WO2017129237A1 - Gel-gel composition containing salicylic acid, one alkanolamine and pigments - Google Patents

Gel-gel composition containing salicylic acid, one alkanolamine and pigments Download PDF

Info

Publication number
WO2017129237A1
WO2017129237A1 PCT/EP2016/051687 EP2016051687W WO2017129237A1 WO 2017129237 A1 WO2017129237 A1 WO 2017129237A1 EP 2016051687 W EP2016051687 W EP 2016051687W WO 2017129237 A1 WO2017129237 A1 WO 2017129237A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
weight
company
pigments
acid
Prior art date
Application number
PCT/EP2016/051687
Other languages
French (fr)
Inventor
Micheline El Achkar
Chrystel Paute
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Priority to PCT/EP2016/051687 priority Critical patent/WO2017129237A1/en
Publication of WO2017129237A1 publication Critical patent/WO2017129237A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/368Carboxylic acids; Salts or anhydrides thereof with carboxyl groups directly bound to carbon atoms of aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8158Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/895Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes

Definitions

  • Gel-Gel composition containing salicylic acid, one alkanolamine and pigments
  • the present invention is directed towards proposing for the field of caring for and/or making up keratin materials, especially the skin and/or the lips, and in particular the skin, a novel galenical form that is most particularly advantageous with regard to its technical performance and the sensations it affords the user during its application, in particular to the skin.
  • keratin materials especially means the skin, the lips and/or the eyelashes, in particular the skin and/or the lips, and preferably the skin.
  • Cosmetic compositions are commonly used to give the skin an aesthetic colour, but also to hide and/or unify imperfections of the skin relief such as wrinkles and/or fine lines and/or scars.
  • many solid or fluid, anhydrous or non-anhydrous formulations have been developed to date, namely fluids, creams, compacts, loose powders or sticks.
  • the present invention more particularly concerns the field of cosmetic galenical formulations of gel/gel type.
  • compositions of the type gel-gel were proposed in the cosmetic domain and are particularly interesting as alternative of emulsions which tend to give a greasy feel, a sticky effect, a lack of freshness and a lack of lightness for the obtained textures.
  • This type of formulations combines a gelled aqueous phase with a gelled oily phase.
  • pigments generally used for conferring color and coverance tends to lead to a heterogeneous dispersion which can provoke a loss of stability during time, a substantial alteration of the cosmetic properties such color resistance, easy spreading, freshness, lightness, play time, comfort, coverance and an undesirable heterogeneous aspect for the consumer.
  • the present invention is directed, precisely, towards proposing a solution for overcoming this difficulty.
  • composition in particular for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising:
  • At least one pigment preferably coated with at least one hydrophobic compound.
  • the present invention relates to a composition, in particular for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising:
  • At least one pigment preferably coated with at least one hydrophobic compound.
  • the composition of the invention ensures uniform and stabilized distribution of the pigments. No sedimentation or aggregation of these particles is observed. What is more, a composition according to the invention shows good coverage properties and affords a homogeneous colour effect on application while at the same time giving the user a sensation of freshness and lightness. Finally, the composition proves to be easy to apply to the surface of the targeted keratin material. This performance is especially characterized technically by good play-time.
  • a subject of the invention is also a process for preparing a composition, in particular for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising:
  • At least one pigment preferably coated with at least one hydrophobic compound.
  • this process may advantageously comprise a step of mixing at least three or even more gelled phases.
  • the number of gelled aqueous phases and of gelled oily phases to be considered for forming a composition according to the invention may range for each of the two types of phase beyond two.
  • the mixing of the phases may be performed at room temperature.
  • the process of the invention may comprise, if necessary, a step of heating the mixture.
  • the representative gelled phases of the same type of architecture are gelled with a different gelling agent.
  • Multi-phase formulas may thus be developed.
  • a subject of the invention is also a process, especially a cosmetic process, for making up and/or caring for a keratin material, in particular the skin and/or the lips, comprising at least one step that consists in applying to the said keratin material a composition in accordance with the invention.
  • the present invention relates to a process, especially a cosmetic process, for caring for and/or making up a keratin material, in particular the skin and/or the lips, comprising at least the application to the said material of a composition, in particular a macroscopically homogeneous composition, obtained by extemporaneous mixing, before application or at the time of application to the said keratin material, of at least one aqueous phase gelled with at least one hydrophilic gelling agent; and of at least one oily phase gelled with at least one lipophilic gelling agent; the said composition comprising :
  • At least one pigment preferably coated with at least one hydrophobic compound,.
  • Salicylic acid corresponds to the following structure
  • Salicylic acid is present in the composition of the invention preferably in amounts from 0.1 to 5% by weight, more preferably from 0.1 to 3% by weight, and more preferably from 0,2 to 2% by weight relative to the total weight of the composition.
  • ALKANOLAMINE is present in the composition of the invention preferably in amounts from 0.1 to 5% by weight, more preferably from 0.1 to 3% by weight, and more preferably from 0,2 to 2% by weight relative to the total weight of the composition.
  • Alkanolamine means any chemical compound that contains both hydroxyl (-OH) and amino (-NH 2 , -NHR, and -NR 2 ) functional groups on an alkane backbone
  • alkanoamines which may be used according to the invention, may be cited : - C2-C4 alkanolamines as ethanolamine, isopropanolamine, isobutanolamine. - C1 -C4alkyl C1 -C4 alkanolamines as methylethanolamine, ethylethanolamine, butyl ethanolamine
  • C1 -C4 alkyl C1 -C4 dialkanolamines as, methyl diethanolamine, butyl diethanolamine,
  • C1 -C4 trialkanolamines will be particularly used, and more particularly triethanolamine.
  • the alkanolamine is present preferably in amounts 0.1 to 5% by weight, more preferably from 0.1 to 3% by weight, and more preferably from 0.2 to 2% by weight relative to the total weight of the composition.
  • salicylic acid and the alkanolamine are present preferably in a weight ratio triethanolamine/salycilic acid from 0.5/1 to 2/1 , and more particularly in a weight ratio equal to 1/1.
  • composition according to the invention is different from an emulsion.
  • An emulsion generally consists of an oily liquid phase and an aqueous liquid phase. It is a dispersion of droplets of one of the two liquid phases in the other. The size of the droplets forming the dispersed phase of the emulsion is typically about a micrometer (0.1 to 100 ⁇ ). Furthermore, an emulsion requires the presence of a surfactant or of an emulsifier to ensure its stability over time.
  • a composition according to the invention consists of a macroscopically homogeneous mixture of two immiscible gelled phases. These two phases both have a gel type texture. This texture is especially reflected visually by a consistent and/or creamy appearance.
  • the terms "macroscopically homogeneous mixture” means a mixture in which each of the gelled phases cannot be individualized with the naked eye. More precisely, in a composition according to the invention, the gelled aqueous phase and the gelled oily phase interpenetrate and thus form a stable, consistent product. This consistency is achieved by mixing interpenetrated macrodomains. These interpenetrated macrodomains are not measurable objects. Thus, by microscope, the composition according to the invention is very different from an emulsion.
  • a composition according to the invention has a gel type consistency. Furthermore, the stability of the composition is long-lasting without surfactant. Consequently, a cosmetic composition according to the invention does not require any surfactant or silicone emulsifier to ensure its stability over time.
  • a droplet of hydrophilic solvent diffuses in the sample and a droplet of hydrophobic solvent remains at the sample surface.
  • a droplet of hydrophilic solvent remains at the sample surface and a droplet of hydrophobic solvent diffuses throughout sample.
  • the hydrophilic and hydrophobic droplets diffuse in the entire sample.
  • the test which will be privileged for distinguishing a gel-type composition from an emulsion consists in a dilution test.
  • a gel-type composition the gelled aqueous domains and gel oily domains interpenetrate and form a stable and consistent product, whose dilution behavior in water and oil is different of emulsion's behavior. Therefore, the dilution behavior of a gel-type composition (bi-continuous system) can be compared to emulsions.
  • the dilution test consists to put 40g of product plus 160g of dilution solvent (water or oil) in a 30 ml plastic beaker.
  • the dilution is performed under controlled agitation to avoid any phenomenon of emulsification.
  • it is done using a planetary mixer: Speed Mixer TM DAC400FVZ.
  • the Speed Mixer is set to 1500 rpm for 4 minutes.
  • observation of resulting sample is made with a light microscope at a magnification of x 100 (x10x10). It may be noticed that oils like Parleam® and Xiameter PMX-200 Silicone Fluid 5CS® from Dow Corning are convenient as dilution solvents.
  • a gel-type composition when diluted either in oil or water, a heterogeneous aspect is always observed.
  • a gel-type composition (bi-continuous system) is diluted with water, one will observe lumps of oily gel in suspension and when a gel-type composition (bi-continuous system) is diluted with oil, one will observe lumps of aqueous gel in suspension.
  • the gelled aqueous phase and the gelled oily phase forming a composition according to the invention are present therein in a weight ratio ranging from 30/70 to 70/30 and preferably in a weight ratio ranging from 40/60 to 60/40. More preferentially, the aqueous phase and the oily phase are present in a weight ratio ranging from 50/50 to 60/40.
  • a composition according to the invention is in the form of a creamy gel with a minimum stress below which it does not flow unless it has been subjected to an external mechanical stress.
  • composition according to the invention may have a minimum threshold stress of 1.5 Pa and in particular greater than 10 Pa.
  • the gelled phases under consideration to form a composition according to the invention may have, respectively, a threshold stress of greater than 1 .5 Pa and preferably greater than 10 Pa.
  • Characterization of the threshold stresses is performed by oscillating rheology measurements. A method is proposed in the examples section of the present text.
  • the corresponding measurements are taken at 25°C using a Haake RS600 imposed-stress rheometer equipped with a plate-plate measuring body (60 mm diameter) fitted with an anti-evaporation device (bell jar). For each measurement, the sample is placed delicately in position and the measurements start 5 minutes after placing the sample in the air gap (2 mm). The tested composition is then subjected to a stress ramp from 10 "2 to 10 3 Pa at a set frequency of 1 Hz.
  • a composition according to the invention may also have a certain elasticity.
  • This elasticity may be characterized by a stiffness modulus G * which, under this minimum stress threshold, may be at least equal to 400 Pa and preferably greater than 1000 Pa.
  • the value G * of a composition may be obtained by subjecting the composition under consideration to a stress ramp from 10 "2 to 10 3 Pa at a set frequency of 1 Hz.
  • hydrophilic gelling agent means a compound that is capable of gelling the aqueous phase of the compositions according to the invention.
  • the gelling agent is hydrophilic and is thus present in the aqueous phase of the composition.
  • the gelling agent may be water-soluble or water-dispersible.
  • the hydrophilic gelling agent is chosen from synthetic polymeric gelling agents, polymeric gelling agents that are natural or of natural origin, mixed silicates and fumed silicas, and mixtures thereof.
  • synthetic polymeric gelling agents polymeric gelling agents that are natural or of natural origin
  • polymeric gelling agents that are natural or of natural origin mixed silicates and fumed silicas, and mixtures thereof.
  • polymeric hydrophilic gelling agents that are suitable for use in the invention may be natural or of natural origin.
  • expression "of natural origin” is intended to denote polymeric gelling agents that are obtained by modification of natural polymeric gelling agents.
  • These gelling agents may be particulate or non-particulate.
  • polysaccharides may be divided into several categories.
  • polysaccharides that are suitable for use in the invention may be homopolysaccharides such as fructans, glucans, galactans and mannans or heteropolysaccharides such as hemicellulose.
  • they may be linear polysaccharides such as pullulan or branched polysaccharides such as gum arabic and amylopectin, or mixed polysaccharides such as starch.
  • polysaccharides that are suitable for use in the invention may be distinguished according to whether or not they are starchy.
  • Representatives of this category that may most particularly be mentioned include native starches, modified starches and particulate starches.
  • the starches that may be used in the present invention are more particularly macromolecules in the form of polymers consisting of elemental units which are anhydroglucose (dextrose) units, linked via a(1 ,4) bonds, of chemical formula (C6H 10 O5)n-
  • elemental units which are anhydroglucose (dextrose) units, linked via a(1 ,4) bonds, of chemical formula (C6H 10 O5)n-
  • amylose which is a molecule formed from about 600 to 1000 linearly linked glucose molecules
  • amylopectin which is a polymer that is branched every 25 glucose residues approximately (a(1 ,6) bond).
  • the total chain may contain between 10 000 and 100 000 glucose residues.
  • amylose and of amylopectin vary as a function of the botanical origin of the starches. On average, a sample of native starch consists of about 25% amylose and 75% amylopectin.
  • Starch may be in the form of semi-crystalline granules: amylopectin is organized in leaflets, amylose forms an amorphous zone that is less well organized between the various leaflets.
  • Amylose self-organizes in a right-handed helix with six glucoses per turn. It dissociates into glucose which may be assimilated under the action of enzymes, amylases, all the more readily if it is in the form of amylopectin. Specifically, the helix formation does not favour the accessibility of starch to enzymes.
  • Starches are generally in the form of a white powder, which is insoluble in cold water, whose elemental particle size ranges from 3 to 100 microns.
  • starch paste By treating it with hot water, starch paste is obtained. It is used in industry for its thickening and gelling properties.
  • the botanical origin of the starch molecules used in the present invention may be cereals or tubers.
  • the starches are chosen, for example, from corn starch, rice starch, cassava starch, tapioca starch, barley starch, potato starch, wheat starch, sorghum starch and pea starch.
  • Native starches are represented, for example, by the products sold under the names C * AmilogelTM, Cargill GelTM, C * GelTM, Cargill GumTM, DryGelTM and C * Pharm GelTM by the company Cargill, under the name Amidon de ma ' i ' s by the company Roquette, and under the name Pure Tapioca by the company National Starch. Modified starches
  • modified starches used in the composition of the invention may be modified via one or more of the following reactions: pregelatinization, degradation (acid hydrolysis, oxidation or dextrinization), substitution (esterification or etherification), crosslinking (esterification), bleaching.
  • Monostarch phosphates (of the type St-0-PO-(OX) 2 ), distarch phosphates (of the type St- O-PO-(OX)-O-St) or even tristarch phosphates (of the type St-0-PO-(0-St) 2 ) or mixtures thereof may especially be obtained by crosslinking with phosphorus compounds.
  • X especially denotes alkali metals (for example sodium or potassium), alkaline-earth metals (for example calcium or magnesium), ammonium salts, amine salts, for instance those of monoethanolamine, diethanolamine, triethanolamine, 3-amino-1 ,2-propanediol, or ammonium salts derived from basic amino acids such as lysine, arginine, sarcosine, ornithine or citrulline.
  • alkali metals for example sodium or potassium
  • alkaline-earth metals for example calcium or magnesium
  • ammonium salts for instance those of monoethanolamine, diethanolamine, triethanolamine, 3-amino-1 ,2-propanediol, or ammonium salts derived from basic amino acids such as lysine, arginine, sarcosine, ornithine or citrulline.
  • the phosphorus compounds may be, for example, sodium tripolyphosphate, sodium orthophosphate, phosphorus oxychloride or sodium trimetaphosphate.
  • amphoteric starches these amphoteric starches containing one or more anionic groups and one or more cationic groups.
  • the anionic and cationic groups may be linked to the same reactive site of the starch molecule or to different reactive sites; they are preferably linked to the same reactive site.
  • the anionic groups may be of carboxylic, phosphate or sulfate type, preferably carboxylic.
  • the cationic groups may be of primary, secondary, tertiary or quaternary amine type.
  • amphoteric starches are especially chosen from the compounds having the following formulae: R' R
  • - St-O represents a starch molecule
  • - R which may be identical or different, represents a hydrogen atom or a methyl radical
  • - R' which may be identical or different, represents a hydrogen atom, a methyl radical or a -COOH group
  • - n is an integer equal to 2 or 3;
  • - M which may be identical or different, denotes a hydrogen atom, an alkali metal or alkaline-earth metal such as Na, K, Li or NH 4 , a quaternary ammonium or an organic amine;
  • R" represents a hydrogen atom or an alkyl radical containing from 1 to 18 carbon atoms.
  • the starch molecules may be derived from any plant source of starch, especially such as corn, potato, oat, rice, tapioca, sorghum, barley or wheat. It is also possible to use the hydrolysates of the starches mentioned above.
  • the modified starches are represented, for example, by the products sold under the names C * Tex-lnstant (pregelatinized adipate), C * StabiTex-lnstant (pregelatinized phosphate), C * PolarTex-lnstant (pregelatinized hydroxypropyl), C * Set (acid hydrolysis, oxidation), C * size (oxidation), C * BatterCrisp (oxidation), C * DrySet (dextrinization), C * TexTM (acetylated distarch adipate), C * PolarTexTM (hydroxypropyl distarch phosphate), C * StabiTexTM (distarch phosphate, acetylated distarch phosphate) by the company Cargill, by distarch phosphates or compounds that are rich in distarch phosphate, such as the product sold under the references Prejel VA-70-T AGGL (gelatinized hydroxypropyl cassava distarch phosphate) or Prejel TK1 (
  • oxidized starches use will be made especially of those sold under the name C * size from the company Cargill.
  • the native or modified starches described above may advantageously be used in a proportion of from 0.1 % to 8% by weight of solids and preferably about 1 % by weight, relative to the total weight of the aqueous phase.
  • Particulate starches that may be mentioned in particular include:
  • - hydrolysed starches grafted with an acrylic polymer (homopolymer or copolymer) and especially acryloacrylamide/sodium acrylate copolymer, for instance those sold under the names Water Lock A-240, A-180, B-204, D-223, A-100, C-200 and D-223 by the company Grain Processing (INCI name: Starch/acrylamide/sodium acrylate copolymer);
  • the carboxyalkyi groups are generally attached via an ether function, more particularly to carbon 1 .
  • the degree of substitution with carboxyalkyi units of the (C1 -C4) carboxyalkyi starch preferably ranges from 0.1 to 1 and more particularly from 0.15 to 0.5.
  • the degree of substitution is defined according to the present invention as being the mean number of hydroxyl groups substituted with an ester or ether group per monosaccharide unit of the polysaccharide.
  • the carboxyalkyi starches are advantageously used in the form of salts and especially salts of alkali metals or alkaline-earth metals such as Na, K, Li, NH4, or salts of a quaternary ammonium or of an organic amine such as monoethanolamine, diethanolamine or triethanolamine.
  • the (Ci-C 4 ) carboxyalkyi starches are, in the context of the present invention, advantageously carboxymethyl starches.
  • the carboxymethyl starches preferably comprise units having the following formula:
  • X optionally covalently bonded to the carboxyl unit, denotes a hydrogen atom, an alkali metal or alkaline-earth metal such as Na, K, Li, NH4, a quaternary ammonium or an organic amine, for instance monoethanolamine, diethanolamine or triethanolamine.
  • X denotes an Na+ cation.
  • the carboxyalkyi starches that may be used according to the present invention are preferably non-pregelatinized carboxyalkyi starches.
  • the carboxyalkyi starches that may be used according to the present invention are preferably partially or totally crosslinked carboxyalkyi starches.
  • a crosslinked carboxyalkyi starch has, as opposed to a non-crosslinked carboxyalkyi starch, an increased, controllable viscosity and greater stability. The crosslinking thus makes it possible to reduce the syneresis and to increase the resistance of the gel to shear effects.
  • the carboxyalkyi starches under consideration according to the invention are more particularly potato carboxyalkyi starches.
  • the carboxyalkyi starches that may be used according to the present invention are preferably sodium salts of carboxyalkyi starches, in particular a sodium salt of potato carboxymethyl starch, sold especially under the name Primojel® by the company DMV International or Glycolys® and Glycolys® LV by the company Roquette.
  • the potato carboxymethyl starches sold especially under the name Glycolys® by the company Roquette will be used.
  • the (Ci-C 4 ) carboxyalkyi starch particles are present in the compositions according to the invention in a swollen and unsplit form.
  • This swelling may be characterized by a swelling power Q that may advantageously be between 10 and 30 ml/g and preferably between 15 and 25 ml (volume of liquid absorbed)/g of dry particulate material.
  • the size of the swollen carboxyalkyi starch particles used according to the present invention generally ranges from 25 to 300 ⁇ .
  • the gel Primojel® containing 10% by weight of potato carboxyalkyi starch and sodium salt in water contains more than 80% of swollen particles of this starch with a diameter of greater than 50 microns and more particularly greater than 100 microns.
  • these particles are used for the preparation of the compositions according to the invention, in this swollen particulate state.
  • these particles are advantageously used in the form of an aqueous gel that is either prepared beforehand or already commercially available.
  • the gels under consideration according to the invention are advantageously translucent.
  • a carboxymethyl starch gel such as Primojel® which is at a concentration of 10% by weight may be adjusted to the required concentration before being used to prepare the expected cosmetic composition.
  • a particulate starch may be used in a proportion of from 0.1 % to 5% by weight of solids relative to the total weight of the aqueous phase, preferably between 0.5% and 2.5% by weight and in particular in a proportion of about 1.5% by weight, relative to the total weight of the aqueous phase.
  • non-starchy polysaccharides may be chosen from polysaccharides produced by microorganisms; polysaccharides isolated from algae, higher plant polysaccharides, such as homogeneous polysaccharides, in particular celluloses and derivatives thereof or fructosans, heterogeneous polysaccharides such as gum arables, galactomannans, glucomannans and pectins, and derivatives thereof; and mixtures thereof.
  • the polysaccharides may be chosen from fructans, gellans, glucans, amylose, amylopectin, glycogen, pullulan, dextrans, celluloses and derivatives thereof, in particular methylcelluloses, hydroxyalkylcelluloses, ethylhydroxyethylcelluloses and carboxymethylcelluloses, mannans, xylans, lignins, arabans, galactans, galacturonans, alginate-based compounds, chitin, chitosans, glucuronoxylans, arabinoxylans, xyloglucans, glucomannans, pectic acids and pectins, arabinogalactans, carrageenans, agars, glycosaminoglycans, gum arables, tragacanth gums, ghatti gums, karaya gums, locust bean gums, galactomannans such as guar gums and nonionic derivatives
  • polysaccharides may be chemically modified, especially with urea or urethane groups, or by a hydrolysis, oxidation, esterification, etherification, sulfatation, phosphatation, amination, amidation or alkylation reaction, or by several of these modifications.
  • the derivatives obtained may be anionic, cationic, amphoteric or nonionic.
  • the polysaccharides may be chosen from carrageenans, in particular kappa-carrageenan, gellan gum, agar-agar, xanthan gum, alginate-based compounds, in particular sodium alginate, scleroglucan gum, guar gum, inulin and pullulan, and mixtures thereof.
  • the compounds of this type that may be used in the present invention are chosen from those described especially in Kirk-Othmer's Encyclopedia of Chemical Technology, Third Edition, 1982, volume 3, pp. 896-900, and volume 15, pp. 439-458, in Polymers in Nature by E.A. McGregor and C.T. Greenwood, published by John Wiley & Sons, Chapter 6, pp. 240-328, 1980, in the publication by Robert L. Davidson entitled Handbook of Water-soluble Gums and Resins published by McGraw-Hill Book Company (1980) and in Industrial Gums - Polysaccharides and their Derivatives, edited by Roy L. Whistler, Second Edition, published by Academic Press Inc.
  • Such a gelling agent may be used in a proportion of from 0.1 % to 8% by weight of solids relative to the total weight of the aqueous phase, especially from 0.1 % to 6% by weight, preferably between 0.5% and 2.5% by weight, in particular in a proportion of about 1 % or even in a proportion of about 1 .5% by weight, relative to the total weight of the aqueous phase.
  • these polysaccharides that are suitable for use in the invention may be distinguished according to whether they are derived from microorganisms, algae or higher plants, and are detailed below.
  • Xanthan is a heteropolysaccharide produced on an industrial scale by the aerobic fermentation of the bacterium Xanthomonas campestris. Its structure is composed of a main chain of ⁇ -D-glucoses connected in ⁇ (1 ,4) manner, similar to cellulose. One glucose molecule out of two bears a trisaccharide side chain composed of an oD-mannose, of a ⁇ -D-glucuronic acid and of a terminal ⁇ -D-mannose. The internal mannose residue is generally acetylated on carbon 6. Approximately 30% of the terminal mannose residues bear a pyruvate group linked in chelated form between carbons 4 and 6.
  • the glucuronic acids and the charged pyruvic acids are ionizable and thus responsible for the anionic nature of xanthan (negative charge down to pH 1 ).
  • the content of the pyruvate and acetate residues varies according to the bacterial strain, the fermentation process, the post-fermentation conditions and the purification stages. These groups can be neutralized in the commercial products with Na+, K+ or Ca2+ ions (Satia, 1986).
  • the neutralized form can be converted into the acid form by ion exchange or by dialysis with an acid solution.
  • Xanthan gums have a molecular weight of between 1 000 000 and 50 000 000 and a viscosity of between 0.6 and 1.65 Pa.s for an aqueous composition comprising 1 % of xanthan gum (measured at 25°C using a Brookfield viscometer, LVT type, at 60 revolutions per minute).
  • Xanthan gums are represented, for example, by the products sold under the name Rhodicare by the company Rhodia Chimie, under the name SatiaxaneTM by the company Cargill Texturizing Solutions (for the food, cosmetic and pharmaceutical industry), under the name NovaxanTM by the company ADM and under the names Kelzan® and Keltrol® by the company CP-Kelco.
  • Pullulan is a polysaccharide consisting of maltotriose units, known under the name a(1 ,4)- a(1 ,6)-glucan. Three glucose units in maltotriose are connected via an a(1 ,4) glycosidic bond, whereas the consecutive maltotriose units are connected to each other via an a(1 ,6) glycosidic bond.
  • Pullulan is produced, for example, under the reference Pullulan PF 20 by the company Hayashibara in Japan.
  • Dextran is a neutral polysaccharide not bearing any charge groups, which is biologically inert, prepared by fermentation of beet sugar containing only hydroxyl groups.
  • Dextran may in particular be in the form of dextran sulfate.
  • Dextran is represented, for example, by the products sold under the name Dextran or Dextran T by the company Pharmacosmos, under the name Dextran 40 Powder or Dextran 70 Powder by the company Meito Sangyo Co.
  • Dextran sulfate is sold by the company PK Chemical A/S under the name Dextran Sulfate.
  • Succinoglycan is an extracellular polymer produced by bacterial fermentation, of high molecular weight, consisting of octasaccharide repeating units (8 repeating sugars). Succinoglycans are sold, for example, under the name Rheozan by the company Rhodia. Scleroglucan
  • Scleroglucan is a nonionic branched homopolysaccharide consisting of ⁇ -D glucan units.
  • the molecules consist of a main linear chain formed by D-glucose units linked via ⁇ (1 ,3) bonds, and of which one in three units is linked to a D-glucose side unit via a ⁇ (1 ,6) bond.
  • Scleroglucan is sold, for example, under the name Amigel by the company Alban Muller, or under the name ActigumTM CS by the company Cargill.
  • Gellan gum is an anionic linear heteropolysaccharide based on oligosaccharide units composed of 4 saccharides (tetrasaccharide). D-glucose, L-rhamnose and D-glucuronic acid in 2/1/1 proportions are present in gellan gum in the form of monomer elements. It is sold, for example, under the name Kelcogel CG LA by the company CP Kelco.
  • the polysaccharide according to the invention may be a galactan chosen especially from agar and carrageenans.
  • Carrageenans are anionic polysaccharides constituting the cell walls of various red algae (Rhodophyceae) belonging to the Gigartinaceae, Hypneaceae, Furcellariaceae and Polyideaceae families. They are generally obtained by hot aqueous extraction from natural strains of the said algae.
  • These linear polymers, formed by disaccharide units are composed of two D-galactopyranose units alternately linked via a(1 ,3) and ⁇ (1 ,4) bonds.
  • Carrageenans are composed essentially of potassium, sodium, magnesium, triethanolamine and/or calcium salts and of ester sulfates of polysaccharides.
  • Carrageenans are sold especially by the company SEPPIC under the name Solagum®, by the company Gelymar under the names Carragel®, Carralact® and Carrasol®, by the company Cargill under the names SatiagelTM and SatiagumTM, and by the company CP- Kelco under the names Genulacta®, Genugel® and Genuvisco®.
  • Galactans of agar type are galactose polysaccharides contained in the cell wall of some of these species of red algae (rhodophyceae). They are formed from a polymer group in which the base backbone is a ⁇ (1 ,3) D-galactopyranose and a(1 ,4) L 3-6 anhydrogalactose chain, these units repeating regularly and alternately. The differences within the agar family are due to the presence or absence of methyl or carboxyethyl solvated groups. These hybrid structures are generally present in variable percentage, depending on the species of algae and the season of harvest.
  • Agar-agar is a mixture of polysaccharides (agarose and agaropectin) of high molecular mass, between 40 000 and 300 000 g.mol-1. It is obtained by manufacturing algal extraction juices, generally by autoclaving, and by treating these juices comprising about 2% agar-agar, in order to extract the latter.
  • Agar is produced, for example, by the group B&V Agar Producers under the names Gold Agar, Agarite and Grand Agar by the company Hispanagar, and under the names Agar- Agar, QSA (Quick Soluble Agar) and Puragar by the company Setexam. Furcellaran
  • Furcellaran is obtained commercially from red algae Furcellaria fasztigiata. Furcellaran is produced, for example, by the company Est-Agar. Alginate-based compound
  • alginate-based compound means alginic acid, alginic acid derivatives and the salts of alginic acid (alginates) or of the said derivatives.
  • the alginate-based compound is water-soluble.
  • Alginic acid a natural substance derived from brown algae or certain bacteria, is a polyuronic acid composed of two uronic acids linked by 1 ,4-glycosidic bonds: ⁇ -D- mannuronic (M) acid and oL-glucuronic (G) acid.
  • Alginic acid is capable of forming water-soluble salts (alginates) with alkali metals such as sodium, potassium or lithium, substituted cations of lower amines and of ammonium such as methylamine, ethanolamine, diethanolamine or triethanolamine. These alginates are water-soluble in aqueous medium at a pH equal to 4 but dissociate into alginic acid at a pH below 4.
  • This (these) alginate-based compound(s) are capable of crosslinking in the presence of at least one crosslinking agent, by formation of ionic bonds between the said alginate-based compound(s) and the said crosslinking agent(s).
  • the formation of multiple crosslinking between several molecules of the said alginate-based compound(s) leads to the formation of a water-insoluble gel.
  • alginate-based compounds with a weight-average molecular mass ranging from 10 000 to 1 000 000, preferably from 15 000 to 500 000 and better still from 20 000 to 250 000.
  • the alginate-based compound is alginic acid and/or a salt thereof.
  • the alginate-based compound is an alginate salt, and preferably sodium alginate.
  • the alginate-based compound may be chemically modified, especially with urea or urethane groups, or by a hydrolysis, oxidation, esterification, etherification, sulfatation, phosphatation, amination, amidation or alkylation reaction, or by several of these modifications.
  • the derivatives obtained may be anionic, cationic, amphoteric or nonionic.
  • alginate-based compounds that are suitable for use in the invention may be represented, for example, by the products sold under the names Kelcosol, SatialgineTM, CecalgumTM or AlgogelTM by the company Cargill Products, under the name ProtanalTM by the company FMC Biopolymer, under the name Grindsted® Alginate by the company Danisco, under the name Kimica Algin by the company Kimica, and under the names Manucol® and Manugel® by the company ISP.
  • polysaccharides may be divided into homogeneous polysaccharides (only one species of saccharide) and heterogeneous polysaccharides composed of several types of saccharide. a) Homogeneous polysaccharides and derivatives thereof
  • the polysaccharide according to the invention may be chosen from celluloses and derivatives or fructosans.
  • the polysaccharide according to the invention may also be a cellulose or a derivative thereof, especially cellulose ethers or esters (e.g.: methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxymethylpropylcellulose, cellulose acetate, cellulose nitrate, nitrocellulose).
  • the invention may also contain a cellulose-based associative polymer.
  • the term "cellulose-based compound” means any polysaccharide compound bearing in its structure linear sequences of anhydroglucopyranose (AGU) residues linked via ⁇ (1 ,4) glycosidic bonds.
  • the repeating unit is the cellobiose dimer.
  • AGUs are found in chair conformation and bear three hydroxyl functions: two secondary alcohols (in positions 2 and 3) and a primary alcohol (in position 6).
  • the polymers thus formed combine together via intermolecular bonds of hydrogen bonding type, thus giving the cellulose a fibrillar structure (about 1500 molecules per fibre).
  • the degree of polymerization differs enormously according to the origin of the cellulose; its value may range from a few hundred to a few tens of thousands.
  • Cellulose has the following chemical structure:
  • the hydroxyl groups of cellulose may react partially or totally with different chemical reagents to give cellulose derivatives having intrinsic properties.
  • the cellulose derivatives may be anionic, cationic, amphoteric or nonionic.
  • cellulose ethers, cellulose esters and cellulose ester ethers are distinguished.
  • nonionic cellulose ethers mention may be made of alkylcelluloses such as methylcelluloses and ethylcelluloses, hydroxyalkylcelluloses such as hydroxymethylcelluloses, hydroxyethylcelluloses and hydroxypropylcelluloses, and mixed hydroxyalkylalkylcelluloses such as hydroxypropylmethylcelluloses, hydroxyethylmethylcelluloses, hydroxyethylethylcelluloses and hydroxybutylmethylcelluloses.
  • alkylcelluloses such as methylcelluloses and ethylcelluloses
  • hydroxyalkylcelluloses such as hydroxymethylcelluloses, hydroxyethylcelluloses and hydroxypropylcelluloses
  • mixed hydroxyalkylalkylcelluloses such as hydroxypropylmethylcelluloses, hydroxyethylmethylcelluloses, hydroxyethylethylcelluloses and hydroxybutylmethylcelluloses.
  • anionic cellulose ethers mention may be made of carboxyalkylcelluloses and salts thereof.
  • cationic cellulose ethers mention may be made of crosslinked or non- crosslinked, quaternized hydroxyethylcelluloses.
  • the quaternizing agent may in particular be glycidyltnmethylammonium chloride or a fatty amine such as laurylamine or stearylamine.
  • a fatty amine such as laurylamine or stearylamine.
  • Another cationic cellulose ether that may be mentioned is hydroxyethylcellulosehydroxypropyltrimethylammonium.
  • the quaternized cellulose derivatives are, in particular:
  • - quaternized celluloses modified with groups comprising at least one fatty chain, such as alkyl, arylalkyi or alkylaryl groups comprising at least 8 carbon atoms, or mixtures thereof;
  • - quaternized hydroxyethylcelluloses modified with groups comprising at least one fatty chain, such as alkyl, arylalkyi or alkylaryl groups comprising at least 8 carbon atoms, or mixtures thereof.
  • the alkyl radicals borne by the above quaternized celluloses or hydroxyethylcelluloses preferably comprise from 8 to 30 carbon atoms.
  • the aryl radicals preferably denote phenyl, benzyl, naphthyl or anthryl groups.
  • Examples of quaternized alkylhydroxyethylcelluloses containing C 8 -C 30 fatty chains that may be indicated include the products Quatrisoft LM 200, Quatrisoft LM-X 529-18-A, Quatrisoft LM-X 529-18B (C i2 alkyl) and Quatrisoft LM-X 529-8 (Ci 8 alkyl) sold by the company Amerchol, and the products Crodacel QM, Crodacel QL (C12 alkyl) and Crodacel QS (C18 alkyl) sold by the company Croda.
  • the cellulose derivatives mention may also be made of:
  • - celluloses modified with groups comprising at least one fatty chain for instance hydroxyethylcelluloses modified with groups comprising at least one fatty chain, such as alkyl groups, especially of C 8 -C 2 2, arylalkyi and alkylaryl groups, such as Natrosol Plus Grade 330 CS (C16 alkyls) sold by the company Aqualon, and - celluloses modified with alkylphenyl polyalkylene glycol ether groups, such as the product Amercell Polymer HM-1500 (nonylphenyl polyethylene glycol (15) ether) sold by the company Amerchol.
  • alkyl groups especially of C 8 -C 2 2, arylalkyi and alkylaryl groups, such as Natrosol Plus Grade 330 CS (C16 alkyls) sold by the company Aqualon
  • - celluloses modified with alkylphenyl polyalkylene glycol ether groups such as the product Amercell Polymer HM-1500 (nonyl
  • cellulose esters are mineral esters of cellulose (cellulose nitrates, sulfates, phosphates, etc.), organic esters of cellulose (cellulose monoacetates, triacetates, amidopropionates, acetatebutyrates, acetatepropionates or acetatetrimellitates, etc.), and mixed organic/mineral esters of cellulose, such as cellulose acetatebutyrate sulfates and cellulose acetatepropionate sulfates.
  • cellulose ester ethers mention may be made of hydroxypropylmethylcellulose phthalates and ethylcellulose sulfates.
  • the cellulose-based compounds of the invention may be chosen from unsubstituted celluloses and substituted celluloses.
  • the celluloses and derivatives are represented, for example, by the products sold under the names Avicel® (microcrystalline cellulose, MCC) by the company FMC Biopolymers, under the name Cekol (carboxymethylcellulose) by the company Noviant (CP-Kelco), under the name Akucell AF (sodium carboxymethylcellulose) by the company Akzo Nobel, under the name MethocelTM (cellulose ethers) and EthocelTM (ethylcellulose) by the company Dow, and under the names Aqualon® (carboxymethylcellulose and sodium carboxymethylcellulose), Benecel® (methylcellulose), BlanoseTM
  • the polysaccharide according to the invention may especially be a fructosan chosen from inulin and derivatives thereof (especially dicarboxy and carboxymethyl inulins).
  • Fructans or fructosans are oligosaccharides or polysaccharides comprising a sequence of anhydrofructose units optionally combined with several saccharide residues other than fructose.
  • Fructans may be linear or branched.
  • Fructans may be products obtained directly from a vegetable or microbial source or alternatively products whose chain length has been modified (increased or decreased) by fractionation, synthesis or hydrolysis, in particular enzymatic.
  • Fructans generally have a degree of polymerization from 2 to about 1000 and preferably from 2 to about 60.
  • the first group corresponds to products whose fructose units are for the most part linked via ⁇ (2,1 ) bonds. These are essentially linear fructans such as inulins.
  • the second group also corresponds to linear fructoses, but the fructose units are essentially linked via ⁇ (2,6) bonds. These products are levans.
  • the third group corresponds to mixed fructans, i.e. fructans containing ⁇ (2,6) and ⁇ (2,1 ) sequences. These are essentially branched fructans, such as graminans.
  • the fructans preferred in the compositions according to the invention are inulins.
  • Inulin may be obtained, for example, from chicory, dahlia or Jerusalem artichoke, preferably from chicory.
  • the polysaccharide especially the inulin, has a degree of polymerization from 2 to about 1000 and preferably from 2 to about 60, and a degree of substitution of less than 2 on the basis of one fructose unit.
  • the inulin used for this invention is represented, for example, by the products sold under the name BeneoTM Inulin by the company Orafti, and under the name Frutafit® by the company Sensus. b) Heterogeneous polysaccharides and derivatives thereof
  • Polysaccharides that may be used according to the invention may be gums, for instance cassia gum, karaya gum, konjac gum, gum tragacanth, tara gum, acacia gum or gum arabic.
  • Gum Arabic may be used according to the invention.
  • Gum arabic is a highly branched acidic polysaccharide which is present in the form of mixtures of potassium, magnesium and calcium salts.
  • the monomer elements of the free acid (arabic acid) are D-galactose, L-arabinose, L-rhamnose and D-glucuronic acid.
  • Galactomannans (guar, locust bean, fenugreek, tara gum) and derivatives (phosphated guar, hydroxypropyl guar, etc.)
  • Galactomannans are nonionic polysaccharides extracted from the albumin of seeds of leguminous plants, of which they constitute the storage carbohydrate.
  • Galactomannans are macromolecules consisting of a main chain of D-mannopyranose units connected in ⁇ (1 ,4) fashion, carrying side branches consisting of a single D- galactopyranose unit connected in a(1 ,6) fashion to the main chain.
  • the various galactomannans differ, on the one hand, in the proportion of oD-galactopyranose units present in the polymer and, on the other hand, in significant differences in terms of distribution of the galactose units along the mannose chain.
  • the mannose/galactose (M/G) ratio is of the order of 2 for guar gum, of 3 for tara gum and of 4 for locust bean gum.
  • Guar gum is characterized by a mannose:galactose ratio of the order of 2:1.
  • the galactose group is uniformly distributed along the mannose chain.
  • the guar gums that may be used according to the invention may be nonionic, cationic or anionic. According to the invention, use may be made of unmodified or chemically modified nonionic guar gums. Unmodified nonionic guar gums are, for example, the products sold under the names Vidogum GH, Vidogum G and Vidocrem by the company Unipektin and under the name Jaguar by the company Rhodia, under the name Meypro® Guar by the company Danisco, under the name ViscogumTM by the company Cargill and under the name Supercol® Guar Gum by the company Aqualon.
  • the hydrolysed nonionic guar gums that may be used according to the invention are represented, for example, by the products sold under the name Meyprodor® by the company Danisco.
  • the modified nonionic guar gums that may be used according to the invention are preferably modified with C1 -C6 hydroxyalkyl groups, among which mention may be made, for example, of hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxybutyl groups.
  • nonionic guar gums optionally modified by hydroxyalkyl groups are sold, for example, under the trade names Jaguar HP 60, Jaguar HP 105 and Jaguar HP 120 (hydroxypropyl guar) by the company Rhodia or under the name N-Hance® HP (hydroxypropyl guar) by the company Aqualon.
  • the cationic galactomannan gums preferably have a cationic charge density of less than or equal to 1 .5 meq/g and more particularly of between 0.1 and 1 meq/g.
  • the charge density can be determined according to the Kjeldahl method. It generally corresponds to a pH of the order of 3 to 9.
  • cationic galactomannan gum means any galactomannan gum containing cationic groups and/or groups that can be ionized into cationic groups.
  • the preferred cationic groups are chosen from those comprising primary, secondary, tertiary and/or quaternary amine groups.
  • the cationic galactomannan gums used generally have a weight-average molecular mass of between 500 and 5 x 106 approximately and preferably of between 103 and 3 x 106 approximately.
  • the cationic galactomannan gums that may be used according to the present invention are, for example, gums comprising tri(C1 -C4)alkylammonium cationic groups. Preferably, 2% to 30% by number of the hydroxyl functions of these gums bear trialkylammonium cationic groups.
  • these groups represent from 5% to 20% by weight relative to the total weight of the modified galactomannan gum.
  • the cationic galactomannan gum is preferably a guar gum comprising hydroxypropyltrimethylammonium groups, i.e. a guar gum modified, for example, with 2,3-epoxypropyltrimethylammonium chloride.
  • galactomannan gums in particular guar gums modified by cationic groups, are products already known per se and are, for example, described in the patents US 3 589 578 and US 4 031 307.
  • Such products are furthermore sold in particular under the trade names of Jaguar Excel, Jaguar C13 S, Jaguar C 15, Jaguar C 17 and Jaguar C162 (Guar Hydroxypropyltrimonium Chloride) by the company Rhodia, under the name Amilan® Guar (Guar Hydroxypropyltrimonium Chloride) by the company Degussa and under the name N-Hance® 3000 (Guar Hydroxypropyltrimonium Chloride) by the company Aqualon.
  • the anionic guar gums that may be used according to the invention are polymers comprising groups derived from carboxylic acid, sulfonic acid, sulfenic acid, phosphoric acid, phosphonic acid or pyruvic acid.
  • the anionic group is a carboxylic acid group.
  • the anionic group may also be in the form of an acid salt, especially a sodium, calcium, lithium or potassium salt.
  • the anionic guar gums that may be used according to the invention are preferentially carboxymethyl guar derivatives (carboxymethyl guar or carboxymethyl hydroxypropyl guar). Locust bean
  • Locust bean gum is extracted from the seeds of the carob tree (Ceratonia siliqua).
  • the unmodified locust bean gum that may be used in this invention is sold, for example, under the name ViscogumTM by the company Cargill, under the name Vidogum L by the company Unipektin or under the name Grinsted® LBG by the company Danisco.
  • the chemically modified locust bean gums that may be used in this invention may be represented, for example, by the cationic locust beans sold under the name Catinal CLB (Locust Bean Hydroxypropyltrimonium Chloride) by the company Toho.
  • Catinal CLB Locust Bean Hydroxypropyltrimonium Chloride
  • the tara gum that may be used in the context of this invention is sold, for example, under the name Vidogum SP by the company Unipektin.
  • Glucomannan is a polysaccharide of high molecular weight (500 000 ⁇ Mglucomannan ⁇ 2 000 000), composed of D-mannose and D-glucose units with a branch approximately every 50 or 60 units. It is found in wood but it is also the main constituent of konjac gum. Konjac (Amorphophallus konjac) is a plant of the Araceae family.
  • Pectins are linear polymers of oD-galacturonic acid (at least 65%) linked in positions 1 and 4, with a certain proportion of carboxylic groups esterified with a methanol group. About 20% of the sugars constituting the pectin molecule are neutral sugars (L-rhamnose, D-glucose, D-galactose, L-arabinose, D-xylose). The L-rhamnose residues are present in all pectins, integrated into the main chain in positions 1 ,2.
  • the uronic acid molecules bear carboxyl functions. This function gives the pectins the capacity for exchanging ions, when they are in COO- form. Bivalent ions (in particular calcium) have the capacity of forming ionic bridges between two carboxyl groups of two different pectin molecules.
  • a certain proportion of the carboxylic groups are esterified with a methanol group.
  • the natural degree of esterification of a pectin may range between 70% (apple, lemon) and 10% (strawberry) according to the source used. Starting with pectins with a high degree of esterification, it is possible to hydrolyse the -COOCH 3 group, so as to obtain weakly esterified pectins. Depending on the proportion of methylated or non- methylated monomers, the chain is therefore more or less acidic.
  • Pectins are thus defined as being HM (high-methoxy) pectins, having a degree of esterification of greater than 50%, and LM (low-methoxy) pectins, having a degree of esterification of less than 50%.
  • Pectins are especially sold by the company Cargill under the name UnipectineTM, by the company CP-Kelco under the name Genu, and by Danisco under the name Grinsted Pectin.
  • chitin poly-N-acetyl-D-glucosamine, ⁇ (1 ,4)-2-acetamido-2-deoxy-D- glucose
  • chitosan and derivatives chitosan ⁇ -glycerophosphate, carboxymethylchitin, etc.
  • GAG glycosaminoglycans
  • xylans or arabinoxylans
  • Arabinoxylans are polymers of xylose and arabinose, which are grouped together under the name "pentosans". Xylans consist of a main chain of D-xylose units linked in ⁇ (1 ,4) manner, and on which are found three substituents (Rouau & Thibault, 1987): acid units, oL-arabinofuranose units, side chains which may contain arabinose, xylose, galactose and glucuronic acid.
  • the polysaccharide is preferably hyaluronic acid, or a salt thereof such as the sodium salt (sodium hyaluronate).
  • synthetic means that the polymer is neither naturally existing nor a derivative of a polymer of natural origin.
  • the synthetic polymeric hydrophilic gelling agent under consideration according to the invention may or may not be particulate.
  • the term "particulate" means that the polymer is in the form of particles, preferably spherical particles.
  • the polymeric hydrophilic gelling agent is advantageously chosen from crosslinked acrylic homopolymers or copolymers; associative polymers, in particular associative polymers of polyurethane type; polyacrylamides and crosslinked and/or neutralized 2-acrylamido-2-methylpropanesulfonic acid polymers and copolymers; modified or unmodified carboxyvinyl polymers, and mixtures thereof, especially as defined below.
  • Proportions of such gelling agents will notably vary according to the considered hydrophilic gelling agent and/or according to the nature of the coated pigments considered in the composition according to the invention.
  • a hydrophilic gelling agent may be at least one synthetic polymeric gelling agent chosen from crosslinked acrylic homopolymers or copolymers; associative polymers, in particular associative polymers of polyurethane type; polyacrylamides and crosslinked and/or neutralized 2-acrylamido-2-methylpropanesulfonic acid polymers and copolymers; modified or unmodified carboxyvinyl polymers, and mixtures thereof.
  • synthetic means that the polymer is neither naturally existing nor a derivative of a polymer of natural origin.
  • the synthetic polymeric hydrophilic gelling agent under consideration according to the invention may or may not be particulate.
  • the term "particulate” means that the polymer is in the form of particles, preferably spherical particles.
  • They are preferably chosen from crosslinked polymers.
  • They may especially be crosslinked acrylic homopolymers or copolymers, which are preferably partially neutralized or neutralized, and which are in particulate form.
  • the particulate gelling agent according to the present invention is chosen from crosslinked sodium polyacrylates. Preferably, it has in the dry or non-hydrated state a mean size of less than or equal to 100 ⁇ and preferably less than or equal to 50 ⁇ .
  • the mean size of the particles corresponds to the mass-average diameter (D50) measured by laser particle size analysis or another equivalent method known to those skilled in the art.
  • the particulate gelling agent according to the present invention is chosen from crosslinked sodium polyacrylates, preferably in the form of particles with a mean size (or mean diameter) of less than or equal to 100 microns, more preferably in the form of spherical particles.
  • crosslinked sodium polyacrylates mention may be made of those sold under the brand names Octacare X100, X1 10 and RM100 by the company Avecia, those sold under the names Flocare GB300 and Flosorb 500 by the company SNF, those sold under the names Luquasorb 1003, Luquasorb 1010, Luquasorb 1280 and Luquasorb 1 1 10 by the company BASF, those sold under the names Water Lock G400 and G430 (I NCI name: Acrylamide/Sodium acrylate copolymer) by the company Grain Processing. Mention may also be made of crosslinked polyacrylate microspheres, for instance those sold under the name Aquakeep® 10 SH NF by the company Sumitomo Seika.
  • Such gelling agents may be used in a proportion of from 0.1 % to 5% by weight of solids relative to the total weight of the aqueous phase, especially from 0.5% to 2% by weight and in particular in a proportion of about from 0.8% to 1 .7% by weight, relative to the total weight of the aqueous phase.
  • the term "associative polymer” means any amphiphilic polymer comprising in its structure at least one fatty chain and at least one hydrophilic portion.
  • the associative polymers in accordance with the present invention may be anionic, cationic, nonionic or amphoteric.
  • associative anionic polymers that may be mentioned are those comprising at least one hydrophilic unit, and at least one fatty-chain allyl ether unit, more particularly those whose hydrophilic unit is formed by an unsaturated ethylenic anionic monomer, more particularly by a vinylcarboxylic acid and most particularly by an acrylic acid or a methacrylic acid or mixtures thereof, and whose fatty-chain allyl ether unit corresponds to the monomer of formula (I) below:
  • R' denotes H or CH 3
  • B denotes the ethylenoxy radical
  • n is zero or denotes an integer ranging from 1 to 100
  • R denotes a hydrocarbon-based radical chosen from alkyl, arylalkyl, aryl, alkylaryl and cycloalkyl radicals, comprising from 8 to 30 carbon atoms, preferably 10 to 24 and even more particularly from 12 to 18 carbon atoms.
  • Anionic amphiphilic polymers of this type are described and prepared, according to an emulsion polymerization process, in patent EP 0 216 479.
  • maleic anhydride/C 3 o-C 3 8 a-olefin/alkyl maleate terpolymers such as the product (maleic anhydride/C30-C38 a-olefin/isopropyl maleate copolymer) sold under the name Performa V 1608 by the company Newphase Technologies.
  • associative anionic polymers it is possible, according to a preferred embodiment, to use copolymers comprising among their monomers an ⁇ , ⁇ - monoethylenically unsaturated carboxylic acid and an ester of an ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid and of an oxyalkylenated fatty alcohol.
  • these compounds also comprise as monomer an ester of an ⁇ , ⁇ - monoethylenically unsaturated carboxylic acid and of a Ci-C 4 alcohol.
  • examples of compounds of this type that may be mentioned include Aculyn 22® sold by the company Rohm & Haas, which is a methacrylic acid/ethyl acrylate/oxyalkylenated stearyl methacrylate (comprising 20 OE units) terpolymer or Aculyn 28 (methacrylic acid/ethyl acrylate/oxyethylenated behenyl methacrylate (25 OE) terpolymer).
  • associative anionic polymers examples include anionic polymers comprising at least one hydrophilic unit of unsaturated olefinic carboxylic acid type, and at least one hydrophobic unit exclusively of the type such as a (C10-C30) alkyl ester of an unsaturated carboxylic acid. Examples that may be mentioned include the anionic polymers described and prepared according to patents US 3 915 921 and 4 509 949.
  • Associative anionic polymers that may also be mentioned include anionic terpolymers.
  • the anionic terpolymer used according to the invention is a linear or branched and/or crosslinked terpolymer, of at least one monomer (1 ) bearing an acid function in free form, which is partially or totally salified with a nonionic monomer (2) chosen from N,N- dimethylacrylamide and 2-hydroxyethyl acrylate and at least one polyoxyethylenated alkyl acrylate monomer (3) of formula (I) below:
  • R1 represents a hydrogen atom
  • R represents a linear or branched C2-C8 alkyl radical
  • n represents a number ranging from 1 to 10.
  • branched polymer denotes a non-linear polymer which bears side chains so as to obtain, when this polymer is dissolved in water, a high degree of entanglement leading to very high viscosities, at a low speed gradient.
  • crosslinked polymer denotes a non-linear polymer which is in the form of a three-dimensional network that is insoluble in water but swellable in water, leading to the production of a chemical gel.
  • the acid function of the monomer (1 ) is especially a sulfonic acid or phosphonic acid function, the said functions being in free or partially or totally salified form.
  • the monomer (1 ) may be chosen from styrenesulfonic acid, ethylsulfonic acid and 2- methyl-2-[(1 -oxo-2-propenyl)amino]-1 -propanesulfonic acid (also known as acryloyldimethyl taurate), in free or partially or totally salified form. It is present in the anionic terpolymer preferably in molar proportions of between 5 mol% and 95 mol% and more particularly between 10 mol% and 90 mol%.
  • the monomer (1 ) will more particularly be 2-methyl-2-[(1 -oxo-2-propenyl)amino]-1 -propanesulfonic acid in free or partially or totally salified form.
  • the acid function in partially or totally salified form will preferably be an alkali metal salt such as a sodium or potassium salt, an ammonium salt, an amino alcohol salt such as a monoethanolamine salt, or an amino acid salt such as a lysine salt.
  • the monomer (2) is preferably present in the anionic terpolymer in molar proportions of between 4.9 mol% and 90 mol%, more particularly between 9.5 mol% and 85 mol% and even more particularly between 19.5 mol% and 75 mol%.
  • linear C8-C16 alkyl radicals examples include octyl, decyl, undecyl, tridecyl, tetradecyl, pentadecyl and hexadecyl.
  • examples of branched C8-C16 alkyl radicals that may be mentioned include 2-ethylhexyl, 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, 4-methylpentyl, 5- methylhexyl, 6-methylheptyl, 15-methylpentadecyl, 16-methylheptadecyl and 2-hexyloctyl.
  • R denotes a Ci 2 -Ci 6 alkyl radical.
  • n ranges from 3 to 5.
  • Tetraethoxylated lauryl acrylate will more particularly be used as monomer of formula (I).
  • the monomer (3) of formula (I) is preferably present in the anionic terpolymer in molar proportions of between 0.1 mol% and 10 mol% and more particularly between 0.5 mol% and 5 mol%.
  • the anionic terpolymer is crosslinked and/or branched with a diethylenic or polyethylenic compound in the proportion expressed relative to the total amount of monomers used, from 0.005 mol% to 1 mol%, preferably from 0.01 mol% to 0.5 mol% and more particularly from 0.01 mol% to 0.25 mol%.
  • the crosslinking agent and/or branching agent is preferably chosen from ethylene glycol dimethacrylate, diallyloxyacetic acid or a salt thereof, such as sodium diallyloxyacetate, tetraallyloxyethane, ethylene glycol diacrylate, diallylurea, triallylamine, trimethylolpropane triacrylate and methylenebis(acrylamide), or mixtures thereof.
  • the anionic terpolymer may contain additives such as complexing agents, transfer agents or chain-limiting agents. Use will be made more particularly of an anionic terpolymer of 2-methyl-2-[(1 -oxo-2- propenyl]amino]-1 -propanesulfonic acid partially or totally salified in the form of the ammonium salt, N,N-dimethylacrylamide and tetraethoxylated lauryl acrylate crosslinked with trimethylolpropane triacrylate, of INCI name Polyacrylate Crosspolymer-6, such as the product sold under the trade name Sepimax Zen® by the company SEPPIC.
  • Cationic associative polymers that may be mentioned include polyacrylates bearing amine side groups.
  • the polyacrylates bearing quaternized or non-quaternized amine side groups contain, for example, hydrophobic groups of the type such as steareth-20 (polyoxyethylenated (20) stearyl alcohol).
  • polyacrylates bearing amino side chains examples include the polymers 8781 -121 B or 9492-103 from the company National Starch.
  • the nonionic associative polymers may be chosen from:
  • Associative polyurethanes are nonionic block copolymers comprising in the chain both hydrophilic blocks usually of polyoxyethylene nature (polyurethanes may then be referred to as polyurethane polyethers), and hydrophobic blocks that may be aliphatic sequences alone and/or cycloaliphatic and/or aromatic sequences.
  • these polymers comprise at least two hydrocarbon-based lipophilic chains containing from 6 to 30 carbon atoms, separated by a hydrophilic block, the hydrocarbon- based chains possibly being pendent chains or chains at the end of the hydrophilic block.
  • the polymer may comprise a hydrocarbon-based chain at one end or at both ends of a hydrophilic block.
  • Associative polyurethanes may be block polymers, in triblock or multiblock form.
  • the hydrophobic blocks may thus be at each end of the chain (for example: triblock copolymer containing a hydrophilic central block) or distributed both at the ends and in the chain (for example: multiblock copolymer).
  • These polymers may also be graft polymers or star polymers.
  • the associative polyurethanes are triblock copolymers in which the hydrophilic block is a polyoxyethylene chain comprising from 50 to 1000 oxyethylene groups.
  • associative polyurethanes comprise a urethane bond between the hydrophilic blocks, whence arises the name.
  • a nonionic associative polymer of polyurethane type is used as gelling agent.
  • nonionic fatty-chain polyurethane polyethers that may be used in the invention, it is also possible to use Rheolate® FX 1 100 (Steareth-100/PEG 136/HDI (hexamethyl diisocyanate) copolymer), Rheolate® 205 containing a urea function, sold by the company Elementis, or Rheolate® 208, 204 or 212, and also Acrysol® RM 184 or Acrysol® RM 2020.
  • the product DW 1206B® from Rohm & Haas containing a C20 alkyl chain and a urethane bond, sold at a solids content of 20% in water, may also be used.
  • Use may also be made of solutions or dispersions of these polymers, especially in water or in aqueous-alcoholic medium.
  • examples of such polymers that may be mentioned are Rheolate® 255, Rheolate® 278 and Rheolate® 244 sold by the company Elementis.
  • Use may also be made of the products DW 1206F and DW 1206J sold by the company Rohm & Haas.
  • the associative polyurethanes that may be used according to the invention are in particular those described in the article by G. Fonnum, J. Bakke and Fk. Hansen - Colloid Polym. Sci., 271 , 380-389 (1993).
  • an associative polyurethane that may be obtained by polycondensation of at least three compounds comprising (i) at least one polyethylene glycol comprising from 150 to 180 mol of ethylene oxide, (ii) stearyl alcohol or decyl alcohol, and (iii) at least one diisocyanate.
  • Aculyn® 46 is a polycondensate of polyethylene glycol containing 150 or 180 mol of ethylene oxide, of stearyl alcohol and of methylenebis(4-cyclohexyl isocyanate) (SMDI), at 15% by weight in a matrix of maltodextrin (4%) and water (81 %)
  • Aculyn® 44 is a polycondensate of polyethylene glycol containing 150 or 180 mol of ethylene oxide, of decyl alcohol and of methylenebis(4-cyclohexyl isocyanate) (SMDI), at 35% by weight in a mixture of propylene glycol (39%) and water (26%).
  • Use may also be made of solutions or dispersions of these polymers, especially in water or in aqueous-alcoholic medium.
  • examples of such polymers include SER AD FX1010, SER AD FX1035 and SER AD 1070 from the company Elementis, and Rheolate® 255, Rheolate® 278 and Rheolate® 244 sold by the company Elementis.
  • Use may also be made of the products Aculyn® 44, Aculyn® 46, DW 1206F and DW 1206J, and also Acrysol® RM 184 from the company Rohm & Haas, or alternatively Borchi Gel LW 44 from the company Borchers, and mixtures thereof.
  • Amphoteric associative polymers include SER AD FX1010, SER AD FX1035 and SER AD 1070 from the company Elementis, and Rheolate® 255, Rheolate® 278 and Rheolate® 244 sold by the company Elementis.
  • Use may also be made
  • associative amphoteric polymers of the invention mention may be made of crosslinked or non-crosslinked, branched or unbranched amphoteric polymers, which may be obtained by copolymerization:
  • R 4 and R 5 which may be identical or different, represent a hydrogen atom or a methyl radical
  • R 6 , R7 and R 8 which may be identical or different, represent a linear or branched alkyl radical containing from 1 to 30 carbon atoms;
  • Z represents an NH group or an oxygen atom
  • n is an integer from 2 to 5;
  • A is an anion derived from an organic or mineral acid, such as a methosulfate anion or a halide such as chloride or bromide;
  • R 9 and R 1 which may be identical or different, represent a hydrogen atom or a methyl radical
  • Z1 represents a group OH or a group NHC(CH 3 ) 2 CH 2 S0 3 H;
  • the monomers of formula (IVa), (IVb) or (VI) comprising at least one fatty chain containing from 8 to 30 carbon atoms and said compounds of the monomers of formulae (IVa), (IVb), (V) and (VI) possibly being quaternized, for example with a C C 4 alkyl halide or a C C 4 dialkyl sulfate.
  • the monomers of formulae (IVa) and (IVb) of the present invention are preferably chosen from the group formed by:
  • dimethylaminopropylmethacrylamide or dimethylaminopropylacrylamide optionally quaternized, for example with a C1 -C4 alkyl halide or a C1 -C4 dialkyl sulfate.
  • the monomer of formula (IVa) is chosen from acrylamidopropyltrimethylammonium chloride and methacrylamidopropyltrimethylammonium chloride.
  • the compounds of formula (V) of the present invention are preferably chosen from the group formed by acrylic acid, methacrylic acid, crotonic acid, 2-methylcrotonic acid, 2- acrylamido-2-methylpropanesulfonic acid and 2-methacrylamido-2-methylpropanesulfonic acid. More particularly, the monomer of formula (V) is acrylic acid.
  • the monomers of formula (VI) of the present invention are preferably chosen from the group formed by C12-C22 and more particularly Ci 6 -Ci 8 alkyl acrylates or methacrylates.
  • the crosslinking or branching agent is preferably chosen from ⁇ , ⁇ '- methylenebisacrylamide, triallylmethylammonium chloride, allyl methacrylate, n- methylolacrylamide, polyethylene glycol dimethacrylates, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1 ,6-hexanediol dimethacrylate and allyl sucrose.
  • the polymers according to the invention may also contain other monomers such as nonionic monomers and in particular C1-C4 alkyl acrylates or methacrylates.
  • the ratio of the number of cationic charges/anionic charges in these amphoteric polymers is preferably equal to about 1.
  • the weight-average molecular weights of the associative amphoteric polymers have a weight-average molecular mass of greater than 500, preferably between 10 000 and 10 000 000 and even more preferentially between 100 000 and 8 000 000.
  • the associative amphoteric polymers of the invention contain from 1 mol% to 99 mol%, more preferentially from 20 mol% to 95 mol% and even more preferentially from 25 mol% to 75 mol% of compound(s) of formula (IVa) or (IVb). They also preferably contain from 1 mol% to 80 mol%, more preferentially from 5 mol% to 80 mol% and even more preferentially from 25 mol% to 75 mol% of compound(s) of formula (V).
  • the content of compound(s) of formula (VI) is preferably between 0.1 mol% and 70 mol%, more preferentially between 1 mol% and 50 mol% and even more preferentially between 1 mol% and 10 mol%.
  • the crosslinking or branching agent when it is present, is preferably between 0.0001 mol% and 1 mol% and even more preferentially between 0.0001 mol% and 0.1 mol%.
  • the mole ratio between the compound(s) of formula (IVa) or (IVb) and the compound(s) of formula (V) ranges from 20/80 to 95/5 and more preferentially from 25/75 to 75/25.
  • amphoteric polymers that are particularly preferred according to the invention are chosen from acrylic acid/acrylamidopropyltrimethylammonium chloride/stearyl methacrylate copolymers.
  • the associative polymer is chosen from nonionic associative polymers and more particularly from associative polyurethanes, such as Steareth-100/PEG-136/HDI Copolymer sold under the name Rheolate FX 1 100 by Elementis.
  • Such an associative polymer is advantageously used in a proportion of from 0.1 % to 8% by weight of solids and preferably about 3% by weight, relative to the total weight of the aqueous phase.
  • the polymers used that are suitable as aqueous gelling agent for the invention may be crosslinked or non-crosslinked homopolymers or copolymers comprising at least the 2- acrylamidomethylpropanesulfonic acid (AMPS®) monomer, in a form partially or totally neutralized with a mineral base other than aqueous ammonia, such as sodium hydroxide or potassium hydroxide. They are preferably totally or almost totally neutralized, i.e. at least 90% neutralized.
  • AMPS® 2- acrylamidomethylpropanesulfonic acid
  • AMPS® polymers according to the invention may be crosslinked or non- crosslinked.
  • the crosslinking agents may be chosen from the polyolefinically unsaturated compounds commonly used for crosslinking polymers obtained by free-radical polymerization.
  • crosslinking agents examples include divinylbenzene, diallyl ether, dipropylene glycol diallyl ether, polyglycol diallyl ethers, triethylene glycol divinyl ether, hydroquinone diallyl ether, ethylene glycol or tetraethylene glycol di(meth)acrylate, trimethylolpropane triacrylate, methylenebisacrylamide, methylenebismethacrylamide, triallylamine, triallyl cyanurate, diallyl maleate, tetraallylethylenediamine, tetraallyloxyethane, trimethylolpropane diallyl ether, allyl (meth)acrylate, allylic ethers of alcohols of the sugar series, or other allyl or vinyl ethers of polyfunctional alcohols, and also the allylic esters of phosphoric and/or vinylphosphonic acid derivatives, or mixtures of these compounds.
  • the crosslinking agent is chosen from methylenebisacrylamide, allyl methacrylate and trimethylolpropane triacrylate (TMPTA).
  • TMPTA trimethylolpropane triacrylate
  • the degree of crosslinking generally ranges from 0.01 mol% to 10 mol% and more particularly from 0.2 mol% to 2 mol% relative to the polymer.
  • AMPS® polymers that are suitable for use in the invention are water-soluble or water- dispersible. They are in this case: -either "homopolymers” comprising only AMPS monomers and, if they are crosslinked, one or more crosslinking agents such as those defined above;
  • copolymers obtained from AMPS® and from one or more hydrophilic or hydrophobic ethylenically unsaturated monomers and, if they are crosslinked, one or more crosslinking agents such as those defined above.
  • said copolymers comprise hydrophobic ethylenically unsaturated monomers, the latter do not comprise a fatty chain and are preferably present in small amounts.
  • fatty chain is intended to mean any hydrocarbon-based chain containing at least 7 carbon atoms.
  • water-soluble or water-dispersible means polymers which, when introduced into an aqueous phase at 25°C, at a mass concentration equal to 1 %, make it possible to obtain a macroscopically homogeneous and transparent solution, i.e. a solution with a light maximum transmittance value, at a wavelength equal to 500 nm, through a sample 1 cm thick, of at least 60% and preferably of at least 70%.
  • the "homopolymers” according to the invention are preferably crosslinked and neutralized, and they may be obtained according to the preparation process comprising the following steps:
  • the monomer such as AMPS in free form is dispersed or dissolved in a solution of tert- butanol or of water and tert-butanol;
  • the monomer solution or dispersion obtained in (a) is neutralized with one or more mineral or organic bases, preferably aqueous ammonia NH3, in an amount making it possible to obtain a degree of neutralization of the sulfonic acid functions of the polymer ranging from 90% to 100%;
  • a standard free-radical polymerization is performed in the presence of free-radical initiators at a temperature ranging from 10 to 150°C; the polymer precipitates in the tert- butanol-based solution or dispersion.
  • the water-soluble or water-dispersible AMPS® copolymers according to the invention contain water-soluble ethylenically unsaturated monomers, hydrophobic monomers, or mixtures thereof.
  • the water-soluble co-monomers may be ionic or nonionic.
  • - Ri is chosen from H, -CH 3 , -C 2 H 5 and -C 3 H 7 ;
  • - is chosen from:
  • R 2 is a linear or branched, saturated or unsaturated hydrocarbon-based radical containing from 1 to 6 carbon atoms, substituted with at least one sulfonic (-S0 3 -) and/or sulfate (-S0 4 ) and/or phosphate (-P0 4 H 2 ) group.
  • nonionic water-soluble co-monomers mention may be made, for example, of: - (meth)acrylamide,
  • N-vinyllactams comprising a cyclic alkyl group containing from 4 to 9 carbon atoms, such as N-vinylpyrrolidone, N-butyrolactam and N-vinylcaprolactam,
  • - R 3 is chosen from H, -CH 3 , -C 2 H 5 and -C 3 H 7 ;
  • R 4 is a linear or branched, saturated or unsaturated hydrocarbon-based radical having from 1 to 6 carbon atoms, optionally substituted with a halogen (iodine, bromine, chlorine or fluorine) atom; a hydroxyl (-OH) group; ether.
  • halogen iodine, bromine, chlorine or fluorine
  • ether a hydroxyl (-OH) group
  • Mention may be made, for example, of glycidyl (meth)acrylate, hydroxyethyl methacrylate, and (meth)acrylates of ethylene glycol, of diethylene glycol or of polyalkylene glycol.
  • hydrophobic comonomers without a fatty chain mention may be made, for example, of:
  • styrene and derivatives thereof, such as 4-butylstyrene, omethylstyrene and vinyltoluene;
  • silicone derivatives which, after polymerization, result in silicone polymers such as methacryloxypropyltris(trimethylsiloxy)silane and silicone methacrylamides;
  • - R 4 is chosen from H, -CH 3 , -C 2 H 5 and -C3H 7 ;
  • R 5 is a linear or branched, saturated or unsaturated hydrocarbon-based radical containing from 1 to 6 carbon atoms. Mention may be made, for example, of methyl methacrylate, ethyl methacrylate, n-butyl (meth)acrylate, tert-butyl (meth)acrylate, cyclohexyl acrylate, isobornyl acrylate and 2- ethylhexyl acrylate.
  • the water-soluble or water-dispersible AMPS® polymers of the invention preferably have a molar mass ranging from 50 000 g/mol to 10 000 000 g/mol, preferably from 80 000 g/mol to 8 000 000 g/mol, and even more preferably from 100 000 g/mol to 7 000 000 g/mol.
  • water-soluble or water-dispersible AMPS homopolymers in accordance with the invention, mention may be made, for example, of crosslinked or non-crosslinked polymers of sodium acrylamido-2-methylpropanesulfonate, such as that used in the commercial product Simulgel 800 (CTFA name: Sodium Polyacryloyldimethyl Taurate), crosslinked ammonium acrylamido-2-methylpropanesulfonate polymers (INCI name: Ammonium polydimethyltauramide) such as those described in patent EP 0 815 928 B1 and such as the product sold under the trade name Hostacerin AMPS® by the company Clariant.
  • CTFA name Sodium Polyacryloyldimethyl Taurate
  • ICI name Ammonium polydimethyltauramide
  • the product sold under the name Sodium acrylamido-2- methylpropanesulfonate/hydroxyethyl acrylate copolymer such as the commercial product Sepinov EMT 10 (INCI name: Hydroxyethyl acrylate/sodium acryloyldimethyl taurate copolymer) is used as water-soluble or water-dispersible AMPS copolymers in accordance with the invention.
  • an aqueous phase according to the invention may comprise from 0.1 % to 8 % by weight of solids, preferably 0.2 % to 5 % by weight and more preferentially from 0.7 % to 2.5 % by weight of polyacrylamide(s) and/or of crosslinked and/or neutralized 2- acrylamido-2-methylpropanesulfonic acid polymer(s) and copolymer(s) relative to its total weight.
  • the modified or unmodified carboxyvinyl polymers may be copolymers derived from the polymerization of at least one monomer (a) chosen from ⁇ , ⁇ -ethylenically unsaturated carboxylic acids or esters thereof, with at least one ethylenically unsaturated monomer (b) comprising a hydrophobic group.
  • copolymers means both copolymers obtained from two types of monomer and those obtained from more than two types of monomer, such as terpolymers obtained from three types of monomer. Their chemical structure more particularly comprises at least one hydrophilic unit and at least one hydrophobic unit.
  • hydrophobic group or unit means a radical with a saturated or unsaturated, linear or branched hydrocarbon-based chain, comprising at least 8 carbon atoms, preferably from 10 to 30 carbon atoms, in particular from 12 to 30 carbon atoms and more preferentially from 18 to 30 carbon atoms.
  • these copolymers are chosen from copolymers derived from the polymerization:
  • R-i denotes H or CH 3 or C 2 H 5 , i.e. acrylic acid, methacrylic acid or ethacrylic acid monomers
  • R 2 denotes H or CH 3 or C 2 H 5 (i.e. acrylate, methacrylate or ethacrylate units) and preferably H (acrylate units) or CH3 (methacrylate units), R 3 denoting a Ci 0 -C 30 and preferably C12-C22 alkyl radical.
  • the unsaturated carboxylic acid (Ci 0 -C 30 )alkyl esters are preferably chosen from lauryl acrylate, stearyl acrylate, decyl acrylate, isodecyl acrylate and dodecyl acrylate, and the corresponding methacrylates, such as lauryl methacrylate, stearyl methacrylate, decyl methacrylate, isodecyl methacrylate and dodecyl methacrylate, and mixtures thereof.
  • these polymers are crosslinked.
  • copolymers of this type use will more particularly be made of polymers derived from the polymerization of a monomer mixture comprising:
  • R 2 denotes H or CH 3
  • R 3 denoting an alkyl radical containing from 12 to 22 carbon atoms
  • crosslinking agent which is a well-known copolymerizable polyethylenic unsaturated monomer, such as diallyl phthalate, allyl (meth)acrylate, divinylbenzene, (poly)ethylene glycol dimethacrylate or methylenebisacrylamide.
  • copolymers of this type use will more particularly be made of those consisting of from 95% to 60% by weight of acrylic acid (hydrophilic unit), 4% to 40% by weight of C10-C30 alkyl acrylate (hydrophobic unit) and 0% to 6% by weight of crosslinking polymerizable monomer, or alternatively those consisting of from 98% to 96% by weight of acrylic acid (hydrophilic unit), 1 % to 4% by weight of C10-C30 alkyl acrylate (hydrophobic unit) and 0.1 % to 0.6% by weight of crosslinking polymerizable monomer such as those described previously.
  • acrylate/C10-C30-alkyl acrylate copolymers such as the products sold by the company Lubrizol under the trade names Pemulen TR-1 , Pemulen TR-2, Carbopol 1382, Carbopol EDT 2020 and Carbopol Ultrez 20 Polymer, and even more preferentially Pemulen TR-2.
  • modified or unmodified carboxyvinyl polymers mention may also be made of sodium polyacrylates such as those sold under the name Cosmedia SP® containing 90% solids and 10% water, or Cosmedia SPL® as an inverse emulsion containing about 60% solids, an oil (hydrogenated polydecene) and a surfactant (PPG-5 Laureth-5), both sold by the company Cognis.
  • Cosmedia SP® containing 90% solids and 10% water
  • Cosmedia SPL® as an inverse emulsion containing about 60% solids
  • an oil hydroogenated polydecene
  • PPG-5 Laureth-5 a surfactant
  • the modified or unmodified carboxyvinyl polymers may also be chosen from crosslinked (meth)acrylic acid homopolymers.
  • (meth)acrylic means "acrylic or methacrylic".
  • Examples that may be mentioned include the products sold by Lubrizol under the names Carbopol 910, 934, 940, 941 , 934 P, 980, 981 , 2984, 5984 and Carbopol Ultrez 10 Polymer, or by 3V-Sigma under the name Synthalen® K, Synthalen® L or Synthalen® M.
  • modified or unmodified carboxyvinyl polymers mention may be made in particular of Carbopol (CTFA name: carbomer) and Pemulen (CTFA name: Acrylates/Ci 0 - C 3 o alkyl acrylate crosspolymer) sold by the company Lubrizol.
  • the modified or unmodified carboxyvinyl polymers may be present in a proportion of from 0.1 % to 5% by weight of solids relative to the weight of the aqueous phase, in particular from 0.3% to 1 % by weight and preferably in a proportion of about 1 % by weight, relative to the weight of the aqueous phase.
  • the hydrophilic gelling agent is at least one synthetic polymeric gelling agent chosen from crosslinked acrylic homopolymers or copolymers; polyacrylamides and crosslinked and/or neutralized 2-acrylamido-2-methylpropanesulfonic acid polymers and copolymers; modified or unmodified carboxyvinyl polymers, and mixtures thereof.
  • it is at least a 2-acrylamido-2-methylpropanesulfonic acid polymer or copolymer, an associative polyurethane and/or a crosslinked sodium polyacrylate.
  • the term "mixed silicate” means any silicate of natural or synthetic origin containing several (two or more) types of cations chosen from alkali metals (for example Na, Li, K) or alkaline-earth metals (for example Be, Mg, Ca), transition metals and aluminium.
  • the mixed silicate(s) are in the form of solid particles containing at least 10% by weight of at least one silicate relative to the total weight of the particles. In the rest of the present description, these particles will be referred to as "silicate particles".
  • the silicate particles contain less than 1 % by weight of aluminium relative to the total weight of the particles. Even more preferably, they contain from 0% to 1 % by weight of aluminium relative to the total weight of the particles.
  • the silicate particles contain at least 50% by weight and better still at least 70% by weight of the silicate relative to the total weight of the particles. Particles containing at least 90% by weight of silicates, relative to the total weight of the particles, are particularly preferred.
  • this is a silicate or a mixture of silicates and of alkali metals or alkaline-earth metals, of aluminium or of iron.
  • it is sodium, magnesium and/or lithium silicate.
  • these silicates are generally in finely divided form, and in particular in the form of particles with a mean size ranging from 2 nm to 1 ⁇ (from 2 nm to 1000 nm), preferably from 5 nm to 600 nm and even more preferentially from 20 to 250 nm.
  • Silicate particles may have any form, for example the form of spheres, flakes, needles, platelets, disks or leaflets, or totally random forms.
  • the silicate particles have the form of disks or leaflets.
  • the term "mean size" of the particles means the number-average size of the largest dimension (length) that it is possible to measure between two diametrically opposite points on an individual particle.
  • the size may be determined, for example, by transmission electron microscopy or by measuring the specific surface area by the BET method or alternatively by means of a laser particle sizer.
  • the particles When the particles are in the form of disks or leaflets, they generally have a thickness ranging from about 0.5 nm to 5 nm.
  • the silicate particles may consist of an alloy with metal or metalloid oxides, obtained, for example, via thermal fusion of its various constituents.
  • the particles also comprise such a metal or metalloid oxide, it is preferably chosen from silicon, boron or aluminium oxide.
  • the silicates are phyllosilicates, i.e. silicates having a structure in which the Si0 4 tetrahedra are organized as leaflets between which the metal cations are enclosed.
  • the mixed silicates that are suitable for use in the invention may be chosen, for example, from montmorillonites, hectorites, bentonites, beidellite and saponites.
  • the mixed silicates used are more particularly chosen from hectorites and bentonites, and better still from laponites.
  • a family of silicates that is particularly preferred in the compositions of the present invention is thus that of laponites.
  • Laponites are sodium magnesium silicates also possibly containing lithium, which have a layer structure similar to that of montmorillonites.
  • Laponite is the synthetic form of the natural mineral known as hectorite. The synthetic origin of this family of silicates is of considerable advantage over the natural form, since it allows good control of the composition of the product.
  • laponites have the advantage of having a particle size that is much smaller than that of the natural minerals hectorite and bentonite.
  • Laponites that may especially be mentioned include the products sold under the following names: Laponite® XLS, Laponite® XLG, Laponite® RD, Laponite® RDS and Laponite® XL21 (these products are sodium magnesium silicates and sodium lithium magnesium silicates) by the company Rockwood Additives Limited.
  • Such gelling agents may be used in a proportion of from 0.1 % to 8% by weight of solids relative to the total weight of the aqueous phase, especially from 0.1 % to 5% by weight and in particular from 0.5% to 3% by weight, relative to the total weight of the aqueous phase.
  • III.B Hydrophilic fumed silica
  • the fumed silicas according to the present invention are hydrophilic.
  • Hydrophilic fumed silicas are obtained by pyrolysis of silicon tetrachloride (SiCI4) in a continuous flame at 1000°C in the presence of hydrogen and oxygen.
  • SiCI4 silicon tetrachloride
  • Such gelling agents may be used in a proportion of from 0.1 % to 10% by weight of solids relative to the total weight of the aqueous phase, especially from 0.1 % to 5% by weight and in particular from 0.5% to 3% by weight, relative to the total weight of the aqueous phase.
  • lipophilic gelling agent means a compound that is capable of gelling the oily phase of the compositions according to the invention.
  • the gelling agent is lipophilic and is thus present in the oily phase of the composition.
  • the gelling agent is liposoluble or lipodispersible.
  • the lipophilic gelling agent is advantageously chosen from particulate gelling agents, organopolysiloxane elastomers, semi-crystalline polymers, dextrin esters and hydrogen bonding polymers, and mixtures thereof.
  • Proportions of such gelling agents will notably vary according to the considered lipophilic gelling agent and/or according to the nature of the pigments considered in the composition according to the invention.
  • the particulate gelling agent used in the composition according to the invention is in the form of particles, preferably spherical particles.
  • lipophilic particulate gelling agents that are suitable for use in the invention, mention may be made most particularly of polar and apolar waxes, modified clays, and silicas such as fumed silicas and hydrophobic silica aerogels.
  • wax under consideration in the context of the present invention generally means a lipophilic compound that is solid at room temperature (25°C), with a solid/liquid reversible change of state, having a melting point of greater than or equal to 30°C, which may be up to 200°C and in particular up to 120°C.
  • the melting point corresponds to the temperature of the most endothermic peak observed on thermal analysis (DSC) as described in standard ISO 1 1357-3; 1999.
  • the melting point of the wax can be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name MDSC 2920 by the company TA Instruments.
  • DSC differential scanning calorimeter
  • a 5 mg sample of wax placed in a crucible is subjected to a first temperature increase ranging from -20°C to 100°C, at a heating rate of 10°C/minute, it is then cooled from 100°C to -20°C at a cooling rate of 10°C/minute and is finally subjected to a second temperature increase ranging from -20°C to 100°C at a heating rate of 5°C/minute.
  • a first temperature increase ranging from -20°C to 100°C, at a heating rate of 10°C/minute
  • it is then cooled from 100°C to -20°C at a cooling rate of 10°C/minute and is finally subjected to a second temperature increase ranging from -20°C to 100°C at a heating rate of 5°C/minute.
  • the variation in the difference in power absorbed by the empty crucible and by the crucible containing the sample of wax is measured as a function of the temperature.
  • the melting point of the compound is the temperature value corresponding to the
  • the waxes that may be used in the compositions according to the invention are chosen from waxes that are solid at room temperature of animal, plant, mineral or synthetic origin, and mixtures thereof.
  • the waxes may be those generally used in cosmetics or dermatology. They may especially be polar or apolar, and hydrocarbon-based, silicone and/or fluoro waxes, optionally comprising ester or hydroxyl functions. They may also be of natural or synthetic origin. a) Apolar waxes
  • apolar wax means a wax whose solubility parameter at 25°C as defined below, 8 a , is equal to 0 (J/cm 3 ) 1 ⁇ 2 .
  • the definition and calculation of the solubility parameters in the Hansen three-dimensional solubility space are described in the paper by CM. Hansen: "The three-dimensional solubility parameters", J. Paint Technol., 39, 105 (1967). According to this Hansen space:
  • the parameters ⁇ ⁇ , 8 h , 5 D and 8 a are expressed in (J/cm 3 ) 1 ⁇ 2 .
  • Apolar waxes are in particular hydrocarbon waxes consisting solely of carbon and hydrogen atoms and devoid of heteroatoms, such as N, O, Si and P.
  • the apolar waxes are chosen from microcrystalline waxes, paraffin waxes, ozokerite and polyethylene waxes, and mixtures thereof.
  • microcrystalline waxes that may be used, mention may be made of Multiwax W 445 ® sold by the company Sonneborn, and Microwax HW ® and Base Wax 30540 ® sold by the company Paramelt, and Cerewax ® No. 3 sold by the company Baerlocher.
  • microwaxes that may be used in the compositions according to the invention as apolar wax, mention may be made especially of polyethylene microwaxes such as those sold under the names Micropoly 200 ® , 220 ® , 220L ® and 250S ® by the company Micro Powders.
  • Polyethylene waxes that may be mentioned include Performalene 500-L Polyethylene and Performalene 400 Polyethylene sold by New Phase Technologies, and Asensa ® SC 21 1 sold by the company Honeywell. b) Polar wax
  • polar wax means a wax whose solubility parameter at 25°C, 8 a , is other than 0 (J/cm 3 ) 1 ⁇ 2 .
  • polar wax means a wax whose chemical structure is formed essentially from, or even constituted of, carbon and hydrogen atoms, and comprising at least one highly electronegative heteroatom such as an oxygen, nitrogen, silicon or phosphorus atom.
  • the polar waxes may especially be hydrocarbon-based, fluoro or silicone waxes.
  • the polar waxes may be hydrocarbon-based waxes.
  • hydrocarbon-based wax means a wax formed essentially from, or even constituted of, carbon and hydrogen atoms, and optionally oxygen and nitrogen atoms, and not containing any silicon or fluorine atoms. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.
  • ester wax means a wax comprising at least one ester function.
  • alcohol wax means a wax comprising at least one alcohol function, i.e. comprising at least one free hydroxyl (OH) group.
  • ester wax The following may especially be used as ester wax:
  • R-i and R 2 represent linear, branched or cyclic aliphatic chains in which the number of atoms ranges from 10 to 50, which may contain a heteroatom such as O, N or P and whose melting point ranges from 25 to 120°C;
  • R 3 and R 5 are identical or different, preferably identical, and represent a C 4 -C 30 alkyl group (alkyl group comprising from 4 to 30 carbon atoms) and R 4 represents a linear or branched C 4 -C 30 aliphatic group (alkyl group comprising from 4 to 30 carbon atoms) which may or may not comprise one or more unsaturations and which is preferably linear and unsaturated;
  • waxes obtained by catalytic hydrogenation of animal or plant oils having linear or branched C 8 -C 32 fatty chains for example such as hydrogenated jojoba oil, hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coconut oil, and also the waxes obtained by hydrogenation of castor oil esterified with cetyl alcohol;
  • beeswax synthetic beeswax, polyglycerolated beeswax, carnauba wax, candelilla wax, oxypropylenated lanolin wax, rice bran wax, ouricury wax, esparto grass wax, cork fibre wax, sugar cane wax, Japan wax, sumach wax, montan wax, orange wax, laurel wax, hydrogenated jojoba wax, sunflower wax, lemon wax, olive wax or berry wax.
  • the polar wax can be an alcohol wax.
  • alcohol wax means a wax comprising at least one alcohol function, i.e. comprising at least one free hydroxyl (OH) group.
  • Alcohol waxes that may be mentioned include for example the C 30 -5o wax Performacol ® 550 Alcohol from New Phase Technologies, stearyl alcohol and cetyl alcohol.
  • silicone waxes which may advantageously be substituted polysiloxanes, preferably of low melting point.
  • silicone wax means a wax comprising at least one silicon atom, and especially comprising Si-0 groups.
  • silicone waxes of this type mention may be made especially of those sold under the names Abilwax 9800, 9801 or 9810 (Goldschmidt), KF910 and KF7002 (Shin-Etsu), or 176-1 1 18-3 and 176-1 1481 (General Electric).
  • the silicone waxes that may be used may also be alkyl or alkoxy dimethicones, and also (C 2 o-C 6 o)alkyl dimethicones, in particular (C 3 o-C 4 5)alkyl dimethicones, such as the silicone wax sold under the name SF-1642 by the company GE-Bayer Silicones or C 30 - 4 5 alkyl dimethylsilyl polypropylsilsesquioxane sold under the name SW-8005 ® C30 Resin Wax by the company Dow Corning.
  • particularly advantageous waxes that may be mentioned include polyethylene waxes, jojoba wax, candelilla wax and silicone waxes, in particular candelilla wax.
  • Modified clays may be present in the oily phase in a proportion of from 0.5% to 30% by weight relative to the weight of the oily phase, for example between 5% and 20% of the oily phase and more particularly from 2% to 15% by weight relative to the weight of the oily phase.
  • Modified clays may be present in the oily phase in a proportion of from 0.5% to 30% by weight relative to the weight of the oily phase, for example between 5% and 20% of the oily phase and more particularly from 2% to 15% by weight relative to the weight of the oily phase.
  • composition according to the invention may comprise at least one lipophilic clay.
  • the clays may be natural or synthetic, and they are made lipophilic by treatment with an alkylammonium salt such as a Cio to C22 ammonium chloride, for example distearyldimethylammonium chloride.
  • an alkylammonium salt such as a Cio to C22 ammonium chloride, for example distearyldimethylammonium chloride.
  • They may be chosen from bentonites, in particular hectorites and montmorillonites, beidellites, saponites, nontronites, sepiolites, biotites, attapulgites, vermiculites and zeolites.
  • They are preferably chosen from hectorites.
  • Hectorites modified with a C1 0 to C22 ammonium chloride for instance hectorite modified with distearyldimethylammonium chloride, for instance the product sold under the name Bentone 38V ® by the company Elementis or bentone gel in isododecane sold under the name Bentone Gel ISD V® (87% isododecane/10% disteardimonium hectorite/3% propylene carbonate) by the company Elementis, are preferably used as lipophilic clays.
  • Lipophilic clay may especially be present in a content ranging from 0.1 % to 15% by weight, particularly from 0.5% to 10% and more particularly from 1 % to 10% by weight relative to the total weight of the oily phase.
  • Silicas The oily phase of a composition according to the invention may also comprise, as gelling agent, a fumed silica or silica aerogel particles. a) Fumed silica
  • Fumed silica which has undergone a hydrophobic surface treatment is most particularly suitable for use in the invention. Specifically, it is possible to chemically modify the surface of silica, by chemical reaction generating a reduced number of silanol groups present at the surface of the silica. Silanol groups can in particular be replaced by hydrophobic groups: a hydrophobic silica is then obtained.
  • the hydrophobic groups may be:
  • silica thus treated are known as "silica silylate" according to the CTFA (8th edition, 2000). They are sold, for example, under the references Aerosil R812 ® by the company Degussa, and Cab-O-Sil TS-530 ® by the company Cabot;
  • Silicas thus treated are named "Silica dimethyl silylate” according to the CTFA (8th edition, 2000). They are, for example, sold under the references Aerosil R972 ® and Aerosil R974 ® by the company Degussa and Cab-O-Sil TS-610 ® and Cab-O-Sil TS-720 ® by the company Cabot.
  • the fumed silicas may be present in a composition according to the present invention in a content of between 0.1 % and 40% by weight, more particularly between 1 % and 15% by weight and even more particularly between 2% and 10% by weight relative to the total weight of the oily phase.
  • the oily phase of a composition according to the invention may also comprise, as gelling agent, at least silica aerogel particles.
  • Silica aerogels are porous materials obtained by replacing (by drying) the liquid component of a silica gel with air.
  • sol-gel processes are generally synthesized via a sol-gel process in a liquid medium and then dried, usually by extraction with a supercritical fluid, the one most commonly used being supercritical C0 2 . This type of drying makes it possible to avoid the contraction of the pores and of the material.
  • the sol-gel process and the various drying operations are described in detail in Brinker C.J. and Scherer G.W., Sol-Gel Science, New York: Academic Press, 1990.
  • the hydrophobic silica aerogel particles used in the present invention have a specific surface area per unit of mass (SM) ranging from 500 to 1500 m 2 /g, preferably from 600 to 1200 m 2 /g and better still from 600 to 800 m 2 /g, and a size expressed as the volume- mean diameter (D[0.5]) ranging from 1 to 1500 ⁇ , better still from 1 to 1000 ⁇ , preferably from 1 to 100 ⁇ , in particular from 1 to 30 ⁇ , more preferably from 5 to 25 ⁇ , better still from 5 to 20 ⁇ and even better still from 5 to 15 ⁇ .
  • SM specific surface area per unit of mass
  • the hydrophobic silica aerogel particles used in the present invention have a size expressed as the volume-mean diameter (D[0.5]) ranging from 1 to 30 ⁇ , preferably from 5 to 25 ⁇ , better still from 5 to 20 ⁇ and even better still from 5 to 15 ⁇ .
  • the specific surface area per unit of mass may be determined by the nitrogen absorption method, known as the BET (Brunauer-Emmett-Teller) method, described in the Journal of the American Chemical Society, Vol. 60, page 309, February 1938, which corresponds to international standard ISO 5794/1 (appendix D).
  • BET Brunauer-Emmett-Teller
  • the BET specific surface area corresponds to the total specific surface area of the particles under consideration.
  • the sizes of the silica aerogel particles may be measured by static light scattering using a commercial particle size analyser such as the MasterSizer 2000 machine from Malvern.
  • the data are processed on the basis of the Mie scattering theory.
  • This theory which is exact for isotropic particles, makes it possible to determine, in the case of non-spherical particles, an "effective" particle diameter.
  • This theory is especially described in the publication by Van de Hulst, H.C., Light Scattering by Small Particles, Chapters 9 and 10, Wiley, New York, 1957.
  • the hydrophobic silica aerogel particles used in the present invention have a specific surface area per unit of mass (SM) ranging from 600 to 800 m 2 /g.
  • the silica aerogel particles used in the present invention may advantageously have a tapped density ⁇ ranging from 0.02 g/cm 3 to 0.10 g/cm 3 , preferably from 0.03 g/cm 3 to 0.08 g/cm 3 and in particular ranging from 0.05 g/cm 3 to 0.08 g/cm 3 .
  • this density may be assessed according to the following protocol, known as the tapped density protocol:
  • the hydrophobic silica aerogel particles used in the present invention have a specific surface area per unit of volume SV ranging from 5 to 60 m 2 /cm 3 , preferably from 10 to 50 m 2 /cm 3 and better still from 15 to 40 m 2 /cm 3 .
  • Sv S M x p
  • p is the tapped density, expressed in g/cm 3
  • S M is the specific surface per unit of mass, expressed in m 2 /g, as defined above.
  • the hydrophobic silica aerogel particles according to the invention have an oil- absorbing capacity, measured at the wet point, ranging from 5 to 18 ml/g, preferably from 6 to 15 ml/g and better still from 8 to 12 ml/g.
  • the absorption capacity measured at the wet point corresponds to the amount of oil which it is necessary to add to 100 g of particles in order to obtain a homogeneous paste. It is measured according to the "wet point" method or method for determining the oil uptake of a powder described in Standard NF T 30-022. It corresponds to the amount of oil adsorbed onto the available surface of the powder and/or absorbed by the powder by measuring the wet point, described below:
  • the aerogels used according to the present invention are aerogels of hydrophobic silica, preferably of silylated silica (I NCI name: silica silylate).
  • hydrophobic silica means any silica whose surface is treated with silylating agents, for example halogenated silanes such as alkylchlorosilanes, siloxanes, in particular dimethylsiloxanes such as hexamethyldisiloxane, or silazanes, so as to functionalize the OH groups with silyl groups Si-Rn, for example trimethylsilyl groups.
  • silylating agents for example halogenated silanes such as alkylchlorosilanes, siloxanes, in particular dimethylsiloxanes such as hexamethyldisiloxane, or silazanes, so as to functionalize the OH groups with silyl groups Si-Rn, for example trimethylsilyl groups.
  • Use will preferably be made of hydrophobic silica aerogel particles surface-modified with trimethylsilyl groups, preferably of the INCI name Silica silylate.
  • hydrophobic silica aerogels that may be used in the invention
  • an example that may be mentioned is the aerogel sold under the name VM-2260 or VM-2270 (INCI name: Silica silylate), by the company Dow Corning, the particles of which have a mean size of about 1000 microns and a specific surface area per unit of mass ranging from 600 to 800 m 2 /g. Mention may also be made of the aerogels sold by the company Cabot under the references Aerogel TLD 201 , Aerogel OGD 201 , Aerogel TLD 203, Enova® Aerogel MT 1 100 and Enova Aerogel MT 1200.
  • the aerogel sold under the name VM-2270 (INCI name: Silica silylate), by the company Dow Corning, the particles of which have an average size ranging from 5-15 microns and a specific surface area per unit of mass ranging from 600 to 800 m 2 /g.
  • the hydrophobic silica aerogel particles are present in the composition according to the invention in a solids content ranging from 0.1 % to 8% by weight, preferably from 0.2% to 5% by weight and preferably from 0.2% to 3% by weight relative to the total weight of the oily phase.
  • the organopolysiloxane elastomer that may be used as lipophilic gelling agent has the advantage of giving the composition according to the invention good application properties. It affords a very gentle feel and a matt effect after application, which is advantageous especially for application to the skin, in particular for foundation compositions. It may also allow efficient filling of the hollows present on keratin materials.
  • organopolysiloxane elastomer or "silicone elastomer” means a supple, deformable organopolysiloxane with viscoelastic properties and especially with the consistency of a sponge or a supple sphere. Its modulus of elasticity is such that this material withstands deformation and has a limited ability to extend and to contract. This material is capable of regaining its original shape after stretching.
  • the organopolysiloxane elastomer may be obtained by crosslinking addition reaction of diorganopolysiloxane containing at least one hydrogen bonded to silicon and of diorganopolysiloxane containing ethylenically unsaturated groups bonded to silicon, especially in the presence of a platinum catalyst; or by dehydrogenation crosslinking condensation reaction between a diorganopolysiloxane containing hydroxyl end groups and a diorganopolysiloxane containing at least one hydrogen bonded to silicon, especially in the presence of an organotin; or by crosslinking condensation reaction of a diorganopolysiloxane containing hydroxyl end groups and of a hydrolysable organopolysilane; or by thermal crosslinking of organopolysiloxane, especially in the presence of an organoperoxide catalyst; or by crosslinking of organopolysiloxane via high- energy radiation such as gamma rays
  • the organopolysiloxane elastomer is obtained by crosslinking addition reaction (A) of diorganopolysiloxane containing at least two hydrogens each bonded to a silicon, and (B) of diorganopolysiloxane containing at least two ethylenically unsaturated groups bonded to silicon, especially in the presence (C) of a platinum catalyst, as described, for instance, in patent application EP-A-295 886.
  • the organopolysiloxane elastomer may be obtained by reaction of dimethylpolysiloxane containing dimethylvinylsiloxy end groups and of methylhydrogenopolysiloxane containing trimethylsiloxy end groups, in the presence of a platinum catalyst.
  • Compound (A) is the base reagent for the formation of organopolysiloxane elastomer, and the crosslinking is performed by addition reaction of compound (A) with compound (B) in the presence of the catalyst (C).
  • Compound (A) is in particular an organopolysiloxane containing at least two hydrogen atoms bonded to different silicon atoms in each molecule.
  • Compound (A) can exhibit any molecular structure, in particular a linear chain or branched chain structure or a cyclic structure.
  • Compound (A) can have a viscosity at 25°C ranging from 1 to 50 000 centistokes, in particular in order to be satisfactorily miscible with compound (B).
  • the organic groups bonded to the silicon atoms of compound (A) may be alkyl groups such as methyl, ethyl, propyl, butyl, octyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl or 3,3,3-trifluoropropyl; aryl groups such as phenyl, tolyl, xylyl; substituted aryl groups such as phenylethyl; and substituted monovalent hydrocarbon-based groups such as an epoxy group, a carboxylate ester group or a mercapto group.
  • alkyl groups such as methyl, ethyl, propyl, butyl, octyl
  • substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl or 3,3,3-trifluoropropyl
  • aryl groups such as phenyl, tolyl, xylyl
  • substituted aryl groups such as
  • Compound (A) may thus be chosen from methylhydrogenopolysiloxanes containing trimethylsiloxy end groups, dimethylsiloxane-methylhydrogenosiloxane copolymers containing trimethylsiloxy end groups, and dimethylsiloxane-methylhydrogenosiloxane cyclic copolymers.
  • Compound (B) is advantageously a diorganopolysiloxane containing at least two lower alkenyl groups (for example C 2 -C 4 ); the lower alkenyl group may be chosen from vinyl, allyl and propenyl groups. These lower alkenyl groups may be located in any position of the organopolysiloxane molecule, but are preferably located at the ends of the organopolysiloxane molecule.
  • the organopolysiloxane (B) can have a branched-chain, linear-chain, cyclic or network structure but the linear-chain structure is preferred.
  • Compound (B) may have a viscosity ranging from the liquid state to the gum state. Preferably, compound (B) has a viscosity of at least 100 centistokes at 25°C.
  • the other organic groups bonded to the silicon atoms in compound (B) may be alkyl groups such as methyl, ethyl, propyl, butyl or octyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl or 3,3,3- trifluoropropyl; aryl groups such as phenyl, tolyl or xylyl; substituted aryl groups such as phenylethyl; and substituted monovalent hydrocarbon-based groups such as an epoxy group, a carboxylate ester group or a mercapto group.
  • alkyl groups such as methyl, ethyl, propyl, butyl or octyl
  • substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl or 3,3,3- trifluoropropyl
  • aryl groups such as phenyl, tolyl or xylyl
  • substituted aryl groups such
  • the organopolysiloxanes (B) may be chosen from methylvinylpolysiloxanes, methylvinylsiloxane-dimethylsiloxane copolymers, dimethylpolysiloxanes containing dimethylvinylsiloxy end groups, dimethylsiloxane-methylphenylsiloxane copolymers containing dimethylvinylsiloxy end groups, dimethylsiloxane-diphenylsiloxane- methylvinylsiloxane copolymers containing dimethylvinylsiloxy end groups, dimethylsiloxane-methylvinylsiloxane copolymers containing trimethylsiloxy end groups, dimethylsiloxane-methylphenylsiloxane-methylvinylsiloxane copolymers containing trimethylsiloxy end groups, methyl(3,3,3-trifluoropropyl)polysiloxanes containing dimethylvin
  • the organopolysiloxane elastomer can be obtained by reaction of dimethylpolysiloxane comprising dimethylvinylsiloxy end groups and of methylhydrogenopolysiloxane comprising trimethylsiloxy end groups, in the presence of a platinum catalyst.
  • the sum of the number of ethylenic groups per molecule of the compound (B) and of the number of hydrogen atoms bonded to silicon atoms per molecule of the compound (A) is at least 5. It is advantageous for compound (A) to be added in an amount such that the molecular ratio of the total amount of hydrogen atoms bonded to silicon atoms in compound (A) and the total amount of all the ethylenically unsaturated groups in compound (B) is within the range from 1.5/1 to 20/1.
  • Compound (C) is the catalyst for the crosslinking reaction, and is especially chloroplatinic acid, chloroplatinic acid/olefin complexes, chloroplatinic acid/alkenylsiloxane complexes, chloroplatinic acid/diketone complexes, platinum black and platinum on a support.
  • the catalyst (C) is preferably added in an amount of from 0.1 to 1000 parts by weight and better still from 1 to 100 parts by weight, as clean platinum metal, per 1000 parts by weight of the total amount of compounds (A) and (B).
  • the elastomer is advantageously a non-emulsifying elastomer.
  • non-emulsifying defines organopolysiloxane elastomers not containing any hydrophilic chains, and in particular not containing any polyoxyalkylene units (especially polyoxyethylene or polyoxypropylene) or any polyglyceryl units.
  • the composition comprises an organopolysiloxane elastomer free of polyoxyalkylene units and of polyglyceryl units.
  • the silicone elastomer used in the present invention is chosen from Dimethicone Crosspolymer (INCI name), Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone/Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone Crosspolymer-3 (INCI name).
  • the organopolysiloxane elastomer particles may be conveyed in the form of a gel formed from an elastomeric organopolysiloxane included in at least one hydrocarbon-based oil and/or one silicone oil. In these gels, the organopolysiloxane particles are often nonspherical particles.
  • Non-emulsifying elastomers are described especially in patents EP 242 219, EP 285 886 and EP 765 656 and in patent application JP-A-61-194009.
  • the silicone elastomer is generally in the form of a gel, a paste or a powder, but advantageously in the form of a gel in which the silicone elastomer is dispersed in a linear silicone oil (dimethicone) or cyclic silicone oil (e.g.: cyclopentasiloxane), advantageously in a linear silicone oil.
  • a linear silicone oil dimethicone
  • cyclic silicone oil e.g.: cyclopentasiloxane
  • Non-emulsifying elastomers that may be used more particularly include those sold under the names KSG-6, KSG-15, KSG-16, KSG-18, KSG-41 , KSG-42, KSG-43 and KSG-44 by the company Shin-Etsu, DC9040 and DC9041 by the company Dow Corning, and SFE 839 by the company General Electric.
  • composition according to the invention may comprise an organopolysiloxane elastomer having the INCI name 'Polysilicone 1 1 ', such as those sold under the name Gransil by Grant Industries.
  • a gel of silicone elastomer dispersed in a silicone oil chosen from a non-exhaustive list comprising cyclopentadimethylsiloxane, dimethicones, dimethylsiloxanes, methyl trimethicone, phenyl methicone, phenyl dimethicone, phenyl trimethicone and cyclomethicone, preferably a linear silicone oil chosen from polydimethylsiloxanes (PDMS) or dimethicones with a viscosity at 25°C ranging from 1 to 500 cSt, optionally modified with optionally fluorinated aliphatic groups, or with functional groups such as hydroxyl, thiol and/or amine groups.
  • a silicone oil chosen from a non-exhaustive list comprising cyclopentadimethylsiloxane, dimethicones, dimethylsiloxanes, methyl trimethicone, phenyl methicone, phen
  • dimethicone/vinyl dimethicone crosspolymer (and) dimethicone such as KSG-6 and KSG-16 from the company Shin-Etsu
  • dimethicone/vinyl dimethicone crosspolymer (and) cyclopentasiloxane such as KSG-15;
  • dimethicone (and) dimethicone crosspolymer such as DC9041 from the company Dow Corning
  • dimethicone (and) dimethicone crosspolymer such as Dow Corning EL-9240 ® silicone elastomer blend from the company Dow Corning (mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane (2 cSt)),
  • dimethicone/vinyl dimethicone crosspolymer (and) dimethicone, such as KSG-6 and KSG-16 from the company Shin-Etsu;
  • dimethicone (and) dimethicone crosspolymer such as DC9041 from the company Dow
  • dimethicone (and) dimethicone crosspolymer such as Dow Corning EL-9240 ® silicone elastomer blend from the company Dow Corning.
  • the composition according to the invention comprises at least one crosslinked silicone elastomer having the INCI name 'dimethicone crosspolymer' or 'dimethicone (and) dimethicone crosspolymer', with preferably a dimethicone having a viscosity ranging from 1 to 100 cSt, in particular from 1 to 10 cSt at 25°C, such as the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane sold under the name DC 9041 Dow Corning or the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane sold under the name Dow Corning EL-9240 ® silicone elastomer blend Dow Corning.
  • a crosslinked silicone elastomer having the INCI name 'dimethicone crosspolymer' or 'dimethicone (and) dimethicone crosspolymer', with
  • the composition according to the invention comprises at least one crosslinked silicone elastomer having the INCI name "dimethicone (and) dimethicone crosspolymer", with preferably a dimethicone having a viscosity ranging from 1 to 100 cSt, in particular from 1 to 10 cSt at 25°C, such as the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane (5 cSt) sold under the name DC 9041 by the company Dow Corning.
  • organopolysiloxane elastomer particles may also be used in powder form: mention may be made especially of the powders sold under the names Dow Corning 9505 Powder and Dow Corning 9506 Powder by the company Dow Corning, these powders having the INCI name: dimethicone/vinyl dimethicone crosspolymer.
  • the organopolysiloxane powder may also be coated with silsesquioxane resin, as described, for example, in patent US 5 538 793.
  • silsesquioxane resin as described, for example, in patent US 5 538 793.
  • Such elastomeric powders are sold under the names KSP-100, KSP-101 , KSP-102, KSP-103, KSP-104 and KSP-105 by the company Shin-Etsu, and have the INCI name: vinyl dimethicone/methicone silsesquioxane crosspolymer.
  • organopolysiloxane elastomer type As preferred lipophilic gelling agents of organopolysiloxane elastomer type, mention may be made more particularly of crosslinked organopolysiloxane elastomers chosen from Dimethicone Crosspolymer (INCI name), Dimethicone (and) Dimethicone Crosspolymer (INCI name), Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone/Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone Crosspolymer-3 (INCI name), and in particular mention be made of Dimethicone Crosspolymer (INCI name).
  • the organopolysiloxane elastomer may be present in a composition according to the present invention in a content of between 0.5% and 35% by weight of solids and especially between 2% and 15% by weight relative to the total weight of the oily phase.
  • composition according to the invention may comprise at least one semi-crystalline polymer.
  • the semi-crystalline polymer has an organic structure, and a melting point of greater than or equal to 30°C.
  • the term "semi-crystalline polymer” means polymers comprising a crystallizable portion and an amorphous portion and having a first-order reversible change of phase temperature, in particular of melting point (solid-liquid transition).
  • the crystallizable portion is either a side chain (or pendent chain) or a block in the backbone.
  • the crystallizable portion of the semi-crystalline polymer is a block of the polymer backbone
  • this crystallizable block has a chemical nature different than that of the amorphous blocks; in this case, the semi-crystalline polymer is a block copolymer, for example of the diblock, triblock or multiblock type.
  • the semi-crystalline polymer may be a homopolymer or a copolymer.
  • the melting point of the semi-crystalline polymer is preferably less than 150°C.
  • the melting point of the semi-crystalline polymer is preferably greater than or equal to 30°C and less than 100°C. More preferably, the melting point of the semi-crystalline polymer is greater than or equal to 30°C and less than 70°C.
  • the semi-crystalline polymer(s) according to the invention are solid at room temperature (25°C) and atmospheric pressure (760 mmHg), with a melting point of greater than or equal to 30°C.
  • the melting point values correspond to the melting point measured using a differential scanning calorimeter (DSC), such as the calorimeter sold under the name DSC 30 by the company Mettler, with a temperature rise of 5°C or 10°C per minute. (The melting point under consideration is the point corresponding to the temperature of the most endothermic peak in the thermogram).
  • the semi-crystalline polymer(s) according to the invention preferably have a melting point that is higher than the temperature of the keratinous support intended to receive the said composition, in particular the skin or the lips.
  • the semi-crystalline polymers are advantageously soluble in the fatty phase, especially to at least 1 % by weight, at a temperature that is higher than their melting point.
  • the blocks of the polymers are amorphous.
  • crystallizable chain or block' means a chain or block which, if it were alone, would change from the amorphous state to the crystalline state reversibly, depending on whether the temperature is above or below the melting point.
  • a “chain” is a group of atoms, which are pendent or lateral relative to the polymer backbone.
  • a block is a group of atoms belonging to the backbone, this group constituting one of the repeating units of the polymer.
  • the polymer backbone of the semi-crystalline polymers is soluble in the fatty phase at a temperature above their melting point.
  • the crystallizable blocks or chains of the semi-crystalline polymers represent at least 30% of the total weight of each polymer and better still at least 40%.
  • the semi- crystalline polymers containing crystallizable side chains are homopolymers or copolymers.
  • the semi-crystalline polymers of the invention containing crystallizable blocks are block or multiblock copolymers. They may be obtained via polymerization of a monomer containing reactive double bonds (or ethylenic bonds) or via polycondensation. When the polymers of the invention are polymers having crystallizable side chains, these side chains are advantageously in random or statistical form.
  • the semi-crystalline polymers of the invention are of synthetic origin.
  • the semi-crystalline polymer is chosen from:
  • the semi-crystalline polymers that may be used in the invention may be chosen in particular from:
  • - acrylate/silicone copolymers such as copolymers of acrylic acid and of stearyl acrylate bearing polydimethylsiloxane grafts, copolymers of stearyl methacrylate bearing polydimethylsiloxane grafts, copolymers of acrylic acid and of stearyl methacrylate bearing polydimethylsiloxane grafts, copolymers of methyl methacrylate, butyl methacrylate, 2- ethylhexyl acrylate and stearyl methacrylate bearing polydimethylsiloxane grafts.
  • KP-561 CFA name: acrylates/dimethicone
  • KP-541 CFA name: acrylates/dimethicone and isopropyl alcohol
  • KP-545 CFA name: acrylates/dimethicone and cyclopentasiloxane
  • the amount of semi-crystalline polymer(s), preferably chosen from semi- crystalline polymers bearing crystallizable side chains, represents from 0.1 % to 30% by weight of solids relative to the total weight of the oily phase, for example from 0.5% to 25% by weight, better still from 5% to 20% or even from 5% to 12% by weight, relative to the total weight of the oily phase.
  • the amount of semi-crystalline polymer(s), preferably chosen from semi- crystalline polymers bearing crystallizable side chains represents from 0.1 % to 30% by weight of solids relative to the total weight of the oily phase, for example from 0.5% to 25% by weight, better still from 5% to 20% or even from 5% to 12% by weight, relative to the total weight of the oily phase.
  • composition according to the invention may comprise as lipophilic gelling agent at least one dextrin ester.
  • the composition preferably comprises at least one preferably Ci 2 to C 24 and in particular Ci 4 -Ci 8 fatty acid ester of dextrin, or mixtures thereof.
  • the dextrin ester is an ester of dextrin and of a Ci 2 -Ci 8 and in particular Ci 4 -Ci 8 fatty acid.
  • the dextrin ester is chosen from dextrin myristate and/or dextrin palmitate, and mixtures thereof.
  • the dextrin ester is dextrin myristate, such as the product sold especially under the name Rheopearl MKL-2 by the company Chiba Flour Milling.
  • the dextrin ester is dextrin palmitate.
  • This product may be chosen, for example, from those sold under the names Rheopearl TL ® , Rheopearl KL ® and Rheopearl ® KL2 by the company Chiba Flour Milling.
  • the oily phase of a composition according to the invention may comprise from 0.1 % to 30% by weight, preferably from 2% to 25% and preferably from 7.5% to 17% by weight of dextrin ester(s) relative to the total weight of the oily phase.
  • the composition according to the invention may comprise between 0.1 % and 10% by weight and preferably between 0.5% and 5% by weight of dextrin palmitate relative to the total weight of the oily phase.
  • the dextrin palmitate may especially be the product sold under the names Rheopearl TL ® , Rheopearl KL ® or Rheopearl ® KL2 by the company Chiba Flour Milling.
  • Hydrogen bonding polymers As representatives of hydrogen bonding polymers that are suitable for use in the invention, mention may be made most particularly of polyamides and in particular hydrocarbon- based polyamides and silicone polyamides.
  • the oily phase of a composition according to the invention may comprise at least one polyamide chosen from hydrocarbon-based polyamides and silicone polyamides, and mixtures thereof.
  • the total content of polyamide(s) is between 0.1 % and 30% by weight expressed as solids, preferably between 0.1 % and 20% by weight and preferably between 0.5% and 10% by weight relative to the total weight of the oily phase.
  • polyamide means a compound containing at least two repeating amide units, preferably at least three repeating amide units and better still ten repeating amide units.
  • hydrocarbon-based polyamide means a polyamide formed essentially of, indeed even consisting of, carbon and hydrogen atoms, and optionally of oxygen or nitrogen atoms, and not comprising any silicon or fluorine atoms. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.
  • this polyamide of the composition according to the invention has a weight-average molecular mass of less than 100 000 g/mol (especially ranging from 1000 to 100 000 g/mol), in particular less than 50 000 g/mol (especially ranging from 1000 to 50 000 g/mol) and more particularly ranging from 1000 to 30 000 g/mol, preferably from 2000 to 20 000 g/mol and better still from 2000 to 10 000 g/mol.
  • This polyamide is insoluble in water, in particular at 25°C.
  • the polyamide used is a polyamide of formula (I):
  • X represents a group -N(R-i) 2 or a group -OR1 in which R-i is a linear or branched C 8 to C22 alkyl radical which may be identical or different, R 2 is a C28-C42 diacid dimer residue, R 3 is an ethylenediamine radical and n is between 2 and 5;
  • the polyamide used is an amide-terminated polyamide of formula (la):
  • X represents a group -N(R-i) 2 in which R-i is a linear or branched C 8 to C22 alkyl radical which may be identical or different, R 2 is a C28-C42 diacid dimer residue, R 3 is an ethylenediamine radical and n is between 2 and 5;
  • the oily phase of a composition according to the invention may also comprise, additionally in this case, at least one additional polyamide of formula (lb):
  • X represents a group -OR1 in which R-i is a linear or branched C 8 to C22 and preferably Ci 6 to C22 alkyl radical which may be identical or different, R 2 is a C28-C42 diacid dimer residue, R 3 is an ethylenediamine radical and n is between 2 and 5, such as the commercial products sold by the company Arizona Chemical under the names Uniclear 80 and Uniclear 100 or Uniclear 80 V, Uniclear 100 V and Uniclear 100 VG, the INCI name of which is Ethylenediamine/stearyl dimer dilinoleate copolymer.
  • X represents a group -OR1 in which R-i is a linear or branched C 8 to C22 and preferably Ci 6 to C22 alkyl radical which may be identical or different, R 2 is a C28-C42 diacid dimer residue, R 3 is an ethylenediamine radical and n is between 2 and 5, such as the commercial products sold by the company Arizona Chemical under the
  • the silicone polyamides are preferably solid at room temperature (25°C) and atmospheric pressure (760 mmHg).
  • the silicone polyamides may preferentially be polymers comprising at least one unit of formula (III) or (IV):
  • R 4 , R 5 , R 6 and R 7 which may be identical or different, represent a group chosen from:
  • Ci to C 40 linear, branched or cyclic hydrocarbon-based groups which may contain in their chain one or more oxygen, sulfur and/or nitrogen atoms, and which may be partially or totally substituted with fluorine atoms,
  • Cio aryl groups optionally substituted with one or more Ci to C 4 alkyl groups, - polyorganosiloxane chains possibly containing one or more oxygen, sulfur and/or nitrogen atoms,
  • the groups X which may be identical or different, represent a linear or branched Ci to C 30 alkylenediyl group, possibly containing in its chain one or more oxygen and/or nitrogen atoms,
  • Ci to C 50 linear or branched alkylene, arylene, cycloalkylene, alkylarylene or arylalkylene divalent group, which may comprise one or more oxygen, sulfur and/or nitrogen atoms, and/or may bear as substituent one of the following atoms or groups of atoms: fluorine, hydroxyl, C 3 to C 8 cycloalkyl, Ci to C 40 alkyl, C 5 to Cio aryl, phenyl optionally substituted with one to three Ci to C 3 alkyl, Ci to C 3 hydroxyalkyl and Ci to C 6 aminoalkyl groups, or
  • T represents a linear or branched, saturated or unsaturated, C 3 to C 24 trivalent or tetravalent hydrocarbon-based group optionally substituted with a polyorganosiloxane chain, and possibly containing one or more atoms chosen from O, N and S, or T represents a trivalent atom chosen from N, P and Al, and
  • - R 8 represents a linear or branched Ci to C 50 alkyl group or a polyorganosiloxane chain, possibly comprising one or more ester, amide, urethane, thiocarbamate, urea, thiourea and/or sulfonamide groups, which may possibly be linked to another chain of the polymer, - n is an integer ranging from 2 to 500 and preferably from 2 to 200, and m is an integer ranging from 1 to 1000, preferably from 1 to 700 and even better still from 6 to 200.
  • the silicone polyamide comprises at least one unit of formula (III) in which m ranges from 50 to 200, in particular from 75 to 150 and is preferably about 100.
  • R 4 , R 5 , R 6 and R 7 independently represent a linear or branched Ci to C 40 alkyl group, preferably a group CH 3 , C 2 H 5 , n-C 3 H 7 or isopropyl in formula (III).
  • silicone polymers that may be used, mention may be made of one of the silicone polyamides obtained in accordance with Examples 1 to 3 of document US-A-5 981 680.
  • the silicone polymers and/or copolymers advantageously have a temperature of transition from the solid state to the liquid state ranging from 45°C to 190°C. Preferably, they have a temperature of transition from the solid state to the liquid state ranging from 70 to 130°C and better still from 80°C to 105°C.
  • the total content of polyamide(s) and/or silicone polyamide(s) is between 0.5% and 25% by weight of solids, in particular from 2% to 20% by weight and preferably between 2% and 12% by weight relative to the total weight of the oily phase.
  • the hydrogen bonding polymer is chosen from ethylenediamine/stearyl dimer dilinoleate copolymer and Nylon-61 1/dimethicone copolymers.
  • a composition according to the invention comprises a lipophilic gelling agent chosen from particulate gelling agents, organopolysiloxane elastomers, semi-crystalline polymers, dextrin esters and hydrogen bonding polymers, and mixtures thereof, and in particular at least one organopolysiloxane elastomer.
  • 2-acrylamido-2-methylpropanesulfonic acid polymers for instance AMPS ® and 2-acrylamido-2-methylpropanesulfonic acid copolymers and in particular copolymers of AMPS ® and of hydroxyethyl acrylate, for instance the AMPS ® /hydroxyethyl acrylate copolymer such as that used in the commercial product sold under the name Simulgel NS ® by the company SEPPIC (CTFA name: Hydroxyethyl acrylate/sodium acryloyldimethyltaurate copolymer (and) squalane (and) polysorbate 60), or such as the product sold under the name Sodium acrylamido-2-methylpropanesulfonate/hydroxyethyl acrylate copolymer, such as the commercial product Sepinov EMT 10 (INCI name: Hydroxyethyl acrylate/sodium acryl
  • organopolysiloxane elastomer type As preferred lipophilic gelling agents of organopolysiloxane elastomer type, mention may be made more particularly of crosslinked organopolysiloxane elastomers chosen from Dimethicone Crosspolymer (INCI name), Dimethicone (and) Dimethicone Crosspolymer (INCI name), Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone/Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone Crosspolymer-3 (INCI name) , and in particular mention be made of Dimethicone Crosspolymer (INCI name) and Dimethicone (and) Dimethicone Crosspolymer (INCI name).
  • a gel of silicone elastomer dispersed in a silicone oil chosen from a non-exhaustive list comprising cyclopentadimethylsiloxane, dimethicones, dimethylsiloxanes, methyl trimethicone, phenyl methicone, phenyl dimethicone, phenyl trimethicone and cyclomethicone, preferably a linear silicone oil chosen from polydimethylsiloxanes (PDMS) or dimethicones with a viscosity at 25°C ranging from 1 to 500 cS at 25°C, especially the following references:
  • PDMS polydimethylsiloxanes
  • dimethicone/vinyl dimethicone crosspolymer (and) dimethicone such as KSG-6 and
  • dimethicone (and) dimethicone crosspolymer such as DC9041 from the company Dow Corning
  • dimethicone (and) dimethicone crosspolymer such as Dow Corning EL-
  • the composition according to the invention comprises at least one crosslinked silicone elastomer having the INCI name "dimethicone (and) dimethicone crosspolymer", with preferably a dimethicone having a viscosity ranging from 1 to 100 cSt, in particular from 1 to 10 cSt at 25°C, such as the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane sold under the name DC 9041 Dow Corning or the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane sold under the name Dow Corning EL-9240® silicone elastomer blend from Dow Corning.
  • Dow Corning EL-9240® silicone elastomer blend from Dow Corning.
  • hydrophilic gelling agent/lipophilic gelling agent systems that are most particularly suitable for use in the invention, mention may be made especially of 2-acrylamido-2-methylpropanesulfonic acid/organopolysiloxane elastomer polymers or copolymers.
  • composition according to the invention may advantageously comprise as hydrophilic gelling agent/lipophilic gelling agent system, a system of 2-acrylamido-2- methylpropanesulfonic acid and of hydroxyethyl acrylate copolymer/organopolysiloxane elastomer.
  • the claimed compositions comprise at least one pigment
  • the pigments may be selected from uncoated pigments, pigments coated with a hydrophilic compound, pigments coated with a hydrophobic compound, and their mixtures.
  • the composition contains at least one pigment coated with at least one hydrophobic compound, especially as detailed hereinbelow.
  • the pigments coated with at least one hydrophobic compound are present totally or partly, and preferably only, in the gelled oily phase.
  • the term "pigments” means white or coloured, mineral or organic particles, which are insoluble in an aqueous medium, and which are intended to colour and/or opacify the resulting composition and/or film. These pigments may be white or coloured, and mineral and/or organic. These pigments are more particularly detailed below.
  • the pigments used according to the invention are chosen from mineral pigments.
  • mineral pigment means any pigment that satisfies the definition in Ullmann's encyclopaedia in the chapter on mineral pigments.
  • the following mineral pigments may also be used: Ta 2 0 5 , Ti 3 0 5 , Ti 2 0 3 , TiO, Zr0 2 as a mixture with Ti0 2 , Zr0 2 , Nb 2 0 5 , Ce0 2 , ZnS.
  • the size of the pigment that is useful in the context of the present invention is generally between 10 nm and 10 ⁇ , preferably between 20 nm and 5 ⁇ and more preferentially between 30 nm and 1 ⁇ .
  • the mineral pigments are more particularly iron oxide and/or titanium dioxide.
  • titanium dioxide and iron oxide coated with aluminium stearoyl glutamate for example sold under the reference NAI by the company Miyoshi Kasei.
  • composition according to the invention comprises at least one pigment coated with at least one hydrophobic compound.
  • the coating may also comprise at least one additional non-hydrophobic compound.
  • the "coating" of a pigment according to the invention generally denotes the total or partial surface treatment of the pigment with a surface agent, absorbed, adsorbed or grafted onto the said pigment.
  • the surface-treated pigments may be prepared according to surface treatment techniques of chemical, electronic, mechanochemical or mechanical nature that are well known to those skilled in the art. Commercial products may also be used.
  • the surface agent may be absorbed adsorbed or grafted onto the pigments by solvent evaporation, chemical reaction and creation of a covalent bond.
  • the surface treatment consists of coating of the pigments.
  • the coating may represent from 0.1 % to 20% by weight and in particular from 0.5% to 5% by weight relative to the total weight of the coated pigment.
  • the coating may be performed, for example, by adsorption of a liquid surface agent onto the surface of the solid particles by simple mixing with stirring of the particles and of the said surface agent, optionally with heating, prior to the incorporation of the particles into the other ingredients of the makeup or care composition.
  • the coating may be performed, for example, by chemical reaction of a surface agent with the surface of the solid pigment particles and creation of a covalent bond between the surface agent and the particles. This method is especially described in patent US 4 578 266.
  • the chemical surface treatment may consist in diluting the surface agent in a volatile solvent, dispersing the pigments in this mixture and then slowly evaporating off the volatile solvent, so that the surface agent is deposited at the surface of the pigments.
  • Hydrophobic treatment agent
  • the pigment comprises a lipophilic or hydrophobic coating
  • it is preferably present in the fatty phase of the composition according to the invention.
  • the pigments may be coated according to the invention with at least one compound chosen from silicone surface agents; fluoro surface agents; fluorosilicone surface agents; metal soaps; N-acylamino acids or salts thereof; lecithin and derivatives thereof; isopropyl triisostearyl titanate; isostearyl sebacate; natural plant or animal waxes; polar synthetic waxes; fatty esters; phospholipids; and mixtures thereof.
  • the pigments may be totally or partially surface-treated with a compound of silicone nature.
  • the silicone surface agents may be chosen from organopolysiloxanes, silane derivatives, silicone-acrylate copolymers and silicone resins, and mixtures thereof.
  • organopolysiloxane compound means a compound having a structure comprising an alternation of silicon atoms and oxygen atoms and comprising organic radicals linked to silicon atoms. / ' ) Non-elastomeric organopolysiloxane
  • Non-elastomeric organopolysiloxanes that may especially be mentioned include polydimethylsiloxanes, polymethylhydrogenosiloxanes and polyalkoxydimethylsiloxanes.
  • the alkoxy group may be represented by the radical R-O- such that R represents methyl, ethyl, propyl, butyl or octyl, 2-phenylethyl, 2-phenylpropyl or 3,3,3-trifluoropropyl radicals, aryl radicals such as phenyl, tolyl or xylyl, or substituted aryl radicals such as phenylethyl.
  • One method for surface-treating pigments with a polymethylhydrogenosiloxane consists in dispersing the pigments in an organic solvent and then in adding the silicone compound. On heating the mixture, covalent bonds are created between the silicone compound and the surface of the pigment.
  • the silicone surface agent may be a non- elastomeric organopolysiloxane, especially chosen from polydimethylsiloxanes.
  • Silanes containing alkoxy functionality are especially described by Witucki in A silane primer, Chemistry and applications of alkoxy silanes, Journal of Coatings Technology, 65, 822, pages 57-60, 1993.
  • Alkoxysilanes such as the alkyltriethoxysilanes and the alkyltrimethoxysilanes sold under the references Silquest A-137 (OSI Specialities) and Prosil 9202 (PCR) may be used for coating pigments.
  • pigments treated with triethoxycaprylylsilane sold under the references Unipure AS-EM by the company Sensient.
  • alkylpolysiloxanes containing a reactive end group such as alkoxy, hydroxyl, halogen, amino or imino are described in patent application JP H07-196 946. They are also suitable for treating pigments
  • Grafted silicone-acrylic polymers having a silicone backbone as described in patents US 5 725 882, US 5 209 924, US 4 972 037, US 4 981 903, US 4 981 902 and US 5 468 477 and in patents US 5 219 560 and EP 0 388 582 may be used.
  • silicone-acrylate polymers may be silicone polymers comprising in their structure the unit of formula (I) below: (-)
  • radicals Gi which may be identical or different, represent hydrogen or a C Cio alkyl radical or alternatively a phenyl radical
  • radicals G 2 which may be identical or different, represent a C1-C1 0 alkylene group
  • G 3 represents a polymeric residue resulting from the (homo)polymerization of at least one ethylenically unsaturated anionic monomer
  • G 4 represents a polymeric residue resulting from the (homo)polymerization of at least one ethylenically unsaturated hydrophobic monomer; m and n are equal to 0 or 1 ; a is an integer ranging from 0 to 50; b is an integer that may be between 10 and 350, c is an integer ranging from 0 to 50; with the proviso that one of the parameters a and c is other than 0.
  • the unit of formula (I) above has at least one, and even more preferentially all, of the following characteristics:
  • radicals Gi denote an alkyl radical, preferably a methyl radical
  • radicals G 2 represent a divalent C1-C 3 radical, preferably a propylene radical
  • - G 3 represents a polymeric radical resulting from the (homo)polymerization of at least one monomer of the ethylenically unsaturated carboxylic acid type, preferably acrylic acid and/or methacrylic acid;
  • - G 4 represents a polymeric radical resulting from the (homo)polymerization of at least one monomer of the (Ci-Ci 0 )alkyl (meth)acrylate type, preferably such as isobutyl or methyl (meth)acrylate.
  • silicone polymers corresponding to formula (I) are especially polydimethylsiloxanes (PDMS) onto which are grafted, via a connecting chain unit of thiopropylene type, mixed polymer units of the poly(meth)acrylic acid type and of the polymethyl (meth)acrylate type.
  • Other examples of silicone polymers corresponding to formula (I) are especially polydimethylsiloxanes (PDMS) onto which are grafted, via a connecting chain unit of thiopropylene type, polymer units of the polyisobutyl (meth)acrylate type.
  • the silicone surface agent may be chosen from silicone resins.
  • the term "resin” means a three-dimensional structure.
  • the silicone resins may be soluble or swellable in silicone oils. These resins are crosslinked polyorganosiloxane polymers.
  • silicone resins are known under the name "MDTQ", the resin being described as a function of the various siloxane monomer units it comprises, each of the letters “MDTQ” characterizing a type of unit.
  • the letter M represents the monofunctional unit of formula (CH 3 ) 3 SiOi /2 , the silicon atom being bonded to only one oxygen atom in the polymer comprising this unit.
  • the letter D means a difunctional unit (CH 3 ) 2 Si0 2/2 in which the silicon atom is bonded to two oxygen atoms.
  • the letter T represents a trifunctional unit of formula (CH 3 )Si0 3/2 .
  • a group R other than a methyl group, such as a hydrocarbon-based radical (especially alkyl) containing from 2 to 10 carbon atoms or a phenyl group, or alternatively a hydroxyl group.
  • the letter Q means a tetrafunctional unit Si0 4/2 in which the silicon atom is bonded to four hydrogen atoms, which are themselves bonded to the rest of the polymer.
  • silicone resins examples include:
  • siloxysilicates which may be trimethyl siloxysilicates of formula [(CH 3 ) 3 XSiXO]xX(Si0 4 /2)y (MQ units) in which x and y are integers ranging from 50 to 80,
  • polymethylsilsesquioxanes which are polysilsesquioxanes in which none of the methyl radicals is substituted with another group.
  • polymethylsilsesquioxanes are described in document US 5 246 694.
  • Resin MK polymer comprising CH 3 Si0 3/2 repeating units (T units), which may also comprise up to 1 % by weight of (CH 3 ) 2 Si0 2 /2 units (D units) and having an average molecular weight of about 10 000, or
  • Siloxysilicate resins that may be mentioned include trimethyl siloxysilicate (TMS) resins, optionally in the form of powders. Such resins are sold under the references SR1000, E 1 170-002 or SS 4230 by the company General Electric or under the references TMS 803, Wacker 803 and 804 by the company Wacker Silicone Corporation.
  • TMS trimethyl siloxysilicate
  • the pigments may be totally or partially surface-treated with a compound of fluoro nature.
  • the fluoro surface agents may be chosen from perfluoroalkyi phosphates, perfluoropolyethers, polytetrafluoropolyethylenes (PTFE), perfluoroalkanes, perfluoroalkylsilazanes, poly(hexafluoropropylene oxides), and polyorganosiloxanes comprising perfluoroalkyi or perfluoropolyether groups.
  • perfluoroalkyi phosphates perfluoropolyethers
  • PTFE polytetrafluoropolyethylenes
  • perfluoroalkanes perfluoroalkylsilazanes
  • poly(hexafluoropropylene oxides) poly(hexafluoropropylene oxides)
  • polyorganosiloxanes comprising perfluoroalkyi or perfluoropolyether groups.
  • perfluoroalkyi radicaf means an alkyl radical in which all of the hydrogen atoms have been replaced with fluorine atoms.
  • Perfluoropolyethers are especially described in patent application EP 0 486 135, and sold under the trade name Fomblin by the company Montefluos.
  • Perfluoroalkyi phosphates are described in particular in patent application JP H05-86984.
  • the perfluoroalkyi diethanolamine phosphates sold by Asahi Glass under the reference AsahiGuard AG530 may be used.
  • linear perfluoroalkanes that may be mentioned are perfluorocycloalkanes, perfluoro(alkylcycloalkanes), perfluoropolycycloalkanes, aromatic perfluoro hydrocarbons (perfluoroarenes) and hydrocarbon-based perfluoro organic compounds comprising at least one heteroatom.
  • perfluoroalkanes mention may be made of the linear alkane series such as perfluorooctane, perfluorononane or perfluorodecane.
  • perfluorocycloalkanes and the perfluoro(alkylcycloalkanes)
  • perfluorodecalin sold under the name Flutec PP5 GMP by the company Rhodia
  • perfluoro(methyldecalin) and perfluoro(C 3 -C 5 alkylcyclohexanes) such as perfluoro(butylcyclohexane).
  • perfluoropolycycloalkanes mention may be made of bicyclo[3.3.1]nonane derivatives such as perfluorotrimethylbicyclo[3.3.1]nonane, adamantane derivatives such as perfluorodimethyladamantane, and hydrogenated perfluorophenanthrene derivatives such as tetracosafluorotetradecahydrophenanthrene.
  • perfluoronaphthalene derivatives for instance perfluoronaphthalene and perfluoromethyl-1 -naphthalene.
  • Fluorosilicone surface agent The pigments may be totally or partially surface-treated with a compound of fluorosilicone nature.
  • the fluorosilicone compound may be chosen from perfluoroalkyl dimethicones, perfluoroalkyl silanes and perfluoroalkyl trialkoxysilanes.
  • Perfluoroalkyl silanes that may be mentioned include the products LP-IT and LP-4T sold by Shin-Etsu Silicone.
  • the perfluoroalkyl dimethicones may be represented by the following formula:
  • - R represents a linear or branched divalent alkyl group containing from 1 to 6 carbon atoms, preferably a divalent methyl, ethyl, propyl or butyl group;
  • Rf represents a perfluoroalkyl radical containing 1 to 9 carbon atoms and preferably 1 to 4 carbon atoms;
  • - m is chosen between 0 and 150 and preferably between 20 and 100;
  • - n is chosen between 1 and 300 and preferably between 1 and 100.
  • pigments treated with a fluorosilicone compound mention may be made of titanium dioxide/fluorosilicone sold under the reference Fluorosil Titanium dioxide 100TA by the company Advanced Dermaceuticals International Inc and pigments treated with perfluorooctyltriethoxysilane sold under the references FHS by the company Daito Kasei Kogyo.
  • Fluorosil Titanium dioxide 100TA by the company Advanced Dermaceuticals International Inc
  • FHS perfluorooctyltriethoxysilane
  • the hydrophobic treatment agent may also be chosen from:
  • metal soaps such as aluminium dimyristate and the aluminium salt of hydrogenated tallow glutamate
  • Metal soaps that may especially be mentioned include metal soaps of fatty acids containing from 12 to 22 carbon atoms and in particular those containing from 12 to 18 carbon atoms.
  • the metal of the metal soap may especially be zinc or magnesium.
  • Metal soaps that may be used include zinc laurate, magnesium stearate, magnesium myristate and zinc stearate, and mixtures thereof;
  • fatty acids such as lauric acid, myristic acid, stearic acid and palmitic acid;
  • N-acylamino acids or salts thereof which may comprise an acyl group containing from 8 to 22 carbon atoms, for instance a 2-ethylhexanoyl, caproyl, lauroyl, myristoyl, palmitoyl, stearoyl or cocoyl group;
  • the amino acid may be, for example, lysine, glutamic acid or alanine.
  • an N-acylamino acid derivative may especially be a derivative of glutamic acid and/or a salt thereof, and more particularly a stearoyl glutamate, for instance aluminium stearoyl glutamate. iv) lecithin and derivatives thereof;
  • lecithin treated pigments mention may be made of those sold under the commercial references Unipure HLC by the company Sensient Company.
  • ITT isopropyl titanium triisostearate
  • BWBO-12 Iron oxide CI77499 and isopropyl titanium triisostearate
  • BWYO-12 Iron oxide CI77492 and isopropyl titanium triisostearate
  • BWRO-12 Iron oxide CI77491 and isopropyl titanium triisostearate
  • fatty esters in particular jojoba esters
  • the waxes mentioned in the abovementioned compounds may be those generally used in the cosmetics field, as defined hereinbelow.
  • They may especially be hydrocarbon-based, silicone and/or fluoro waxes, optionally comprising ester or hydroxyl functions. They may also be of natural or synthetic origin.
  • polar wax means a wax containing chemical compounds comprising at least one polar group.
  • Polar groups are well known to those skilled in the art; they may be, for example, alcohol, ester or carboxylic acid groups.
  • Polyethylene waxes, paraffin waxes, microcrystalline waxes, ozokerite and Fischer-Tropsch waxes do not feature among polar waxes.
  • polar waxes have a mean Hansen solubility parameter 5 a at 25°C such that 5 a > 0 (J/cm 3 ) 1/2 and better still 5 a > 1 (J/cm 3 ) 1/2 :
  • ⁇ ⁇ and 5 h are, respectively, the polar contributions and interactions of types specific to the Hansen solubility parameters.
  • a polar wax consists especially of molecules comprising, besides carbon and hydrogen atoms in their chemical structure, heteroatoms (such as O, N and P).
  • heteroatoms such as O, N and P.
  • natural polar waxes such as beeswax, lanolin wax, orange wax, lemon wax, Chinese insect wax, rice bran wax, carnauba wax, candelilla wax, ouricury wax, cork fibre wax, sugarcane wax, Japan wax, sumach wax and montan wax.
  • the pigments may be coated with at least one compound chosen from silicone surface agents; fluoro surface agents; N-acylamino acids or salts thereof; isopropyl triisostearyl titanate; natural plant or animal waxes; fatty esters; and mixtures thereof.
  • the pigments may be coated with an N- acylamino acid and/or a salt thereof, in particular with a derivative of glutamic acid and/or a salt thereof, or with a fatty ester, in particular with a jojoba ester.
  • the pigments may be coated with an N-acylamino acid and/or a salt thereof, in particular with a derivative of glutamic acid and/or a salt thereof, especially a stearoyl glutamate, for instance aluminium stearoyl glutamate.
  • coated pigments As examples of coated pigments according to the invention, mention may be made more particularly of titanium dioxide and iron oxide coated with aluminium stearoyl glutamate, for example sold under the reference NAI by Miyoshi Kasei, pigments treated with perfluorooctyltriethoxysilane, for example sold under the references FHS by the company Daito Kasei Kogyo, lecithin treated pigments, for example sold under the commercial references Unipure HLC by the company Sensient Company and pigments treated with a fluoro compound, for example sold under the reference PF 5 or PFX-5 by the company Daito Kasei, and mixtures thereof.
  • NAI by Miyoshi Kasei
  • pigments treated with perfluorooctyltriethoxysilane for example sold under the references FHS by the company Daito Kasei Kogyo
  • lecithin treated pigments for example sold under the commercial references Unipure HLC by the company Sensient Company
  • pigments in particular iron oxides
  • a fluoro compound for example sold under the reference PF 5 or PFX-5 by the company Daito Kasei
  • pigments in particular titanium dioxide
  • perfluorooctyltriethoxysilane for example sold under the references FHS by the company Daito Kasei Kogyo.
  • Mention may be made more preferably of titanium dioxide and iron oxide coated with aluminium stearoyl glutamate, for example sold under the reference NAI by Miyoshi Kasei.
  • the pigments according to the invention are present in a composition of the invention in a proportion of at least 10% by weight, preferably at least 20% by weight and better still in a proportion from 20 to 25% by weight relative to the total weight of the composition.
  • the composition may contain uncoated pigments and/or pigments coated with a hydrophilic compound.
  • These pigments may be mineral pigments especially as defined previously.
  • These pigments may also be organic pigments.
  • organic pigment means any pigment that satisfies the definition in Ullmann's encyclopaedia in the chapter on organic pigments.
  • the organic pigment may especially be chosen from nitroso, nitro, azo, xanthene, quinoline, anthraquinone, phthalocyanin, metal complex, isoindolinone, isoindoline, quinacridone, perinone, perylene, diketopyrrolopyrrole, thioindigo, dioxazine, triphenylmethane and quinophthalone compounds.
  • the organic pigment(s) may be chosen, for example, from carmine, carbon black, aniline black, melanin, azo yellow, quinacridone, phthalocyanin blue, sorghum red, the blue pigments codified in the Color Index under the references CI 42090, 69800, 69825, 73000, 74100 and 74160, the yellow pigments codified in the Color Index under the references CI 1 1680, 1 1710, 15985, 19140, 20040, 21 100, 21 108, 47000 and 47005, the green pigments codified in the Color Index under the references CI 61565, 61570 and 74260, the orange pigments codified in the Color Index under the references CI 1 1725, 15510, 45370 and 71 105, the red pigments codified in the Color Index under the references CI 12085, 12120, 12370, 12420, 12490, 14700, 15525, 15580, 15620, 15630, 15800, 15850, 15865, 15880
  • These pigments may also be in the form of composite pigments as described in patent EP 1 184 426. These composite pigments may especially be composed of particles comprising a mineral core at least partially covered with an organic pigment and at least one binder for attaching the organic pigments to the core.
  • the pigment may also be a lake.
  • the term "lake” means insolubilized dyes adsorbed onto insoluble particles, the assembly thus obtained remaining insoluble during use.
  • the mineral substrates onto which the dyes are adsorbed are, for example, alumina, silica, calcium sodium borosilicate, calcium aluminium borosilicate and aluminium.
  • Mention may be made, among the organic dyes, of cochineal carmine. Mention may also be made of the products known under the following names: D&C Red 21 (CI 45 380), D&C Orange 5 (CI 45 370), D&C Red 27 (CI 45 410), D&C Orange 10 (CI 45 425), D&C Red 3 (CI 45 430), D&C Red 4 (CI 15 510), D&C Red 33 (CI 17 200), D&C Yellow 5 (CI 19 140), D&C Yellow 6 (CI 15 985), D&C Green (CI 61 570), D&C Yellow 1 O (CI 77 002), D&C Green 3 (CI 42 053), D&C Blue 1 (CI 42 090).
  • D&C Red 21 CI 45 380
  • D&C Orange 5 CI 45 370
  • D&C Red 27 CI 45 410
  • D&C Orange 10 CI 45 425
  • D&C Red 3 CI 45 430
  • D&C Red 4 CI 15 510
  • An example of a lake that may be mentioned is the product known under the name D&C Red 7 (CI 15 850:1 ).
  • these other pigments may be coated with a hydrophilic compound.
  • the said hydrophilic compound for surface-treating a pigment in order to optimize its dispersion in the gelled aqueous phase is more particularly chosen from biological polymers, carbohydrates, polysaccharides, polyacrylates and polyethylene glycol derivatives.
  • biological polymers examples include polymers based on monomers of carbohydrate type.
  • biosaccharide gum such as butoxy chitosan, carboxymethyl chitosan, carboxybutyl chitosan, chitosan gluconate, chitosan adipate, chitosan glycolate, chitosan lactate, etc.
  • chitins and derivatives thereof such as carboxymethyl chitin, chitin glycolate; cellulose and derivatives thereof such as cellulose acetate; microcrystalline cellulose; distarch phosphate; sodium hyaluronate; soluble proteoglycans; galacto-arabinans; glycosaminoglycans; glycogen; sclerotium gum; dextran; starch and derivatives thereof; and mixtures thereof.
  • carbohydrates examples include polyhydroxyaldehydes and polyhydroxy ketones of general formula:
  • x and y may range from 1 to 1 000 000.
  • the carbohydrates may be monosaccharides, disaccharides or polysaccharides.
  • carbohydrates examples include amylodextrins, ⁇ - glucans, cyclodextrins, modified corn starch, glycogen, hyaluronic acid, hydroxypropylcylodextrin, lactose, maltitol, guanosine, glyceryl starch, starch from Triticum vulgare, trehalose, sucrose and derivatives thereof, raffinose and sodium chondroitin sulfate.
  • C 1 -C 20 alkylene glycols or C 1 -C 20 alkylene glycol ethers, alone or in combination with tri- CrC 2 o-alkylsilanes, may also be used as surface treatment agents.
  • Examples that may be mentioned include pigments surface-treated with PEG alkyl ether alkoxysilane, for instance pigments treated with PEG-8-methyl ether triethoxysilane sold by the company Kobo under the name SW pigments.
  • Silicones such as dimethicones bearing hydrophilic groups, also known as dimethicone copolyols or alkyl dimethicone copolyols, may also be suitable for use in the invention as surface treatment agents.
  • dimethicones may comprise, as repeating units, C1-C20 alkylene oxides such as ethylene oxide or propylene oxide.
  • the pigments coated with at least one hydrophilic compound and/or uncoated pigments are present totally or partly, and preferably only, in the gelled aqueous phase.
  • the amount of pigments coated with at least one hydrophilic compound and/or of uncoated pigments is especially conditioned by the intended use of the cosmetic composition under consideration, and the adjustment of this amount obviously falls within the competence of the composition formulator.
  • the composistion of the invention contains
  • At least one pigment preferably selected from titanium dioxidess and/or iron oxides; the said pigment being preferably coated with at least one hydrophic compound, and more preferably coated with aluminium stearoyl glutamate,
  • the said composition contains salicylic acid and triethonalamine in a weight ratio triethanolamine/salycilic acid from 0.5/1 to 2/1 , and more particularly in a weight ratio equal to 1/1.
  • the aqueous phase of a composition according to the invention comprises water and optionally a water-soluble solvent.
  • water-soluble solvent denotes a compound that is liquid at room temperature and water-miscible (miscibility with water of greater than 50% by weight at 25°C and atmospheric pressure).
  • the water-soluble solvents that may be used in the composition of the invention may also be volatile.
  • the aqueous phase (water and optionally the water-miscible solvent) may be present in the composition in a content ranging from 5% to 95%, better still from 30% to 80% by weight and preferably from 40% to 75% by weight relative to the total weight of the said composition.
  • the aqueous phase of a composition according to the invention may comprise at least one C 2 -C 3 2 polyol.
  • polyoi' should be understood as meaning any organic molecule comprising at least two free hydroxyl groups.
  • a polyol in accordance with the present invention is present in liquid form at room temperature.
  • a polyol that is suitable for use in the invention may be a compound of linear, branched or cyclic, saturated or unsaturated alkyl type, bearing on each alkyl chain at least two -OH functions, in particular at least three -OH functions and more particularly at least four -OH functions.
  • the polyols that are advantageously suitable for use in the formulation of a composition according to the present invention are those especially containing from 2 to 32 carbon atoms and preferably from 3 to 16 carbon atoms.
  • the polyol may be chosen, for example, from ethylene glycol, pentaerythritol, trimethylolpropane, propylene glycol, 1 ,3-propanediol, butylene glycol, isoprene glycol, pentylene glycol, hexylene glycol, glycerol, polyglycerols such as glycerol oligomers, for instance diglycerol, and polyethylene glycols, and mixtures thereof.
  • the said polyol is chosen from ethylene glycol, pentaerythritol, trimethylolpropane, propylene glycol, glycerol, polyglycerols and polyethylene glycols, and mixtures thereof.
  • the composition of the invention may comprise at least propylene glycol. According to another particular embodiment, the composition of the invention may comprise at least glycerol.
  • an oily phase comprises at least one oil.
  • o/7 means any fatty substance that is in liquid form at room temperature and atmospheric pressure.
  • An oily phase that is suitable for preparing the cosmetic compositions according to the invention may comprise hydrocarbon-based oils, silicone oils, fluoro oils or non-fluoro oils, or mixtures thereof.
  • oils may be volatile or non-volatile. They can be of animal, plant, mineral or synthetic origin. According to one embodiment variant, oils of plant origin are preferred.
  • non-volatile o/V means an oil with a vapour pressure of less than 0.13 Pa.
  • silicon oil' means an oil comprising at least one silicon atom, and especially at least one Si-0 group.
  • fluoro oil' means an oil comprising at least one fluorine atom.
  • hydrocarbon-based oil means an oil mainly containing hydrogen and carbon atoms.
  • the oils may optionally comprise oxygen, nitrogen, sulfur and/or phosphorus atoms, for example in the form of hydroxyl or acid radicals.
  • volatile o/V means any oil that is capable of evaporating on contact with the skin in less than one hour, at room temperature and atmospheric pressure.
  • the volatile oil is a volatile cosmetic compound, which is liquid at room temperature, especially having a nonzero vapour pressure, at room temperature and atmospheric pressure, in particular having a vapour pressure ranging from 0.13 Pa to 40 000 Pa (10 "3 to 300 mmHg), in particular ranging from 1 .3 Pa to 13 000 Pa (0.01 to 100 mmHg) and more particularly ranging from 1.3 Pa to 1300 Pa (0.01 to 10 mmHg).
  • the volatile oils may be hydrocarbon-based oils or silicone oils.
  • volatile hydrocarbon-based oils containing from 8 to 16 carbon atoms mention may be made especially of branched C 8 -Ci 6 alkanes, for instance C 8 -Ci 6 isoalkanes (also known as isoparaffins), isododecane, isodecane, isohexadecane and, for example, the oils sold under the trade names Isopar or Permethyl, branched C 8 -Ci 6 esters, for instance isohexyl neopentanoate, and mixtures thereof.
  • the volatile hydrocarbon-based oil is chosen from volatile hydrocarbon-based oils containing from 8 to 16 carbon atoms, and mixtures thereof, in particular from isododecane, isodecane and isohexadecane, and is especially isohexadecane.
  • volatile linear alkanes comprising from 8 to 16 carbon atoms, in particular from 10 to 15 carbon atoms and more particularly from 1 1 to 13 carbon atoms
  • n-dodecane (Ci 2 ) and n-tetradecane (Ci 4 ) sold by Sasol under the respective
  • Volatile silicone oils that may be mentioned include linear volatile silicone oils such as hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, tetradecamethylhexasiloxane, hexadecamethylheptasiloxane and dodecamethylpentasiloxane.
  • Volatile cyclic silicone oils that may be mentioned include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane and dodecamethylcyclohexasiloxane. b) Non-volatile oils
  • the non-volatile oils may be chosen especially from non-volatile hydrocarbon-based oils, fluoro oils and/or silicone oils.
  • Non-volatile hydrocarbon-based oils that may especially be mentioned include:
  • R-i represents a linear or branched fatty acid residue containing from 1 to 40 carbon atoms
  • R 2 represents a hydrocarbon-based chain, which is especially branched, containing from 1 to 40 carbon atoms, on condition that R-i + R 2 > 10.
  • the esters may be chosen especially from fatty alcohol and fatty acid esters, for instance cetostearyl octanoate, isopropyl alcohol esters such as isopropyl myristate or isopropyl palmitate, ethyl palmitate, 2- ethylhexyl palmitate, isopropyl stearate, octyl stearate, hydroxylated esters, for instance isostearyl lactate or octyl hydroxystearate, alkyl or polyalkyl ricinoleates, hexyl laurate, neopentanoic acid esters, for instance isodecyl neopentanoate or isotridecyl neopentanoate, and isononanoic acid esters, for instance isononyl isononanoate or isotridecyl isononanoate,
  • cetostearyl octanoate
  • - fatty alcohols that are liquid at room temperature, with a branched and/or unsaturated carbon-based chain containing from 12 to 26 carbon atoms, for instance 2-octyldodecanol, isostearyl alcohol and oleyl alcohol,
  • non-phenyl silicone oils for instance caprylyl methicone
  • phenyl silicone oils for instance phenyl trimethicones, phenyl dimethicones, phenyltrimethylsiloxydiphenylsiloxanes, diphenyl dimethicones, diphenylmethyldiphenyltrisiloxanes and 2-phenylethyl trimethylsiloxysilicat.es, dimethicones or phenyl trimethicone with a viscosity of less than or equal to 100 cSt, and trimethyl pentaphenyl trisiloxane, and mixtures thereof; and also mixtures of these various oils.
  • a composition according to the invention may comprise from 5% to 95% by weight, better still from 5% to 40% by weight and preferably from 7% to 35% by weight of oil(s) relative to the total weight of the said composition
  • a composition according to the invention comprises volatile and/or non volatile silicone oils.
  • silicone oils are particularly appreciated when the oily gelling agent is an organopolysiloxane polymer.
  • the weight percentage of oils is assessed taking into account the weight of the oils present, where appropriate, as vehicles for certain compounds forming a composition according to the invention.
  • the gelled oily phase according to the invention may have a threshold stress of greater than 1.5 Pa and preferably greater than 10 Pa. This threshold stress value reflects a gel-type texture of this oily phase.
  • composition according to the invention may also comprise one or more fillers.
  • fillers should be understood as meaning colourless or white solid particles of any form, which are in an insoluble and dispersed form in the medium of the composition.
  • fillers of mineral or organic, natural or synthetic nature, give the composition containing them softness and give the makeup result a matt effect and uniformity.
  • a composition of the invention comprises fillers, particularly when it is dedicated to provide a high coverage.
  • a composition according to the invention may comprise from 2% to 35% by weight, especially from 5% to 35% by weight, in particular from 5% to 20% by weight of fillers relative to the total weight of the said composition.
  • a composition according to the invention may also comprise a dispersant.
  • a dispersant may be a surfactant, an oligomer, a polymer or a mixture of several thereof.
  • a dispersant in accordance with the invention is a surfactant.
  • a composition according to the invention may comprise at least one active agent, in particular a moisturizer (also known as a humectant.
  • a moisturizer also known as a humectant.
  • glycerol is a moisturizer that is glycerol.
  • the moisturizer(s) may be present in the composition in a content ranging from 0.1 % to 15% by weight, especially from 0.5% to 10% by weight or even from 1 % to 6% by weight, relative to the total weight of the said composition.
  • composition of the invention comprises at least one active agent.
  • a composition of the invention may advantageously be in the form of a foundation.
  • a composition of the invention may advantageously be in the form of a composition for making up the skin and especially the face. It may thus be an eyeshadow or a face powder.
  • composition of the invention may advantageously be in the form of a lip product, in particular a lipstick.
  • compositions are especially prepared according to the general knowledge of a person skilled in the art.
  • the measurements in the harmonic regime make it possible to characterize the viscoelastic properties of the products.
  • the technique consists in subjecting a material to a stress that varies sinusoidally over time and in measuring the response of the material to this stress.
  • the stress ( ⁇ ) and the strain ( ⁇ ) are two sinusoidal functions of time that are written in the following manner:
  • T 0 represents the maximum amplitude of the stress (Pa);
  • 2 ⁇ represents the angular frequency (rad.s "1 ) with N representing the frequency (Hz);
  • represents the phase angle of the stress relative to the strain (rad).
  • the two functions have the same angular frequency, but they are dephased by an angle ⁇ .
  • the behaviour of the system may be assessed:
  • a complex stiffness modulus representing the overall resistance of the material to the strain, whether it is of elastic or viscous origin, is then defined by:
  • the parameter retained is the mean stiffness modulus G * recorded at the plateau measured at a frequency of 1 Hz.
  • Example 1 Foundation formulation according to the invention
  • a foundation formulation in accordance with the invention was prepared from the phases described below.
  • the components of the aqueous phase were weighed out in a beaker and stirred with a Rayneri blender at room temperature.
  • the aqueous gelling agent was added with stirring at room temperature. The stirring is adjusted so as not to incorporate air into the mixture.
  • the mixture was stirred moderately for about 10 minutes at room temperature.
  • the pigments were ground with 15% of the silicone oil using a three-roll mill.
  • the ground material and the remainder of the oil were placed in a beaker and stirred with a Rayneri blender at room temperature.
  • the gel of silicone elastomer in dimethicone was added with moderate stirring at room temperature. The gel slowly thickens. The mixture is stirred for 20 minutes.
  • the formulation was obtained by mixing the phases intended to form the foundation in accordance with the invention.
  • the aqueous and oily gels were weighed out and then mixed with a Rayneri blender or a mini-olsa kettle.
  • the formulation 1 was prepared using the weight proportions described below.
  • the formulation has a gel-gel texture which is dense and finely dispersed.
  • the formulation is stable, homogeneous and has very good cosmetic qualities, such as good spreading, high coverage, good play time.
  • the texture is fresh and light on the skin on application.
  • the pigments dispersion aspect was evaluated after 24 hours at room temperature (25°C) with a specific naked eye evaluation: each formula 2 and 3 was deposited between two transparent glass plates. A mechanical pression was applided with hands on the glass plates. A pigments dispersion conformity was represented by a smooth, continuous film of formula without holes (representing a non conform pigments dispersion). The results of the tests have shown that the addition of the association salicylic acid/triethanolamine in the formula 3 of the invention improved the dispersion of the pigments in the composition when compared to the composition 2 without this combination.

Abstract

The present invention relates to a composition, in particular for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising: - at least one aqueous phase gelled with at least one hydrophilic gelling agent; and - at least one oily phase gelled with at least one lipophilic gelling agent; the said phases forming therein a macroscopically homogeneous mixture; the said composition comprising - salicylic acid, and - at least one alkanolamine, and - at least one pigment, preferably coated with at least one hydrophobic compound.

Description

Gel-Gel composition containing salicylic acid, one alkanolamine and pigments
The present invention is directed towards proposing for the field of caring for and/or making up keratin materials, especially the skin and/or the lips, and in particular the skin, a novel galenical form that is most particularly advantageous with regard to its technical performance and the sensations it affords the user during its application, in particular to the skin. The term "keratin materials" especially means the skin, the lips and/or the eyelashes, in particular the skin and/or the lips, and preferably the skin.
Cosmetic compositions, especially foundations, are commonly used to give the skin an aesthetic colour, but also to hide and/or unify imperfections of the skin relief such as wrinkles and/or fine lines and/or scars. In this regard, many solid or fluid, anhydrous or non-anhydrous formulations have been developed to date, namely fluids, creams, compacts, loose powders or sticks.
The present invention more particularly concerns the field of cosmetic galenical formulations of gel/gel type.
There are today multiphasic compositions which are interesting with regard to the properties of make-up which they confer, in particular of matt effect and coverage and wear of the make-up.
Compositions of the type gel-gel, were proposed in the cosmetic domain and are particularly interesting as alternative of emulsions which tend to give a greasy feel, a sticky effect, a lack of freshness and a lack of lightness for the obtained textures. This type of formulations combines a gelled aqueous phase with a gelled oily phase. Thus, formulations of gel/gel type are described in Almeida et al., Pharmaceutical Development and Technology, 2008, 13:487, tables 1 and 2, page 488; WO 99/65455; PI 0405758-9; WO 99/62497; JP 2005-1 12834, WO 2008/081 175, WO2014128679, WO2014/128680, WO2014/128678, WO2014167543. However, these formulations are not completely satisfactory. Indeed, the use of pigments generally used for conferring color and coverance, and particularly in high amounts (at least 10% by weight) tends to lead to a heterogeneous dispersion which can provoke a loss of stability during time, a substantial alteration of the cosmetic properties such color resistance, easy spreading, freshness, lightness, play time, comfort, coverance and an undesirable heterogeneous aspect for the consumer.
There is therefore a need to propose new gel-gel compositions for caring for and/or making up keratin materials, especially the skin and/or the lips containing pigments without the drawbacks as above evoked. The present invention is directed, precisely, towards proposing a solution for overcoming this difficulty.
The Applicant discovered surprisingly that is aim can be reached with a composition, in particular for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising:
- at least one aqueous phase gelled with at least one hydrophilic gelling agent; and - at least one oily phase gelled with at least one lipophilic gelling agent;
the said phases forming therein a macroscopically homogeneous mixture;
the said composition comprising
- salicylic acid, and
- at least one alkanolamine, and
- at least one pigment, preferably coated with at least one hydrophobic compound.
Thus, according to one of its aspects, the present invention relates to a composition, in particular for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising:
- at least one aqueous phase gelled with at least one hydrophilic gelling agent; and
- at least one oily phase gelled with at least one lipophilic gelling agent;
the said phases forming therein a macroscopically homogeneous mixture;
the said composition comprising
- salicylic acid, and
- at least one alkanolamine, and
- at least one pigment, preferably coated with at least one hydrophobic compound.
As stated above, the inventors have found that the composition of the invention ensures uniform and stabilized distribution of the pigments. No sedimentation or aggregation of these particles is observed. What is more, a composition according to the invention shows good coverage properties and affords a homogeneous colour effect on application while at the same time giving the user a sensation of freshness and lightness. Finally, the composition proves to be easy to apply to the surface of the targeted keratin material. This performance is especially characterized technically by good play-time.
According to another of its aspects, a subject of the invention is also a process for preparing a composition, in particular for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising:
- at least one aqueous phase gelled with at least one hydrophilic gelling agent; and - at least one oily phase gelled with at least one lipophilic gelling agent;
the said phases forming therein a macroscopically homogeneous mixture;
the said composition comprising
- salicylic acid, and
- at least one alkanolamine, and
- at least one pigment, preferably coated with at least one hydrophobic compound.
According to one embodiment variant, this process may advantageously comprise a step of mixing at least three or even more gelled phases. For obvious reasons, the number of gelled aqueous phases and of gelled oily phases to be considered for forming a composition according to the invention may range for each of the two types of phase beyond two.
Advantageously, the mixing of the phases may be performed at room temperature.
However, the process of the invention may comprise, if necessary, a step of heating the mixture.
According to a particular embodiment, the representative gelled phases of the same type of architecture are gelled with a different gelling agent.
Multi-phase formulas may thus be developed.
According to another of its aspects, a subject of the invention is also a process, especially a cosmetic process, for making up and/or caring for a keratin material, in particular the skin and/or the lips, comprising at least one step that consists in applying to the said keratin material a composition in accordance with the invention.
According to yet another of its aspects, the present invention relates to a process, especially a cosmetic process, for caring for and/or making up a keratin material, in particular the skin and/or the lips, comprising at least the application to the said material of a composition, in particular a macroscopically homogeneous composition, obtained by extemporaneous mixing, before application or at the time of application to the said keratin material, of at least one aqueous phase gelled with at least one hydrophilic gelling agent; and of at least one oily phase gelled with at least one lipophilic gelling agent; the said composition comprising :
- salicylic acid, and
- at least one alkanolamine, and
- at least one pigment, preferably coated with at least one hydrophobic compound,.
SALICYLIC ACID
Salicylic acid corresponds to the following structure
Figure imgf000005_0001
Salicylic acid is present in the composition of the invention preferably in amounts from 0.1 to 5% by weight, more preferably from 0.1 to 3% by weight, and more preferably from 0,2 to 2% by weight relative to the total weight of the composition. ALKANOLAMINE
"Alkanolamine" means any chemical compound that contains both hydroxyl (-OH) and amino (-NH2, -NHR, and -NR2) functional groups on an alkane backbone
Amongst alkanoamines which may be used according to the invention, may be cited : - C2-C4 alkanolamines as ethanolamine, isopropanolamine, isobutanolamine. - C1 -C4alkyl C1 -C4 alkanolamines as methylethanolamine, ethylethanolamine, butyl ethanolamine
- C1 -C4 dialkanolamines as diethanolamines, Diisopropanolamine.
- C1 -C4 trialkanolamines as triisopropanolamine, triethanolamine.
- C1 -C4 dialkyl C4-C4 alkanolamines as dimethyl isopropanolamine,
- C1 -C4 alkyl C1 -C4 dialkanolamines as, methyl diethanolamine, butyl diethanolamine,
C1 -C4 trialkanolamines will be particularly used, and more particularly triethanolamine. The alkanolamine is present preferably in amounts 0.1 to 5% by weight, more preferably from 0.1 to 3% by weight, and more preferably from 0.2 to 2% by weight relative to the total weight of the composition.
According to a particular preferred embodiment of the invention, salicylic acid and the alkanolamine are present preferably in a weight ratio triethanolamine/salycilic acid from 0.5/1 to 2/1 , and more particularly in a weight ratio equal to 1/1.
COSMETIC COMPOSITION Firstly, it is important to note that a composition according to the invention is different from an emulsion.
An emulsion generally consists of an oily liquid phase and an aqueous liquid phase. It is a dispersion of droplets of one of the two liquid phases in the other. The size of the droplets forming the dispersed phase of the emulsion is typically about a micrometer (0.1 to 100 μηη). Furthermore, an emulsion requires the presence of a surfactant or of an emulsifier to ensure its stability over time.
In contrast, a composition according to the invention consists of a macroscopically homogeneous mixture of two immiscible gelled phases. These two phases both have a gel type texture. This texture is especially reflected visually by a consistent and/or creamy appearance.
The terms "macroscopically homogeneous mixture" means a mixture in which each of the gelled phases cannot be individualized with the naked eye. More precisely, in a composition according to the invention, the gelled aqueous phase and the gelled oily phase interpenetrate and thus form a stable, consistent product. This consistency is achieved by mixing interpenetrated macrodomains. These interpenetrated macrodomains are not measurable objects. Thus, by microscope, the composition according to the invention is very different from an emulsion.
It cannot be characterized either as having a "sense", i.e. an O/W or W/O sense.
Thus, a composition according to the invention has a gel type consistency. Furthermore, the stability of the composition is long-lasting without surfactant. Consequently, a cosmetic composition according to the invention does not require any surfactant or silicone emulsifier to ensure its stability over time.
It is known from the state of the art to observe the intimate nature of the mixture of the aqueous and oily gels in a gel-type composition, for example, by introducing a dye substance into either the oily or aqueous gel phases before forming the gel-type composition. On visual inspection, the dye is seen to be uniformly dispersed, even though the dye is present in only one of the oily gel or aqueous gel. Indeed, if two different dyes of different colours are introduced into the oily and aqueous phases, respectively, before forming the gel-type composition, both colours can be observed uniformly dispersed throughout the gel-type composition. This is in contrast to an emulsion wherein if a dye that is either water-soluble or oil-soluble is introduced into the aqueous or oily phases, respectively, before forming an emulsion, only the colour of the dye in the external phase will be observed (Remington: The Science and Practice of Pharmacy, 19th Edition (1995) Chapter 21 , page 282).
It is also known to distinguish a gel-type composition from an emulsion by performing a "drop test". This test consists to demonstrate the bi-continous nature of a gel-type composition. Indeed, as mentioned above, the composition's consistency is achieved by interpenetrating oily and aqueous gelled domains. Therefore, the bi-continous nature of a gel-type composition can be highlighted by a simple test with respectively hydrophilic and hydrophobic solvents. This test consists to deposit, on the one hand, a droplet of a hydrophilic solvent on a first sample of the tested composition, and, on the other hand, a droplet of a hydrophobic solvent on a second sample of the same tested composition, and to analyze the behavior of both droplets of solvents. In the case of an O/W emulsion, a droplet of hydrophilic solvent diffuses in the sample and a droplet of hydrophobic solvent remains at the sample surface. In the case of a W/O emulsion, a droplet of hydrophilic solvent remains at the sample surface and a droplet of hydrophobic solvent diffuses throughout sample. Finally, in the case of a gel-type composition (bi-continuous system), the hydrophilic and hydrophobic droplets diffuse in the entire sample.
In particular, in the case of the present invention, the test which will be privileged for distinguishing a gel-type composition from an emulsion consists in a dilution test. Indeed, in a gel-type composition, the gelled aqueous domains and gel oily domains interpenetrate and form a stable and consistent product, whose dilution behavior in water and oil is different of emulsion's behavior. Therefore, the dilution behavior of a gel-type composition (bi-continuous system) can be compared to emulsions.
More specifically, the dilution test consists to put 40g of product plus 160g of dilution solvent (water or oil) in a 30 ml plastic beaker. The dilution is performed under controlled agitation to avoid any phenomenon of emulsification. In particular, it is done using a planetary mixer: Speed Mixer TM DAC400FVZ. The Speed Mixer is set to 1500 rpm for 4 minutes. Finally, observation of resulting sample is made with a light microscope at a magnification of x 100 (x10x10). It may be noticed that oils like Parleam® and Xiameter PMX-200 Silicone Fluid 5CS® from Dow Corning are convenient as dilution solvents.
In the case of a gel-type composition (bi-continuous system), when diluted either in oil or water, a heterogeneous aspect is always observed. When a gel-type composition (bi- continuous system) is diluted with water, one will observe lumps of oily gel in suspension and when a gel-type composition (bi-continuous system) is diluted with oil, one will observe lumps of aqueous gel in suspension.
On the contrary, upon dilution, emulsions display a different behavior. An C7W emulsion when it is diluted with an aqueous solvent will gradually thin up without presenting a heterogeneous and lumpy aspect. This same C7W emulsion when diluted with oil will present a heterogeneous appearance (lumps of O/W emulsion suspended in oil). A W/O emulsion when diluted with an aqueous solvent will present a heterogeneous appearance (lumps of W/O emulsion is suspended in the water). This same W/O emulsion when diluted with oil will gradually thin up without presenting a heterogeneous and lumpy aspect. According to the present invention, the gelled aqueous phase and the gelled oily phase forming a composition according to the invention are present therein in a weight ratio ranging from 30/70 to 70/30 and preferably in a weight ratio ranging from 40/60 to 60/40. More preferentially, the aqueous phase and the oily phase are present in a weight ratio ranging from 50/50 to 60/40.
The ratio between the two gelled phases is adjusted according to the desired cosmetic properties. Advantageously, a composition according to the invention is in the form of a creamy gel with a minimum stress below which it does not flow unless it has been subjected to an external mechanical stress.
As emerges from the text hereinbelow, a composition according to the invention may have a minimum threshold stress of 1.5 Pa and in particular greater than 10 Pa.
It may also advantageously have a stiffness modulus G* at least equal to 400 Pa and preferably greater than 1000 Pa. According to an advantageous embodiment variant, the gelled phases under consideration to form a composition according to the invention may have, respectively, a threshold stress of greater than 1 .5 Pa and preferably greater than 10 Pa.
Characterization of the threshold stresses is performed by oscillating rheology measurements. A method is proposed in the examples section of the present text.
In general, the corresponding measurements are taken at 25°C using a Haake RS600 imposed-stress rheometer equipped with a plate-plate measuring body (60 mm diameter) fitted with an anti-evaporation device (bell jar). For each measurement, the sample is placed delicately in position and the measurements start 5 minutes after placing the sample in the air gap (2 mm). The tested composition is then subjected to a stress ramp from 10"2 to 103 Pa at a set frequency of 1 Hz.
A composition according to the invention may also have a certain elasticity. This elasticity may be characterized by a stiffness modulus G* which, under this minimum stress threshold, may be at least equal to 400 Pa and preferably greater than 1000 Pa. The value G* of a composition may be obtained by subjecting the composition under consideration to a stress ramp from 10"2 to 103 Pa at a set frequency of 1 Hz. HYDROPHILIC GELLING AGENT
For the purposes of the present invention, the term "hydrophilic gelling agent" means a compound that is capable of gelling the aqueous phase of the compositions according to the invention.
The gelling agent is hydrophilic and is thus present in the aqueous phase of the composition.
The gelling agent may be water-soluble or water-dispersible.
The hydrophilic gelling agent is chosen from synthetic polymeric gelling agents, polymeric gelling agents that are natural or of natural origin, mixed silicates and fumed silicas, and mixtures thereof. I. Polymeric gelling agents that are natural or of natural origin
The polymeric hydrophilic gelling agents that are suitable for use in the invention may be natural or of natural origin. For the purposes of the invention, the expression "of natural origin" is intended to denote polymeric gelling agents that are obtained by modification of natural polymeric gelling agents.
These gelling agents may be particulate or non-particulate.
More precisely, these gelling agents fall within the category of polysaccharides.
In general, polysaccharides may be divided into several categories. Thus, polysaccharides that are suitable for use in the invention may be homopolysaccharides such as fructans, glucans, galactans and mannans or heteropolysaccharides such as hemicellulose.
Similarly, they may be linear polysaccharides such as pullulan or branched polysaccharides such as gum arabic and amylopectin, or mixed polysaccharides such as starch.
More particularly, the polysaccharides that are suitable for use in the invention may be distinguished according to whether or not they are starchy.
Starchy polysaccharides
Representatives of this category that may most particularly be mentioned include native starches, modified starches and particulate starches.
Native starches
The starches that may be used in the present invention are more particularly macromolecules in the form of polymers consisting of elemental units which are anhydroglucose (dextrose) units, linked via a(1 ,4) bonds, of chemical formula (C6H10O5)n- The number of these units and their assembly make it possible to distinguish amylose, which is a molecule formed from about 600 to 1000 linearly linked glucose molecules, and amylopectin, which is a polymer that is branched every 25 glucose residues approximately (a(1 ,6) bond). The total chain may contain between 10 000 and 100 000 glucose residues.
Starch is described in particular in Kirk-Othmer's Encyclopaedia of Chemical Technology, 3rd edition, volume 21 , pages 492-507, Wiley Interscience, 1983.
The relative proportions of amylose and of amylopectin, and their degree of polymerization, vary as a function of the botanical origin of the starches. On average, a sample of native starch consists of about 25% amylose and 75% amylopectin.
Occasionally, phytoglycogen is present (between 0% and 20% of starch), this molecule being an analogue of amylopectin but branched every 10 to 15 glucose residues. Starch may be in the form of semi-crystalline granules: amylopectin is organized in leaflets, amylose forms an amorphous zone that is less well organized between the various leaflets.
Amylose self-organizes in a right-handed helix with six glucoses per turn. It dissociates into glucose which may be assimilated under the action of enzymes, amylases, all the more readily if it is in the form of amylopectin. Specifically, the helix formation does not favour the accessibility of starch to enzymes.
Starches are generally in the form of a white powder, which is insoluble in cold water, whose elemental particle size ranges from 3 to 100 microns.
By treating it with hot water, starch paste is obtained. It is used in industry for its thickening and gelling properties. The botanical origin of the starch molecules used in the present invention may be cereals or tubers. Thus, the starches are chosen, for example, from corn starch, rice starch, cassava starch, tapioca starch, barley starch, potato starch, wheat starch, sorghum starch and pea starch. Native starches are represented, for example, by the products sold under the names C*AmilogelTM, Cargill GelTM, C* GelTM, Cargill GumTM, DryGelTM and C*Pharm GelTM by the company Cargill, under the name Amidon de ma'i's by the company Roquette, and under the name Pure Tapioca by the company National Starch. Modified starches
The modified starches used in the composition of the invention may be modified via one or more of the following reactions: pregelatinization, degradation (acid hydrolysis, oxidation or dextrinization), substitution (esterification or etherification), crosslinking (esterification), bleaching.
More particularly, these reactions may be performed in the following manner:
- pregelatinization by splitting the starch granules (for example drying and cooking in a drying drum);
- acid hydrolysis giving rise to very rapid retrogradation on cooling; - oxidation with strong oxidizing agents (alkaline medium, in the presence of sodium hypochlorite NaOCI, for example) leading to depolymerization of the starch molecule and to the introduction of carboxyl groups into the starch molecule (mainly oxidation of the C6 hydroxyl group);
- dextrinization in acidic medium at high temperature (hydrolysis followed by repolymerization);
- crosslinking with functional agents capable of reacting with the hydroxyl groups of starch molecules which will thus be linked together (for example with glyceryl and/or phosphate groups);
- esterification in alkaline medium for the grafting of functional groups, especially C1 -C6 acyl (acetyl), Ci-C6 hydroxyalkyl (hydroxyethyl or hydroxypropyl), carboxymethyl or octenylsuccinic.
Monostarch phosphates (of the type St-0-PO-(OX)2), distarch phosphates (of the type St- O-PO-(OX)-O-St) or even tristarch phosphates (of the type St-0-PO-(0-St)2) or mixtures thereof may especially be obtained by crosslinking with phosphorus compounds.
X especially denotes alkali metals (for example sodium or potassium), alkaline-earth metals (for example calcium or magnesium), ammonium salts, amine salts, for instance those of monoethanolamine, diethanolamine, triethanolamine, 3-amino-1 ,2-propanediol, or ammonium salts derived from basic amino acids such as lysine, arginine, sarcosine, ornithine or citrulline.
The phosphorus compounds may be, for example, sodium tripolyphosphate, sodium orthophosphate, phosphorus oxychloride or sodium trimetaphosphate.
According to the invention, it is also possible to use amphoteric starches, these amphoteric starches containing one or more anionic groups and one or more cationic groups. The anionic and cationic groups may be linked to the same reactive site of the starch molecule or to different reactive sites; they are preferably linked to the same reactive site. The anionic groups may be of carboxylic, phosphate or sulfate type, preferably carboxylic. The cationic groups may be of primary, secondary, tertiary or quaternary amine type.
The amphoteric starches are especially chosen from the compounds having the following formulae: R' R
CH— CH -COOM
/
(CH2)-N X
CH— CH-COOM
R' R
(I)
COOM R
CH CH -COOM
/
St-0 -(CH2)-N
R" (ID R' s / R"
N
I
St-O— CH2 CH -COOM ^
R' s / R"
N
I
St-O— CH— CH2— COOM ^
in which:
- St-O represents a starch molecule;
- R, which may be identical or different, represents a hydrogen atom or a methyl radical;
- R', which may be identical or different, represents a hydrogen atom, a methyl radical or a -COOH group;
- n is an integer equal to 2 or 3;
- M, which may be identical or different, denotes a hydrogen atom, an alkali metal or alkaline-earth metal such as Na, K, Li or NH4, a quaternary ammonium or an organic amine;
- R" represents a hydrogen atom or an alkyl radical containing from 1 to 18 carbon atoms.
These compounds are especially described in patents US 5 455 340 and US 4 017 460. The starch molecules may be derived from any plant source of starch, especially such as corn, potato, oat, rice, tapioca, sorghum, barley or wheat. It is also possible to use the hydrolysates of the starches mentioned above. The modified starches are represented, for example, by the products sold under the names C*Tex-lnstant (pregelatinized adipate), C*StabiTex-lnstant (pregelatinized phosphate), C*PolarTex-lnstant (pregelatinized hydroxypropyl), C*Set (acid hydrolysis, oxidation), C*size (oxidation), C*BatterCrisp (oxidation), C*DrySet (dextrinization), C*TexTM (acetylated distarch adipate), C*PolarTexTM (hydroxypropyl distarch phosphate), C* StabiTexTM (distarch phosphate, acetylated distarch phosphate) by the company Cargill, by distarch phosphates or compounds that are rich in distarch phosphate, such as the product sold under the references Prejel VA-70-T AGGL (gelatinized hydroxypropyl cassava distarch phosphate) or Prejel TK1 (gelatinized cassava distarch phosphate) or Prejel 200 (gelatinized acetylated cassava distarch phosphate) by the company Avebe or Structure Zea from National Starch (gelatinized corn distarch phosphate).
As examples of oxidized starches, use will be made especially of those sold under the name C*size from the company Cargill.
The native or modified starches described above may advantageously be used in a proportion of from 0.1 % to 8% by weight of solids and preferably about 1 % by weight, relative to the total weight of the aqueous phase.
Particulate starches
Particulate starches that may be mentioned in particular include:
- starches grafted with an acrylic polymer (homopolymer or copolymer) and in particular with sodium polyacrylate, for instance those sold under the name Sanfresh ST-100MC by the company Sanyo Chemical Industries or Makimousse 25 or Makimousse 12 by the company Daito Kasei (I NCI name: Sodium polyacrylate starch);
- hydrolysed starches grafted with an acrylic polymer (homopolymer or copolymer) and especially acryloacrylamide/sodium acrylate copolymer, for instance those sold under the names Water Lock A-240, A-180, B-204, D-223, A-100, C-200 and D-223 by the company Grain Processing (INCI name: Starch/acrylamide/sodium acrylate copolymer);
- polymers based on starch, gum and cellulose derivative, such as the product containing starch and sodium carboxymethylcellulose, for instance the product sold under the name Lysorb 220 by the company Lysac. Mention may be made most particularly of (C1 -C4) carboxyalkyi starches, "carboxyalkylstarch". These compounds are obtained by grafting carboxyalkyi groups onto one or more alcohol functions of starch, especially by reaction of starch and of sodium monochloroacetate in alkaline medium.
The carboxyalkyi groups are generally attached via an ether function, more particularly to carbon 1 . The degree of substitution with carboxyalkyi units of the (C1 -C4) carboxyalkyi starch preferably ranges from 0.1 to 1 and more particularly from 0.15 to 0.5. The degree of substitution is defined according to the present invention as being the mean number of hydroxyl groups substituted with an ester or ether group per monosaccharide unit of the polysaccharide.
The carboxyalkyi starches are advantageously used in the form of salts and especially salts of alkali metals or alkaline-earth metals such as Na, K, Li, NH4, or salts of a quaternary ammonium or of an organic amine such as monoethanolamine, diethanolamine or triethanolamine. The (Ci-C4) carboxyalkyi starches are, in the context of the present invention, advantageously carboxymethyl starches. The carboxymethyl starches preferably comprise units having the following formula:
Figure imgf000016_0001
in which X, optionally covalently bonded to the carboxyl unit, denotes a hydrogen atom, an alkali metal or alkaline-earth metal such as Na, K, Li, NH4, a quaternary ammonium or an organic amine, for instance monoethanolamine, diethanolamine or triethanolamine.
Preferably, X denotes an Na+ cation. The carboxyalkyi starches that may be used according to the present invention are preferably non-pregelatinized carboxyalkyi starches.
The carboxyalkyi starches that may be used according to the present invention are preferably partially or totally crosslinked carboxyalkyi starches. In general, a crosslinked carboxyalkyi starch has, as opposed to a non-crosslinked carboxyalkyi starch, an increased, controllable viscosity and greater stability. The crosslinking thus makes it possible to reduce the syneresis and to increase the resistance of the gel to shear effects.
The carboxyalkyi starches under consideration according to the invention are more particularly potato carboxyalkyi starches. Thus, the carboxyalkyi starches that may be used according to the present invention are preferably sodium salts of carboxyalkyi starches, in particular a sodium salt of potato carboxymethyl starch, sold especially under the name Primojel® by the company DMV International or Glycolys® and Glycolys® LV by the company Roquette.
According to one particular embodiment, the potato carboxymethyl starches sold especially under the name Glycolys® by the company Roquette will be used. As stated previously, the (Ci-C4) carboxyalkyi starch particles are present in the compositions according to the invention in a swollen and unsplit form. This swelling may be characterized by a swelling power Q that may advantageously be between 10 and 30 ml/g and preferably between 15 and 25 ml (volume of liquid absorbed)/g of dry particulate material.
Thus, the size of the swollen carboxyalkyi starch particles used according to the present invention generally ranges from 25 to 300 μηη. For example, the gel Primojel® containing 10% by weight of potato carboxyalkyi starch and sodium salt in water contains more than 80% of swollen particles of this starch with a diameter of greater than 50 microns and more particularly greater than 100 microns.
According to a preferred embodiment variant of the invention, these particles are used for the preparation of the compositions according to the invention, in this swollen particulate state. To do this, these particles are advantageously used in the form of an aqueous gel that is either prepared beforehand or already commercially available. The gels under consideration according to the invention are advantageously translucent.
For example, a carboxymethyl starch gel such as Primojel® which is at a concentration of 10% by weight may be adjusted to the required concentration before being used to prepare the expected cosmetic composition. Such a particulate starch may be used in a proportion of from 0.1 % to 5% by weight of solids relative to the total weight of the aqueous phase, preferably between 0.5% and 2.5% by weight and in particular in a proportion of about 1.5% by weight, relative to the total weight of the aqueous phase.
Non-starchy polysaccharides
In general, the non-starchy polysaccharides may be chosen from polysaccharides produced by microorganisms; polysaccharides isolated from algae, higher plant polysaccharides, such as homogeneous polysaccharides, in particular celluloses and derivatives thereof or fructosans, heterogeneous polysaccharides such as gum arables, galactomannans, glucomannans and pectins, and derivatives thereof; and mixtures thereof. In particular, the polysaccharides may be chosen from fructans, gellans, glucans, amylose, amylopectin, glycogen, pullulan, dextrans, celluloses and derivatives thereof, in particular methylcelluloses, hydroxyalkylcelluloses, ethylhydroxyethylcelluloses and carboxymethylcelluloses, mannans, xylans, lignins, arabans, galactans, galacturonans, alginate-based compounds, chitin, chitosans, glucuronoxylans, arabinoxylans, xyloglucans, glucomannans, pectic acids and pectins, arabinogalactans, carrageenans, agars, glycosaminoglycans, gum arables, tragacanth gums, ghatti gums, karaya gums, locust bean gums, galactomannans such as guar gums and nonionic derivatives thereof, in particular hydroxypropyl guar, and ionic derivatives thereof, biopolysaccharide gums of microbial origin, in particular scleroglucan or xanthan gums, mucopolysaccharides, and in particular chondroitin sulfates, and mixtures thereof.
These polysaccharides may be chemically modified, especially with urea or urethane groups, or by a hydrolysis, oxidation, esterification, etherification, sulfatation, phosphatation, amination, amidation or alkylation reaction, or by several of these modifications.
The derivatives obtained may be anionic, cationic, amphoteric or nonionic.
Advantageously, the polysaccharides may be chosen from carrageenans, in particular kappa-carrageenan, gellan gum, agar-agar, xanthan gum, alginate-based compounds, in particular sodium alginate, scleroglucan gum, guar gum, inulin and pullulan, and mixtures thereof.
In general, the compounds of this type that may be used in the present invention are chosen from those described especially in Kirk-Othmer's Encyclopedia of Chemical Technology, Third Edition, 1982, volume 3, pp. 896-900, and volume 15, pp. 439-458, in Polymers in Nature by E.A. McGregor and C.T. Greenwood, published by John Wiley & Sons, Chapter 6, pp. 240-328, 1980, in the publication by Robert L. Davidson entitled Handbook of Water-soluble Gums and Resins published by McGraw-Hill Book Company (1980) and in Industrial Gums - Polysaccharides and their Derivatives, edited by Roy L. Whistler, Second Edition, published by Academic Press Inc.
Such a gelling agent may be used in a proportion of from 0.1 % to 8% by weight of solids relative to the total weight of the aqueous phase, especially from 0.1 % to 6% by weight, preferably between 0.5% and 2.5% by weight, in particular in a proportion of about 1 % or even in a proportion of about 1 .5% by weight, relative to the total weight of the aqueous phase.
More precisely, these polysaccharides that are suitable for use in the invention may be distinguished according to whether they are derived from microorganisms, algae or higher plants, and are detailed below.
Polysaccharides produced by microorganisms Xanthan
Xanthan is a heteropolysaccharide produced on an industrial scale by the aerobic fermentation of the bacterium Xanthomonas campestris. Its structure is composed of a main chain of β-D-glucoses connected in β(1 ,4) manner, similar to cellulose. One glucose molecule out of two bears a trisaccharide side chain composed of an oD-mannose, of a β-D-glucuronic acid and of a terminal β-D-mannose. The internal mannose residue is generally acetylated on carbon 6. Approximately 30% of the terminal mannose residues bear a pyruvate group linked in chelated form between carbons 4 and 6. The glucuronic acids and the charged pyruvic acids are ionizable and thus responsible for the anionic nature of xanthan (negative charge down to pH 1 ). The content of the pyruvate and acetate residues varies according to the bacterial strain, the fermentation process, the post-fermentation conditions and the purification stages. These groups can be neutralized in the commercial products with Na+, K+ or Ca2+ ions (Satia, 1986). The neutralized form can be converted into the acid form by ion exchange or by dialysis with an acid solution. Xanthan gums have a molecular weight of between 1 000 000 and 50 000 000 and a viscosity of between 0.6 and 1.65 Pa.s for an aqueous composition comprising 1 % of xanthan gum (measured at 25°C using a Brookfield viscometer, LVT type, at 60 revolutions per minute). Xanthan gums are represented, for example, by the products sold under the name Rhodicare by the company Rhodia Chimie, under the name Satiaxane™ by the company Cargill Texturizing Solutions (for the food, cosmetic and pharmaceutical industry), under the name Novaxan™ by the company ADM and under the names Kelzan® and Keltrol® by the company CP-Kelco.
Pullulan
Pullulan is a polysaccharide consisting of maltotriose units, known under the name a(1 ,4)- a(1 ,6)-glucan. Three glucose units in maltotriose are connected via an a(1 ,4) glycosidic bond, whereas the consecutive maltotriose units are connected to each other via an a(1 ,6) glycosidic bond.
Pullulan is produced, for example, under the reference Pullulan PF 20 by the company Hayashibara in Japan.
Dextran and dextran sulfate
Dextran is a neutral polysaccharide not bearing any charge groups, which is biologically inert, prepared by fermentation of beet sugar containing only hydroxyl groups.
It is possible to obtain, from native dextran by hydrolysis and purification, dextran fractions of different molecular weights. Dextran may in particular be in the form of dextran sulfate. Dextran is represented, for example, by the products sold under the name Dextran or Dextran T by the company Pharmacosmos, under the name Dextran 40 Powder or Dextran 70 Powder by the company Meito Sangyo Co. Dextran sulfate is sold by the company PK Chemical A/S under the name Dextran Sulfate.
Succinoglycan
Succinoglycan is an extracellular polymer produced by bacterial fermentation, of high molecular weight, consisting of octasaccharide repeating units (8 repeating sugars). Succinoglycans are sold, for example, under the name Rheozan by the company Rhodia. Scleroglucan
Scleroglucan is a nonionic branched homopolysaccharide consisting of β-D glucan units. The molecules consist of a main linear chain formed by D-glucose units linked via β(1 ,3) bonds, and of which one in three units is linked to a D-glucose side unit via a β(1 ,6) bond. A fuller description of scleroglucans and of their preparation may be found in document US 3 301 848.
Scleroglucan is sold, for example, under the name Amigel by the company Alban Muller, or under the name Actigum™ CS by the company Cargill.
Gellan gum
Gellan gum is an anionic linear heteropolysaccharide based on oligosaccharide units composed of 4 saccharides (tetrasaccharide). D-glucose, L-rhamnose and D-glucuronic acid in 2/1/1 proportions are present in gellan gum in the form of monomer elements. It is sold, for example, under the name Kelcogel CG LA by the company CP Kelco.
Polysaccharides isolated from algae Galactans
The polysaccharide according to the invention may be a galactan chosen especially from agar and carrageenans. Carrageenans are anionic polysaccharides constituting the cell walls of various red algae (Rhodophyceae) belonging to the Gigartinaceae, Hypneaceae, Furcellariaceae and Polyideaceae families. They are generally obtained by hot aqueous extraction from natural strains of the said algae. These linear polymers, formed by disaccharide units, are composed of two D-galactopyranose units alternately linked via a(1 ,3) and β(1 ,4) bonds. These are highly sulfated polysaccharides (20-50%) and the a-D-galactopyranosyl residues may be in 3,6-anhydro form. According to the number and position of the ester sulfate groups on the repeat disaccharide of the molecule, several types of carrageenan are distinguished, namely: kappa-carrageenans, which bear one ester sulfate group, iota- carrageenans which bear two ester sulfate groups, and lambda-carrageenans which bear three ester sulfate groups.
Carrageenans are composed essentially of potassium, sodium, magnesium, triethanolamine and/or calcium salts and of ester sulfates of polysaccharides.
Carrageenans are sold especially by the company SEPPIC under the name Solagum®, by the company Gelymar under the names Carragel®, Carralact® and Carrasol®, by the company Cargill under the names Satiagel™ and Satiagum™, and by the company CP- Kelco under the names Genulacta®, Genugel® and Genuvisco®.
Galactans of agar type are galactose polysaccharides contained in the cell wall of some of these species of red algae (rhodophyceae). They are formed from a polymer group in which the base backbone is a β(1 ,3) D-galactopyranose and a(1 ,4) L 3-6 anhydrogalactose chain, these units repeating regularly and alternately. The differences within the agar family are due to the presence or absence of methyl or carboxyethyl solvated groups. These hybrid structures are generally present in variable percentage, depending on the species of algae and the season of harvest.
Agar-agar is a mixture of polysaccharides (agarose and agaropectin) of high molecular mass, between 40 000 and 300 000 g.mol-1. It is obtained by manufacturing algal extraction juices, generally by autoclaving, and by treating these juices comprising about 2% agar-agar, in order to extract the latter. Agar is produced, for example, by the group B&V Agar Producers under the names Gold Agar, Agarite and Grand Agar by the company Hispanagar, and under the names Agar- Agar, QSA (Quick Soluble Agar) and Puragar by the company Setexam. Furcellaran
Furcellaran is obtained commercially from red algae Furcellaria fasztigiata. Furcellaran is produced, for example, by the company Est-Agar. Alginate-based compound
For the purposes of the invention, the term "alginate-based compound" means alginic acid, alginic acid derivatives and the salts of alginic acid (alginates) or of the said derivatives. Preferably, the alginate-based compound is water-soluble.
Alginic acid, a natural substance derived from brown algae or certain bacteria, is a polyuronic acid composed of two uronic acids linked by 1 ,4-glycosidic bonds: β-D- mannuronic (M) acid and oL-glucuronic (G) acid. Alginic acid is capable of forming water-soluble salts (alginates) with alkali metals such as sodium, potassium or lithium, substituted cations of lower amines and of ammonium such as methylamine, ethanolamine, diethanolamine or triethanolamine. These alginates are water-soluble in aqueous medium at a pH equal to 4 but dissociate into alginic acid at a pH below 4.
This (these) alginate-based compound(s) are capable of crosslinking in the presence of at least one crosslinking agent, by formation of ionic bonds between the said alginate-based compound(s) and the said crosslinking agent(s). The formation of multiple crosslinking between several molecules of the said alginate-based compound(s) leads to the formation of a water-insoluble gel.
Use is preferably made of alginate-based compounds with a weight-average molecular mass ranging from 10 000 to 1 000 000, preferably from 15 000 to 500 000 and better still from 20 000 to 250 000. According to a preferred embodiment, the alginate-based compound is alginic acid and/or a salt thereof.
Advantageously, the alginate-based compound is an alginate salt, and preferably sodium alginate.
The alginate-based compound may be chemically modified, especially with urea or urethane groups, or by a hydrolysis, oxidation, esterification, etherification, sulfatation, phosphatation, amination, amidation or alkylation reaction, or by several of these modifications.
The derivatives obtained may be anionic, cationic, amphoteric or nonionic.
The alginate-based compounds that are suitable for use in the invention may be represented, for example, by the products sold under the names Kelcosol, Satialgine™, Cecalgum™ or Algogel™ by the company Cargill Products, under the name Protanal™ by the company FMC Biopolymer, under the name Grindsted® Alginate by the company Danisco, under the name Kimica Algin by the company Kimica, and under the names Manucol® and Manugel® by the company ISP.
Polysaccharides from higher plants
This category of polysaccharides may be divided into homogeneous polysaccharides (only one species of saccharide) and heterogeneous polysaccharides composed of several types of saccharide. a) Homogeneous polysaccharides and derivatives thereof
The polysaccharide according to the invention may be chosen from celluloses and derivatives or fructosans.
Celluloses and derivatives
The polysaccharide according to the invention may also be a cellulose or a derivative thereof, especially cellulose ethers or esters (e.g.: methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxymethylpropylcellulose, cellulose acetate, cellulose nitrate, nitrocellulose). The invention may also contain a cellulose-based associative polymer. According to the invention, the term "cellulose-based compound" means any polysaccharide compound bearing in its structure linear sequences of anhydroglucopyranose (AGU) residues linked via β(1 ,4) glycosidic bonds. The repeating unit is the cellobiose dimer. AGUs are found in chair conformation and bear three hydroxyl functions: two secondary alcohols (in positions 2 and 3) and a primary alcohol (in position 6). The polymers thus formed combine together via intermolecular bonds of hydrogen bonding type, thus giving the cellulose a fibrillar structure (about 1500 molecules per fibre).
The degree of polymerization differs enormously according to the origin of the cellulose; its value may range from a few hundred to a few tens of thousands.
Cellulose has the following chemical structure:
Figure imgf000025_0001
The hydroxyl groups of cellulose may react partially or totally with different chemical reagents to give cellulose derivatives having intrinsic properties. The cellulose derivatives may be anionic, cationic, amphoteric or nonionic. Among these derivatives, cellulose ethers, cellulose esters and cellulose ester ethers are distinguished. Among the nonionic cellulose ethers, mention may be made of alkylcelluloses such as methylcelluloses and ethylcelluloses, hydroxyalkylcelluloses such as hydroxymethylcelluloses, hydroxyethylcelluloses and hydroxypropylcelluloses, and mixed hydroxyalkylalkylcelluloses such as hydroxypropylmethylcelluloses, hydroxyethylmethylcelluloses, hydroxyethylethylcelluloses and hydroxybutylmethylcelluloses. Among the anionic cellulose ethers, mention may be made of carboxyalkylcelluloses and salts thereof. By way of example, mention may be made of carboxymethylcelluloses, carboxymethylmethylcelluloses and carboxymethylhydroxyethylcelluloses and sodium salts thereof.
Among the cationic cellulose ethers, mention may be made of crosslinked or non- crosslinked, quaternized hydroxyethylcelluloses.
The quaternizing agent may in particular be glycidyltnmethylammonium chloride or a fatty amine such as laurylamine or stearylamine. Another cationic cellulose ether that may be mentioned is hydroxyethylcellulosehydroxypropyltrimethylammonium.
The quaternized cellulose derivatives are, in particular:
- quaternized celluloses modified with groups comprising at least one fatty chain, such as alkyl, arylalkyi or alkylaryl groups comprising at least 8 carbon atoms, or mixtures thereof;
- quaternized hydroxyethylcelluloses modified with groups comprising at least one fatty chain, such as alkyl, arylalkyi or alkylaryl groups comprising at least 8 carbon atoms, or mixtures thereof. The alkyl radicals borne by the above quaternized celluloses or hydroxyethylcelluloses preferably comprise from 8 to 30 carbon atoms. The aryl radicals preferably denote phenyl, benzyl, naphthyl or anthryl groups.
Examples of quaternized alkylhydroxyethylcelluloses containing C8-C30 fatty chains that may be indicated include the products Quatrisoft LM 200, Quatrisoft LM-X 529-18-A, Quatrisoft LM-X 529-18B (Ci2 alkyl) and Quatrisoft LM-X 529-8 (Ci8 alkyl) sold by the company Amerchol, and the products Crodacel QM, Crodacel QL (C12 alkyl) and Crodacel QS (C18 alkyl) sold by the company Croda. Among the cellulose derivatives, mention may also be made of:
- celluloses modified with groups comprising at least one fatty chain, for instance hydroxyethylcelluloses modified with groups comprising at least one fatty chain, such as alkyl groups, especially of C8-C22, arylalkyi and alkylaryl groups, such as Natrosol Plus Grade 330 CS (C16 alkyls) sold by the company Aqualon, and - celluloses modified with alkylphenyl polyalkylene glycol ether groups, such as the product Amercell Polymer HM-1500 (nonylphenyl polyethylene glycol (15) ether) sold by the company Amerchol. Among the cellulose esters are mineral esters of cellulose (cellulose nitrates, sulfates, phosphates, etc.), organic esters of cellulose (cellulose monoacetates, triacetates, amidopropionates, acetatebutyrates, acetatepropionates or acetatetrimellitates, etc.), and mixed organic/mineral esters of cellulose, such as cellulose acetatebutyrate sulfates and cellulose acetatepropionate sulfates. Among the cellulose ester ethers, mention may be made of hydroxypropylmethylcellulose phthalates and ethylcellulose sulfates.
The cellulose-based compounds of the invention may be chosen from unsubstituted celluloses and substituted celluloses. The celluloses and derivatives are represented, for example, by the products sold under the names Avicel® (microcrystalline cellulose, MCC) by the company FMC Biopolymers, under the name Cekol (carboxymethylcellulose) by the company Noviant (CP-Kelco), under the name Akucell AF (sodium carboxymethylcellulose) by the company Akzo Nobel, under the name MethocelTM (cellulose ethers) and EthocelTM (ethylcellulose) by the company Dow, and under the names Aqualon® (carboxymethylcellulose and sodium carboxymethylcellulose), Benecel® (methylcellulose), BlanoseTM
(carboxymethylcellulose), Culminal® (methylcellulose, hydroxypropylmethylcellulose), Klucel® (hydroxypropylcellulose), Polysurf® (cetylhydroxyethylcellulose) and Natrosol® CS (hydroxyethylcellulose) by the company Hercules Aqualon.
Fructosans
The polysaccharide according to the invention may especially be a fructosan chosen from inulin and derivatives thereof (especially dicarboxy and carboxymethyl inulins).
Fructans or fructosans are oligosaccharides or polysaccharides comprising a sequence of anhydrofructose units optionally combined with several saccharide residues other than fructose. Fructans may be linear or branched. Fructans may be products obtained directly from a vegetable or microbial source or alternatively products whose chain length has been modified (increased or decreased) by fractionation, synthesis or hydrolysis, in particular enzymatic. Fructans generally have a degree of polymerization from 2 to about 1000 and preferably from 2 to about 60.
Three groups of fructans are distinguished. The first group corresponds to products whose fructose units are for the most part linked via β(2,1 ) bonds. These are essentially linear fructans such as inulins.
The second group also corresponds to linear fructoses, but the fructose units are essentially linked via β(2,6) bonds. These products are levans.
The third group corresponds to mixed fructans, i.e. fructans containing β(2,6) and β(2,1 ) sequences. These are essentially branched fructans, such as graminans.
The fructans preferred in the compositions according to the invention are inulins. Inulin may be obtained, for example, from chicory, dahlia or Jerusalem artichoke, preferably from chicory.
In particular, the polysaccharide, especially the inulin, has a degree of polymerization from 2 to about 1000 and preferably from 2 to about 60, and a degree of substitution of less than 2 on the basis of one fructose unit.
The inulin used for this invention is represented, for example, by the products sold under the name Beneo™ Inulin by the company Orafti, and under the name Frutafit® by the company Sensus. b) Heterogeneous polysaccharides and derivatives thereof
Polysaccharides that may be used according to the invention may be gums, for instance cassia gum, karaya gum, konjac gum, gum tragacanth, tara gum, acacia gum or gum arabic. Gum Arabic
Gum arabic is a highly branched acidic polysaccharide which is present in the form of mixtures of potassium, magnesium and calcium salts. The monomer elements of the free acid (arabic acid) are D-galactose, L-arabinose, L-rhamnose and D-glucuronic acid.
Galactomannans (guar, locust bean, fenugreek, tara gum) and derivatives (phosphated guar, hydroxypropyl guar, etc.) Galactomannans are nonionic polysaccharides extracted from the albumin of seeds of leguminous plants, of which they constitute the storage carbohydrate.
Galactomannans are macromolecules consisting of a main chain of D-mannopyranose units connected in β(1 ,4) fashion, carrying side branches consisting of a single D- galactopyranose unit connected in a(1 ,6) fashion to the main chain. The various galactomannans differ, on the one hand, in the proportion of oD-galactopyranose units present in the polymer and, on the other hand, in significant differences in terms of distribution of the galactose units along the mannose chain. The mannose/galactose (M/G) ratio is of the order of 2 for guar gum, of 3 for tara gum and of 4 for locust bean gum.
Galactomannans have the following chemical structure:
Figure imgf000029_0001
mi at 3; Locust bean gum
m - i : Qmr gem
m 2: T«t fiBi Guar
Guar gum is characterized by a mannose:galactose ratio of the order of 2:1. The galactose group is uniformly distributed along the mannose chain.
The guar gums that may be used according to the invention may be nonionic, cationic or anionic. According to the invention, use may be made of unmodified or chemically modified nonionic guar gums. Unmodified nonionic guar gums are, for example, the products sold under the names Vidogum GH, Vidogum G and Vidocrem by the company Unipektin and under the name Jaguar by the company Rhodia, under the name Meypro® Guar by the company Danisco, under the name ViscogumTM by the company Cargill and under the name Supercol® Guar Gum by the company Aqualon.
The hydrolysed nonionic guar gums that may be used according to the invention are represented, for example, by the products sold under the name Meyprodor® by the company Danisco. The modified nonionic guar gums that may be used according to the invention are preferably modified with C1 -C6 hydroxyalkyl groups, among which mention may be made, for example, of hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxybutyl groups. Such nonionic guar gums optionally modified by hydroxyalkyl groups are sold, for example, under the trade names Jaguar HP 60, Jaguar HP 105 and Jaguar HP 120 (hydroxypropyl guar) by the company Rhodia or under the name N-Hance® HP (hydroxypropyl guar) by the company Aqualon.
The cationic galactomannan gums preferably have a cationic charge density of less than or equal to 1 .5 meq/g and more particularly of between 0.1 and 1 meq/g. The charge density can be determined according to the Kjeldahl method. It generally corresponds to a pH of the order of 3 to 9.
Generally, for the purposes of the present invention, the term "cationic galactomannan gum" means any galactomannan gum containing cationic groups and/or groups that can be ionized into cationic groups. The preferred cationic groups are chosen from those comprising primary, secondary, tertiary and/or quaternary amine groups.
The cationic galactomannan gums used generally have a weight-average molecular mass of between 500 and 5 x 106 approximately and preferably of between 103 and 3 x 106 approximately.
The cationic galactomannan gums that may be used according to the present invention are, for example, gums comprising tri(C1 -C4)alkylammonium cationic groups. Preferably, 2% to 30% by number of the hydroxyl functions of these gums bear trialkylammonium cationic groups.
Mention may very particularly be made, among these trialkylammonium groups, of the trimethylammonium and triethylammonium groups.
Even more preferentially, these groups represent from 5% to 20% by weight relative to the total weight of the modified galactomannan gum.
According to the invention, the cationic galactomannan gum is preferably a guar gum comprising hydroxypropyltrimethylammonium groups, i.e. a guar gum modified, for example, with 2,3-epoxypropyltrimethylammonium chloride.
These galactomannan gums, in particular guar gums modified by cationic groups, are products already known per se and are, for example, described in the patents US 3 589 578 and US 4 031 307. Such products are furthermore sold in particular under the trade names of Jaguar Excel, Jaguar C13 S, Jaguar C 15, Jaguar C 17 and Jaguar C162 (Guar Hydroxypropyltrimonium Chloride) by the company Rhodia, under the name Amilan® Guar (Guar Hydroxypropyltrimonium Chloride) by the company Degussa and under the name N-Hance® 3000 (Guar Hydroxypropyltrimonium Chloride) by the company Aqualon. The anionic guar gums that may be used according to the invention are polymers comprising groups derived from carboxylic acid, sulfonic acid, sulfenic acid, phosphoric acid, phosphonic acid or pyruvic acid. Preferably, the anionic group is a carboxylic acid group. The anionic group may also be in the form of an acid salt, especially a sodium, calcium, lithium or potassium salt. The anionic guar gums that may be used according to the invention are preferentially carboxymethyl guar derivatives (carboxymethyl guar or carboxymethyl hydroxypropyl guar). Locust bean
Locust bean gum is extracted from the seeds of the carob tree (Ceratonia siliqua).
The unmodified locust bean gum that may be used in this invention is sold, for example, under the name Viscogum™ by the company Cargill, under the name Vidogum L by the company Unipektin or under the name Grinsted® LBG by the company Danisco.
The chemically modified locust bean gums that may be used in this invention may be represented, for example, by the cationic locust beans sold under the name Catinal CLB (Locust Bean Hydroxypropyltrimonium Chloride) by the company Toho.
Tara gum
The tara gum that may be used in the context of this invention is sold, for example, under the name Vidogum SP by the company Unipektin.
Glucomannans (konjac gum)
Glucomannan is a polysaccharide of high molecular weight (500 000 < Mglucomannan < 2 000 000), composed of D-mannose and D-glucose units with a branch approximately every 50 or 60 units. It is found in wood but it is also the main constituent of konjac gum. Konjac (Amorphophallus konjac) is a plant of the Araceae family.
The products that may be used according to the invention are sold, for example, under the names Propol® and Rheolex® by the company Shimizu.
LM and HM pectins and derivatives
Pectins are linear polymers of oD-galacturonic acid (at least 65%) linked in positions 1 and 4, with a certain proportion of carboxylic groups esterified with a methanol group. About 20% of the sugars constituting the pectin molecule are neutral sugars (L-rhamnose, D-glucose, D-galactose, L-arabinose, D-xylose). The L-rhamnose residues are present in all pectins, integrated into the main chain in positions 1 ,2.
The uronic acid molecules bear carboxyl functions. This function gives the pectins the capacity for exchanging ions, when they are in COO- form. Bivalent ions (in particular calcium) have the capacity of forming ionic bridges between two carboxyl groups of two different pectin molecules.
In the natural state, a certain proportion of the carboxylic groups are esterified with a methanol group. The natural degree of esterification of a pectin may range between 70% (apple, lemon) and 10% (strawberry) according to the source used. Starting with pectins with a high degree of esterification, it is possible to hydrolyse the -COOCH3 group, so as to obtain weakly esterified pectins. Depending on the proportion of methylated or non- methylated monomers, the chain is therefore more or less acidic. Pectins are thus defined as being HM (high-methoxy) pectins, having a degree of esterification of greater than 50%, and LM (low-methoxy) pectins, having a degree of esterification of less than 50%.
In the case of amide pectins, the -OCH3 group is substituted with a -NH2 group. Pectins are especially sold by the company Cargill under the name Unipectine™, by the company CP-Kelco under the name Genu, and by Danisco under the name Grinsted Pectin.
Other polysaccharides
Among the other polysaccharides that may be used according to the invention, mention may also be made of chitin (poly-N-acetyl-D-glucosamine, β(1 ,4)-2-acetamido-2-deoxy-D- glucose), chitosan and derivatives (chitosan β-glycerophosphate, carboxymethylchitin, etc.) such as those sold by the company France-Chitine; glycosaminoglycans (GAG) such as hyaluronic acid, chondroitin sulfate, dermatan sulfate and keratan sulfate, and preferably hyaluronic acid; xylans (or arabinoxylans) and derivatives.
Arabinoxylans are polymers of xylose and arabinose, which are grouped together under the name "pentosans". Xylans consist of a main chain of D-xylose units linked in β(1 ,4) manner, and on which are found three substituents (Rouau & Thibault, 1987): acid units, oL-arabinofuranose units, side chains which may contain arabinose, xylose, galactose and glucuronic acid.
According to this variant, the polysaccharide is preferably hyaluronic acid, or a salt thereof such as the sodium salt (sodium hyaluronate).
For the purposes of the invention, the term "synthetic" means that the polymer is neither naturally existing nor a derivative of a polymer of natural origin. The synthetic polymeric hydrophilic gelling agent under consideration according to the invention may or may not be particulate.
For the purposes of the invention, the term "particulate" means that the polymer is in the form of particles, preferably spherical particles.
As emerges from the text hereinbelow, the polymeric hydrophilic gelling agent is advantageously chosen from crosslinked acrylic homopolymers or copolymers; associative polymers, in particular associative polymers of polyurethane type; polyacrylamides and crosslinked and/or neutralized 2-acrylamido-2-methylpropanesulfonic acid polymers and copolymers; modified or unmodified carboxyvinyl polymers, and mixtures thereof, especially as defined below.
Proportions of such gelling agents will notably vary according to the considered hydrophilic gelling agent and/or according to the nature of the coated pigments considered in the composition according to the invention.
II. Synthetic polymeric gelling agents
A hydrophilic gelling agent may be at least one synthetic polymeric gelling agent chosen from crosslinked acrylic homopolymers or copolymers; associative polymers, in particular associative polymers of polyurethane type; polyacrylamides and crosslinked and/or neutralized 2-acrylamido-2-methylpropanesulfonic acid polymers and copolymers; modified or unmodified carboxyvinyl polymers, and mixtures thereof. For the purposes of the invention, the term "synthetic" means that the polymer is neither naturally existing nor a derivative of a polymer of natural origin.
The synthetic polymeric hydrophilic gelling agent under consideration according to the invention may or may not be particulate.
For the purposes of the invention, the term "particulate" means that the polymer is in the form of particles, preferably spherical particles. II. A Particulate synthetic polymeric gelling agents
They are preferably chosen from crosslinked polymers.
They may especially be crosslinked acrylic homopolymers or copolymers, which are preferably partially neutralized or neutralized, and which are in particulate form.
According to one embodiment, the particulate gelling agent according to the present invention is chosen from crosslinked sodium polyacrylates. Preferably, it has in the dry or non-hydrated state a mean size of less than or equal to 100 μηη and preferably less than or equal to 50 μηη. The mean size of the particles corresponds to the mass-average diameter (D50) measured by laser particle size analysis or another equivalent method known to those skilled in the art.
Thus, preferably, the particulate gelling agent according to the present invention is chosen from crosslinked sodium polyacrylates, preferably in the form of particles with a mean size (or mean diameter) of less than or equal to 100 microns, more preferably in the form of spherical particles.
As examples of crosslinked sodium polyacrylates, mention may be made of those sold under the brand names Octacare X100, X1 10 and RM100 by the company Avecia, those sold under the names Flocare GB300 and Flosorb 500 by the company SNF, those sold under the names Luquasorb 1003, Luquasorb 1010, Luquasorb 1280 and Luquasorb 1 1 10 by the company BASF, those sold under the names Water Lock G400 and G430 (I NCI name: Acrylamide/Sodium acrylate copolymer) by the company Grain Processing. Mention may also be made of crosslinked polyacrylate microspheres, for instance those sold under the name Aquakeep® 10 SH NF by the company Sumitomo Seika.
Such gelling agents may be used in a proportion of from 0.1 % to 5% by weight of solids relative to the total weight of the aqueous phase, especially from 0.5% to 2% by weight and in particular in a proportion of about from 0.8% to 1 .7% by weight, relative to the total weight of the aqueous phase.
II.B Non-particulate synthetic polymeric gelling agents
This family of gelling agents may be detailed under the following subfamilies:
1 . associative polymers,
2. polyacrylamides and crosslinked and/or neutralized 2-acrylamido-2- methylpropanesulfonic acid polymers and copolymers, and
3. modified or unmodified carboxyvinyl polymers.
1 . Associative polymers
For the purposes of the present invention, the term "associative polymer" means any amphiphilic polymer comprising in its structure at least one fatty chain and at least one hydrophilic portion. The associative polymers in accordance with the present invention may be anionic, cationic, nonionic or amphoteric.
Associative anionic polymers
Among the associative anionic polymers that may be mentioned are those comprising at least one hydrophilic unit, and at least one fatty-chain allyl ether unit, more particularly those whose hydrophilic unit is formed by an unsaturated ethylenic anionic monomer, more particularly by a vinylcarboxylic acid and most particularly by an acrylic acid or a methacrylic acid or mixtures thereof, and whose fatty-chain allyl ether unit corresponds to the monomer of formula (I) below:
CH2 = C(R')CH2 O Bn R (I)
in which R' denotes H or CH3, B denotes the ethylenoxy radical, n is zero or denotes an integer ranging from 1 to 100, R denotes a hydrocarbon-based radical chosen from alkyl, arylalkyl, aryl, alkylaryl and cycloalkyl radicals, comprising from 8 to 30 carbon atoms, preferably 10 to 24 and even more particularly from 12 to 18 carbon atoms.
Anionic amphiphilic polymers of this type are described and prepared, according to an emulsion polymerization process, in patent EP 0 216 479.
Among the associative anionic polymers that may also be mentioned are maleic anhydride/C3o-C38 a-olefin/alkyl maleate terpolymers, such as the product (maleic anhydride/C30-C38 a-olefin/isopropyl maleate copolymer) sold under the name Performa V 1608 by the company Newphase Technologies.
Among the associative anionic polymers, it is possible, according to a preferred embodiment, to use copolymers comprising among their monomers an α,β- monoethylenically unsaturated carboxylic acid and an ester of an α,β-monoethylenically unsaturated carboxylic acid and of an oxyalkylenated fatty alcohol.
Preferentially, these compounds also comprise as monomer an ester of an α,β- monoethylenically unsaturated carboxylic acid and of a Ci-C4 alcohol. Examples of compounds of this type that may be mentioned include Aculyn 22® sold by the company Rohm & Haas, which is a methacrylic acid/ethyl acrylate/oxyalkylenated stearyl methacrylate (comprising 20 OE units) terpolymer or Aculyn 28 (methacrylic acid/ethyl acrylate/oxyethylenated behenyl methacrylate (25 OE) terpolymer). Examples of associative anionic polymers that may also be mentioned include anionic polymers comprising at least one hydrophilic unit of unsaturated olefinic carboxylic acid type, and at least one hydrophobic unit exclusively of the type such as a (C10-C30) alkyl ester of an unsaturated carboxylic acid. Examples that may be mentioned include the anionic polymers described and prepared according to patents US 3 915 921 and 4 509 949.
Associative anionic polymers that may also be mentioned include anionic terpolymers.
The anionic terpolymer used according to the invention is a linear or branched and/or crosslinked terpolymer, of at least one monomer (1 ) bearing an acid function in free form, which is partially or totally salified with a nonionic monomer (2) chosen from N,N- dimethylacrylamide and 2-hydroxyethyl acrylate and at least one polyoxyethylenated alkyl acrylate monomer (3) of formula (I) below:
Figure imgf000038_0001
(I)
in which R1 represents a hydrogen atom, R represents a linear or branched C2-C8 alkyl radical and n represents a number ranging from 1 to 10.
The term "branched polymer" denotes a non-linear polymer which bears side chains so as to obtain, when this polymer is dissolved in water, a high degree of entanglement leading to very high viscosities, at a low speed gradient.
The term "crosslinked polymer" denotes a non-linear polymer which is in the form of a three-dimensional network that is insoluble in water but swellable in water, leading to the production of a chemical gel.
The acid function of the monomer (1 ) is especially a sulfonic acid or phosphonic acid function, the said functions being in free or partially or totally salified form.
The monomer (1 ) may be chosen from styrenesulfonic acid, ethylsulfonic acid and 2- methyl-2-[(1 -oxo-2-propenyl)amino]-1 -propanesulfonic acid (also known as acryloyldimethyl taurate), in free or partially or totally salified form. It is present in the anionic terpolymer preferably in molar proportions of between 5 mol% and 95 mol% and more particularly between 10 mol% and 90 mol%. The monomer (1 ) will more particularly be 2-methyl-2-[(1 -oxo-2-propenyl)amino]-1 -propanesulfonic acid in free or partially or totally salified form.
The acid function in partially or totally salified form will preferably be an alkali metal salt such as a sodium or potassium salt, an ammonium salt, an amino alcohol salt such as a monoethanolamine salt, or an amino acid salt such as a lysine salt. The monomer (2) is preferably present in the anionic terpolymer in molar proportions of between 4.9 mol% and 90 mol%, more particularly between 9.5 mol% and 85 mol% and even more particularly between 19.5 mol% and 75 mol%. In formula (I), examples of linear C8-C16 alkyl radicals that may be mentioned include octyl, decyl, undecyl, tridecyl, tetradecyl, pentadecyl and hexadecyl.
In formula (I), examples of branched C8-C16 alkyl radicals that may be mentioned include 2-ethylhexyl, 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, 4-methylpentyl, 5- methylhexyl, 6-methylheptyl, 15-methylpentadecyl, 16-methylheptadecyl and 2-hexyloctyl.
According to a particular form of the invention, in formula (I), R denotes a Ci2-Ci6 alkyl radical. According to a particular form of the invention, in formula (I), n ranges from 3 to 5.
Tetraethoxylated lauryl acrylate will more particularly be used as monomer of formula (I).
The monomer (3) of formula (I) is preferably present in the anionic terpolymer in molar proportions of between 0.1 mol% and 10 mol% and more particularly between 0.5 mol% and 5 mol%.
According to a particular mode of the invention, the anionic terpolymer is crosslinked and/or branched with a diethylenic or polyethylenic compound in the proportion expressed relative to the total amount of monomers used, from 0.005 mol% to 1 mol%, preferably from 0.01 mol% to 0.5 mol% and more particularly from 0.01 mol% to 0.25 mol%.
The crosslinking agent and/or branching agent is preferably chosen from ethylene glycol dimethacrylate, diallyloxyacetic acid or a salt thereof, such as sodium diallyloxyacetate, tetraallyloxyethane, ethylene glycol diacrylate, diallylurea, triallylamine, trimethylolpropane triacrylate and methylenebis(acrylamide), or mixtures thereof.
The anionic terpolymer may contain additives such as complexing agents, transfer agents or chain-limiting agents. Use will be made more particularly of an anionic terpolymer of 2-methyl-2-[(1 -oxo-2- propenyl]amino]-1 -propanesulfonic acid partially or totally salified in the form of the ammonium salt, N,N-dimethylacrylamide and tetraethoxylated lauryl acrylate crosslinked with trimethylolpropane triacrylate, of INCI name Polyacrylate Crosspolymer-6, such as the product sold under the trade name Sepimax Zen® by the company SEPPIC.
Cationic associative polymers
Cationic associative polymers that may be mentioned include polyacrylates bearing amine side groups.
The polyacrylates bearing quaternized or non-quaternized amine side groups contain, for example, hydrophobic groups of the type such as steareth-20 (polyoxyethylenated (20) stearyl alcohol).
Examples of polyacrylates bearing amino side chains that may be mentioned are the polymers 8781 -121 B or 9492-103 from the company National Starch.
Nonionic associative polymers
The nonionic associative polymers may be chosen from:
- copolymers of vinylpyrrolidone and of fatty-chain hydrophobic monomers;
- copolymers of Ci-C6 alkyl methacrylates or acrylates and of amphiphilic monomers comprising at least one fatty chain;
- copolymers of hydrophilic methacrylates or acrylates and of hydrophobic monomers comprising at least one fatty chain, for instance the polyethylene glycol methacrylate/lauryl methacrylate copolymer;
- associative polyurethanes. Associative polyurethanes are nonionic block copolymers comprising in the chain both hydrophilic blocks usually of polyoxyethylene nature (polyurethanes may then be referred to as polyurethane polyethers), and hydrophobic blocks that may be aliphatic sequences alone and/or cycloaliphatic and/or aromatic sequences. In particular, these polymers comprise at least two hydrocarbon-based lipophilic chains containing from 6 to 30 carbon atoms, separated by a hydrophilic block, the hydrocarbon- based chains possibly being pendent chains or chains at the end of the hydrophilic block. In particular, it is possible for one or more pendent chains to be envisioned. In addition, the polymer may comprise a hydrocarbon-based chain at one end or at both ends of a hydrophilic block.
Associative polyurethanes may be block polymers, in triblock or multiblock form. The hydrophobic blocks may thus be at each end of the chain (for example: triblock copolymer containing a hydrophilic central block) or distributed both at the ends and in the chain (for example: multiblock copolymer). These polymers may also be graft polymers or star polymers. Preferably, the associative polyurethanes are triblock copolymers in which the hydrophilic block is a polyoxyethylene chain comprising from 50 to 1000 oxyethylene groups. In general, associative polyurethanes comprise a urethane bond between the hydrophilic blocks, whence arises the name.
According to a preferred embodiment, a nonionic associative polymer of polyurethane type is used as gelling agent. As examples of nonionic fatty-chain polyurethane polyethers that may be used in the invention, it is also possible to use Rheolate® FX 1 100 (Steareth-100/PEG 136/HDI (hexamethyl diisocyanate) copolymer), Rheolate® 205 containing a urea function, sold by the company Elementis, or Rheolate® 208, 204 or 212, and also Acrysol® RM 184 or Acrysol® RM 2020.
Mention may also be made of the product Elfacos® T210 containing a C12-C14 alkyl chain, and the product Elfacos® T212 containing a Ci6-Ci8 alkyl chain (PPG-14 Palmeth-60 Hexyl Dicarbamate), from Akzo. The product DW 1206B® from Rohm & Haas containing a C20 alkyl chain and a urethane bond, sold at a solids content of 20% in water, may also be used.
Use may also be made of solutions or dispersions of these polymers, especially in water or in aqueous-alcoholic medium. Examples of such polymers that may be mentioned are Rheolate® 255, Rheolate® 278 and Rheolate® 244 sold by the company Elementis. Use may also be made of the products DW 1206F and DW 1206J sold by the company Rohm & Haas.
The associative polyurethanes that may be used according to the invention are in particular those described in the article by G. Fonnum, J. Bakke and Fk. Hansen - Colloid Polym. Sci., 271 , 380-389 (1993).
Even more particularly, according to the invention, use may also be made of an associative polyurethane that may be obtained by polycondensation of at least three compounds comprising (i) at least one polyethylene glycol comprising from 150 to 180 mol of ethylene oxide, (ii) stearyl alcohol or decyl alcohol, and (iii) at least one diisocyanate.
Such polyurethane polyethers are sold especially by the company Rohm & Haas under the names Aculyn® 46 and Aculyn® 44; Aculyn® 46 is a polycondensate of polyethylene glycol containing 150 or 180 mol of ethylene oxide, of stearyl alcohol and of methylenebis(4-cyclohexyl isocyanate) (SMDI), at 15% by weight in a matrix of maltodextrin (4%) and water (81 %), and Aculyn® 44 is a polycondensate of polyethylene glycol containing 150 or 180 mol of ethylene oxide, of decyl alcohol and of methylenebis(4-cyclohexyl isocyanate) (SMDI), at 35% by weight in a mixture of propylene glycol (39%) and water (26%).
Use may also be made of solutions or dispersions of these polymers, especially in water or in aqueous-alcoholic medium. Examples of such polymers that may be mentioned include SER AD FX1010, SER AD FX1035 and SER AD 1070 from the company Elementis, and Rheolate® 255, Rheolate® 278 and Rheolate® 244 sold by the company Elementis. Use may also be made of the products Aculyn® 44, Aculyn® 46, DW 1206F and DW 1206J, and also Acrysol® RM 184 from the company Rohm & Haas, or alternatively Borchi Gel LW 44 from the company Borchers, and mixtures thereof. Amphoteric associative polymers
Among the associative amphoteric polymers of the invention, mention may be made of crosslinked or non-crosslinked, branched or unbranched amphoteric polymers, which may be obtained by copolymerization:
1 ) of at least one monomer of formula (IVa) or (IVb):
Figure imgf000043_0001
Figure imgf000043_0002
in which R4 and R5, which may be identical or different, represent a hydrogen atom or a methyl radical;
R6, R7 and R8, which may be identical or different, represent a linear or branched alkyl radical containing from 1 to 30 carbon atoms;
Z represents an NH group or an oxygen atom;
n is an integer from 2 to 5;
A is an anion derived from an organic or mineral acid, such as a methosulfate anion or a halide such as chloride or bromide;
2) of at least one monomer of formula (V):
R - C CR10-CO-Z (V)
9 H
in which R9 and R10, which may be identical or different, represent a hydrogen atom or a methyl radical;
Z1 represents a group OH or a group NHC(CH3)2CH2S03H;
3) of at least one monomer of formula (VI):
R^ C^ CR^ - COXR^ (VI) in which R9 and R10, which may be identical or different, represent a hydrogen atom or a methyl radical, X denotes an oxygen or nitrogen atom and R1 1 denotes a linear or branched alkyl radical containing from 1 to 30 carbon atoms;
4) optionally at least one crosslinking or branching agent; at least one of the monomers of formula (IVa), (IVb) or (VI) comprising at least one fatty chain containing from 8 to 30 carbon atoms and said compounds of the monomers of formulae (IVa), (IVb), (V) and (VI) possibly being quaternized, for example with a C C4 alkyl halide or a C C4 dialkyl sulfate. The monomers of formulae (IVa) and (IVb) of the present invention are preferably chosen from the group formed by:
- dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate,
- diethylaminoethyl methacrylate, diethylaminoethyl acrylate,
- dimethylaminopropyl methacrylate, dimethylaminopropyl acrylate,
- dimethylaminopropylmethacrylamide or dimethylaminopropylacrylamide, optionally quaternized, for example with a C1 -C4 alkyl halide or a C1 -C4 dialkyl sulfate.
More particularly, the monomer of formula (IVa) is chosen from acrylamidopropyltrimethylammonium chloride and methacrylamidopropyltrimethylammonium chloride.
The compounds of formula (V) of the present invention are preferably chosen from the group formed by acrylic acid, methacrylic acid, crotonic acid, 2-methylcrotonic acid, 2- acrylamido-2-methylpropanesulfonic acid and 2-methacrylamido-2-methylpropanesulfonic acid. More particularly, the monomer of formula (V) is acrylic acid.
The monomers of formula (VI) of the present invention are preferably chosen from the group formed by C12-C22 and more particularly Ci6-Ci8 alkyl acrylates or methacrylates.
The crosslinking or branching agent is preferably chosen from Ν,Ν'- methylenebisacrylamide, triallylmethylammonium chloride, allyl methacrylate, n- methylolacrylamide, polyethylene glycol dimethacrylates, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1 ,6-hexanediol dimethacrylate and allyl sucrose.
The polymers according to the invention may also contain other monomers such as nonionic monomers and in particular C1-C4 alkyl acrylates or methacrylates.
The ratio of the number of cationic charges/anionic charges in these amphoteric polymers is preferably equal to about 1.
The weight-average molecular weights of the associative amphoteric polymers have a weight-average molecular mass of greater than 500, preferably between 10 000 and 10 000 000 and even more preferentially between 100 000 and 8 000 000. Preferably, the associative amphoteric polymers of the invention contain from 1 mol% to 99 mol%, more preferentially from 20 mol% to 95 mol% and even more preferentially from 25 mol% to 75 mol% of compound(s) of formula (IVa) or (IVb). They also preferably contain from 1 mol% to 80 mol%, more preferentially from 5 mol% to 80 mol% and even more preferentially from 25 mol% to 75 mol% of compound(s) of formula (V). The content of compound(s) of formula (VI) is preferably between 0.1 mol% and 70 mol%, more preferentially between 1 mol% and 50 mol% and even more preferentially between 1 mol% and 10 mol%. The crosslinking or branching agent, when it is present, is preferably between 0.0001 mol% and 1 mol% and even more preferentially between 0.0001 mol% and 0.1 mol%.
Preferably, the mole ratio between the compound(s) of formula (IVa) or (IVb) and the compound(s) of formula (V) ranges from 20/80 to 95/5 and more preferentially from 25/75 to 75/25.
The associative amphoteric polymers according to the invention are described, for example, in patent application WO 98/44012.
The amphoteric polymers that are particularly preferred according to the invention are chosen from acrylic acid/acrylamidopropyltrimethylammonium chloride/stearyl methacrylate copolymers.
According to a preferred embodiment, the associative polymer is chosen from nonionic associative polymers and more particularly from associative polyurethanes, such as Steareth-100/PEG-136/HDI Copolymer sold under the name Rheolate FX 1 100 by Elementis.
Such an associative polymer is advantageously used in a proportion of from 0.1 % to 8% by weight of solids and preferably about 3% by weight, relative to the total weight of the aqueous phase. 2. Polvacrylamides and crosslinked and/or neutralized 2-acrylamido-2- methylpropanesulfonic acid polymers and copolymers
The polymers used that are suitable as aqueous gelling agent for the invention may be crosslinked or non-crosslinked homopolymers or copolymers comprising at least the 2- acrylamidomethylpropanesulfonic acid (AMPS®) monomer, in a form partially or totally neutralized with a mineral base other than aqueous ammonia, such as sodium hydroxide or potassium hydroxide. They are preferably totally or almost totally neutralized, i.e. at least 90% neutralized.
These AMPS® polymers according to the invention may be crosslinked or non- crosslinked. When the polymers are crosslinked, the crosslinking agents may be chosen from the polyolefinically unsaturated compounds commonly used for crosslinking polymers obtained by free-radical polymerization.
Examples of crosslinking agents that may be mentioned include divinylbenzene, diallyl ether, dipropylene glycol diallyl ether, polyglycol diallyl ethers, triethylene glycol divinyl ether, hydroquinone diallyl ether, ethylene glycol or tetraethylene glycol di(meth)acrylate, trimethylolpropane triacrylate, methylenebisacrylamide, methylenebismethacrylamide, triallylamine, triallyl cyanurate, diallyl maleate, tetraallylethylenediamine, tetraallyloxyethane, trimethylolpropane diallyl ether, allyl (meth)acrylate, allylic ethers of alcohols of the sugar series, or other allyl or vinyl ethers of polyfunctional alcohols, and also the allylic esters of phosphoric and/or vinylphosphonic acid derivatives, or mixtures of these compounds.
According to one preferred embodiment of the invention, the crosslinking agent is chosen from methylenebisacrylamide, allyl methacrylate and trimethylolpropane triacrylate (TMPTA). The degree of crosslinking generally ranges from 0.01 mol% to 10 mol% and more particularly from 0.2 mol% to 2 mol% relative to the polymer.
The AMPS® polymers that are suitable for use in the invention are water-soluble or water- dispersible. They are in this case: -either "homopolymers" comprising only AMPS monomers and, if they are crosslinked, one or more crosslinking agents such as those defined above;
- or copolymers obtained from AMPS® and from one or more hydrophilic or hydrophobic ethylenically unsaturated monomers and, if they are crosslinked, one or more crosslinking agents such as those defined above. When said copolymers comprise hydrophobic ethylenically unsaturated monomers, the latter do not comprise a fatty chain and are preferably present in small amounts.
For the purpose of the present invention, the term "fatty chain" is intended to mean any hydrocarbon-based chain containing at least 7 carbon atoms.
The term "water-soluble or water-dispersible" means polymers which, when introduced into an aqueous phase at 25°C, at a mass concentration equal to 1 %, make it possible to obtain a macroscopically homogeneous and transparent solution, i.e. a solution with a light maximum transmittance value, at a wavelength equal to 500 nm, through a sample 1 cm thick, of at least 60% and preferably of at least 70%.
The "homopolymers" according to the invention are preferably crosslinked and neutralized, and they may be obtained according to the preparation process comprising the following steps:
(a) the monomer such as AMPS in free form is dispersed or dissolved in a solution of tert- butanol or of water and tert-butanol;
(b) the monomer solution or dispersion obtained in (a) is neutralized with one or more mineral or organic bases, preferably aqueous ammonia NH3, in an amount making it possible to obtain a degree of neutralization of the sulfonic acid functions of the polymer ranging from 90% to 100%;
(c) the crosslinking monomer(s) are added to the solution or dispersion obtained in (b);
(d) a standard free-radical polymerization is performed in the presence of free-radical initiators at a temperature ranging from 10 to 150°C; the polymer precipitates in the tert- butanol-based solution or dispersion.
The water-soluble or water-dispersible AMPS® copolymers according to the invention contain water-soluble ethylenically unsaturated monomers, hydrophobic monomers, or mixtures thereof. The water-soluble co-monomers may be ionic or nonionic.
Among the ionic water-soluble co-monomers, mention may be made, for example, of the following compounds and salts thereof:
- (meth)acrylic acid,
- styrenesulfonic acid,
- vinylsulfonic acid and (meth)allylsulfonic acid,
- vinylphosphonic acid,
- maleic acid,
- itaconic acid,
- crotonic acid,
- water-soluble vinyl monomers of formula (A) below:
H,C=CR1
I
X1
in which:
- Ri is chosen from H, -CH3, -C2H5 and -C3H7;
- is chosen from:
- alkyl oxides of type -OR2 where R2 is a linear or branched, saturated or unsaturated hydrocarbon-based radical containing from 1 to 6 carbon atoms, substituted with at least one sulfonic (-S03-) and/or sulfate (-S04 ) and/or phosphate (-P04H2 ) group.
Among the nonionic water-soluble co-monomers, mention may be made, for example, of: - (meth)acrylamide,
- N-vinylacetamide and N-methyl-N-vinylacetamide,
- N-vinylformamide and N-methyl-N-vinylformamide,
- maleic anhydride,
- vinylamine,
- N-vinyllactams comprising a cyclic alkyl group containing from 4 to 9 carbon atoms, such as N-vinylpyrrolidone, N-butyrolactam and N-vinylcaprolactam,
- vinyl alcohol of formula CH2=CHOH,
- water-soluble vinyl monomers of formula (B) below: H2C = =CFL
I 3 (B)
CO
I
in which:
- R3 is chosen from H, -CH3, -C2H5 and -C3H7;
- X2 is chosen from:
- alkyl oxides of the type -OR4 where R4 is a linear or branched, saturated or unsaturated hydrocarbon-based radical having from 1 to 6 carbon atoms, optionally substituted with a halogen (iodine, bromine, chlorine or fluorine) atom; a hydroxyl (-OH) group; ether. Mention may be made, for example, of glycidyl (meth)acrylate, hydroxyethyl methacrylate, and (meth)acrylates of ethylene glycol, of diethylene glycol or of polyalkylene glycol.
Among the hydrophobic comonomers without a fatty chain, mention may be made, for example, of:
- styrene and derivatives thereof, such as 4-butylstyrene, omethylstyrene and vinyltoluene;
- vinyl acetate of formula CH2=CH-OCOCH3;
- vinyl ethers of formula CH2=CHOR in which R is a linear or branched, saturated or unsaturated hydrocarbon-based radical containing from 1 to 6 carbons;
- acrylonitrile;
- caprolactone;
- vinyl chloride and vinylidene chloride;
- silicone derivatives, which, after polymerization, result in silicone polymers such as methacryloxypropyltris(trimethylsiloxy)silane and silicone methacrylamides;
- hydrophobic vinyl monomers of formula (C) below:
=CR
I 4 (C)
CO
I in which:
- R4 is chosen from H, -CH3, -C2H5 and -C3H7;
- X3 is chosen from:
- alkyl oxides of the type -OR5 where R5 is a linear or branched, saturated or unsaturated hydrocarbon-based radical containing from 1 to 6 carbon atoms. Mention may be made, for example, of methyl methacrylate, ethyl methacrylate, n-butyl (meth)acrylate, tert-butyl (meth)acrylate, cyclohexyl acrylate, isobornyl acrylate and 2- ethylhexyl acrylate. The water-soluble or water-dispersible AMPS® polymers of the invention preferably have a molar mass ranging from 50 000 g/mol to 10 000 000 g/mol, preferably from 80 000 g/mol to 8 000 000 g/mol, and even more preferably from 100 000 g/mol to 7 000 000 g/mol. As water-soluble or water-dispersible AMPS homopolymers in accordance with the invention, mention may be made, for example, of crosslinked or non-crosslinked polymers of sodium acrylamido-2-methylpropanesulfonate, such as that used in the commercial product Simulgel 800 (CTFA name: Sodium Polyacryloyldimethyl Taurate), crosslinked ammonium acrylamido-2-methylpropanesulfonate polymers (INCI name: Ammonium polydimethyltauramide) such as those described in patent EP 0 815 928 B1 and such as the product sold under the trade name Hostacerin AMPS® by the company Clariant.
As water-soluble or water-dispersible AMPS copolymers in accordance with the invention, examples that may be mentioned include:
- crosslinked acrylamide/sodium acrylamido-2-methylpropanesulfonate copolymers, such as that used in the commercial product Sepigel 305 (CTFA name: Polyacrylamide/Ci3-Ci4 Isoparaffin/ Laureth-7) or that used in the commercial product sold under the name Simulgel 600 (CTFA name: Acrylamide/Sodium
Acryloyldimethyltaurate/lsohexadecane/Polysorbate-80) by the company SEPPIC;
- copolymers of AMPS® and of vinylpyrrolidone or vinylformamide, such as that used in the commercial product sold under the name Aristoflex AVC® by the company Clariant (CTFA name: Ammonium acryloyldimethyltaurate/VP copolymer) but neutralized with sodium hydroxide or potassium hydroxide;
- copolymers of AMPS® and of sodium acrylate, for instance the AMPS/sodium acrylate copolymer, such as that used in the commercial product sold under the name Simulgel
EG® by the company SEPPIC or under the trade name Sepinov EM (CTFA name: Hydroxyethyl acrylate/sodium acryloyldimethyltaurate copolymer);
- copolymers of AMPS® and of hydroxyethyl acrylate, for instance the AMPS®/hydroxyethyl acrylate copolymer, such as that used in the commercial product sold under the name Simulgel NS® by the company SEPPIC (CTFA name: Hydroxyethyl acrylate/sodium acryloyldimethyltaurate copolymer (and) squalane (and) polysorbate 60), or such as the product sold under the name Sodium acrylamido-2- methylpropanesulfonate/hydroxyethyl acrylate copolymer, such as the commercial product Sepinov EMT 10 (INCI name: Hydroxyethyl acrylate/sodium acryloyldimethyltaurate copolymer).
Preferably, the product sold under the name Sodium acrylamido-2- methylpropanesulfonate/hydroxyethyl acrylate copolymer, such as the commercial product Sepinov EMT 10 (INCI name: Hydroxyethyl acrylate/sodium acryloyldimethyl taurate copolymer) is used as water-soluble or water-dispersible AMPS copolymers in accordance with the invention.
In general, an aqueous phase according to the invention may comprise from 0.1 % to 8 % by weight of solids, preferably 0.2 % to 5 % by weight and more preferentially from 0.7 % to 2.5 % by weight of polyacrylamide(s) and/or of crosslinked and/or neutralized 2- acrylamido-2-methylpropanesulfonic acid polymer(s) and copolymer(s) relative to its total weight.
3. Modified or unmodified carboxyvinyl polymers
The modified or unmodified carboxyvinyl polymers may be copolymers derived from the polymerization of at least one monomer (a) chosen from α,β-ethylenically unsaturated carboxylic acids or esters thereof, with at least one ethylenically unsaturated monomer (b) comprising a hydrophobic group.
The term "copolymers" means both copolymers obtained from two types of monomer and those obtained from more than two types of monomer, such as terpolymers obtained from three types of monomer. Their chemical structure more particularly comprises at least one hydrophilic unit and at least one hydrophobic unit. The term "hydrophobic group or unit" means a radical with a saturated or unsaturated, linear or branched hydrocarbon-based chain, comprising at least 8 carbon atoms, preferably from 10 to 30 carbon atoms, in particular from 12 to 30 carbon atoms and more preferentially from 18 to 30 carbon atoms. Preferably, these copolymers are chosen from copolymers derived from the polymerization:
- of at least one monomer of formula (1 ) below:
CH ~ C— C— OH
I I I
R 0 (1 )
in which R-i denotes H or CH3 or C2H5, i.e. acrylic acid, methacrylic acid or ethacrylic acid monomers, and
- of at least one monomer of unsaturated carboxylic acid (Ci0-C3o)alkyl ester type corresponding to the monomer of formula (2) below:
CH?— C— C— OR,
I I I
R0 O
2 (2)
in which R2 denotes H or CH3 or C2H5 (i.e. acrylate, methacrylate or ethacrylate units) and preferably H (acrylate units) or CH3 (methacrylate units), R3 denoting a Ci0-C30 and preferably C12-C22 alkyl radical.
The unsaturated carboxylic acid (Ci0-C30)alkyl esters are preferably chosen from lauryl acrylate, stearyl acrylate, decyl acrylate, isodecyl acrylate and dodecyl acrylate, and the corresponding methacrylates, such as lauryl methacrylate, stearyl methacrylate, decyl methacrylate, isodecyl methacrylate and dodecyl methacrylate, and mixtures thereof.
According to a preferred embodiment, these polymers are crosslinked.
Among the copolymers of this type, use will more particularly be made of polymers derived from the polymerization of a monomer mixture comprising:
- essentially acrylic acid,
- an ester of formula (2) described above in which R2 denotes H or CH3, R3 denoting an alkyl radical containing from 12 to 22 carbon atoms,
(iii) and a crosslinking agent, which is a well-known copolymerizable polyethylenic unsaturated monomer, such as diallyl phthalate, allyl (meth)acrylate, divinylbenzene, (poly)ethylene glycol dimethacrylate or methylenebisacrylamide. Among the copolymers of this type, use will more particularly be made of those consisting of from 95% to 60% by weight of acrylic acid (hydrophilic unit), 4% to 40% by weight of C10-C30 alkyl acrylate (hydrophobic unit) and 0% to 6% by weight of crosslinking polymerizable monomer, or alternatively those consisting of from 98% to 96% by weight of acrylic acid (hydrophilic unit), 1 % to 4% by weight of C10-C30 alkyl acrylate (hydrophobic unit) and 0.1 % to 0.6% by weight of crosslinking polymerizable monomer such as those described previously.
Among the abovementioned polymers, the ones that are most particularly preferred according to the present invention are acrylate/C10-C30-alkyl acrylate copolymers (I NCI name: Acrylates/C 10-30 Alkyl acrylate Crosspolymer) such as the products sold by the company Lubrizol under the trade names Pemulen TR-1 , Pemulen TR-2, Carbopol 1382, Carbopol EDT 2020 and Carbopol Ultrez 20 Polymer, and even more preferentially Pemulen TR-2.
Among the modified or unmodified carboxyvinyl polymers, mention may also be made of sodium polyacrylates such as those sold under the name Cosmedia SP® containing 90% solids and 10% water, or Cosmedia SPL® as an inverse emulsion containing about 60% solids, an oil (hydrogenated polydecene) and a surfactant (PPG-5 Laureth-5), both sold by the company Cognis.
Mention may also be made of partially neutralized sodium polyacrylates that are in the form of an inverse emulsion comprising at least one polar oil, for example the product sold under the name Luvigel® EM by the company BASF.
The modified or unmodified carboxyvinyl polymers may also be chosen from crosslinked (meth)acrylic acid homopolymers.
For the purposes of the present patent application, the term "(meth)acrylic" means "acrylic or methacrylic".
Examples that may be mentioned include the products sold by Lubrizol under the names Carbopol 910, 934, 940, 941 , 934 P, 980, 981 , 2984, 5984 and Carbopol Ultrez 10 Polymer, or by 3V-Sigma under the name Synthalen® K, Synthalen® L or Synthalen® M.
Among the modified or unmodified carboxyvinyl polymers, mention may be made in particular of Carbopol (CTFA name: carbomer) and Pemulen (CTFA name: Acrylates/Ci0- C3o alkyl acrylate crosspolymer) sold by the company Lubrizol. The modified or unmodified carboxyvinyl polymers may be present in a proportion of from 0.1 % to 5% by weight of solids relative to the weight of the aqueous phase, in particular from 0.3% to 1 % by weight and preferably in a proportion of about 1 % by weight, relative to the weight of the aqueous phase.
Advantageously, the hydrophilic gelling agent is at least one synthetic polymeric gelling agent chosen from crosslinked acrylic homopolymers or copolymers; polyacrylamides and crosslinked and/or neutralized 2-acrylamido-2-methylpropanesulfonic acid polymers and copolymers; modified or unmodified carboxyvinyl polymers, and mixtures thereof.
More particularly, it is at least a 2-acrylamido-2-methylpropanesulfonic acid polymer or copolymer, an associative polyurethane and/or a crosslinked sodium polyacrylate.
III. Other hydrophilic gelling agents
These gelling agents are more particularly chosen from mixed silicates and fumed silicas. III.A Mixed silicate For the purposes of the present invention, the term "mixed silicate" means any silicate of natural or synthetic origin containing several (two or more) types of cations chosen from alkali metals (for example Na, Li, K) or alkaline-earth metals (for example Be, Mg, Ca), transition metals and aluminium. According to a particular embodiment, the mixed silicate(s) are in the form of solid particles containing at least 10% by weight of at least one silicate relative to the total weight of the particles. In the rest of the present description, these particles will be referred to as "silicate particles". Preferably, the silicate particles contain less than 1 % by weight of aluminium relative to the total weight of the particles. Even more preferably, they contain from 0% to 1 % by weight of aluminium relative to the total weight of the particles.
Preferably, the silicate particles contain at least 50% by weight and better still at least 70% by weight of the silicate relative to the total weight of the particles. Particles containing at least 90% by weight of silicates, relative to the total weight of the particles, are particularly preferred.
In particular, this is a silicate or a mixture of silicates and of alkali metals or alkaline-earth metals, of aluminium or of iron.
Preferably, it is sodium, magnesium and/or lithium silicate.
To ensure good cosmetic properties, these silicates are generally in finely divided form, and in particular in the form of particles with a mean size ranging from 2 nm to 1 μηη (from 2 nm to 1000 nm), preferably from 5 nm to 600 nm and even more preferentially from 20 to 250 nm.
Silicate particles may have any form, for example the form of spheres, flakes, needles, platelets, disks or leaflets, or totally random forms. Preferably, the silicate particles have the form of disks or leaflets.
Also, the term "mean size" of the particles means the number-average size of the largest dimension (length) that it is possible to measure between two diametrically opposite points on an individual particle. The size may be determined, for example, by transmission electron microscopy or by measuring the specific surface area by the BET method or alternatively by means of a laser particle sizer.
When the particles are in the form of disks or leaflets, they generally have a thickness ranging from about 0.5 nm to 5 nm.
The silicate particles may consist of an alloy with metal or metalloid oxides, obtained, for example, via thermal fusion of its various constituents. When the particles also comprise such a metal or metalloid oxide, it is preferably chosen from silicon, boron or aluminium oxide.
According to a particular embodiment of the invention, the silicates are phyllosilicates, i.e. silicates having a structure in which the Si04 tetrahedra are organized as leaflets between which the metal cations are enclosed. The mixed silicates that are suitable for use in the invention may be chosen, for example, from montmorillonites, hectorites, bentonites, beidellite and saponites. According to a preferred embodiment of the invention, the mixed silicates used are more particularly chosen from hectorites and bentonites, and better still from laponites.
A family of silicates that is particularly preferred in the compositions of the present invention is thus that of laponites. Laponites are sodium magnesium silicates also possibly containing lithium, which have a layer structure similar to that of montmorillonites. Laponite is the synthetic form of the natural mineral known as hectorite. The synthetic origin of this family of silicates is of considerable advantage over the natural form, since it allows good control of the composition of the product. In addition, laponites have the advantage of having a particle size that is much smaller than that of the natural minerals hectorite and bentonite. Laponites that may especially be mentioned include the products sold under the following names: Laponite® XLS, Laponite® XLG, Laponite® RD, Laponite® RDS and Laponite® XL21 (these products are sodium magnesium silicates and sodium lithium magnesium silicates) by the company Rockwood Additives Limited. Such gelling agents may be used in a proportion of from 0.1 % to 8% by weight of solids relative to the total weight of the aqueous phase, especially from 0.1 % to 5% by weight and in particular from 0.5% to 3% by weight, relative to the total weight of the aqueous phase. III.B Hydrophilic fumed silica
The fumed silicas according to the present invention are hydrophilic.
Hydrophilic fumed silicas are obtained by pyrolysis of silicon tetrachloride (SiCI4) in a continuous flame at 1000°C in the presence of hydrogen and oxygen. Among the fumed silicas of hydrophilic nature that may be used according to the present invention, mention may be made especially of the products sold by the company Degussa or Evonik- Degussa under the trade names Aerosil® 90, 130, 150, 200, 300 and 380 or by the company Cabot under the name Carbosil H5. Such gelling agents may be used in a proportion of from 0.1 % to 10% by weight of solids relative to the total weight of the aqueous phase, especially from 0.1 % to 5% by weight and in particular from 0.5% to 3% by weight, relative to the total weight of the aqueous phase.
LIPOPHILIC GELLING AGENT
For the purposes of the present invention, the term "lipophilic gelling agent" means a compound that is capable of gelling the oily phase of the compositions according to the invention.
The gelling agent is lipophilic and is thus present in the oily phase of the composition.
The gelling agent is liposoluble or lipodispersible. As emerges from the text hereinbelow, the lipophilic gelling agent is advantageously chosen from particulate gelling agents, organopolysiloxane elastomers, semi-crystalline polymers, dextrin esters and hydrogen bonding polymers, and mixtures thereof.
Proportions of such gelling agents will notably vary according to the considered lipophilic gelling agent and/or according to the nature of the pigments considered in the composition according to the invention.
I. Particulate gelling agents The particulate gelling agent used in the composition according to the invention is in the form of particles, preferably spherical particles.
As representative lipophilic particulate gelling agents that are suitable for use in the invention, mention may be made most particularly of polar and apolar waxes, modified clays, and silicas such as fumed silicas and hydrophobic silica aerogels.
Waxes
The term "wax" under consideration in the context of the present invention generally means a lipophilic compound that is solid at room temperature (25°C), with a solid/liquid reversible change of state, having a melting point of greater than or equal to 30°C, which may be up to 200°C and in particular up to 120°C.
For the purposes of the invention, the melting point corresponds to the temperature of the most endothermic peak observed on thermal analysis (DSC) as described in standard ISO 1 1357-3; 1999. The melting point of the wax can be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name MDSC 2920 by the company TA Instruments. The measuring protocol is as follows:
A 5 mg sample of wax placed in a crucible is subjected to a first temperature increase ranging from -20°C to 100°C, at a heating rate of 10°C/minute, it is then cooled from 100°C to -20°C at a cooling rate of 10°C/minute and is finally subjected to a second temperature increase ranging from -20°C to 100°C at a heating rate of 5°C/minute. During the second temperature increase, the variation in the difference in power absorbed by the empty crucible and by the crucible containing the sample of wax is measured as a function of the temperature. The melting point of the compound is the temperature value corresponding to the top of the peak of the curve representing the variation in the difference in power absorbed as a function of the temperature.
The waxes that may be used in the compositions according to the invention are chosen from waxes that are solid at room temperature of animal, plant, mineral or synthetic origin, and mixtures thereof.
For the purposes of the invention, the waxes may be those generally used in cosmetics or dermatology. They may especially be polar or apolar, and hydrocarbon-based, silicone and/or fluoro waxes, optionally comprising ester or hydroxyl functions. They may also be of natural or synthetic origin. a) Apolar waxes
For the purposes of the present invention, the term "apolar wax" means a wax whose solubility parameter at 25°C as defined below, 8a, is equal to 0 (J/cm3)½. The definition and calculation of the solubility parameters in the Hansen three-dimensional solubility space are described in the paper by CM. Hansen: "The three-dimensional solubility parameters", J. Paint Technol., 39, 105 (1967). According to this Hansen space:
- δ0 characterizes the London dispersion forces derived from the formation of dipoles induced during molecular impacts;
- δρ characterizes the Debye interaction forces between permanent dipoles and also the Keesom interaction forces between induced dipoles and permanent dipoles;
- 8h characterizes the specific interaction forces (such as hydrogen bonding, acid/base, donor/acceptor, etc.); and
- 8a is determined by the equation: 8a = (δρ 2 + 8h 2)½.
The parameters δρ, 8h, 5D and 8a are expressed in (J/cm3)½.
Apolar waxes are in particular hydrocarbon waxes consisting solely of carbon and hydrogen atoms and devoid of heteroatoms, such as N, O, Si and P.
The apolar waxes are chosen from microcrystalline waxes, paraffin waxes, ozokerite and polyethylene waxes, and mixtures thereof.
Mention may be made, as ozokerite, of Ozokerite Wax SP 1020 P.
As microcrystalline waxes that may be used, mention may be made of Multiwax W 445® sold by the company Sonneborn, and Microwax HW® and Base Wax 30540® sold by the company Paramelt, and Cerewax® No. 3 sold by the company Baerlocher.
As microwaxes that may be used in the compositions according to the invention as apolar wax, mention may be made especially of polyethylene microwaxes such as those sold under the names Micropoly 200®, 220®, 220L® and 250S® by the company Micro Powders.
Polyethylene waxes that may be mentioned include Performalene 500-L Polyethylene and Performalene 400 Polyethylene sold by New Phase Technologies, and Asensa® SC 21 1 sold by the company Honeywell. b) Polar wax
For the purposes of the present invention, the term "polar wax" means a wax whose solubility parameter at 25°C, 8a, is other than 0 (J/cm3)½.
In particular, the term "polar wax" means a wax whose chemical structure is formed essentially from, or even constituted of, carbon and hydrogen atoms, and comprising at least one highly electronegative heteroatom such as an oxygen, nitrogen, silicon or phosphorus atom.
The polar waxes may especially be hydrocarbon-based, fluoro or silicone waxes.
Preferentially, the polar waxes may be hydrocarbon-based waxes. The term "hydrocarbon-based wax" means a wax formed essentially from, or even constituted of, carbon and hydrogen atoms, and optionally oxygen and nitrogen atoms, and not containing any silicon or fluorine atoms. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups. According to the invention, the term "ester wax" means a wax comprising at least one ester function. According to the invention, the term "alcohol wax" means a wax comprising at least one alcohol function, i.e. comprising at least one free hydroxyl (OH) group.
The following may especially be used as ester wax:
- ester waxes such as those chosen from:
i) waxes of formula RiCOOR2 in which R-i and R2 represent linear, branched or cyclic aliphatic chains in which the number of atoms ranges from 10 to 50, which may contain a heteroatom such as O, N or P and whose melting point ranges from 25 to 120°C;
ii) bis(1 ,1 ,1 -trimethylolpropane) tetrastearate, sold under the name Hest 2T-4S® by the company Heterene;
iii) diester waxes of a dicarboxylic acid of general formula R3-(-OCO-R4-COO-R5), in which R3 and R5 are identical or different, preferably identical, and represent a C4-C30 alkyl group (alkyl group comprising from 4 to 30 carbon atoms) and R4 represents a linear or branched C4-C30 aliphatic group (alkyl group comprising from 4 to 30 carbon atoms) which may or may not comprise one or more unsaturations and which is preferably linear and unsaturated;
iv) mention may also be made of the waxes obtained by catalytic hydrogenation of animal or plant oils having linear or branched C8-C32 fatty chains, for example such as hydrogenated jojoba oil, hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coconut oil, and also the waxes obtained by hydrogenation of castor oil esterified with cetyl alcohol;
v) beeswax, synthetic beeswax, polyglycerolated beeswax, carnauba wax, candelilla wax, oxypropylenated lanolin wax, rice bran wax, ouricury wax, esparto grass wax, cork fibre wax, sugar cane wax, Japan wax, sumach wax, montan wax, orange wax, laurel wax, hydrogenated jojoba wax, sunflower wax, lemon wax, olive wax or berry wax.
According to another embodiment, the polar wax can be an alcohol wax. According to the invention, the term "alcohol wax" means a wax comprising at least one alcohol function, i.e. comprising at least one free hydroxyl (OH) group. Alcohol waxes that may be mentioned include for example the C30-5o wax Performacol® 550 Alcohol from New Phase Technologies, stearyl alcohol and cetyl alcohol.
It is also possible to use silicone waxes, which may advantageously be substituted polysiloxanes, preferably of low melting point.
The term "silicone wax" means a wax comprising at least one silicon atom, and especially comprising Si-0 groups. Among the commercial silicone waxes of this type, mention may be made especially of those sold under the names Abilwax 9800, 9801 or 9810 (Goldschmidt), KF910 and KF7002 (Shin-Etsu), or 176-1 1 18-3 and 176-1 1481 (General Electric).
The silicone waxes that may be used may also be alkyl or alkoxy dimethicones, and also (C2o-C6o)alkyl dimethicones, in particular (C3o-C45)alkyl dimethicones, such as the silicone wax sold under the name SF-1642 by the company GE-Bayer Silicones or C30-45 alkyl dimethylsilyl polypropylsilsesquioxane sold under the name SW-8005® C30 Resin Wax by the company Dow Corning. In the context of the present invention, particularly advantageous waxes that may be mentioned include polyethylene waxes, jojoba wax, candelilla wax and silicone waxes, in particular candelilla wax. They may be present in the oily phase in a proportion of from 0.5% to 30% by weight relative to the weight of the oily phase, for example between 5% and 20% of the oily phase and more particularly from 2% to 15% by weight relative to the weight of the oily phase. Modified clays
The composition according to the invention may comprise at least one lipophilic clay.
The clays may be natural or synthetic, and they are made lipophilic by treatment with an alkylammonium salt such as a Cio to C22 ammonium chloride, for example distearyldimethylammonium chloride.
They may be chosen from bentonites, in particular hectorites and montmorillonites, beidellites, saponites, nontronites, sepiolites, biotites, attapulgites, vermiculites and zeolites.
They are preferably chosen from hectorites.
Hectorites modified with a C10 to C22 ammonium chloride, for instance hectorite modified with distearyldimethylammonium chloride, for instance the product sold under the name Bentone 38V® by the company Elementis or bentone gel in isododecane sold under the name Bentone Gel ISD V® (87% isododecane/10% disteardimonium hectorite/3% propylene carbonate) by the company Elementis, are preferably used as lipophilic clays. Lipophilic clay may especially be present in a content ranging from 0.1 % to 15% by weight, particularly from 0.5% to 10% and more particularly from 1 % to 10% by weight relative to the total weight of the oily phase.
Silicas The oily phase of a composition according to the invention may also comprise, as gelling agent, a fumed silica or silica aerogel particles. a) Fumed silica
Fumed silica which has undergone a hydrophobic surface treatment is most particularly suitable for use in the invention. Specifically, it is possible to chemically modify the surface of silica, by chemical reaction generating a reduced number of silanol groups present at the surface of the silica. Silanol groups can in particular be replaced by hydrophobic groups: a hydrophobic silica is then obtained.
The hydrophobic groups may be:
- trimethylsiloxyl groups, which are obtained in particular by treating fumed silica in the presence of hexamethyldisilazane. Silicas thus treated are known as "silica silylate" according to the CTFA (8th edition, 2000). They are sold, for example, under the references Aerosil R812® by the company Degussa, and Cab-O-Sil TS-530® by the company Cabot;
- dimethylsilyloxyl or polydimethylsiloxane groups, which are obtained in particular by treating fumed silica in the presence of polydimethylsiloxane or dimethyldichlorosilane. Silicas thus treated are named "Silica dimethyl silylate" according to the CTFA (8th edition, 2000). They are, for example, sold under the references Aerosil R972® and Aerosil R974® by the company Degussa and Cab-O-Sil TS-610® and Cab-O-Sil TS-720® by the company Cabot. The fumed silicas may be present in a composition according to the present invention in a content of between 0.1 % and 40% by weight, more particularly between 1 % and 15% by weight and even more particularly between 2% and 10% by weight relative to the total weight of the oily phase. b) Hydrophobic silica aerogels
The oily phase of a composition according to the invention may also comprise, as gelling agent, at least silica aerogel particles. Silica aerogels are porous materials obtained by replacing (by drying) the liquid component of a silica gel with air.
They are generally synthesized via a sol-gel process in a liquid medium and then dried, usually by extraction with a supercritical fluid, the one most commonly used being supercritical C02. This type of drying makes it possible to avoid the contraction of the pores and of the material. The sol-gel process and the various drying operations are described in detail in Brinker C.J. and Scherer G.W., Sol-Gel Science, New York: Academic Press, 1990.
The hydrophobic silica aerogel particles used in the present invention have a specific surface area per unit of mass (SM) ranging from 500 to 1500 m2/g, preferably from 600 to 1200 m2/g and better still from 600 to 800 m2/g, and a size expressed as the volume- mean diameter (D[0.5]) ranging from 1 to 1500 μηη, better still from 1 to 1000 μηη, preferably from 1 to 100 μηη, in particular from 1 to 30 μηη, more preferably from 5 to 25 μηη, better still from 5 to 20 μηη and even better still from 5 to 15 μηη.
According to one embodiment, the hydrophobic silica aerogel particles used in the present invention have a size expressed as the volume-mean diameter (D[0.5]) ranging from 1 to 30 μηη, preferably from 5 to 25 μηη, better still from 5 to 20 μηη and even better still from 5 to 15 μηι.
The specific surface area per unit of mass may be determined by the nitrogen absorption method, known as the BET (Brunauer-Emmett-Teller) method, described in the Journal of the American Chemical Society, Vol. 60, page 309, February 1938, which corresponds to international standard ISO 5794/1 (appendix D). The BET specific surface area corresponds to the total specific surface area of the particles under consideration.
The sizes of the silica aerogel particles may be measured by static light scattering using a commercial particle size analyser such as the MasterSizer 2000 machine from Malvern. The data are processed on the basis of the Mie scattering theory. This theory, which is exact for isotropic particles, makes it possible to determine, in the case of non-spherical particles, an "effective" particle diameter. This theory is especially described in the publication by Van de Hulst, H.C., Light Scattering by Small Particles, Chapters 9 and 10, Wiley, New York, 1957. According to an advantageous embodiment, the hydrophobic silica aerogel particles used in the present invention have a specific surface area per unit of mass (SM) ranging from 600 to 800 m2/g. The silica aerogel particles used in the present invention may advantageously have a tapped density □ ranging from 0.02 g/cm3 to 0.10 g/cm3, preferably from 0.03 g/cm3 to 0.08 g/cm3 and in particular ranging from 0.05 g/cm3 to 0.08 g/cm3.
In the context of the present invention, this density may be assessed according to the following protocol, known as the tapped density protocol:
40 g of powder are poured into a measuring cylinder; the measuring cylinder is then placed on a Stav 2003 machine from Stampf Volumeter; the measuring cylinder is then subjected to a series of 2500 tapping actions (this operation is repeated until the difference in volume between two consecutive tests is less than 2%); the final volume Vf of tapped powder is then measured directly on the measuring cylinder. The tapped density is determined by the ratio m/Vf, in this instance 40/Vf (Vf being expressed in cm3 and m in g)- According to one preferred embodiment, the hydrophobic silica aerogel particles used in the present invention have a specific surface area per unit of volume SV ranging from 5 to 60 m2/cm3, preferably from 10 to 50 m2/cm3 and better still from 15 to 40 m2/cm3.
The specific surface area per unit of volume is given by the relationship:
Sv = SM x p where p is the tapped density, expressed in g/cm3, and SM is the specific surface per unit of mass, expressed in m2/g, as defined above.
Preferably, the hydrophobic silica aerogel particles according to the invention have an oil- absorbing capacity, measured at the wet point, ranging from 5 to 18 ml/g, preferably from 6 to 15 ml/g and better still from 8 to 12 ml/g.
The absorption capacity measured at the wet point, denoted Wp, corresponds to the amount of oil which it is necessary to add to 100 g of particles in order to obtain a homogeneous paste. It is measured according to the "wet point" method or method for determining the oil uptake of a powder described in Standard NF T 30-022. It corresponds to the amount of oil adsorbed onto the available surface of the powder and/or absorbed by the powder by measuring the wet point, described below:
An amount w = 2 g of powder is placed on a glass plate and then the oil (isononyl isononanoate) is added dropwise. After addition of 4 to 5 drops of oil to the powder, mixing is performed using a spatula, and addition of oil is continued until conglomerates of oil and powder have formed. From this point, the oil is added one drop at a time and the mixture is then triturated with the spatula. The addition of oil is stopped when a firm, smooth paste is obtained. This paste must be able to be spread over the glass plate without cracks or the formation of lumps. The volume Vs (expressed in ml) of oil used is then noted. The oil uptake corresponds to the ratio Vs/m.
The aerogels used according to the present invention are aerogels of hydrophobic silica, preferably of silylated silica (I NCI name: silica silylate). The term "hydrophobic silica" means any silica whose surface is treated with silylating agents, for example halogenated silanes such as alkylchlorosilanes, siloxanes, in particular dimethylsiloxanes such as hexamethyldisiloxane, or silazanes, so as to functionalize the OH groups with silyl groups Si-Rn, for example trimethylsilyl groups. As regards the preparation of hydrophobic silica aerogel particles surface-modified by silylation, reference may be made to document US 7 470 725.
Use will preferably be made of hydrophobic silica aerogel particles surface-modified with trimethylsilyl groups, preferably of the INCI name Silica silylate.
As hydrophobic silica aerogels that may be used in the invention, an example that may be mentioned is the aerogel sold under the name VM-2260 or VM-2270 (INCI name: Silica silylate), by the company Dow Corning, the particles of which have a mean size of about 1000 microns and a specific surface area per unit of mass ranging from 600 to 800 m2/g. Mention may also be made of the aerogels sold by the company Cabot under the references Aerogel TLD 201 , Aerogel OGD 201 , Aerogel TLD 203, Enova® Aerogel MT 1 100 and Enova Aerogel MT 1200. Use will preferably be made of the aerogel sold under the name VM-2270 (INCI name: Silica silylate), by the company Dow Corning, the particles of which have an average size ranging from 5-15 microns and a specific surface area per unit of mass ranging from 600 to 800 m2/g. Preferably, the hydrophobic silica aerogel particles are present in the composition according to the invention in a solids content ranging from 0.1 % to 8% by weight, preferably from 0.2% to 5% by weight and preferably from 0.2% to 3% by weight relative to the total weight of the oily phase. II. Organopolysiloxane elastomer
The organopolysiloxane elastomer that may be used as lipophilic gelling agent has the advantage of giving the composition according to the invention good application properties. It affords a very gentle feel and a matt effect after application, which is advantageous especially for application to the skin, in particular for foundation compositions. It may also allow efficient filling of the hollows present on keratin materials.
The term "organopolysiloxane elastomer" or "silicone elastomer" means a supple, deformable organopolysiloxane with viscoelastic properties and especially with the consistency of a sponge or a supple sphere. Its modulus of elasticity is such that this material withstands deformation and has a limited ability to extend and to contract. This material is capable of regaining its original shape after stretching.
It is more particularly a crosslinked organopolysiloxane elastomer.
Thus, the organopolysiloxane elastomer may be obtained by crosslinking addition reaction of diorganopolysiloxane containing at least one hydrogen bonded to silicon and of diorganopolysiloxane containing ethylenically unsaturated groups bonded to silicon, especially in the presence of a platinum catalyst; or by dehydrogenation crosslinking condensation reaction between a diorganopolysiloxane containing hydroxyl end groups and a diorganopolysiloxane containing at least one hydrogen bonded to silicon, especially in the presence of an organotin; or by crosslinking condensation reaction of a diorganopolysiloxane containing hydroxyl end groups and of a hydrolysable organopolysilane; or by thermal crosslinking of organopolysiloxane, especially in the presence of an organoperoxide catalyst; or by crosslinking of organopolysiloxane via high- energy radiation such as gamma rays, ultraviolet rays or an electron beam.
Preferably, the organopolysiloxane elastomer is obtained by crosslinking addition reaction (A) of diorganopolysiloxane containing at least two hydrogens each bonded to a silicon, and (B) of diorganopolysiloxane containing at least two ethylenically unsaturated groups bonded to silicon, especially in the presence (C) of a platinum catalyst, as described, for instance, in patent application EP-A-295 886.
In particular, the organopolysiloxane elastomer may be obtained by reaction of dimethylpolysiloxane containing dimethylvinylsiloxy end groups and of methylhydrogenopolysiloxane containing trimethylsiloxy end groups, in the presence of a platinum catalyst.
Compound (A) is the base reagent for the formation of organopolysiloxane elastomer, and the crosslinking is performed by addition reaction of compound (A) with compound (B) in the presence of the catalyst (C).
Compound (A) is in particular an organopolysiloxane containing at least two hydrogen atoms bonded to different silicon atoms in each molecule.
Compound (A) can exhibit any molecular structure, in particular a linear chain or branched chain structure or a cyclic structure.
Compound (A) can have a viscosity at 25°C ranging from 1 to 50 000 centistokes, in particular in order to be satisfactorily miscible with compound (B).
The organic groups bonded to the silicon atoms of compound (A) may be alkyl groups such as methyl, ethyl, propyl, butyl, octyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl or 3,3,3-trifluoropropyl; aryl groups such as phenyl, tolyl, xylyl; substituted aryl groups such as phenylethyl; and substituted monovalent hydrocarbon-based groups such as an epoxy group, a carboxylate ester group or a mercapto group.
Compound (A) may thus be chosen from methylhydrogenopolysiloxanes containing trimethylsiloxy end groups, dimethylsiloxane-methylhydrogenosiloxane copolymers containing trimethylsiloxy end groups, and dimethylsiloxane-methylhydrogenosiloxane cyclic copolymers.
Compound (B) is advantageously a diorganopolysiloxane containing at least two lower alkenyl groups (for example C2-C4); the lower alkenyl group may be chosen from vinyl, allyl and propenyl groups. These lower alkenyl groups may be located in any position of the organopolysiloxane molecule, but are preferably located at the ends of the organopolysiloxane molecule. The organopolysiloxane (B) can have a branched-chain, linear-chain, cyclic or network structure but the linear-chain structure is preferred. Compound (B) may have a viscosity ranging from the liquid state to the gum state. Preferably, compound (B) has a viscosity of at least 100 centistokes at 25°C.
Besides the abovementioned alkenyl groups, the other organic groups bonded to the silicon atoms in compound (B) may be alkyl groups such as methyl, ethyl, propyl, butyl or octyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl or 3,3,3- trifluoropropyl; aryl groups such as phenyl, tolyl or xylyl; substituted aryl groups such as phenylethyl; and substituted monovalent hydrocarbon-based groups such as an epoxy group, a carboxylate ester group or a mercapto group.
The organopolysiloxanes (B) may be chosen from methylvinylpolysiloxanes, methylvinylsiloxane-dimethylsiloxane copolymers, dimethylpolysiloxanes containing dimethylvinylsiloxy end groups, dimethylsiloxane-methylphenylsiloxane copolymers containing dimethylvinylsiloxy end groups, dimethylsiloxane-diphenylsiloxane- methylvinylsiloxane copolymers containing dimethylvinylsiloxy end groups, dimethylsiloxane-methylvinylsiloxane copolymers containing trimethylsiloxy end groups, dimethylsiloxane-methylphenylsiloxane-methylvinylsiloxane copolymers containing trimethylsiloxy end groups, methyl(3,3,3-trifluoropropyl)polysiloxanes containing dimethylvinylsiloxy end groups, and dimethylsiloxane-methyl(3,3,3-trifluoropropyl)siloxane copolymers containing dimethylvinylsiloxy end groups. In particular, the organopolysiloxane elastomer can be obtained by reaction of dimethylpolysiloxane comprising dimethylvinylsiloxy end groups and of methylhydrogenopolysiloxane comprising trimethylsiloxy end groups, in the presence of a platinum catalyst.
Advantageously, the sum of the number of ethylenic groups per molecule of the compound (B) and of the number of hydrogen atoms bonded to silicon atoms per molecule of the compound (A) is at least 5. It is advantageous for compound (A) to be added in an amount such that the molecular ratio of the total amount of hydrogen atoms bonded to silicon atoms in compound (A) and the total amount of all the ethylenically unsaturated groups in compound (B) is within the range from 1.5/1 to 20/1. Compound (C) is the catalyst for the crosslinking reaction, and is especially chloroplatinic acid, chloroplatinic acid/olefin complexes, chloroplatinic acid/alkenylsiloxane complexes, chloroplatinic acid/diketone complexes, platinum black and platinum on a support.
The catalyst (C) is preferably added in an amount of from 0.1 to 1000 parts by weight and better still from 1 to 100 parts by weight, as clean platinum metal, per 1000 parts by weight of the total amount of compounds (A) and (B).
The elastomer is advantageously a non-emulsifying elastomer. The term "non-emulsifying" defines organopolysiloxane elastomers not containing any hydrophilic chains, and in particular not containing any polyoxyalkylene units (especially polyoxyethylene or polyoxypropylene) or any polyglyceryl units. Thus, according to one particular mode of the invention, the composition comprises an organopolysiloxane elastomer free of polyoxyalkylene units and of polyglyceryl units.
In particular, the silicone elastomer used in the present invention is chosen from Dimethicone Crosspolymer (INCI name), Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone/Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone Crosspolymer-3 (INCI name). The organopolysiloxane elastomer particles may be conveyed in the form of a gel formed from an elastomeric organopolysiloxane included in at least one hydrocarbon-based oil and/or one silicone oil. In these gels, the organopolysiloxane particles are often nonspherical particles.
Non-emulsifying elastomers are described especially in patents EP 242 219, EP 285 886 and EP 765 656 and in patent application JP-A-61-194009.
The silicone elastomer is generally in the form of a gel, a paste or a powder, but advantageously in the form of a gel in which the silicone elastomer is dispersed in a linear silicone oil (dimethicone) or cyclic silicone oil (e.g.: cyclopentasiloxane), advantageously in a linear silicone oil.
Non-emulsifying elastomers that may be used more particularly include those sold under the names KSG-6, KSG-15, KSG-16, KSG-18, KSG-41 , KSG-42, KSG-43 and KSG-44 by the company Shin-Etsu, DC9040 and DC9041 by the company Dow Corning, and SFE 839 by the company General Electric.
According to another alternative, the composition according to the invention may comprise an organopolysiloxane elastomer having the INCI name 'Polysilicone 1 1 ', such as those sold under the name Gransil by Grant Industries.
According to a particular mode, use is made of a gel of silicone elastomer dispersed in a silicone oil chosen from a non-exhaustive list comprising cyclopentadimethylsiloxane, dimethicones, dimethylsiloxanes, methyl trimethicone, phenyl methicone, phenyl dimethicone, phenyl trimethicone and cyclomethicone, preferably a linear silicone oil chosen from polydimethylsiloxanes (PDMS) or dimethicones with a viscosity at 25°C ranging from 1 to 500 cSt, optionally modified with optionally fluorinated aliphatic groups, or with functional groups such as hydroxyl, thiol and/or amine groups.
Mention may be made especially of the compounds having the following INCI names:
- dimethicone/Vinyl Dimethicone Crosspolymer, such as USG-105 and USG-107A from the company Shin-Etsu; DC9506 and DC9701 from the company Dow Corning;
- dimethicone/vinyl dimethicone crosspolymer (and) dimethicone, such as KSG-6 and KSG-16 from the company Shin-Etsu; - dimethicone/vinyl dimethicone crosspolymer (and) cyclopentasiloxane, such as KSG-15;
- cyclopentasiloxane (and) dimethicone crosspolymer, such as DC9040, DC9045 and
DC5930 from the company Dow Corning;
- dimethicone (and) dimethicone crosspolymer, such as DC9041 from the company Dow Corning;
- dimethicone (and) dimethicone crosspolymer, such as Dow Corning EL-9240® silicone elastomer blend from the company Dow Corning (mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane (2 cSt)),
- C4-24 alkyl dimethicone/divinyl dimethicone crosspolymer, such as NuLastic Silk MA from the company Alzo.
As examples of silicone elastomers dispersed in a linear silicone oil that may advantageously be used according to the invention, mention may especially be made of the following references:
- dimethicone/vinyl dimethicone crosspolymer (and) dimethicone, such as KSG-6 and KSG-16 from the company Shin-Etsu;
- dimethicone (and) dimethicone crosspolymer, such as DC9041 from the company Dow
Corning; and
- dimethicone (and) dimethicone crosspolymer, such as Dow Corning EL-9240® silicone elastomer blend from the company Dow Corning.
According to a preferred embodiment, the composition according to the invention comprises at least one crosslinked silicone elastomer having the INCI name 'dimethicone crosspolymer' or 'dimethicone (and) dimethicone crosspolymer', with preferably a dimethicone having a viscosity ranging from 1 to 100 cSt, in particular from 1 to 10 cSt at 25°C, such as the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane sold under the name DC 9041 Dow Corning or the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane sold under the name Dow Corning EL-9240® silicone elastomer blend Dow Corning.
According to a particularly preferred embodiment, the composition according to the invention comprises at least one crosslinked silicone elastomer having the INCI name "dimethicone (and) dimethicone crosspolymer", with preferably a dimethicone having a viscosity ranging from 1 to 100 cSt, in particular from 1 to 10 cSt at 25°C, such as the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane (5 cSt) sold under the name DC 9041 by the company Dow Corning.
The organopolysiloxane elastomer particles may also be used in powder form: mention may be made especially of the powders sold under the names Dow Corning 9505 Powder and Dow Corning 9506 Powder by the company Dow Corning, these powders having the INCI name: dimethicone/vinyl dimethicone crosspolymer.
The organopolysiloxane powder may also be coated with silsesquioxane resin, as described, for example, in patent US 5 538 793. Such elastomeric powders are sold under the names KSP-100, KSP-101 , KSP-102, KSP-103, KSP-104 and KSP-105 by the company Shin-Etsu, and have the INCI name: vinyl dimethicone/methicone silsesquioxane crosspolymer. As preferred lipophilic gelling agents of organopolysiloxane elastomer type, mention may be made more particularly of crosslinked organopolysiloxane elastomers chosen from Dimethicone Crosspolymer (INCI name), Dimethicone (and) Dimethicone Crosspolymer (INCI name), Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone/Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone Crosspolymer-3 (INCI name), and in particular mention be made of Dimethicone Crosspolymer (INCI name).
The organopolysiloxane elastomer may be present in a composition according to the present invention in a content of between 0.5% and 35% by weight of solids and especially between 2% and 15% by weight relative to the total weight of the oily phase.
III. Semi-crystalline polymers
The composition according to the invention may comprise at least one semi-crystalline polymer. Preferably, the semi-crystalline polymer has an organic structure, and a melting point of greater than or equal to 30°C.
For the purposes of the invention, the term "semi-crystalline polymer" means polymers comprising a crystallizable portion and an amorphous portion and having a first-order reversible change of phase temperature, in particular of melting point (solid-liquid transition). The crystallizable portion is either a side chain (or pendent chain) or a block in the backbone.
When the crystallizable portion of the semi-crystalline polymer is a block of the polymer backbone, this crystallizable block has a chemical nature different than that of the amorphous blocks; in this case, the semi-crystalline polymer is a block copolymer, for example of the diblock, triblock or multiblock type. When the crystallizable portion is a chain that is pendent on the backbone, the semi-crystalline polymer may be a homopolymer or a copolymer.
The melting point of the semi-crystalline polymer is preferably less than 150°C.
The melting point of the semi-crystalline polymer is preferably greater than or equal to 30°C and less than 100°C. More preferably, the melting point of the semi-crystalline polymer is greater than or equal to 30°C and less than 70°C.
The semi-crystalline polymer(s) according to the invention are solid at room temperature (25°C) and atmospheric pressure (760 mmHg), with a melting point of greater than or equal to 30°C. The melting point values correspond to the melting point measured using a differential scanning calorimeter (DSC), such as the calorimeter sold under the name DSC 30 by the company Mettler, with a temperature rise of 5°C or 10°C per minute. (The melting point under consideration is the point corresponding to the temperature of the most endothermic peak in the thermogram). The semi-crystalline polymer(s) according to the invention preferably have a melting point that is higher than the temperature of the keratinous support intended to receive the said composition, in particular the skin or the lips.
According to the invention, the semi-crystalline polymers are advantageously soluble in the fatty phase, especially to at least 1 % by weight, at a temperature that is higher than their melting point. Besides the crystallizable chains or blocks, the blocks of the polymers are amorphous.
For the purposes of the invention, the term "crystallizable chain or block' means a chain or block which, if it were alone, would change from the amorphous state to the crystalline state reversibly, depending on whether the temperature is above or below the melting point. For the purposes of the invention, a "chain" is a group of atoms, which are pendent or lateral relative to the polymer backbone. A block is a group of atoms belonging to the backbone, this group constituting one of the repeating units of the polymer.
Preferably, the polymer backbone of the semi-crystalline polymers is soluble in the fatty phase at a temperature above their melting point.
Preferably, the crystallizable blocks or chains of the semi-crystalline polymers represent at least 30% of the total weight of each polymer and better still at least 40%. The semi- crystalline polymers containing crystallizable side chains are homopolymers or copolymers. The semi-crystalline polymers of the invention containing crystallizable blocks are block or multiblock copolymers. They may be obtained via polymerization of a monomer containing reactive double bonds (or ethylenic bonds) or via polycondensation. When the polymers of the invention are polymers having crystallizable side chains, these side chains are advantageously in random or statistical form.
Preferably, the semi-crystalline polymers of the invention are of synthetic origin. According to a preferred embodiment, the semi-crystalline polymer is chosen from:
- homopolymers and copolymers comprising units resulting from the polymerization of one or more monomers bearing crystallizable hydrophobic side chain(s),
- polymers bearing in the backbone at least one crystallizable block,
- polycondensates of aliphatic or aromatic or aliphatic/aromatic polyester type,
- copolymers of ethylene and propylene prepared via metallocene catalysis, and
- acrylate/silicone copolymers.
The semi-crystalline polymers that may be used in the invention may be chosen in particular from:
- block copolymers of polyolefins of controlled crystallization, whose monomers are described in EP-A-0 951 897,
- polycondensates, especially of aliphatic or aromatic or aliphatic/aromatic polyester type,
- copolymers of ethylene and propylene prepared via metallocene catalysis,
- homopolymers or copolymers bearing at least one crystallizable side chain and homopolymers or copolymers bearing in the backbone at least one crystallizable block, such as those described in document US-A-5 156 91 1 , such as the (Ci0-C3o)alkyl polyacrylates corresponding to the Intelimer® products from the company Landec described in the brochure Intelimer® Polymers, Landec I P22 (Rev. 4-97), for example the product Intelimer® I PA 13-1 from the company Landec, which is a polystearyl acrylate with a molecular weight of about 145 000 and a melting point of 49°C,
- homopolymers or copolymers bearing at least one crystallizable side chain, in particular containing fluoro group(s), as described in document WO-A-01 /19333,
- acrylate/silicone copolymers, such as copolymers of acrylic acid and of stearyl acrylate bearing polydimethylsiloxane grafts, copolymers of stearyl methacrylate bearing polydimethylsiloxane grafts, copolymers of acrylic acid and of stearyl methacrylate bearing polydimethylsiloxane grafts, copolymers of methyl methacrylate, butyl methacrylate, 2- ethylhexyl acrylate and stearyl methacrylate bearing polydimethylsiloxane grafts. Mention may be made in particular of the copolymers sold by the company Shin-Etsu under the names KP-561 (CTFA name: acrylates/dimethicone), KP-541 (CTFA name: acrylates/dimethicone and isopropyl alcohol), KP-545 (CTFA name: acrylates/dimethicone and cyclopentasiloxane),
- and mixtures thereof.
Preferably, the amount of semi-crystalline polymer(s), preferably chosen from semi- crystalline polymers bearing crystallizable side chains, represents from 0.1 % to 30% by weight of solids relative to the total weight of the oily phase, for example from 0.5% to 25% by weight, better still from 5% to 20% or even from 5% to 12% by weight, relative to the total weight of the oily phase. IV. Dextrin esters
The composition according to the invention may comprise as lipophilic gelling agent at least one dextrin ester. In particular, the composition preferably comprises at least one preferably Ci2 to C24 and in particular Ci4-Ci8 fatty acid ester of dextrin, or mixtures thereof.
Preferably, the dextrin ester is an ester of dextrin and of a Ci2-Ci8 and in particular Ci4-Ci8 fatty acid. Preferably, the dextrin ester is chosen from dextrin myristate and/or dextrin palmitate, and mixtures thereof.
According to a particular embodiment, the dextrin ester is dextrin myristate, such as the product sold especially under the name Rheopearl MKL-2 by the company Chiba Flour Milling.
According to a preferred embodiment, the dextrin ester is dextrin palmitate. This product may be chosen, for example, from those sold under the names Rheopearl TL®, Rheopearl KL® and Rheopearl® KL2 by the company Chiba Flour Milling.
In a particularly preferred manner, the oily phase of a composition according to the invention may comprise from 0.1 % to 30% by weight, preferably from 2% to 25% and preferably from 7.5% to 17% by weight of dextrin ester(s) relative to the total weight of the oily phase.
In a particularly preferred manner, the composition according to the invention may comprise between 0.1 % and 10% by weight and preferably between 0.5% and 5% by weight of dextrin palmitate relative to the total weight of the oily phase. The dextrin palmitate may especially be the product sold under the names Rheopearl TL®, Rheopearl KL® or Rheopearl® KL2 by the company Chiba Flour Milling.
V. Hydrogen bonding polymers As representatives of hydrogen bonding polymers that are suitable for use in the invention, mention may be made most particularly of polyamides and in particular hydrocarbon- based polyamides and silicone polyamides.
Polyamides
The oily phase of a composition according to the invention may comprise at least one polyamide chosen from hydrocarbon-based polyamides and silicone polyamides, and mixtures thereof. Preferably, the total content of polyamide(s) is between 0.1 % and 30% by weight expressed as solids, preferably between 0.1 % and 20% by weight and preferably between 0.5% and 10% by weight relative to the total weight of the oily phase. For the purposes of the invention, the term "polyamide" means a compound containing at least two repeating amide units, preferably at least three repeating amide units and better still ten repeating amide units. a) Hydrocarbon-based polyamide
The term "hydrocarbon-based polyamide" means a polyamide formed essentially of, indeed even consisting of, carbon and hydrogen atoms, and optionally of oxygen or nitrogen atoms, and not comprising any silicon or fluorine atoms. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.
For the purposes of the invention, the term "functionalized chain" means an alkyl chain comprising one or more functional groups or reagents chosen especially from hydroxyl, ether, ester, oxyalkylene and polyoxyalkylene groups. Advantageously, this polyamide of the composition according to the invention has a weight-average molecular mass of less than 100 000 g/mol (especially ranging from 1000 to 100 000 g/mol), in particular less than 50 000 g/mol (especially ranging from 1000 to 50 000 g/mol) and more particularly ranging from 1000 to 30 000 g/mol, preferably from 2000 to 20 000 g/mol and better still from 2000 to 10 000 g/mol.
This polyamide is insoluble in water, in particular at 25°C.
According to a first embodiment of the invention, the polyamide used is a polyamide of formula (I):
X C— R -C— NH -R— NH
I I I I n i l ^ I I
0 0 O O
O in which X represents a group -N(R-i)2 or a group -OR1 in which R-i is a linear or branched C8 to C22 alkyl radical which may be identical or different, R2 is a C28-C42 diacid dimer residue, R3 is an ethylenediamine radical and n is between 2 and 5;
- and mixtures thereof.
According to a particular mode, the polyamide used is an amide-terminated polyamide of formula (la):
X- -C— FL-C— NH -R— NH - n i l ^ i i
(¾)
in which X represents a group -N(R-i)2 in which R-i is a linear or branched C8 to C22 alkyl radical which may be identical or different, R2 is a C28-C42 diacid dimer residue, R3 is an ethylenediamine radical and n is between 2 and 5;
- and mixtures thereof.
The oily phase of a composition according to the invention may also comprise, additionally in this case, at least one additional polyamide of formula (lb):
X- C-R,-C-NH -R NH - n Ci l R 2- C X
I I 2 I I 3 in which X represents a group -OR1 in which R-i is a linear or branched C8 to C22 and preferably Ci6 to C22 alkyl radical which may be identical or different, R2 is a C28-C42 diacid dimer residue, R3 is an ethylenediamine radical and n is between 2 and 5, such as the commercial products sold by the company Arizona Chemical under the names Uniclear 80 and Uniclear 100 or Uniclear 80 V, Uniclear 100 V and Uniclear 100 VG, the INCI name of which is Ethylenediamine/stearyl dimer dilinoleate copolymer. b) Silicone polyamide
The silicone polyamides are preferably solid at room temperature (25°C) and atmospheric pressure (760 mmHg).
The silicone polyamides may preferentially be polymers comprising at least one unit of formula (III) or (IV):
Figure imgf000080_0001
(HI)
or
Figure imgf000080_0002
ffV) in which:
R4, R5, R6 and R7, which may be identical or different, represent a group chosen from:
- saturated or unsaturated, Ci to C40 linear, branched or cyclic hydrocarbon-based groups, which may contain in their chain one or more oxygen, sulfur and/or nitrogen atoms, and which may be partially or totally substituted with fluorine atoms,
- C6 to Cio aryl groups, optionally substituted with one or more Ci to C4 alkyl groups, - polyorganosiloxane chains possibly containing one or more oxygen, sulfur and/or nitrogen atoms,
- the groups X, which may be identical or different, represent a linear or branched Ci to C30 alkylenediyl group, possibly containing in its chain one or more oxygen and/or nitrogen atoms,
- Y is a saturated or unsaturated Ci to C50 linear or branched alkylene, arylene, cycloalkylene, alkylarylene or arylalkylene divalent group, which may comprise one or more oxygen, sulfur and/or nitrogen atoms, and/or may bear as substituent one of the following atoms or groups of atoms: fluorine, hydroxyl, C3 to C8 cycloalkyl, Ci to C40 alkyl, C5 to Cio aryl, phenyl optionally substituted with one to three Ci to C3 alkyl, Ci to C3 hydroxyalkyl and Ci to C6 aminoalkyl groups, or
- Y represents a group corresponding to the formula: in which:
- T represents a linear or branched, saturated or unsaturated, C3 to C24 trivalent or tetravalent hydrocarbon-based group optionally substituted with a polyorganosiloxane chain, and possibly containing one or more atoms chosen from O, N and S, or T represents a trivalent atom chosen from N, P and Al, and
- R8 represents a linear or branched Ci to C50 alkyl group or a polyorganosiloxane chain, possibly comprising one or more ester, amide, urethane, thiocarbamate, urea, thiourea and/or sulfonamide groups, which may possibly be linked to another chain of the polymer, - n is an integer ranging from 2 to 500 and preferably from 2 to 200, and m is an integer ranging from 1 to 1000, preferably from 1 to 700 and even better still from 6 to 200.
According to a particular mode, the silicone polyamide comprises at least one unit of formula (III) in which m ranges from 50 to 200, in particular from 75 to 150 and is preferably about 100.
More preferably, R4, R5, R6 and R7 independently represent a linear or branched Ci to C40 alkyl group, preferably a group CH3, C2H5, n-C3H7 or isopropyl in formula (III). As examples of silicone polymers that may be used, mention may be made of one of the silicone polyamides obtained in accordance with Examples 1 to 3 of document US-A-5 981 680.
Mention may be made of the compounds sold by the company Dow Corning under the names DC 2-8179 (DP 100) and DC 2-8178 (DP 15), the INCI name of which is Nylon- 61 1/dimethicone copolymer, i.e. Nylon-61 1/dimethicone copolymers. The silicone polymers and/or copolymers advantageously have a temperature of transition from the solid state to the liquid state ranging from 45°C to 190°C. Preferably, they have a temperature of transition from the solid state to the liquid state ranging from 70 to 130°C and better still from 80°C to 105°C. Preferably, the total content of polyamide(s) and/or silicone polyamide(s) is between 0.5% and 25% by weight of solids, in particular from 2% to 20% by weight and preferably between 2% and 12% by weight relative to the total weight of the oily phase.
Advantageously, the hydrogen bonding polymer is chosen from ethylenediamine/stearyl dimer dilinoleate copolymer and Nylon-61 1/dimethicone copolymers.
According to an advantageous variant, a composition according to the invention comprises a lipophilic gelling agent chosen from particulate gelling agents, organopolysiloxane elastomers, semi-crystalline polymers, dextrin esters and hydrogen bonding polymers, and mixtures thereof, and in particular at least one organopolysiloxane elastomer.
HYDROPHILIC GELLING AGENTiSVLIPOPHILIC GELLING AGENT(S) SYSTEMS
As preferred synthetic polymeric hydrophilic gelling agents, mention may be made more particularly of 2-acrylamido-2-methylpropanesulfonic acid polymers, for instance AMPS® and 2-acrylamido-2-methylpropanesulfonic acid copolymers and in particular copolymers of AMPS® and of hydroxyethyl acrylate, for instance the AMPS®/hydroxyethyl acrylate copolymer such as that used in the commercial product sold under the name Simulgel NS® by the company SEPPIC (CTFA name: Hydroxyethyl acrylate/sodium acryloyldimethyltaurate copolymer (and) squalane (and) polysorbate 60), or such as the product sold under the name Sodium acrylamido-2-methylpropanesulfonate/hydroxyethyl acrylate copolymer, such as the commercial product Sepinov EMT 10 (INCI name: Hydroxyethyl acrylate/sodium acryloyldimethyltaurate copolymer).
As preferred lipophilic gelling agents of organopolysiloxane elastomer type, mention may be made more particularly of crosslinked organopolysiloxane elastomers chosen from Dimethicone Crosspolymer (INCI name), Dimethicone (and) Dimethicone Crosspolymer (INCI name), Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone/Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone Crosspolymer-3 (INCI name) , and in particular mention be made of Dimethicone Crosspolymer (INCI name) and Dimethicone (and) Dimethicone Crosspolymer (INCI name). According to a particular mode, use is made of a gel of silicone elastomer dispersed in a silicone oil chosen from a non-exhaustive list comprising cyclopentadimethylsiloxane, dimethicones, dimethylsiloxanes, methyl trimethicone, phenyl methicone, phenyl dimethicone, phenyl trimethicone and cyclomethicone, preferably a linear silicone oil chosen from polydimethylsiloxanes (PDMS) or dimethicones with a viscosity at 25°C ranging from 1 to 500 cS at 25°C, especially the following references:
- dimethicone/vinyl dimethicone crosspolymer (and) dimethicone, such as KSG-6 and
KSG-16 from the company Shin-Etsu;
- dimethicone (and) dimethicone crosspolymer, such as DC9041 from the company Dow Corning; and
- dimethicone (and) dimethicone crosspolymer (INCI name), such as Dow Corning EL-
9240® silicone elastomer blend from the company Dow Corning.
According to a particularly preferred embodiment, the composition according to the invention comprises at least one crosslinked silicone elastomer having the INCI name "dimethicone (and) dimethicone crosspolymer", with preferably a dimethicone having a viscosity ranging from 1 to 100 cSt, in particular from 1 to 10 cSt at 25°C, such as the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane sold under the name DC 9041 Dow Corning or the mixture of polydimethylsiloxane crosslinked with hexadiene/polydimethylsiloxane sold under the name Dow Corning EL-9240® silicone elastomer blend from Dow Corning.
As non-limiting illustrations of hydrophilic gelling agent/lipophilic gelling agent systems that are most particularly suitable for use in the invention, mention may be made especially of 2-acrylamido-2-methylpropanesulfonic acid/organopolysiloxane elastomer polymers or copolymers.
Thus, a composition according to the invention may advantageously comprise as hydrophilic gelling agent/lipophilic gelling agent system, a system of 2-acrylamido-2- methylpropanesulfonic acid and of hydroxyethyl acrylate copolymer/organopolysiloxane elastomer. PIGMENTS
As stated previously, the claimed compositions comprise at least one pigment The pigments may be selected from uncoated pigments, pigments coated with a hydrophilic compound, pigments coated with a hydrophobic compound, and their mixtures.
According to a more preferred embodiment of the invention, the composition contains at least one pigment coated with at least one hydrophobic compound, especially as detailed hereinbelow.
According to a preferred embodiement the pigments coated with at least one hydrophobic compound are present totally or partly, and preferably only, in the gelled oily phase. The term "pigments" means white or coloured, mineral or organic particles, which are insoluble in an aqueous medium, and which are intended to colour and/or opacify the resulting composition and/or film. These pigments may be white or coloured, and mineral and/or organic. These pigments are more particularly detailed below.
According to a particular embodiment, the pigments used according to the invention are chosen from mineral pigments. The term "mineral pigment" means any pigment that satisfies the definition in Ullmann's encyclopaedia in the chapter on mineral pigments. Among the mineral pigments that are useful in the present invention, mention may be made of zirconium oxide or cerium oxide, and also zinc oxide, iron oxide (black, yellow or red) or chromium oxide, manganese violet, ultramarine blue, chromium hydrate and ferric blue, titanium dioxide, and metal powders, for instance aluminium powder or copper powder. The following mineral pigments may also be used: Ta205, Ti305, Ti203, TiO, Zr02 as a mixture with Ti02, Zr02, Nb205, Ce02, ZnS. The size of the pigment that is useful in the context of the present invention is generally between 10 nm and 10 μηη, preferably between 20 nm and 5 μηη and more preferentially between 30 nm and 1 μηη. In the context of the present invention, the mineral pigments are more particularly iron oxide and/or titanium dioxide.
By way of example, mention may be made more particularly of titanium dioxide and iron oxide coated with aluminium stearoyl glutamate, for example sold under the reference NAI by the company Miyoshi Kasei.
Coating of the pigment
The composition according to the invention comprises at least one pigment coated with at least one hydrophobic compound.
The coating may also comprise at least one additional non-hydrophobic compound.
For the purposes of the invention, the "coating" of a pigment according to the invention generally denotes the total or partial surface treatment of the pigment with a surface agent, absorbed, adsorbed or grafted onto the said pigment.
The surface-treated pigments may be prepared according to surface treatment techniques of chemical, electronic, mechanochemical or mechanical nature that are well known to those skilled in the art. Commercial products may also be used.
The surface agent may be absorbed adsorbed or grafted onto the pigments by solvent evaporation, chemical reaction and creation of a covalent bond. According to one variant, the surface treatment consists of coating of the pigments.
The coating may represent from 0.1 % to 20% by weight and in particular from 0.5% to 5% by weight relative to the total weight of the coated pigment. The coating may be performed, for example, by adsorption of a liquid surface agent onto the surface of the solid particles by simple mixing with stirring of the particles and of the said surface agent, optionally with heating, prior to the incorporation of the particles into the other ingredients of the makeup or care composition.
The coating may be performed, for example, by chemical reaction of a surface agent with the surface of the solid pigment particles and creation of a covalent bond between the surface agent and the particles. This method is especially described in patent US 4 578 266.
The chemical surface treatment may consist in diluting the surface agent in a volatile solvent, dispersing the pigments in this mixture and then slowly evaporating off the volatile solvent, so that the surface agent is deposited at the surface of the pigments. Hydrophobic treatment agent
When the pigment comprises a lipophilic or hydrophobic coating, it is preferably present in the fatty phase of the composition according to the invention. According to a particular embodiment of the invention, the pigments may be coated according to the invention with at least one compound chosen from silicone surface agents; fluoro surface agents; fluorosilicone surface agents; metal soaps; N-acylamino acids or salts thereof; lecithin and derivatives thereof; isopropyl triisostearyl titanate; isostearyl sebacate; natural plant or animal waxes; polar synthetic waxes; fatty esters; phospholipids; and mixtures thereof.
Silicone surface agent
According to a particular embodiment, the pigments may be totally or partially surface- treated with a compound of silicone nature.
The silicone surface agents may be chosen from organopolysiloxanes, silane derivatives, silicone-acrylate copolymers and silicone resins, and mixtures thereof. The term "organopolysiloxane compound" means a compound having a structure comprising an alternation of silicon atoms and oxygen atoms and comprising organic radicals linked to silicon atoms. /') Non-elastomeric organopolysiloxane
Non-elastomeric organopolysiloxanes that may especially be mentioned include polydimethylsiloxanes, polymethylhydrogenosiloxanes and polyalkoxydimethylsiloxanes. The alkoxy group may be represented by the radical R-O- such that R represents methyl, ethyl, propyl, butyl or octyl, 2-phenylethyl, 2-phenylpropyl or 3,3,3-trifluoropropyl radicals, aryl radicals such as phenyl, tolyl or xylyl, or substituted aryl radicals such as phenylethyl.
One method for surface-treating pigments with a polymethylhydrogenosiloxane consists in dispersing the pigments in an organic solvent and then in adding the silicone compound. On heating the mixture, covalent bonds are created between the silicone compound and the surface of the pigment.
According to a preferred embodiment, the silicone surface agent may be a non- elastomeric organopolysiloxane, especially chosen from polydimethylsiloxanes.
//') Alkylsilanes and alkoxysilanes
Silanes containing alkoxy functionality are especially described by Witucki in A silane primer, Chemistry and applications of alkoxy silanes, Journal of Coatings Technology, 65, 822, pages 57-60, 1993.
Alkoxysilanes such as the alkyltriethoxysilanes and the alkyltrimethoxysilanes sold under the references Silquest A-137 (OSI Specialities) and Prosil 9202 (PCR) may be used for coating pigments.
Mention may also be made of pigments treated with triethoxycaprylylsilane sold under the references Unipure AS-EM by the company Sensient. The use of alkylpolysiloxanes containing a reactive end group such as alkoxy, hydroxyl, halogen, amino or imino are described in patent application JP H07-196 946. They are also suitable for treating pigments
Vii) Silicone-acrylate polymers
Grafted silicone-acrylic polymers having a silicone backbone as described in patents US 5 725 882, US 5 209 924, US 4 972 037, US 4 981 903, US 4 981 902 and US 5 468 477 and in patents US 5 219 560 and EP 0 388 582 may be used.
Other silicone-acrylate polymers may be silicone polymers comprising in their structure the unit of formula (I) below: (-
( (i)
Figure imgf000088_0001
in which the radicals Gi , which may be identical or different, represent hydrogen or a C Cio alkyl radical or alternatively a phenyl radical; the radicals G2, which may be identical or different, represent a C1-C10 alkylene group; G3 represents a polymeric residue resulting from the (homo)polymerization of at least one ethylenically unsaturated anionic monomer;
G4 represents a polymeric residue resulting from the (homo)polymerization of at least one ethylenically unsaturated hydrophobic monomer; m and n are equal to 0 or 1 ; a is an integer ranging from 0 to 50; b is an integer that may be between 10 and 350, c is an integer ranging from 0 to 50; with the proviso that one of the parameters a and c is other than 0.
Preferably, the unit of formula (I) above has at least one, and even more preferentially all, of the following characteristics:
- the radicals Gi denote an alkyl radical, preferably a methyl radical;
- n is non-zero, and the radicals G2 represent a divalent C1-C3 radical, preferably a propylene radical;
- G3 represents a polymeric radical resulting from the (homo)polymerization of at least one monomer of the ethylenically unsaturated carboxylic acid type, preferably acrylic acid and/or methacrylic acid; - G4 represents a polymeric radical resulting from the (homo)polymerization of at least one monomer of the (Ci-Ci0)alkyl (meth)acrylate type, preferably such as isobutyl or methyl (meth)acrylate. Examples of silicone polymers corresponding to formula (I) are especially polydimethylsiloxanes (PDMS) onto which are grafted, via a connecting chain unit of thiopropylene type, mixed polymer units of the poly(meth)acrylic acid type and of the polymethyl (meth)acrylate type. Other examples of silicone polymers corresponding to formula (I) are especially polydimethylsiloxanes (PDMS) onto which are grafted, via a connecting chain unit of thiopropylene type, polymer units of the polyisobutyl (meth)acrylate type. iv) Silicone resins
The silicone surface agent may be chosen from silicone resins.
The term "resin" means a three-dimensional structure. The silicone resins may be soluble or swellable in silicone oils. These resins are crosslinked polyorganosiloxane polymers.
The nomenclature of silicone resins is known under the name "MDTQ", the resin being described as a function of the various siloxane monomer units it comprises, each of the letters "MDTQ" characterizing a type of unit.
The letter M represents the monofunctional unit of formula (CH3)3SiOi/2, the silicon atom being bonded to only one oxygen atom in the polymer comprising this unit. The letter D means a difunctional unit (CH3)2Si02/2 in which the silicon atom is bonded to two oxygen atoms.
The letter T represents a trifunctional unit of formula (CH3)Si03/2. In the units M, D and T defined previously, at least one of the methyl groups may be substituted with a group R other than a methyl group, such as a hydrocarbon-based radical (especially alkyl) containing from 2 to 10 carbon atoms or a phenyl group, or alternatively a hydroxyl group.
Finally, the letter Q means a tetrafunctional unit Si04/2 in which the silicon atom is bonded to four hydrogen atoms, which are themselves bonded to the rest of the polymer.
Various resins with different properties may be obtained from these different units, the properties of these polymers varying as a function of the type of monomers (or units), of the type and number of substituted radicals, of the length of the polymer chain, of the degree of branching and of the size of the side chains.
Examples of these silicone resins that may be mentioned include:
- siloxysilicates, which may be trimethyl siloxysilicates of formula [(CH3)3XSiXO]xX(Si04/2)y (MQ units) in which x and y are integers ranging from 50 to 80,
- polysilsesquioxanes of formula (CH3Si03/2)x (T units) in which x is greater than 100 and at least one of the methyl radicals of which may be substituted with a group R as defined above,
- polymethylsilsesquioxanes, which are polysilsesquioxanes in which none of the methyl radicals is substituted with another group. Such polymethylsilsesquioxanes are described in document US 5 246 694.
As examples of commercially available polymethylsilsesquioxane resins, mention may be made of those sold:
- by the company Wacker under the reference Resin MK, such as Belsil PMS MK: polymer comprising CH3Si03/2 repeating units (T units), which may also comprise up to 1 % by weight of (CH3)2Si02/2 units (D units) and having an average molecular weight of about 10 000, or
- by the company Shin-Etsu under the reference KR220L, which are composed of units T of formula CH3Si03/2 and have Si-OH (silanol) end groups, under the reference KR242A, which comprise 98% of units T and 2% of dimethyl units D and have Si-OH end groups, or alternatively under the reference KR251 comprising 88% of units T and 12% of dimethyl units D and have Si-OH end groups. Siloxysilicate resins that may be mentioned include trimethyl siloxysilicate (TMS) resins, optionally in the form of powders. Such resins are sold under the references SR1000, E 1 170-002 or SS 4230 by the company General Electric or under the references TMS 803, Wacker 803 and 804 by the company Wacker Silicone Corporation.
Mention may also be made of tnmethylsiloxysilicate resins sold in a solvent such as cyclomethicone, sold under the name KF-7312J by the company Shin-Etsu or DC 749 and DC 593 by the company Dow Corning. As examples of commercial references of pigments treated with a silicone compound, mention may be made of:
- red iron oxide/dimethicone sold under the reference SA-C 338075-10 by the company Miyoshi Kasei; and
- a pigment obtained by treating DC Red 7 with a silicone compound, sold by the company Coletica under the reference Gransil GCM (which is a mixture of D5 and polysilicone 1 1 ).
Fluoro surface agent
The pigments may be totally or partially surface-treated with a compound of fluoro nature.
The fluoro surface agents may be chosen from perfluoroalkyi phosphates, perfluoropolyethers, polytetrafluoropolyethylenes (PTFE), perfluoroalkanes, perfluoroalkylsilazanes, poly(hexafluoropropylene oxides), and polyorganosiloxanes comprising perfluoroalkyi or perfluoropolyether groups.
The term "perfluoroalkyi radicaf means an alkyl radical in which all of the hydrogen atoms have been replaced with fluorine atoms.
Perfluoropolyethers are especially described in patent application EP 0 486 135, and sold under the trade name Fomblin by the company Montefluos.
Perfluoroalkyi phosphates are described in particular in patent application JP H05-86984. The perfluoroalkyi diethanolamine phosphates sold by Asahi Glass under the reference AsahiGuard AG530 may be used. Among the linear perfluoroalkanes that may be mentioned are perfluorocycloalkanes, perfluoro(alkylcycloalkanes), perfluoropolycycloalkanes, aromatic perfluoro hydrocarbons (perfluoroarenes) and hydrocarbon-based perfluoro organic compounds comprising at least one heteroatom.
Among the perfluoroalkanes, mention may be made of the linear alkane series such as perfluorooctane, perfluorononane or perfluorodecane.
Among the perfluorocycloalkanes and the perfluoro(alkylcycloalkanes), mention may be made of perfluorodecalin sold under the name Flutec PP5 GMP by the company Rhodia, perfluoro(methyldecalin) and perfluoro(C3-C5 alkylcyclohexanes) such as perfluoro(butylcyclohexane).
Among the perfluoropolycycloalkanes, mention may be made of bicyclo[3.3.1]nonane derivatives such as perfluorotrimethylbicyclo[3.3.1]nonane, adamantane derivatives such as perfluorodimethyladamantane, and hydrogenated perfluorophenanthrene derivatives such as tetracosafluorotetradecahydrophenanthrene.
Among the perfluoroarenes, mention may be made of perfluoronaphthalene derivatives, for instance perfluoronaphthalene and perfluoromethyl-1 -naphthalene.
As examples of commercial references of pigments treated with a fluoro compound, mention may be made of:
- yellow iron oxide/perfluoroalkyl phosphate sold under the reference PF 5 Yellow 601 or PFX-5 Sunpuro Yellow C33-9001 by the company Daito Kasei;
- red iron oxide/perfluoroalkyl phosphate sold under the reference PF 5 Red R 516L or PFX-5 Sunpuro Red C33-8001 by the company Daito Kasei;
- black iron oxide/perfluoroalkyl phosphate sold under the reference PF 5 Black BL100 or PFX-5 Sunpuro Black C33-7001 by the company Daito Kasei;
- titanium dioxide/perfluoroalkyl phosphate sold under the reference PF 5 Ti02 CR 50 by the company Daito Kasei;
- yellow iron oxide/perfluoropolymethyl isopropyl ether sold under the reference Iron oxide yellow BF-25-3 by the company Toshiki;
- DC Red 7/perfluoropolymethyl isopropyl ether sold under the reference D&C Red 7 FHC by the company Cardre Inc.; - DC Red 6/PTFE sold under the reference T 9506 by the company Warner-Jenkinson.
Fluorosilicone surface agent The pigments may be totally or partially surface-treated with a compound of fluorosilicone nature.
The fluorosilicone compound may be chosen from perfluoroalkyl dimethicones, perfluoroalkyl silanes and perfluoroalkyl trialkoxysilanes.
In particular, mention may be made of perfluorooctyltriethoxysilane.
Perfluoroalkyl silanes that may be mentioned include the products LP-IT and LP-4T sold by Shin-Etsu Silicone.
The perfluoroalkyl dimethicones ma be represented by the following formula:
Figure imgf000093_0001
in which:
- R represents a linear or branched divalent alkyl group containing from 1 to 6 carbon atoms, preferably a divalent methyl, ethyl, propyl or butyl group;
- Rf represents a perfluoroalkyl radical containing 1 to 9 carbon atoms and preferably 1 to 4 carbon atoms;
- m is chosen between 0 and 150 and preferably between 20 and 100; and
- n is chosen between 1 and 300 and preferably between 1 and 100.
As examples of commercial references of pigments treated with a fluorosilicone compound, mention may be made of titanium dioxide/fluorosilicone sold under the reference Fluorosil Titanium dioxide 100TA by the company Advanced Dermaceuticals International Inc and pigments treated with perfluorooctyltriethoxysilane sold under the references FHS by the company Daito Kasei Kogyo. Other lipophilic surface agents
The hydrophobic treatment agent may also be chosen from:
i) metal soaps such as aluminium dimyristate and the aluminium salt of hydrogenated tallow glutamate;
Metal soaps that may especially be mentioned include metal soaps of fatty acids containing from 12 to 22 carbon atoms and in particular those containing from 12 to 18 carbon atoms.
The metal of the metal soap may especially be zinc or magnesium.
Metal soaps that may be used include zinc laurate, magnesium stearate, magnesium myristate and zinc stearate, and mixtures thereof;
ii) fatty acids such as lauric acid, myristic acid, stearic acid and palmitic acid;
iii) N-acylamino acids or salts thereof, which may comprise an acyl group containing from 8 to 22 carbon atoms, for instance a 2-ethylhexanoyl, caproyl, lauroyl, myristoyl, palmitoyl, stearoyl or cocoyl group; The amino acid may be, for example, lysine, glutamic acid or alanine.
The salts of these compounds may be the aluminium, magnesium, calcium, zirconium, zinc, sodium or potassium salts. Thus, according to a particularly preferred embodiment, an N-acylamino acid derivative may especially be a derivative of glutamic acid and/or a salt thereof, and more particularly a stearoyl glutamate, for instance aluminium stearoyl glutamate. iv) lecithin and derivatives thereof;
As examples of lecithin treated pigments, mention may be made of those sold under the commercial references Unipure HLC by the company Sensient Company. v) isopropyl triisostearyl titanate; As examples of isopropyl titanium triisostearate (ITT)-treated pigments, mention may be made of those sold under the commercial references BWBO-12 (Iron oxide CI77499 and isopropyl titanium triisostearate), BWYO-12 (Iron oxide CI77492 and isopropyl titanium triisostearate) and BWRO-12 (Iron oxide CI77491 and isopropyl titanium triisostearate) by the company Kobo. vi) isostearyl sebacate;
vii) natural plant or animal waxes or polar synthetic waxes;
viii) fatty esters, in particular jojoba esters;
ix) phospholipids; and
x) mixtures thereof.
The waxes mentioned in the abovementioned compounds may be those generally used in the cosmetics field, as defined hereinbelow.
They may especially be hydrocarbon-based, silicone and/or fluoro waxes, optionally comprising ester or hydroxyl functions. They may also be of natural or synthetic origin.
The term "polar wax" means a wax containing chemical compounds comprising at least one polar group. Polar groups are well known to those skilled in the art; they may be, for example, alcohol, ester or carboxylic acid groups. Polyethylene waxes, paraffin waxes, microcrystalline waxes, ozokerite and Fischer-Tropsch waxes do not feature among polar waxes. In particular, polar waxes have a mean Hansen solubility parameter 5a at 25°C such that 5a > 0 (J/cm3)1/2 and better still 5a > 1 (J/cm3)1/2:
Figure imgf000095_0001
in which δρ and 5h are, respectively, the polar contributions and interactions of types specific to the Hansen solubility parameters.
The definition of solvents in the Hansen three-dimensional solubility space is described in the article by CM. Hansen: The three dimensional solubility parameters, J. Paint Technol. 39, 105 (1967): - 5h characterizes the specific interaction forces (such as hydrogen bonding, acid/base, donor/acceptor, etc.); and
- δρ characterizes the Debye interaction forces between permanent dipoles and also the Keesom interaction forces between induced dipoles and permanent dipoles.
The parameters δρ and 5h are expressed in (J/cm3)1/2.
A polar wax consists especially of molecules comprising, besides carbon and hydrogen atoms in their chemical structure, heteroatoms (such as O, N and P). As non-limiting illustrations of these polar waxes, mention may be made especially of natural polar waxes, such as beeswax, lanolin wax, orange wax, lemon wax, Chinese insect wax, rice bran wax, carnauba wax, candelilla wax, ouricury wax, cork fibre wax, sugarcane wax, Japan wax, sumach wax and montan wax. According to one particular embodiment, the pigments may be coated with at least one compound chosen from silicone surface agents; fluoro surface agents; N-acylamino acids or salts thereof; isopropyl triisostearyl titanate; natural plant or animal waxes; fatty esters; and mixtures thereof. According to a particularly preferred embodiment, the pigments may be coated with an N- acylamino acid and/or a salt thereof, in particular with a derivative of glutamic acid and/or a salt thereof, or with a fatty ester, in particular with a jojoba ester.
According to a more particularly preferred embodiment, the pigments may be coated with an N-acylamino acid and/or a salt thereof, in particular with a derivative of glutamic acid and/or a salt thereof, especially a stearoyl glutamate, for instance aluminium stearoyl glutamate.
As examples of coated pigments according to the invention, mention may be made more particularly of titanium dioxide and iron oxide coated with aluminium stearoyl glutamate, for example sold under the reference NAI by Miyoshi Kasei, pigments treated with perfluorooctyltriethoxysilane, for example sold under the references FHS by the company Daito Kasei Kogyo, lecithin treated pigments, for example sold under the commercial references Unipure HLC by the company Sensient Company and pigments treated with a fluoro compound, for example sold under the reference PF 5 or PFX-5 by the company Daito Kasei, and mixtures thereof.
In particular, mention may be made of a mixture of pigments (in particular iron oxides) treated with a fluoro compound, for example sold under the reference PF 5 or PFX-5 by the company Daito Kasei and pigments (in particular titanium dioxide) treated with perfluorooctyltriethoxysilane, for example sold under the references FHS by the company Daito Kasei Kogyo. Mention may be made more preferably of titanium dioxide and iron oxide coated with aluminium stearoyl glutamate, for example sold under the reference NAI by Miyoshi Kasei.
The pigments according to the invention are present in a composition of the invention in a proportion of at least 10% by weight, preferably at least 20% by weight and better still in a proportion from 20 to 25% by weight relative to the total weight of the composition.
According to another embodiment of the invention, the composition may contain uncoated pigments and/or pigments coated with a hydrophilic compound. These pigments may be mineral pigments especially as defined previously.
These pigments may also be organic pigments.
The term "organic pigment' means any pigment that satisfies the definition in Ullmann's encyclopaedia in the chapter on organic pigments. The organic pigment may especially be chosen from nitroso, nitro, azo, xanthene, quinoline, anthraquinone, phthalocyanin, metal complex, isoindolinone, isoindoline, quinacridone, perinone, perylene, diketopyrrolopyrrole, thioindigo, dioxazine, triphenylmethane and quinophthalone compounds. The organic pigment(s) may be chosen, for example, from carmine, carbon black, aniline black, melanin, azo yellow, quinacridone, phthalocyanin blue, sorghum red, the blue pigments codified in the Color Index under the references CI 42090, 69800, 69825, 73000, 74100 and 74160, the yellow pigments codified in the Color Index under the references CI 1 1680, 1 1710, 15985, 19140, 20040, 21 100, 21 108, 47000 and 47005, the green pigments codified in the Color Index under the references CI 61565, 61570 and 74260, the orange pigments codified in the Color Index under the references CI 1 1725, 15510, 45370 and 71 105, the red pigments codified in the Color Index under the references CI 12085, 12120, 12370, 12420, 12490, 14700, 15525, 15580, 15620, 15630, 15800, 15850, 15865, 15880, 17200, 26100, 45380, 45410, 58000, 73360, 73915 and 75470, and the pigments obtained by oxidative polymerization of indole or phenolic derivatives as described in patent FR 2 679 771.
These pigments may also be in the form of composite pigments as described in patent EP 1 184 426. These composite pigments may especially be composed of particles comprising a mineral core at least partially covered with an organic pigment and at least one binder for attaching the organic pigments to the core.
The pigment may also be a lake. The term "lake" means insolubilized dyes adsorbed onto insoluble particles, the assembly thus obtained remaining insoluble during use.
The mineral substrates onto which the dyes are adsorbed are, for example, alumina, silica, calcium sodium borosilicate, calcium aluminium borosilicate and aluminium.
Mention may be made, among the organic dyes, of cochineal carmine. Mention may also be made of the products known under the following names: D&C Red 21 (CI 45 380), D&C Orange 5 (CI 45 370), D&C Red 27 (CI 45 410), D&C Orange 10 (CI 45 425), D&C Red 3 (CI 45 430), D&C Red 4 (CI 15 510), D&C Red 33 (CI 17 200), D&C Yellow 5 (CI 19 140), D&C Yellow 6 (CI 15 985), D&C Green (CI 61 570), D&C Yellow 1 O (CI 77 002), D&C Green 3 (CI 42 053), D&C Blue 1 (CI 42 090).
An example of a lake that may be mentioned is the product known under the name D&C Red 7 (CI 15 850:1 ).
Nature of the hydrophilic coating
As stated previously, these other pigments may be coated with a hydrophilic compound.
The said hydrophilic compound for surface-treating a pigment in order to optimize its dispersion in the gelled aqueous phase is more particularly chosen from biological polymers, carbohydrates, polysaccharides, polyacrylates and polyethylene glycol derivatives.
Examples of biological polymers that may be mentioned include polymers based on monomers of carbohydrate type.
More particularly, mention may be made of biosaccharide gum, chitosans and derivatives thereof, such as butoxy chitosan, carboxymethyl chitosan, carboxybutyl chitosan, chitosan gluconate, chitosan adipate, chitosan glycolate, chitosan lactate, etc., chitins and derivatives thereof, such as carboxymethyl chitin, chitin glycolate; cellulose and derivatives thereof such as cellulose acetate; microcrystalline cellulose; distarch phosphate; sodium hyaluronate; soluble proteoglycans; galacto-arabinans; glycosaminoglycans; glycogen; sclerotium gum; dextran; starch and derivatives thereof; and mixtures thereof.
Examples of carbohydrates that may especially be mentioned include polyhydroxyaldehydes and polyhydroxy ketones of general formula:
Figure imgf000099_0001
in which x and y may range from 1 to 1 000 000.
The carbohydrates may be monosaccharides, disaccharides or polysaccharides.
Examples of carbohydrates that may especially be mentioned include amylodextrins, β- glucans, cyclodextrins, modified corn starch, glycogen, hyaluronic acid, hydroxypropylcylodextrin, lactose, maltitol, guanosine, glyceryl starch, starch from Triticum vulgare, trehalose, sucrose and derivatives thereof, raffinose and sodium chondroitin sulfate.
C1-C20 alkylene glycols or C1-C20 alkylene glycol ethers, alone or in combination with tri- CrC2o-alkylsilanes, may also be used as surface treatment agents.
Examples that may be mentioned include pigments surface-treated with PEG alkyl ether alkoxysilane, for instance pigments treated with PEG-8-methyl ether triethoxysilane sold by the company Kobo under the name SW pigments. Silicones such as dimethicones bearing hydrophilic groups, also known as dimethicone copolyols or alkyl dimethicone copolyols, may also be suitable for use in the invention as surface treatment agents. In particular, such dimethicones may comprise, as repeating units, C1-C20 alkylene oxides such as ethylene oxide or propylene oxide.
An example that may be mentioned is the pigment treated with PEG-12-dimethicone, sold by the company Sensient Corporation under the name LCW AQ Pigment.
According to an advantageous embodiment variant, the pigments coated with at least one hydrophilic compound and/or uncoated pigments are present totally or partly, and preferably only, in the gelled aqueous phase.
The amount of pigments coated with at least one hydrophilic compound and/or of uncoated pigments is especially conditioned by the intended use of the cosmetic composition under consideration, and the adjustment of this amount obviously falls within the competence of the composition formulator.
According to a preferred embodiment, the composistion of the invention contains
- at least one aqueous phase gelled with a 2-acrylamido-2-methylpropanesulfonic acid and of hydroxyethyl acrylate copolymer; and
- at least one oily phase gelled with an organopolysiloxane elastomer,
the said phases forming therein a macroscopically homogeneous mixture;
the said composition comprising
- salicylic acid, and
- triethonalamine, and
- at least 10% by weight relative to the total weight of the composition of at least one pigment., preferably selected from titanium dioxidess and/or iron oxides; the said pigment being preferably coated with at least one hydrophic compound, and more preferably coated with aluminium stearoyl glutamate,
According to a more preferred embodiment, the said composition contains salicylic acid and triethonalamine in a weight ratio triethanolamine/salycilic acid from 0.5/1 to 2/1 , and more particularly in a weight ratio equal to 1/1. AQUEOUS PHASE
The aqueous phase of a composition according to the invention comprises water and optionally a water-soluble solvent.
In the present invention, the term "water-soluble solvent" denotes a compound that is liquid at room temperature and water-miscible (miscibility with water of greater than 50% by weight at 25°C and atmospheric pressure). The water-soluble solvents that may be used in the composition of the invention may also be volatile.
Among the water-soluble solvents that may be used in the composition in accordance with the invention, mention may be made especially of lower monoalcohols containing from 1 to 5 carbon atoms, such as ethanol and isopropanol, glycols containing from 2 to 8 carbon atoms, such as ethylene glycol, propylene glycol, 1 ,3-butylene glycol and dipropylene glycol, C3 and C4 ketones and C2-C4 aldehydes.
The aqueous phase (water and optionally the water-miscible solvent) may be present in the composition in a content ranging from 5% to 95%, better still from 30% to 80% by weight and preferably from 40% to 75% by weight relative to the total weight of the said composition.
According to another embodiment variant, the aqueous phase of a composition according to the invention may comprise at least one C2-C32 polyol.
For the purposes of the present invention, the term "polyoi' should be understood as meaning any organic molecule comprising at least two free hydroxyl groups. Preferably, a polyol in accordance with the present invention is present in liquid form at room temperature.
A polyol that is suitable for use in the invention may be a compound of linear, branched or cyclic, saturated or unsaturated alkyl type, bearing on each alkyl chain at least two -OH functions, in particular at least three -OH functions and more particularly at least four -OH functions.
The polyols that are advantageously suitable for use in the formulation of a composition according to the present invention are those especially containing from 2 to 32 carbon atoms and preferably from 3 to 16 carbon atoms.
Advantageously, the polyol may be chosen, for example, from ethylene glycol, pentaerythritol, trimethylolpropane, propylene glycol, 1 ,3-propanediol, butylene glycol, isoprene glycol, pentylene glycol, hexylene glycol, glycerol, polyglycerols such as glycerol oligomers, for instance diglycerol, and polyethylene glycols, and mixtures thereof.
According to a preferred embodiment of the invention, the said polyol is chosen from ethylene glycol, pentaerythritol, trimethylolpropane, propylene glycol, glycerol, polyglycerols and polyethylene glycols, and mixtures thereof.
According to a particular embodiment, the composition of the invention may comprise at least propylene glycol. According to another particular embodiment, the composition of the invention may comprise at least glycerol.
OILY PHASE For the purposes of the invention, an oily phase comprises at least one oil.
The term "o/7" means any fatty substance that is in liquid form at room temperature and atmospheric pressure. An oily phase that is suitable for preparing the cosmetic compositions according to the invention may comprise hydrocarbon-based oils, silicone oils, fluoro oils or non-fluoro oils, or mixtures thereof.
The oils may be volatile or non-volatile. They can be of animal, plant, mineral or synthetic origin. According to one embodiment variant, oils of plant origin are preferred.
For the purposes of the present invention, the term "non-volatile o/V means an oil with a vapour pressure of less than 0.13 Pa.
For the purposes of the present invention, the term "silicone oil' means an oil comprising at least one silicon atom, and especially at least one Si-0 group. The term "fluoro oil' means an oil comprising at least one fluorine atom.
The term "hydrocarbon-based oil' means an oil mainly containing hydrogen and carbon atoms. The oils may optionally comprise oxygen, nitrogen, sulfur and/or phosphorus atoms, for example in the form of hydroxyl or acid radicals.
For the purposes of the invention, the term "volatile o/V means any oil that is capable of evaporating on contact with the skin in less than one hour, at room temperature and atmospheric pressure. The volatile oil is a volatile cosmetic compound, which is liquid at room temperature, especially having a nonzero vapour pressure, at room temperature and atmospheric pressure, in particular having a vapour pressure ranging from 0.13 Pa to 40 000 Pa (10"3 to 300 mmHg), in particular ranging from 1 .3 Pa to 13 000 Pa (0.01 to 100 mmHg) and more particularly ranging from 1.3 Pa to 1300 Pa (0.01 to 10 mmHg). a) Volatile oils
The volatile oils may be hydrocarbon-based oils or silicone oils. Among the volatile hydrocarbon-based oils containing from 8 to 16 carbon atoms, mention may be made especially of branched C8-Ci6 alkanes, for instance C8-Ci6 isoalkanes (also known as isoparaffins), isododecane, isodecane, isohexadecane and, for example, the oils sold under the trade names Isopar or Permethyl, branched C8-Ci6 esters, for instance isohexyl neopentanoate, and mixtures thereof. Preferably, the volatile hydrocarbon-based oil is chosen from volatile hydrocarbon-based oils containing from 8 to 16 carbon atoms, and mixtures thereof, in particular from isododecane, isodecane and isohexadecane, and is especially isohexadecane.
Mention may also be made of volatile linear alkanes comprising from 8 to 16 carbon atoms, in particular from 10 to 15 carbon atoms and more particularly from 1 1 to 13 carbon atoms, for instance n-dodecane (Ci2) and n-tetradecane (Ci4) sold by Sasol under the respective references Parafol 12-97 and Parafol 14-97, and also mixtures thereof, the undecane-tridecane mixture, mixtures of n-undecane (Cn) and of n-tridecane (Ci3) obtained in Examples 1 and 2 of patent application WO 2008/155 059 from the company Cognis, and mixtures thereof.
Volatile silicone oils that may be mentioned include linear volatile silicone oils such as hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, tetradecamethylhexasiloxane, hexadecamethylheptasiloxane and dodecamethylpentasiloxane.
Volatile cyclic silicone oils that may be mentioned include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane and dodecamethylcyclohexasiloxane. b) Non-volatile oils
The non-volatile oils may be chosen especially from non-volatile hydrocarbon-based oils, fluoro oils and/or silicone oils.
Non-volatile hydrocarbon-based oils that may especially be mentioned include:
- hydrocarbon-based oils of animal origin,
- hydrocarbon-based oils of plant origin, synthetic ethers containing from 10 to 40 carbon atoms, such as dicapryl ether,
- synthetic esters, for instance the oils of formula RiCOOR2, in which R-i represents a linear or branched fatty acid residue containing from 1 to 40 carbon atoms and R2 represents a hydrocarbon-based chain, which is especially branched, containing from 1 to 40 carbon atoms, on condition that R-i + R2 > 10. The esters may be chosen especially from fatty alcohol and fatty acid esters, for instance cetostearyl octanoate, isopropyl alcohol esters such as isopropyl myristate or isopropyl palmitate, ethyl palmitate, 2- ethylhexyl palmitate, isopropyl stearate, octyl stearate, hydroxylated esters, for instance isostearyl lactate or octyl hydroxystearate, alkyl or polyalkyl ricinoleates, hexyl laurate, neopentanoic acid esters, for instance isodecyl neopentanoate or isotridecyl neopentanoate, and isononanoic acid esters, for instance isononyl isononanoate or isotridecyl isononanoate,
- polyol esters and pentaerythritol esters, for instance d i pentaeryth rity I tetrahydroxystearate/tetraisostearate,
- fatty alcohols that are liquid at room temperature, with a branched and/or unsaturated carbon-based chain containing from 12 to 26 carbon atoms, for instance 2-octyldodecanol, isostearyl alcohol and oleyl alcohol,
- C12-C22 higher fatty acids, such as oleic acid, linoleic acid, linolenic acid, and mixtures thereof,
- non-phenyl silicone oils, for instance caprylyl methicone, and
- phenyl silicone oils, for instance phenyl trimethicones, phenyl dimethicones, phenyltrimethylsiloxydiphenylsiloxanes, diphenyl dimethicones, diphenylmethyldiphenyltrisiloxanes and 2-phenylethyl trimethylsiloxysilicat.es, dimethicones or phenyl trimethicone with a viscosity of less than or equal to 100 cSt, and trimethyl pentaphenyl trisiloxane, and mixtures thereof; and also mixtures of these various oils.
A composition according to the invention may comprise from 5% to 95% by weight, better still from 5% to 40% by weight and preferably from 7% to 35% by weight of oil(s) relative to the total weight of the said composition Preferably, a composition according to the invention comprises volatile and/or non volatile silicone oils. Such silicone oils are particularly appreciated when the oily gelling agent is an organopolysiloxane polymer.
The weight percentage of oils is assessed taking into account the weight of the oils present, where appropriate, as vehicles for certain compounds forming a composition according to the invention.
As mentioned above, the gelled oily phase according to the invention may have a threshold stress of greater than 1.5 Pa and preferably greater than 10 Pa. This threshold stress value reflects a gel-type texture of this oily phase. FILLERS
Advantageously, a composition according to the invention may also comprise one or more fillers.
For the purposes of the present invention, the term "fillers" should be understood as meaning colourless or white solid particles of any form, which are in an insoluble and dispersed form in the medium of the composition.
These fillers, of mineral or organic, natural or synthetic nature, give the composition containing them softness and give the makeup result a matt effect and uniformity.
Preferably, a composition of the invention comprises fillers, particularly when it is dedicated to provide a high coverage.
In particular, a composition according to the invention may comprise from 2% to 35% by weight, especially from 5% to 35% by weight, in particular from 5% to 20% by weight of fillers relative to the total weight of the said composition.
DISPERSANT
Advantageously, a composition according to the invention may also comprise a dispersant. Such a dispersant may be a surfactant, an oligomer, a polymer or a mixture of several thereof.
According to one particular embodiment, a dispersant in accordance with the invention is a surfactant.
ACTIVE AGENT
A composition according to the invention may comprise at least one active agent, in particular a moisturizer (also known as a humectant. Preferably, such moisturizer is glycerol.
The moisturizer(s) may be present in the composition in a content ranging from 0.1 % to 15% by weight, especially from 0.5% to 10% by weight or even from 1 % to 6% by weight, relative to the total weight of the said composition.
As other active agents that may be used in the composition of the invention, examples that may be mentioned include vitamins and sunscreens, and mixtures thereof. Preferably, a composition of the invention comprises at least one active agent.
It is a matter of routine for those skilled in the art to adjust the nature and amount of the additives present in the compositions in accordance with the invention such that the desired cosmetic properties thereof are not thereby affected.
According to a preferred embodiment, a composition of the invention may advantageously be in the form of a foundation.
According to another embodiment, a composition of the invention may advantageously be in the form of a composition for making up the skin and especially the face. It may thus be an eyeshadow or a face powder.
According to another embodiment, a composition of the invention may advantageously be in the form of a lip product, in particular a lipstick.
Such compositions are especially prepared according to the general knowledge of a person skilled in the art.
Throughout the description, including the claims, the term "comprising a" should be understood as being synonymous with "comprising at least one", unless otherwise specified.
The terms "between ... and ..." and "ranging from ... to ..." should be understood as meaning limits included, unless otherwise specified. The invention is illustrated in greater detail by the examples and figures presented below. Unless otherwise mentioned, the amounts indicated are expressed as weight percentages relative to the total weight of the composition. METHODOLOGY FOR THE OSCILLATING DYNAMIC RHEOLOGY MEASUREMENTS
These are rheological measurements in the harmonic regime, which measure the elastic modulus. The measurements are taken using a Haake RS600 rheometer on a product at rest, at 25°C with a plate-plate rotor 0 60 mm and a 2 mm gap.
The measurements in the harmonic regime make it possible to characterize the viscoelastic properties of the products. The technique consists in subjecting a material to a stress that varies sinusoidally over time and in measuring the response of the material to this stress. In a region in which the behaviour is linearly viscoelastic (zone in which the strain is proportional to the stress), the stress (τ) and the strain (γ) are two sinusoidal functions of time that are written in the following manner:
T(t) = T0 sin (cot)
Y(t) = Yo sin (cot + δ)
in which:
T0 represents the maximum amplitude of the stress (Pa);
Yo represents the maximum amplitude of the strain (-);
ω = 2ΠΝ represents the angular frequency (rad.s"1) with N representing the frequency (Hz); and
δ represents the phase angle of the stress relative to the strain (rad).
Thus, the two functions have the same angular frequency, but they are dephased by an angle δ. According to the phase angle δ between T(t) and Y(t), the behaviour of the system may be assessed:
if δ = 0, the material is purely elastic;
-if δ = Π/2, the material is purely viscous (Newtonian fluid); and
if 0 < δ < Π/2, the material is viscoelastic. In general, the stress and the strain are written in complex form: T*(t) = To ei )t
Y*(t) = Yo e(iwt + 5)
A complex stiffness modulus, representing the overall resistance of the material to the strain, whether it is of elastic or viscous origin, is then defined by:
G* = T7 Y* = G' + iG"
in which:
G' is the storage modulus or elastic modulus, which characterizes the energy stored and totally restituted in the course of a cycle, G' = (τ0/ γ0) cos δ; and
G" is the loss modulus or viscous modulus, which characterizes the energy dissipated by internal friction in the course of a cycle, G" = (τ0/ γο) sin δ.
The parameter retained is the mean stiffness modulus G* recorded at the plateau measured at a frequency of 1 Hz.
Example 1 : Foundation formulation according to the invention
A foundation formulation in accordance with the invention was prepared from the phases described below.
1 ) Preparation of the aqueous phase
The components of the aqueous phase were weighed out in a beaker and stirred with a Rayneri blender at room temperature.
The aqueous gelling agent was added with stirring at room temperature. The stirring is adjusted so as not to incorporate air into the mixture.
The mixture was stirred moderately for about 10 minutes at room temperature.
2) Preparation of the oily phase
The pigments were ground with 15% of the silicone oil using a three-roll mill. The ground material and the remainder of the oil were placed in a beaker and stirred with a Rayneri blender at room temperature. The gel of silicone elastomer in dimethicone was added with moderate stirring at room temperature. The gel slowly thickens. The mixture is stirred for 20 minutes.
3) Preparation of the foundation formulation
The formulation was obtained by mixing the phases intended to form the foundation in accordance with the invention. The aqueous and oily gels were weighed out and then mixed with a Rayneri blender or a mini-olsa kettle.
The formulation 1 was prepared using the weight proportions described below.
Formula 1
Phases Compounds
(invention)
Water qs 100
Glycerol 5.28
Salicylic acid 0.50
Aqueous
Triethanolamine 0.50
gelled
Preserving agent 0.70
phase
Hydroxyethyl acrylate/sodium
acryloyldimethyltaurate copolymer (Sepinov® 2.60
EMT 10 sold by the company SEPPIC)
Dimethicone 5 cSt
8.0
(DOW CORNING TORAY SH200 C FLUID 5CS)
Dimethicone 84.5%/dimethicone crosspolymer
15.5% 14.0
(DC9041® sold by the company Dow Corning) (2.17*)
Oliy
(*% of dimethicone crosspolymer solids)
gelled
Iron oxides coated with aluminium stearoyl
phase
glutamate (NAI-C33-9001-10 ssold by the 2.58
company Miyoshi Kasei)
Iron oxides coated with aluminium stearoyl
glutamate (NAI-C33-8001-10 ssold by the 0.67
company Miyoshi Kasei) Iron oxides coated with aluminium stearoyl
glutamate (NAI-C33-7001-10 sold by the 0,22
company Miyoshi Kasei)
Titanium dioxide coated with aluminium stearoyl
glutamate (NAI-TAO-77891 sold by the 19.00
company Miyoshi Kasei)
The formulation has a gel-gel texture which is dense and finely dispersed. The formulation is stable, homogeneous and has very good cosmetic qualities, such as good spreading, high coverage, good play time. In addition, the texture is fresh and light on the skin on application.
Exemples 2 and 3 of foundation
Formula 2 without Formula 3 with salicylic acid and salicylic acid and
Phases Ingredients without with
Triethanolamine Triethanolamine (out of invention) (invention)
Water qsp 100 qsp 100
Salicylic acid - 0.5
Triethanoamine - 0.5
Glycerine 5.28 5.28
Aqueous gelled
Preserving agent 0.78 0.78 phase
Hydroxyethyl acrylate/sodium
acryloyldimethyltaurate
2.4 2.4 copolymer (Sepinov® EMT 10
sold by the company SEPPIC)
Dimethicone 5 cSt
(DOW CORNING TORAY SH200 8.0 8.0 C FLUID 5CS)
Dimethicone 84.5%/dimethicone
crosspolymer 15.5%
Oily gelled phase
(DC9041® sold by the company
14.0 14.0 Dow Corning)
(*% of dimethicone crosspolymer
solids)
Titanium dioxide coated with 14.42 14.42 aluminium stearoyl glutamate
(NAI-TAO-77891 sold by the
company Miyoshi Kasei)
Iron oxides coated with
aluminium stearoyl glutamate
0.67 0.67 (NAI-C33-8001-10 ssold by the
company Miyoshi Kasei)
Iron oxides coated with
aluminium stearoyl glutamate
0.25 0.25 (NAI-C33-7001-10 sold by the
company Miyoshi Kasei)
Iron oxides coated with
aluminium stearoyl glutamate
2.64 2.64 (NAI-C33-9001-10 ssold by the
company Miyoshi Kasei)
SYNTHETIC FLUORPHLOGOPITE
2.0 2.0 (10-15 *m)
(SYNAFIL S 1050- Eckart)
Perfect homogeneous
Cosmetic aspect Heterogeneous aspect
aspect (improvement of pigments dispersion)
Methodology of evaluation of physicochemical and cosmetic properties :
The pigments dispersion aspect was evaluated after 24 hours at room temperature (25°C) with a specific naked eye evaluation: each formula 2 and 3 was deposited between two transparent glass plates. A mechanical pression was applided with hands on the glass plates. A pigments dispersion conformity was represented by a smooth, continuous film of formula without holes (representing a non conform pigments dispersion). The results of the tests have shown that the addition of the association salicylic acid/triethanolamine in the formula 3 of the invention improved the dispersion of the pigments in the composition when compared to the composition 2 without this combination.

Claims

1. Composition, in particular for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising:
- at least one aqueous phase gelled with at least one hydrophilic gelling agent; and
- at least one oily phase gelled with at least one lipophilic gelling agent;
the said phases forming therein a macroscopically homogeneous mixture;
the said composition comprising
- salicylic acid, and
- at least one alkanolamine, and
- at least one pigment.
2. Composition according to claim 1 , in which salicylic acid is present in amounts from 0.1 to 5% by weight, more preferably from 0.1 to 3% by weight, and more preferably from 0,2 to 2% by weight relative to the total weight of the composition.
3. Composition according to claim 1 or 2, in which the alkanoamine is selected from C2-C4 alkanolamines, C1 -C4alkyl C1 -C4 alkanolamines, C1 -C4 dialkanolamines, C1 -C4 trialkanolamines, C1 -C4 dialkyl C4-C4 alkanolamines, more preferably C1 -C4 trialkanolamines
4. Composition according any one of claims 1 to 3, wherein the alkanolamine is triethanolamine.
5. Composition according any one of claims 1 to 4, wherein the alkanolamine is present in amounts from 0.1 to 5% by weight, more preferably from 0.1 to 3% by weight, and more preferably from 0,2 to 2% by weight relative to the total weight of the composition.
6. Composition according any one of claims 1 to 5, wherein the salicylic acid and the alkanolamine are present in a weight ratio triethanolamine/salycilic acid from 0.8/1 to 2/1 , and more particularly in a weight ratio equal to 1/1.
7. Composition according to either of the preceding claims, wherein the hydrophilic gelling agent is chosen from synthetic polymeric gelling agents, polymeric gelling agents that are natural or of natural origin, mixed silicates and fumed silicas, and mixtures thereof.
8. Composition according to either of the preceding claims, wherein the hydrophilic gelling agent is chosen from crosslinked and/or neutralized 2-acrylamido-2- methylpropanesulfonic acid polymers and copolymers, and more particularly is a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and of hydroxyethyl acrylate.
9. Composition according to either of the preceding claims, wherein the lipophilic gelling agent is chosen from particulate gelling agents, organopolysiloxane elastomers, semi- crystalline polymers, dextrin esters and hydrogen bonding polymers, and mixtures thereof,
10. Composition according to any one of the preceding claims, comprising as lipophilic gelling agent at least one organopolysiloxane elastomer preferably chosen from dimethicone crosspolymer, vinyl dimethicone crosspolymer, dimethicone/vinyl dimethicone crosspolymer and dimethicone crosspolymer-3.
11. Composition according to any one of the preceding claims, containing, as hydrophilic gelling agent/lipophilic gelling agent system, a 2-acrylamido-2-methylpropanesulfonic acid and hydroxyethyl acrylate copolymer/organopolysiloxane elastomer system.
12. Composition according to any one of the preceding claims, comprising at least 10% by weight and preferably at least 20% by weight, and more preferably from 20 to 25% by weignh of pigments relative to the total weight of the composition.
13. Composition according to any one of the preceding claims, wherein the pigment is selected from uncoated pigments, pigments coated with a hydrophilic compound, pigments coated with a hydrophobic compound, and mixtures thereof.
14. Composition according to claim 13, wherein the pigment is selected from mineral pigments, and more particularly is selected from iron oxide and/or titanium dioxide.
15. Composition according to any one of the preceding claims, which contains at least one pigment coated with at least one hydrophobic compound.
16. Composition according to any one of the preceding claims, wherein
- the pigments coated with at least one hydrophobic compound are present totally or partly, and preferably only, in the gelled oily phase ;
- the pigments coated with at least one hydrophilic compound and/or uncoated pigments are present totally or partly, and preferably only, in the gelled aqueous phase.
17. Composition according to any one of the preceding claims, wherein the pigments are present in a proportion of at least 10% by weight, preferably at least 20% by weight and better still in a proportion from 20 to 25% by weight relative to the total weight of the composition.
18. Process for preparing a cosmetic composition for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising at least one step of mixing:
- an aqueous phase gelled with at least one hydrophilic gelling agent as defined in preceding claims,; and
- at least one oily phase gelled with at least one lipophilic gelling agent as defined in preceding claims; under conditions suitable for obtaining a macroscopically homogeneous mixture;
the said composition comprising
- salicylic acid, and
- at least one alkanolamine as defined in preceding claims, and
- at least one pigment as defined in preceding claims.
19. Process according to the preceding claim, in which :
- the pigments coated with at least one hydrophobic compound are present totally or partly, and preferably only, in the gelled oily phase ;
- the pigments coated with at least one hydrophilic compound and/or uncoated pigments are present totally or partly, and preferably only, in the gelled aqueous phase.
20. Process according to either of Claims 18 and 19, comprising a step of mixing at least three or even more gelled phases.
21. Process according to any one of Claims 18 to 20, in which the mixing is performed at room temperature.
22. Cosmetic process for making up and/or caring for keratin materials, in particular the skin and/or the lips, comprising at least one step which consists in applying to the said keratin material a composition as defined according to any one of Claims 1 to 17.
23. Cosmetic process for making up and/or caring for a keratin material, in particular the skin and/or the lips, comprising at least the application to the said material of a composition, in particular a macroscopically homogeneous composition, obtained by extemporaneous mixing, before application or at the time of application to the said keratin material, of at least one aqueous phase gelled with at least one hydrophilic gelling agent as defined in preceding claims, and of at least one oily phase gelled with at least one lipophilic gelling agent as defined in preceding claims; the said composition comprising
- salicylic acid, and
- at least one alkanolamine as defined in preceding claims, and
- at least one pigment as defined in preceding claims.
PCT/EP2016/051687 2016-01-27 2016-01-27 Gel-gel composition containing salicylic acid, one alkanolamine and pigments WO2017129237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/051687 WO2017129237A1 (en) 2016-01-27 2016-01-27 Gel-gel composition containing salicylic acid, one alkanolamine and pigments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/051687 WO2017129237A1 (en) 2016-01-27 2016-01-27 Gel-gel composition containing salicylic acid, one alkanolamine and pigments

Publications (1)

Publication Number Publication Date
WO2017129237A1 true WO2017129237A1 (en) 2017-08-03

Family

ID=55236374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/051687 WO2017129237A1 (en) 2016-01-27 2016-01-27 Gel-gel composition containing salicylic acid, one alkanolamine and pigments

Country Status (1)

Country Link
WO (1) WO2017129237A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115289A1 (en) 2017-12-15 2019-06-20 L'oreal Composition of gel/gel type based on pigments, at least one saturated linear c3-c8 dihydroxyalkane and salicylic acid in free form
JP2019142793A (en) * 2018-02-19 2019-08-29 ロレアル Composition comprising AMPS polymer
WO2020064245A1 (en) * 2018-09-29 2020-04-02 Beiersdorf Ag A cosmetic preparation with unique sensory properties and an appealing appearance
CN111686034A (en) * 2020-07-30 2020-09-22 上海绵花棠生物科技有限公司 Composition for external application to skin and external product for skin
CN113853191A (en) * 2019-05-29 2021-12-28 欧莱雅公司 One-step liquid lip composition
WO2023221016A1 (en) * 2022-05-19 2023-11-23 Beiersdorf Ag Cosmetic gel composition with reduced stickiness and fast absorption properties

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266321A (en) * 1988-03-31 1993-11-30 Kobayashi Kose Co., Ltd. Oily make-up cosmetic comprising oil base and silicone gel composition
US20070151044A1 (en) * 2004-01-16 2007-07-05 Thorsten Cassier Agent for oxidative treatment, particularly in transparent gel form
WO2014108846A2 (en) * 2013-01-10 2014-07-17 L'oreal Soothing cosmetic composition based on salicylic acid
WO2014167543A1 (en) * 2013-04-12 2014-10-16 L'oreal Gel-type cosmetic composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266321A (en) * 1988-03-31 1993-11-30 Kobayashi Kose Co., Ltd. Oily make-up cosmetic comprising oil base and silicone gel composition
US20070151044A1 (en) * 2004-01-16 2007-07-05 Thorsten Cassier Agent for oxidative treatment, particularly in transparent gel form
WO2014108846A2 (en) * 2013-01-10 2014-07-17 L'oreal Soothing cosmetic composition based on salicylic acid
WO2014167543A1 (en) * 2013-04-12 2014-10-16 L'oreal Gel-type cosmetic composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115289A1 (en) 2017-12-15 2019-06-20 L'oreal Composition of gel/gel type based on pigments, at least one saturated linear c3-c8 dihydroxyalkane and salicylic acid in free form
FR3075053A1 (en) * 2017-12-15 2019-06-21 L'oreal PIGMENT-BASED GEL / GEL-TYPE COMPOSITION OF AT LEAST ONE C3-C8 SATURATED LINEAR DIHYDROXYALKAN OF FREE-FORM SALICYLIC ACID
JP2019142793A (en) * 2018-02-19 2019-08-29 ロレアル Composition comprising AMPS polymer
WO2020064245A1 (en) * 2018-09-29 2020-04-02 Beiersdorf Ag A cosmetic preparation with unique sensory properties and an appealing appearance
CN113853191A (en) * 2019-05-29 2021-12-28 欧莱雅公司 One-step liquid lip composition
CN111686034A (en) * 2020-07-30 2020-09-22 上海绵花棠生物科技有限公司 Composition for external application to skin and external product for skin
WO2023221016A1 (en) * 2022-05-19 2023-11-23 Beiersdorf Ag Cosmetic gel composition with reduced stickiness and fast absorption properties

Similar Documents

Publication Publication Date Title
US10398631B2 (en) Gel-type cosmetic composition
US11311465B2 (en) Gel-type cosmetic composition with improved staying power
KR102101253B1 (en) Gel / gel type composition based on hydrophobic coated pigment and liquid fatty acid and / or glycol compound
US20200138680A1 (en) Gel-type cosmetic composition
EP3193659B1 (en) Novel care and/or makeup device comprising a composition of gel/gel architecture
CN111065439B (en) Gel composition comprising a dispersion of solid aggregates
FR3028758A1 (en) COSMETIC COMPOSITION OF GEL / GEL TYPE COMPRISING A SYNTHETIC PHYLLOSILICATE
WO2017129237A1 (en) Gel-gel composition containing salicylic acid, one alkanolamine and pigments
WO2019002307A1 (en) Gel-gel composition comprising a wax in the crystalline state
WO2020127834A1 (en) Composition of the gel/gel type comprising boron nitride particles and at least one encapsulated pigment
WO2019115289A1 (en) Composition of gel/gel type based on pigments, at least one saturated linear c3-c8 dihydroxyalkane and salicylic acid in free form
FR3045337A1 (en) GEL / GEL TYPE COMPOSITION BASED ON HYDROPHOBIC COATED PIGMENTS, A PARTICULAR GLYCOL COMPOUND AND AT LEAST ONE POLAR OIL
FR3045334A1 (en) GEL / GEL TYPE COMPOSITION BASED ON HYDROPHOBIC COATED PIGMENTS AND A LIQUID FATTY ACID

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16701657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16701657

Country of ref document: EP

Kind code of ref document: A1