WO2011065037A1 - Charging system, charger, electric movable body, and method for charging battery for electric movable body - Google Patents

Charging system, charger, electric movable body, and method for charging battery for electric movable body Download PDF

Info

Publication number
WO2011065037A1
WO2011065037A1 PCT/JP2010/055730 JP2010055730W WO2011065037A1 WO 2011065037 A1 WO2011065037 A1 WO 2011065037A1 JP 2010055730 W JP2010055730 W JP 2010055730W WO 2011065037 A1 WO2011065037 A1 WO 2011065037A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
line
power supply
charger
conduction
Prior art date
Application number
PCT/JP2010/055730
Other languages
French (fr)
Japanese (ja)
Inventor
姉川 尚史
博臣 舩越
武史 灰田
Original Assignee
東京電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京電力株式会社 filed Critical 東京電力株式会社
Publication of WO2011065037A1 publication Critical patent/WO2011065037A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a battery charging system, and more particularly to a charging control technique for a battery for an electric vehicle such as an electric vehicle.
  • a charging system described in Patent Document 1 As a technique for charging an in-vehicle battery of an electric vehicle.
  • a charging cable connector hereinafter referred to as a charger-side connector
  • a vehicle-side connector provided in the electric vehicle.
  • the electric vehicles are connected to each other via a charging line and a communication line.
  • the electric vehicle stores a predetermined charging pattern according to the type of the on-vehicle battery, and during charging, the instruction value of the charging current determined according to the charging pattern is sequentially transmitted via the communication line. To the charger.
  • the charger controls the charging current supplied to the in-vehicle battery of the electric vehicle via the charging line according to the instruction value sequentially received from the electric vehicle via the communication line. For this reason, according to this charging system, the vehicle-mounted battery can be charged by the charger according to the charging characteristics of the vehicle-mounted battery regardless of the type of the vehicle-mounted battery of the electric vehicle.
  • the charge control sequence may not start or end normally until the communication error is recovered.
  • a relay is usually arranged between the vehicle-side connector of the electric vehicle and the vehicle-mounted battery, and the voltage of the vehicle-mounted battery is applied to the terminal of the vehicle-side connector by opening this relay except during charging. It is devised not to be.
  • the user forcibly disconnects the charger-side connector from the vehicle-side connector while the relay is in the closed state, for example, when the user accidentally moves the electric vehicle at a stage where the charge control sequence is not normally completed. Can be considered.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to more reliably start and end a charging control sequence even when a communication error due to noise occurs, and to connect a relay more than when charging is in progress. It is to provide a technology that can be surely opened.
  • charging power is supplied from the charger to the battery of the electric mobile body between the charger and the electric mobile body by mounting the charger side connector to the mobile body side connector.
  • a charger is connected to the relay between the charging line and the battery of the electric vehicle. They are connected by a control line for supplying driving power. Controlling the continuity of this control line not only closes or opens the relay between the charging line and the battery of the electric vehicle, but also signals the start and end of the charge control sequence to the charger and the motor. Communicate with moving objects.
  • the present invention is a charging system comprising an electric vehicle and a charger for charging a battery of the electric vehicle
  • the charger is A charger side connector for connecting a charging line, a communication line, and a control line to the electric vehicle; and Charger-side communication means for receiving a charge current instruction value from the electric vehicle via the communication line; Charging power supply means for supplying charging power to the battery via the charging line according to the charging current instruction value received by the charger-side communication means; Drive power supply means for connecting the control line to a control system power supply before starting charging of the battery, and disconnecting the control line from the control system power supply after charging of the battery,
  • the electric vehicle is By mounting the charger side connector, the mobile line side connector to which the charging line, the communication line, and the control line are connected, A charging relay disposed between the charging line and the battery and closed by driving power supplied from the charger via the control line; Mobile unit side communication means for transmitting the charging current instruction value to the electric vehicle through the communication line; Charge start / end detection means for detecting a signal of charge start
  • the charging start and end of charging of the in-vehicle battery are signaled by controlling the continuity of the control line provided separately from the communication line. Therefore, even when a communication error due to noise occurs, the charge control is performed.
  • the sequence can be started and ended more reliably.
  • the driving power is supplied from the charger to the charging relay via the control line connected by mounting the charger side connector to the mobile body side connector, the charger side connector and the mobile body side connector are disconnected. In this state, the charging relay is reliably opened.
  • FIG. 1 is a schematic configuration diagram of a charging system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining the operation of the charger 100.
  • FIG. 3 is a flowchart for explaining the operation of the electric vehicle 200.
  • FIG. 4 is a sequence diagram for explaining a charging operation when charging of on-vehicle battery 203 of electric vehicle 200 ends normally in the charging system shown in FIG. 1.
  • FIG. 5 is a sequence diagram for explaining a charging operation in the case where charging of the in-vehicle battery 203 of the electric vehicle 200 ends abnormally due to a problem on the charger 100 side in the charging system shown in FIG.
  • FIG. 6 is a sequence diagram for explaining a charging operation in the case where charging of the in-vehicle battery 203 of the electric vehicle 200 ends abnormally due to a problem on the electric vehicle 200 side in the charging system shown in FIG.
  • FIG. 1 is a schematic configuration diagram of a charging system according to an embodiment of the present invention.
  • the charging system includes a charger 100 and an electric vehicle 200.
  • the charger 100 includes a charging cable 101, a charger-side connector 102, an AC / DC converter 103, an ELB (leakage breaker) 104, a communication unit 105, a control unit 106, a control system power source 107, a relay 108, 109, a photocoupler 110, and a user interface (not shown).
  • ELB leakage breaker
  • the charging cable 101 accommodates a pair of charging lines 1011, a pair of communication lines 1012, and a control line 1013.
  • the charging line 1011 is a power line for supplying charging power to the electric vehicle 200
  • the communication line 1012 is a communication line for communicating with the electric vehicle 200.
  • the control line 1013 includes a pair of drive power supply lines 1014, a preliminary preparation confirmation line 1015, a connector connection confirmation line 1016, and a ground potential line 1017 connected to the ground potential.
  • the charger-side connector 102 is attached to the tip end of the charging cable 101 and includes terminals of each line (charging line 1011, communication line 1012, control line 1013) accommodated in the charging cable 101.
  • charging line 1011, communication line 1012, and the control line 1013 are electrically connected to the below-described charging line 2011, the communication line 2012, and the control line 2013 of the electric vehicle 200, respectively.
  • the AC / DC converter 103 converts AC power supplied from the AC power supply 300 via the ELB 104 into DC power.
  • the ELB 104 is disposed between the AC power supply 300 and the AC / DC converter 103, and connects / disconnects the AC power supply 300 and the AC / DC converter 103.
  • the communication unit 105 communicates with the electric vehicle 200 via the communication line 1012 in accordance with a communication protocol such as CAN (Controller Area Network).
  • a communication protocol such as CAN (Controller Area Network).
  • the control unit 106 performs overall control of each unit of the charger 100.
  • the control system power source 107 is a power source for supplying driving power to each unit of the communication / control system such as the communication unit 105, the control unit 106, the relays 108 and 109, and the photocoupler 110.
  • the control system power source 107 may be a battery or a power source generated by rectifying the AC supplied from the AC power source 300.
  • the relay 108 is disposed between the positive electrode (V 1CC potential) side of the control system power supply 107 and one drive power supply line 1014 (positive drive power supply line 1014), and is used for supplying positive drive power. Connection / disconnection of the line 1014 and the V 1CC potential is performed.
  • the relay 109 is arranged between the negative electrode (ground potential) side of the control system power supply 107 and the other drive power supply line 1014 (negative drive power supply line 1014), and the negative drive power supply line. Connection / disconnection between 1014 and the ground potential is performed.
  • the photocoupler 110 transmits a pre-preparation confirmation signal according to whether the pre-preparation confirmation line 1015 is conductive or not to the control unit 106.
  • the light emitting element on the input side is disposed between the V 1CC potential and the pre-preparation confirmation line 1015, and the pre-preparation confirmation line 1015 is turned on so that an on-current flows through the light emitting element on the input side. Then, the light receiving element on the output side outputs a preliminary preparation confirmation signal to the control unit 106.
  • the user interface receives an instruction such as a charging start instruction from the operator, inputs this instruction to the control unit 106, and outputs information such as a message to the operator in accordance with the instruction from the control unit 106.
  • the user interface includes, for example, an operation panel, a display panel, a speaker, and the like.
  • FIG. 2 is a flowchart for explaining the operation of the charger 100.
  • the charger side connector 102 is already attached to the vehicle side connector 202 described later by the operator.
  • control unit 106 when the control unit 106 receives a charge start instruction from the operator via the user interface, the control unit 106 closes the relay 108 and connects the positive drive power supply line 1014 to the V 1CC potential (S101). .
  • the control unit 106 controls the communication unit 105 to negotiate charging conditions (charging current upper limit value, charging stop voltage value, charging stop time, etc.) with the electric vehicle 200 via the communication line 1012. (S102). Specifically, the maximum output voltage value that the charger 100 can supply, the maximum output current value that the charger 100 can supply, the maximum charging time that the charger 100 can continuously charge, and the maximum application of the in-vehicle battery 203 The charger 100 and the electric vehicle 200 exchange the possible voltage value, the maximum applicable current value of the in-vehicle battery 203, and the maximum application time in which the in-vehicle battery 203 can be continuously charged. If the maximum applicable voltage of the automobile 200 can be supplied, the maximum applicable voltage value of the electric vehicle 200 is determined as the charge stop voltage value, and the charging current value and the charging time that are acceptable for both are determined as the charging current upper limit value. And determine the charging stop time.
  • the control unit 106 determines that negotiation of charging conditions is not established (YES in S103), opens the relay 108, and sets the positive electrode The driving power supply line 1014 on the side is disconnected from the V 1CC potential (S115). Thereby, the control unit 106 ends this flow without starting charging, and in the electric vehicle 200, the advance preparation signal from the photocoupler 209 is turned off. At this time, the control unit 106 may output a message indicating that the charger 100 is not compatible with the electric vehicle 200 from the user interface.
  • control unit 106 waits for the advance preparation confirmation signal from the photocoupler 110 to be turned on (S104).
  • the control unit 106 determines that some abnormality has occurred in the electric vehicle 200. Then, the relay 108 is opened, and the positive drive power supply line 1014 is disconnected from the V 1CC potential (S115). Thereby, the control part 106 complete
  • the control unit 106 closes the relay 109 after the connector lock or the like, and supplies the driving power on the negative side.
  • the line 1014 is connected to the ground potential (S105).
  • the control unit 106 Prior to closing of the relay 109, the control unit 106 performs a self test such as a short circuit test on a charging system such as the AC / DC conversion unit 103 and the charging line 1011. It may be opened and the drive power supply line 1014 on the positive electrode side may be disconnected from the V 1CC potential. Thereby, the control part 106 complete
  • control unit 106 initializes the timer by setting the initial value “0” to the charging time parameter Time, and starts measuring the elapsed time from the start of charging (S106). Further, the control unit 106 receives charging current instruction values sequentially transmitted from the electric vehicle 200 at predetermined intervals via the communication line 1012 and the communication unit 105, and the magnitude of the charging current flowing through the charging line 1011. The AC / DC converter 103 is controlled so that the charging current instruction value becomes equal to (S107). Thereby, the electric vehicle 200 is charged.
  • the control unit 106 determines whether or not a charging end condition determined by the charging condition is satisfied, whether or not an abnormality such as a failure of the charger 100, a power failure of the AC power supply 300, or the like occurs. It is monitored whether the advance preparation confirmation signal from the coupler 110 has been turned off (S108, S113, S118). Here, the control unit 106 monitors the voltage applied between the pair of charging lines 1011, the elapsed time from the start of charging, etc., and the magnitude of the voltage between the charging lines 1011 is determined by the charging condition. When the voltage value is reached, or when the elapsed time from the start of charging (the value of the charging time parameter Time) reaches the charging stop time defined by the charging condition, it is determined that the charging end condition is satisfied.
  • the control unit 106 When the charging end condition is satisfied (YES in S108), the control unit 106 gradually decreases the output of the AC / DC conversion unit 103. Thereby, the supply of charging power from the charger 100 is stopped, and the charging of the electric vehicle 200 is ended (S109). Thereafter, the control unit 106 waits for a predetermined time to elapse from the timing when the charging current value flowing through the charging line 1011 becomes equal to or lower than the predetermined value, and then opens the relay 108 to drive the positive drive power supply line 1014. Is disconnected from the V 1CC potential (S111). Thereby, the electric vehicle 200 is notified of the normal end of charging. The control unit 106 opens the relay 109 as well as the relay 108 (S112). And the control part 106 complete
  • control unit 106 When an abnormality occurs in charger 100 (YES in S113), or when the advance preparation confirmation signal from photocoupler 110 is turned off (YES in S118), control unit 106 outputs the output of AC / DC conversion unit 103. Decrease immediately. Thereby, the charging power supply from the charger 100 is immediately stopped, and the charging of the electric vehicle 200 is terminated (S115). After that, the control unit 106 waits for a predetermined time to elapse and first opens only the relay 109 out of the two relays 108 and 109 to disconnect the negative drive power supply line 1014 from the ground potential. (S116). This notifies the electric vehicle 200 of abnormal termination of charging.
  • control unit 106 also opens the relay 108 and disconnects the drive power supply line 1014 on the positive side from the V 1CC potential (S117). And the control part 106 complete
  • the electric vehicle 200 includes a vehicle-side connector 202, an in-vehicle battery 203, a communication unit 204, a control unit 205, a control system power source 206, relays 207 and 208, photocouplers 209 to 212, a user interface (not shown). And).
  • the vehicle-side connector 202 includes terminals for a pair of charging lines 2011, a pair of communication lines 2012, and a control line 2013.
  • the charging line 2011 is a power line for receiving supply of charging power from the charger 100
  • the communication line 2012 is a communication line for communicating with the charger 100.
  • the control line 2013 includes a pair of driving power supply lines 2014, a preliminary preparation confirmation line 2015, a connector connection confirmation line 2016, and a ground potential line 2017 connected to the ground potential.
  • the vehicle-side connector 202 When the vehicle-side connector 202 is attached to the charger-side connector 102 of the charger 100, these terminals come into contact with the corresponding terminals of the charger-side connector 102, respectively. Thereby, as described above, the charging line 2011, the communication line 2012, and the control line 2013 are electrically connected to the charging line 1011, the communication line 1012, and the control line 1013 of the charger 100, respectively. Connected.
  • the in-vehicle battery 203 is a battery for supplying driving power to a driving system such as a motor and an inverter.
  • the communication unit 204 communicates with the charger 100 via the communication line 2012 according to a communication protocol such as CAN.
  • the control unit 205 controls each part of the electric vehicle 200 in an integrated manner.
  • the control system power source 206 is a power source for supplying driving power to each unit of the communication / control system excluding the relay 207, such as the communication unit 204, the control unit 205, the relay 208, and the photocouplers 209 to 212.
  • the relay 207 is disposed between the pair of charging lines 2011 and both polar sides of the in-vehicle battery 203, and connects / disconnects the in-vehicle battery 203 and the charging line 2011.
  • the relay 207 is an A contact that is normally open.
  • the relay 207 is closed using this as driving power, and the charging line 2011 is connected to the in-vehicle battery 203.
  • the relay 207 used here has a switch on each of the positive electrode side and the negative electrode side of the in-vehicle battery 203, but has a switch only on either the positive electrode side or the negative electrode side of the in-vehicle battery 203. May be.
  • the relay 208 is arranged between one drive power supply line 2014 (negative-side drive power supply line 2014) and the relay 207, and connects / disconnects the drive power supply line 2014 and the relay 207. Thereby, the supply of driving power from the charger 100 to the relay 207 is controlled.
  • the photocoupler 209 transmits a pre-preparation signal according to the open / closed state of the relay 108 of the charger 100 being connected to the control unit 205.
  • the light emitting element on the input side is arranged between the other drive power supply line 2014 (positive drive power supply line 2014) and the ground potential, and the charger 100 connected to the connector is connected to the ground potential.
  • the positive driving power supply line 2014 is turned on by closing the relay 108 and an on-current flows through the light emitting element on the input side, the light receiving element on the output side outputs a preliminary preparation signal to the control unit 205.
  • the photocoupler 210 transmits a charging start signal according to the open / closed state of the two relays 108 and 109 of the charger 100 being connected to the control unit 205.
  • the light emitting element on the input side is disposed between the positive and negative drive power supply lines 2014, and the positive side is closed by closing both relays 108 and 109 of the charger 100 being connected to the connector.
  • the driving power supply line 2014 on the negative side and the negative side driving power supply line 2014 are respectively conducted and an on-current flows through the light emitting element on the input side, the light receiving element on the output side outputs a charge start signal to the control unit 205.
  • the photocoupler 211 conducts the pre-preparation confirmation line 1015 of the charger 100 being connected to the connector by supplying the on-current from the control unit 205.
  • the light receiving element on the output side is arranged between the preparatory confirmation line 2015 and the ground potential, and when the on-current from the control unit 205 flows to the light emitting element on the input side, Line 2015 is connected to ground potential.
  • the photocoupler 212 transmits a connector connection confirmation signal corresponding to the connection state between the charger-side connector 102 and the vehicle-side connector 202 to the control unit 205.
  • the light emitting element on the input side is disposed between the positive electrode ( V2CC potential) side of the control system power supply 206 and the connector connection confirmation line 2016, and the charger side connector 102, the vehicle side connector 202,
  • V2CC potential positive electrode
  • the connector connection confirmation line 2016 is conducted due to the connection, an on-current flows through the light emitting element on the input side, a connector connection confirmation signal is output to the control unit 205.
  • the user interface outputs notifications to the operator according to instructions from the control unit 205.
  • the user interface includes, for example, a display panel and a speaker.
  • FIG. 3 is a flowchart for explaining the operation of the electric vehicle 200.
  • This flow is started when the charger side connector 102 is attached to the vehicle side connector 202 by the operator.
  • the control unit 205 determines whether the connector connection confirmation signal from the photocoupler 212 is turned on (S202).
  • the connector connection confirmation signal from the photocoupler 212 is off (NO in S202)
  • the control unit 205 is A predetermined abnormal termination notification such as outputting a message indicating that the charger-side connector 102 is not properly connected to the vehicle-side connector 202 is performed (S219). Then, this flow ends.
  • the control unit 205 includes a communication unit. 204 is controlled, and charging conditions are negotiated with the charger 100 via the communication line 2012 (S204).
  • the control is performed.
  • the unit 205 determines that negotiation of the charging condition has not been established (YES in S204), and performs a predetermined abnormal end notification such as displaying a message that the charger 100 does not support the electric vehicle 200 from the user interface ( S212). Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
  • the control unit 205 sends an on-current to the input side of the photocoupler 211 and grounds the preliminary preparation confirmation line 2015. Connect to the potential (S205).
  • the advance preparation confirmation line 1015 is conducted, and the advance preparation confirmation signal input from the photocoupler 110 to the control unit 106 is turned on.
  • the controller 205 performs a self-test such as a short-circuit test on a charging system such as the in-vehicle battery 203, the relay 207, and the charging line 2011 prior to connection of the preliminary preparation confirmation line 2015 to the ground potential. If not passed, this flow may be terminated without connecting the preliminary preparation confirmation line 2015 to the ground potential. At this time, the control unit 205 may perform an abnormal end notification such as outputting a message indicating that charging cannot be started due to a problem on the electric vehicle 200 side from the user interface. Thereafter, it waits for the charge start signal from the photocoupler 210 to turn on (S206).
  • a self-test such as a short-circuit test on a charging system such as the in-vehicle battery 203, the relay 207, and the charging line 2011 prior to connection of the preliminary preparation confirmation line 2015 to the ground potential. If not passed, this flow may be terminated without connecting the preliminary preparation confirmation line 2015 to the ground potential. At this time, the control unit 205 may perform an abnormal end notification such
  • the control unit 205 determines that some abnormality has occurred in the charger 100. Then, the on-current supply to the input side of the photocoupler 211 is stopped (S211). Thereby, in charger 100, the advance preparation confirmation signal from photocoupler 110 is turned off. In addition, the control unit 205 performs a predetermined abnormal termination notification such as outputting a message indicating that charging cannot be started due to a problem on the charger 100 side from the user interface (S212). Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
  • a predetermined abnormal termination notification such as outputting a message indicating that charging cannot be started due to a problem on the charger 100 side from the user interface (S212).
  • the control unit 205 displays the relay 208. , And the driving power is supplied from the charger 100 to the relay 207 via the driving power supply line 2014. As a result, the relay 207 is closed, and charging power is supplied from the charger 100 to the in-vehicle battery 203 via the charging line 2011 (S207).
  • the control unit 205 transmits the charging current instruction value to the charger 100 via the communication unit 204 and the communication line 2012 at a predetermined interval while monitoring the voltage of the in-vehicle battery 203 (S208). Specifically, the control unit 205 first transmits the charging current upper limit value included in the charging condition to the charger 100 as an initial value, and then sequentially, the voltage value of the in-vehicle battery 203 and a predetermined charging pattern, etc. Based on the above, a current value equal to or lower than the charging current upper limit value included in the charging condition is determined as a charging current instruction value, and this charging current instruction value is transmitted to the charger 100. Thereby, the vehicle-mounted battery 203 is charged.
  • the control unit 205 monitors whether or not an abnormality has occurred in the electric vehicle 200 such as a failure of the in-vehicle battery 203 (S209), and measures the charging capacity of the in-vehicle battery 203 to charge the battery. It is monitored whether the capacity has reached a predetermined value (for example, full charge, 80% charge, etc.) (S214).
  • a predetermined value for example, full charge, 80% charge, etc.
  • the control unit 205 opens the relay 208 (S210). Thereby, the drive power supply to the relay 207 is stopped, the relay 207 is opened, and the in-vehicle battery 203 is disconnected from the charging line 2011. Further, the control unit 205 stops the supply of the on-current to the input side of the photocoupler 211 and disconnects the preliminary preparation confirmation line 2015 from the ground potential (S211). Thereby, in charger 100, the advance preparation confirmation signal input from photocoupler 110 to control unit 106 is turned off.
  • control unit 205 performs a predetermined abnormal end notification such as outputting a message indicating that charging has ended abnormally due to a problem on the electric vehicle 200 side from the user interface (S212). Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
  • the control unit 205 determines that the charging is finished, and opens the relay 208 (S215). Thereby, the drive power supply to the relay 207 is stopped, the relay 207 is opened, and the in-vehicle battery 203 is disconnected from the charging line 2011. Further, the control unit 205 stops the supply of the on-current to the input side of the photocoupler 211, and disconnects the preliminary preparation confirmation line 2015 from the ground potential (S216). Thereby, in charger 100, the advance preparation confirmation signal input from photocoupler 110 to control unit 106 is turned off.
  • the charging start signal signal from the photocoupler 210 and the pre-preparation signal from the photocoupler 209 are turned off simultaneously, or only the charging start signal signal from the photocoupler 210 is turned off (S217). .
  • the control unit 205 determines that charging of the in-vehicle battery 203 has been normally completed, and performs a predetermined normal end notification such as outputting a message indicating that charging of the in-vehicle battery 203 has been normally completed from the user interface (S218). . Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
  • the control unit 205 determines that charging of the in-vehicle battery 203 has ended abnormally, and a predetermined abnormal end notification such as outputting a message indicating that charging has ended abnormally due to a problem on the charger 100 side is performed from the user interface (S212). Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
  • FIG. 4 is a sequence diagram for explaining a charging operation when charging of the on-vehicle battery 203 of the electric vehicle 200 is normally completed in the charging system shown in FIG.
  • the control unit 106 closes the relay 108 in response to the charging start instruction (S304), and the positive side drive power is supplied.
  • Supply line 1014 is connected to the V 1CC potential.
  • the control unit 205 transmits the battery information to the charger 100 via the communication lines 1012, 2012. Thereby, negotiation of a charging condition is started between the charger 100 and the electric vehicle 200 via the communication lines 1012, 2012 (S306).
  • the control unit 205 supplies an on-current to the input side of the photocoupler 211 (S307). Thereby, in the charger 100, an on-current flows to the input side of the photocoupler 110, and the advance preparation confirmation signal given to the control unit 106 is turned on (S308).
  • control unit 106 performs a self test as necessary to confirm that there is no problem with the charger 100, and then closes the relay 109 (S309) to drive the driving power on the negative side.
  • Supply line 1014 is connected to ground potential.
  • the control unit 205 closes the relay 208 and supplies the driving power from the charger 100 to the relay 207.
  • the relay 207 is closed and the charging line 2011 is connected to the in-vehicle battery 203, and supply of charging power from the charger 100 to the in-vehicle battery 203 is started (S312).
  • control unit 205 sequentially determines a charging current instruction value that is less than or equal to the charging current upper limit value of the charging condition based on the state of the in-vehicle battery 203 and a predetermined charging pattern, This charging current instruction value is transmitted to charger 100 via communication unit 204 and communication line 2012.
  • control unit 106 controls the charging current flowing through charging line 1011 according to the charging current instruction value sequentially sent via communication line 1012 and communication unit 105. Thereby, the vehicle-mounted battery 203 is charged (S313).
  • the control unit 106 decreases the output of the AC / DC converting unit 103, and the charging output Is stopped (S315). Thereby, the supply of charging power from the charger 100 to the electric vehicle 200 is stopped.
  • the control unit 205 detects that the charge capacity of the in-vehicle battery 203 has reached a predetermined value (S316), and opens the relay 208. Thereby, the drive power supply to the relay 207 is stopped, the relay 207 is opened, and the vehicle-mounted battery 203 is disconnected from the charging line 2011 (S317).
  • the control unit 106 opens the relay 108 and the relay 109 after waiting for a predetermined time from the timing when the value of the charging current flowing through the charging line 1011 becomes equal to or lower than the predetermined value.
  • the drive power supply line 1014 on the side is disconnected from the V 1CC potential (S318). Thereby, in the electric vehicle 200, the supply of the on-current to the input side of each of the photocouplers 209 and 210 is stopped, and the preliminary preparation signal and the charge start signal are simultaneously turned off (S319).
  • the control unit 106 notifies the operator that the charging is normally completed (S320).
  • the control unit 205 notifies the operator that the charging is normally completed (S321).
  • FIG. 5 is a sequence diagram for explaining the charging operation in the case where charging ends abnormally due to a problem on the charger 100 side in the charging system shown in FIG.
  • the charging power supply from the charger 100 to the electric vehicle 200 is stopped, so that the electric vehicle 200 detects that the charging current value flowing through the charging line 2011 has become a predetermined value or less (S332), and the relay 208 is opened.
  • the drive power supply to the relay 207 is stopped, the relay 207 is opened, and the vehicle-mounted battery 203 is disconnected from the charging line 2011 (S333).
  • the supply of the on-current to the input side of the photocoupler 210 is stopped, the pre-preparation signal is kept on, and only the charge start signal is turned off (S334).
  • the control unit 106 opens the relay 108, disconnects the positive drive power supply line 1014 from the V1CC potential (S335), and charging is abnormal due to a problem on the charger 100 side. The operator is notified of the end (S336).
  • the control unit 205 notifies the operator that charging has ended abnormally due to a problem on the charger 100 side (S337).
  • FIG. 6 is a sequence diagram for explaining the charging operation in the case where charging ends abnormally due to a problem on the electric vehicle 200 side in the charging system shown in FIG.
  • the controller 205 detects the occurrence of an abnormality (an abnormality in the in-vehicle battery 203 or the like) on the electric vehicle 200 side (S350)
  • the relay 208 is opened.
  • the control unit 205 stops the supply of the on-current to the input side of the photocoupler 211, and disconnects the advance preparation confirmation line 2015 from the ground potential (S352).
  • the charger 100 the supply of the on-current to the input side of the photocoupler 110 is stopped, and the advance preparation confirmation signal is turned off (S353).
  • the control unit 106 In the charger 100, when the advance preparation confirmation signal is turned off, the control unit 106 immediately decreases the output of the AC / DC conversion unit 103 and stops the charging output (S354). Further, the control unit 106 waits for the elapse of a predetermined time to open the relay 109, and disconnects the driving power supply line 1014 on the negative electrode side from the ground potential (S355). Then, the relay 108 is opened, and the positive electrode side of the drive power supply line 1014 is disconnected from the V 1CC potential (S356). Then, the control unit 106 notifies the operator that charging has ended abnormally due to a problem on the electric vehicle 200 side (S357).
  • control unit 205 notifies the operator that charging has ended abnormally due to a problem on the electric vehicle 200 side (S358).
  • the charger 100 when charging is started, the charger 100 closes the two relays 108 and 109 and connects the drive power supply line 1014 to the control system power source 107.
  • the electric vehicle 200 an on-current is supplied to the input side of the photocoupler 210, so that the charge start signal is turned on as a charge start signal.
  • the electric vehicle 200 closes the relay 208 and closes the relay 207 by starting the supply of drive power, whereby supply of charging power from the charger 100 to the in-vehicle battery 203 is started. To do.
  • the charger 100 opens at least one of the two relays 108 and 109 and disconnects the drive power supply line 1014 from the control system power supply 107.
  • the supply of the on-current to the input side of the photocoupler 210 is stopped, and at least the charge start signal is turned off as a charge end signal, and the drive power is supplied from the charger 100.
  • the relay 207 is opened by the stop, and the charging line 2011 is disconnected from the in-vehicle battery 203.
  • the charger 100 and the electric vehicle are controlled by controlling the conduction of the drive power supply lines 1014 and 2014 provided separately from the communication lines 1012 and 2012 by the interlock sequence circuit. Since the charging start signal and the charging end signal are signaled with 200, communication using the communication lines 1012, 2012 cannot be satisfactorily performed between the charger 100 and the electric vehicle 200 due to a communication error or the like due to noise. Even in this case, the charging control sequence can be started and ended smoothly and reliably without waiting for the recovery of the communication error. In addition, if the charger 100 performs a connector lock, a self-test, and the like and then sends a signal to start charging to the electric vehicle 200, the charger 100 can reliably complete the necessary processing before starting charging. After that, charging can be started.
  • the driving power is supplied from the charger 100 to the relay 207 via the driving power supply lines 1014 and 2014 connected when the charger-side connector 102 is attached to the vehicle-side connector 202
  • the charger-side connector In a state where 102 and the vehicle-side connector 202 are disconnected, the relay 207 is reliably opened. For this reason, even if the user forcibly disconnects the charger-side connector from the vehicle-side connector by moving the electric vehicle accidentally when the charge control sequence has not ended, the relay is automatically relayed. 207 is reliably opened.
  • charger 100 when charging is started, charger 100 continuously closes two relays 108 and 109. Specifically, when pre-preparation for charging is started, one of the relays 108 is closed and the positive drive power supply line 1014 is connected to the V 1CC potential. As a result, in the electric vehicle 200, an on-current flows to the input side of the photocoupler 209, and the advance preparation signal is turned on as a preparation signal. Thereafter, when charging is started, the other relay 109 is closed, and the driving power supply line 1014 on the negative electrode side is connected to the ground potential. Thereby, in the electric vehicle 200, an on-current flows to the input side of the photocoupler 210, and the charge start signal is turned on as a charge start signal.
  • the charger 100 controls the conduction of the driving power supply line 1014 on the positive electrode side and the negative electrode side separately, so that an electrical signal is prepared in advance of a signal for starting charging. It can be sent to the car 200.
  • the electric vehicle 200 prepares for communication using the communication line 1012 and the communication unit 105 in response to the advance preparation signal notified prior to the charge start signal, and exchanges information with the charger 100 ( Negotiation process).
  • the electric vehicle 200 exchanges information (negotiation of charging conditions) with the charger 100 via the communication line 2012, and charging conditions Then, an on-current is supplied to the input side of the photocoupler 211 to connect the preliminary preparation confirmation line 2015 to the ground potential. Thereby, in the charger 100, an on-current flows to the input side of the photocoupler 110, and the advance preparation confirmation signal is turned on as a preparation preparation confirmation signal.
  • the charger 100 when the advance preparation confirmation signal is turned on, the relay 109 is closed.
  • the charging start signal is turned on as a charging start signal, and the relay 208 is closed and the charging line 2011 is connected to the in-vehicle battery 203.
  • electric vehicle 200 sends a signal for confirmation of advance preparation to charger 100 after determining the charging conditions, and charger 100 starts charging after receiving the signal for confirmation of advance preparation. Therefore, the charging start signal can be prevented from being sent from the charger 100 to the electric vehicle 200 before the charging condition is determined. For this reason, in the electric vehicle 200, the in-vehicle battery 203 can remain disconnected from the charging line 2011 until the charging condition is determined, and the in-vehicle battery 203 is erroneously charged before the charging condition is determined. The possibility that the situation will occur can be reduced.
  • the electric vehicle 200 performs a process such as a self-test required before the start of charging, after determining the charging conditions, and before sending a signal for confirmation of advance preparation to the charger 100. If the processing such as connector lock and self-test necessary for the vehicle is performed in response to a signal for confirmation in advance, the processing is performed until the in-vehicle battery 203 and the charger 100 are not compatible. Can be prevented.
  • a process such as a self-test required before the start of charging, after determining the charging conditions, and before sending a signal for confirmation of advance preparation to the charger 100. If the processing such as connector lock and self-test necessary for the vehicle is performed in response to a signal for confirmation in advance, the processing is performed until the in-vehicle battery 203 and the charger 100 are not compatible. Can be prevented.
  • the connector connection confirmation line 2016 is conducted, and an on-current flows to the input side of the photocoupler 212 so that the connector is connected.
  • the confirmation signal is turned on.
  • both the preliminary preparation signal and the connector connection confirmation signal are ON, that is, when two terminals arranged at different positions on the vehicle-side connector 202 are securely connected to the corresponding terminals. Only when an on-current flows to the input side of the photocoupler 211, the preliminary preparation confirmation line 2015 is connected to the ground potential.
  • the charge control sequence is performed only when an on-current flows to the input side of the photocoupler 110 due to the grounding of the advance preparation confirmation line 2015 in the electric vehicle 200 and the advance preparation confirmation signal is turned on. Continue, otherwise the charge control sequence is aborted.
  • the charging control sequence is continued only when the charger-side connector 102 is correctly connected to the vehicle-side connector 202, and charging is performed when the charger-side connector 102 is not correctly connected due to one piece or the like.
  • the control sequence can be stopped.
  • the charger 100 opens one of the two relays 108 and 109 together with the other relay 109, and connects the positive drive power supply line 1014 from the V 1CC potential. Disconnect. Thereby, in the electric vehicle 200, the supply of the on-current to the input side of each of the photocouplers 209 and 210 is stopped, and the preliminary preparation signal and the charge start signal are simultaneously turned off. On the other hand, when the charging ends abnormally, the charger 100 opens the other relay 109 before one relay 108 and disconnects the driving power supply line 1014 on the negative electrode side from the ground potential. As a result, in the electric vehicle 200, only the supply of the on-current to the input side of the photocoupler 210 is stopped, the advance preparation signal is kept on, and only the charge start signal is turned off.
  • the charger 100 Even when communication using the communication lines 1012 and 2012 cannot be satisfactorily performed between the charger 100 and the electric vehicle 200 due to a communication error due to noise or the like, the charger 100. Uses the difference in the conduction state of the drive power supply line 1014 on the positive side and the negative side by changing the off timing of the two relays 108 and 109 according to the charging end form (normal end, abnormal end) Then, it is possible to notify the electric vehicle 200 whether the charging is normally completed or abnormally terminated. For this reason, the charging control sequence can be smoothly terminated without waiting for the recovery of the communication error.
  • both the relays 108 and 109 are opened to simultaneously turn off the preliminary preparation signal and the charging start signal, thereby causing abnormal charging.
  • the other relay 109 is opened before one of the relays, and only the charging start signal is turned off.
  • the two relays 108 and 109 may both be opened so that the preliminary preparation signal and the charge start signal are turned off simultaneously.
  • the electric vehicle 200 determines that the charging is normally completed when only the charge start signal is turned off while the advance preparation signal is on, and the preparation signal and the charge start signal are simultaneously received. When it is turned off, it is determined that charging has ended abnormally due to a problem on the charger 100 side. Further, when simultaneously turning off the pre-preparation signal and the charging start signal, one relay 108 may be opened before the other relay 109.
  • the electric vehicle 200 includes the positive drive power supply line 2014 and the ground potential, the positive drive power supply line 2014 and the negative side, and the V 2CC potential.
  • the conductive state with the connector connection confirmation line 2016 is detected using the photocoupler 209, the photocoupler 210, and the photocoupler 212, respectively.
  • other means that can detect the line conduction state such as a current sensor and a voltage sensor, may be used.
  • an emitter load photocoupler is used as the photocoupler 209, 210, 212.
  • a collector load photocoupler may be used as the photocoupler 209, 210, 212.
  • the polarities of the output signals from the photocouplers 209, 210, and 212 are opposite to those in the above embodiment.
  • the charging system for charging the in-vehicle battery 203 of the electric vehicle 200 with the charger 100 has been described.
  • the present invention charges not only the electric vehicle 200 but also the mounted battery from an external power source.
  • the present invention can be widely applied to an electric vehicle such as an electric vehicle having a function of
  • the charging control sequence can be started and ended more reliably, and can be applied as one of the technologies that can open the relay more reliably except during charging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a technique capable of more reliably starting and completing a charging control sequence even when a communication error occurs due to noise and capable of reliably opening a relay except for during charging. In addition to charging lines (1011, 2011) used for supplying charging power from a charger (100) to an electric vehicle (200) and communication lines (1012, 2012) used for exchanging a charging current specification value between the charger (100) and the electric vehicle (200), provided are driving power supply lines (1014, 2014) used for supplying driving power from a control-system power supply (107) to a relay (207) disposed between the charging line (2011) and an in-vehicle battery (203). By controlling the conduction patterns of the driving power supply line (2014), not only the relay (207) is opened or closed, but also the starting and completion signals of a charging control sequence are exchanged between the charger (100) and the electric vehicle (200).

Description

充電システム、充電器、電動移動体、および電動移動体用バッテリの充電方法Charging system, charger, electric vehicle, and battery charging method for electric vehicle
 本発明は、バッテリの充電システムに関し、特に、電動車両等の電動移動体用バッテリの充電制御技術に関する。 The present invention relates to a battery charging system, and more particularly to a charging control technique for a battery for an electric vehicle such as an electric vehicle.
 電動車両の車載バッテリを充電する技術として、特許文献1に記載の充電システムがある。この充電システムでは、充電に際し、充電器が備える充電ケーブルのコネクタ(以下、充電器側コネクタ)が、電動車両に設けられたコネクタ(以下、車両側コネクタ)に接続されることによって、充電器および電動車両が、充電用ラインおよび通信用ラインを介して互いに接続される。ここで、電動車両は、車載バッテリの種類に応じて予め定められた充電パターンを記憶しており、充電中、この充電パターンに応じて定まる充電電流の指示値を、逐次、通信用ラインを介して充電器に送信する。一方、充電器は、通信用ラインを介して電動車両から逐次受け付ける指示値に従い、充電用ラインを介して電動車両の車載バッテリに供給する充電電流を制御する。このため、この充電システムによれば、電動車両の車載バッテリの種類によらず、その車載バッテリを、その車載バッテリの充電特性に従って充電器で充電することができる。 There is a charging system described in Patent Document 1 as a technique for charging an in-vehicle battery of an electric vehicle. In this charging system, when charging, a charging cable connector (hereinafter referred to as a charger-side connector) provided in the charger is connected to a connector (hereinafter referred to as a vehicle-side connector) provided in the electric vehicle. The electric vehicles are connected to each other via a charging line and a communication line. Here, the electric vehicle stores a predetermined charging pattern according to the type of the on-vehicle battery, and during charging, the instruction value of the charging current determined according to the charging pattern is sequentially transmitted via the communication line. To the charger. On the other hand, the charger controls the charging current supplied to the in-vehicle battery of the electric vehicle via the charging line according to the instruction value sequentially received from the electric vehicle via the communication line. For this reason, according to this charging system, the vehicle-mounted battery can be charged by the charger according to the charging characteristics of the vehicle-mounted battery regardless of the type of the vehicle-mounted battery of the electric vehicle.
特開2007-336778号公報JP 2007-336778 A
 ところで、充電器および電動車両には多くのノイズ源が存在している。例えば、このようなノイズ源の影響によって充電器と電動車両との間に通信エラーが発生した場合、この通信エラーが回復するまで、充電制御シーケンスが正常に開始または終了しないことも考えられる。 By the way, there are many noise sources in chargers and electric vehicles. For example, when a communication error occurs between the charger and the electric vehicle due to the influence of such a noise source, the charge control sequence may not start or end normally until the communication error is recovered.
 また、通常、電動車両の車両側コネクタおよび車載バッテリ間にはリレーが配置されており、充電中以外は、このリレーを開放しておくことにより、車両側コネクタの端子に車載バッテリの電圧が印加されないように工夫されている。充電制御シーケンスが正常終了していない段階で、ユーザが、誤って電動車両を移動させるなどして、リレーが閉成状態のまま、車両側コネクタから充電器側コネクタを強制的に切り離してしまうことが考えられる。 Also, a relay is usually arranged between the vehicle-side connector of the electric vehicle and the vehicle-mounted battery, and the voltage of the vehicle-mounted battery is applied to the terminal of the vehicle-side connector by opening this relay except during charging. It is devised not to be. The user forcibly disconnects the charger-side connector from the vehicle-side connector while the relay is in the closed state, for example, when the user accidentally moves the electric vehicle at a stage where the charge control sequence is not normally completed. Can be considered.
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、ノイズによる通信エラーが発生した場合でも充電制御シーケンスをより確実に開始・終了でき、かつ充電中以外はリレーをより確実に開放できる技術を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to more reliably start and end a charging control sequence even when a communication error due to noise occurs, and to connect a relay more than when charging is in progress. It is to provide a technology that can be surely opened.
 上記課題を解決するために、本発明では、移動体側コネクタへの充電器側コネクタの装着により、充電器と電動移動体との間が、充電器から電動移動体のバッテリに充電電力を供給するための充電用ラインと、充電器および電動移動体間で充電電流指示値をやり取りするための通信用ラインとに加えて、充電用ラインと電動移動体のバッテリとの間のリレーに充電器から駆動電力を供給するための制御用ラインにより接続される。この制御用ラインの導通を制御することで、充電用ラインと電動移動体のバッテリとの間のリレーを閉成または開放させるだけでなく、充電制御シーケンスの開始および終了の合図を充電器と電動移動体との間でやり取りする。 In order to solve the above problem, in the present invention, charging power is supplied from the charger to the battery of the electric mobile body between the charger and the electric mobile body by mounting the charger side connector to the mobile body side connector. In addition to the charging line for charging and the communication line for exchanging the charging current instruction value between the charger and the electric vehicle, a charger is connected to the relay between the charging line and the battery of the electric vehicle. They are connected by a control line for supplying driving power. Controlling the continuity of this control line not only closes or opens the relay between the charging line and the battery of the electric vehicle, but also signals the start and end of the charge control sequence to the charger and the motor. Communicate with moving objects.
 例えば、本発明は、電動移動体と、前記電動移動体のバッテリを充電する充電器と、を有する充電システムであって、
 前記充電器は、
 充電用ライン、通信用ライン、および制御用ラインを前記電動移動体に接続するための充電器側コネクタと、
 前記通信用ラインを介して前記電動移動体から充電電流指示値を受信する充電器側通信手段と、
 前記充電器側通信手段により受信した前記充電電流指示値に従い、前記充電用ラインを介して前記バッテリに充電電力を供給する充電電力供給手段と、
 前記バッテリの充電開始前に、制御系電源に前記制御用ラインを接続し、前記バッテリの充電終了後に、前記制御系電源から前記制御用ラインを切断する駆動電力供給手段と、を有し、
 前記電動移動体は、
 前記充電器側コネクタの装着により、前記充電用ライン、前記通信用ライン、および前記制御用ラインが接続される移動体側コネクタと、
 前記充電用ラインと前記バッテリとの間に配置され、前記制御用ラインを介して前記充電器から供給される駆動電力により閉成する充電用リレーと、
 前記通信用ラインを介して前記電動移動体に前記充電電流指示値を送信する移動体側通信手段と、
 前記制御用ラインの導通状態に基づいて、前記バッテリの充電開始および充電終了の合図を検知する充電開始終了検知手段と、を有する。
For example, the present invention is a charging system comprising an electric vehicle and a charger for charging a battery of the electric vehicle,
The charger is
A charger side connector for connecting a charging line, a communication line, and a control line to the electric vehicle; and
Charger-side communication means for receiving a charge current instruction value from the electric vehicle via the communication line;
Charging power supply means for supplying charging power to the battery via the charging line according to the charging current instruction value received by the charger-side communication means;
Drive power supply means for connecting the control line to a control system power supply before starting charging of the battery, and disconnecting the control line from the control system power supply after charging of the battery,
The electric vehicle is
By mounting the charger side connector, the mobile line side connector to which the charging line, the communication line, and the control line are connected,
A charging relay disposed between the charging line and the battery and closed by driving power supplied from the charger via the control line;
Mobile unit side communication means for transmitting the charging current instruction value to the electric vehicle through the communication line;
Charge start / end detection means for detecting a signal of charge start and charge end of the battery based on the conduction state of the control line.
 本発明によれば、通信用ラインとは別に設けられた制御用ラインの導通を制御することにより車載バッテリの充電開始および充電終了の合図を行うので、ノイズによる通信エラーが発生した場合でも充電制御シーケンスをより確実に開始・終了できる。また、移動体側コネクタへの充電器側コネクタの装着により接続される制御用ラインを介して充電器から充電用リレーに駆動電力を供給するので、充電器側コネクタと移動体側コネクタとの間が切り離された状態では充電用リレーが確実に開放される。 According to the present invention, the charging start and end of charging of the in-vehicle battery are signaled by controlling the continuity of the control line provided separately from the communication line. Therefore, even when a communication error due to noise occurs, the charge control is performed. The sequence can be started and ended more reliably. In addition, since the driving power is supplied from the charger to the charging relay via the control line connected by mounting the charger side connector to the mobile body side connector, the charger side connector and the mobile body side connector are disconnected. In this state, the charging relay is reliably opened.
図1は、本発明の一実施の形態に係る充電システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a charging system according to an embodiment of the present invention. 図2は、充電器100の動作を説明するためのフロー図である。FIG. 2 is a flowchart for explaining the operation of the charger 100. 図3は、電気自動車200の動作を説明するためのフロー図である。FIG. 3 is a flowchart for explaining the operation of the electric vehicle 200. 図4は、図1に示す充電システムにおいて、電気自動車200の車載バッテリ203の充電が正常終了する場合の充電動作を説明するためのシーケンス図である。FIG. 4 is a sequence diagram for explaining a charging operation when charging of on-vehicle battery 203 of electric vehicle 200 ends normally in the charging system shown in FIG. 1. 図5は、図1に示す充電システムにおいて、充電器100側の問題により、電気自動車200の車載バッテリ203の充電が異常終了する場合の充電動作を説明するためのシーケンス図である。FIG. 5 is a sequence diagram for explaining a charging operation in the case where charging of the in-vehicle battery 203 of the electric vehicle 200 ends abnormally due to a problem on the charger 100 side in the charging system shown in FIG. 図6は、図1に示す充電システムにおいて、電気自動車200側の問題により電気自動車200の車載バッテリ203の充電が異常終了する場合の充電動作を説明するためのシーケンス図である。FIG. 6 is a sequence diagram for explaining a charging operation in the case where charging of the in-vehicle battery 203 of the electric vehicle 200 ends abnormally due to a problem on the electric vehicle 200 side in the charging system shown in FIG.
 以下、本発明の一実施の形態について説明する。 Hereinafter, an embodiment of the present invention will be described.
 図1は、本発明の一実施の形態に係る充電システムの概略構成図である。 FIG. 1 is a schematic configuration diagram of a charging system according to an embodiment of the present invention.
 図示するように、本実施の形態に係る充電システムは、充電器100と、電気自動車200と、を有する。 As shown in the figure, the charging system according to the present embodiment includes a charger 100 and an electric vehicle 200.
 まず、充電器100について説明する。 First, the charger 100 will be described.
 この充電器100は、充電ケーブル101と、充電器側コネクタ102と、交直変換部103と、ELB(漏電遮断器)104と、通信部105と、制御部106と、制御系電源107と、リレー108、109と、フォトカプラ110と、ユーザインタフェース(不図示)と、を有する。 The charger 100 includes a charging cable 101, a charger-side connector 102, an AC / DC converter 103, an ELB (leakage breaker) 104, a communication unit 105, a control unit 106, a control system power source 107, a relay 108, 109, a photocoupler 110, and a user interface (not shown).
 充電ケーブル101は、一対の充電用ライン1011、一対の通信用ライン1012、および制御用ライン1013を収容する。ここで、充電用ライン1011は、電気自動車200に充電電力を供給するための電力線であり、通信用ライン1012は、電気自動車200と通信を行うための通信線である。そして、制御用ライン1013は、一対の駆動電力供給用ライン1014、事前準備確認用ライン1015、コネクタ接続確認用ライン1016、および接地電位に接続された接地電位ライン1017を有する。 The charging cable 101 accommodates a pair of charging lines 1011, a pair of communication lines 1012, and a control line 1013. Here, the charging line 1011 is a power line for supplying charging power to the electric vehicle 200, and the communication line 1012 is a communication line for communicating with the electric vehicle 200. The control line 1013 includes a pair of drive power supply lines 1014, a preliminary preparation confirmation line 1015, a connector connection confirmation line 1016, and a ground potential line 1017 connected to the ground potential.
 充電器側コネクタ102は、充電ケーブル101の先端に取り付けられており、充電ケーブル101に収容された各ライン(充電用ライン1011、通信用ライン1012、制御用ライン1013)の端子を備えている。充電器側コネクタ102が電気自動車200の後述の車両側コネクタ202に装着されると、これらの端子がそれぞれ車両側コネクタ202の対応端子と当接する。これにより、充電用ライン1011、通信用ライン1012、および制御用ライン1013が、それぞれ、電気自動車200の後述の充電用ライン2011、通信用ライン2012、および制御用ライン2013と電気的に接続される。 The charger-side connector 102 is attached to the tip end of the charging cable 101 and includes terminals of each line (charging line 1011, communication line 1012, control line 1013) accommodated in the charging cable 101. When the charger-side connector 102 is attached to a vehicle-side connector 202 (described later) of the electric vehicle 200, these terminals abut against corresponding terminals of the vehicle-side connector 202, respectively. Thereby, the charging line 1011, the communication line 1012, and the control line 1013 are electrically connected to the below-described charging line 2011, the communication line 2012, and the control line 2013 of the electric vehicle 200, respectively. .
 交直変換部103は、ELB104を介して交流電源300から供給される交流電力を直流電力に変換する。 The AC / DC converter 103 converts AC power supplied from the AC power supply 300 via the ELB 104 into DC power.
 ELB104は、交流電源300と交直変換部103との間に配置され、交流電源300と交直変換部103との接続・切断を行う。 The ELB 104 is disposed between the AC power supply 300 and the AC / DC converter 103, and connects / disconnects the AC power supply 300 and the AC / DC converter 103.
 通信部105は、CAN(Controller Area Network)等の通信プロトコルに従い、通信用ライン1012を介して電気自動車200と通信を行う。 The communication unit 105 communicates with the electric vehicle 200 via the communication line 1012 in accordance with a communication protocol such as CAN (Controller Area Network).
 制御部106は、充電器100の各部を統括制御する。 The control unit 106 performs overall control of each unit of the charger 100.
 制御系電源107は、通信部105、制御部106、リレー108、109、フォトカプラ110等の通信・制御系の各部に駆動電力を供給するための電源である。この制御系電源107は、バッテリでもよいし、あるいは交流電源300から供給される交流を整流することで生成された電源であってもよい。 The control system power source 107 is a power source for supplying driving power to each unit of the communication / control system such as the communication unit 105, the control unit 106, the relays 108 and 109, and the photocoupler 110. The control system power source 107 may be a battery or a power source generated by rectifying the AC supplied from the AC power source 300.
 リレー108は、制御系電源107の正極(V1CC電位)側と一方の駆動電力供給用ライン1014(正極側の駆動電力供給用ライン1014)との間に配置され、正極側の駆動電力供給用ライン1014とV1CC電位との接続・切断を行う。 The relay 108 is disposed between the positive electrode (V 1CC potential) side of the control system power supply 107 and one drive power supply line 1014 (positive drive power supply line 1014), and is used for supplying positive drive power. Connection / disconnection of the line 1014 and the V 1CC potential is performed.
 リレー109は、制御系電源107の負極(接地電位)側と他方の駆動電力供給用ライン1014(負極側の駆動電力供給用ライン1014)との間に配置され、負極側の駆動電力供給用ライン1014と接地電位との接続・切断を行う。 The relay 109 is arranged between the negative electrode (ground potential) side of the control system power supply 107 and the other drive power supply line 1014 (negative drive power supply line 1014), and the negative drive power supply line. Connection / disconnection between 1014 and the ground potential is performed.
 フォトカプラ110は、事前準備確認用ライン1015の導通可否に応じた事前準備確認信号を制御部106に伝達する。具体的には、入力側の発光素子がV1CC電位と事前準備確認用ライン1015との間に配置されており、事前準備確認用ライン1015が導通して入力側の発光素子にオン電流が流れると、出力側の受光素子が事前準備確認信号を制御部106に出力する。 The photocoupler 110 transmits a pre-preparation confirmation signal according to whether the pre-preparation confirmation line 1015 is conductive or not to the control unit 106. Specifically, the light emitting element on the input side is disposed between the V 1CC potential and the pre-preparation confirmation line 1015, and the pre-preparation confirmation line 1015 is turned on so that an on-current flows through the light emitting element on the input side. Then, the light receiving element on the output side outputs a preliminary preparation confirmation signal to the control unit 106.
 ユーザインターフェースは、充電開始指示等の指示を操作者から受け付け、この指示を制御部106に入力するとともに、操作者へのメッセージ等の情報を、制御部106からの指示に応じて出力する。ユーザインターフェースには、例えば、操作パネル、表示パネル、スピーカー等が含まれる。 The user interface receives an instruction such as a charging start instruction from the operator, inputs this instruction to the control unit 106, and outputs information such as a message to the operator in accordance with the instruction from the control unit 106. The user interface includes, for example, an operation panel, a display panel, a speaker, and the like.
 図2は、充電器100の動作を説明するためのフロー図である。 FIG. 2 is a flowchart for explaining the operation of the charger 100.
 ここでは、操作者により、すでに、充電器側コネクタ102が後述の車両側コネクタ202に装着されていることとする。 Here, it is assumed that the charger side connector 102 is already attached to the vehicle side connector 202 described later by the operator.
 まず、制御部106は、ユーザインターフェースを介して、操作者からの充電開始指示を受け付けると、リレー108を閉成し、正極側の駆動電力供給用ライン1014をV1CC電位に接続する(S101)。 First, when the control unit 106 receives a charge start instruction from the operator via the user interface, the control unit 106 closes the relay 108 and connects the positive drive power supply line 1014 to the V 1CC potential (S101). .
 それから、制御部106は、通信部105を制御し、通信用ライン1012を介して電気自動車200との間で充電条件(充電電流上限値、充電停止電圧値、充電停止時間等)のネゴシエーションを行う(S102)。具体的には、充電器100が供給可能な最大出力電圧値、充電器100が供給可能な最大出力電流値および充電器100が連続的に充電可能な最大充電時間と、車載バッテリ203の最大印加可能電圧値、車載バッテリ203の最大印加可能電流値および車載バッテリ203に連続的に充電可能な最大印加可能時間とを、充電器100と電気自動車200との間で交換し、充電器100が電気自動車200の最大印加可能電圧を供給可能であるならば、電気自動車200の最大印加可能電圧値を充電停止電圧値に決定するとともに、両方が許容可能な充電電流値および充電時間を充電電流上限値および充電停止時間に決定する。 Then, the control unit 106 controls the communication unit 105 to negotiate charging conditions (charging current upper limit value, charging stop voltage value, charging stop time, etc.) with the electric vehicle 200 via the communication line 1012. (S102). Specifically, the maximum output voltage value that the charger 100 can supply, the maximum output current value that the charger 100 can supply, the maximum charging time that the charger 100 can continuously charge, and the maximum application of the in-vehicle battery 203 The charger 100 and the electric vehicle 200 exchange the possible voltage value, the maximum applicable current value of the in-vehicle battery 203, and the maximum application time in which the in-vehicle battery 203 can be continuously charged. If the maximum applicable voltage of the automobile 200 can be supplied, the maximum applicable voltage value of the electric vehicle 200 is determined as the charge stop voltage value, and the charging current value and the charging time that are acceptable for both are determined as the charging current upper limit value. And determine the charging stop time.
 例えば、充電器100の最大出力電圧値が電気自動車200の最大印加可能電圧値より低い場合、制御部106は、充電条件のネゴシエーション不成立と判断し(S103でYES)、リレー108を開放して正極側の駆動電力供給用ライン1014をV1CC電位から切断する(S115)。これにより、制御部106は、充電を開始せずに、このフローを終了し、電気自動車200では、フォトカプラ209からの事前準備合図信号がオフになる。このとき、制御部106は、ユーザインターフェースから、充電器100が電気自動車200に対応していない旨のメッセージを出力するようにしてもよい。 For example, when the maximum output voltage value of the charger 100 is lower than the maximum applicable voltage value of the electric vehicle 200, the control unit 106 determines that negotiation of charging conditions is not established (YES in S103), opens the relay 108, and sets the positive electrode The driving power supply line 1014 on the side is disconnected from the V 1CC potential (S115). Thereby, the control unit 106 ends this flow without starting charging, and in the electric vehicle 200, the advance preparation signal from the photocoupler 209 is turned off. At this time, the control unit 106 may output a message indicating that the charger 100 is not compatible with the electric vehicle 200 from the user interface.
 一方、充電条件のネゴシエーションが不成立でないと判断した場合(S103でNO)、制御部106は、フォトカプラ110からの事前準備確認信号がオンになるのを待つ(S104)。 On the other hand, if it is determined that the charging condition negotiation is not established (NO in S103), the control unit 106 waits for the advance preparation confirmation signal from the photocoupler 110 to be turned on (S104).
 ここで、フォトカプラ110からの事前準備確認信号がオンになることなく、所定時間の経過によりタイムアウトした場合(S104でNO)、制御部106は、電気自動車200に何らかの異常が生じたものと判断し、リレー108を開放して、正極側の駆動電力供給用ライン1014をV1CC電位から切断する(S115)。これにより、制御部106は、充電を開始せずに、このフローを終了する。このとき、制御部106は、ユーザインターフェースから、電気自動車200側の問題により充電を開始できない旨のメッセージを出力するようにしてもよい。 Here, when the advance preparation confirmation signal from the photocoupler 110 does not turn on and time-out occurs after a predetermined time has elapsed (NO in S104), the control unit 106 determines that some abnormality has occurred in the electric vehicle 200. Then, the relay 108 is opened, and the positive drive power supply line 1014 is disconnected from the V 1CC potential (S115). Thereby, the control part 106 complete | finishes this flow, without starting charge. At this time, the control unit 106 may output a message indicating that charging cannot be started due to a problem on the electric vehicle 200 side from the user interface.
 一方、フォトカプラ110からの事前準備確認信号がタイムアウト前にオンになると(S104でYES)、制御部106は、コネクタロック等の後、リレー109を閉成して、負極側の駆動電力供給用ライン1014を接地電位に接続する(S105)。なお、制御部106は、リレー109の閉成に先立ち、交直変換部103、充電用ライン1011等の充電系に対する短絡試験等のセルフテストを行い、このセルフテストに合格しなければ、リレー108を開放して、正極側の駆動電力供給用ライン1014をV1CC電位から切断するようにしてもよい。これにより、制御部106は、充電を開始せずに、このフローを終了する。このとき、制御部106は、ユーザインターフェースから、充電器100側の問題により充電を開始できない旨のメッセージを出力するようにしてもよい。 On the other hand, when the advance preparation confirmation signal from the photocoupler 110 is turned on before the timeout (YES in S104), the control unit 106 closes the relay 109 after the connector lock or the like, and supplies the driving power on the negative side. The line 1014 is connected to the ground potential (S105). Prior to closing of the relay 109, the control unit 106 performs a self test such as a short circuit test on a charging system such as the AC / DC conversion unit 103 and the charging line 1011. It may be opened and the drive power supply line 1014 on the positive electrode side may be disconnected from the V 1CC potential. Thereby, the control part 106 complete | finishes this flow, without starting charge. At this time, the control unit 106 may output a message indicating that charging cannot be started due to a problem on the charger 100 side from the user interface.
 それから、制御部106は、充電時間パラメータTimeに初期値「0」を設定することによりタイマーを初期化して、充電開始からの経過時間の計測を開始する(S106)。また、制御部106は、通信用ライン1012および通信部105を介して電気自動車200から所定のインターバルで逐次送られてくる充電電流指示値を受信し、充電用ライン1011を流れる充電電流の大きさがこの充電電流指示値となるように交直変換部103を制御する(S107)。これにより、電気自動車200の充電が行われる。 Then, the control unit 106 initializes the timer by setting the initial value “0” to the charging time parameter Time, and starts measuring the elapsed time from the start of charging (S106). Further, the control unit 106 receives charging current instruction values sequentially transmitted from the electric vehicle 200 at predetermined intervals via the communication line 1012 and the communication unit 105, and the magnitude of the charging current flowing through the charging line 1011. The AC / DC converter 103 is controlled so that the charging current instruction value becomes equal to (S107). Thereby, the electric vehicle 200 is charged.
 さて、電気自動車200の充電中、制御部106は、充電条件により定まる充電終了条件が成立したか否か、充電器100の故障、交流電源300の停電等の異常が発生した否か、およびフォトカプラ110からの事前準備確認信号がオフになったか否かを監視している(S108、S113、S118)。ここでは、制御部106は、一対の充電用ライン1011間にかかる電圧および充電開始からの経過時間等を監視し、充電用ライン1011間の電圧の大きさが、充電条件で規定された充電停止電圧値に到達した場合、あるいは充電開始からの経過時間(充電時間パラメータTimeの値)が、充電条件で規定された充電停止時間に到達した場合に、充電終了条件が成立したと判断する。 Now, during charging of the electric vehicle 200, the control unit 106 determines whether or not a charging end condition determined by the charging condition is satisfied, whether or not an abnormality such as a failure of the charger 100, a power failure of the AC power supply 300, or the like occurs. It is monitored whether the advance preparation confirmation signal from the coupler 110 has been turned off (S108, S113, S118). Here, the control unit 106 monitors the voltage applied between the pair of charging lines 1011, the elapsed time from the start of charging, etc., and the magnitude of the voltage between the charging lines 1011 is determined by the charging condition. When the voltage value is reached, or when the elapsed time from the start of charging (the value of the charging time parameter Time) reaches the charging stop time defined by the charging condition, it is determined that the charging end condition is satisfied.
 充電終了条件が成立した場合(S108でYES)、制御部106は、交直変換部103の出力を徐々に低下させる。これにより、充電器100からの充電電力供給を停止し、電気自動車200の充電を終了する(S109)。その後、制御部106は、充電用ライン1011を流れる充電電流値が所定値以下になったタイミングから所定の時間が経過するのを待ってリレー108を開放し、正極側の駆動電力供給用ライン1014をV1CC電位から切断する(S111)。これにより、電気自動車200に充電の正常終了を通知する。なお、制御部106は、リレー108の開放とともにリレー109も開放する(S112)。そして、制御部106は、コネクタロック解除等の所定の処理を実行してから、このフローを終了する。このとき、制御部106は、ユーザインターフェースから、充電が正常終了した旨のメッセージを出力するようにしてもよい。 When the charging end condition is satisfied (YES in S108), the control unit 106 gradually decreases the output of the AC / DC conversion unit 103. Thereby, the supply of charging power from the charger 100 is stopped, and the charging of the electric vehicle 200 is ended (S109). Thereafter, the control unit 106 waits for a predetermined time to elapse from the timing when the charging current value flowing through the charging line 1011 becomes equal to or lower than the predetermined value, and then opens the relay 108 to drive the positive drive power supply line 1014. Is disconnected from the V 1CC potential (S111). Thereby, the electric vehicle 200 is notified of the normal end of charging. The control unit 106 opens the relay 109 as well as the relay 108 (S112). And the control part 106 complete | finishes this flow, after performing predetermined processes, such as connector lock cancellation | release. At this time, the control unit 106 may output a message indicating that charging is normally completed from the user interface.
 充電器100に異常が発生した場合(S113でYES)、または、フォトカプラ110からの事前準備確認信号がオフになった場合(S118でYES)、制御部106は、交直変換部103の出力を即時に低下させる。これにより、充電器100からの充電電力供給を即時に停止して、電気自動車200の充電を終了する(S115)。その後、制御部106は、所定の時間が経過するのを待って、2つのリレー108、109のうち、まずリレー109だけを開放して、負極側の駆動電力供給用ライン1014を接地電位から切断する(S116)。これにより、電気自動車200に充電の異常終了を通知する。それから、制御部106は、リレー108も開放して、正極側の駆動電力供給用ライン1014もV1CC電位から切断する(S117)。そして、制御部106は、異常終了時の所定の処理を実行してから、このフローを終了する。このとき、制御部106は、ユーザインターフェースから、充電器100側の問題により充電が異常終了した旨のメッセージを出力(充電器100に異常が発生した場合)、または、電気自動車200側の問題により充電が異常終了した旨のメッセージを出力(フォトカプラ110からの事前準備確認信号がオフになった場合)するようにしてもよい。 When an abnormality occurs in charger 100 (YES in S113), or when the advance preparation confirmation signal from photocoupler 110 is turned off (YES in S118), control unit 106 outputs the output of AC / DC conversion unit 103. Decrease immediately. Thereby, the charging power supply from the charger 100 is immediately stopped, and the charging of the electric vehicle 200 is terminated (S115). After that, the control unit 106 waits for a predetermined time to elapse and first opens only the relay 109 out of the two relays 108 and 109 to disconnect the negative drive power supply line 1014 from the ground potential. (S116). This notifies the electric vehicle 200 of abnormal termination of charging. Then, the control unit 106 also opens the relay 108 and disconnects the drive power supply line 1014 on the positive side from the V 1CC potential (S117). And the control part 106 complete | finishes this flow, after performing the predetermined | prescribed process at the time of abnormal end. At this time, the control unit 106 outputs a message indicating that charging has ended abnormally due to a problem on the charger 100 side (when an abnormality has occurred in the charger 100) or a problem on the electric vehicle 200 side from the user interface. A message indicating that charging has ended abnormally may be output (when the advance preparation confirmation signal from the photocoupler 110 is turned off).
 図1に戻り、電気自動車200について説明する。 Referring back to FIG. 1, the electric vehicle 200 will be described.
 電気自動車200は、車両側コネクタ202と、車載バッテリ203と、通信部204と、制御部205と、制御系電源206と、リレー207、208と、フォトカプラ209~212と、ユーザインタフェース(不図示)と、を有する。 The electric vehicle 200 includes a vehicle-side connector 202, an in-vehicle battery 203, a communication unit 204, a control unit 205, a control system power source 206, relays 207 and 208, photocouplers 209 to 212, a user interface (not shown). And).
 車両側コネクタ202は、一対の充電用ライン2011、一対の通信用ライン2012、および制御用ライン2013の端子を備える。ここで、充電用ライン2011は、充電器100から充電電力の供給を受けるための電力線であり、通信用ライン2012は、充電器100と通信を行うための通信線である。そして、制御用ライン2013は、一対の駆動電力供給用ライン2014、事前準備確認用ライン2015、コネクタ接続確認用ライン2016、および接地電位に接続された接地電位ライン2017を有する。 The vehicle-side connector 202 includes terminals for a pair of charging lines 2011, a pair of communication lines 2012, and a control line 2013. Here, the charging line 2011 is a power line for receiving supply of charging power from the charger 100, and the communication line 2012 is a communication line for communicating with the charger 100. The control line 2013 includes a pair of driving power supply lines 2014, a preliminary preparation confirmation line 2015, a connector connection confirmation line 2016, and a ground potential line 2017 connected to the ground potential.
 車両側コネクタ202が充電器100の充電器側コネクタ102に装着されると、これらの端子がそれぞれ充電器側コネクタ102の対応端子と当接する。これにより、上述したように、充電用ライン2011、通信用ライン2012、および制御用ライン2013が、それぞれ、充電器100の充電用ライン1011、通信用ライン1012、および制御用ライン1013と電気的に接続される。 When the vehicle-side connector 202 is attached to the charger-side connector 102 of the charger 100, these terminals come into contact with the corresponding terminals of the charger-side connector 102, respectively. Thereby, as described above, the charging line 2011, the communication line 2012, and the control line 2013 are electrically connected to the charging line 1011, the communication line 1012, and the control line 1013 of the charger 100, respectively. Connected.
 車載バッテリ203は、モータ、インバータ等の駆動系に駆動電力を供給するためのバッテリである。 The in-vehicle battery 203 is a battery for supplying driving power to a driving system such as a motor and an inverter.
 通信部204は、CAN等の通信プロトコルに従い、通信用ライン2012を介して充電器100と通信を行う。 The communication unit 204 communicates with the charger 100 via the communication line 2012 according to a communication protocol such as CAN.
 制御部205は、電気自動車200の各部を統括制御する。 The control unit 205 controls each part of the electric vehicle 200 in an integrated manner.
 制御系電源206は、通信部204、制御部205、リレー208、フォトカプラ209~212等の、リレー207を除く通信・制御系の各部に駆動電力を供給するための電源である。 The control system power source 206 is a power source for supplying driving power to each unit of the communication / control system excluding the relay 207, such as the communication unit 204, the control unit 205, the relay 208, and the photocouplers 209 to 212.
 リレー207は、一対の充電用ライン2011と車載バッテリ203の両極側との間に配置され、車載バッテリ203と充電用ライン2011との接続・切断を行う。ここで、リレー207は、通常は開放しているA接点である。一対の駆動電力供給用ライン2014を介して充電器100から駆動電力が供給されると、これを駆動電力としてリレー207が閉成し、充電用ライン2011が車載バッテリ203に接続する。なお、ここで用いたリレー207は、車載バッテリ203の正極側および負極側にそれぞれスイッチを有するものであるが、車載バッテリ203の正極および負極のいずれか一方の側にだけスイッチを有するものであってもよい。 The relay 207 is disposed between the pair of charging lines 2011 and both polar sides of the in-vehicle battery 203, and connects / disconnects the in-vehicle battery 203 and the charging line 2011. Here, the relay 207 is an A contact that is normally open. When driving power is supplied from the charger 100 via the pair of driving power supply lines 2014, the relay 207 is closed using this as driving power, and the charging line 2011 is connected to the in-vehicle battery 203. The relay 207 used here has a switch on each of the positive electrode side and the negative electrode side of the in-vehicle battery 203, but has a switch only on either the positive electrode side or the negative electrode side of the in-vehicle battery 203. May be.
 リレー208は、一方の駆動電力供給用ライン2014(負極側の駆動電力供給用ライン2014)とリレー207との間に配置され、駆動電力供給用ライン2014とリレー207との接続・切断を行う。これにより、充電器100からリレー207への駆動電力の供給を制御する。 The relay 208 is arranged between one drive power supply line 2014 (negative-side drive power supply line 2014) and the relay 207, and connects / disconnects the drive power supply line 2014 and the relay 207. Thereby, the supply of driving power from the charger 100 to the relay 207 is controlled.
 フォトカプラ209は、コネクタ接続中の充電器100のリレー108の開閉状態に応じた事前準備合図信号を制御部205に伝達する。具体的には、入力側の発光素子が他方の駆動電力供給用ライン2014(正極側の駆動電力供給用ライン2014)と接地電位との間に配置されており、コネクタ接続中の充電器100のリレー108の閉成によって正極側の駆動電力供給用ライン2014が導通して入力側の発光素子にオン電流が流れると、出力側の受光素子が事前準備合図信号を制御部205に出力する。 The photocoupler 209 transmits a pre-preparation signal according to the open / closed state of the relay 108 of the charger 100 being connected to the control unit 205. Specifically, the light emitting element on the input side is arranged between the other drive power supply line 2014 (positive drive power supply line 2014) and the ground potential, and the charger 100 connected to the connector is connected to the ground potential. When the positive driving power supply line 2014 is turned on by closing the relay 108 and an on-current flows through the light emitting element on the input side, the light receiving element on the output side outputs a preliminary preparation signal to the control unit 205.
 フォトカプラ210は、コネクタ接続中の充電器100の2つのリレー108、109の開閉状態に応じた充電開始合図信号を制御部205に伝達する。具体的には、入力側の発光素子が正極側および負極側の駆動電力供給用ライン2014の間に配置されており、コネクタ接続中の充電器100の両リレー108、109の閉成によって正極側および負極側の駆動電力供給用ライン2014が各々導通して入力側の発光素子にオン電流が流れると、出力側の受光素子が充電開始合図信号を制御部205に出力する。 The photocoupler 210 transmits a charging start signal according to the open / closed state of the two relays 108 and 109 of the charger 100 being connected to the control unit 205. Specifically, the light emitting element on the input side is disposed between the positive and negative drive power supply lines 2014, and the positive side is closed by closing both relays 108 and 109 of the charger 100 being connected to the connector. When the driving power supply line 2014 on the negative side and the negative side driving power supply line 2014 are respectively conducted and an on-current flows through the light emitting element on the input side, the light receiving element on the output side outputs a charge start signal to the control unit 205.
 フォトカプラ211は、制御部205からのオン電流の供給によりコネクタ接続中の充電器100の事前準備確認用ライン1015を導通させる。具体的には、出力側の受光素子が事前準備確認用ライン2015と接地電位との間に配置されており、制御部205からのオン電流が入力側の発光素子に流れると、事前準備確認用ライン2015を接地電位に接続する。 The photocoupler 211 conducts the pre-preparation confirmation line 1015 of the charger 100 being connected to the connector by supplying the on-current from the control unit 205. Specifically, the light receiving element on the output side is arranged between the preparatory confirmation line 2015 and the ground potential, and when the on-current from the control unit 205 flows to the light emitting element on the input side, Line 2015 is connected to ground potential.
 フォトカプラ212は、充電器側コネクタ102と車両側コネクタ202との接続状態に応じたコネクタ接続確認信号を制御部205に伝達する。具体的には、入力側の発光素子が制御系電源206の正極(V2CC電位)側とコネクタ接続確認用ライン2016との間に配置されており、充電器側コネクタ102と車両側コネクタ202との接続によってコネクタ接続確認用ライン2016が導通して入力側の発光素子にオン電流が流れると、制御部205にコネクタ接続確認信号を出力する。 The photocoupler 212 transmits a connector connection confirmation signal corresponding to the connection state between the charger-side connector 102 and the vehicle-side connector 202 to the control unit 205. Specifically, the light emitting element on the input side is disposed between the positive electrode ( V2CC potential) side of the control system power supply 206 and the connector connection confirmation line 2016, and the charger side connector 102, the vehicle side connector 202, When the connector connection confirmation line 2016 is conducted due to the connection, an on-current flows through the light emitting element on the input side, a connector connection confirmation signal is output to the control unit 205.
 ユーザインターフェースは、操作者への通知等を、制御部205からの指示に応じて出力する。ユーザインターフェースには、例えば、表示パネル、スピーカー等が含まれる。 The user interface outputs notifications to the operator according to instructions from the control unit 205. The user interface includes, for example, a display panel and a speaker.
 図3は、電気自動車200の動作を説明するためのフロー図である。 FIG. 3 is a flowchart for explaining the operation of the electric vehicle 200.
 このフローは、操作者により、車両側コネクタ202に充電器側コネクタ102が装着されることにより開始される。 This flow is started when the charger side connector 102 is attached to the vehicle side connector 202 by the operator.
 制御部205は、フォトカプラ209からの事前準備合図信号がオンになると(S201)、フォトカプラ212からのコネクタ接続確認信号がオンになっているか否かを判断する(S202)。フォトカプラ212からのコネクタ接続確認信号がオフの場合(S202でNO)、すなわち、充電器側コネクタ102と車両側コネクタ202とが適切に接続されていない場合、制御部205は、ユーザインターフェースから、充電器側コネクタ102が車両側コネクタ202に正しく接続されていない旨のメッセージを出力するなどの所定の異常終了通知を行う(S219)。そして、このフローを終了する。 When the pre-preparation signal from the photocoupler 209 is turned on (S201), the control unit 205 determines whether the connector connection confirmation signal from the photocoupler 212 is turned on (S202). When the connector connection confirmation signal from the photocoupler 212 is off (NO in S202), that is, when the charger-side connector 102 and the vehicle-side connector 202 are not properly connected, the control unit 205 is A predetermined abnormal termination notification such as outputting a message indicating that the charger-side connector 102 is not properly connected to the vehicle-side connector 202 is performed (S219). Then, this flow ends.
 一方、フォトカプラ212からのコネクタ接続確認信号もオンの場合(S202でYES)、すなわち、充電器側コネクタ102と車両側コネクタ202とが適切に接続されている場合、制御部205は、通信部204を制御し、通信用ライン2012を介して充電器100との間で充電条件のネゴシエーションを行う(S204)。 On the other hand, when the connector connection confirmation signal from the photocoupler 212 is also on (YES in S202), that is, when the charger-side connector 102 and the vehicle-side connector 202 are properly connected, the control unit 205 includes a communication unit. 204 is controlled, and charging conditions are negotiated with the charger 100 via the communication line 2012 (S204).
 例えば、充電条件が決定しないまま、フォトカプラ209からの事前準備開始信号がオフになった場合(電気自動車200の最大印加可能電圧値が、充電器100の最大出力電圧値より高い場合)、制御部205は、充電条件のネゴシエーション不成立と判断し(S204でYES)、ユーザインターフェースから、充電器100が電気自動車200に対応していない旨のメッセージを表示するなどの所定の異常終了通知を行う(S212)。その後、制御部205は、フォトカプラ212からのコネクタ接続確認信号がオフになったことを確認して(S213)、このフローを終了する。 For example, when the advance preparation start signal from the photocoupler 209 is turned off without determining the charging condition (when the maximum applicable voltage value of the electric vehicle 200 is higher than the maximum output voltage value of the charger 100), the control is performed. The unit 205 determines that negotiation of the charging condition has not been established (YES in S204), and performs a predetermined abnormal end notification such as displaying a message that the charger 100 does not support the electric vehicle 200 from the user interface ( S212). Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
 一方、充電条件のネゴシエーションが成立して、充電条件が決定された場合(S204でNO)、制御部205は、フォトカプラ211の入力側にオン電流を流して、事前準備確認用ライン2015を接地電位に接続する(S205)。これにより、充電器100では、事前準備確認用ライン1015が導通し、フォトカプラ110から制御部106に入力される事前準備確認信号がオンになる。 On the other hand, when the negotiation of the charging condition is established and the charging condition is determined (NO in S204), the control unit 205 sends an on-current to the input side of the photocoupler 211 and grounds the preliminary preparation confirmation line 2015. Connect to the potential (S205). As a result, in the charger 100, the advance preparation confirmation line 1015 is conducted, and the advance preparation confirmation signal input from the photocoupler 110 to the control unit 106 is turned on.
 なお、制御部205は、接地電位への事前準備確認用ライン2015の接続に先立ち、車載バッテリ203、リレー207、充電用ライン2011等の充電系に対する短絡試験等のセルフテストを行い、このセルフテストを合格しなければ、事前準備確認用ライン2015を接地電位に接続せずに、このフローを終了してもよい。このとき、制御部205は、ユーザインターフェースから、電気自動車200側の問題により充電を開始できない旨のメッセージを出力するなどの異常終了通知を行うようにしてもよい。その後、フォトカプラ210からの充電開始合図信号がオンになるのを待つ(S206)。 The controller 205 performs a self-test such as a short-circuit test on a charging system such as the in-vehicle battery 203, the relay 207, and the charging line 2011 prior to connection of the preliminary preparation confirmation line 2015 to the ground potential. If not passed, this flow may be terminated without connecting the preliminary preparation confirmation line 2015 to the ground potential. At this time, the control unit 205 may perform an abnormal end notification such as outputting a message indicating that charging cannot be started due to a problem on the electric vehicle 200 side from the user interface. Thereafter, it waits for the charge start signal from the photocoupler 210 to turn on (S206).
 ここで、フォトカプラ210からの充電開始合図信号がオンになることなく、所定時間の経過によりタイムアウトした場合(S206でNO)、制御部205は、充電器100に何らかの異常が生じたものと判断し、フォトカプラ211の入力側へのオン電流供給を停止する(S211)。これにより、充電器100では、フォトカプラ110からの事前準備確認信号がオフになる。また、制御部205は、ユーザインターフェースから、充電器100側の問題により充電を開始できない旨のメッセージを出力するなどの所定の異常終了通知を行う(S212)。その後、制御部205は、フォトカプラ212からのコネクタ接続確認信号がオフになったことを確認して(S213)、このフローを終了する。 Here, if the charging start signal from the photocoupler 210 does not turn on and times out due to the elapse of a predetermined time (NO in S206), the control unit 205 determines that some abnormality has occurred in the charger 100. Then, the on-current supply to the input side of the photocoupler 211 is stopped (S211). Thereby, in charger 100, the advance preparation confirmation signal from photocoupler 110 is turned off. In addition, the control unit 205 performs a predetermined abnormal termination notification such as outputting a message indicating that charging cannot be started due to a problem on the charger 100 side from the user interface (S212). Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
 一方、コネクタ接続中の充電器100の2つのリレー108、109の閉成によって、フォトカプラ210からの充電開始合図信号がタイムアウト前にオンになると(S206でYES)、制御部205は、リレー208を閉成し、駆動電力供給用ライン2014を介して充電器100からリレー207に駆動電力を供給する。これにより、リレー207が閉成し、充電用ライン2011を介して充電器100から車載バッテリ203に充電電力が供給される(S207)。 On the other hand, when the charging start signal from the photocoupler 210 is turned on before the time-out due to the closing of the two relays 108 and 109 of the charger 100 that is connected to the connector (YES in S206), the control unit 205 displays the relay 208. , And the driving power is supplied from the charger 100 to the relay 207 via the driving power supply line 2014. As a result, the relay 207 is closed, and charging power is supplied from the charger 100 to the in-vehicle battery 203 via the charging line 2011 (S207).
 その後、制御部205は、車載バッテリ203の電圧等を監視しながら、所定のインターバルで、通信部204および通信用ライン2012を介して充電器100に充電電流指示値を送信する(S208)。具体的には、制御部205は、まず、充電条件に含まれる充電電流上限値を初期値として充電器100に送信し、その後、逐次、車載バッテリ203の電圧値と予め定められた充電パターン等とに基づき、充電条件に含まれる充電電流上限値以下の電流値を充電電流指示値に決定し、この充電電流指示値を充電器100に送信する。これにより、車載バッテリ203の充電が行われる。 Thereafter, the control unit 205 transmits the charging current instruction value to the charger 100 via the communication unit 204 and the communication line 2012 at a predetermined interval while monitoring the voltage of the in-vehicle battery 203 (S208). Specifically, the control unit 205 first transmits the charging current upper limit value included in the charging condition to the charger 100 as an initial value, and then sequentially, the voltage value of the in-vehicle battery 203 and a predetermined charging pattern, etc. Based on the above, a current value equal to or lower than the charging current upper limit value included in the charging condition is determined as a charging current instruction value, and this charging current instruction value is transmitted to the charger 100. Thereby, the vehicle-mounted battery 203 is charged.
 さて、車載バッテリ203の充電中、制御部205は、車載バッテリ203の故障等、電気自動車200に異常が発生した否かを監視するとともに(S209)、車載バッテリ203の充電容量を計測し、充電容量が所定値(例えば、満充電、80%充電等)に到達したか否かを監視している(S214)。 During charging of the in-vehicle battery 203, the control unit 205 monitors whether or not an abnormality has occurred in the electric vehicle 200 such as a failure of the in-vehicle battery 203 (S209), and measures the charging capacity of the in-vehicle battery 203 to charge the battery. It is monitored whether the capacity has reached a predetermined value (for example, full charge, 80% charge, etc.) (S214).
 電気自動車200に異常が発生した場合(S209でYES)、制御部205は、リレー208を開放する(S210)。これにより、リレー207への駆動電力供給が停止してリレー207が開放され、充電用ライン2011から車載バッテリ203が切断される。また、制御部205は、フォトカプラ211の入力側へのオン電流の供給を停止して、事前準備確認用ライン2015を接地電位から切断する(S211)。これにより、充電器100では、フォトカプラ110から制御部106に入力される事前準備確認信号がオフになる。それから、制御部205は、ユーザインターフェースから、電気自動車200側の問題により充電が異常終了した旨のメッセージを出力するなどの所定の異常終了通知を行う(S212)。その後、制御部205は、フォトカプラ212からのコネクタ接続確認信号がオフになったことを確認して(S213)、このフローを終了する。 When an abnormality occurs in the electric vehicle 200 (YES in S209), the control unit 205 opens the relay 208 (S210). Thereby, the drive power supply to the relay 207 is stopped, the relay 207 is opened, and the in-vehicle battery 203 is disconnected from the charging line 2011. Further, the control unit 205 stops the supply of the on-current to the input side of the photocoupler 211 and disconnects the preliminary preparation confirmation line 2015 from the ground potential (S211). Thereby, in charger 100, the advance preparation confirmation signal input from photocoupler 110 to control unit 106 is turned off. Then, the control unit 205 performs a predetermined abnormal end notification such as outputting a message indicating that charging has ended abnormally due to a problem on the electric vehicle 200 side from the user interface (S212). Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
 車載バッテリ203の充電容量が所定値に到達した場合(S214でYES)、制御部205は、充電が終了したと判断して、リレー208を開放する(S215)。これにより、リレー207への駆動電力供給が停止してリレー207が開放され、充電用ライン2011から車載バッテリ203が切断される。また、制御部205は、フォトカプラ211の入力側へのオン電流の供給を停止して、事前準備確認用ライン2015を接地電位から切断する(S216)。これにより、充電器100では、フォトカプラ110から制御部106に入力される事前準備確認信号がオフになる。 When the charging capacity of the in-vehicle battery 203 reaches a predetermined value (YES in S214), the control unit 205 determines that the charging is finished, and opens the relay 208 (S215). Thereby, the drive power supply to the relay 207 is stopped, the relay 207 is opened, and the in-vehicle battery 203 is disconnected from the charging line 2011. Further, the control unit 205 stops the supply of the on-current to the input side of the photocoupler 211, and disconnects the preliminary preparation confirmation line 2015 from the ground potential (S216). Thereby, in charger 100, the advance preparation confirmation signal input from photocoupler 110 to control unit 106 is turned off.
 その後、フォトカプラ210からの充電開始合図信号およびフォトカプラ209からの事前準備合図信号が同時にオフになるか、あるいは、フォトカプラ210からの充電開始合図信号のみがオフになるのを待つ(S217)。 After that, the charging start signal signal from the photocoupler 210 and the pre-preparation signal from the photocoupler 209 are turned off simultaneously, or only the charging start signal signal from the photocoupler 210 is turned off (S217). .
 フォトカプラ210からの充電開始合図信号およびフォトカプラ209からの事前準備合図信号が同時にオフになった場合(S217でYES)、すなわち、充電器100においてリレー108およびリレー109がともにオフになった場合、制御部205は、車載バッテリ203の充電が正常終了したと判断し、ユーザインターフェースから、車載バッテリ203の充電が正常終了した旨のメッセージを出力するなどの所定の正常終了通知を行う(S218)。その後、制御部205は、フォトカプラ212からのコネクタ接続確認信号がオフになったことを確認して(S213)、このフローを終了する。 When the charging start signal from the photocoupler 210 and the preliminary preparation signal from the photocoupler 209 are simultaneously turned off (YES in S217), that is, when both the relay 108 and the relay 109 are turned off in the charger 100 Then, the control unit 205 determines that charging of the in-vehicle battery 203 has been normally completed, and performs a predetermined normal end notification such as outputting a message indicating that charging of the in-vehicle battery 203 has been normally completed from the user interface (S218). . Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
 一方、フォトカプラ210からの充電開始合図信号のみがオフになった場合(S217でNO)、すなわち、充電器100においてリレー108よりも先にリレー109がオフになった場合、制御部205は、車載バッテリ203の充電が異常終了したと判断し、ユーザインターフェースから、充電器100側の問題により充電が異常終了した旨のメッセージを出力するなどの所定の異常終了通知を行う(S212)。その後、制御部205は、フォトカプラ212からのコネクタ接続確認信号がオフになったことを確認して(S213)、このフローを終了する。 On the other hand, when only the charging start signal signal from the photocoupler 210 is turned off (NO in S217), that is, when the relay 109 is turned off before the relay 108 in the charger 100, the control unit 205 It is determined that charging of the in-vehicle battery 203 has ended abnormally, and a predetermined abnormal end notification such as outputting a message indicating that charging has ended abnormally due to a problem on the charger 100 side is performed from the user interface (S212). Thereafter, the control unit 205 confirms that the connector connection confirmation signal from the photocoupler 212 is turned off (S213), and ends this flow.
 つぎに、本実施の形態に係る充電システムの充電動作全体の流れを、充電が正常終了する場合、充電器100の問題により充電が異常終了する場合、および、電気自動車200の問題により充電が異常終了する場合に分けて説明する。 Next, in the flow of the entire charging operation of the charging system according to the present embodiment, when charging ends normally, when charging ends abnormally due to a problem with the charger 100, and when charging ends abnormally due to a problem with the electric vehicle 200 A description will be given in the case of termination.
 図4は、図1に示す充電システムにおいて、電気自動車200の車載バッテリ203の充電が正常終了する場合の充電動作を説明するためのシーケンス図である。 FIG. 4 is a sequence diagram for explaining a charging operation when charging of the on-vehicle battery 203 of the electric vehicle 200 is normally completed in the charging system shown in FIG.
 車両側コネクタ202に充電器側コネクタ102が正しく接続されると(S301)、電気自動車200では、フォトカプラ212の入力側にオン電流が流れ、制御部205に与えられるコネクタ接続確認信号がオンになる(S302)。 When the charger-side connector 102 is correctly connected to the vehicle-side connector 202 (S301), in the electric vehicle 200, an on-current flows to the input side of the photocoupler 212, and the connector connection confirmation signal supplied to the control unit 205 is turned on. (S302).
 その後、充電器100において、操作者がユーザインターフェースに充電開始指示を入力すると(S303)、制御部106は、この充電開始指示に応じてリレー108を閉成し(S304)、正極側の駆動電力供給用ライン1014をV1CC電位に接続する。これにより、電気自動車200では、フォトカプラ209の入力側にオン電流が流れ、制御部205に与えられる事前準備合図信号がオンになる(S305)。 Thereafter, in the charger 100, when the operator inputs a charging start instruction to the user interface (S303), the control unit 106 closes the relay 108 in response to the charging start instruction (S304), and the positive side drive power is supplied. Supply line 1014 is connected to the V 1CC potential. As a result, in the electric vehicle 200, an on-current flows to the input side of the photocoupler 209, and the advance preparation signal provided to the control unit 205 is turned on (S305).
 電気自動車200では、事前準備合図信号およびコネクタ接続確認信号の双方がオンであるため、制御部205が、通信用ライン1012、2012を介してバッテリ情報を充電器100に送信する。これにより、充電器100と電気自動車200との間において、通信用ライン1012、2012を介して充電条件のネゴシエーションが開始される(S306)。 In the electric vehicle 200, since both the preliminary preparation signal and the connector connection confirmation signal are on, the control unit 205 transmits the battery information to the charger 100 via the communication lines 1012, 2012. Thereby, negotiation of a charging condition is started between the charger 100 and the electric vehicle 200 via the communication lines 1012, 2012 (S306).
 これにより、充電器100および電気自動車200の双方が許容可能な充電条件(充電電流上限値、充電停止電圧値、充電停止時間等)が決定されたならば(ネゴシエーション成立)、電気自動車200では、制御部205が、必要に応じてセルフテストを行って電気自動車200に問題がないことを確認した後、フォトカプラ211の入力側にオン電流を流す(S307)。これにより、充電器100では、フォトカプラ110の入力側にオン電流が流れ、制御部106に与えられる事前準備確認信号がオンになる(S308)。その後、充電器100では、制御部106が、必要に応じてセルフテストを行って充電器100に問題がないことを確認した後、リレー109を閉成して(S309)、負極側の駆動電力供給用ライン1014を接地電位に接続する。これにより、電気自動車200では、フォトカプラ210の入力側にオン電流が流れ、制御部205に与えられる充電開始合図信号がオンになる(S310)。それから、充電器100において、制御部106は、交直変換部103の出力開始をスタンバイにする(S311)。 Thereby, if the charging conditions (charging current upper limit value, charging stop voltage value, charging stop time, etc.) that can be accepted by both charger 100 and electric vehicle 200 are determined (negotiation is established), in electric vehicle 200, After confirming that there is no problem with the electric vehicle 200 by performing a self-test as necessary, the control unit 205 supplies an on-current to the input side of the photocoupler 211 (S307). Thereby, in the charger 100, an on-current flows to the input side of the photocoupler 110, and the advance preparation confirmation signal given to the control unit 106 is turned on (S308). After that, in the charger 100, the control unit 106 performs a self test as necessary to confirm that there is no problem with the charger 100, and then closes the relay 109 (S309) to drive the driving power on the negative side. Supply line 1014 is connected to ground potential. Thereby, in the electric vehicle 200, an on-current flows to the input side of the photocoupler 210, and a charge start signal signal given to the control unit 205 is turned on (S310). Then, in charger 100, control unit 106 sets the output start of AC / DC converting unit 103 to standby (S311).
 また、電気自動車200では、充電条件の決定後に充電開始合図信号がオンになると、制御部205がリレー208を閉成して、充電器100からの駆動電力をリレー207に供給する。これにより、リレー207が閉成して充電用ライン2011が車載バッテリ203に接続され、充電器100から車載バッテリ203への充電電力の供給が開始する(S312)。 In the electric vehicle 200, when the charging start signal is turned on after the charging condition is determined, the control unit 205 closes the relay 208 and supplies the driving power from the charger 100 to the relay 207. As a result, the relay 207 is closed and the charging line 2011 is connected to the in-vehicle battery 203, and supply of charging power from the charger 100 to the in-vehicle battery 203 is started (S312).
 車載バッテリ203の充電中、電気自動車200では、制御部205が、逐次、車載バッテリ203の状態および所定の充電パターン等に基づき、充電条件の充電電流上限値以下の充電電流指示値を決定し、この充電電流指示値を、通信部204および通信用ライン2012を介して充電器100に送信する。一方、充電器100では、制御部106が、通信用ライン1012および通信部105を介して逐次送られてくる充電電流指示値に従って、充電用ライン1011に流れる充電電流を制御する。これにより、車載バッテリ203の充電が行われる(S313)。 During charging of the in-vehicle battery 203, in the electric vehicle 200, the control unit 205 sequentially determines a charging current instruction value that is less than or equal to the charging current upper limit value of the charging condition based on the state of the in-vehicle battery 203 and a predetermined charging pattern, This charging current instruction value is transmitted to charger 100 via communication unit 204 and communication line 2012. On the other hand, in charger 100, control unit 106 controls the charging current flowing through charging line 1011 according to the charging current instruction value sequentially sent via communication line 1012 and communication unit 105. Thereby, the vehicle-mounted battery 203 is charged (S313).
 さて、車載バッテリ203の充電中に、充電器100では、充電条件により定まる充電終了条件に合致する事象が発生すると(S314)、制御部106が、交直変換部103の出力を低下させ、充電出力を停止する(S315)。これにより、充電器100から電気自動車200への充電電力の供給が停止する。一方、電気自動車200では、制御部205が、車載バッテリ203の充電容量が所定値に到達したことを検知し(S316)、リレー208を開放する。これにより、リレー207への駆動電力供給が停止してリレー207が開放され、充電用ライン2011から車載バッテリ203が切断される(S317)。 Now, during the charging of the in-vehicle battery 203, in the charger 100, when an event that matches the charging end condition determined by the charging condition occurs (S314), the control unit 106 decreases the output of the AC / DC converting unit 103, and the charging output Is stopped (S315). Thereby, the supply of charging power from the charger 100 to the electric vehicle 200 is stopped. On the other hand, in the electric vehicle 200, the control unit 205 detects that the charge capacity of the in-vehicle battery 203 has reached a predetermined value (S316), and opens the relay 208. Thereby, the drive power supply to the relay 207 is stopped, the relay 207 is opened, and the vehicle-mounted battery 203 is disconnected from the charging line 2011 (S317).
 その後、充電器100において、制御部106は、充電用ライン1011を流れる充電電流値が所定値以下になったタイミングから所定の時間経過するのを待ってリレー108およびリレー109を開放して、正極側の駆動電力供給用ライン1014をV1CC電位から切断する(S318)。これにより、電気自動車200では、フォトカプラ209、210各々の入力側へのオン電流の供給が停止し、事前準備合図信号および充電開始合図信号が同時にオフになる(S319)。 After that, in the charger 100, the control unit 106 opens the relay 108 and the relay 109 after waiting for a predetermined time from the timing when the value of the charging current flowing through the charging line 1011 becomes equal to or lower than the predetermined value. The drive power supply line 1014 on the side is disconnected from the V 1CC potential (S318). Thereby, in the electric vehicle 200, the supply of the on-current to the input side of each of the photocouplers 209 and 210 is stopped, and the preliminary preparation signal and the charge start signal are simultaneously turned off (S319).
 それから、充電器100において、制御部106は、充電が正常終了した旨を操作者に通知する(S320)。一方、電気自動車200では、事前準備合図信号および充電開始合図信号が同時にオフになると、制御部205が、充電が正常終了した旨を操作者に通知する(S321)。 Then, in the charger 100, the control unit 106 notifies the operator that the charging is normally completed (S320). On the other hand, in the electric vehicle 200, when the preliminary preparation signal and the charging start signal are turned off at the same time, the control unit 205 notifies the operator that the charging is normally completed (S321).
 その後、車両側コネクタ202から充電器側コネクタ102が取り外されると(S322)、電気自動車200において、フォトカプラ212の入力側に流れるオン電流が停止し、コネクタ接続確認信号がオフになる(S323)。 Thereafter, when the charger-side connector 102 is removed from the vehicle-side connector 202 (S322), the on-current flowing to the input side of the photocoupler 212 is stopped in the electric vehicle 200, and the connector connection confirmation signal is turned off (S323). .
 図5は、図1に示す充電システムにおいて、充電器100側の問題により充電が異常終了する場合の充電動作を説明するためのシーケンス図である。 FIG. 5 is a sequence diagram for explaining the charging operation in the case where charging ends abnormally due to a problem on the charger 100 side in the charging system shown in FIG.
 ここで、S301~S314は、図4に示すものと同様の処理あるので、S330以降についてのみ説明する。 Here, since S301 to S314 are the same as those shown in FIG. 4, only S330 and subsequent steps will be described.
 車載バッテリ203の充電中、充電器100において、制御部106は、充電器100側の異常(充電器100の故障、交流電源300の停電等)の発生を検知すると(S330)、交直変換部103の出力を即時に低下させ、充電出力を停止するとともに(S331)、その後、所定時間の経過を待ってリレー109を開放し、負極側の駆動電力供給用ライン1014を接地電位から切断する(S332)。 When the in-vehicle battery 203 is being charged, in the charger 100, when the controller 106 detects the occurrence of an abnormality on the charger 100 side (failure of the charger 100, power failure of the AC power supply 300, etc.) (S330), the AC / DC converter 103 Is immediately reduced, the charging output is stopped (S331), and after waiting for a predetermined time, the relay 109 is opened, and the driving power supply line 1014 on the negative electrode side is disconnected from the ground potential (S332). ).
 これにより、充電器100から電気自動車200への充電電力供給が停止するため、電気自動車200では、充電用ライン2011を流れる充電電流値が所定値以下になったことを検知し(S332)、リレー208を開放する。これにより、リレー207への駆動電力供給が停止してリレー207が開放され、充電用ライン2011から車載バッテリ203が切断される(S333)。また、フォトカプラ210の入力側へのオン電流の供給が停止して、事前準備合図信号はオンのまま、充電開始合図信号のみがオフになる(S334)。 As a result, the charging power supply from the charger 100 to the electric vehicle 200 is stopped, so that the electric vehicle 200 detects that the charging current value flowing through the charging line 2011 has become a predetermined value or less (S332), and the relay 208 is opened. Thereby, the drive power supply to the relay 207 is stopped, the relay 207 is opened, and the vehicle-mounted battery 203 is disconnected from the charging line 2011 (S333). Further, the supply of the on-current to the input side of the photocoupler 210 is stopped, the pre-preparation signal is kept on, and only the charge start signal is turned off (S334).
 それから、充電器100において、制御部106は、リレー108を開放して、正極側の駆動電力供給用ライン1014をV1CC電位から切断するとともに(S335)、充電器100側の問題により充電が異常終了した旨を操作者に通知する(S336)。 Then, in the charger 100, the control unit 106 opens the relay 108, disconnects the positive drive power supply line 1014 from the V1CC potential (S335), and charging is abnormal due to a problem on the charger 100 side. The operator is notified of the end (S336).
 一方、電気自動車200において、制御部205は、充電開始合図信号のみがオフになると、充電器100側の問題により充電が異常終了した旨を操作者に通知する(S337)。 On the other hand, in the electric vehicle 200, when only the charging start signal is turned off, the control unit 205 notifies the operator that charging has ended abnormally due to a problem on the charger 100 side (S337).
 その後、車両側コネクタ202から充電器側コネクタ102が取り外されると(S338)、電気自動車200において、フォトカプラ212の入力側へのオン電流の供給が停止し、コネクタ接続確認信号がオフになる(S339)。 Thereafter, when the charger-side connector 102 is removed from the vehicle-side connector 202 (S338), in the electric vehicle 200, the supply of the on-current to the input side of the photocoupler 212 is stopped, and the connector connection confirmation signal is turned off ( S339).
 図6は、図1に示す充電システムにおいて、電気自動車200側の問題により充電が異常終了する場合の充電動作を説明するためのシーケンス図である。 FIG. 6 is a sequence diagram for explaining the charging operation in the case where charging ends abnormally due to a problem on the electric vehicle 200 side in the charging system shown in FIG.
 ここで、S301~S314は、図4に示すものと同様の処理あるので、S350以降についてのみ説明する。 Here, since S301 to S314 are the same as those shown in FIG. 4, only S350 and subsequent steps will be described.
 車載バッテリ203の充電中、電気自動車200において、制御部205は、電気自動車200側の異常(車載バッテリ203等の異常)の発生を検知すると(S350)、リレー208を開放する。これにより、リレー207への駆動電力の供給が停止してリレー207が開放され、車載バッテリ203から充電用ライン2011が切断される(S351)。それから、制御部205は、フォトカプラ211の入力側へのオン電流の供給を停止して、事前準備確認用ライン2015を接地電位から切断する(S352)。これにより、充電器100では、フォトカプラ110の入力側へのオン電流の供給が停止し、事前準備確認信号がオフになる(S353)。 During charging of the in-vehicle battery 203, in the electric vehicle 200, when the controller 205 detects the occurrence of an abnormality (an abnormality in the in-vehicle battery 203 or the like) on the electric vehicle 200 side (S350), the relay 208 is opened. As a result, the supply of driving power to the relay 207 is stopped, the relay 207 is opened, and the charging line 2011 is disconnected from the in-vehicle battery 203 (S351). Then, the control unit 205 stops the supply of the on-current to the input side of the photocoupler 211, and disconnects the advance preparation confirmation line 2015 from the ground potential (S352). Thereby, in the charger 100, the supply of the on-current to the input side of the photocoupler 110 is stopped, and the advance preparation confirmation signal is turned off (S353).
 充電器100では、事前準備確認信号がオフになると、制御部106が、交直変換部103の出力を即時に低下させ、充電出力を停止する(S354)。さらに、制御部106は、所定時間の経過を待ってリレー109を開放し、負極側の駆動電力供給用ライン1014を接地電位から切断する(S355)。それから、リレー108を開放して、駆動電力供給用ライン1014の正極側をV1CC電位から切断する(S356)。そして、制御部106は、電気自動車200側の問題により充電が異常終了した旨を操作者に通知する(S357)。 In the charger 100, when the advance preparation confirmation signal is turned off, the control unit 106 immediately decreases the output of the AC / DC conversion unit 103 and stops the charging output (S354). Further, the control unit 106 waits for the elapse of a predetermined time to open the relay 109, and disconnects the driving power supply line 1014 on the negative electrode side from the ground potential (S355). Then, the relay 108 is opened, and the positive electrode side of the drive power supply line 1014 is disconnected from the V 1CC potential (S356). Then, the control unit 106 notifies the operator that charging has ended abnormally due to a problem on the electric vehicle 200 side (S357).
 一方、電気自動車200においても、制御部205が、電気自動車200側の問題により充電が異常終了した旨を操作者に通知する(S358)。 On the other hand, also in the electric vehicle 200, the control unit 205 notifies the operator that charging has ended abnormally due to a problem on the electric vehicle 200 side (S358).
 その後、車両側コネクタ202から充電器側コネクタ102が取り外されると(S359)、電気自動車200において、フォトカプラ212の入力側へのオン電流の供給が停止し、コネクタ接続確認信号がオフになる(S360)。 Thereafter, when the charger-side connector 102 is removed from the vehicle-side connector 202 (S359), in the electric vehicle 200, the supply of the on-current to the input side of the photocoupler 212 is stopped, and the connector connection confirmation signal is turned off ( S360).
 以上、本発明の一実施の形態を説明した。 The embodiment of the present invention has been described above.
 本実施の形態において、充電を開始する場合、充電器100は、2つのリレー108、109を閉成し、駆動電力供給用ライン1014を制御系電源107に接続する。これにより、電気自動車200では、フォトカプラ210の入力側へオン電流が供給されるので、充電開始の合図として充電開始合図信号がオンになる。この合図を契機として、電気自動車200は、リレー208を閉成させて、リレー207を駆動電力の供給開始により閉成させる、これにより、充電器100から車載バッテリ203への充電電力の供給が開始する。一方、充電を終了する場合、充電器100は、2つのリレー108、109のうち、少なくとも1つを開放して、制御系電源107から駆動電力供給用ライン1014を切断する。これにより、電気自動車200では、フォトカプラ210の入力側へのオン電流の供給が停止して、充電終了の合図として少なくとも充電開始合図信号がオフになるとともに、充電器100からの駆動電力の供給停止によりリレー207が開放されて、車載バッテリ203から充電用ライン2011が切断される。 In the present embodiment, when charging is started, the charger 100 closes the two relays 108 and 109 and connects the drive power supply line 1014 to the control system power source 107. As a result, in the electric vehicle 200, an on-current is supplied to the input side of the photocoupler 210, so that the charge start signal is turned on as a charge start signal. In response to this signal, the electric vehicle 200 closes the relay 208 and closes the relay 207 by starting the supply of drive power, whereby supply of charging power from the charger 100 to the in-vehicle battery 203 is started. To do. On the other hand, when charging is terminated, the charger 100 opens at least one of the two relays 108 and 109 and disconnects the drive power supply line 1014 from the control system power supply 107. As a result, in the electric vehicle 200, the supply of the on-current to the input side of the photocoupler 210 is stopped, and at least the charge start signal is turned off as a charge end signal, and the drive power is supplied from the charger 100. The relay 207 is opened by the stop, and the charging line 2011 is disconnected from the in-vehicle battery 203.
 したがって、本実施の形態によれば、通信用ライン1012、2012とは別に設けられた駆動電力供給用ライン1014、2014の導通をインターロックのシーケンス回路で制御することにより、充電器100と電気自動車200との間で充電開始および充電終了の合図を行うので、ノイズによる通信エラー等により、充電器100と電気自動車200との間で、通信用ライン1012、2012を用いた通信が良好に行えない場合でも、通信エラーの回復を待たずに、充電制御シーケンスをスムーズかつ確実に開始・終了できる。また、充電器100が、コネクタロックおよびセルフテスト等を実施してから、電気自動車200に充電開始の合図を送るようにすれば、充電器100側で充電開始前に必要な処理が確実に完了した後に、充電を開始することができる。 Therefore, according to the present embodiment, the charger 100 and the electric vehicle are controlled by controlling the conduction of the drive power supply lines 1014 and 2014 provided separately from the communication lines 1012 and 2012 by the interlock sequence circuit. Since the charging start signal and the charging end signal are signaled with 200, communication using the communication lines 1012, 2012 cannot be satisfactorily performed between the charger 100 and the electric vehicle 200 due to a communication error or the like due to noise. Even in this case, the charging control sequence can be started and ended smoothly and reliably without waiting for the recovery of the communication error. In addition, if the charger 100 performs a connector lock, a self-test, and the like and then sends a signal to start charging to the electric vehicle 200, the charger 100 can reliably complete the necessary processing before starting charging. After that, charging can be started.
 また、車両側コネクタ202への充電器側コネクタ102の装着により接続される駆動電力供給用ライン1014、2014を介して、充電器100からリレー207に駆動電力が供給されるので、充電器側コネクタ102と車両側コネクタ202とが切り離された状態ではリレー207が確実に開放される。このため、充電制御シーケンスが終了していない段階で、ユーザが、誤って電動車両を移動させるなどして、車両側コネクタから充電器側コネクタを強制的に切り離してしまっても、自動的にリレー207が確実に開放される。 In addition, since the driving power is supplied from the charger 100 to the relay 207 via the driving power supply lines 1014 and 2014 connected when the charger-side connector 102 is attached to the vehicle-side connector 202, the charger-side connector In a state where 102 and the vehicle-side connector 202 are disconnected, the relay 207 is reliably opened. For this reason, even if the user forcibly disconnects the charger-side connector from the vehicle-side connector by moving the electric vehicle accidentally when the charge control sequence has not ended, the relay is automatically relayed. 207 is reliably opened.
 また、本実施の形態において、充電を開始する場合、充電器100は、2つのリレー108、109を連続的に閉成する。具体的には、充電の事前準備を開始する場合に、一方のリレー108を閉成して、正極側の駆動電力供給用ライン1014をV1CC電位に接続する。これにより、電気自動車200では、フォトカプラ209の入力側にオン電流が流れて、事前準備の合図として事前準備合図信号がオンになる。その後、充電を開始する場合に、他方のリレー109を閉成して、負極側の駆動電力供給用ライン1014を接地電位に接続する。これにより、電気自動車200では、フォトカプラ210の入力側にオン電流が流れて、充電開始の合図として充電開始合図信号がオンになる。 In this embodiment, when charging is started, charger 100 continuously closes two relays 108 and 109. Specifically, when pre-preparation for charging is started, one of the relays 108 is closed and the positive drive power supply line 1014 is connected to the V 1CC potential. As a result, in the electric vehicle 200, an on-current flows to the input side of the photocoupler 209, and the advance preparation signal is turned on as a preparation signal. Thereafter, when charging is started, the other relay 109 is closed, and the driving power supply line 1014 on the negative electrode side is connected to the ground potential. Thereby, in the electric vehicle 200, an on-current flows to the input side of the photocoupler 210, and the charge start signal is turned on as a charge start signal.
 このため、本実施の形態によれば、充電器100は、正極側および負極側の駆動電力供給用ライン1014の導通を別個に制御することにより、充電開始の合図に先立ち事前準備の合図を電気自動車200に送ることができる。電気自動車200は、充電開始の合図に先立って通知された事前準備の合図を契機として、通信用ライン1012および通信部105を用いた通信の準備を行い、充電器100との間の情報交換(ネゴシエーション処理)を行うことができる。 For this reason, according to the present embodiment, the charger 100 controls the conduction of the driving power supply line 1014 on the positive electrode side and the negative electrode side separately, so that an electrical signal is prepared in advance of a signal for starting charging. It can be sent to the car 200. The electric vehicle 200 prepares for communication using the communication line 1012 and the communication unit 105 in response to the advance preparation signal notified prior to the charge start signal, and exchanges information with the charger 100 ( Negotiation process).
 また、本実施の形態において、電気自動車200は、事前準備合図信号がオンになると、通信用ライン2012を介して、充電器100との間で情報交換(充電条件のネゴシエーション)を行い、充電条件を決定した後、フォトカプラ211の入力側にオン電流を流して事前準備確認用ライン2015を接地電位に接続する。これにより、充電器100では、フォトカプラ110の入力側にオン電流が流れて、事前準備確認の合図として事前準備確認信号がオンになる。一方、充電器100では、事前準備確認信号がオンになると、リレー109を閉成する。これにより、電気自動車200では、充電開始の合図として充電開始合図信号がオンになり、これを契機として、リレー208が閉成され、充電用ライン2011が車載バッテリ203に接続される。 Further, in the present embodiment, when the advance preparation signal is turned on, the electric vehicle 200 exchanges information (negotiation of charging conditions) with the charger 100 via the communication line 2012, and charging conditions Then, an on-current is supplied to the input side of the photocoupler 211 to connect the preliminary preparation confirmation line 2015 to the ground potential. Thereby, in the charger 100, an on-current flows to the input side of the photocoupler 110, and the advance preparation confirmation signal is turned on as a preparation preparation confirmation signal. On the other hand, in the charger 100, when the advance preparation confirmation signal is turned on, the relay 109 is closed. As a result, in the electric vehicle 200, the charging start signal is turned on as a charging start signal, and the relay 208 is closed and the charging line 2011 is connected to the in-vehicle battery 203.
 したがって、本実施の形態によれば、電気自動車200は、充電条件を決定した後に事前準備確認の合図を充電器100に送り、充電器100は、この事前準備確認の合図を受けてから充電開始の合図を電気自動車100に送るため、充電条件の決定前に充電開始の合図が充電器100から電気自動車200に送られるのを防止することができる。このため、充電条件が決定するまでは、電気自動車200において、充電用ライン2011から車載バッテリ203を切断されたままとすることができ、充電条件の決定前に車載バッテリ203が誤って充電されてしまう事態が発生する可能性を低減できる。また、電気自動車200が、充電開始前に必要なセルフテスト等の処理を、充電条件の決定後、事前準備確認の合図を充電器100に送る前に実施し、充電器100が、充電開始前に必要なコネクタロックおよびセルフテスト等の処理を、事前準備確認の合図を契機として実施するようにすれば、車載バッテリ203と充電器100とが適合しない場合にまで、それらの処理が実施されるのを防止することができる。 Therefore, according to the present embodiment, electric vehicle 200 sends a signal for confirmation of advance preparation to charger 100 after determining the charging conditions, and charger 100 starts charging after receiving the signal for confirmation of advance preparation. Therefore, the charging start signal can be prevented from being sent from the charger 100 to the electric vehicle 200 before the charging condition is determined. For this reason, in the electric vehicle 200, the in-vehicle battery 203 can remain disconnected from the charging line 2011 until the charging condition is determined, and the in-vehicle battery 203 is erroneously charged before the charging condition is determined. The possibility that the situation will occur can be reduced. In addition, the electric vehicle 200 performs a process such as a self-test required before the start of charging, after determining the charging conditions, and before sending a signal for confirmation of advance preparation to the charger 100. If the processing such as connector lock and self-test necessary for the vehicle is performed in response to a signal for confirmation in advance, the processing is performed until the in-vehicle battery 203 and the charger 100 are not compatible. Can be prevented.
 また、本実施の形態において、充電器側コネクタ102が車両側コネクタ202に正しく接続されると、コネクタ接続確認用ライン2016が導通して、フォトカプラ212の入力側にオン電流が流れてコネクタ接続確認信号がオンになる。電気自動車200では、事前準備合図信号およびコネクタ接続確認信号の双方がオンの場合、すなわち、車両側コネクタ202上の異なる位置に配置された2つの端子が対応端子と確実に接続されている場合にのみ、フォトカプラ211の入力側にオン電流が流れて事前準備確認用ライン2015が接地電位に接続する。一方、充電器100では、電気自動車200における事前準備確認用ライン2015の接地によって、フォトカプラ110の入力側にオン電流が流れて事前準備確認信号がオンになった場合にのみ、充電制御シーケンスが続行され、その他の場合には充電制御シーケンスが中止される。 Further, in the present embodiment, when the charger-side connector 102 is correctly connected to the vehicle-side connector 202, the connector connection confirmation line 2016 is conducted, and an on-current flows to the input side of the photocoupler 212 so that the connector is connected. The confirmation signal is turned on. In the electric vehicle 200, when both the preliminary preparation signal and the connector connection confirmation signal are ON, that is, when two terminals arranged at different positions on the vehicle-side connector 202 are securely connected to the corresponding terminals. Only when an on-current flows to the input side of the photocoupler 211, the preliminary preparation confirmation line 2015 is connected to the ground potential. On the other hand, in the charger 100, the charge control sequence is performed only when an on-current flows to the input side of the photocoupler 110 due to the grounding of the advance preparation confirmation line 2015 in the electric vehicle 200 and the advance preparation confirmation signal is turned on. Continue, otherwise the charge control sequence is aborted.
 したがって、本実施の形態によれば、充電器側コネクタ102が車両側コネクタ202に正しく接続されている場合にのみ、充電制御シーケンスを続行させ、片あたり等により正しく接続されていない場合には充電制御シーケンスを中止させることができる。 Therefore, according to the present embodiment, the charging control sequence is continued only when the charger-side connector 102 is correctly connected to the vehicle-side connector 202, and charging is performed when the charger-side connector 102 is not correctly connected due to one piece or the like. The control sequence can be stopped.
 また、充電が正常終了した場合、充電器100は、2つのリレー108、109のうち、一方のリレー108を他方のリレー109とともに開放して正極側の駆動電力供給用ライン1014をV1CC電位から切断する。これにより、電気自動車200では、フォトカプラ209、210各々の入力側へのオン電流の供給が停止し、事前準備合図信号および充電開始合図信号が同時にオフになる。一方、充電が異常終了した場合、充電器100は、一方のリレー108よりも先に他方のリレー109を開放して負極側の駆動電力供給用ライン1014を接地電位から切断する。これにより、電気自動車200では、フォトカプラ210の入力側へのオン電流の供給のみが停止して、事前準備合図信号はオンのまま、充電開始合図信号のみがオフになる。 Further, when the charging is normally completed, the charger 100 opens one of the two relays 108 and 109 together with the other relay 109, and connects the positive drive power supply line 1014 from the V 1CC potential. Disconnect. Thereby, in the electric vehicle 200, the supply of the on-current to the input side of each of the photocouplers 209 and 210 is stopped, and the preliminary preparation signal and the charge start signal are simultaneously turned off. On the other hand, when the charging ends abnormally, the charger 100 opens the other relay 109 before one relay 108 and disconnects the driving power supply line 1014 on the negative electrode side from the ground potential. As a result, in the electric vehicle 200, only the supply of the on-current to the input side of the photocoupler 210 is stopped, the advance preparation signal is kept on, and only the charge start signal is turned off.
 したがって、本実施の形態によれば、ノイズによる通信エラー等により、充電器100と電気自動車200との間で、通信用ライン1012、2012を用いた通信が良好に行えない場合でも、充電器100は、充電の終了形態(正常終了、異常終了)に応じて2つのリレー108、109のオフタイミングを変更することによって、正極側および負極側の駆動電力供給用ライン1014の導通状態の相違を利用して、充電が正常終了したか、それとも異常終了したかを電気自動車200に通知することができる。このため、通信エラーの回復を待たずに、スムーズに充電制御シーケンスを終了させることができる。 Therefore, according to the present embodiment, even when communication using the communication lines 1012 and 2012 cannot be satisfactorily performed between the charger 100 and the electric vehicle 200 due to a communication error due to noise or the like, the charger 100. Uses the difference in the conduction state of the drive power supply line 1014 on the positive side and the negative side by changing the off timing of the two relays 108 and 109 according to the charging end form (normal end, abnormal end) Then, it is possible to notify the electric vehicle 200 whether the charging is normally completed or abnormally terminated. For this reason, the charging control sequence can be smoothly terminated without waiting for the recovery of the communication error.
 なお、本発明は上記の実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 Note that the present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the gist.
 例えば、上記実施の形態において、充電器100は、充電を正常終了させる場合には、2つのリレー108、109をともに開放して事前準備合図信号および充電開始合図信号を同時にオフにし、充電を異常終了させる場合には、一方のリレーよりも先に他方のリレー109を開放して充電開始合図信号のみをオフにする。しかし、これとは逆に、充電を正常終了させる場合には、一方のリレーよりも先に他方のリレー109を開放して充電開始合図信号のみをオフにし、充電を異常終了させる場合には、2つのリレー108、109をともに開放して事前準備合図信号および充電開始合図信号を同時にオフにするようにしてもよい。この場合、電気自動車200は、事前準備合図信号がオンのまま充電開始合図信号のみがオフになった場合に、充電が正常終了したものと判断し、事前準備合図信号および充電開始合図信号が同時にオフになった場合に、充電器100側の問題により充電が異常終了したものと判断する。また、事前準備合図信号および充電開始合図信号を同時にオフにする場合、一方のリレー108を、他方のリレー109よりも先に開放するようにしてもよい。 For example, in the above embodiment, when the charger 100 normally terminates charging, both the relays 108 and 109 are opened to simultaneously turn off the preliminary preparation signal and the charging start signal, thereby causing abnormal charging. To end the operation, the other relay 109 is opened before one of the relays, and only the charging start signal is turned off. However, on the contrary, when charging normally ends, the other relay 109 is opened before only one relay to turn off only the charging start signal, and when charging ends abnormally, The two relays 108 and 109 may both be opened so that the preliminary preparation signal and the charge start signal are turned off simultaneously. In this case, the electric vehicle 200 determines that the charging is normally completed when only the charge start signal is turned off while the advance preparation signal is on, and the preparation signal and the charge start signal are simultaneously received. When it is turned off, it is determined that charging has ended abnormally due to a problem on the charger 100 side. Further, when simultaneously turning off the pre-preparation signal and the charging start signal, one relay 108 may be opened before the other relay 109.
 また、上記実施の形態において、電気自動車200は、正極側の駆動電力供給用ライン2014と接地電位との間、正極側の駆動電力供給用ライン2014と負極側との間、およびV2CC電位とコネクタ接続確認用ライン2016との間の導通状態を、それぞれ、フォトカプラ209、フォトカプラ210、およびフォトカプラ212を用いて検知している。しかし、これらのフォトカプラ209、210、212に代えて、例えば、電流センサ、電圧センサ等、ラインの導通状態を検知できる他の手段を用いてもよい。 Further, in the above-described embodiment, the electric vehicle 200 includes the positive drive power supply line 2014 and the ground potential, the positive drive power supply line 2014 and the negative side, and the V 2CC potential. The conductive state with the connector connection confirmation line 2016 is detected using the photocoupler 209, the photocoupler 210, and the photocoupler 212, respectively. However, instead of these photocouplers 209, 210, and 212, other means that can detect the line conduction state, such as a current sensor and a voltage sensor, may be used.
 また、上記実施の形態においては、フォトカプラ209、210、212としてエミッタ負荷のフォトカプラを用いているが、コレクタ負荷のフォトカプラをフォトカプラ209、210、212として用いてもよい。ただし、この場合、フォトカプラ209、210、212からの出力信号の極性が上記実施の形態とは逆となる。 In the above embodiment, an emitter load photocoupler is used as the photocoupler 209, 210, 212. However, a collector load photocoupler may be used as the photocoupler 209, 210, 212. However, in this case, the polarities of the output signals from the photocouplers 209, 210, and 212 are opposite to those in the above embodiment.
 また、上記の実施の形態では、電気自動車200の車載バッテリ203を充電器100により充電する充電システムを説明したが、本発明は、電気自動車200のみならず、搭載されたバッテリを外部電源から充電する機能を有する電動車両等の電動移動体にも広く適用できる。 In the above embodiment, the charging system for charging the in-vehicle battery 203 of the electric vehicle 200 with the charger 100 has been described. However, the present invention charges not only the electric vehicle 200 but also the mounted battery from an external power source. The present invention can be widely applied to an electric vehicle such as an electric vehicle having a function of
 ノイズによる通信エラーが発生した場合でも充電制御シーケンスをより確実に開始・終了でき、かつ充電中以外はリレーをより確実に開放できる技術のひとつとして適用可能である。 ∙ Even if a communication error due to noise occurs, the charging control sequence can be started and ended more reliably, and can be applied as one of the technologies that can open the relay more reliably except during charging.
 100:充電器、101:充電ケーブル、102:充電器側コネクタ、103:交直変換部、104:ELB、105:通信部、106:制御部、107:制御系電源、108:リレー、109:リレー、110:フォトカプラ、200:電気自動車、202:車両側コネクタ、203:車載バッテリ、204:通信部、205:制御部、206:制御系電源、207:リレー、208:リレー、209:フォトカプラ、210:フォトカプラ、211:フォトカプラ、212:フォトカプラ、300:交流電源、1011:充電用ライン、1012:通信用ライン、1013:制御用ライン、1014:駆動電力供給用ライン、1015:事前準備確認用ライン、1016:コネクタ接続確認用ライン、1017:接地電位ライン、2011:充電用ライン、2012:通信用ライン、2013:制御用ライン、2014:駆動電力供給用ライン、2015:事前準備確認用ライン、2016:コネクタ接続確認用ライン、2017:接地電位ライン DESCRIPTION OF SYMBOLS 100: Charger, 101: Charging cable, 102: Charger side connector, 103: AC / DC conversion part, 104: ELB, 105: Communication part, 106: Control part, 107: Control system power supply, 108: Relay, 109: Relay , 110: photocoupler, 200: electric vehicle, 202: vehicle side connector, 203: vehicle-mounted battery, 204: communication unit, 205: control unit, 206: control system power supply, 207: relay, 208: relay, 209: photocoupler 210: Photocoupler 211: Photocoupler 212: Photocoupler 300: AC power supply 1011: Charging line 1012: Communication line 1013: Control line 1014: Drive power supply line 1015: Advance Preparation confirmation line, 1016: Connector connection confirmation line, 1017: Ground potential line, 20 1: charging line, 2012: communication line, 2013: control line, 2014: driving power supply line, 2015: Preparations for confirmation line, 2016: connector connection confirmation line, 2017: ground potential line

Claims (12)

  1.  電動移動体と、前記電動移動体のバッテリを充電する充電器と、を有する充電システムであって、
     前記充電器は、
     充電用ライン、通信用ライン、および制御用ラインを前記電動移動体に接続するための充電器側コネクタと、
     前記通信用ラインを介して前記電動移動体から充電電流指示値を受信する充電器側通信手段と、
     前記充電器側通信手段により受信した前記充電電流指示値に従い、前記充電用ラインを介して前記バッテリに充電電力を供給する充電電力供給手段と、
     前記バッテリの充電開始前に、制御系電源に前記制御用ラインを接続し、前記バッテリの充電終了後に、前記制御系電源から前記制御用ラインを切断する駆動電力供給手段と、を有し、
     前記電動移動体は、
     前記充電器側コネクタの装着により、前記充電用ライン、前記通信用ライン、および前記制御用ラインが接続される移動体側コネクタと、
     前記充電用ラインと前記バッテリとの間に配置され、前記制御用ラインを介して前記充電器から供給される駆動電力により閉成する充電用リレーと、
     前記通信用ラインを介して前記電動移動体に前記充電電流指示値を送信する移動体側通信手段と、
     前記制御用ラインの導通状態に基づいて、前記バッテリの充電開始および充電終了の合図を検知する充電開始終了検知手段と、を有する
     ことを特徴とする充電システム。
    A charging system having an electric vehicle and a charger for charging a battery of the electric vehicle,
    The charger is
    A charger side connector for connecting a charging line, a communication line, and a control line to the electric vehicle; and
    Charger-side communication means for receiving a charge current instruction value from the electric vehicle via the communication line;
    Charging power supply means for supplying charging power to the battery via the charging line according to the charging current instruction value received by the charger-side communication means;
    Drive power supply means for connecting the control line to a control system power supply before starting charging of the battery, and disconnecting the control line from the control system power supply after charging of the battery,
    The electric vehicle is
    By mounting the charger side connector, the mobile line side connector to which the charging line, the communication line, and the control line are connected,
    A charging relay disposed between the charging line and the battery and closed by driving power supplied from the charger via the control line;
    Mobile unit side communication means for transmitting the charging current instruction value to the electric vehicle through the communication line;
    And a charge start / end detecting means for detecting a signal of charge start and charge end of the battery based on a conduction state of the control line.
  2.  請求項1に記載の充電システムであって、
     前記充電器は、
     第一および第二の制御用リレーを有し、
     前記制御用ラインには、
     前記第一の制御用リレーにより、前記制御系電源の正極側との間が接続、切断される駆動電力供給用ラインと、
     前記第二の制御用リレーにより、前記制御系電源の負極側との間が接続、切断される駆動電力供給用ラインと、が含まれ、
     前記駆動電力供給手段は、
     充電の事前準備の開始前に、前記第一の制御用リレーを閉成かつ前記第二の制御用リレーを開放し、
     前記事前準備の終了後、充電の開始前に、前記第一の制御用リレーおよび前記第二の制御用リレーの両方を閉成し、
     充電の終了後に、前記第一の制御用リレーおよび前記第二の制御用リレーの少なくとも一方を開放し、
     前記電動移動体は、
     前記制御用ラインのうちの一方の駆動電力供給用ラインの導通状態を検知する第一の導通状態検知手段と、
     前記制御用ラインのうちの他方の駆動電力供給用ラインの導通状態を検知する第二の導通状態検知手段と、をさらに有し、
     前記充電開始終了検知手段は、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに非導通を検知している状態から、前記第一の導通状態検知手段が導通を検知した場合を、事前準備開始の合図として検知し、
     前記第一の導通状態検知手段が導通を検知かつ前記第二の導通状態検知手段が非導通を検知している状態から前記第二の導通状態検知手段が導通を検知した場合を、充電開始の合図として検知し、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに導通を検知している状態から、前記第一の導通検知手段および前記二の導通検知手段の少なくとも一方が非導通を検知した場合を、充電終了の合図として検知する
     ことを特徴とする充電システム。
    The charging system according to claim 1,
    The charger is
    Having first and second control relays;
    In the control line,
    A drive power supply line that is connected to and disconnected from the positive electrode side of the control system power supply by the first control relay;
    A drive power supply line that is connected to and disconnected from the negative electrode side of the control system power supply by the second control relay, and
    The drive power supply means includes
    Before the start of charge preparation, the first control relay is closed and the second control relay is opened,
    After completion of the advance preparation, before the start of charging, close both the first control relay and the second control relay,
    After the end of charging, open at least one of the first control relay and the second control relay,
    The electric vehicle is
    First conduction state detection means for detecting a conduction state of one drive power supply line of the control lines;
    A second conduction state detection means for detecting a conduction state of the other drive power supply line of the control lines;
    The charging start / end detecting means is
    When the first conduction state detection unit detects conduction from the state in which the first conduction state detection unit and the second conduction state detection unit both detect non-conduction, a signal to start preparations in advance Detect as
    When the second conduction state detection unit detects conduction from the state where the first conduction state detection unit detects conduction and the second conduction state detection unit detects non-conduction, Detect as a signal,
    At least one of the first continuity detecting means and the second continuity detecting means detects non-conduction from a state where both the first continuity state detecting means and the second continuity state detecting means detect continuity. The charging system is characterized by detecting a case where the charging is completed as a signal of the end of charging.
  3.  請求項2に記載の充電システムであって、
     前記電動移動体は、
     前記制御用ラインのうちの一方の前記駆動電力供給用ラインと前記充電用リレーとの間に配置された第三の制御用リレーと、
     前記充電開始終了検知手段が前記充電開始の合図を検知した場合に、前記第三の制御用リレーを閉成する充電制御部と、をさらに有し、
     前記充電制御部は、
     前記充電開始終了検知手段が前記事前準備開始の合図を検知した場合に、前記移動体側通信手段を介して前記充電器との間で、前記バッテリの充電条件を決定するための情報を送受し、
     前記充電開始終了検知手段が前記充電開始の合図を検知した場合に、前記バッテリの充電条件および前記バッテリの充電状態に基づき決定した前記充電電流指示値を、前記移動体側通信手段を介して前記充電器に送信し、
     前記充電電力供給手段は、
     前記駆動電力供給手段により前記第二の制御用リレーが開放されたまま前記第一の制御用リレーが閉成された場合に、前記充電器側通信手段を介して前記電動移動体と、前記バッテリの充電条件を決定するための情報を送受し、
     前記駆動電力供給手段により記第一の制御用リレーおよび前記第二の制御用リレーの両方が閉成された場合に、前記充電器側通信手段を介して前記電動移動体から前記充電電流指示値を受信する
     ことを特徴とする充電システム。
    The charging system according to claim 2,
    The electric vehicle is
    A third control relay disposed between the drive power supply line of one of the control lines and the charging relay;
    A charge control unit for closing the third control relay when the charge start / end detection means detects the charge start signal,
    The charge controller is
    When the charge start / end detection means detects the signal for the start of pre-preparation, it transmits / receives information for determining the charging condition of the battery to / from the charger via the mobile communication means. ,
    When the charging start end detecting means detects the charging start signal, the charging current instruction value determined based on the charging condition of the battery and the charging state of the battery is transmitted via the mobile communication means. To the instrument,
    The charging power supply means includes
    When the first control relay is closed while the second control relay is open by the drive power supply means, the electric vehicle and the battery via the charger-side communication means Send and receive information to determine charging conditions for
    When both the first control relay and the second control relay are closed by the drive power supply means, the charge current instruction value is sent from the electric vehicle via the charger side communication means. A charging system characterized by receiving the signal.
  4.  請求項3に記載の充電システムであって、
     前記制御用ラインには、事前準備確認用ラインがさらに含まれ、
     前記充電制御部は、
     前記移動体側通信手段を介した、前記バッテリの充電条件を決定するための情報の送受が終了した場合に、前記事前準備確認用ラインに電流を流し、
     前記駆動電力供給手段は、
     前記第二の制御用リレーを開放したまま前記第一の制御用リレーを閉成した後、前記充電器側通信手段を介して前記電動移動体との間で、前記バッテリの充電条件を決定するための情報を送受し、前記事前準備確認用ラインに前記電流が流れた場合に、前記第二の制御用リレーをさらに閉成する
     ことを特徴とする充電システム。
    The charging system according to claim 3,
    The control line further includes a preliminary confirmation line.
    The charge controller is
    When transmission / reception of information for determining the charging condition of the battery is completed via the mobile communication means, a current is passed through the preliminary preparation confirmation line,
    The drive power supply means includes
    After the first control relay is closed with the second control relay open, the charging condition of the battery is determined with the electric vehicle via the charger-side communication means. When the current flows through the pre-preparation confirmation line, the second control relay is further closed.
  5.  請求項4に記載の充電システムであって、
     前記制御用ラインには、接地電位に接続されたコネクタ接続確認用ラインがさらに含まれ、
     前記電動移動体は、
     車載制御系電源と、
     前記車載制御系電源と前記コネクタ接続確認用ラインとの間を流れる電流に基づいて前記移動体側コネクタと前記充電器側コネクタとの接続状態を検知するコネクタ接続状態検知手段と、をさらに有し、
     前記充電制御部は、
     前記充電開始終了検知手段が前記事前準備開始の合図を検知し、かつ前記コネクタ接続状態検知手段が前記移動体側コネクタと前記充電器側コネクタとの接続を検知している場合に、前記移動体側通信手段を介して前記充電器と前記バッテリの充電条件を決定するための情報を送受する
     ことを特徴とする充電システム。
    The charging system according to claim 4,
    The control line further includes a connector connection confirmation line connected to the ground potential,
    The electric vehicle is
    In-vehicle control system power supply,
    A connector connection state detecting means for detecting a connection state between the mobile body side connector and the charger side connector based on a current flowing between the in-vehicle control system power supply and the connector connection confirmation line;
    The charge controller is
    When the charge start end detection means detects the signal for the advance preparation start and the connector connection state detection means detects the connection between the mobile body side connector and the charger side connector, the mobile body side Information for determining charging conditions for the charger and the battery is transmitted / received via a communication means.
  6.  請求項2に記載の充電システムであって、
     前記第一の導通状態検知手段は、
     前記駆動電力供給用ラインの正極側と接地電位との間を流れる電流に基づいて前記駆動電力供給用ラインの正極側の導通状態を検知し、
     前記第二の導通状態検知手段は、
     前記駆動電力供給用ラインの正極側と負極側との間を流れる電流に基づいて前記駆動電力供給用ラインの正極側および負極側の導通状態を検知し、
     前記駆動電力供給手段は、
     第一の終了形態により充電が終了する場合に、少なくとも前記第一の制御用リレーを開放し、
     第二の終了形態により充電が終了する場合に、前記第一の制御用リレーよりも先に前記第二の制御用リレーを開放し、
     前記充電開始終了検知手段は、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに導通を検知している状態から、前記第一の導通検知手段および前記二の導通検知手段の両方が非導通を検知した場合を、前記第一の終了形態による充電終了の合図として検知し、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに導通を検知している状態から前記第二の導通検知手段のみが非導通を検知した場合を、前記第二の終了形態による充電終了の合図として検知する
     ことを特徴とする充電システム。
    The charging system according to claim 2,
    The first conduction state detecting means is
    Detecting the conduction state of the positive side of the drive power supply line based on the current flowing between the positive side of the drive power supply line and the ground potential;
    The second conduction state detection means is
    Based on the current flowing between the positive electrode side and the negative electrode side of the drive power supply line, the conduction state of the positive electrode side and the negative electrode side of the drive power supply line is detected,
    The drive power supply means includes
    When charging is terminated by the first termination mode, at least the first control relay is opened,
    When charging is terminated by the second termination mode, the second control relay is opened before the first control relay,
    The charging start / end detecting means is
    Both the first continuity detection means and the second continuity detection means have detected non-conduction from the state where both the first continuity state detection means and the second continuity state detection means have detected continuity. Detect the case as a cue for the end of charging according to the first termination mode,
    When the first conduction state detection unit and the second conduction state detection unit both detect conduction, only the second conduction detection unit detects non-conduction. The charging system is characterized in that it is detected as a cue of the end of charging by the.
  7.  請求項3に記載の充電システムであって、
     前記第一の導通状態検知手段は、
     前記駆動電力供給用ラインの正極側と接地電位との間を流れる電流に基づいて前記駆動電力供給用ラインの正極側の導通状態を検知し、
     前記第二の導通状態検知手段は、
     前記駆動電力供給用ラインの正極側と負極側との間を流れる電流に基づいて前記駆動電力供給用ラインの正極側および負極側の導通状態を検知し、
     前記駆動電力供給手段は、
     第一の終了形態により充電が終了する場合に、少なくとも前記第一の制御用リレーを開放し、
     第二の終了形態により充電が終了する場合に、前記第一の制御用リレーよりも先に前記第二の制御用リレーを開放し、
     前記充電開始終了検知手段は、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに導通を検知している状態から、前記第一の導通検知手段および前記二の導通検知手段の両方が非導通を検知した場合を、前記第一の終了形態による充電終了の合図として検知し、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに導通を検知している状態から前記第二の導通検知手段のみが非導通を検知した場合を、前記第二の終了形態による充電終了の合図として検知する
     ことを特徴とする充電システム。
    The charging system according to claim 3,
    The first conduction state detecting means is
    Detecting the conduction state of the positive side of the drive power supply line based on the current flowing between the positive side of the drive power supply line and the ground potential;
    The second conduction state detection means is
    Based on the current flowing between the positive electrode side and the negative electrode side of the drive power supply line, the conduction state of the positive electrode side and the negative electrode side of the drive power supply line is detected,
    The drive power supply means includes
    When charging is terminated by the first termination mode, at least the first control relay is opened,
    When charging is terminated by the second termination mode, the second control relay is opened before the first control relay,
    The charging start / end detecting means is
    Both the first continuity detection means and the second continuity detection means have detected non-conduction from the state where both the first continuity state detection means and the second continuity state detection means have detected continuity. Detect the case as a cue for the end of charging according to the first termination mode,
    When the first conduction state detection unit and the second conduction state detection unit both detect conduction, only the second conduction detection unit detects non-conduction. The charging system is characterized in that it is detected as a cue of the end of charging by the.
  8.  請求項4に記載の充電システムであって、
     前記第一の導通状態検知手段は、
     前記駆動電力供給用ラインの正極側と接地電位との間を流れる電流に基づいて前記駆動電力供給用ラインの正極側の導通状態を検知し、
     前記第二の導通状態検知手段は、
     前記駆動電力供給用ラインの正極側と負極側との間を流れる電流に基づいて前記駆動電力供給用ラインの正極側および負極側の導通状態を検知し、
     前記駆動電力供給手段は、
     第一の終了形態により充電が終了する場合に、少なくとも前記第一の制御用リレーを開放し、
     第二の終了形態により充電が終了する場合に、前記第一の制御用リレーよりも先に前記第二の制御用リレーを開放し、
     前記充電開始終了検知手段は、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに導通を検知している状態から、前記第一の導通検知手段および前記二の導通検知手段の両方が非導通を検知した場合を、前記第一の終了形態による充電終了の合図として検知し、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに導通を検知している状態から前記第二の導通検知手段のみが非導通を検知した場合を、前記第二の終了形態による充電終了の合図として検知する
     ことを特徴とする充電システム。
    The charging system according to claim 4,
    The first conduction state detecting means is
    Detecting the conduction state of the positive side of the drive power supply line based on the current flowing between the positive side of the drive power supply line and the ground potential;
    The second conduction state detection means is
    Based on the current flowing between the positive electrode side and the negative electrode side of the drive power supply line, the conduction state of the positive electrode side and the negative electrode side of the drive power supply line is detected,
    The drive power supply means includes
    When charging is terminated by the first termination mode, at least the first control relay is opened,
    When charging is terminated by the second termination mode, the second control relay is opened before the first control relay,
    The charging start / end detecting means is
    Both the first continuity detection means and the second continuity detection means have detected non-conduction from the state where both the first continuity state detection means and the second continuity state detection means have detected continuity. Detect the case as a cue for the end of charging according to the first termination mode,
    When the first conduction state detection unit and the second conduction state detection unit both detect conduction, only the second conduction detection unit detects non-conduction. The charging system is characterized in that it is detected as a cue of the end of charging by the.
  9.  請求項5に記載の充電システムであって、
     前記第一の導通状態検知手段は、
     前記駆動電力供給用ラインの正極側と接地電位との間を流れる電流に基づいて前記駆動電力供給用ラインの正極側の導通状態を検知し、
     前記第二の導通状態検知手段は、
     前記駆動電力供給用ラインの正極側と負極側との間を流れる電流に基づいて前記駆動電力供給用ラインの正極側および負極側の導通状態を検知し、
     前記駆動電力供給手段は、
     第一の終了形態により充電が終了する場合に、少なくとも前記第一の制御用リレーを開放し、
     第二の終了形態により充電が終了する場合に、前記第一の制御用リレーよりも先に前記第二の制御用リレーを開放し、
     前記充電開始終了検知手段は、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに導通を検知している状態から、前記第一の導通検知手段および前記二の導通検知手段の両方が非導通を検知した場合を、前記第一の終了形態による充電終了の合図として検知し、
     前記第一の導通状態検知手段および前記第二の導通状態検知手段がともに導通を検知している状態から前記第二の導通検知手段のみが非導通を検知した場合を、前記第二の終了形態による充電終了の合図として検知する
     ことを特徴とする充電システム。
    The charging system according to claim 5,
    The first conduction state detecting means is
    Detecting the conduction state of the positive side of the drive power supply line based on the current flowing between the positive side of the drive power supply line and the ground potential;
    The second conduction state detection means is
    Based on the current flowing between the positive electrode side and the negative electrode side of the drive power supply line, the conduction state of the positive electrode side and the negative electrode side of the drive power supply line is detected,
    The drive power supply means includes
    When charging is terminated by the first termination mode, at least the first control relay is opened,
    When charging is terminated by the second termination mode, the second control relay is opened before the first control relay,
    The charging start / end detecting means is
    Both the first continuity detection means and the second continuity detection means have detected non-conduction from the state where both the first continuity state detection means and the second continuity state detection means have detected continuity. Detect the case as a cue for the end of charging according to the first termination mode,
    When the first conduction state detection unit and the second conduction state detection unit both detect conduction, only the second conduction detection unit detects non-conduction. The charging system is characterized in that it is detected as a cue of the end of charging by the.
  10.  請求項1ないし9のいずれか一項に記載の充電器。 The charger according to any one of claims 1 to 9.
  11.  請求項1ないし9のいずれか一項に記載の電動移動体。 The electric vehicle according to any one of claims 1 to 9.
  12.  充電用ライン、通信用ライン、および制御用ラインを介して充電器に接続された電動移動体のバッテリを充電する、電動移動体用バッテリの充電方法であって、
     前記充電器が、前記バッテリの充電開始前に、制御系電源に前記制御用ラインを接続し、
     前記制御用ラインの導通状態が非導通から導通に遷移すると、前記充電用ラインと前記バッテリとの間に配置された充電用リレーに、前記制御用ラインを介して前記充電器から駆動電力が供給されて、当該充電用リレーが閉成するとともに、前記電動移動体が、充電開始の合図を検知して、前記通信用ラインを介して前記充電器に対する充電電流指示値の送信を開始し、
     前記充電器が、前記通信用ラインを介して前記電動移動体から受け付けた前記充電電流指示値に従って、前記充電用ラインを介して前記バッテリに供給する充電電力を制御し、前記バッテリの充電終了後に前記制御系電源から前記制御用ラインを切断し、
     前記制御用ラインの導通状態が導通から非導通に遷移すると、前記制御用ラインから前記充電用リレーへの前記駆動電力の供給が停止して、当該充電用リレーが開放するともに、前記電動移動体が、充電終了の合図を検知する
     ことを特徴とする電動移動体用バッテリの充電方法。
    A method for charging a battery for an electric vehicle that charges a battery of an electric vehicle connected to a charger via a charging line, a communication line, and a control line,
    The charger connects the control line to a control system power supply before starting to charge the battery,
    When the conduction state of the control line changes from non-conduction to conduction, driving power is supplied from the charger to the charging relay disposed between the charging line and the battery via the control line. The charging relay is closed, and the electric vehicle detects a charge start signal and starts transmitting a charging current instruction value to the charger via the communication line.
    The charger controls charging power supplied to the battery via the charging line according to the charging current instruction value received from the electric vehicle via the communication line, and after charging of the battery is completed. Disconnecting the control line from the control system power supply;
    When the conduction state of the control line transitions from conduction to non-conduction, the supply of the driving power from the control line to the charging relay stops, the charging relay opens, and the electric vehicle A method for charging a battery for an electric vehicle, characterized by detecting an end of charge.
PCT/JP2010/055730 2009-11-27 2010-03-30 Charging system, charger, electric movable body, and method for charging battery for electric movable body WO2011065037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009269683A JP2011114962A (en) 2009-11-27 2009-11-27 Charging system, charger, motor-driven vehicle and method for charging battery for the motor-driven vehicle
JP2009-269683 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065037A1 true WO2011065037A1 (en) 2011-06-03

Family

ID=44066141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055730 WO2011065037A1 (en) 2009-11-27 2010-03-30 Charging system, charger, electric movable body, and method for charging battery for electric movable body

Country Status (2)

Country Link
JP (1) JP2011114962A (en)
WO (1) WO2011065037A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709972A (en) * 2012-05-28 2012-10-03 重庆长安汽车股份有限公司 Charging system for electric vehicle and electric vehicle
JP2014217083A (en) * 2013-04-22 2014-11-17 三菱電機株式会社 Charge and discharge device
CN114274828A (en) * 2020-09-28 2022-04-05 迈恩移动研究有限公司 System and method for controlling a multi-stake charging session on the vehicle side

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471770B2 (en) * 2010-04-26 2014-04-16 トヨタ自動車株式会社 Charge control system
DE102010062369A1 (en) * 2010-12-02 2012-06-06 Robert Bosch Gmbh Charging device for motor vehicles and charging method
JP5896599B2 (en) * 2010-12-28 2016-03-30 株式会社豊田自動織機 Vehicle charging device and vehicle charging method
JP5764420B2 (en) * 2011-07-22 2015-08-19 日鉄住金テックスエンジ株式会社 Electric vehicle charging method and equipment
JP5880049B2 (en) * 2012-01-04 2016-03-08 株式会社豊田自動織機 Charging system
JP2019092389A (en) * 2012-05-29 2019-06-13 三菱電機株式会社 Power supply switching device and power supply switching system
JP6086044B2 (en) 2013-08-12 2017-03-01 トヨタ自動車株式会社 Vehicle charging system and vehicle power storage device charging method
WO2015040742A1 (en) * 2013-09-20 2015-03-26 株式会社小松製作所 Battery type vehicle, charging management system, and charging management method
JP5815895B2 (en) * 2014-08-11 2015-11-17 三菱電機株式会社 Charge / discharge device
JP6142894B2 (en) * 2015-04-10 2017-06-07 トヨタ自動車株式会社 Vehicle power supply
JP6288133B2 (en) * 2016-03-22 2018-03-07 トヨタ自動車株式会社 Automobile
JP6822047B2 (en) * 2016-10-12 2021-01-27 株式会社豊田自動織機 Power storage device
JP6698909B1 (en) * 2019-04-09 2020-05-27 三菱電機株式会社 In-vehicle electronic control unit
KR102646336B1 (en) * 2021-09-29 2024-03-11 휴림네트웍스 주식회사 Apparatus for monitoring state of charge between charging station and mobile robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343205A (en) * 1993-06-01 1994-12-13 Nissan Motor Co Ltd Electric car battery charger
JPH06343202A (en) * 1993-06-01 1994-12-13 Nissan Motor Co Ltd Electric car battery charger
JP2009171733A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Charge control unit for vehicle
JP2009261230A (en) * 2008-03-25 2009-11-05 Tokyo Electric Power Co Inc:The Electric vehicle charging system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207984B2 (en) * 2006-06-19 2009-01-14 東京電力株式会社 Charging system and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343205A (en) * 1993-06-01 1994-12-13 Nissan Motor Co Ltd Electric car battery charger
JPH06343202A (en) * 1993-06-01 1994-12-13 Nissan Motor Co Ltd Electric car battery charger
JP2009171733A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Charge control unit for vehicle
JP2009261230A (en) * 2008-03-25 2009-11-05 Tokyo Electric Power Co Inc:The Electric vehicle charging system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Denki Jidosha-yo Eco-Station Kyusoku Juden System no Tsushin Protocol, Nippon Jido Sharyo Kyokai Kikaku", JEVS G 104, NIPPON JIDO SHARYO KYOKAI, 22 September 1995 (1995-09-22), pages 3, 4, 14, 15 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709972A (en) * 2012-05-28 2012-10-03 重庆长安汽车股份有限公司 Charging system for electric vehicle and electric vehicle
JP2014217083A (en) * 2013-04-22 2014-11-17 三菱電機株式会社 Charge and discharge device
CN114274828A (en) * 2020-09-28 2022-04-05 迈恩移动研究有限公司 System and method for controlling a multi-stake charging session on the vehicle side
WO2022066107A3 (en) * 2020-09-28 2022-06-16 Mine Mobility Research Co., Ltd. System and method for vehicle-side control of a multi-pile charging session
CN114274828B (en) * 2020-09-28 2024-04-02 迈恩移动研究有限公司 System and method for controlling a multi-stake charging session on a vehicle side

Also Published As

Publication number Publication date
JP2011114962A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
WO2011065037A1 (en) Charging system, charger, electric movable body, and method for charging battery for electric movable body
WO2011065036A1 (en) Charging system, charger, electrically powered movable body, method for charging battery for electrically powered movable body
US10144298B2 (en) Power supply device of vehicle
JP5234159B2 (en) A vehicle including a power storage unit capable of discharging (power feeding) to an external load, a discharge system including the vehicle and a power cable, a discharge control method for the power storage unit, and a device outside the vehicle used in the discharge system.
JP5578274B2 (en) Adapter and vehicle for supplying power using the adapter
US9821669B2 (en) Electric vehicular connector and vehicular power supply device
US9649949B2 (en) Connector converter and vehicle charging system and method using the same
US9764643B2 (en) Vehicle
US20140232182A1 (en) Power supply connector, vehicle and control method for vehicle
JP2012175823A (en) Charging system, charger, electric moving body, and method of charging battery for electric moving body
JP2015039267A (en) Charging system, vehicle, and charging equipment
CN105103396A (en) Electric power unit for vehicle
JP2012209995A (en) Charging system, charger, electric mobile body, and method of charging battery for electric mobile body
JP7056599B2 (en) vehicle
JP2013090496A (en) Charger for electric car
JP2018186670A (en) Charging system or charger
JP2011205840A (en) Charger for vehicle
WO2017130564A1 (en) Charging/discharging system
KR101996446B1 (en) Power supply device for electric vehicle charging adapter and charging adapter using the same
JP6194844B2 (en) In-vehicle charging system
US20230018075A1 (en) Vehicle and charging system
JP2020043636A (en) Portable charging device
JP6003775B2 (en) Power supply system, vehicle including the same, and control method of power supply system
JP6003776B2 (en) Power supply system, vehicle including the same, and control method of power supply system
US20230249565A1 (en) Charge and discharge system, vehicle, and control method for charge and discharge system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832886

Country of ref document: EP

Kind code of ref document: A1