電力変換装置は、一対の入力端子の一方が第1電力線(53A)により前記直流電源の正極側と接続され、一対の入力端子の他方が第2電力線(53B)により前記直流電源の負極側と接続され、
     前記開閉器制御回路は、第3電力線(54A)により前記電力変換装置の一対の出力端子の一方に接続され、第4電力線(54B)により前記電力変換装置の一対の出力端子の他方に接続されており、
     前記保持回路は、第1ダイオード(D1)、第2ダイオード(D2)、抵抗(R1)、第1コンデンサ(C0)及び第2コンデンサ(C1)を有し、
     前記第1ダイオードは、前記第1電力線上において、前記直流電源から前記電力変換装置の方向に電流が流れる向きで設けられ、
     前記抵抗及び前記第2コンデンサは、前記第1電力線における前記第1ダイオードと前記電力変換装置の入力端子との間の位置と、前記第2電力線との間にて直列に接続され、
     前記第2ダイオードは、前記抵抗と前記第2コンデンサとの中間位置と、前記第1電力線における前記抵抗の接続位置より前記電力変換装置側の位置との間にて、前記第1電力線側に向けて電流が流れるように接続され、
     前記第1コンデンサは、前記第3電力線と前記第4電力線との間に接続される、
    請求項2に記載の充放電システム。
    The first control unit and the second control unit include a DC power source (36), a power converter (31, 32), and a switch control circuit (33, 34).
    In the power converter, one of a pair of input terminals is connected to the positive side of the DC power supply by a first power line (53A), and the other of the pair of input terminals is a negative side of the DC power supply by a second power line (53B). Connected with
    The switch control circuit is connected to one of the pair of output terminals of the power converter by a third power line (54A), and connected to the other of the pair of output terminals of the power converter by a fourth power line (54B). And
    The holding circuit includes a first diode (D1), a second diode (D2), a resistor (R1), a first capacitor (C0), and a second capacitor (C1).
    The first diode is provided in a direction in which a current flows from the DC power source to the power converter on the first power line,
    The resistor and the second capacitor are connected in series between a position of the first power line between the first diode and an input terminal of the power converter, and the second power line.
    The second diode is directed toward the first power line between an intermediate position between the resistor and the second capacitor and a position on the power converter side from a connection position of the resistor in the first power line. Connected to allow current to flow,
    The first capacitor is connected between the third power line and the fourth power line.
    The charge / discharge system according to claim 2.
  4.  前記第1開閉器が前記充放電電力線のうち前記接続部側に設けられ、前記第2開閉器が前記充放電電力線のうち前記蓄電池側に設けられ、
     前記充放電電力線の前記第2開閉器の設置位置と前記蓄電池との間の位置に、前記電動車両の主機(30)へ電力を供給する主機電力線(28A,28B)が接続される、
    請求項1~3のいずれか1項に記載の充放電システム。
    The first switch is provided on the connection part side of the charge / discharge power line, and the second switch is provided on the storage battery side of the charge / discharge power line,
    Main machine power lines (28A, 28B) for supplying power to the main machine (30) of the electric vehicle are connected to a position between the charge / discharge power line between the second switch and the storage battery.
    The charge / discharge system according to any one of claims 1 to 3.
  5.  前記制御部は、
     前記接続部により前記電動車両と前記充放電器とが電気的に接続されるとき、先に前記第2開閉器を閉状態に制御し、次に前記第1開閉器を閉状態に制御して、前記充放電器と前記蓄電池とを電気的に接続させ、
     前記接続部により前記電動車両と前記充放電器とが離脱されるとき、先に前記第1開閉器を開状態に制御し、次に前記第2開閉器を開状態に制御して、前記充放電器と前記蓄電池との電気的な接続を解除する、
    請求項4に記載の充放電システム。
    The controller is
    When the electric vehicle and the charger / discharger are electrically connected by the connecting portion, the second switch is controlled to be closed first, and then the first switch is controlled to be closed. , Electrically connecting the charger / discharger and the storage battery,
    When the electric vehicle and the charger / discharger are separated from each other by the connecting portion, the first switch is first controlled to be in an open state, and then the second switch is controlled to be in an open state. Disconnect the electrical connection between the discharger and the storage battery,
    The charge / discharge system according to claim 4.
  6.  前記制御部は、
     前記接続部により前記電動車両と前記充放電器とが電気的に接続されるとき、前記電動車両と前記充放電器との間の充放電動作の実施条件を満たした時点(T2)から第1期間(T3-T2)経過後に前記第2開閉器を閉状態に制御し、前記実施条件を満たした時点から前記第1期間より長い第2期間(T4-T2)経過後に前記第1開閉器を閉状態に制御し、
     前記接続部により前記電動車両と前記充放電器とが離脱されるとき、前記電動車両と前記充放電器との間の充放電制御が停止された時点(T8)から第3期間(T10-T8)経過後に前記第1開閉器を開状態に制御し、前記充放電制御が停止された時点から前記第3期間より長い第4期間(T11-T8)経過後に前記第2開閉器を開状態に制御する、
    請求項5に記載の充放電システム。
    The controller is
    When the electric vehicle and the charger / discharger are electrically connected by the connecting portion, the first time (T2) from when the implementation condition of the charge / discharge operation between the electric vehicle and the charger / discharger is satisfied. The second switch is controlled to be closed after the period (T3-T2) elapses, and the first switch is turned on after the elapse of a second period (T4-T2) longer than the first period from the time when the execution condition is satisfied. Control to the closed state,
    When the electric vehicle and the charger / discharger are separated from each other by the connecting portion, the third period (T10-T8) from the time (T8) when charging / discharging control between the electric vehicle and the charger / discharger is stopped. ) After the elapse of time, the first switch is controlled to be in the open state, and after the fourth period (T11-T8) longer than the third period from the time when the charge / discharge control is stopped, the second switch is set in the open state. Control,
    The charge / discharge system according to claim 5.
  7.  前記電動車両は、LEV(Light Electric Vehicle:小型電動車両)である、請求項1~6のいずれか1項に記載の充放電システム。 The charge / discharge system according to any one of claims 1 to 6, wherein the electric vehicle is a LEV (Light Electric Vehicle).
PCT/JP2016/085788 2016-01-26 2016-12-01 Charging/discharging system WO2017130564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016012084A JP2017135794A (en) 2016-01-26 2016-01-26 Charge and discharge system
JP2016-012084 2016-01-26

Publications (1)

Publication Number Publication Date
WO2017130564A1 true WO2017130564A1 (en) 2017-08-03

Family

ID=59398876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085788 WO2017130564A1 (en) 2016-01-26 2016-12-01 Charging/discharging system

Country Status (2)

Country Link
JP (1) JP2017135794A (en)
WO (1) WO2017130564A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108146261B (en) * 2017-11-27 2021-03-16 国网北京市电力公司 Fault protection method and device for electric vehicle rapid charging station
JP6927901B2 (en) * 2018-02-08 2021-09-01 ニチコン株式会社 Charging device for electric vehicles
JP7338549B2 (en) 2020-05-01 2023-09-05 株式会社デンソー vehicle power supply

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008380A (en) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd Power management system
JP2002369399A (en) * 2001-06-04 2002-12-20 Denso Corp Charged-state adjuster for battery pack
JP2003146152A (en) * 2001-11-13 2003-05-21 Toyota Motor Corp Power source circuit device for vehicle
JP2007330083A (en) * 2006-06-09 2007-12-20 Chugoku Electric Power Co Inc:The Electric power supply system
JP2010131749A (en) * 2006-09-07 2010-06-17 Hitachi Koki Co Ltd Power tool
JP2013188068A (en) * 2012-03-09 2013-09-19 Toyota Motor Corp Energy storage system, and charge control device and failure detection method for vehicle
JP2014095999A (en) * 2012-11-08 2014-05-22 Honda Motor Co Ltd Vehicle periphery monitoring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008380A (en) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd Power management system
JP2002369399A (en) * 2001-06-04 2002-12-20 Denso Corp Charged-state adjuster for battery pack
JP2003146152A (en) * 2001-11-13 2003-05-21 Toyota Motor Corp Power source circuit device for vehicle
JP2007330083A (en) * 2006-06-09 2007-12-20 Chugoku Electric Power Co Inc:The Electric power supply system
JP2010131749A (en) * 2006-09-07 2010-06-17 Hitachi Koki Co Ltd Power tool
JP2013188068A (en) * 2012-03-09 2013-09-19 Toyota Motor Corp Energy storage system, and charge control device and failure detection method for vehicle
JP2014095999A (en) * 2012-11-08 2014-05-22 Honda Motor Co Ltd Vehicle periphery monitoring device

Also Published As

Publication number Publication date
JP2017135794A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
KR101155537B1 (en) Electric charging system and its operation method
US9434257B2 (en) Power supply connector, vehicle and control method for vehicle
JP5493441B2 (en) Inter-vehicle charging method, inter-vehicle charging cable, and electric vehicle
EP3081427B1 (en) Power supply device of vehicle
WO2011065036A1 (en) Charging system, charger, electrically powered movable body, method for charging battery for electrically powered movable body
US9960612B2 (en) Charging and discharging system for a vehicle including a first fuse in the vehicle and a second fuse in a cable connected to the vehicle
WO2011065037A1 (en) Charging system, charger, electric movable body, and method for charging battery for electric movable body
WO2013097830A1 (en) High-power charging system for electric vehicle and control method therefor
WO2015071712A1 (en) Charging and discharging system with connector lock
WO2017130564A1 (en) Charging/discharging system
JP2012162176A (en) Vehicle and vehicle control method
JP2013090496A (en) Charger for electric car
JP6928477B2 (en) Charging system or charger
JP6146324B2 (en) Charge / discharge system
JP2011205840A (en) Charger for vehicle
JP7425997B2 (en) power distribution module
JP2014131434A (en) Vehicular control device
JPH07274308A (en) Charge controller for electric automobile
JP6003775B2 (en) Power supply system, vehicle including the same, and control method of power supply system
JP2018129913A (en) Charging system
JP2017073888A (en) vehicle
JP2020190476A (en) Power supply device and bonding insulative diagnosis method
JP7349510B2 (en) Automotive battery system
JP7373372B2 (en) battery control device
CN213199521U (en) Battery module and charging system of electric vehicle and electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888148

Country of ref document: EP

Kind code of ref document: A1