WO2017129160A1 - Schwimmfähige solaranlage und verfahren zu deren betrieb - Google Patents

Schwimmfähige solaranlage und verfahren zu deren betrieb Download PDF

Info

Publication number
WO2017129160A1
WO2017129160A1 PCT/DE2016/100606 DE2016100606W WO2017129160A1 WO 2017129160 A1 WO2017129160 A1 WO 2017129160A1 DE 2016100606 W DE2016100606 W DE 2016100606W WO 2017129160 A1 WO2017129160 A1 WO 2017129160A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar system
photovoltaic
elements
photovoltaic element
floating
Prior art date
Application number
PCT/DE2016/100606
Other languages
English (en)
French (fr)
Inventor
Wolfgang Hornig
Original Assignee
Bpe E.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102016118265.6A external-priority patent/DE102016118265B4/de
Application filed by Bpe E.K. filed Critical Bpe E.K.
Publication of WO2017129160A1 publication Critical patent/WO2017129160A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/70Waterborne solar heat collector modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the invention relates to a buoyant solar system for generating electrical energy, for example, for power supply of water purification or fish farming systems.
  • DE 36 19 327 A1 discloses a buoyant solar system with combined photon and heat energy conversion is disclosed, the top is provided with Halbleitphotoelemen- th and the underside is located in operation below the water surface. Between the hot, the solar radiation facing top and the water-cooled bottom are thermoelectric generators for obtaining electrical energy from the conditional by the temperature gradient heat energy flow.
  • the disadvantage is that the float of a material ho Her insulation is made. This requires that the thermoelectric generator elements are exposed to direct water contact at least on one side. On the other hand, the solar system does not allow direct cooling of the photovoltaic elements by the water.
  • the object of the invention is to provide a robust, buoyant solar system for converting light energy by means of photovoltaic elements and heat energy by means of thermogenerator elements in electrical energy, which has a comparison with the prior art improved cooling, with a direct water contact of the thermoelectric generator elements is not required.
  • the cooling of the photovoltaic elements should also be made possible by direct contact with water.
  • the buoyant solar system one or more interconnected floats, at least one photovoltaic element and at least one each cold contact surface and each having a hot contact surface exhibiting Thermogeneratorelement on.
  • the solar system will be described, each with a floating body, a photovoltaic element and a thermoelectric generator element;
  • the invention is not limited thereto but may in each case also comprise a plurality of floating bodies, photovoltaic elements and / or thermal generator elements.
  • the floating body is made of a metallic material, for example of an aluminum alloy, a titanium alloy or another light metal alloy. It has a waterproof sandwich construction with a cover plate, a bottom plate and a thin sheet metal structure arranged between these two.
  • the thin sheet structure may be, for example, a corrugated iron structure, a honeycomb structure or a closed-cell metal foam.
  • thermoelectric generator element is thermally contacted at its cold contact surface with the cover plate of the floating body, that is, heat flows can pass unhindered the interface between the thermal generator element and float.
  • a heat collector element is mounted thermally contacting.
  • the heat collector element is for collecting solar thermal energy and providing it to the thermal generator element. The collection of heat energy can be done by absorbing the heat radiation components of the solar radiation and / or by converting radiation components in a wavelength range beyond the infrared radiation into thermal energy. In the floating state of the solar system, the heat collector element is always above the water surface.
  • the photovoltaic element and the thermoelectric generator element are coupled by means of a control and regulation unit. This ensures that the electrical energy generated in the individual components of the solar system with a constant voltage is provided to an external consumer.
  • One of the significant advantages of the solar system according to the invention is the robust construction of the components on the floating body of metallic material.
  • thermoelectric generator elements Due to the good thermal conductivity of the metal, it is ensured that a high heat flow in the thermoelectric generator elements is created between the hot contact surfaces on the solar heat collector elements and the cold contact surface on the top surface of the water-cooled floating body.
  • the combination of the photovoltaic element and the Thermogeneratoriatas also offers the advantage that the decline in power of the photovoltaic element is compensated with increasing warming in strong sunlight by the higher power output of the thermoelectric generator element (due to the greater warming of the hot contact surface). Consequently, the solar system always delivers electrical energy without dips in the power, even in very strong sunlight.
  • Another advantage of the solar system is that it is also outside the water environment, so not floating, operable. The solar system can be efficiently operated when installed on cool surfaces or when positioning the float in the area of cool air currents.
  • the heat collector element may be a plate of an aluminum material which is black anodized to improve the heat absorption at least on the sun-facing portion of its surface.
  • the anodized coating simultaneously protects against corrosive influences and improves resistance to wear (which can occur, for example, due to dust, sand, mud or salt deposits).
  • An alternative to the anodizing layer is the coating of the aluminum plate with graphene, a material with a particularly high thermal conductivity.
  • the heat collector element can simultaneously be the photovoltaic element.
  • the heating of the photovoltaic element in the case of solar radiation is used by the thermoelectric generator element for energy generation. Due to the thermoelectric generator element, the photovoltaic element is simultaneously passively cooled during operation and, moreover, can also be actively tempered.
  • the solar system also at least one temperature sensor for detecting the temperature of the Photovoltai- kiatas and a in the form of a global radiation measuring device formed light sensor for detecting the instantaneous value of the global radiation.
  • this light sensor is referred to as a "global radiation sensor.”
  • the solar system can have additional light sensors for detecting the light intensity.
  • Temperature sensor and global radiation sensor are connected to the control unit. This makes it possible with the photovoltaic element contacted thermoelectric generator as a heat pump for selectively heating or cooling of the photovoltaic element to operate.
  • the control and regulation unit is in particular configured such that the functionality of the thermoelectric generator element contacted with the photovoltaic element can be varied by it, based on the temperature detected by the temperature sensor and the instantaneous value of the global radiation detected by the global radiation sensor.
  • the solar system is operated in such a way that, based on the temperature detected by the temperature sensor and the instantaneous value of the global radiation detected by the global radiation sensor, the actuation of the thermoelectric generator element contacted with the photovoltaic element is varied, the photovoltaic element being heated by means of the thermoelectric generator element - Is tempered element by heating or cooling in particular in such a way that the electrical power obtained by means of the photovoltaic element during its operation is always in a predetermined range, preferably the nominal maximum power of the photovoltaic element.
  • the thermoelectric generator element can be operated selectively either for passive cooling (and simultaneous generation of an electrical voltage) or for active cooling (or even heating) of the photovoltaic element.
  • the electrical power generated by a solar system depends primarily on two parameters: it is influenced both by the global radiation radiated onto the photovoltaic element and the photovoltaic element temperature.
  • the degree of heating ie the temperature applied to the photovoltaic element during operation of the solar system, depends on a large number of factors and is therefore difficult to detect analytically, ie a prediction of the time profile of the actual temperature of the photovoltaic element is only possible with the aid of extensive measurement data and complex simulation models possible.
  • an empirical determination of the influence of the temperature as one of the two parameters determining the generated electrical power is possible by eliminating the influence of the other parameter, namely the global radiation (ie taking it out of the generated electrical power).
  • the calculation of the dependence of the generated power on the irradiated sunlight intensity (global radiation) can be based on the solar radiation surface power density in the form of the instantaneous value of the global radiation (ie, the intensity of the diffuse radiation) by normalizing the power generated by the photovoltaic element of the solar system at a plurality of predetermined temperatures direct sunlight per square meter).
  • the temperature characteristic a characteristic temperature dependence of the power generation efficiency, hereinafter referred to as the temperature characteristic, can be determined.
  • the inventive method for operating the buoyant solar system with additional passive and active cooling of the photovoltaic element by a directly contacting thermogenerator element wherein in preparation for the regular operation for generating electrical energy, the temperature characteristic of each photovoltaic element or the entire Solar system in series of measurements empirically recorded and this temperature characteristic is stored in the control and regulation unit of the solar system.
  • the electrical power generated is determined for different temperature values of the photovoltaic element and normalized to the instantaneous value of the global radiation measured at the respective instant.
  • a temperature range of at least 0 ° C to 40 ° C is covered, but preferably the measurements are made for the entire temperature range to which the solar system will be exposed during normal operation.
  • a desired value of the electrical system to be generated by the solar system (durably during a daily cycle) (ie a target power).
  • the desired power corresponds to the nominal maximum power of the solar system.
  • a measurement of the instantaneous value of the global radiation i.e., the intensity of the sum of the electromagnetic radiation impinging on the photovoltaic element
  • This ongoing measurement may be continuous or discrete at recurring (eg periodic) intervals.
  • a desired temperature of the photovoltaic element is then determined for the predetermined desired power. Subsequently, by controlling each thermogenerator element thermally connected to the photovoltaic element, the setpoint temperature determined in this way is set, that is, the temperature setpoint is determined. H. the actual temperature is regulated to the setpoint temperature.
  • the actual temperature of the photovoltaic element is continuously measured and adjusted to the target temperature.
  • the continuous measurement of the actual temperature can be carried out continuously in the same way as the measurement of the instantaneous value of the global radiation, or discretely at recurring time intervals. It can also be provided to continuously measure the temperature, while the instantaneous value of the global radiation is determined in intervals of time (eg periodically during the day).
  • One of the advantages of this embodiment of the solar system and the method for their operation is that the photovoltaic element of the solar system can be operated in an optimal temperature range for the efficiency; The solar system works in this way with the greatest possible efficiency.
  • the photovoltaic element may be mounted in an alternative embodiment thermally contacting directly on the cover plate of the float. This allows the cooling of the photovoltaic element by the highly thermally conductive metallic floating body.
  • the photovoltaic element and the thermogenerator elements are arranged side by side flat, wherein the side surface of the photovoltaic element contacts the side surface of the thermoelectric generator element in the region of the hot contact surface.
  • the heat accumulating in the photovoltaic element when exposed to sunlight can flow off via the side faces to the thermogenerator element, where it contributes to the heat flow and consequently to the generation of electrical energy.
  • the simultaneous (passive) cooling of the photovoltaic element reduces the voltage drop in the rising heating of the photovoltaic element.
  • the photovoltaic element may be positioned immediately below the water surface, i. H. On the sun-facing top of the photovoltaic element is a thin film of water of z. B. a few millimeters. Particularly advantageous is the very good cooling effect by the surrounding water. In addition, deposits, for example due to dust, are removed by the movements of water, so that regular cleaning of the photovoltaic elements is dispensable due to this self-cleaning effect. It can also be provided that one or more air-filled buoyancy elements made of flexible material are attached to the float. The volume of the buoyancy elements can be increased by air filling, for example by means of an electrically driven air pump, and increased by air extraction, for example by means of a controllable drain valve, reduced in size.
  • the control and regulation unit is - in addition to the control of the generated electrical energy - formed by coupling with the air pump and with the drain valve to the air
  • the solar system automatically adjusts its float height under different environmental conditions, for example when the buoyancy is changed by different salinity of the water, and can be operated independently of the place of use in the energy-optimal float height.
  • FIG. 2 shows a solar system, having a trained as a photovoltaic element heat collector element, in longitudinal section,
  • thermo generator 4 a solar system with photovoltaic element without float between two thermo generators in longitudinal section
  • Fig. 7 a solar system with underwater photovoltaic element with floating body between two thermal generators in longitudinal section
  • FIG. 8 shows a solar system, having a heat collector element designed as a photovoltaic element, and a temperature sensor and a global radiation sensor, in longitudinal section, and FIG
  • FIG. 9 shows a temperature characteristic for carrying out the method for operating a solar system according to FIG. 8.
  • the basic structure of the solar system according to FIG. 1 comprises the floating body 1, the photovoltaic element 2, the thermoelectric generator element 3, the heat collector element 4 and the control and regulation unit 5.
  • the cover plate 1 .1, the bottom plate 1 .2 and the thin sheet structure 1 .3 of the floating body 1 are made of a seawater resistant AlMg alloy.
  • the thin sheet structure 1 .3 is formed as a honeycomb structure.
  • the photovoltaic element 2 and the thermoelectric generator element 3 are mounted flat on the cover plate 1 .1.
  • the thermoelectric generator element 3 contacts the cover plate 1 .1 at the cold contact surface 3.1.
  • the heat collector element 4 is a seawater resistant AlMg alloy plate.
  • thermoelectric generator element 3 This is on the top, ie at its solar radiation 12 facing surface area, to improve the absorption of heat radiation black anodized.
  • the photovoltaic element 2 and the thermoelectric generator element 3 are connected to the control and regulation unit 5 by means of the electrical conductors 6.
  • the solar system dives so far into the water that the water surface reaches 1 1 to just below the cover plate 1 .1.
  • thermogenerator element 3 constructed identically as in FIG. 1 with the heat collector element 4 in the form of a black anodized aluminum plate.
  • the photovoltaic element 2 is at the same time the heat collector element 4, d. That is, the photovoltaic element 2 is cooled by the thermo-generator element 3.
  • the solar system of Figure 3 corresponds to the basic structure of Figure 1 supplemented by the buoyancy elements 7. These each consist of an air-filled nylon fabric.
  • the volumes of the buoyancy elements 7 are variable by Luftbe colllung- and - entnähme.
  • the air pump 8 and the blow-off valve 9 are connected to the control unit 5 for controlling the amount of air in the buoyancy elements 7 via the electrical conductors 6.
  • the moisture sensor 10 is mounted directly above the top of the photovoltaic element 2.
  • the control and regulation unit 5 is designed such that when the water contact of the humidity sensor 10, the air pump 8 and the air contact of the humidity sensor 10, the drain valve 9 is activated.
  • FIGS. 5 and 7 show different variants of the solar system with two thermoelectric generator elements 3 and a photovoltaic element 2.
  • the Thermogenera- gate elements 3 with the heat collector element 4 are each mounted on a separate floating body 1.
  • the photovoltaic element 2 arranged between these contacts with its side surfaces according to the variants in FIG. 4 and FIG. 6 the side surfaces of the thermogenerator elements 3 in the area of the hot contact surface 3.2.
  • the photovoltaic element 2 is arranged directly below the water surface.
  • the photovoltaic elements 2 connect the thermo-generator elements 3 and the floats 1.
  • the photovoltaic elements 2 in FIGS. 6 and 7 are additionally mounted on separate floats 1.
  • the photovoltaic element 2 is at the same time the heat collector element 4 of the thermogenerator element 3 arranged on the left.
  • the temperature sensor 14 is attached to the photovoltaic element 2.
  • the solar system also has the global radiation sensor 13. Both the temperature sensor 14 and the global radiation sensor 13 are connected to the control and regulation unit 5.
  • the ordinate represents the power P generated per global radiation intensity I and on the ordinate Abscissa the photovoltaic element temperature T, ie the actual temperature, plotted.
  • the increase in the generated electrical power per incident intensity with decreasing temperature T is evident.
  • the regular operation of the solar system is carried out on this basis, wherein for a measured instantaneous value of the global radiation with the aid of the temperature characteristic, a target temperature is determined, to which the photovoltaic element 2 by means of contacted with this Thermogenera - Gate element 3 is set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die Erfindung betrifft eine schwimmfähige Solaranlage zur Umwandlung von Lichtenergie mittels eines Photovoltaikelementes (2) und von Wärmeenergie mittels eines Thermogeneratorelementes (3) in elektrische Energie. Der Schwimmkörper (1) hat einen wasserdichten Sandwichaufbau und besteht aus einem metallischen Werkstoff. Das Thermogeneratorelement (3) besitzt eine Kaltkontaktfläche (3.1), die den Schwimmkörper (1) thermisch kontaktiert, und eine Warm kontaktfläche (3.2), an der ein Wärmekollektorelement (4) thermisch kontaktierend angebracht ist. Das Photovoltaik- und das Thermogeneratorelement (2, 3) sind elektrisch mittels einer Steuerungs- und Regelungseinheit (5) gekoppelt. Im schwimmenden Zustand befindet sich das Wärmekollektorelement (4) stets oberhalb der Wasseroberfläche. Die Solaranlage kann vorteilhaft zur Stromversorgung von Wasserreinigungs- oder Fischzuchtanlagen eingesetzt werden.

Description

Schwimmfähige Solaranlage und Verfahren zu deren Betrieb
Die Erfindung betrifft eine schwimmfähige Solaranlage zur Erzeugung elektrischer Energie, zum Beispiel zur Stromversorgung von Wasserreinigungs- oder Fischzucht- anlagen.
Die dezentrale Erzeugung elektrischer Energie ist in Entwicklungs- und Schwellenländern weit verbreitet; eine Alternative zu den verbrennungsmotorgetrieben Generatoren stellt dabei die Nutzung der Sonnenenergie dar. Insbesondere in der Gewäs- serwirtschaft, zum Beispiel in Fisch- und Krustentierfarmen, besteht ein erheblicher Energiebedarf für die Gewässerreinigung, der umweltfreundlich und kostengünstig mittels Photovoltaik und elektrothermischer Wandler gedeckt werden kann.
Es ist bekannt, dass Photovoltaikelemente bzw. die darin verwendeten Solarzellen eine Temperaturabhängigkeit der Stromerzeugung zeigen. Ab einer Schwellentemperatur von ca. 30 °C tritt ein sogenannter„Voltage Drop" ein, d. h., die mit der Solarzelle erzeugte Spannung fällt ab, wobei eine Temperaturerhöhung von 1 K etwa einen Leistungsverlust von 1 % nach sich zieht. Diesem Leistungsverlust bei starker Erwärmung kann durch Kühlung der Solarzellen entgegengewirkt werden; im Fall schwimmender Photovoltaikelemente bietet sich die Nutzung des Gewässers als Kühlmedium an.
Zudem besteht die Möglichkeit bei schwimmenden Solaranlagen aus der Temperaturdifferenz zwischen der erhitzten Oberseite und der gekühlten Unterseite Energie mittels elektrothermischer Wandler bzw. Peltier-Elementen (Thermogeneratoren) zu gewinnen.
In DE 36 19 327 A1 ist eine schwimmfähige Solaranlage mit kombinierter Photonen- und Wärmeenergiekonversion offenbart, deren Oberseite mit Halbleiterphotoelemen- ten versehen ist und deren Unterseite sich bei Betrieb unterhalb der Wasseroberfläche befindet. Zwischen der heißen, der Sonneneinstrahlung zugewandten Oberseite und der wassergekühlten Unterseite befinden sich Thermogeneratoren zur Gewinnung von elektrischer Energie aus dem durch den Temperaturgradienten bedingten Wärmeenergiefluss. Nachteilig ist, dass der Schwimmkörper aus einem Material ho- her Wärmedämmung hergestellt ist. Dies erfordert, dass die Thermogeneratorelemente zumindest einseitig direktem Wasserkontakt ausgesetzt sind. Andererseits ermöglicht die Solaranalage keine direkte Kühlung der Photovoltaikelemente durch das Wasser.
Aufgabe der Erfindung ist es, eine robuste, schwimmfähige Solaranlage zur Umwandlung von Lichtenergie mittels Photovoltaikelementen und Wärmeenergie mittels Thermogeneratorelementen in elektrische Energie bereitzustellen, die eine gegenüber dem Stand der Technik verbesserte Kühlung aufweist, wobei ein unmittelbarer Wasserkontakt der Thermogeneratorelemente nicht erforderlich ist. Andererseits soll die Kühlung der Photovoltaikelemente auch durch direkten Wasserkontakt ermöglicht sein.
Nach Maßgabe der Erfindung weist die schwimmfähige Solaranlage einen oder meh- rere miteinander verbundene Schwimmkörper, mindestens ein Photovoltaikelement und mindestens ein jeweils eine Kaltkontaktfläche und jeweils eine Warm kontaktfläche aufweisendes Thermogeneratorelement auf.
Im Folgenden wird die Solaranlage mit jeweils einem Schwimmkörper, einem Photo- voltaikelement und einem Thermogeneratorelement beschrieben; die Erfindung ist jedoch nicht darauf beschränkt sondern kann jeweils auch mehrere Schwimmkörper, Photovoltaikelemente und/oder Thermogeneratorelemente umfassen.
Der Schwimmkörper besteht aus einem metallischen Werkstoff, zum Beispiel aus einer Aluminiumlegierungen, einer Titanlegierungen oder einer anderen Leichtmetalllegierung. Er weist einen wasserdichten Sandwichaufbau mit einer Deckplatte, einer Bodenplatte und einer zwischen diesen beiden angeordneten Dünnblechstruktur auf. Die Dünnblechstruktur kann zum Beispiel eine Wellblechstruktur, eine Honigwabenstruktur oder ein geschlossenporiger Metallschaum sein.
Das Thermogeneratorelement ist an seiner Kaltkontaktfläche mit der Deckplatte des Schwimmkörpers thermisch kontaktierend verbunden, d. h., Wärmeströme können ungehindert die Grenzfläche zwischen Thermogeneratorelement und Schwimmkörper passieren. An der Warm kontaktfläche des Thermogeneratorelementes ist ein Wärmekollektorelement thermisch kontaktierend angebracht. Das Wärmekollektorelement dient der Sammlung von von der Sonne gelieferter Wärmeenergie und Bereitstellung dersel- ben an das Thermogeneratorelement. Das Sammeln von Wärmeenergie kann durch Absorption der Wärmestrahlungsanteile der Sonnenstrahlung und/oder durch Umwandlung von Strahlungsanteilen in einem Wellenlängenbereich jenseits der Infrarot- Strahlung in Wärmeenergie erfolgen. Im schwimmenden Zustand der Solaranlage befindet sich das Wärmekollektorelement stets oberhalb der Wasseroberfläche. Dies ist durch die Dimensionierung des Schwimmkörpervolumens und der Schwimmkörpermasse in Bezug auf das Gesamtgewicht, d. h. der Summe aus Gewichtskraft des Schwimmkörpers und Gewichtskraft der vom Schwimmkörper zu tragenden Bauteile, erreichbar. Erfindungsgemäß sind das Photovoltaikelement und das Thermogeneratorelement mittels einer Steuerungs- und Regelungseinheit gekoppelt. Diese stellt sicher, dass die in den einzelnen Komponenten der Solaranlage erzeugte elektrische Energie mit einer konstanten Spannung einem externen Verbraucher zur Verfügung gestellt wird. Einer der wesentlichen Vorteile der erfindungsgemäßen Solaranlage ist der robuste Aufbau der Komponenten auf dem Schwimmkörper aus metallischem Werkstoff.
Weiterhin ist aufgrund der guten Wärmeleitfähigkeit des Metalls gewährleistet, dass ein hoher Wärmestrom in den Thermogeneratorelementen zwischen der Warmkon- taktflächen an den sonnenerhitzen Wärmekollektorelementen und der Kaltkontaktfläche an der Deckfläche des wassergekühlten Schwimmkörpers entsteht.
Die Kombination des Photovoltaikelementes und des Thermogeneratorelementes bietet zudem den Vorteil, dass der Leistungsrückgang des Photovoltaikelementes mit steigender Erwärmung bei starker Sonneneinstrahlung durch die höhere Leistungsabgabe des Thermogeneratorelementes (infolge der stärkeren Erwärmung an der Warm kontaktfläche) ausgeglichen wird. Die Solaranlage liefert folglich auch bei sehr starker Sonneneinstrahlung stets elektrische Energie ohne Leistungseinbrüche. Ein weiterer Vorteil der Solaranlage ist, dass diese auch außerhalb der Wasserumgebung, also nicht schwimmend, betreibbar ist. Die Solaranlage kann bei Aufstellung auf kühlen Flächen oder bei Positionierung des Schwimmkörpers im Bereich kühler Luftströmungen effizient betrieben werden.
Das Wärmekollektorelement kann eine Platte aus einem Aluminiumwerkstoff sein, die zur Verbesserung der Wärmeabsorption zumindest auf dem der Sonne zugewandten Bereich ihrer Oberfläche schwarz eloxiert ist. Die Eloxalschicht schützt gleichzeitig vor korrodierenden Einflüssen und verbessert den Widerstand gegen Verschleiß (der zum Beispiel aufgrund von Staub-, Sand-, Schlamm- oder Salzablagerungen auftreten kann). Eine Alternative zur Eloxalschicht ist die Beschichtung der Aluminiumplatte mit Graphen, einem Werkstoff mit besonders hoher Wärmeleitfähigkeit. Weiterhin kann das Wärmekollektorelement gleichzeitig das Photovoltaikelement sein. In dieser Ausführung der Erfindung wird die Erwärmung des Photovoltaikele- mentes bei Sonneneinstrahlung vom Thermogeneratorelement zur Energieerzeugung genutzt. Durch das Thermogeneratorelement wird das Photovoltaikelement bei Betrieb gleichzeitig passiv gekühlt und kann darüber hinaus auch aktiv temperiert werden.
Für die Ausgestaltung der Solaranlage, die zur passiven und aktiven Kühlung geeignet ist, um das Photovoltaikelement in einem eng begrenzten Temperaturbereich mit hoher Effizienz betreiben zu können, ist vorgesehen, dass die Solaranlage zudem zumindest einen Temperatursensor zum Erfassen der Temperatur des Photovoltai- kelementes und einen in Form eines Globalstrahlungsmessgerätes ausgebildeten Lichtsensor zum Erfassen des Momentanwertes der Globalstrahlung aufweist. Dieser Lichtsensor wird im Folgenden als„Globalstrahlungssensor" bezeichnet. Zusätzlich kann die Solaranlage weitere Lichtsensoren zum Erfassen der Lichtintensität aufwei- sen.
Temperatursensor und Globalstrahlungssensor sind mit der Steuerungs- und Regelungseinheit verbunden. Dadurch ist es ermöglicht, das mit dem Photovoltaikelement kontaktierte Thermogeneratorelement als Wärmepumpe zum wahlweisen Heizen oder Kühlen des Photovoltaikelementes zu betreiben.
Die Steuerungs- und Regelungseinheit ist insbesondere eingerichtet, dass von ihr, basierend auf der von dem Temperatursensor erfassten Temperatur und dem von dem Globalstrahlungssensor erfassten Momentanwert der Globalstrahlung, die Funktionalität des mit dem Photovoltaikelement kontaktierten Thermogeneratorelementes variiert werden kann. Gemäß dieser Ausführung der Erfindung wird die Solaranlage so betrieben, dass, basierend auf der von dem Temperatursensor erfassten Temperatur und dem von dem Globalstrahlungssensor erfassten Momentanwert der Globalstrahlung, die An- steuerung des mit dem Photovoltaikelement kontaktierten Thermogeneratorelementes variiert wird, wobei mittels des Thermogeneratorelementes das Photovoltaikele- ment durch Heizen oder insbesondere Kühlen in der Weise temperiert wird, dass die mittels des Photovoltaikelement gewonnene elektrische Leistung während seines Betriebs stets in einem vorgegebenen Bereich, vorzugsweise der nominalen Maximalleistung des Photovoltaikelementes, liegt. Hierzu kann das Thermogeneratorelement selektiv entweder zum passiven Kühlen (und gleichzeitigen Erzeugen einer elektrischen Spannung) oder zum aktiven Kühlen (oder auch Anwärmen) des Photovoltaikelementes betrieben werden.
Die mit einer Solaranlage generierte elektrische Leistung hängt primär von zwei Pa- rametern ab: sie wird sowohl von der auf das Photovoltaikelement eingestrahlten Globalstrahlung als auch der Photovoltaikelement-Temperatur beeinflusst.
Der Grad der Erwärmung, d. h. die während des Betriebes der Solaranlage am Photovoltaikelement anliegende Temperatur, hängt von einer Vielzahl von Faktoren ab und ist somit analytisch nur schwer zu erfassen, d. h., eine Vorhersage des zeitlichen Verlaufs der Ist-Temperatur des Photovoltaikelement ist nur unter Zuhilfenahme umfangreicher Messdaten und aufwendiger Simulationsmodelle möglich. Eine empirische Bestimmung des Einflusses der Temperatur als einem der beiden die generierte elektrische Leistung bestimmenden Parameter hingegen ist möglich, indem der Einfluss des anderen Parameters, nämlich der Globalstrahlung, eliminiert (d. h. aus der erzeugten elektrischen Leistung herausgerechnet) wird.
Das Herausrechnen der Abhängigkeit der erzeugten Leistung von der eingestrahlten Sonnenlichtintensität (Globalstrahlung) kann durch eine Normierung der bei einer Vielzahl von vorgegebenen Temperaturen von dem Photovoltaikelement der Solaranlage erzeugten Leistung auf die Solarstrahlungs-Flächenleistungsdichte in Form des Momentanwerts der Globalstrahlung (d. h. die Intensität der diffusen und der direkten Sonneneinstrahlung pro Quadratmeter) erfolgen. Auf diese Art kann für jede Solaranlage eine charakteristische Temperaturabhängigkeit der Energieerzeugungseffizienz, im Folgenden als Temperaturcharakteristik bezeichnet, bestimmt werden.
Auf dieser Abhängigkeit basiert das erfindungsgemäße Verfahren zum Betrieb der schwimmfähigen Solaranlage mit zusätzlich passiver und aktiver Kühlung des Photo- voltaikelementes durch ein dieses direkt kontaktierendes Thermogeneratorelement, wobei in Vorbereitung des regulären Betriebs zur Erzeugung von elektrischer Ener- gie die Temperaturcharakteristik jedes Photovoltaikelementes bzw. der gesamten Solaranlage in Messreihen empirisch erfasst und diese Temperaturcharakteristik in der Steuerungs- und Regelungseinheit der Solaranlage hinterlegt wird.
Für das Erfassen der Temperaturcharakteristik wird für unterschiedliche Temperatur- werte des Photovoltaikelements die erzeugte elektrische Leistung bestimmt und auf den zu dem jeweiligen Zeitpunkt gemessenen Momentanwert der Globalstrahlung normiert. Durch eine entsprechende Auswahl der Temperaturwerte wird ein Temperaturbereich von wenigstens 0°C bis 40°C abgedeckt, bevorzugt erfolgen die Messungen jedoch für den gesamten Temperaturbereich, dem die Solaranlage während des regulären Betriebes ausgesetzt sein wird.
Weiterhin wird in der Steuerungs- und Regelungseinheit ein Sollwert der von der Solaranlage (während eines Tageszyklus dauerhaft) zu erzeugenden elektrischen Leis- tung (d. h. eine Soll-Leistung) hinterlegt. Vorzugsweise entspricht die Soll-Leistung der nominalen Maximalleistung der Solaranlage.
Gemäß der Erfindung erfolgt während des regulären Betriebs der Solaranlage zur Erzeugung von elektrischer Energie fortwährend eine Messung des Momentanwertes der Globalstrahlung (d. h. der Intensität der Summe der auf das Photovoltaikelement auftreffenden elektromagnetischen Strahlung) mittels des Globalstrahlungssensors. Diese fortwährende Messung kann kontinuierlich erfolgen oder diskret in wiederkehrenden (z. B. periodischen) Zeitabständen.
Anhand der Temperaturcharakteristik und des Momentanwertes der Globalstrahlung wird sodann für die vorgegebene Soll-Leistung eine Soll-Temperatur des Photovolta- ikelements bestimmt. Anschließend wird durch Ansteuerung der jeweils mit dem Photovoltaikelement in thermischer Verbindung stehenden Thermogeneratorelement die derart bestimmte Soll-Temperatur eingestellt, d. h. die Ist-Temperatur auf die Soll-Temperatur geregelt.
Die Ist-Temperatur des Photovoltaikelements wird fortwährend gemessen und der Soll-Temperatur nachgeführt. Die fortwährende Messung der Ist-Temperatur kann in gleicher Weise wie die Messung des Momentanwertes der Globalstrahlung kontinuierlich erfolgen oder diskret in wiederkehrenden Zeitabständen. Es kann auch vorgesehen sein, die Temperatur kontinuierlich zu messen, während der Momentanwert der Globalstrahlung in (tagsüber z. B. periodisch) wiederkehrenden Zeitabständen bestimmt wird.
Einer der Vorteile dieser Ausgestaltung der Solaranlage und des Verfahrens zu deren Betrieb liegt, darin, dass das Photovoltaikelement der Solaranlage in einem für den Wirkungsgrad optimalen Temperaturbereich betrieben werden kann; die Solaranlage arbeitet auf diese Weise mit größtmöglicher Effizienz.
Das Photovoltaikelement kann in einer alternativen Ausführung thermisch kontaktierend direkt an der Deckplatte des Schwimmkörpers angebracht sein. Dies ermöglicht die Kühlung des Photovoltaikelementes durch den gut wärmeleitfähigen metallischen Schwimmkörper. In einer Ausgestaltung der Erfindung sind das Photovoltaikelement und das Ther- mogeneratorelemente flächig nebeneinander angeordnet, wobei die Seitenfläche des Photovoltaikelementes die Seitenfläche des Thermogeneratorelementes im Bereich der Warm kontaktfläche berührt. Die sich bei Sonneneinstrahlung im Photovoltaikelement akkumulierende Wärme kann über die Seitenflächen zum Thermogenerato- relement hin abfließen, wo sie einen Beitrag zum Wärmestrom und folglich zur elektrischen Energieerzeugung liefert. Die gleichzeitig stattfindende (passive) Kühlung des Photovoltaikelementes vermindert den Spannungsabfall bei der steigenden Erwärmung des Photovoltaikelementes.
Ferner kann das Photovoltaikelement unmittelbar unterhalb der Wasseroberfläche positioniert sein, d. h. auf der der Sonne zugewandten Oberseite des Photovoltai- kelements befindet sich ein dünner Wasserfilm von z. B. wenigen Millimetern. Be- sonders vorteilhaft ist dabei die sehr gute Kühlwirkung durch das umgebende Wasser. Außerdem werden Ablagerungen, zum Beispiel durch Staub, durch die Wasserbewegungen entfernt, sodass eine regelmäßige Säuberung der Photovoltaikelemen- te aufgrund dieses Selbstreinigungseffektes entbehrlich ist. Es kann weiterhin vorgesehen sein, dass am Schwimmkörper ein oder mehrere luftgefüllte Auftriebselemente aus flexiblem Material angebracht sind. Das Volumen der Auftriebselemente ist durch Luftbefüllung, zum Beispiel mittels einer elektrisch angetriebenen Luftpumpe, vergrößerbar und durch Luftentnahme, zum Beispiel mittels eines steuerbaren Ablassventils, verkleinerbar. Dies ermöglicht es, die Solaranlage in Bezug zur Wasseroberfläche in einer definierten Schwimmhöhe einzustellen, sodass die Wärmekollektorelemente einerseits sicher oberhalb der Wasseroberfläche positioniert und der Schwimmkörper sowie ggf. die Kaltkontaktflächen und/oder die Photovoltaikelemente andererseits durch Ein- oder Untertauchen in das Wasser von demselben gekühlt sind.
In dieser Ausgestaltung der Erfindung kann an einer (vorgegebenen) Position ein Feuchtigkeitssensor an der Solaranlage angebracht sein. Die Steuer- und Regelungseinheit ist - neben der Regelung der erzeugten elektrischen Energie - durch Kopplung mit der Luftpumpe und mit dem Ablassventil dazu ausgebildet, die Luftbe- füllung der Auftnebselemente derart zu regulieren, dass sich der Feuchtigkeitssensor im schwimmenden Zustand der Solaranlage stets im Bereich der Wasseroberfläche befindet. Die Solaranlage passt bei unterschiedlichen Umweltbedingungen, zum Beispiel bei Veränderung des Auftriebs durch unterschiedlichen Salzgehalt des Was- sers, selbsttätig ihre Schwimmhöhe an und kann unabhängig vom Einsatzort in der energieoptimalen Schwimmhöhe betrieben werden.
Die Erfindung ist nachfolgend anhand von Ausführungsbeispielen und mit Bezug auf die schematischen Zeichnungen näher erläutert. Dazu zeigen
Fig. 1 : eine Solaranlage im Basisaufbau im Längsschnitt,
Fig. 2: eine Solaranlage, aufweisend ein als Photovoltaikelement ausgebildetes Wärmekollektorelement, im Längsschnitt,
Fig. 3: eine Solaranlage mit Auftriebselementen im Längsschnitt,
Fig. 4: eine Solaranlage mit Photovoltaikelement ohne Schwimmkörper zwischen zwei Thermogeneratoren im Längsschnitt,
Fig. 5: eine Solaranlage mit Unterwasser-Photovoltaikelement ohne Schwimmkörper zwischen zwei Thermogeneratoren im Längsschnitt,
Fig. 6: eine Solaranlage mit Photovoltaikelement mit Schwimmkörper zwischen zwei Thermogeneratoren im Längsschnitt,
Fig. 7: eine Solaranlage mit Unterwasser-Photovoltaikelement mit Schwimmkörper zwischen zwei Thermogeneratoren im Längsschnitt
Fig. 8: eine Solaranlage, aufweisend ein als Photovoltaikelement ausgebildetes Wärmekollektorelement sowie einen Temperatursensor und einen Glo- balstrahlungssensor, im Längsschnitt, und
Fig. 9: eine Temperaturcharakteristik zur Durchführung des Verfahrens zum Betrieb einer Solaranlage nach Fig. 8.
Der Basisaufbau der Solaranlage nach der Figur 1 umfasst den Schwimmkörper 1 , das Photovoltaikelement 2, das Thermogeneratorelement 3, das Wärmekollektorelement 4 und die Steuerungs- und Regelungseinheit 5. Die Deckplatte 1 .1 , die Bodenplatte 1 .2 und sowie die Dünnblechstruktur 1 .3 des Schwimmkörpers 1 sind aus einer seewasserbeständigen AlMg-Legierung hergestellt. Die Dünnblechstruktur 1 .3 ist als Honigwabenstruktur ausgebildet. Das Photovoltaikelement 2 und das Thermogeneratorelement 3 sind flächig auf der Deckplatte 1 .1 befestigt. Das Thermogeneratorelement 3 kontaktiert die Deckplatte 1 .1 an der Kaltkontaktfläche 3.1 . An der Warm kontaktfläche 3.2 des Thermogeneratorelementes 3 ist das Wärmekollektorelement 4 angebracht. Das Wärmekollektorelement 4 ist eine Platte aus einer seewasserbeständigen AlMg- Legierung. Dieses ist an der Oberseite, d. h. an seinem der Sonnenstrahlung 12 zugewandten Oberflächenbereich, zur Verbesserung der Absorption der Wärmestrahlung schwarz eloxiert. Das Photovoltaikelement 2 und das Thermogeneratorelement 3 sind mittels der elektrischen Leiter 6 mit der Steuerungs- und Regelungseinheit 5 verbunden.
Im schwimmenden Zustand taucht die Solaranlage soweit in das Wasser ein, dass die Wasseroberfläche 1 1 bis unmittelbar unterhalb die Deckplatte 1 .1 heranreicht.
Die Variante der Solaranlage gemäß Figur 2 zeigt links das identisch wie in der Figur 1 aufgebaute Thermogeneratorelement 3 mit dem Wärmekollektorelement 4 in Form einer schwarz eloxierten Aluminium-Platte. Im Fall des rechts angeordneten Thermogeneratorelementes 3 ist das Photovoltaikelement 2 gleichzeitig das Wärme- kollektorelement 4, d. h., das Photovoltaikelement 2 wird vom Thermogeneratorelement 3 gekühlt.
Die Solaranlage nach der Figur 3 entspricht dem Basisaufbau nach der Figur 1 ergänzt um die Auftriebselemente 7. Diese bestehen jeweils aus einem luftgefüllten Nylongewebe. Die Volumina der Auftriebselemente 7 sind durch Luftbefüllung- und - entnähme veränderbar. Die Luftpumpe 8 und das Abblasventil 9 sind zur Steuerung der Luftmenge in den Auftriebselementen 7 über die elektrischen Leiter 6 mit der Steuerungs- und Regelungseinheit 5 verbunden. Der Feuchtigkeitssensor 10 ist unmittelbar oberhalb der Oberseite des Photovoltaik- elementes 2 angebracht. Die Steuerungs- und Regelungseinheit 5 ist derart ausgebildet, dass bei Wasserkontakt des Feuchtigkeitssensors 10 die Luftpumpe 8 und bei Luftkontakt des Feuchtigkeitssensors 10 das Ablassventil 9 aktiviert wird. Die Solar- anläge befindet sich somit während des Betriebs in einem dynamischen Gleichgewicht, wobei der Feuchtigkeitssensor 10 sich stets im Bereich der Wasseroberfläche bewegt und das Photovoltaikelement 2 unmittelbar unterhalb der Wasseroberfläche liegt. Die Figuren 4 bis 7 zeigen unterschiedliche Varianten der Solanlage mit jeweils zwei Thermogeneratorelementen 3 und einem Photovoltaikelement 2. Die Thermogenera- torelemente 3 mit dem Wärmekollektorelement 4 (entsprechend dem Basisaufbau) sind jeweils auf einem eigenen Schwimmkörper 1 angebracht. Das zwischen diesen angeordnete Photovoltaikelement 2 berührt mit seinen Seitenflächen gemäß den Varianten in Figur 4 und Figur 6 die Seitenflächen der Ther- mogeneratorelemente 3 jeweils im Bereich der Warm kontaktfläche 3.2. In den Varianten der Figuren 5 und 7 ist das Photovoltaikelement 2 unmittelbar unterhalb der Wasseroberfläche angeordnet.
Bei den Solarmodulen gemäß Figur 4 und 5 verbinden die Photovoltaikelemente 2 die Thermogeneratorelemente 3 bzw. die Schwimmkörper 1. Die Photovoltaikelemente 2 in den Figuren 6 und 7 sind zusätzlich auf eigene Schwimmkörper 1 montiert.
In der Ausgestaltung der Solaranlage in Figur 8 ist das Photovoltaikelement 2 gleichzeitig das Wärmekollektorelement 4 des links angeordneten Thermogeneratorele- mentes 3. Am Photovoltaikelement 2 ist der Temperatursensor 14 angebracht. Die Solaranlage weist außerdem den Globalstrahlungssensor 13 auf. Sowohl der Tem- peratursenor 14 als auch der Globalstrahlungssensor 13 sind mit der Steuerungsund Regelungseinheit 5 verbunden.
In der Darstellung der Temperaturcharakteristik entsprechend der Figur 9 sind auf der Ordinate die erzeugte Leistung P pro Globalstrahlungsintensität I und auf der Abszisse die Photovoltaikelemente-Temperatur T, d. h. die Ist-Temperatur, aufgetragen. Die Zunahme der generierten elektrischen Leistung pro eingestrahlter Intensität mit sinkender Temperatur T ist evident. Nachdem für die Solaranlage diese Abhängigkeit empirisch bestimmt wurde, erfolgt auf dieser Basis der reguläre Betrieb der Solaranlage, wobei für einen gemessenen Momentanwert der Globalstrahlung mit Hilfe der Temperaturcharakteristik eine Soll-Temperatur bestimmt wird, auf welche die des Photovoltaikelementes 2 mittels des mit diesem kontaktierten Thermogenera- torelementes 3 eingestellt wird.
Liste der verwendeten Bezugszeichen
1 Schwimmkörper
1 .1 Deckplatte
1 .2 Bodenplatte
1 .3 Dünnblechstruktur
2 Photovoltaikelement
3 Thermogeneratorelement
3.1 Kaltkontaktfläche
3.2 Warm kontaktfläche
4 Wärmekollektorelement
5 Steuerungs- und Regelungseinheit
6 elektrischer Leiter
7 Auftriebselement
8 Luftpumpe
9 Ablassventil
10 Feuchtigkeitssensor
1 1 Wasseroberfläche
12 Sonnenstrahlung
13 Globalstrahlungssensor
14 Temperatursensor
P erzeugte Leistung
I Globalstrahlungsintensität
T Photovoitaikeiement-Temperatur

Claims

Patentansprüche
1 . Schwimmfähige Solaranlage zur Erzeugung elektrischer Energie, umfassend einen oder mehrere miteinander verbundene Schwimmkörper (1 ), mindestens ein Pho- tovoltaikelement (2) und mindestens ein jeweils eine Kaltkontaktfläche (3.1 ) und jeweils eine Warm kontaktfläche (3.2) aufweisendes Thermogeneratorelement (3), dadurch gekennzeichnet, dass
- jeder der Schwimmkörper (1 ) aus einem metallischen Werkstoff besteht und jeweils einen wasserdichten Sandwichaufbau mit einer Deckplatte (1 .1 ), einer Bo- denplatte (1 .2) und einer zwischen diesen beiden angeordneten Dünnblechstruktur (1 .3) aufweist,
- jedes der Thermogeneratorelemente (3) mit jeweils einem Schwimmkörper (1 ) verbunden ist, wobei es mit seiner Kaltkontaktfläche (3.1 ) im thermischen Kontakt mit der Deckplatte (1 .1 ) dieses Schwimmkörpers (1 ) steht,
- jedes der Thermogeneratorelemente (3) an seiner Warm kontaktfläche (3.2) thermisch kontaktierend mit einem plattenförmigen Wärmekollektorelement (4) verbunden ist,
- die Photovoltaik- und Thermogeneratorelemente (2, 3) elektrisch mittels einer Steuerungs- und Regelungseinheit (5) gekoppelt sind, und
- sich jedes der Wärmekollektorelemente (4) im schwimmenden Zustand der Solaranlage stets oberhalb der Wasseroberfläche (1 1 ) befindet.
2. Schwimmfähige Solaranlage nach Anspruch 1 , dadurch gekennzeichnet, dass das oder die Photovoltaikelemente (2) thermisch kontaktierend an der Deckplatte (1 .1 ) jeweils eines der Schwimmkörper (1 ) angebracht sind.
3. Schwimmfähige Solaranlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Photovoltaikelemente (2) und die Thermogeneratorelemente (3) flächig nebeneinander angeordnet sind, wobei die Seitenflächen der Photovoltaikelemente (2) die Seitenflächen der Thermogeneratorelemente (3) im Bereich der Warm kontaktfläche (3.2) berühren.
4. Schwimmfähige Solaranlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens eines der Photovoltaikelemente (2) im schwimmenden Zustand der Solaranlage unmittelbar unterhalb der Wasseroberfläche (1 1 ) positioniert ist.
5. Schwimmfähige Solaranlage naen einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mindestens eines der Wärmekollektorelemente (4) eines der Photovoltaikelemente (2) ist.
6. Schwimmfähige Solaranlage nach Anspruch 5, dadurch gekennzeichnet, dass - ein oder mehrere Temperatursensoren (14) zur Bestimmung der Ist-Temperatur des als Wärmekollektorelement (4) ausgebildeten Photovoltaikelementes (2) mit der Steuer- und Regelungseinheit (5) verbunden sind,
die Solaranlage einen mit der Steuer- und Regelungseinheit (5) verbunden Glo- balstrahlungssensor (14) zur Bestimmung eines Momentanwertes der Glo- balstrahlung aufweist, und
die Steuer- und Regelungseinheit (5) eingerichtet ist, aus einer hinterlegten Temperaturcharakteristik, der Ist-Temperatur und dem Momentanwert der Globalstrahlung eine Soll-Temperatur des Photovoltaikelementes (2) zu bestimmen und das Thermogeneratorelement (3), welches mit dem als Wärmekollektorele- ment (4) ausgebildeten Photovoltaikelement (2) kontaktiert ist, als Wärmepumpe zum wahlweisen Heizen oder Kühlen dieses Photovoltaikelementes (2) zu betreiben.
7. Schwimmfähige Solaranlage nach einem der Ansprüche 1 bis 5, dadurch gekenn- zeichnet, dass mindestens eines der Wärmekollektorelemente (4) eine Platte aus schwarz eloxiertem oder Graphen-beschichtetem Aluminiumwerkstoff ist.
8. Schwimmfähige Solaranlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Dünnblechstruktur (1.3) eine Wellblechstruktur, eine Honigwaben- struktur oder ein geschlossenporiger Metallschaum ist.
9. Schwimmfähige Solaranlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass an wenigstens einem Schwimmkörper (1 ) ein oder mehrere luftgefüllte Auftriebselemente (7) aus flexiblem Material angebracht sind, wobei das Volumen der Auftnebselemente (7) durch Luftbefüllung mittels einer elektrisch angetriebenen Luftpumpe (8) vergrößerbar und durch Luftentnahme mittels eines steuerbaren Ablassventils (9) verkleinerbar ist.
10. Schwimmfähige Solaranlage nach Anspruch 9, dadurch gekennzeichnet, dass an der Solaranlage an einer Position ein Feuchtigkeitssensor (10) angebracht ist, wobei die Steuer- und Regelungseinheit (5) durch Kopplung mit der Luftpumpe (8) und mit dem Ablassventil (9) dazu ausgebildet ist, die Luftbefüllung der Auftriebselemente (7) derart zu regulieren, dass sich der Feuchtigkeitssensor (10) im schwimmenden Zu- stand der Solaranlage stets im Bereich der Wasseroberfläche (1 1 ) befindet.
1 1 . Verfahren zum Betrieb einer Solaranlage nach Anspruch 6, dadurch gekennzeichnet, dass
vor Aufnahme eines regulären Betriebs zur Erzeugung von elektrischer Energie eine Temperaturcharakteristik des Photovoltaikelementes (2) durch Messen der für eine Vielzahl unterschiedlicher Photovoltaikelement-Temperaturen im Bereich zwischen wenigstens 0°C und 40°C erzeugten und auf den mit dem Globalstrah- lungssensor (14) gemessenen Momentanwert der Globalstrahlung normierten elektrischen Leistung empirisch bestimmt und diese Temperaturcharakteristik in der Steuer- und Regelungseinheit (5) der Solaranlage hinterlegt wird; und während des regulären Betriebs zur Erzeugung von elektrischer Energie fortwährend ein Momentanwert der Globalstrahlung mittels des Globalstrahlungs- sensors (14) sowie eine Ist-Temperatur des als Wärmekollektorelement (4) ausgebildeten Photovoltaikelementes (3) gemessen und aus der hinterlegten Tem- peraturcharakteristik, einer vorgegebenen Soll-Leistung der von der Solaranlage zu erzeugenden elektrischen Leistung und dem Momentanwert der Globalstrahlung eine Soll-Temperatur des Photovoltaikelementes (2) berechnet und mittels Ansteuerung des das Photovoltaikelement (2) kontaktierenden Thermogenerato- relementes (3) die Ist-Temperatur des Photovoltaikelementes (2) auf die Soll- Temperatur geregelt wird.
PCT/DE2016/100606 2016-01-27 2016-12-20 Schwimmfähige solaranlage und verfahren zu deren betrieb WO2017129160A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102016101387.0 2016-01-27
DE102016101387 2016-01-27
DE102016118265.6A DE102016118265B4 (de) 2016-09-27 2016-09-27 Schwimmfähige Solaranlage
DE102016118265.6 2016-09-27

Publications (1)

Publication Number Publication Date
WO2017129160A1 true WO2017129160A1 (de) 2017-08-03

Family

ID=57962969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/100606 WO2017129160A1 (de) 2016-01-27 2016-12-20 Schwimmfähige solaranlage und verfahren zu deren betrieb

Country Status (1)

Country Link
WO (1) WO2017129160A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019228591A1 (de) * 2018-05-31 2019-12-05 Bpe E.K. Kühlvorrichtung

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111762A (en) * 1975-01-31 1978-09-05 Martin Marietta Corporation Optically black coating and process for forming it
WO1987002086A1 (en) * 1985-09-27 1987-04-09 British Shipbuilders Construction of large sandwich structures
DE3619327A1 (de) 1986-06-09 1987-12-10 Volkrodt Wolfgang Solaranlage mit kombinierter photonen- und waermeenergiekonversion
US5192623A (en) * 1990-10-23 1993-03-09 Lockhart Industries Laminated structural panels and the method of producing them
JP2001053322A (ja) * 1999-05-31 2001-02-23 Sony Corp 発電装置及び情報処理機器
JP2002118275A (ja) * 2000-10-05 2002-04-19 Kawasaki Steel Corp 水上設置用太陽電池発電装置
US20040025931A1 (en) * 2002-08-09 2004-02-12 S.I.E.M. S.R.L. Solar panel for simultaneous generation of electric and thermal energy
WO2007141773A1 (en) * 2006-06-07 2007-12-13 Aquate Solar Ltd. Solar cell geomembrane assembly
DE102008009477A1 (de) * 2007-02-16 2008-08-21 Siemens Aktiengesellschaft Solarthermische, thermoelektrische Stromerzeugungseinrichtung sowie Verfahren zu deren Betrieb
US20110168235A1 (en) * 2008-09-05 2011-07-14 Scienza Industria Tecnologia S.R.L. Apparatus and method for generating electricity using photovoltaic panels
WO2012143003A2 (de) * 2011-04-21 2012-10-26 Bpe E. K. Solarvorrichtung
US8393129B2 (en) * 2007-02-09 2013-03-12 Constellium France Metal composite panel and method of manufacture
US20150249178A1 (en) * 2012-09-11 2015-09-03 Overtone Solar Ltd Solar Power System

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111762A (en) * 1975-01-31 1978-09-05 Martin Marietta Corporation Optically black coating and process for forming it
WO1987002086A1 (en) * 1985-09-27 1987-04-09 British Shipbuilders Construction of large sandwich structures
DE3619327A1 (de) 1986-06-09 1987-12-10 Volkrodt Wolfgang Solaranlage mit kombinierter photonen- und waermeenergiekonversion
US5192623A (en) * 1990-10-23 1993-03-09 Lockhart Industries Laminated structural panels and the method of producing them
JP2001053322A (ja) * 1999-05-31 2001-02-23 Sony Corp 発電装置及び情報処理機器
JP2002118275A (ja) * 2000-10-05 2002-04-19 Kawasaki Steel Corp 水上設置用太陽電池発電装置
US20040025931A1 (en) * 2002-08-09 2004-02-12 S.I.E.M. S.R.L. Solar panel for simultaneous generation of electric and thermal energy
WO2007141773A1 (en) * 2006-06-07 2007-12-13 Aquate Solar Ltd. Solar cell geomembrane assembly
US8393129B2 (en) * 2007-02-09 2013-03-12 Constellium France Metal composite panel and method of manufacture
DE102008009477A1 (de) * 2007-02-16 2008-08-21 Siemens Aktiengesellschaft Solarthermische, thermoelektrische Stromerzeugungseinrichtung sowie Verfahren zu deren Betrieb
US20110168235A1 (en) * 2008-09-05 2011-07-14 Scienza Industria Tecnologia S.R.L. Apparatus and method for generating electricity using photovoltaic panels
WO2012143003A2 (de) * 2011-04-21 2012-10-26 Bpe E. K. Solarvorrichtung
US20150249178A1 (en) * 2012-09-11 2015-09-03 Overtone Solar Ltd Solar Power System

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019228591A1 (de) * 2018-05-31 2019-12-05 Bpe E.K. Kühlvorrichtung

Similar Documents

Publication Publication Date Title
DE102016118265B4 (de) Schwimmfähige Solaranlage
EP2998573B1 (de) Verfahren zum Betreiben einer Windenergieanlage mit einer Rotorblattheizeinrichtung
DE3638317A1 (de) Thermo-elektrische solarzelle
DE2806337C2 (de) Sonnenkollektoranlage zur unmittelbaren Umwandlung der zugeführten Wärmeenergie in elektrische Energie
DE102006023616A1 (de) Anordnung und Verfahren zur Energiegewinnung aus der Sonnenstrahlung
DE102011051507A1 (de) Solarvorrichtung
DE102010054270A1 (de) Durch Formgedächtnislegierung angetriebene Energieerzeugungsanlage samt Verfahren
AT503907A1 (de) Solarmodul
EP2366083B1 (de) Vorrichtung zum absorbieren von elektromagnetischer strahlung
WO2017129160A1 (de) Schwimmfähige solaranlage und verfahren zu deren betrieb
DE3011986A1 (de) System fuer das auffangen, konzentrieren, speichern und ausnuetzen der sonnenenergie
DE102012214468A1 (de) Autarke sensoreinheit für solarmodule
WO2019228591A1 (de) Kühlvorrichtung
DE102009039930A1 (de) System zur Stromerzeugung unter Verwendung von Solar- und Windenergie
DE102016116700A1 (de) Verfahren zum Betrieb einer Solarvorrichtung und Solarvorrichtung
AT512315B1 (de) Thermo-elektrisches-element
Jailany et al. Effect of Water Cooling on Photovoltaic Performance
EP3571724A1 (de) Autonome energieanlage
DE202012101705U1 (de) Rotorblatt mit einer Anwärmvorrichtung
DE202012011625U1 (de) Warmwasserspeicher für Brauchwasser mit Solarmodul
DE102016001350B4 (de) Verfahren und Vorrichtung zur Bereitstellung von Raumwärme und Warmwasser durch Nutzung solarer Strahlungsenergie
DE3011418A1 (de) Vorrichtung zur waermeenergiegewinnung mittels eines mitteltemperatur-strahlungs-luftabsorbers
Amran et al. Effect of Water Cooling and Dust Removal on Solar Photovoltaic Module Efficiency
DE19531765A1 (de) Verfahren zur Erzeugung elektrischer Energie aus thermischer Energie
DE29814206U1 (de) Solare Heiz- und Wasserversorgung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834082

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16834082

Country of ref document: EP

Kind code of ref document: A1