WO2017129109A1 - 一种平行流换热器及空调器 - Google Patents

一种平行流换热器及空调器 Download PDF

Info

Publication number
WO2017129109A1
WO2017129109A1 PCT/CN2017/072414 CN2017072414W WO2017129109A1 WO 2017129109 A1 WO2017129109 A1 WO 2017129109A1 CN 2017072414 W CN2017072414 W CN 2017072414W WO 2017129109 A1 WO2017129109 A1 WO 2017129109A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
heat exchanger
parallel flow
flat tube
flow heat
Prior art date
Application number
PCT/CN2017/072414
Other languages
English (en)
French (fr)
Inventor
周鑫
王婧雅
郭爱斌
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2017129109A1 publication Critical patent/WO2017129109A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a parallel flow heat exchanger and an air conditioner.
  • the existing parallel flow heat exchanger comprises a liquid collecting pipe, a plurality of flat pipes connected between the liquid collecting pipes and communicating with the inner cavity of the liquid collecting pipe, corrugated louver fins located between the flat pipes, and may also include a spacer disposed inside the liquid collecting tube and sealingly dividing the inside of the liquid collecting tube into a plurality of chambers (the separator cuts the inside of the liquid collecting tube along the length direction to form a series channel), and is disposed between the at least two chambers
  • throttling devices that change the number of processes and the number of flat tubes per process.
  • the fin thickness is generally 0.1 mm, and the flat tubes are placed horizontally.
  • the heat exchanger itself has no drainage device.
  • the working temperature is lower than 0 °C, the water droplets will immediately condense into ice, which will block the fins of the fins and the gap of the flat tube, thereby increasing the heat exchange wind resistance and reducing the heat exchange efficiency. It directly affects the normal operation of the heat exchanger.
  • the present invention provides a parallel flow heat exchanger and an air conditioner, the main purpose of which is to enable the parallel flow heat exchanger itself to deflate the frost condensed on the outer surface thereof, thereby ensuring the normal operation of the parallel flow heat exchanger.
  • Small heat exchange wind resistance to improve heat transfer efficiency.
  • the present invention mainly provides the following technical solutions:
  • an embodiment of the present invention provides a parallel flow heat exchanger including a first header, a second header, and a connection between the first header and the second header Multiple flat tubes,
  • the first header and the second header each include two cavities arranged in parallel along the length direction of the collector and not connected to each other;
  • Each of the flat tubes includes two channels, and two ends of each of the channels respectively communicate with the first header and the second header;
  • first header of the first header and the second header communicates through the first passage of the flat tube to form a first loop, and the medium in the first loop can pass an external heat source Get heat;
  • the first header and the second cavity of the second header communicate through the second passage of the flat tube to form a second loop, and the second loop is connected to the cooling/heating device.
  • a partition is disposed in the first header and the second header along a length direction, and the partition is disposed inside the first header and the second header
  • the cavities are respectively separated into first and second cavities that are not in communication with each other.
  • the plurality of flat tubes are parallel and disposed obliquely between the first header and the second header.
  • the first header of the first header and the second header are on the same side, and the second chamber of the first header and the second header are on the same side ;
  • the second cavity is located near the wind source side, and the wind blown by the wind source to the parallel flow heat exchanger is in a direction of the second cavity to the first cavity;
  • the flat tube is inclined in a direction such that a portion of the flat tube that communicates with the first cavity is lower than a portion of the flat tube that communicates with the second cavity.
  • each of the flat tubes includes a plurality of through holes, wherein three through holes on one side of the flat tube are the first passages, and the remaining passages are the second passages; and the number of through holes in the second passage is larger than the first passage The number of through holes.
  • the parallel flow heat exchanger further comprises:
  • the fin being disposed on the flat tube
  • the outer surface of the flat tube and/or the fins is coated with a coating that is a hydrophobic or hydrophilic material.
  • the medium in the first loop is a medium for heat exchange
  • the medium in the second loop is a refrigerant
  • the first circuit further comprises a control unit that controls the flow of the medium in the first circuit.
  • control unit includes a valve that is connected in series in the first circuit.
  • the valve is an electric actuator
  • the control unit further includes a sensor disposed near the flat tube for detecting whether the outer surface of the flat tube is frosted;
  • the sensor is electrically coupled to the electric actuation valve.
  • the first circuit further comprises a pressure pump, the pressure pump being connected in series in the first circuit.
  • the first circuit further includes a liquid storage tank, the liquid storage tank is adjacent to the external heat source, and the medium in the liquid storage tank obtains heat through the external heat source and can flow in the first circuit .
  • an air conditioner including:
  • the parallel flow heat exchanger is disposed within the housing.
  • the external heat source is a battery and/or a motor and/or a compressor of the air conditioner.
  • the parallel flow heat exchanger and the air conditioner of the present invention have at least the following advantages:
  • the technical solution provided by the present invention comprises: the first header and the second header each include two cavities arranged in parallel along the length direction of the collector tube and not communicating with each other, since each of the flat tubes Including two channels, two ends of each channel respectively communicating with the first header and the second header, wherein the first header and the first chamber of the second header
  • the body communicates through the first passage to form a first circuit, and the medium in the first circuit is capable of obtaining heat through an external heat source to melt the frost on the flat tube.
  • the second manifold of the first header and the second header communicates through the second passage to form a second loop, and the second loop is connected to the cooling/heating device to provide refrigeration for the system/ Heating function. Therefore, at the same time of cooling/heating, the flat tube frosting can be effectively prevented, the normal operation of the parallel flow heat exchanger is ensured, the heat exchange wind resistance is increased due to frost formation, and the heat exchange efficiency is improved.
  • the intermediate partition in the longitudinal direction of the collecting pipe by increasing the intermediate partition in the longitudinal direction of the collecting pipe, it becomes two complementary communicating chambers, and after cooperating with the flat tube, the front cavity is used for defrosting, and the rear cavity is used for normal cooling/heating; Loop
  • the frost circuit, refrigeration/heating circuit are integrated, small in size, light in weight and high in heat exchange efficiency.
  • the flat tubes and fins of the parallel flow heat exchanger are placed obliquely, which can effectively prevent the formation of frost, and under the action of gravity, the water after defrosting can flow downward, which is favorable for drainage.
  • the flat tube and the fin of the parallel flow heat exchanger are subjected to secondary surface treatment, preferably with a hydrophobic material, the surface suction of the water is small, and the water can flow downward under the action of gravity after the defrosting;
  • the flat tube structure does not need to be changed, and only the secondary surface treatment is performed on the basis of the common flat tube, and the cost is low, and the flat tube mold is not changed.
  • the defrosting circuit uses the heat of the heat source (such as: battery, motor, compressor) to perform defrosting, does not require additional power supply heating, has low cost, high heat utilization rate, and realizes reuse of useless heat.
  • the heat source such as: battery, motor, compressor
  • FIG. 1 is a schematic structural view of a parallel flow heat exchanger according to an embodiment of the present invention.
  • Figure 2 is a partial enlarged view of Figure 1;
  • FIG. 3 is a longitudinal cross-sectional view of a header of a parallel flow heat exchanger according to an embodiment of the present invention
  • FIG. 4 is a side view of a header of a parallel flow heat exchanger according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view showing a positional relationship between a flat tube and a fin and a collecting tube of a parallel flow heat exchanger according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a first loop of a parallel flow heat exchanger according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a defrosting principle of a parallel flow heat exchanger according to an embodiment of the present invention.
  • a parallel flow heat exchanger includes a first header 10, a second header 20, and a first set connected thereto. a plurality of flat tubes 30 between the flow tube 10 and the second header tube 20, the first header tube and the second header tube each including two parallel rows along the length of the header tube and mutual a cavity that is not connected.
  • each of the flat tubes 30 includes two passages, and both ends of each passage communicate with the first header 10 and the second header 20, respectively.
  • the first header 41 of the first header 10 and the second header 20 communicate through the first passage 31 to form a first loop, and the medium in the first loop can be obtained by an external heat source. The heat heats the flat tube 30 as it flows through the flat tube.
  • the first header 10 and the second cavity 42 of the second header 20 communicate through the second passage 32 to form a second loop, and the second loop is connected to the cooling/heating device as a system. Provides cooling/heating capabilities.
  • the technical solution provided by the present invention comprises: the first header and the second header each include two cavities arranged in parallel along the length direction of the collector tube and not communicating with each other, since each of the flat tubes Including two channels, two ends of each channel respectively communicating with the first header and the second header, wherein the first header and the first chamber of the second header
  • the body communicates through the first passage to form a first circuit, and the medium in the first circuit is capable of obtaining heat through an external heat source to melt the frost on the flat tube.
  • the second manifold of the first header and the second header communicates through the second passage to form a second loop, and the second loop is connected to the cooling/heating device to provide refrigeration for the system/ Heating function. Therefore, at the same time of cooling/heating, the flat tube frosting can be effectively prevented, the normal operation of the parallel flow heat exchanger is ensured, the heat exchange wind resistance is increased due to frost formation, and the heat exchange efficiency is improved.
  • the first loop and the second loop are integrated, so that the parallel flow heat exchanger has small volume, light weight and high heat exchange efficiency.
  • a partition 40 is disposed in the first header 10 and the second header 20 along the length direction, and the partition 40 connects the first header 10 and the second Collector 20 separates The first cavity 41 and the second cavity 42 that are not connected to each other.
  • first header 10 and the second header 20 may also be formed by splicing respectively by two separate parts, one part including the first cavity 41 and the other part including the second part Cavity 42.
  • the plurality of flat tubes 30 may be parallel and may be disposed obliquely between the first header 10 and the second header 20.
  • the inclined tube 30 is placed obliquely so that the water droplets condensed on the flat tube can be more easily slipped along the inclined surface under the action of gravity, which is favorable for drainage, thereby effectively preventing the formation of frost.
  • first header 41 of the first header 10 and the second header 20 may be on the same side, and correspondingly, the first header 10 and the second header
  • the second cavity 42 of 20 may be on the same side such that the first header 10 and the first cavity 41 of the second header 20 are in communication, the first header 10 and the The second cavity 42 of the second header 20 is correspondingly in communication.
  • One side of the first cavity 41 may be higher than one side of the second cavity 42 or one side of the first cavity 41 may be lower than one side of the second cavity 42.
  • the inclined direction of the flat tube 30 should be such that the portion of the flat tube that communicates with the first cavity 41 is higher or lower than the second chamber 42.
  • the flat tube portion and the flat tube portion on the higher side are close to the wind source.
  • the inclined direction of the flat tube along the wind direction can cause the water droplets on the flat tube to slide from high to low.
  • a general fan is on the rear side of the parallel flow heat exchanger, and when the first cavity 41 is on the front side of the parallel flow heat exchanger, the flat pipe portion where the first cavity 41 is located is lower than The flat tube portion where the second cavity 42 is located; and when the second cavity 42 is at the front side of the parallel flow heat exchanger, the flat tube portion where the first cavity 41 is located is higher than the The flat tube portion where the second cavity 42 is located.
  • the fan blows air from the rear side of the parallel flow heat exchanger in the direction of the arrow, and it is easy to cause the water droplets on the flat tube to slide down the slope of the flat tube along the wind direction.
  • the inner sides of the first header 10 and the second header 20 may be provided with a first slot 401 and a second slot 402, the first slot 401 and the Corresponding to the first cavity 41, the second slot 402 corresponds to the second cavity 42.
  • the partition 40 may be disposed between the first slot 401 and the second slot 402. Inserting the first insertion into the two ends of the flat tube 30 The slot 401 and the second slot 402 are in communication with the first cavity 41 and the second cavity 42, respectively.
  • the flat tube 30 may be a porous flat tube, wherein three through holes on one side of the flat tube are the first passage 31, and the first passage 31 and the first cavity 41 is connected, and the remaining through holes are the second passage 32, and the second passage 32 is in communication with the second cavity 42.
  • the number of through holes of the first channel 31 is not limited to three, and the setting can be adjusted as needed. This is just an example of a special application.
  • the number of through holes of the second passage 32 is larger than the number of through holes of the first passage 31 to ensure normal heat exchange operation.
  • the parallel flow heat exchanger may further include fins 50 disposed on the flat tubes 30, the flat tubes 30 and/or the
  • the outer surface of the fin 50 may be a hydrophobic material or a hydrophilic material; a hydrophobic material or a hydrophilic material may be used as the case may be.
  • the hydrophilic material is used, and the heat exchange effect and the drainage property are relatively good; when the fin spacing is relatively large and the inclination angle is large, the hydrophobic material is used, the heat exchange effect, The drainage is relatively good; the specific situation depends on the test results.
  • the outer surface of the flat tube 30 and/or the fin 50 has hydrophobicity, which can reduce the surface suction of the water, and after the defrosting Under the action of gravity, water can flow down the inclined direction of the flat tube better, which can avoid large-scale accumulation of water on the flat tube.
  • the fins disposed on the flat tube are also inclined at the same time, which is more favorable for the water droplets on the flat tube to slide off easily.
  • secondary surface treatment such as coating of a hydrophobic material, on the outer surface of the flat tube 30 and/or the fin 50 may be performed to achieve the purpose of hydrophobicity of the surface.
  • the method of coating is not limited herein, and may be a method of surface spraying, a method of electroplating, or other methods, which may be selected by those skilled in the art as needed, and will not be described or specifically limited herein.
  • the medium in the first circuit uses a medium for heat exchange, preferably water. Since water has a heat exchange function and is relatively common, it is convenient to use heat of water to transfer heat.
  • the water in the first circuit can be used as a medium to obtain heat from the external heat source, become hot water of a certain temperature, enter the circulation, and transfer the heat carried thereby to the flat tube, so that the frost on the flat tube melts into Dropped by water.
  • the medium in the first loop may also be other heat exchange medium, which is not specifically limited herein.
  • the medium in the second loop may be a refrigerant.
  • the refrigerant is used in a refrigerated air conditioning system to transfer heat and produce a freezing effect.
  • the refrigerant is an intermediate substance in the refrigeration process, which is connected first. The temperature is lowered by the cooling capacity of the refrigerant, and then the other cooled substance is cooled, and the intermediate substance is said to be a refrigerant. It can also be called a coolant.
  • the refrigerant has a gas refrigerant, a liquid and a solid refrigerant, a gas refrigerant mainly has air, a liquid refrigerant, water, salt water, etc.; ice and dry ice are used as a solid refrigerant.
  • refrigerants such as freon are widely used in household refrigerators and air conditioners.
  • the refrigerant flows through the second circuit to provide a cooling/heating function to the system.
  • the first loop may further include a control unit 60 capable of controlling the flow of the medium in the first loop.
  • the control unit 60 can include a valve 61 that is connected in series in the first circuit to control whether the medium in the first circuit flows through a switch of the valve 61.
  • the valve 61 When the valve 61 is opened, the hot medium portion can flow into the flat tube to heat the flat tube, and the frost on the flat tube is melted by heat.
  • the valve 61 is closed, the medium in the first circuit stops flowing, and the hot medium cannot continue to flow into the flat tube, thus stopping heating the flat tube.
  • valve 61 may be an electric actuator.
  • the electric actuator valve has a valve electric actuator that uses electrical energy as the main source of energy to drive the valve's switch.
  • control unit 60 may further include a sensor 62, which may be disposed near the flat tube 30, for example, may be disposed on the flat tube 30, or may be disposed closer to the flat tube 30. Other locations for detecting whether the outer surface of the flat tube 30 is frosted.
  • the senor 62 can be disposed at a portion of the first passage 31 of the flat tube 30.
  • the sensor 62 is electrically coupled to the electric actuation valve, and when the sensor 62 detects frost on the flat tube 30, the sensor 62 controls the electric actuation valve to open to cause a hot medium having a certain temperature (eg, Hot water) flows through the parallel flow heat exchanger through the first circuit, so that the frost on the flat tube and/or the fins is melted into water, and then the inclined surface along the flat tube and/or the fin under the action of wind and gravity Dropped.
  • a hot medium having a certain temperature eg, Hot water
  • the first circuit may further include a pressure pump 70 connected in series in the first circuit, and the pressure pump 70 provides a required pressure for flowing the medium in the first circuit.
  • the pressure pump 70 is electrically connected to the sensor 62, and when the sensor 62 detects frost on the flat tube 30, the sensor 62 controls the electric actuator to open, and the sensor 62 controls the The pressure pump 70 is energized to facilitate the flow of the medium in the first circuit under the pressure of the pressure pump 70. move.
  • the first circuit may further include a liquid storage tank 80, such that the liquid storage tank 80 is close to the external heat source to heat the medium stored in the liquid storage tank 80, when the electric operation valve When opened, the medium in the reservoir 80 flows to the parallel flow heat exchanger, and the hot medium flowing through the flat tube heats the flat tube.
  • the external heat source may be a battery and/or a motor and/or a compressor of the air conditioner. Since the first circuit borrows the heat of the heat generating components such as the battery, the compressor, and the motor of the air conditioner to heat the defrosting, the energy is fully utilized, the energy utilization efficiency is improved, and the waste of heat is avoided.
  • the internal medium of the first circuit is water (or other heat exchange medium), and the water of the first circuit and the liquid storage tank 80 (ie, the water tank) The water in the middle is connected, the valve 61 (electrically operated valve) controls the on and off of the first circuit, and the pressure pump 70 (which can be a small water pump) provides the flow pressure of the water in the first circuit, and the liquid storage tank 80 is placed Next to the heat source, the water in the liquid storage tank 80 is heated; the second circuit is a cooling/heating circuit, and the internal medium of the second circuit is a refrigerant.
  • the valve 61 electrically operated valve
  • the pressure pump 70 which can be a small water pump
  • the first circuit is controlled to be closed by a valve 61, and the second circuit is circulated for normal heat exchange; when the sensor 62 of the parallel flow heat exchanger detects that the surface of the flat tube begins to frost
  • the control valve 61 is opened, and the pressure pump 70 is energized to cause the hot water in the liquid storage tank 80 to flow through the parallel flow heat exchanger through the first circuit, so that the frost on the flat tube is melted into water due to the fin 50.
  • the surface of the flat tube 30 is a hydrophobic material, and the fins 50 and the flat tubes 30 are placed obliquely, and a fan is blown at the rear of the parallel flow heat exchanger, so that the water droplets are caused by the action of wind, gravity and hydrophobic layers.
  • the parallel flow heat exchanger is dropped; when the sensor 62 of the parallel flow heat exchanger detects that the frost on the flat tube has been completed, the sensor 62 controls the valve 61 and the pressure pump 70 is closed.
  • the first circuit stops working; the second circuit remains in normal operation throughout the process.
  • Another embodiment of the present invention provides an air conditioner including a housing and a parallel flow heat exchanger.
  • the parallel flow heat exchanger is disposed within the housing.
  • the parallel flow heat exchanger includes a first header, a second header, and a plurality of flat tubes connected between the first header and the second header, the first The collecting pipe and the second collecting pipe respectively comprise two cavities arranged in parallel along the length direction of the collecting pipe and not connected to each other;
  • Each of the flat tubes includes two channels, and two ends of each of the channels respectively communicate with the first header and the second header;
  • first header of the first header and the second header communicates through the first passage of the flat tube to form a first loop, and the medium in the first loop can pass an external heat source Get heat;
  • the first header and the second cavity of the second header communicate through the second passage of the flat tube to form a second loop, and the second loop is connected to the cooling/heating device.
  • the external heat source is a battery and/or a motor and/or a compressor of the air conditioner. Since the first circuit borrows the heat of the heat generating components such as the battery, the compressor, and the motor of the air conditioner to heat the defrosting, the energy is fully utilized, the energy utilization efficiency is improved, and the waste of heat is avoided.
  • the technical solution provided by the present invention comprises: the first header and the second header each include two cavities arranged in parallel along the length direction of the collector tube and not communicating with each other, since each of the flat tubes Including two channels, two ends of each channel respectively communicating with the first header and the second header, wherein the first header and the first chamber of the second header
  • the body communicates through the first passage to form a first circuit, and the medium in the first circuit is capable of obtaining heat through an external heat source to melt the frost on the flat tube.
  • the second manifold of the first header and the second header communicates through the second passage to form a second loop, and the second loop is connected to the cooling/heating device to provide refrigeration for the system/ Heating function. Therefore, at the same time of cooling/heating, the flat tube frosting can be effectively prevented, the normal operation of the parallel flow heat exchanger is ensured, the heat exchange wind resistance is increased due to frost formation, and the heat exchange efficiency is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种平行流换热器及空调器,该平行流换热器包括第一集流管(10)、第二集流管(20)以及连接在所述第一集流管(10)和所述第二集流管(20)之间的多个扁管(30),第一集流管(10)和第二集流管(20)均包括两个沿集流管长度方向并行排列且互不连通的腔体;每个扁管(30)包括两个通道,每个通道的两端分别连通第一集流管(10)和第二集流管(20);其中,第一集流管(10)和第二集流管(20)的第一腔体(41)通过扁管(30)的第一通道(31)连通,形成第一回路,第一回路中的介质能够通过外部热源获得热量;第一集流管(10)和第二集流管(20)的第二腔体(42)通过扁管(30)的第二通道(32)连通,形成第二回路,第二回路与制冷/制热设备连接。空调器包括壳体以及上述平行流换热器,其中平行流换热器设置在壳体内。

Description

一种平行流换热器及空调器
本申请要求于2016年1月25日提交中国专利局、申请号为201610053481.1、发明名称为“一种平行流换热器及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种空调技术领域,特别是涉及一种平行流换热器及空调器。
背景技术
随着技术发展,平行流换热器由于具有换热高效、结构紧凑等特点,越来越受到市场的青睐。
目前,现有的平行流换热器包括集液管、连接于集液管之间并与集液管内腔连通的若干扁管、位于扁管之间的波纹型百叶窗翅片,以及还可以包括设置在集液管内部并将集液管内部密闭分隔为多个腔室的隔片(隔片将集液管内部沿长度方向打断而形成串联通道),在至少两个腔室之间设有可改变流程数和每个流程扁管数的节流装置。
由于现有的平行流换热器翅片为百叶窗开窗片,翅片厚度一般为0.1mm,扁管横放,换热器在制热过程中会有大量水珠不断积聚在翅片间,而换热器本身是没有排水装置的,当工作温度低于0℃时,水珠会立即凝结成冰,会堵塞翅片的百叶窗以及扁管缝隙,从而增大换热风阻,降低换热效率,直接影响换热器正常工作。
发明内容
有鉴于此,本发明提供一种平行流换热器及空调器,主要目的在于使平行流换热器自身能够化开凝结在其外表面的冰霜,从而保证平行流换热器正常工作,减小换热风阻,提高换热效率。
为达到上述目的,本发明主要提供如下技术方案:
一方面,本发明的一个实施例提供一种平行流换热器,包括第一集流管、第二集流管以及连接在所述第一集流管和所述第二集流管之间的多个扁管,所 述第一集流管和所述第二集流管均包括两个沿集流管长度方向并行排列且互不连通的腔体;
每个所述扁管包括两个通道,每个所述通道的两端分别连通所述第一集流管和所述第二集流管;
其中,所述第一集流管和所述第二集流管的第一腔体通过所述扁管的第一通道连通,形成第一回路,所述第一回路中的介质能够通过外部热源获得热量;
所述第一集流管和所述第二集流管的第二腔体通过所述扁管的第二通道连通,形成第二回路,所述第二回路与制冷/制热设备连接。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
优选地,所述第一集流管和所述第二集流管中沿长度方向均设置有隔板,所述隔板将所述第一集流管和所述第二集流管的内腔分别分隔为互不连通的第一腔体和第二腔体。
优选地,所述多个扁管平行,且倾斜设置在所述第一集流管和所述第二集流管之间。
优选地,所述第一集流管和所述第二集流管的第一腔体处于同侧,所述第一集流管和所述第二集流管的第二腔体处于同侧;
所述第二腔体处于靠近风源侧,风源向所述平行流换热器吹送的风沿第二腔体到第一腔体的方向;
所述扁管倾斜的方向为使连通所述第一腔体的扁管部分低于连通所述第二腔体的扁管部分。
优选地,每个所述扁管包括多个通孔,其中位于扁管一侧的三个通孔为第一通道,其余通道为第二通道;且第二通道的通孔数大于第一通道的通孔数。
优选地,平行流换热器还包括:
翅片,所述翅片设置在所述扁管上;
所述扁管和/或所述翅片的外表面涂覆有涂层,所述涂层为疏水或亲水材料。
优选地,所述第一回路中的介质为热交换用介质,所述第二回路中的介质为冷媒。
优选地,所述第一回路还包括控制单元,所述控制单元控制所述第一回路中的介质的流动。
优选地,所述控制单元包括阀门,所述阀门串联在所述第一回路中。
优选地,所述阀门为电动执行阀;
所述控制单元还包括传感器,所述传感器设置在所述扁管附近,用于检测所述扁管的外表面是否结霜;
所述传感器与所述电动执行阀电连接。
优选地,所述第一回路还包括压力泵,所述压力泵串联在所述第一回路中。
优选地,所述第一回路还包括储液箱,所述储液箱靠近所述外部热源,所述储液箱中的介质通过所述外部热源获得热量并能在所述第一回路中流动。
另一方面,本发明的实施例提供一种空调器,包括:
壳体;以及
上述的平行流换热器;
所述平行流换热器设置在所述壳体内。
优选地,所述外部热源为空调器的蓄电池和/或电机和/或压缩机。
借由上述技术方案,本发明一种平行流换热器及空调器至少具有下列优点:
本发明提供的技术方案通过使所述第一集流管和所述第二集流管均包括两个沿集流管长度方向并行排列且互不连通的腔体,由于每个所述扁管包括两个通道,每个通道的两端分别连通所述第一集流管和所述第二集流管,其中,所述第一集流管和所述第二集流管的第一腔体通过第一通道连通,形成第一回路,所述第一回路中的介质能够通过外部热源获得热量,使所述扁管上的冰霜受热融化。而所述第一集流管和所述第二集流管的第二腔体通过第二通道连通,形成第二回路,所述第二回路与制冷/制热设备连接,为系统提供制冷/制热功能。因此在制冷/制热的同时,可以有效防止扁管结霜,保证了平行流换热器的正常工作,避免了结霜引起换热风阻增大,同时提高了换热效率。
优选地,通过增加集液管长度方向的中间隔板,使之成为两个互补连通的腔室,与扁管配合后,前腔用于化霜,后腔用于正常制冷/制热;两个回路(化 霜回路、制冷/制热回路)集成在一起,体积小,重量轻,换热效率高。
优选地,平行流换热器的扁管、翅片倾斜放置,能够有效防止结霜的形成,并在重力作用下,化霜后的水能向下流动,有利于排水。
优选地,对平行流换热器的扁管、翅片进行二次表面处理,优选镀上疏水材料,水的表面吸力小,化霜后水在重力作用下能更好的向下流动;而且扁管结构不用更改,只需在常用扁管的基础上进行二次表面处理即可,成本低,不用更改扁管模具。
优选地,化霜回路采用热源(如:蓄电池、电机、压缩机)的热量进行化霜,不需额外电源加热,成本低,热量利用率高,实现无用热的再次利用。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明的一个实施例提供的一种平行流换热器的结构示意图;
图2是图1的局部放大图;
图3是本发明的一个实施例提供的一种平行流换热器的集流管的纵向剖视图;
图4是本发明的一个实施例提供的一种平行流换热器的集流管的侧视图;
图5是本发明的一个实施例提供的一种平行流换热器的扁管和翅片与集流管的位置关系结构示意图;
图6是本发明的一个实施例提供的一种平行流换热器的第一回路的流程结构示意图;
图7是本发明的一个实施例提供的一种平行流换热器的化霜原理示意图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明申请的具体实施方式、结构、特征及 其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
如图1、图2和图3所示,本发明的一个实施例提出的一种平行流换热器,包括第一集流管10、第二集流管20以及连接在所述第一集流管10和所述第二集流管20之间的多个扁管30,所述第一集流管和所述第二集流管均包括两个沿集流管长度方向并行排列且互不连通的腔体。
如图3所示,每个所述扁管30包括两个通道,每个通道的两端分别连通所述第一集流管10和所述第二集流管20。其中,所述第一集流管10和所述第二集流管20的第一腔体41通过第一通道31连通,形成第一回路,所述第一回路中的介质能够通过外部热源获得热量,在流经所述扁管时加热所述扁管30。
所述第一集流管10和所述第二集流管20的第二腔体42通过第二通道32连通,形成第二回路,所述第二回路与制冷/制热设备连接,为系统提供制冷/制热功能。
本发明提供的技术方案通过使所述第一集流管和所述第二集流管均包括两个沿集流管长度方向并行排列且互不连通的腔体,由于每个所述扁管包括两个通道,每个通道的两端分别连通所述第一集流管和所述第二集流管,其中,所述第一集流管和所述第二集流管的第一腔体通过第一通道连通,形成第一回路,所述第一回路中的介质能够通过外部热源获得热量,使所述扁管上的冰霜受热融化。而所述第一集流管和所述第二集流管的第二腔体通过第二通道连通,形成第二回路,所述第二回路与制冷/制热设备连接,为系统提供制冷/制热功能。因此在制冷/制热的同时,可以有效防止扁管结霜,保证了平行流换热器的正常工作,避免了结霜引起换热风阻增大,同时提高了换热效率。
同时,所述第一回路和所述第二回路集成在一起,使得所述平行流换热器的体积小,重量轻,换热效率高。
进一步的,所述第一集流管10和所述第二集流管20中沿长度方向均设置有隔板40,所述隔板40将所述第一集流管10和所述第二集流管20分别分隔 为互不连通的第一腔体41和第二腔体42。
当然,所述第一集流管10和所述第二集流管20还可以通过分别由两个独立的部分拼接形成,其中一部分包括所述第一腔体41,另一部分包括所述第二腔体42。
进一步的,所述多个扁管30可以平行,且可以倾斜设置在所述第一集流管10和所述第二集流管20之间。扁管30倾斜放置可以使凝结在扁管上的水珠在重力作用下更容易沿倾斜面滑落,有利于排水,从而有效防止冰霜的形成。
具体的,所述第一集流管10和所述第二集流管20的第一腔体41可以处于同侧,相应地,所述第一集流管10和所述第二集流管20的第二腔体42可以处于同侧,使得所述第一集流管10和所述第二集流管20的第一腔体41相对应连通,所述第一集流管10和所述第二集流管20的第二腔体42相对应连通。所述第一腔体41的一侧可以高于所述第二腔体42的一侧,或者所述第一腔体41的一侧可以低于所述第二腔体42的一侧。当所述第一腔体41或所述第二腔体42处于靠近风源侧时,风源向所述平行流换热器吹送的风沿第一腔体41到第二腔体42的方向,或沿第二腔体42到第一腔体41的方向。这时,相应地,如图3和图5所示,所述扁管30的倾斜方向应当使连通所述第一腔体41的扁管部分高于或低于连通所述第二腔体42的扁管部分,并且使较高一侧的扁管部分靠近风源。这样,在风力的作用下,所述扁管的倾斜方向顺着风向能够使扁管上的水珠从高向低滑落。例如,一般风机处于平行流换热器的后侧,当所述第一腔体41处于平行流换热器的前侧时,则使所述第一腔体41所在的扁管部分低于所述第二腔体42所在的扁管部分;而当所述第二腔体42处于平行流换热器的前侧时,则使所述第一腔体41所在的扁管部分高于所述第二腔体42所在的扁管部分。如图7所示,风机从平行流换热器的后侧沿箭头方向送风,很容易使扁管上的水珠顺着风向沿扁管斜面滑落。
如图4所示,所述第一集流管10和所述第二集流管20的内侧面可以设有第一插槽401和第二插槽402,所述第一插槽401与所述第一腔体41对应,所述第二插槽402与所述第二腔体42对应。所述隔板40可以设置在所述第一插槽401和所述第二插槽402之间。所述扁管30的两端分别插入所述第一插 槽401和第二插槽402,并分别与所述第一腔体41和所述第二腔体42连通。
进一步的,如图3所示,所述扁管30可以为多孔扁管,其中位于扁管一侧的三个通孔为第一通道31,所述第一通道31与所述第一腔体41连通,其余通孔为第二通道32,所述第二通道32与所述第二腔体42连通。当然,所述第一通道31的通孔数量并不局限于三个,可以根据需要调整设置。这里仅仅作为一个特殊应用加以举例说明。通常,第二通道32的通孔数大于第一通道31的通孔数,以保证正常的换热工作。
进一步的,如图1和图2所示,所述平行流换热器还可以包括翅片50,所述翅片50设置在所述扁管30上,所述扁管30和/或所述翅片50的外表面可以使用疏水材料,也可以使用亲水材料;使用疏水材料、亲水材料视情况而定。当翅片间距相对较小、倾斜角度较小时,采用亲水材料,换热效果、排水性相对较好;当翅片间距相对较大、倾斜角度较大时,采用疏水材料,换热效果、排水性相对较好;具体情况经试验效果而定。具体的,当翅片间距相对较大、倾斜角度较大时,所述扁管30和/或所述翅片50的外表面具有疏水性,可以使得水的表面吸力减小,化霜后的水在重力作用下能更好的沿扁管的倾斜方向向下流动,可以避免水在扁管上大面积积聚。并且由于扁管倾斜设置,设置在所述扁管上的翅片也同时倾斜,更有利于其上的水珠容易滑落。优选的,可以通过在所述扁管30和/或所述翅片50的外表面进行二次表面处理,例如涂覆疏水材料达到表面具有疏水性的目的。这里不限制涂覆的方法,可以是表面喷涂的方法,也可以是电镀的方法,还可以是其它方法,本领域技术人员可以根据需要选用,这里不作详细说明和具体限定。
进一步的,所述第一回路中的介质采用热交换用介质,优选可以为水,由于水具有换热功能,且比较常见,利用水的流动来传递热量比较方便。例如,第一回路中的水作为介质可以从所述外部热源获得热量,变成一定温度的热水,进入循环,并将其带有的热量传递给扁管,使扁管上的冰霜融化成水而掉落。当然所述第一回路中的介质也可以是其它换热介质,这里不作具体限定。
进一步的,所述第二回路中的介质可以为冷媒。冷媒在冷冻空调系统中,用以传递热能,产生冷冻效果。冷媒是在制冷过程中的一种中间物质,它先接 受制冷剂的冷量而降温,然后再去冷却其它的被冷却物质,称该中间物质为冷媒。又可称载冷剂。冷媒有气体冷媒、液体和固体冷媒、气体冷媒主要有空气等;液体冷媒有水、盐水等;冰和干冰等用做固体冷媒。目前常用的冷媒如氟里昂(freon),在家用电冰箱和空调机中广泛使用。
由于所述第二回路与制冷/制热设备连接,通过所述冷媒在第二回路中流动,为系统提供制冷/制热功能。
进一步的,如图6所示,所述第一回路还可以包括控制单元60,所述控制单元60能够控制所述第一回路中的介质的流动。例如,所述控制单元60可以包括阀门61,所述阀门61串联在所述第一回路中,通过阀门61的开关控制所述第一回路中的介质是否流动。当阀门61打开时,热的介质部分可以流入扁管中加热扁管,而使扁管上的冰霜受热融化。当阀门61截止时,所述第一回路中的介质停止流动,热的介质无法继续流入扁管,因而停止加热扁管。
进一步的,所述阀门61可以为电动执行阀。电动执行阀具有阀门电动执行器,电动执行器以电能为主要能量来源,用来驱动阀门的开关。
同时,所述控制单元60还可以包括传感器62,所述传感器62可以设置在所述扁管30附近,例如可以设置在所述扁管30上,也可以设置在离所述扁管30较近的其它位置,用于检测所述扁管30的外表面是否结霜。
例如,所述传感器62可以设置在所述扁管30的第一通道31的部分。所述传感器62与所述电动执行阀电连接,当所述传感器62检测到扁管30上结霜时,所述传感器62控制所述电动执行阀打开,使具有一定温度的热的介质(例如热水)经所述第一回路流过平行流换热器,从而使扁管和/或翅片上的霜融化成水,进而在风和重力作用下沿扁管和/或翅片的倾斜面掉落。同时控制方便。
进一步的,所述第一回路还可以包括压力泵70,所述压力泵70串联在所述第一回路中,所述压力泵70向所述第一回路中的介质提供流动所需压力。同时,所述压力泵70与所述传感器62电连接,当所述传感器62检测到扁管30上结霜时,所述传感器62控制所述电动执行阀打开的同时,所述传感器62控制所述压力泵70通电工作,促进第一回路中的介质在压力泵70的压力下流 动。
进一步的,所述第一回路还可以包括储液箱80,使所述储液箱80靠近所述外部热源而使存于所述储液箱80中的介质变热,当所述电动执行阀打开时,所述储液箱80中的介质向平行流换热器流动,流过扁管的热的介质可以加热扁管。
进一步的,所述外部热源可以为空调器的蓄电池和/或电机和/或压缩机。由于所述第一回路借用空调器的蓄电池、压缩机、电动机这些发热部件的热量进行加热化霜,充分利用了能源,提高了能量利用效率,同时避免了热量的浪费。
下面举例详细说明第一回路的具体工作过程,如图6所示,所述第一回路内部介质为水(或其它换热介质),所述第一回路的水与储液箱80(即水箱)中的水相连通,由阀门61(电动执行阀)控制所述第一回路的通断,由压力泵70(可以为小型水泵)提供第一回路中水的流动压力,储液箱80放置在热源旁,而使储液箱80内的水变热;所述第二回路为制冷/制热回路,所述第二回路内部介质为冷媒。平行流换热器正常工作时,所述第一回路由阀门61控制关闭,所述第二回路流通,进行正常换热;当平行流换热器的传感器62检测到扁管表面开始结霜时,控制阀门61打开,压力泵70通电工作,使储液箱80中的热水经所述第一回路流过平行流换热器,从而使扁管上的冰霜融化成水,由于翅片50、扁管30表面为疏水材料,且翅片50、扁管30为倾斜放置,同时有风机在平行流换热器的后方进行吹风,这样,在风力、重力、疏水层的作用下,使水滴向下流动后掉落平行流换热器;当平行流换热器的传感器62检测到扁管上的冰霜已化完,所述传感器62即控制阀门61、压力泵70关闭,此时所述第一回路停止工作;在整个过程中,所述第二回路始终保持正常工作。
本发明的另一个实施例提出的一种空调器,包括壳体以及平行流换热器。所述平行流换热器设置在所述壳体内。
所述平行流换热器,包括第一集流管、第二集流管以及连接在所述第一集流管和所述第二集流管之间的多个扁管,所述第一集流管和所述第二集流管均包括两个沿集流管长度方向并行排列且互不连通的腔体;
每个所述扁管包括两个通道,每个所述通道的两端分别连通所述第一集流管和所述第二集流管;
其中,所述第一集流管和所述第二集流管的第一腔体通过所述扁管的第一通道连通,形成第一回路,所述第一回路中的介质能够通过外部热源获得热量;
所述第一集流管和所述第二集流管的第二腔体通过所述扁管的第二通道连通,形成第二回路,所述第二回路与制冷/制热设备连接。
所述平行流换热器的具体实施方式详细参见上一个实施例中的具体实施方式,这里不再赘述。
进一步的,所述外部热源为空调器的蓄电池和/或电机和/或压缩机。由于所述第一回路借用空调器的蓄电池、压缩机、电动机这些发热部件的热量进行加热化霜,充分利用了能源,提高了能量利用效率,同时避免了热量的浪费。
本发明提供的技术方案通过使所述第一集流管和所述第二集流管均包括两个沿集流管长度方向并行排列且互不连通的腔体,由于每个所述扁管包括两个通道,每个通道的两端分别连通所述第一集流管和所述第二集流管,其中,所述第一集流管和所述第二集流管的第一腔体通过第一通道连通,形成第一回路,所述第一回路中的介质能够通过外部热源获得热量,使所述扁管上的冰霜受热融化。而所述第一集流管和所述第二集流管的第二腔体通过第二通道连通,形成第二回路,所述第二回路与制冷/制热设备连接,为系统提供制冷/制热功能。因此在制冷/制热的同时,可以有效防止扁管结霜,保证了平行流换热器的正常工作,避免了结霜引起换热风阻增大,同时提高了换热效率。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (14)

  1. 一种平行流换热器,包括第一集流管、第二集流管以及连接在所述第一集流管和所述第二集流管之间的多个扁管,其特征在于,
    所述第一集流管和所述第二集流管均包括两个沿集流管长度方向并行排列且互不连通的腔体;
    每个所述扁管包括两个通道,每个所述通道的两端分别连通所述第一集流管和所述第二集流管;
    其中,所述第一集流管和所述第二集流管的第一腔体通过所述扁管的第一通道连通,形成第一回路,所述第一回路中的介质能够通过外部热源获得热量;
    所述第一集流管和所述第二集流管的第二腔体通过所述扁管的第二通道连通,形成第二回路,所述第二回路与制冷/制热设备连接。
  2. 根据权利要求1所述的平行流换热器,其特征在于,
    所述第一集流管和所述第二集流管中沿长度方向均设置有隔板,所述隔板将所述第一集流管和所述第二集流管的内腔分别分隔为互不连通的第一腔体和第二腔体。
  3. 根据权利要求1或2所述的平行流换热器,其特征在于,
    所述多个扁管平行,且倾斜设置在所述第一集流管和所述第二集流管之间。
  4. 根据权利要求3所述的平行流换热器,其特征在于,
    所述第一集流管和所述第二集流管的第一腔体处于同侧,所述第一集流管和所述第二集流管的第二腔体处于同侧;
    所述第二腔体处于靠近风源侧,风源向所述平行流换热器吹送的风沿第二腔体到第一腔体的方向;
    所述扁管倾斜的方向为使连通所述第一腔体的扁管部分低于连通所述第二腔体的扁管部分。
  5. 根据权利要求1或2所述的平行流换热器,其特征在于,
    每个所述扁管包括多个通孔,其中位于扁管一侧的三个通孔为第一通道,其余通孔为第二通道;且第二通道的通孔数大于第一通道的通孔数。
  6. 根据权利要求3所述的平行流换热器,其特征在于,还包括:
    翅片,所述翅片设置在所述扁管上;
    所述扁管和/或所述翅片的外表面涂覆有涂层,所述涂层为疏水或亲水材料。
  7. 根据权利要求1或2所述的平行流换热器,其特征在于,
    所述第一回路中的介质为热交换用介质,所述第二回路中的介质为冷媒。
  8. 根据权利要求1或2所述的平行流换热器,其特征在于,
    所述第一回路还包括控制单元,所述控制单元控制所述第一回路中的介质的流动。
  9. 根据权利要求8所述的平行流换热器,其特征在于,
    所述控制单元包括阀门,所述阀门串联在所述第一回路中。
  10. 根据权利要求9所述的平行流换热器,其特征在于,
    所述阀门为电动执行阀;
    所述控制单元还包括传感器,所述传感器设置在所述扁管附近,用于检测所述扁管的外表面是否结霜;
    所述传感器与所述电动执行阀电连接。
  11. 根据权利要求10所述的平行流换热器,其特征在于,
    所述第一回路还包括压力泵,所述压力泵串联在所述第一回路中。
  12. 根据权利要求1或2所述的平行流换热器,其特征在于,所述第一回路还包括储液箱,所述储液箱靠近所述外部热源,所述储液箱中的介质通过所述外部热源获得热量并能在所述第一回路中流动。
  13. 一种空调器,其特征在于,包括:
    壳体;以及
    上述权利要求1~12中任一项所述的平行流换热器;
    所述平行流换热器设置在所述壳体内。
  14. 根据权利要求13所述的空调器,其特征在于,
    所述外部热源为空调器的蓄电池和/或电机和/或压缩机。
PCT/CN2017/072414 2016-01-25 2017-01-24 一种平行流换热器及空调器 WO2017129109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610053481.1A CN105546879A (zh) 2016-01-25 2016-01-25 一种平行流换热器及空调器
CN201610053481.1 2016-01-25

Publications (1)

Publication Number Publication Date
WO2017129109A1 true WO2017129109A1 (zh) 2017-08-03

Family

ID=55826256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072414 WO2017129109A1 (zh) 2016-01-25 2017-01-24 一种平行流换热器及空调器

Country Status (2)

Country Link
CN (1) CN105546879A (zh)
WO (1) WO2017129109A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111322897A (zh) * 2019-08-30 2020-06-23 江苏科技大学 一种具有z形槽道的新型flng换热器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546879A (zh) * 2016-01-25 2016-05-04 珠海格力电器股份有限公司 一种平行流换热器及空调器
CN105571349A (zh) * 2016-02-18 2016-05-11 珠海格力电器股份有限公司 换热器
CN107167025B (zh) * 2017-05-17 2019-06-14 北京化工大学 一种抑制户外低温壁面结霜的复合方法
CN109708512A (zh) * 2018-09-17 2019-05-03 李社红 换热管、换热器及热泵空调机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398242A (zh) * 2007-09-25 2009-04-01 中国科学院理化技术研究所 蓄热除霜或控温的混合工质深冷节流制冷系统
CN103486783A (zh) * 2013-09-26 2014-01-01 广东美的制冷设备有限公司 空调器系统及其化霜控制方法
CN203824169U (zh) * 2014-01-06 2014-09-10 丹佛斯微通道换热器(嘉兴)有限公司 换热器和热泵系统
CN105546879A (zh) * 2016-01-25 2016-05-04 珠海格力电器股份有限公司 一种平行流换热器及空调器
CN205373156U (zh) * 2016-01-25 2016-07-06 珠海格力电器股份有限公司 一种平行流换热器及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398242A (zh) * 2007-09-25 2009-04-01 中国科学院理化技术研究所 蓄热除霜或控温的混合工质深冷节流制冷系统
CN103486783A (zh) * 2013-09-26 2014-01-01 广东美的制冷设备有限公司 空调器系统及其化霜控制方法
CN203824169U (zh) * 2014-01-06 2014-09-10 丹佛斯微通道换热器(嘉兴)有限公司 换热器和热泵系统
CN105546879A (zh) * 2016-01-25 2016-05-04 珠海格力电器股份有限公司 一种平行流换热器及空调器
CN205373156U (zh) * 2016-01-25 2016-07-06 珠海格力电器股份有限公司 一种平行流换热器及空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111322897A (zh) * 2019-08-30 2020-06-23 江苏科技大学 一种具有z形槽道的新型flng换热器
CN111322897B (zh) * 2019-08-30 2024-04-16 江苏科技大学 一种具有z形槽道的新型flng换热器

Also Published As

Publication number Publication date
CN105546879A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2017129109A1 (zh) 一种平行流换热器及空调器
CN106820789A (zh) 一种双蒸发器立式制冷展示柜
KR101367212B1 (ko) 자체 발열 기능 판형 열교환기를 이용한 전기차 냉난방 및 배터리 온도관리 시스템 그리고 그 운용방법
CN102062492A (zh) 空调机
CN110006165B (zh) 一种兼低温除霜与防高温的保护装置、保护方法及空调器
KR20130092249A (ko) 히트 펌프
CN205373156U (zh) 一种平行流换热器及空调器
CN109378550B (zh) 汽车空调器和新能源汽车
CN107044704A (zh) 一种热泵系统及其化霜控制方法
CN103982968A (zh) 主动式辐射板换热系统及其换热处理方法
KR100496895B1 (ko) 지열을 이용한 히트 펌프식 냉난방 장치
CN109000329A (zh) 空调系统及其节能换气装置
KR20080088807A (ko) 냉장고의 제상장치
WO2020166308A1 (ja) 除霜装置およびこれを備えた冷蔵庫
CN111251801B (zh) 车辆的热管理系统及车辆
JP2014070836A (ja) 乾燥冷風装置
CN207247391U (zh) 一体式空调
CN206131589U (zh) 风冷冰箱
CN210107846U (zh) 风冷冰箱
KR20180122227A (ko) 열전소자를 이용한 냉풍기용 냉각장치
CN206831739U (zh) 一种热泵系统
CN207247374U (zh) 制冷主机及空调
CN217685703U (zh) 用于空调器的除霜装置及空调器
CN106679211B (zh) 一种室内冷却和造雪二合一系统
CN212320013U (zh) 一种空调化霜控制装置及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743724

Country of ref document: EP

Kind code of ref document: A1