WO2017129623A1 - Leuchte mit pyramidenförmiger oder kegelförmiger abdeckung - Google Patents

Leuchte mit pyramidenförmiger oder kegelförmiger abdeckung Download PDF

Info

Publication number
WO2017129623A1
WO2017129623A1 PCT/EP2017/051557 EP2017051557W WO2017129623A1 WO 2017129623 A1 WO2017129623 A1 WO 2017129623A1 EP 2017051557 W EP2017051557 W EP 2017051557W WO 2017129623 A1 WO2017129623 A1 WO 2017129623A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflector
cover
luminaire according
leds
Prior art date
Application number
PCT/EP2017/051557
Other languages
English (en)
French (fr)
Inventor
Tobias Schmidt
Alexander Faller
Stephan Lukanow
Original Assignee
Osram Gmbh
Siteco Beleuchtungstechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Gmbh, Siteco Beleuchtungstechnik Gmbh filed Critical Osram Gmbh
Priority to EP17703055.8A priority Critical patent/EP3408584B1/de
Priority to US16/072,888 priority patent/US10808911B2/en
Priority to RS20220394A priority patent/RS63153B1/sr
Publication of WO2017129623A1 publication Critical patent/WO2017129623A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/049Patterns or structured surfaces for diffusing light, e.g. frosted surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/004Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/30Lighting for domestic or personal use
    • F21W2131/301Lighting for domestic or personal use for furniture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/12Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the geometrical disposition of the light-generating elements, e.g. arranging light-generating elements in differing patterns or densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • F21Y2105/16Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • F21Y2105/18Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array annular; polygonal other than square or rectangular, e.g. for spotlights or for generating an axially symmetrical light beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]

Definitions

  • the present invention relates to a luminaire with a light source comprising at least one LED, a reflector and a transparent cover.
  • Luminaires which contain LEDs (which are also to be understood as OLEDs) as light sources, tend to dazzle a viewer because the light sources are almost punctiform. Further, depending on the location of the lamp, e.g. As office lighting, a light distribution is desired which is weak enough at high emission angles relative to the normal perpendicular to the light exit surface to prevent glare.
  • Such light distributions for glare-free luminaires in the interior are, for example, by special coverage of the
  • Such covers may contain microstructures or textures that cause light scattering to some extent.
  • the covers are also available as relatively thin films.
  • Object of the present invention is to develop a generic lamp to provide a glare-free soft light distribution with a sufficient half width for use as ceiling recessed or surface-mounted or suspended ceiling lights, eg for office lighting.
  • the problem is solved by a luminaire according to claim 1.
  • a special feature of the lamp is that the flat translucent cover with respect to the plane of the lamp
  • the light influenced by the microstructures in the cover is not emitted in the plane of the light exit opening, but is deflected in the direction of the central central axis of the luminaire. This makes it possible to achieve a similar effect as through louvers of a conventional luminaire.
  • the light distribution at high radiation angles, e.g. at angles above 85 °, 80 ° or 65 °, is reduced to improve glare control.
  • the shape of the light directing cover is defined by the sidewall of a pyramid or cone, the base of the pyramid or cone lying in the notional plane defined by the edge of the reflector.
  • the pyramidal or conical shape has the advantage that the angle of inclination of the cover with respect to the fictitious plane, which can be arranged parallel to the ceiling, is always constant.
  • an angle formed in a cross-section perpendicular to the notional plane between the surface of the translucent cover and the notional plane is less than 30 °, preferably less than 20 ° or 15 °.
  • This flat angle is sufficient to achieve the effect that the light output in solid angle ranges above, for example, 85 °, in particular 80 ° or 65 °, reduced or shielded.
  • light is prevented from being deflected to a significant extent to the opposite side of the luminaire as to be opposite to the central axis.
  • side is delivered in a solid angle range above a desired shielding angle.
  • the shape of the cover in combination with the microstructure elements thus ensures that the light is scattered by the microstructures on the one hand, in order to prevent reflected glare, and on the other hand, too high emission angles are avoided in order to prevent direct glare through shielding.
  • the height of the translucent covers, with which it protrudes from the fictitious plane in the reflector be limited to 1/5 or preferably 1/8 of the largest diameter in the fictitious plane. This height to width ratio of the cover ensures that, as previously explained, the light output above a critical angle to the luminaire normal prevented or at least reduced.
  • the microstructures comprise textures on a surface of the cover facing the light source and / or facing away from the light source.
  • the textures may in particular comprise lenticular or prism-shaped elevations and / or depressions.
  • the elevations and / or depressions may be arranged regularly or irregularly.
  • the shape of the textures should help to scatter or dilate the light locally on the cover. The inclination of the cover relative to the light exit opening then improves the preferred shielding for glare reduction.
  • the microstructures may also be formed by scattering particles in the material of the cover and / or on a surface of the cover.
  • the scattering particles have a similar function as the surface textures, ie they produce a light scattering locally. Textures or scattering particles on the inside of the cover have the advantage that they are not damaged when cleaning the cover. On the other hand, textures and scattering particles on the outside have the advantage that when viewed on the cover no reflections on the otherwise flat surface are visible.
  • an additional reflector is provided, which adjoins the peripheral edge on the side facing away from the light source of the cover.
  • the additional reflector can serve as a cut-off reflector, which improves the shielding of the light distribution.
  • the reflector and the additional reflector may also be integrally connected to each other, wherein the peripheral edge of the reflector, as previously mentioned, in this case formed by the edge on which the transparent cover rests against the composite reflector.
  • the reflector and / or the additional reflector can be formed with a high gloss.
  • This embodiment achieves a high luminaire efficiency.
  • the reflector and / or the additional reflector may also be designed to be diffusely reflecting, in particular matt white. These embodiments further reduce the risk of potential glare.
  • the light source may comprise an array of LEDs arranged in a plane at the bottom of the reflector.
  • the distribution of light already at the location of the light source is more favorable, ie better distributed.
  • the LEDs are arranged in groups together, wherein preferably when using multi-colored LEDs each point in the array Group of LEDs with each color covers. This allows mixing different colors.
  • the differently colored LEDs can also be controlled separately from each other to change the light color of the lamp.
  • the LEDs or groups of LEDs are evenly distributed over the bottom of the reflector.
  • the LEDs are arranged along a peripheral edge of the bottom of the reflector.
  • the latter has the advantage that the reflected from the laterally disposed reflector portion of the light is increased compared to a flat arrangement of the LEDs on the ground. This can also contribute to the glare of the lamp.
  • the uniform distribution of the LEDs on the floor has the advantage that the surface of the translucent cover is illuminated uniformly, so that viewed from the outside, the light exit openings of the lamp appears uniformly bright.
  • the smallest distance of each LED or LED group to the nearest neighbor is greater than 10 mm.
  • each LED is associated with a primary lens, for example, to expand the light of each LED or to focus in the direction of the cover.
  • the primary lenses may be in an outer ring and / or one or more primary lenses in the center of the LED array have a different radius of curvature than the primary lenses of the remaining LEDs in the array.
  • different light effects can be generated in the area in which the light from the LEDs is predominantly reflected at the side reflector walls, and the light which strikes predominantly directly on the tip of the inward-facing cover of the luminaire.
  • at least some primary lenses are flattened at their apex.
  • the flattening of the vertices may also be different depending on the position of the primary lens in the LED array.
  • the flats of the lenses in concentric rings of the LED array may each gradually increase or decrease so that the light of each LED in the array produces approximately the same light distribution after passing through the translucent cover.
  • the differently flattened vertices can also be combined with the different curvature radii as previously described.
  • the LEDs have different colors.
  • the combination of cold and warm light sources is therefore ideal for illuminating an interior, eg an office. It is also possible to control the light sources of different colors separately, so that the mixed color of the lamp can be selected by different dimming of the light sources.
  • FIG. 1 shows a cross section through a luminaire.
  • FIG. 2 shows a cross section through a further one
  • FIG. 3 shows a cross section through a further one
  • FIG. 4 shows a perspective view of a cover for one of the luminaires of FIGS. 1 to 3.
  • FIG. 5 shows the cover according to FIG. 4 in a side view.
  • FIG. 6 shows a perspective view of a luminaire.
  • Figure 7 shows a perspective view of a lamp without cover.
  • Figure 8 gt is a perspective view of a far lamp without cover.
  • FIG. 9 shows the luminaire according to FIG. 8 with primary lenses.
  • Figures 10a-d show top views of different LED arrays.
  • Figure 11 shows in polar representation a light distribution curve in a C-plane for a lamp according to Fi gur 7 with a high-gloss reflector.
  • FIG. 12 shows a polar representation of a light distribution curve in a C-plane for a luminaire of FIG. 3 with a matt reflecting reflector.
  • FIG. 13 shows a perspective view of an on
  • FIG. 14 shows a section through the arrangement of primary lenses according to FIG. 13.
  • FIG. 15 shows a plan view of an arrangement of primary lenses according to FIG. 13 on the side facing away from the LEDs with different radii of curvature of the primary lenses.
  • FIG. 16 shows a plan view of the arrangement of primary lenses according to FIG. 13 on the side facing away from the LEDs with differently flattened apices of the primary lenses.
  • FIG. 17 shows a plan view of an arrangement of primary lenses according to FIG. 13 on the side facing the LEDs.
  • the lamp has a base plate 2, which may be formed in particular by a PCB (Printed Circuit Board).
  • a base plate which is just described, is an arrangement tion of several LEDs 4 provided on one side.
  • the LEDs 4 are distributed uniformly over the base plate 2 in this embodiment and are electrically connected to electrical traces on the base plate.
  • a reflector 6 which defines in the illustrated embodiment according to the figure 1 in each horizontal section perpendicular to the image plane of Figure 1 a square.
  • the reflector 6 is formed reflective on the inward-facing side. In particular, it is provided in one embodiment that the reflector walls are matt white.
  • the peripheral edge of the reflector forms a light outlet opening. This is closed with a cover 8.
  • the cover 8 is shown in a perspective view in Figure 4 and in a side elevation in Figure 5 as a single part.
  • the cover 8 is formed of an optically transparent material.
  • the cover 8 has on its surface a
  • microstructures which are formed in particular as a microlenses or micro prisms on a surface of the cover 8.
  • the microstructures may be regularly or irregularly distributed on the cover 8. According to FIG. 4, it can be seen that the microstructures are arranged in a regular pattern.
  • the microstructures of the cover 8 have the effect that the light which passes through the cover 8, is deflected laterally. In particular, the microstructures ensure that the light is partially scattered.
  • a peculiarity of the cover 8 is that it extends in a pyramidal shape inwardly towards the LEDs 4.
  • the inclination angle ⁇ is 10 °.
  • the angle is less than 30 ° or in particular less than 20 °.
  • the flat angle has the effect that the light is not only scattered on the cover 8, but also slightly deflected in the direction of a central axis z of the lamp.
  • a desired light distribution of the luminaire can be produced, which at large emission angles decreases more sharply than the uniformly illuminated flat plate (see FIG. 1) (ie the luminaire has a light distribution in a C-plane, which is narrower) as a Lambert distribution).
  • an improved shielding of the luminaire can thereby be realized.
  • the material of the cover 8 may in particular be a transparent plastic or a glass.
  • the microstructures may be formed in particular as pyramidal optical elements or as lenticular optical elements in the surface of the material as a recess or as a survey.
  • the pyramidal or lenticular depressions, or in general any type of surface texture, which are suitable for causing a light expansion, in particular a light scattering, may be provided on the side facing the illuminant or on the opposite outside of the cover 8.
  • scattering centers may also be provided within the material or on a surface of the material of the cover 8. Scattering centers may e.g.
  • a surface of the cover 8 is formed frosted. It can be a kind of frosted glass formed by a treatment of the surface by etching or sandblasting.
  • FIG. 1 A luminaire according to FIG. 1 in a perspective view is shown in FIG.
  • the luminaire is designed as recessed ceiling or ceiling mounted luminaire.
  • a wide edge extends around the cover 8 in the light exit opening.
  • the luminaire can be integrated in a ceiling or attached to a ceiling.
  • the luminaire may also be spaced from the ceiling, e.g. as a pendant or floor lamp, be mounted.
  • the luminaire is constructed so that it is mounted with the light exit opening down in the direction of an interior to be illuminated.
  • the light distribution produced by the cover 8 is suitable for this type of luminaire mounting.
  • FIG. 2 shows alternative embodiments of the lamp.
  • a further reflector 7 is provided on the side of the cover 8 facing away from the light source.
  • the reflector serves as a cut-off reflector to improve the shielding of the luminaire.
  • the inwardly facing sides of the further reflector 7 are in particular highly polished. It is also possible that the reflectors 6 and 7 are formed integrally with each other and the cover 8 is integrated therein.
  • an arrangement of primary lenses 10 is provided above the LEDs 4.
  • the primary lenses 10 may be integrally connected together, as shown in FIGS. 13 to 17.
  • the primary lenses 10 may, as stated below, have particular shapes to assist in the formation of a desired light distribution in combination with the cover 8.
  • the lamp of the invention without the cover 8 is shown. Therefore, the top view of the array of LEDs 4 is visible.
  • an LED array comprises 4x3 LEDs.
  • An alternative embodiment is shown in FIG. Here, the LEDs are arranged only at the edge of the base 2 within the reflector 8.
  • FIG. 9 shows the luminaire according to FIG. 8, wherein primary LEDs 10 are arranged above the LEDs.
  • Embodiments as in FIG. 7 with a diffusely reflecting reflector generate a light distribution in a C
  • Figure 12 shows a schematic light distribution in a C-plane of a luminaire with a high specular reflector, e.g. is shown in the figure 3d.
  • the light distribution has a local minimum at 0 ° and increases in the direction of the flanks to about ⁇ 15 ° and then decreases relatively quickly in the direction of + 90 °.
  • Figures 10a to 10d show various embodiments of LED arrays which may be combined with the lamps as previously described.
  • the light distributions which are achieved with the previously described LED arrays can be produced in particular with differently colored LEDs.
  • the different colors have different light distributions.
  • the groups of LEDs can be controlled differently so that, as desired, only a warm white or only a cold white light is generated.
  • the light colors can also be controlled separately in this embodiment.
  • the distance from an LED to the right-angled neighbor according to FIG. 10b is, for example, between 10 and 20 mm, in particular about 16 mm.
  • the offset thereto arranged LEDs according to the array of Figure 10a are arranged at half a distance.
  • the spacings of the LEDs in the array are relatively large, so that they would be perceived by the viewer as individual light points under direct supervision. Through the cover 8, however, it is ensured that the individual points of light are no longer visible and an approximately evenly illuminated surface is perceived by the viewer.
  • FIG. 14 shows a section through the arrangement of the primary lenses according to FIG. 13.
  • the individual primary lenses On the side facing the LEDs, the individual primary lenses have an entry surface 14 which is surrounded by a cone 16.
  • the cone has an angle to the optical axis of the LED, so that takes place at the conical surfaces total reflection.
  • the entrance surface 14 in combination with the cone 16 therefore enables an efficient coupling of the light into the primary lens.
  • the primary lenses may have different radii of curvature, as shown in FIG.
  • the primary lenses in a central ring of the primary lens array have a radius Rl.
  • the outer primary lenses have a radius R2 and the central primary lens has a plane Rl.
  • the primary lenses also have flattened vertices 20, 21 or 22 as shown in FIG.
  • the primary lenses 20 at the edge of the array have a flattened apex with a larger diameter D1 than the primary lenses 21 and 22 provided within the array.
  • the primary lenses 21 have a flattened vertex with a diameter D2 and the primary lenses 22 have a flattened vertex with a diameter D3, where Dl>D2> D3.
  • the flattened vertex of the lenses has the effect that the light distribution after the cover 8 from the LED array of Figures 10c and 10d, or a combination of the two, as shown in Figure 10a, respectively, is the same shape.
  • the LEDs in an array according to FIGS. 10c and 10d can each have different colors. Both LED arrays are superimposed to the arrangement of Figure 10a and thus have, after penetrating the cover 8, the same light distribution curve, so that mix both light colors homogeneous.
  • the invention is not limited to the illustrated square arrangement of the LED arrays and the light exit surface of the reflector. limits. It is also possible to apply round symmetries, in particular in connection with, for example, conical translucent covers 8.
  • round symmetries in particular in connection with, for example, conical translucent covers 8.
  • rectangular shapes for the light exit surface or the cover are possible lent. In this case, for example, a flat pyramidal cover with a rectangular base can be used.
  • the covers are made flat, ie that the shorter side, for example, amounts to at least half of a longer side in order to achieve similar optical effects in all directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Die Erfindung betrifft eine Leuchte, die eine Lichtquelle in Form von wenigstens einer LED, sowie einen Reflektor aufweist, wobei der Reflektor durch einen umlaufenden Rand des Reflektors eine Lichtaustrittsöffnung an einer der Lichtquelle ge- genüberliegenden Seite definiert, wobei in der Lichtaustrittsöffnung eine flächige lichtdurchlässige Abdeckung angeordnet ist, die lichtlenkende und/oder licht streuende Mikrostrukturen verteilt über die Abdeckung aufweist, und wobei die flächige lichtdurchlässige Abdeckung sich gegenüber einer fiktiven Ebene, die durch den umlaufenden Rand des Reflektors definiert ist, nach innen in Richtung zu der Lichtquelle erstreckt.

Description

LEUCHTE MIT PYRAMIDENFÖRMIGER ODER KEGELFÖRMIGER ABDECKUNG
BESCHREIBUNG
Die vorliegende Erfindung betrifft eine Leuchte mit einer Lichtquelle aus wenigstens einer LED, einem Reflektor sowie einer transparenten Abdeckung. Leuchten, welche LEDs (worunter auch OLEDs zu verstehen sind) als Lichtquellen enthalten, neigen leicht dazu, einen Betrachter zu blenden, weil die Lichtquellen nahezu punktförmig sind. Ferner ist abhängig von dem Einsatzort der Leuchte, z.B. als Büroleuchte, eine Lichtverteilung gewünscht, die bei hohen Ab- strahlwinkeln gegenüber der Normalen senkrecht zur Lichtaustrittsfläche schwach genug ist, um eine Blendung zu verhindern .
Derartige Lichtverteilungen für blendfreie Leuchten im Innen- räum werden beispielsweise durch spezielle Abdeckung der
Leuchten zur Entblendung erzielt. Solche Abdeckungen können Mikrostrukturen oder Texturen enthalten, welche in einem gewissen Umfang eine Lichtstreuung bewirken. Die Abdeckungen sind auch als verhältnismäßig dünne Folien erhältlich.
Ferner ist es auch bekannt, derartige Entblendungsabdeckungen in Kombination mit Reflektoren zu verwenden, um den Gesamtwirkungsgrad der Leuchte zu erhöhen. Aufgabe der vorliegenden Erfindung ist es, eine gattungsgemäße Leuchte weiterzubilden, um eine blendfreie weiche Lichtverteilung mit einer ausreichenden Halbwertsbreite für die Anwendung als Deckeneinbau- oder -anbauleuchte oder abgehängte Deckenleuchten, z.B. für eine Bürobeleuchtung, bereitzustellen. Gelöst wird die Aufgabe durch eine Leuchte nach Anspruch 1.
Eine Besonderheit der Leuchte besteht darin, dass die flächige lichtdurchlässige Abdeckung sich gegenüber der Ebene der
Lichtaustrittsöffnung nach innen in den Reflektor, d.h. in Richtung zu der Lichtquelle, vorzugsweise mit einer Spitze, erstreckt. Dadurch wird das von den Mikrostrukturen in der Abdeckung beeinflusste Licht nicht in der Ebene der Lichtaustrittsöffnung abgegeben, sondern wird in Richtung zu der zent- ralen Mittelachse der Leuchte abgelenkt. Damit lässt sich ein ähnlicher Effekt wie durch Lamellen einer herkömmlichen Leuchte erzielen. Die Lichtverteilung bei hohen Abstrahlwinkeln, z.B. bei Winkeln oberhalb von 85°, 80° oder 65°, wird verringert, um die Entblendung der Leuchte zu verbessern.
Gemäß einer bevorzugten Ausführungsform ist die Form der lichtlenkende Abdeckung durch die Seitenwand einer Pyramide oder eines Kegels definiert, wobei die Grundseite der Pyramide oder des Kegels in der fiktiven Ebenen liegt, die durch den Rand des Reflektors definiert ist. Die Pyramiden- oder Kegelform hat den Vorteil, dass der Neigungswinkel der Abdeckung gegenüber der fiktiven Ebene, die parallel zur Raumdecke angeordnet sein kann, immer konstant ist. Gemäß einer bevorzugten Ausführungsform ist ein Winkel, welcher in einem Querschnitt senkrecht zu der fiktiven Ebene zwischen der Fläche der lichtdurchlässigen Abdeckung und der fiktiven Ebene gebildet wird, kleiner als 30°, vorzugsweise kleiner als 20° oder 15°. Dieser flache Winkel ist ausreichend, um den Effekt zu erzielen, dass die Lichtabgabe in Raumwinkelbereiche oberhalb von z.B. 85°, insbesondere 80° oder 65°, verringert oder abgeschirmt wird. Bei dem flachen Neigungswinkel wird nämlich verhindert, dass Licht in einem nennenswerten Umfang soweit zu der gegenüberliegenden Seite der Leuchte umge- lenkt wird, dass es auf der der zentralen Achse gegenüberlie- genden Seite in einen Raumwinkelbereich oberhalb eines gewünschten Abschirmungswinkels abgegeben wird. Die Form der Abdeckung in Kombination mit den Mikrostrukturelementen sorgt demnach dafür, dass das Licht einerseits von den Mikrostruktu- ren gestreut wird, um eine Reflexblendung zu verhindern, und andererseits zu hohe Abstrahlwinkel vermieden werden, um eine Direktblendung durch Abschirmung zu verhindern. Alternativ o- der zusätzlich kann die Höhe der lichtdurchlässigen Abdeckungen, mit der sie von der fiktiven Ebene in den Reflektor ragt, auf 1/5 oder vorzugsweise 1/8 des größten Durchmessers in der fiktiven Ebene begrenzt sein. Dieses Höhen zu Breiten Verhältnis der Abdeckung sorgt dafür, dass, wie vorhergehend erläutert, die Lichtabgabe oberhalb eines Grenzwinkels gegenüber der Leuchtennormalen verhindert oder wenigstens reduziert wird.
Gemäß einer bevorzugten Ausführungsform umfassen die Mikrostrukturen Texturen auf einer der Lichtquelle zugewandten und/oder der Lichtquelle abgewandten Oberfläche der Abdeckung. Die Texturen können insbesondere linsenförmige oder prismen- förmige Erhebungen und/oder Vertiefungen umfassen. Die Erhebungen und/oder Vertiefungen können regelmäßig oder unregelmäßig angeordnet sein. Die Form der Texturen soll dazu beitragen, dass das Licht lokal an der Abdeckung gestreut oder auf- geweitet wird. Die Neigung der Abdeckung gegenüber der Lichtaustrittsöffnung verbessert dann die bevorzugte Abschirmung zur Entblendung.
Gemäß einer bevorzugten Ausführungsform können die Mikrostruk- turen auch durch Streupartikel in dem Material der Abdeckung und/oder auf einer Oberfläche der Abdeckung gebildet sein. Die Streupartikel haben eine ähnliche Funktion wie die Oberflächentexturen, d.h. sie erzeugen lokal eine Lichtstreuung. Texturen oder Streupartikel auf der Innenseite der Abdeckung haben den Vorteil, dass sie bei Reinigungsarbeiten der Abdeckung nicht beschädigt werden. Andererseits haben Texturen und Streupartikel an der Außenseite den Vorteil, dass bei Aufsicht auf die Abdeckung keine Reflexionen auf der sonst ebenen Fläche sichtbar sind.
Gemäß einer bevorzugten Ausführungsform ist ein zusätzlicher Reflektor vorgesehen, der sich an den umlaufenden Rand auf der der Lichtquelle abgewandten Seite der Abdeckung anschließt. Der zusätzliche Reflektor kann als Cutoff-Reflektor dienen, der die Abschirmung der Lichtverteilung verbessert. Der Reflektor und der zusätzliche Reflektor können auch einstückig miteinander verbunden sein, wobei der umlaufende Rand des Reflektors, wie vorhergehend erwähnt, in diesem Fall durch den Rand gebildet ist, an welchem die transparente Abdeckung an dem zusammengesetzten Reflektor anliegt.
Gemäß einer bevorzugten Ausführungsform kann der Reflektor und/oder der zusätzliche Reflektor hochglänzend ausgebildet sein. Diese Ausführungsform erzielt einen hohen Leuchtenwirkungsgrad. Bevorzugt kann der Reflektor und/oder der Zusatzreflektor jedoch auch diffus reflektierend, insbesondere mattweiß, ausgebildet sein. Diese Ausführungsformen verringern weiter die Gefahr einer möglichen Blendung.
Gemäß einer bevorzugten Ausführungsform kann die Lichtquelle ein Array von LEDs umfassen, die in einer Ebene am Boden des Reflektors angeordnet sind. Im Unterschied zu einer einzelnen LED ist bei einer Array von LEDs die Verteilung des Lichts bereits am Ort der Lichtquelle günstiger, d.h. besser verteilt. Ferner lassen sich durch die mehreren LEDs unterschiedliche Lichtfarben der LEDs mischen. Es ist auch möglich, dass die LEDs gruppenweise zusammen angeordnet sind, wobei vorzugsweise bei Verwendung mehrfarbiger LEDs jeder Punkt in dem Array eine Gruppe von LEDs mit jeder Farbe umfasst. Dadurch lassen sich verschiedene Farben mischen. Gegebenenfalls können die unterschiedlich farbigen LEDs auch getrennt voneinander angesteuert werden, um die Lichtfärbe der Leuchte zu ändern.
Gemäß einer bevorzugten Ausführungsform sind die LEDs oder Gruppen von LEDs gleichmäßig über den Boden des Reflektors verteilt. Alternativ kann auch vorgesehen sein, dass die LEDs entlang eines Umfangrandes des Bodens des Reflektors angeord- net sind. Letzteres hat den Vorteil, dass der von den seitlich angeordneten Reflektor reflektierte Anteil des Lichts gegenüber einer flächigen Anordnung der LEDs auf den Boden erhöht ist. Dies kann ebenfalls zur Entblendung der Leuchte beitragen. Die gleichmäßige Verteilung der LEDs auf dem Boden hat demgegenüber den Vorteil, dass die Fläche der lichtdurchlässigen Abdeckung gleichmäßiger beleuchtet wird, so dass von außen betrachtet die Lichtaustrittsöffnungen der Leuchte gleichmäßig hell erscheint. Gemäß einer bevorzugten Ausführungsform ist der kleinste Abstand jeder LED oder jeder LED-Gruppe zu dem nächsten Nachbarn größer als 10 mm. Dies ist für ein LED-Array bereits ein relativ großer Abstand der LEDs, den der Betrachter normalerweise als störend empfindet, weil er die LEDs als einzelne getrennte Lichtpunkte wahrnimmt. Durch die Kombination mit der erfindungsgemäßen Abdeckung wird jedoch dieser Nachteil überwunden. Es ist daher möglich, die LEDs mit vergleichsweise großem Abstand anzuordnen, um eine großflächige Leuchte zu schaffen, ohne dass der Betrachter die einzelnen Lichtpunkte der LEDs oder der LED-Gruppen optisch auflösen kann .
Gemäß einer bevorzugten Ausführungsform ist jeder LED eine Primärlinse zugeordnet, z.B. um das Licht jeder LED aufzuweiten oder in Richtung zu der Abdeckung zu fokussieren. Es sind auch Kombinationen von verschiedenen Primärlinsen möglich. Beispielsweise können die Primärlinsen in einem äußeren Ring und/oder ein oder mehrere Primärlinsen in der Mitte des LED- Array einen anderen Krümmungsradius aufweisen als die Primärlinsen der übrigen LEDs in dem Array. Dadurch lassen sich unterschiedliche Lichteffekte in dem Bereich erzeugen, in wel- chem das Licht der LEDs vorwiegend an den seitlichen Reflektorwänden reflektiert wird, und das Licht, welches vorwiegend direkt auf die Spitze der nach innen weisenden Abdeckung der Leuchte auftrifft. Gemäß einer bevorzugten Ausführungsform sind wenigstens einige Primärlinsen an ihrem Scheitel abgeflacht. Dadurch wird eine Kombination einer Fokussierung im Randbereich der LED und einer Defokussierung im zentralen Mittelbereich der LED hervorgerufen. Die Abflachung der Scheitel kann abhängig von der Position der Primärlinse in dem LED-Array auch unterschiedlich sein. Insbesondere können die Abflachungen der Linsen in konzentrischen Ringen der LED-Anordnung jeweils abgestuft zunehmen oder abnehmen, damit das Licht jeder LED in dem Array nach dem Durchdringen der lichtdurchlässigen Abdeckung etwa die gleiche Lichtverteilung erzeugt. Die unterschiedlich abgeflachten Scheitel können auch mit den unterschiedlichen Krüm- mungsradii, wie vorhergehend beschrieben, kombiniert werden.
Gemäß einer bevorzugten Ausführungsform weisen die LEDs unter- schiedliche Farben auf. Insbesondere ist bevorzugt, eine kältere und eine wärmere Lichtfarbe zu mischen, um ein gemischt weißes Licht von dem LED-Array abzugeben. Während das kalte Licht eher die Sehfunktion des Menschen unterstützt, sorgt ein warmer Weißton für ein angenehmeres Empfinden. Die Kombination der kalten und warmen Lichtquellen ist daher ideal für die Beleuchtung eines Innenraums, z.B. eines Büros, geeignet. Es ist auch möglich, die Lichtquellen unterschiedlicher Farbe getrennt anzusteuern, so dass die Mischfarbe der Leuchte durch unterschiedliches Dimmen der Lichtquellen ausgewählt werden kann. Weitere Merkmale und Vorteile der vorliegenden Erfindung werden aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen, die in Verbindung mit den beigefügten Figuren er- läutert werden, deutlich. In den Figuren ist Folgendes dargestellt:
Figur 1 zeigt einen Querschnitt durch eine Leuchte. Figur 2 zeigt einen Querschnitt durch eine weitere
Leuchte .
Figur 3 zeigt einen Querschnitt durch eine weitere
Leuchte .
Figur 4 zeigt eine perspektivische Ansicht einer Abdeckung für eine der Leuchten der Figuren 1 bis 3.
Figur 5 zeigt die Abdeckung nach Figur 4 in einer Sei- tenaufsieht.
Figur 6 zeigt eine perspektivische Ansicht einer Leuchte . Figur 7 zeigt eine perspektivische Ansicht einer Leuchte ohne Abdeckung.
Figur 8 gt eine perspektivische Ansicht einer weite- Leuchte ohne Abdeckung.
Figur 9 zeigt die Leuchte nach Figur 8 mit Primärlinsen.
Figuren lOa-d zeigen Aufsichten auf verschiedene LED-Arrays. Figur 11 zeigt in Polardarstellung eine Lichtverteilungs kurve in einer C-Ebene für eine Leuchte nach Fi gur 7 mit einem hochglänzenden Reflektor.
Figur 12 zeigt eine Polardarstellung einer Lichtverteilungskurve in einer C-Ebene für eine Leuchte de Figur 3 mit einem matt reflektierenden Reflektor .
Figur 13 zeigt eine perspektivische Darstellung einer An
Ordnung von Primärlinsen.
Figur 14 zeigt einen Schnitt durch die Anordnung von Pri märlinsen gemäß Figur 13.
Figur 15 zeigt eine Aufsicht auf eine Anordnung von Primärlinsen nach Figur 13 auf die von den LEDs ab gewandten Seite mit unterschiedlichen Krümmungs radii der Primärlinsen.
Figur 16 zeigt eine Aufsicht auf die Anordnung von Primärlinsen gemäß Figur 13 auf die von den LEDs abgewandte Seite mit unterschiedlich abgeflachten Scheiteln der Primärlinsen.
Figur 17 zeigt eine Aufsicht auf eine Anordnung von Primärlinsen nach Figur 13 auf die den LEDs zugewandten Seite.
Bezug nehmend auf die Figur 1 wird eine erste Ausführungsform der Leuchte gemäß der Erfindung beschrieben.
Die Leuchte weist eine Grundplatte 2 auf, welche insbesondere durch eine PCB (Printed Circuit Board) gebildet sein kann. Auf der Grundplatte, welche eben ausgeführt ist, ist eine Anord- nung von mehreren LEDs 4 auf einer Seite vorgesehen. Die LEDs 4 sind in dieser Ausführungsform gleichmäßig über die Grundplatte 2 verteilt und sind mit elektrischen Leiterbahnen auf der Grundplatte elektrisch angeschlossen. Um das Array von LEDs 4 erstreckt sich ein Reflektor 6, welcher in der dargestellten Ausführungsform gemäß der Figur 1 in jedem horizontalen Schnitt senkrecht zur Bildebene der Figur 1 ein Quadrat definiert. Der Reflektor 6 ist auf der nach innen weisenden Seite reflektierend ausgebildet. Insbesondere ist in einer Ausführungsform vorgesehen, dass die Reflektorwände mattweiß sind.
Auf der den LEDs gegenüberliegenden Seite des Reflektors 6 bildet der Umfangsrand des Reflektors eine Lichtaustrittsöff- nung. Diese ist mit einer Abdeckung 8 verschlossen. Die Abdeckung 8 ist in perspektivischer Ansicht in Figur 4 und in einer Seitenaufsicht in Figur 5 als Einzelteil dargestellt.
Die Abdeckung 8 ist aus einem optisch transparenten Material gebildet. Die Abdeckung 8 weist auf ihrer Oberfläche eine
Vielzahl von Mikrostrukturen auf, welche insbesondere als Mik- rolinsen oder Mikroprismen auf einer Oberfläche der Abdeckung 8 ausgebildet sind. Die Mikrostrukturen können regelmäßig oder unregelmäßig auf der Abdeckung 8 verteilt sein. Gemäß der Fi- gur 4 ist zu erkennen, dass die Mikrostrukturen in einem regelmäßigen Muster angeordnet sind.
Die Mikrostrukturen der Abdeckung 8 haben den Effekt, dass das Licht, welches durch die Abdeckung 8 hindurchtritt, seitlich umgelenkt wird. Insbesondere sorgen die Mikrostrukturen dafür, dass das Licht zum Teil gestreut wird.
Eine Besonderheit der Abdeckung 8 ist, dass sie sich pyramidenförmig nach innen in Richtung zu den LEDs 4 erstreckt.
Dadurch ist ein Winkel α zwischen jeder Seite der Abdeckung 8 und einer Ebene parallel zu der Grundseite 2 oder parallel zu der Ebene der Lichtaustrittsöffnung, welche durch den Umfangs- rand des Reflektors 6 gebildet ist, gegeben. In den dargestellten Ausführungsformen beträgt der Neigungswinkel α 10°. Vorzugsweise ist der Winkel kleiner als 30° oder insbesondere kleiner als 20°. Der flache Winkel hat den Effekt, dass das Licht an der Abdeckung 8 nicht nur gestreut wird, sondern außerdem in Richtung auf eine zentrale Achse z der Leuchte etwas umgelenkt wird. Dadurch lässt sich eine gewünschte Lichtver- teilung der Leuchte erzeugen, die bei großen Abstrahlwinkeln gegenüber der optischen Achse z (siehe Figur 1) stärker abfällt als eine gleichmäßig beleuchtete ebene Platte (d.h. die Leuchte weist in einer C-Ebene eine Lichtverteilung auf, die schmäler als eine Lambert-Verteilung ist) . Insbesondere kann dadurch eine verbesserte Abschirmung der Leuchte realisiert werden.
Das Material der Abdeckung 8 kann insbesondere ein transparenter Kunststoff oder ein Glas sein. Die Mikrostrukturen können insbesondere als pyramidenförmige optische Elemente oder als linsenförmige optische Elemente in der Oberfläche des Materials als Vertiefung oder als Erhebung ausgebildet sein. Die Pyramiden- oder linsenförmigen Vertiefungen, oder allgemein jede Art von Oberflächentextur, welche dazu geeignet sind, eine Lichtaufweitung, insbesondere eine Lichtstreuung hervorzurufen, können an der zu dem Leuchtmittel weisenden Seite oder auf der gegenüberliegenden Außenseite der Abdeckung 8 vorgesehen sein. Alternative oder zusätzlich können außerdem Streuzentren innerhalb des Materials oder auf einer Oberfläche des Materials der Abdeckung 8 vorgesehen sein. Streuzentren können z.B.
durch kleine Partikeln in einem sonst transparenten Glas- oder Kunststoffmaterial gebildet sein. Es kann auch vorgesehen sein, dass eine Oberfläche der Abdeckung 8 mattiert ausgebildet ist. Es kann eine Art Milchglas durch eine Behandlung der Oberfläche durch Ätzen oder Sandstrahlen ausgebildet werden.
Eine Leuchte entsprechend der Figur 1 in perspektivischer Ansicht ist in der Figur 6 dargestellt. Die Leuchte ist als Deckeneinbau- oder Deckenanbauleuchte ausgebildet. Bevorzugt erstreckt sich ein breiter Rand um die Abdeckung 8 in der Licht- austrittsöffnung . Die Leuchte kann in einer Decke integriert werden oder an einer Decke angesetzt werden. Die Leuchte kann auch von der Decke beabstandet, z.B. als Hängeleuchte oder Stehleuchte, montiert sein. Bevorzugt ist die Leuchte so konstruiert, dass sie mit der Lichtaustrittsöffnung nach unten in Richtung zu einem zu beleuchtenden Innenraum montiert wird. Die Lichtverteilung, welche durch die Abdeckung 8 hervorgebracht wird, ist für diese Art von Leuchtenmontage geeignet.
Die Figuren 2 und 3 zeigen alternative Ausführungsformen der Leuchte. Bei der Figur 2 ist ein weiterer Reflektor 7 auf der dem Leuchtmittel abgewandten Seite der Abdeckung 8 vorgesehen. Der Reflektor dient als Cut-Off-Reflektor, um eine Abschirmung der Leuchte zu verbessern. Die nach innen weisenden Seiten des weiteren Reflektors 7 sind insbesondere hochglänzend ausgebil- det . Es ist auch möglich, dass die Reflektoren 6 und 7 einstückig miteinander ausgebildet werden und die Abdeckung 8 darin integriert ist.
In der Ausführungsform nach Figur 3 ist ferner über den LEDs 4 eine Anordnung von Primärlinsen 10 vorgesehen. Die Primärlinsen 10 können einstückig miteinander verbunden sein, wie in den Figuren 13 bis 17 gezeigt. Die Primärlinsen 10 können, wie nachfolgend ausgeführt, besondere Formen aufweisen, um die Bildung einer gewünschten Lichtverteilung in Kombination mit der Abdeckung 8 zu unterstützen. In der Figur 7 ist die Leuchte der Erfindung ohne die Abdeckung 8 dargestellt. Daher ist die Aufsicht auf das Array von LEDs 4 sichtbar. In der Figur 7 umfasst ein LED-Array 4x3 LEDs. Eine alternative Ausführungsform ist in Figur 8 dargestellt. Hier sind die LEDs nur am Rand der Grundseite 2 innerhalb des Reflektors 8 angeordnet. Figur 9 zeigt die Leuchte nach Figur 8, wobei über den LEDs jeweils Primärlinsen 10 angeordnet sind.
Es ist zu verstehen, dass in den Figuren 7 bis 9 nur zu Darstellungszwecken die Abdeckung 8 weggelassen worden ist.
Ausführungsformen wie in Figur 7 mit einem diffus reflektie- renden Reflektor erzeugen eine Lichtverteilung in einer C-
Ebene, welche schematisch in der Figur 11 dargestellt ist. Die Lichtverteilung weist bei 0° ein Maximum auf und fällt in Richtung zu ± 90° verhältnismäßig schnell ab. Dem gegenüber zeigt die Figur 12 eine schematische Lichtverteilung in einer C-Ebene einer Leuchte mit einem hochglänzenden (spekularen) Reflektor, wie es z.B. in den Figur 3dargestellt ist. Die Lichtverteilung weist ein lokales Minimum bei 0° auf und nimmt in Richtung zu den Flanken bis etwa ± 15° zu und fällt anschließend verhältnismäßig schnell in Richtung zu + 90° ab.
Die Figuren 10a bis lOd zeigen verschiedene Ausführungsformen von LED-Arrays, die mit den Leuchten, wie vorhergehend beschrieben, kombiniert werden können. Die Lichtverteilungen, welche mit den vorhergehend beschriebenen LED-Arrays erzielt werden, können insbesondere mit unterschiedlich farbigen LEDs erzeugt werden. Beispielsweise ist es bevorzugt, die LEDs mit einer warmen Lichtfarbe gemäß der Anordnung in Figur 10c vorzusehen während LEDs mit einer kälte- ren Lichtfarbe entsprechend der Anordnung in der Figur lOd vorgesehen sind. Beide Anordnungen werden kombiniert, so dass, wenn alle LED-Positionen besetzt sind, ein LED-Array entsprechend der Figur 10a gebildet ist. Jedoch weisen die unterschiedlichen Farben unterschiedliche Lichtverteilungen auf. Insbesondere kann auch vorgesehen sein, dass die Gruppen von LEDs unterschiedlich ansteuerbar sind, so dass wunschgemäß nur ein warmweißes oder nur ein kaltweißes Licht erzeugt wird. Es ist aber auch möglich, mehrere Farben von LEDs jeweils an einer Stelle in dem LED-Array, z.B. an den LED-Positionen ent- sprechend der Figur 10b, anzuordnen. In diesem Fall werden für die unterschiedlichen Lichtfarben etwa gleiche Lichtverteilungen erzielt. Die Lichtfarben können allerdings auch in dieser Ausführungsform getrennt voneinander angesteuert werden. Der Abstand von einer LED zum rechtwinklig angeordneten Nachbarn gemäß Figur 10b beträgt z.B. zwischen 10 und 20 mm, insbesondere etwa 16 mm. Die versetzt dazu angeordneten LEDs gemäß dem Array nach Figur 10a sind in einem halben Abstand angeordnet. Die Abstände der LEDs in dem Array sind verhältnis- mäßig groß, so dass sie bei direkter Aufsicht von dem Betrachter als Einzellichtpunkte wahrgenommen würden. Durch die Abdeckung 8 ist jedoch gewährleistet, dass die einzelnen Lichtpunkte nicht mehr sichtbar sind und eine etwa gleichmäßig leuchtende Fläche von dem Betrachter wahrgenommen wird.
Zusätzlich zu den LED-Arrays kann ein Array von Primärlinsen 10, wie in Figur 13 dargestellt, direkt über den LEDs 4 angeordnet werden. Die Figur 14 zeigt einen Schnitt durch die Anordnung der Primärlinsen nach Figur 13. Die einzelnen Primär- linsen weisen auf der den LEDs zugewandten Seite eine Eintrittsfläche 14 auf, die von einem Kegel 16 umgeben ist. Der Kegel weist einen Winkel zur optischen Achse der LED auf, so dass an den Kegelflächen Totalreflektion stattfindet. Die Eintrittsfläche 14 in Kombination mit dem Kegel 16 ermöglicht da- her eine effiziente Einkopplung des Lichts in die Primärlinse. Die Primärlinsen können unterschiedliche Krümmungsradii aufweisen, wie in der Figur 15 dargestellt. Die Primärlinsen in einem mittleren Ring des Primärlinsen-Array weisen einen Radi- us Rl auf. Die äußeren Primärlinsen weisen einen Radius R2 auf und die mittlere Primärlinse weist ebenen einen Radius Rl auf. Durch die Verteilung der Radix über die Linsen kann eine gewünschte Lichtverteilungskurve erzeugt werden. Auf der den LEDs gegenüberliegenden Seite weisen die Primärlinsen ferner abgeflachte Scheitel 20, 21 oder 22 auf wie in Figur 16 dargestellt. Die Primärlinsen 20 am Rand der Anordnung weisen einen abgeflachten Scheitel mit einem größeren Durchmesser Dl auf als die Primärlinsen 21 und 22, die inner- halb der Anordnung vorgesehen sind. Die Primärlinsen 21 weisen einen abgeflachten Scheitel mit einem Durchmesser D2 und die Primärlinsen 22 einen abgeflachten Scheitel mit einem Durchmesser D3 auf, wobei Dl > D2 > D3 gilt. Der abgeflachte Scheitel der Linsen hat den Effekt, dass die Lichtverteilung nach der Abdeckung 8 von den LED-Arrays nach Figuren 10c und lOd oder einer Kombination von den beiden, wie in Figur 10a dargestellt, jeweils die gleiche Form ist. Beispielsweise können die LEDs in einem Array nach der Figur 10c und lOd jeweils unterschiedliche Farben aufweisen. Beide LED- Arrays werden überlagert zu der Anordnung nach Figur 10a und haben damit, nach dem Durchdringen der Abdeckung 8 die gleiche Lichtverteilungskurve, so dass sich beide Lichtfarben homogen mischen .
Zahlreiche Varianten der vorhergehend beschriebenen Ausführungsformen sind im Rahmen der Erfindung, welche durch die Ansprüche definiert wird, möglich. Insbesondere ist die Erfindung nicht auf die dargestellte quadratische Anordnung der LED-Arrays und der Lichtaustrittsfläche des Reflektors be- schränkt. Es können auch runde Symmetrien insbesondere in Verbindung mit beispielsweise kegelförmigen lichtdurchlässigen Abdeckungen 8 angewandt werden. Ferner sind auch rechteckige Formen für die Lichtaustrittsfläche bzw. die Abdeckung mög- lieh. In diesem Fall kann beispielsweise eine flache pyramidenförmige Abdeckung mit rechteckiger Grundseite angewandt werden. Vorzugsweise sind die Abdeckungen aber flächig ausgeführt, d.h., dass die kürzere Seite beispielsweise wenigstens die Hälfe einer längeren Seite beträgt, um in allen Richtungen ähnliche optische Wirkungen zu erzielen.
Bezugszeichenliste
2 Grundseite
4 LED
6 Reflektor
7 weiterer Reflektor, insbesondere Cut-Off- Reflektor
8 Abdeckung
10 Primärlinse, einzeln oder miteinander verbunden 14 Lichteintrittsseite
16 Kegel
20 Primärlinse mit abgeflachtem Scheitel
21 Primärlinse mit abgeflachtem Scheitel
22 Primärlinse mit abgeflachtem Scheitel α Neigungswinkel
h Höhe
Dl, D2, D3 abgeflachte Scheitel der Primärlinsen
Rl, R2 Krümmungsradii der Primärlinsen

Claims

ANSPRUCHE
Leuchte, die eine Lichtquelle in Form von wenigstens einer LED
(4), sowie einen Reflektor (6) aufweist, wobei der Reflektor (6) durch einen umlaufenden Rand des Reflektors eine Lichtaustrittsöffnung an einer der Lichtquelle gegen¬ überliegenden Seite definiert,
wobei in der Lichtaustrittsöffnung eine flächige lichtdurchlässige Abdeckung (8) angeordnet ist, die lichtlenkende und/oder lichtstreuende Mikrostrukturen verteilt über die Abdeckung (8) aufweist, und
wobei die flächige lichtdurchlässige Abdeckung (8) sich gegenüber einer fiktiven Ebene, die durch den umlaufenden Rand des Reflektors (6) definiert ist, nach innen in Richtung zu der Lichtquelle erstreckt.
Leuchte nach Anspruch 1, wobei die Form der lichtlenkende Abdeckung (8) durch die Seitenwände einer Pyramide oder eines Kegels definiert ist, wobei die Grundseite der Pyramide oder des Kegels der fiktiven Ebene entspricht.
Leuchte nach einem der vorhergehenden Ansprüche, wobei ein Winkel (α) , welcher in einem Querschnitt senkrecht zu der fiktiven Ebene zwischen der Fläche der lichtdurchlässigen Abdeckung (8) und der fiktiven Ebene gebildet ist, kleiner als 30°, vorzugsweise kleiner als 20°, ist, und/oder wobei die Höhe (h) der lichtdurchlässigen Abdeckung (8), mit der sie von der fiktiven Ebene in den Reflektor (6) ragt, weniger als 1/5, vorzugsweise 1/8, des größten
Durchmessers in der fiktiven Ebene beträgt.
Leuchte nach einem der vorhergehenden Ansprüche, wobei die Mikrostrukturen Texturen auf einer der Lichtquelle zuge- wandten und/oder der Lichtquelle abgewandten Oberfläche der Abdeckung umfasst.
5. Leuchte nach Anspruch 4, wobei die Texturen linsenförmige oder prismenförmige Erhebungen oder Vertiefungen umfassen.
6. Leuchte nach einem der vorhergehenden Ansprüche, wobei die Mikrostrukturen Streupartikel in dem Material der Abde¬ ckung (8) und/oder auf einer der Oberflächen der Abdeckung (8) aufweisen.
7. Leuchte nach einem der vorhergehenden Ansprüche, wobei ein zusätzlicher Reflektor vorgesehen ist, der sich an dem umlaufenden Rand auf der der Lichtquelle abgewandten Seite der Abdeckung anschließt.
8. Leuchte nach einem der vorhergehenden Ansprüche, wobei der Reflektor (6) und/oder bei Rückbezug auf den Anspruch 7 der zusätzliche Reflektor (7) hochglänzend oder diffus re- flektierend, insbesondere mattweiß, ist.
9. Leuchte nach einem der vorhergehenden Ansprüche, wobei die Lichtquelle ein Array von LEDs (4) umfasst, die in einer Ebene am Boden (2) des Reflektors (6) angeordnet sind.
10. Leuchte nach Anspruch 9, wobei die LEDs (4) gleichmäßig über den Boden (2) des Reflektors (6) verteilt sind.
11. Leuchte nach Anspruch 9, wobei die LEDs (4) entlang einem Umfangrand des Bodens (2) des Reflektors angeordnet sind.
12. Leuchte nach einem der Ansprüche 9 bis 11, wobei der
kleinste Abstand jeder LED (4) oder einer LED-Gruppe zum nächsten Nachbarn größer als 10 mm ist.
13. Leuchte nach einem der Ansprüche 9 bis 12, wobei jeder LED (4) eine Primärlinse (10) zugeordnet ist.
14. Leuchte nach Anspruch 13, wobei Primärlinsen (10) in einem äußeren Ring und/oder eine oder mehrere Primärlinsen (22) in der Mitte des Arrays einen anderen Krümmungsradius auf¬ weisen als die Primärlinsen (21) der übrigen LEDs (4) des Arrays .
15. Leuchte nach Anspruch 13 oder 14, wobei wenigstens einige Primärlinsen (20, 21, 22) an ihrem Scheitel abgeflacht sind.
16. Leuchte nach einem der Ansprüche 13 bis 15, wobei die LEDs (4) unterschiedliche Farben aufweisen, insbesondere eine kältere und eine wärmere Lichtfarbe aufweisen, um ein gemischt weißes Licht von dem Array abzugeben.
PCT/EP2017/051557 2016-01-26 2017-01-25 Leuchte mit pyramidenförmiger oder kegelförmiger abdeckung WO2017129623A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17703055.8A EP3408584B1 (de) 2016-01-26 2017-01-25 Leuchte mit pyramidenförmiger oder kegelförmiger abdeckung
US16/072,888 US10808911B2 (en) 2016-01-26 2017-01-25 Luminaire with pyramid-shaped or conical cover
RS20220394A RS63153B1 (sr) 2016-01-26 2017-01-25 Svetiljka sa pokrivačem u obliku piramide ili kupe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016101345.5 2016-01-26
DE102016101345.5A DE102016101345A1 (de) 2016-01-26 2016-01-26 Leuchte mit pyramidenförmiger oder kegelförmiger Abdeckung

Publications (1)

Publication Number Publication Date
WO2017129623A1 true WO2017129623A1 (de) 2017-08-03

Family

ID=57963178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/051557 WO2017129623A1 (de) 2016-01-26 2017-01-25 Leuchte mit pyramidenförmiger oder kegelförmiger abdeckung

Country Status (5)

Country Link
US (1) US10808911B2 (de)
EP (1) EP3408584B1 (de)
DE (1) DE102016101345A1 (de)
RS (1) RS63153B1 (de)
WO (1) WO2017129623A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016104223A1 (de) 2016-01-26 2017-07-27 Siteco Beleuchtungstechnik Gmbh Leuchte mit Indirektbeleuchtung
US10520168B2 (en) * 2017-04-24 2019-12-31 Lite-On Electronics (Guangzhou) Limited Lampshade and lamp
DE102018222327A1 (de) * 2018-12-19 2020-06-25 Frenger Systemen BV Heiz- und Kühltechnik GmbH Strahlflächenaufbau mit Hochvolt-LEDs
EP3964747A1 (de) * 2020-09-07 2022-03-09 Signify Holding B.V. 3d-gedruckter lichtverteiler und leuchte mit 3d-gedrucktem lichtverteiler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053310A1 (en) * 2001-09-17 2003-03-20 Matthew Sommers Variable optics spot module
US20100254128A1 (en) * 2009-04-06 2010-10-07 Cree Led Lighting Solutions, Inc. Reflector system for lighting device
US8324790B1 (en) * 2011-06-07 2012-12-04 Wen-Sung Hu High illumination LED bulb with full emission angle
US20130114257A1 (en) * 2010-04-07 2013-05-09 Siteco Beleuchtungstechnik Gmbh Light Having a Cover Panel
US20140211482A1 (en) * 2013-01-28 2014-07-31 Hon Hai Precision Industry Co., Ltd Illumination device
US20140211484A1 (en) * 2012-07-26 2014-07-31 Southpac Trust International Inc, Trustee of the LDH Trust Light modifying elements
US20150092419A1 (en) * 2011-04-01 2015-04-02 Ntl Lemnis Holding B.V. Light source, lamp, and method for manufacturing a light source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309544A (en) * 1992-03-31 1994-05-03 Minnesota Mining And Manufacturing Company Light pipe having optimized cross-section
US20120262915A1 (en) * 2011-04-18 2012-10-18 Jade Yang Co., Ltd. Led (light-emitting diode) lamp with light reflection
DE102011107893A1 (de) * 2011-07-18 2013-01-24 Heraeus Noblelight Gmbh Optoelektronisches Modul mit verbesserter Optik
DE102012102119A1 (de) 2012-03-13 2013-09-19 Osram Opto Semiconductors Gmbh Flächenlichtquelle
EP3014173A4 (de) * 2013-07-26 2017-01-11 Bright View Technologies Corporation Geformte mikrostrukturbasierte optische diffuser
US20170023211A1 (en) * 2013-12-16 2017-01-26 Philips Lighting Holding B.V. Flexible unobstructed beam shaping

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053310A1 (en) * 2001-09-17 2003-03-20 Matthew Sommers Variable optics spot module
US20100254128A1 (en) * 2009-04-06 2010-10-07 Cree Led Lighting Solutions, Inc. Reflector system for lighting device
US20130114257A1 (en) * 2010-04-07 2013-05-09 Siteco Beleuchtungstechnik Gmbh Light Having a Cover Panel
US20150092419A1 (en) * 2011-04-01 2015-04-02 Ntl Lemnis Holding B.V. Light source, lamp, and method for manufacturing a light source
US8324790B1 (en) * 2011-06-07 2012-12-04 Wen-Sung Hu High illumination LED bulb with full emission angle
US20140211484A1 (en) * 2012-07-26 2014-07-31 Southpac Trust International Inc, Trustee of the LDH Trust Light modifying elements
US20140211482A1 (en) * 2013-01-28 2014-07-31 Hon Hai Precision Industry Co., Ltd Illumination device

Also Published As

Publication number Publication date
US10808911B2 (en) 2020-10-20
RS63153B1 (sr) 2022-05-31
EP3408584A1 (de) 2018-12-05
EP3408584B1 (de) 2022-04-06
DE102016101345A1 (de) 2017-07-27
US20190032885A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
EP2207996B1 (de) Led-lampe mit diffusor
DE60037427T2 (de) Beleuchtungsvorrichtung
EP2678603B1 (de) Beleuchtungsvorrichtung
DE102008014317A1 (de) Leuchte mit getrennten Leuchtmitteln für Direktbeleuchtung und Indirektbeleuchtung
EP1154200A2 (de) Lichtverteiler für eine Leuchteinrichtung sowie Leuchteinrichtung und Verwendung einer Leuchteinrichtung
EP3408584B1 (de) Leuchte mit pyramidenförmiger oder kegelförmiger abdeckung
EP2650597A2 (de) Leuchte
EP1398562A1 (de) Leuchte zur Erzielung eines scharfkantig ausgebildeten Lichtkegels
DE102007016748A1 (de) Reflektor für eine Leuchte
DE112012004626T5 (de) Lichtleitplattenstruktur zum Steuern der Gleichmässigkeit vom Mittelbereich zum Rand und Lampe mit einer solchen Struktur
DE112017001098T5 (de) Beleuchtungsvorrichtung
EP3199869A1 (de) Beleuchtungsvorrichtung
EP3408587B1 (de) Optisches system zum beeinflussen der lichtabgabe einer lichtquelle
AT509563B1 (de) Leuchte mit lichtausrichtungselementen
DE202013103401U1 (de) Freiformoptik für LED-Straßenleuchten
DE29710475U1 (de) Innenleuchte
WO2021058373A1 (de) Optisches element
EP3034928B1 (de) Leuchte und leuchtmittel hierfür
DE102014104339B4 (de) Zentrales Aufhellungselement für LED-Leuchten
CH690247A5 (de) Leuchtkörperaufbau.
DE112020006165B4 (de) Leuchte
EP2107297B1 (de) Leuchte, insbesondere Raumleuchte
EP1900998B1 (de) Reflektor mit einer lichtaufweitenden Struktur
DE102004026829B4 (de) Vorrichtung und Verfahren zum flächigen Abstrahlen von Licht
EP3002506B1 (de) Leuchte mit direktem und indirektem lichtanteil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17703055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017703055

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017703055

Country of ref document: EP

Effective date: 20180827