WO2017129007A1 - 一种触摸点定位方法、装置及终端设备 - Google Patents

一种触摸点定位方法、装置及终端设备 Download PDF

Info

Publication number
WO2017129007A1
WO2017129007A1 PCT/CN2017/071495 CN2017071495W WO2017129007A1 WO 2017129007 A1 WO2017129007 A1 WO 2017129007A1 CN 2017071495 W CN2017071495 W CN 2017071495W WO 2017129007 A1 WO2017129007 A1 WO 2017129007A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
target sub
touch point
target
touch
Prior art date
Application number
PCT/CN2017/071495
Other languages
English (en)
French (fr)
Inventor
钟光华
苟书鑫
黄基松
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17743622.7A priority Critical patent/EP3404518A4/en
Publication of WO2017129007A1 publication Critical patent/WO2017129007A1/zh
Priority to US16/047,568 priority patent/US20180356935A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Definitions

  • the present invention relates to the field of touch screens, and in particular, to a touch point positioning method, device and terminal device for a touch screen.
  • the touch screen As a human-computer interaction interface, the touch screen is widely used in various digital information systems because of its advantages of easy use, fast response, and space saving.
  • the touch screen works, the touch screen is scanned at a certain scanning frequency to obtain the user's touch position.
  • the touch screen can be classified into a resistive type, a surface capacitive type, a projected capacitive type, an infrared type, a surface acoustic wave type, a bending wave type, an active digitizer type, and an optical imaging type.
  • a resistive type a surface capacitive type
  • a projected capacitive type an infrared type
  • a surface acoustic wave type a bending wave type
  • an active digitizer type an optical imaging type.
  • Apple is the first to use the projected capacitive touch screen in the field of mobile terminals. With its excellent and comfortable user experience, the projected capacitive touch screen technology has brought the mobile terminal into a new era.
  • the principle of the projected capacitive touch screen is that the sensor uses the touch screen electrode to emit the electrostatic field line.
  • capacitors for the projected capacitive sensing technology there are two types of capacitors for the projected capacitive sensing technology: self-capacitance and alternating capacitance.
  • the alternating capacitive screen is made of indium-tin oxide (ITO) on the surface of the glass to form a lateral electrode and a longitudinal electrode. Where the two sets of electrodes intersect, a capacitance is formed, that is, the two sets of electrodes respectively constitute the two poles of the capacitor.
  • ITO indium-tin oxide
  • the interactive capacitive screen determines the position of the touch point by scanning for changes in capacitance at each intersection.
  • the scanning method of the interaction capacitor can detect the capacitance value of each intersection and the capacitance change after the touch. Therefore, the scanning time of the interaction capacitor needs to scan and detect the X ⁇ Y electrode, but no “ghost point” is generated. Therefore, many mobile phone manufacturers use the interactive capacitor technology in the touch screen of the mobile terminal.
  • the interactive capacitor technology uses progressive scanning of all sensing areas of the touch screen, and needs to scan and detect X ⁇ Y electrodes, and the scanning time is long, and the reporting rate (the number of times the touch screen reports contact information to the processor every second) is very It is difficult to make a breakthrough.
  • the embodiment of the invention provides a touch point positioning method, device and terminal device for a touch screen, which can effectively shorten the scanning time, improve the reporting rate, and improve the fluency of the user experience.
  • an embodiment of the present invention provides a touch point positioning method for a touch screen, including:
  • the touch screen controller For each target sub-area in the target area, the touch screen controller performs parallel scanning on the horizontal channels in the target sub-area, determines the target sub-area where the touched point exists, and determines whether the target sub-area where the touched point exists can be divided, if If it is divided, the target sub-area of the touched point is used as the target area, and the above steps are repeatedly performed until the sub-area where the touched point exists cannot be subdivided. When the sub-area where the touched point is present cannot be divided, the horizontal direction of the touched point is determined.
  • the longitudinal channel of the channel's signal determines the longitudinal coordinate of the touch point.
  • the embodiment of the present invention does not perform progressive scan on the touch screen, but divides the touch screen into a plurality of sub-areas, and performs parallel scanning on all the horizontal channels (X-direction channels, or horizontal X-channels) in each sub-area, respectively.
  • the target sub-area where the touch point exists is no longer scanned, and the sub-area where the touch point exists is repeated by the above-mentioned action to perform iterative division and scanning until the division position is not possible, and the position information of the touched point can be determined.
  • the embodiment of the present invention adopts parallel scanning on multiple channels, and divides the touch screen to reduce the scanning range in an iterative decreasing manner, and can gradually reduce the scanning range of the touch screen (ie, the target area), save scanning time, and improve reporting. rate.
  • the horizontal channel in the target sub-area is scanned in parallel for each target sub-area in the target area, and the target sub-area where the touch point exists is determined.
  • the method includes: sequentially scanning the horizontal channels in each of the plurality of target sub-areas in parallel, and determining the target sub-areas in which the touch points exist.
  • the processor supports parallel channel parallel scanning in the plurality of target sub-regions
  • the lateral channels of the plurality of target sub-regions are scanned in parallel in parallel, and the target sub-region where the touched point exists is determined.
  • the process of determining whether the target sub-area of the touched point can be divided is: determining that there is a touch Whether there is only one horizontal channel in the target sub-area of the point. If there is only one horizontal channel in the target sub-area where there is a touch point, it is determined that the target sub-area where the touched point exists cannot be divided; if there is a target sub-area where there is a touch point For the horizontal channel, it is determined that the target sub-area where the touch point exists can be divided.
  • determining a lateral coordinate of the touch point is: determining a lateral direction of the horizontal channel of the target sub-area where the touch point is located The coordinates are the horizontal coordinates of the touch point.
  • the fourth possible implementation of the first aspect Determining, according to a longitudinal channel that receives the horizontal channel signal in parallel, determining a longitudinal coordinate corresponding to the touch point includes: detecting whether a capacitance on each longitudinal channel of the parallel channel signal is received changes, and detecting a change in capacitance on a longitudinal channel And determining that the longitudinal coordinate corresponding to the longitudinal channel whose capacitance changes is the longitudinal coordinate corresponding to the touch point.
  • the number of target sub-regions is 2 And the number of horizontal channels in the two target sub-areas is equal. That is, the target area is usually divided into two target sub-areas of the upper half screen and the lower half screen by using the dichotomy method, and the horizontal channels of the upper half screen are scanned in parallel and the horizontal channels of the lower half screen are scanned in parallel to determine the presence of touch points. Half screen area.
  • the equality in the embodiments of the present invention is not necessarily completely equal, and may be approximately equal.
  • the target area may be divided by other N-division methods such as the three-point method, the quadrature method, and the like, and then the horizontal channel is performed in each target sub-area after the division.
  • N-division methods such as the three-point method, the quadrature method, and the like.
  • Parallel scanning The embodiments of the present invention are merely exemplified by the dichotomy, and are not limiting.
  • the embodiment of the present invention provides a touch point positioning device, where the touchable area of the touch screen is an initial target area for scanning a touch point, and the touch point positioning device includes:
  • a scanning module configured to perform parallel scanning on the horizontal channel in the target sub-area for each target sub-area in the target area to determine a target sub-area where the touch point exists, wherein the target sub-area is a horizontal channel according to the target area Obtaining the direction of the indication, the number of target sub-regions is greater than 1 and less than or equal to the number of lateral channels in the target region; the lateral coordinate determining module is configured to determine whether the target sub-region with the touched point can be divided, if the touch point exists The target sub-region can be divided, then the target sub-region with the touched point is used as the target region; if the target sub-region with the touched point cannot be divided, the lateral coordinate of the touched point is determined; the longitudinal coordinate determining module receives according to the parallel The longitudinal channel of the signal of the transverse channel determines the longitudinal coordinate corresponding to the touch point.
  • the scanning module is configured to: sequentially scan the horizontal channels in each of the plurality of target sub-regions in parallel, and determine There is a target sub-area of touch points.
  • the scanning module is configured to: perform parallel scanning on the horizontal channels in the plurality of target sub-regions in parallel, and determine the target sub-existing target region.
  • the lateral coordinate determining module is in use
  • the determining whether the target sub-area where the touch point exists can be specifically used to determine whether there is only one horizontal channel in the target sub-area where the touch point exists, and if there is only one horizontal channel in the target sub-area where the touch point exists, it is determined to exist.
  • the target sub-area of the touch point may not be divided; if there are multiple horizontal channels in the target sub-area where the touch point exists, it is determined that the target sub-area where the touch point exists may be divided.
  • the lateral coordinate determining module is specifically configured to determine a lateral coordinate of the horizontal channel of the target sub-region where the touch point is located as a touch point in determining a lateral coordinate of the touch point The horizontal coordinates.
  • the longitudinal coordinate determining module is specifically configured to: detect whether a capacitance on each longitudinal channel of the parallel channel receiving parallel channel changes, and if the capacitance on the longitudinal channel is detected to occur If the change is made, the longitudinal coordinate corresponding to the longitudinal channel whose capacitance is changed is the longitudinal coordinate corresponding to the touch point.
  • the number of target sub-regions is two, and the number of lateral channels in the two target sub-regions is equal.
  • an embodiment of the present invention provides a terminal device, where the terminal device includes a touch screen and a touch point positioning device connected to the touch screen.
  • the touchable area of the touch screen is an initial target area, and the touch point positioning device is in the second aspect.
  • a touch point location device as described in any of the above.
  • the terminal device may include: a handheld device, an in-vehicle device, a wearable device, a computing device, and various forms of user equipment (User Equipment, UE), such as a mobile phone, a tablet computer, and the like.
  • UE User Equipment
  • an embodiment of the present invention provides a terminal device, including: a touch screen, a touch screen controller connected to the touch screen, wherein the touch screen includes a plurality of lateral electrodes and a plurality of longitudinal electrodes; and the touch screen controller is configured to: For each target sub-area in the target area in the touch screen, the lateral electrodes in the control target sub-area transmit excitation signals in parallel, and all the longitudinal electrodes are scanned in parallel to receive the excitation signal to determine the target sub-area where the touch points exist, wherein , the target sub-area is divided according to the direction indicated by the lateral channel composed of the lateral electrodes of the target area Obtaining, the number of target sub-regions is greater than 1 and less than or equal to the number of lateral channels composed of lateral electrodes in the target region; determining whether the target sub-region with the touched point can be divided, and if it can be divided, determining the target having the touched point
  • the sub-area is a target area, and for each target sub-area in
  • the touch screen in the embodiment of the present invention further has the first possible implementation manner of the first aspect to be described in any one of the possible implementation manners of the fifth possible implementation manner of the first aspect.
  • an embodiment of the present invention further provides a computer storage medium, where the medium stores a program, and the program includes some or all of the steps in the method of the first aspect.
  • multi-channel parallel transmission scanning abscissa is adopted, and the scanning range is reduced by the N-division iterative decrement method, thereby gradually reducing the scanning range of the touch screen, and finally determining Touch the specific location of the point, which can save scanning time and increase the reporting rate.
  • 1-1 is a front view of a front projection of a mutual capacitive touch screen
  • Figure 1-2 is a cross-sectional view of Figure 1-1;
  • 1-3 are front elevational views of the drive layer 200 in a mutual capacitive touch screen
  • 1-4 are front elevational views of the sensing layer 300 in the mutual capacitive touch screen
  • FIGS. 1-4 are schematic diagrams of electric field distributions when a point in FIGS. 1-4 is not touched;
  • Figure 1-6 is a schematic diagram of electric field distribution when a certain point in Figure 1-4 is touched;
  • FIG. 2 is a schematic diagram of a scanning method of an alternating capacitance touch screen in the prior art according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a touch point positioning method of a touch screen according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a fast scan of a touch screen according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a binary scan of a single touch in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a binary scanning method in multi-touch control according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a functional structure module of a touch point positioning apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of hardware of a terminal device according to an embodiment of the present invention.
  • the mutual capacitance in the embodiment of the present invention is also called mutual capacitance
  • the touch screen adopting the technology is called an interactive capacitive screen, a mutual capacitive screen or a mutual capacitive touch screen.
  • the lateral electrodes sequentially emit excitation signals, and all the longitudinal electrodes receive signals at the same time, so that the capacitance values of all the intersections of the lateral and longitudinal electrodes can be obtained.
  • Size which is the size of the capacitance of the 2D plane of the entire touch screen. According to the two-dimensional capacitance change data of the touch screen, the coordinates of each touch point can be calculated. Therefore, even if there are multiple touch points on the screen, the true coordinates of each touch point can be calculated.
  • the mutual capacitance type touch screen in the invention is used for covering the surface of the display screen used for graphic or image display, and controls the content displayed on the display screen through the control device of the peripheral device.
  • a specific structure of the mutual capacitive touch screen in the prior art and the principle of the touch point positioning are shown in FIGS. 1-1 to 1-6, which are described in detail below.
  • Figure 1-1 shows a cross-sectional view of the mutual capacitive touch screen.
  • the cross-sectional view is as shown in Figure 1-2.
  • the touch plane 100 includes the driving layer 200 and the sensing layer 300 that are not in the same plane, and is sandwiched between the driving layers 200.
  • a transparent dielectric plane 910 between the sensing layer 300 and the sensing layer 300.
  • a protective plane 120 made of a transparent insulating material may also be provided.
  • the driving layer 200, the sensing layer 300 and the medium plane 910 are disposed between the touch plane 100 and the protection plane 120, and the protection plane 120 is in contact with a display screen (or display panel).
  • the driving layer 200 includes a plurality of flat driving electrodes 211 made of transparent conductive materials distributed in the same plane, and the driving electrodes 211 are grouped into several groups through the driving electrode connecting lines 220.
  • Drive line 210 The drive electrode 211 is referred to as a lateral electrode, and the drive line 210 is a lateral X-channel or a lateral channel in the embodiment of the present invention.
  • the sensing layer 300 includes: a flat sensing electrode 311 made of a transparent conductive material and spaced apart in the same plane.
  • the sensing electrodes 311 are grouped and connected in series by the sensing electrode line 320.
  • the sensing electrode 311 is referred to as a longitudinal electrode, and the sensing line 310 is a longitudinal Y channel or a longitudinal channel in the embodiment of the present invention.
  • Each of the driving lines 210 is parallel to each other, and the sensing lines 310 are parallel to each other, and the driving lines 210 and the sensing lines 310 vertically intersect.
  • the driving line 210 is electrically connected to the excitation signal module, and the sensing line 310 is electrically connected to the sensing control module to form a mutual capacitance between the driving line 210 and the sensing line 310, as shown in FIG.
  • the lateral electrode When detecting the mutual capacitance, the lateral electrode is controlled by the touch screen control device to emit an excitation signal, and all the electrodes in the longitudinal direction receive the signal at the same time, and the capacitance value of all the intersections of the lateral electrode and the longitudinal electrode can be detected by the sensing control module (ie, driving)
  • the sensing control module ie, driving
  • Each mutual capacitance is formed between the line 210 and the sensing line 310.
  • the finger 150 contacts the touch plane 100 and is within the touch area, the finger 150 corresponds to an electrode above the sensing line 310, changing the top of the driving line 210 and the sensing line 310.
  • the electric field between the two can be seen as the finger 510 sucking away the electric field line from the driving line 210 to the top of the sensing line 310, thereby changing the mutual capacitance of the touched area of the touched point, so that the sensing control circuit can determine Touch the location touched within the area.
  • the touch screen control device controls the horizontal electrodes to emit excitation signals row by row (ie, one by one driving line 210), and all the electrodes in the vertical direction (ie, all sensing lines 310 in the touch screen) simultaneously receive signals when the finger touches
  • the sensing control module connected to the vertical electrode can detect the change of the capacitance of a sensing line corresponding to the touch point, that is, the corresponding touch point can be determined by software calculation.
  • the longitudinal coordinate of the two-dimensional plane according to the driving line 210 of the currently transmitted excitation signal, can determine the lateral coordinate of the two-dimensional plane of the touch point.
  • the capacitance matrix is usually 22 ⁇ 9 (the number of horizontal X channels is 22, and the number of vertical Y channels is 9).
  • a schematic diagram of scanning of a 5-inch touch screen is shown in FIG. 2, in which black dots indicate touch points, and the number of lateral channels (X channels, or lateral X channels, that is, the driving lines 210 in the embodiment shown in FIG. 1) is 22, and is determined.
  • the number of scans required for the position of the touch point in the touch screen is 22 times. If t represents the time taken for one of the horizontal X channels to scan once, the scan time of the touch point position in the touch screen is determined to be 22t.
  • the embodiment of the invention provides a method for quickly scanning and detecting a touch screen, which can effectively shorten the scanning time, improve the reporting rate, and make the user experience more comfortable and smooth.
  • the flow of the touch point positioning method of the touch screen in the embodiment of the present invention is described in detail below with reference to FIG. 3 .
  • the method is performed by a touch screen control device (or a touch screen controller), and the touch screen control device may be a micro control unit located in the touch screen.
  • the Microcontroller Unit (MCU) may also be an application processor or an integrated circuit (IC) located in the terminal device.
  • the touch screen control device is used to control a plurality of horizontal channels to simultaneously transmit excitation signals (also called electrostatic field lines), and the plurality of vertical channels are scanned in parallel, and the target scanning area is divided into a plurality of target sub-areas.
  • excitation signals also called electrostatic field lines
  • the method of dividing the target scanning area into a plurality of target sub-areas is referred to as an N-division method in the embodiment of the present invention.
  • the touchable area of the touch screen is used as the initial target area of the scan, and the target area is indicated from the horizontal channel.
  • the direction is divided into N target sub-regions, each of which includes M 1 , M 2 , ... M N horizontal channels, wherein The value is the number of horizontal X channels of the target area.
  • the target area of the scan is the entire touchable area of the touch screen.
  • the value of the horizontal X channel of the entire touch screen, in the subsequent division, The number of horizontal X channels for the corresponding scan target area.
  • the preferred division of the N-division method is equal division so that the number of lateral X-channels of each sub-region is the same or similar, that is, the values of the lateral channel numbers M i of the respective sub-regions are the same or similar.
  • the N-division method may specifically be a dichotomy, a trichotomy, and the like, wherein N is a positive integer, must be greater than 1, and cannot be greater than the number of horizontal X-channels of the touch screen.
  • a dichotomy is generally employed.
  • the number of horizontal X channels is 22, and by the dichotomy, it can be divided into two target sub-areas of the upper and lower screens with the number of horizontal X channels being 11 respectively.
  • the touch screen has a horizontal X channel number of 9, and a vertical Y channel number of 7. If it is a binary method, the touch screen is divided into a horizontal half channel number of 5 upper half screen (1 in FIG. 4). The part shown) and the lower half of the horizontal X channel number 4 (the part shown by 2 in Fig. 4) are two target sub-areas.
  • the processor does not necessarily divide the target area of the scan into N target sub-areas, but may directly specify the number of the channel that each process needs to scan, and therefore,
  • the N-division method in the embodiment of the invention does not necessarily have an actual division operation, but merely expresses a manner of dividing the scan area.
  • the horizontal X-channel in the target sub-area adopts multi-channel parallel emission static field lines, and the vertical Y-channel parallelly receives electrostatic field lines for scanning. If the target sub-area is scanned, and there is a change in the capacitance in the area before and after the scan, it is determined that there is a touch point in the target sub-area.
  • the electrostatic field lines are simultaneously transmitted to the five X channels in the upper half screen of the touch screen, and all the vertical channels (Y channels) are parallel. Scanning is performed by receiving the electrostatic field line; the same scanning mode is also adopted for the lower half screen, and the electrostatic field lines are simultaneously emitted for the four X channels in the lower half screen. Scanning is performed in such a manner that the Y channel receives the electrostatic field lines in parallel.
  • the scanning method is sequential scanning, and the order of scanning sequentially may be from top to bottom, from bottom to top, or in a random order.
  • the second parallel scanning method requires the processing speed of the processor to support simultaneous parallel scanning of multiple target sub-regions.
  • Whether the target sub-area including the touch point can be divided.
  • each N-division method can only be determined after the division scan. Which target sub-regions the touch point exists in, and the lateral coordinates of the point cannot be accurately touched. Therefore, it is necessary to further divide the target sub-area where the touch point exists, until the division can not be performed again, and the lateral coordinate of the point can be accurately touched.
  • the process of determining whether the target sub-area where the touch point exists can be divided: determining whether there is only one horizontal channel in the target sub-area where the touch point exists, and if there is only one horizontal channel in the target sub-area where the touch point exists, determining that there is a touch point
  • the target sub-area cannot be divided; if there are multiple horizontal channels in the target sub-area where the touch point exists, it is determined that the target sub-area where the touched point exists can be divided.
  • Steps 301 and 302 are performed to perform an iterative scan, and the scan area is gradually reduced in subsequent scans. During this process, iterative scanning is no longer performed on the target sub-region where no touch points exist.
  • step 304 iteratively scans until the target sub-area where the touched point exists cannot continue to be divided, and then step 304 is performed.
  • the target area corresponds to a variable
  • the target sub-area storing the touch point or the reference object of the target sub-area is assigned to the variable
  • Steps 301, 302, and 303 are repeatedly performed until the target sub-area where the touch point exists is a horizontal X-channel, and when the horizontal X-channel is not divided, the lateral coordinate of the horizontal X-channel where the touch point is located is determined. The horizontal coordinate of the touch point.
  • the upper half of the screen having the touched point is used as the target area, and the upper half of the screen is divided into the target sub-area with the horizontal X-channel number of 3 by the dichotomy (in FIG. 4).
  • the portion indicated by 3) and the target sub-region having the horizontal X-channel number of 2 (the portion shown by 4 in FIG. 4), and repeating steps 301, 302, and 303,
  • the target sub-area with the number of horizontal X channels of the touched point of 2 is used as the target area, and then the dichotomy is performed to obtain two target sub-areas whose lateral X-channels are respectively 1 (5 and 7 in FIG. 4, respectively).
  • the part shown), at this time there is only one horizontal X channel in the upper half of the touch point, and can no longer be divided, so that the lateral coordinate of the horizontal X channel is determined as the lateral coordinate of the touch point.
  • the detection of the longitudinal coordinates of the touched point is the same as that described in the embodiment shown in FIG. 1, because the longitudinal Y-channel adopts a manner of simultaneously receiving all of the electrostatic fields in parallel while the lateral X-channel scanning emits an electrostatic field, so in scanning to touch
  • the sensing control module can detect the change of the capacitance of a certain sensing line corresponding to the touch point, and the longitudinal coordinate corresponding to the longitudinal Y channel whose capacitance changes is the corresponding touch point in the current target sub-area.
  • the longitudinal coordinate can be determined by software calculation to determine the longitudinal coordinate of the two-dimensional plane of the corresponding touch point.
  • determining the longitudinal coordinate of the touch point may be determined when the first touch to the touch point, or may be determined when any scan of the iterative scan is performed to the touch point, for example, may be in step 304. In the middle, when the target sub-area where the touched point exists can no longer be divided, and the lateral coordinate of the touched point is determined, the longitudinal coordinate is simultaneously determined.
  • Step 304 may be performed simultaneously in the process of performing step 301, step 302, and step 303.
  • the coordinate position information of the touched point is the lateral coordinate obtained in step 304, and the longitudinal coordinate obtained in step 305.
  • the touch screen is divided into N target sub-areas based on the N-division method, and all horizontal X channels in each target sub-area are separately scanned in parallel, The target sub-area where there is no touch point is no longer scanned, and the above-mentioned action is repeated for the target sub-area where the touch point exists, and the iterative N-division method is performed to scan until the division is impossible, and the position information of the touched point can be determined.
  • the multi-channel parallel transmission scanning abscissa is adopted, and the scanning range is reduced by the dichotomy method in an iterative decreasing manner. It can gradually reduce the scanning range of the touch screen, save scanning time and improve the reporting rate.
  • the touch screen has a horizontal X channel number of 9, and a vertical Y channel number of 7. If the horizontal X channel progressive line scanning method shown in FIG. 2 is used, the scanning time is 9t (t represents the time when the X channel is scanned once). With the embodiment of the present invention, if the dichotomy is adopted, only three divisions are required, and the total scanning time is at most 7t. Therefore, it is possible to save scanning time and increase the reporting rate.
  • the N-segment method is generally used as a dichotomy.
  • the embodiments of the present invention can be applied not only to single touch but also to multi-touch. The following is a detailed introduction of single-touch scanning and multi-touch scanning based on the dichotomy.
  • the schematic diagram of the scan is shown in Figure 5.
  • the figure uses a common 5-inch touch screen with a capacitance matrix of 22 ⁇ 9 (the number of horizontal X channels is 22, and the number of vertical Y channels is 9).
  • the black dots in the figure indicate touch points.
  • the specific scanning method is as follows:
  • Step 1 Based on the dichotomy method, after dividing the touch screen into two upper and lower half screen areas, parallel scanning is performed on the horizontal multi-channels of the upper half screen and the lower half screen respectively, according to different processing speeds that the processing unit of the touch screen can support,
  • the specific scanning order can be the following two ways:
  • the first type parallel scanning of the horizontal multi-channel of the upper half screen and the lower half screen in sequence: usually, the upper half screen is scanned first. Then scan the lower half of the screen, of course, you can scan the lower half of the screen first, then scan the upper half of the screen.
  • the second type simultaneous horizontal multi-channel parallel scanning of the upper half screen and the lower half screen, that is, parallel scanning of the horizontal channel of the lower half screen while performing parallel scanning on the horizontal channel of the upper half screen
  • Step 2 The first touch screen control device controls all the horizontal electrodes of the upper half screen to simultaneously emit an excitation signal, and scans all the capacitors in the upper half screen in parallel (the portion shown in FIG. 5).
  • the change in capacitance before and after scanning indicates that the area exists. Touch point; the second parallel scan of all the lateral capacitance in the lower half of the screen (the part shown in 2 in Figure 5), the capacitance does not change during scanning, and the area will not be scanned later, thereby gradually reducing the scanning area. At this point, all areas of the touch screen have been scanned, and the round of scanning is ended.
  • Step 3 The third and fourth scans are based on the scan performed in the upper half of the screen in step 1 (i.e., the portion shown by 1 in Fig. 5).
  • the upper half screen is divided into upper and lower areas (portions shown by 3 and 4 in Fig. 5) for scanning until the 9th and 10th times are scanned, and when the area division cannot be performed, the presence of the touch point can be determined.
  • the area of the ninth scan is the lateral position of the touch point.
  • Step 4 For the judgment of the longitudinal position, when the horizontal X-channel scan emits an electrostatic field, the longitudinal Y-channels are all received in parallel at the same time, and the longitudinal position is judged by software.
  • the number of scans used to determine the position information of the touched point is 10 times, and the scan time is 10t (t indicates the time when the X channel is scanned once), and therefore, compared with the horizontal X channel in the prior art.
  • the 22t time of the progressively transmitted scanning method greatly shortens the scanning time, thereby saving scanning time and increasing the reporting rate.
  • the scanning time for determining the position information of the touch point is half of the sequential scanning, that is, 5t, which is even more Saves scanning time.
  • the scanning schematic is shown in Figure 6.
  • the figure also uses a common 5-inch touch screen with a capacitance matrix of 22 ⁇ 9 (the number of horizontal X channels is 22, and the number of vertical Y channels is 9).
  • the black dots in the figure indicate touch points.
  • the specific scanning method is as follows:
  • Step 1 Based on the dichotomy idea, the touch screen is divided into upper and lower two half screen areas, the horizontal X channel adopts multi-channel parallel transmission mode, and the vertical Y channel is received in parallel.
  • the first half of the first scanning mode in the embodiment shown in FIG. 5 is scanned first, and then the lower half of the screen is scanned to introduce the scanning process of the multi-touch:
  • Step 2 Scanning all the horizontal capacitances in the upper half of the first parallel scan.
  • the capacitance changes before and after scanning, indicating that there is a touch point in the area, and iteratively scans the area.
  • the second parallel scan scans all the lateral capacitances in the lower half of the screen. Click to continue iterating through the area. At this point, all areas of the touch screen have been scanned, and the round of scanning is ended.
  • Step 3 The 3rd, 4th scan and the 5th and 7th scans are respectively based on the scans performed in the upper and lower half screens in step 2, and the iteration is continued to divide the upper half screen into two upper and lower sub-areas, and the lower half screen is divided into Scanning the upper and lower sub-areas until the 17th and 18th scans are performed, and when the two areas can no longer be divided, it can be determined that the 17th and 18th scans of the touched point are the touch point lateral position. .
  • Step 4 For the judgment of the longitudinal position, when the horizontal X-channel scan emits an electrostatic field, the longitudinal Y-channels are all received in parallel at the same time, and the longitudinal position is judged by software.
  • the number of scans used to determine the position information of the touched point is 18 times, and the scan time is 18t (t indicates the time when the X channel is scanned once), and therefore, compared with the horizontal X channel in the prior art.
  • the scanning time is shortened, so that the scanning time can be saved and the reporting rate can be improved.
  • the scanning time for determining the position information of the touch point is half of the sequential scanning, that is, 9t, which is even more Saves scanning time.
  • the above is a description of the touch point positioning method of the touch screen in the embodiment of the present invention.
  • the touch point positioning device in the embodiment of the present invention is introduced from the perspective of the function module structure.
  • FIG. 7 is a schematic structural diagram of a function module of a touch point location apparatus according to an embodiment of the present invention, including:
  • the scanning module 701 is configured to perform parallel scanning on the horizontal channel in the target sub-area for each target sub-area in the target area to determine a target sub-area where the touch point exists, wherein the target sub-area is according to the target area. Obtaining the direction indicated by the lateral channel, the number of the target sub-regions being greater than 1 and less than or equal to the number of lateral channels in the target region;
  • the horizontal coordinate determining module 702 is configured to determine whether the target sub-area where the touch point exists can be divided. If it can be divided, the target sub-area where the touch point exists is used as the target area; if not, the horizontal direction of the touch point is determined. coordinate;
  • the longitudinal coordinate determining module 703 determines the longitudinal coordinate corresponding to the touch point according to the longitudinal channel of the signal that receives the horizontal channel in parallel;
  • the horizontal and vertical coordinates of the touch point are the position information of the touch point.
  • the scanning module 701 is specifically configured to: sequentially scan the horizontal channels in each of the plurality of target sub-regions in parallel, and determine the target sub-regions in which the touch points exist.
  • the scanning module 701 is specifically configured to: perform parallel scanning on the horizontal channels in the plurality of target sub-areas in parallel, and determine the target sub-areas in which the touch points exist.
  • the lateral coordinate determining module is specifically configured to determine whether there is only one horizontal channel in the target sub-area where the touch point exists, in determining whether the target sub-area where the touch point exists can be divided. If there is only one horizontal channel in the target sub-area where the touch point exists, it is determined that the target sub-area where the touch point exists cannot be divided; if there are multiple horizontal channels in the target sub-area where the touch point exists, it is determined that the target sub-difference exists Areas can be divided.
  • the lateral coordinate determining module is specifically configured to determine the lateral coordinate of the lateral channel of the target sub-region where the touch point is located as the lateral coordinate of the touch point in determining the lateral coordinate of the touch point.
  • the longitudinal coordinate determining module is specifically configured to: detect whether a capacitance on each longitudinal channel of the parallel channel receiving parallel channel changes, and if it is detected that the capacitance on the longitudinal channel changes, determine The longitudinal coordinate corresponding to the longitudinal channel whose capacitance changes is the longitudinal coordinate corresponding to the touch point.
  • the number of target sub-regions is two, and the number of lateral channels in the two target sub-regions is equal or approximately equal.
  • the scanning module 701 is specifically configured to divide the target area into two target sub-areas of the upper half screen and the lower half screen, and perform parallel scanning on the horizontal multi-channels of the upper half screen and the lower half screen respectively to determine the presence of the touch. Touch the half screen area.
  • the scanning module 701 of the touch point positioning device does not perform progressive scanning on the touch screen, but divides the touch screen into N target sub-regions based on the N-division method, and respectively for all the target sub-regions.
  • the horizontal X channel is scanned in parallel, and the target sub-area where there is no touch point is no longer scanned.
  • the target sub-area with the touched point is repeated and the above-mentioned action is repeated to perform an iterative N-division method for scanning until the division is impossible.
  • the coordinate determination module 701 can determine the lateral coordinate of the touch point, and the vertical coordinate determination module 703 determines the longitudinal coordinate corresponding to the touch point according to the longitudinal channel of the signal that receives the horizontal channel in parallel.
  • the multi-channel parallel transmission scanning abscissa is adopted, and the scanning range is reduced by the dichotomy method in an iterative decreasing manner. It can gradually reduce the scanning range of the touch screen, save scanning time and improve the reporting rate.
  • An embodiment of the present invention provides a terminal device, where the terminal device includes a touch screen and the touch point positioning device described in Embodiment 7, the touchable area of the touch screen is an initial target area, and the touch screen and the touch point positioning device can pass Physical connection, or it may have an information transmission relationship.
  • the embodiment of the present invention further provides a terminal device.
  • a terminal device As shown in FIG. 8 , for the convenience of description, only parts related to the embodiment of the present invention are shown. If the specific technical details are not disclosed, please refer to the method part of the embodiment of the present invention.
  • the terminal device may be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), an in-vehicle computer, a wearable device, and the like. :
  • FIG. 8 is a block diagram showing a partial structure of a mobile phone related to a terminal device provided by an embodiment of the present invention. It will be understood by those skilled in the art that the structure of the handset shown in FIG. 8 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the input unit 830 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 830 can include a touch screen 831 (or touch panel) and other input devices 832.
  • the touch screen in the embodiment of the present invention is an interactive capacitive screen, and includes at least: a plurality of driving electrodes, a plurality of sensing electrodes, the driving electrodes comprise a plurality of horizontal driving lines, and the sensing electrodes comprise a plurality of longitudinal sensing lines, which are driven by The electrode and the sensing electrode form an alternating capacitance.
  • FIG. 1-1 to FIG. 1-6 for the specific hardware structure, please refer to FIG. 1-1 to FIG. 1-6, and details are not described herein again.
  • the touch screen 831 can collect touch operations on or near the user and drive the corresponding connection device according to a preset program.
  • the touch screen 831 further includes two parts: a touch detection device and a touch screen controller.
  • the touch detecting device is configured to detect a touch orientation of the user, and detect a signal brought by the touch operation, and transmit a signal to the touch controller;
  • the touch screen controller receives the touch information from the touch point detecting device, and converts the touch information into a contact
  • the coordinates are sent to the processor 880 and can receive commands from the processor 880 and execute them.
  • the touch screen controller is specifically configured to control a driving line to emit an excitation signal in the touch screen, and the sensing line receives the excitation signal to perform all or part of the actions in the method embodiment of the present invention.
  • the touch screen controller may specifically be a Micro Controller Unit (MCU) located in the touch screen.
  • MCU Micro Controller Unit
  • the specific processing of the touch point in the mobile phone is implemented by: after the touch detection device detects the touch point, the touch screen controller in the touch screen reports the touch point to the application processor (Application Processor, AP) in the processor. ), the detected touch point is converted by the application processor AP into a user boundary displayed on the touch screen The interaction of polygon objects (for example, one or more soft keys, icons, web pages, or images).
  • the touch screen may report the touch point to the coprocessor, and the data of the touch point is preprocessed by the coprocessor, and then reported to the AP.
  • the touch screen controller may not be located in the touch screen, but may perform all or part of the above-described method embodiments directly through an application processor or an integrated circuit (IC) in the terminal device.
  • IC integrated circuit
  • the touch screen 831 in the embodiment of the present invention may further include other components not included in FIG. 1, such as: a buffer; a shielding layer between the driving layer and the sensing layer for resisting electromagnetic interference; and other protective layers. And other components, not specifically introduced here.
  • the display unit 840 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 840 can include a display panel 841.
  • the display panel 841 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch screen 831 can cover the display panel 841, and when the touch screen 831 detects a touch operation thereon or nearby, it is transmitted to the processor 880 to determine the type of the touch event, and then the processor 880 displays the panel according to the type of the touch event.
  • the corresponding visual output is provided on the 841.
  • the touch panel 831 and the display panel 841 are two independent components to implement the input and input functions of the mobile phone, in some embodiments, the touch panel 831 can be integrated with the display panel 841. Realize the input and output functions of the phone.
  • the memory 820 can be used to store software programs and modules, and the processor 880 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 820.
  • the memory 820 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 820 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the mobile phone may also include at least one type of sensor 850, such as a light sensor, a motion sensor, and other sensors, which are not described in detail herein.
  • sensor 850 such as a light sensor, a motion sensor, and other sensors, which are not described in detail herein.
  • the RF circuit 810 in the embodiment of the present invention can be used for receiving and transmitting signals during transmission and reception of information or during a call.
  • the processor 880 processes the data; in addition, the uplink data is designed.
  • Audio circuit 860 can provide an audio interface between the user and the handset.
  • the mobile phone through the WiFi module 870 can help users to send and receive e-mail, browse the web and access streaming media, etc. It provides users with wireless broadband Internet access.
  • FIG. 8 shows the WiFi module 870, it can be understood that it does not belong to the essential configuration of the mobile phone, and can be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 880 is the control center of the handset, and connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 820, and invoking data stored in the memory 820, executing The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 880 may include one or more processing units; preferably, the processor 880 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 880.
  • the mobile phone also includes a power supply 890 (such as a battery) that supplies power to various components.
  • a power supply 890 (such as a battery) that supplies power to various components.
  • the power supply can be managed by power.
  • the system is logically coupled to the processor 880 to manage functions such as charging, discharging, and power management through a power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种触摸点定位方法、装置及终端设备,所述方法包括:针对目标区域中的每个目标子区域,触摸屏控制器对目标子区域中的横向通道进行并行扫描,确定存在触摸点的目标子区域,判断存在触摸点的子区域是否可被划分,若可被划分,则将存在触摸点的目标子区域作为目标区域,重复执行上述的步骤直到存在触摸点的目标子区域不可再划分时,确定触摸点的横向坐标;根据并行接收横向通道的信号的纵向通道来确定触摸点对应的纵向坐标。本发明采用多通道并行发射扫描横坐标,并通过目标区域划分迭代递减方式缩小扫描范围,能节省扫描时间,提高报点率,从而提升用户体验。

Description

一种触摸点定位方法、装置及终端设备
本申请要求于2016年1月28日提交中国专利局、申请号为201610061741.X、发明名称为“一种触摸点定位方法、装置及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及触摸屏领域,尤其涉及一种触摸屏的触摸点定位方法、装置及终端设备。
背景技术
触摸屏作为一种人机交互界面,以其易于使用、反应速度快、节省空间等优点,广泛应用于各种数字信息系统中。触摸屏工作时,会以一定的扫描频率对触摸屏进行扫描,以获取用户的触摸位置。
根据触摸屏的工作原理和传输信息的介质,触摸屏可分为电阻式、表面电容式、投射电容式、红外线式、表面声波式、弯曲波式、有源数字转换器式和光学成像式。随着iPhone的问世与全球风靡,苹果公司率先将投射电容式触摸屏运用于手机终端领域,凭借出色舒适的用户体验,投射电容式触摸屏技术使手机终端进入了一个全新的时代。
投射电容式触摸屏的原理是传感器利用触摸屏电极发射出静电场线,一般用于投射电容传感技术的电容类型有两种:自电容和交互电容。交互电容屏是在玻璃表面用氧化铟锡(Indium-Tin Oxide,ITO)制作横向电极与纵向电极,两组电极交叉的地方将会形成电容,也即这两组电极分别构成了电容的两极。当手指触摸到电容屏时,影响了触摸点附近两个电极之间的耦合,从而改变了这两个电极之间的电容量。交互电容屏通过扫描每个交叉处的电容变化,来判定触摸点的位置。交互电容的扫描方法可以侦测到每个交叉点的电容值和触摸后的电容变化,因而交互电容的扫描时间需扫描检测X×Y根电极,但是不会产生“鬼点”。因此,很多手机厂商都在手机终端的触摸屏中采用的即是交互电容技术。
目前,交互电容技术采用对触摸屏全部感测区域进行逐行扫描,需扫描检测X×Y根电极,扫描时间较长,报点率(触摸屏每秒钟向处理器上报触点信息的次数)很难有所突破。
发明内容
本发明实施例提供了一种触摸屏的触摸点定位方法、装置及终端设备,能够有效缩短扫描时间,提高报点率,提升用户体验的流畅性。
第一方面,本发明实施例提供了一种触摸屏的触摸点定位方法,包括:
针对目标区域中的每个目标子区域,触摸屏控制器对目标子区域中的横向通道进行并行扫描,确定存在触摸点的目标子区域,判断存在触摸点的目标子区域是否可被划分,若可被划分,则将存在触摸点的目标子区域作为目标区域,重复执行上述的步骤直到存在触摸点的子区域不可再划分,当存在触摸点的子区域不可被划分时,则确定触摸点的横向坐标;其中,目标子区域为根据目标区域的横向通道所指示的方向划分所得,目标子区域的数量大于1且小于等于目标区域中的横向通道的数量,之后。在此过程中,根据并行接收横向 通道的信号的纵向通道来确定触摸点对应的纵向坐标。
本发明实施例并不是对触摸屏进行逐行扫描,而是将触摸屏划分成多个子区域,分别对每一个子区域中的全部横向通道(X方向通道,或横向X通道)进行并行扫描,对不存在触摸点的目标子区域不再进行扫描,对存在触摸点的子区域再重复上述动作进行迭代划分进行扫描,直到不能再进行划分时,则可判断出触摸点的位置信息。因此,本发明实施例采用对多通道进行并行扫描,并将触摸屏进行划分,以迭代递减方式缩小扫描范围,能逐步将触摸屏扫描范围(即:目标区域)减小,节省扫描时间,提高报点率。
结合第一方面,在第一方面的第一种可能的实现方式中,针对目标区域中的每个目标子区域,对目标子区域中的横向通道进行并行扫描,确定存在触摸点的目标子区域,包括:依次对多个目标子区域中的每个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。
或者,在处理器支持多个目标子区域中的横向通道并行扫描的情况下,并行地对多个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。通过采用此种扫描方式,可以进一步提高扫描效率,减少扫描的时间。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,判断存在触摸点的目标子区域是否可被划分的过程为:判断存在触摸点的目标子区域中是否只有一个横向通道,若存在触摸点的目标子区域中只有一个横向通道,则确定存在触摸点的目标子区域不可被划分;若存在触摸点的目标子区域中有多个横向通道,则确定存在触摸点的目标子区域可被划分。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,确定触摸点的横向坐标的方式为:确定触摸点所在的目标子区域的横向通道的横向坐标为触摸点的横向坐标。
结合第一方面,第一方面的第一种可能的实现方式至第一方面的第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,根据并行接收横向通道信号的纵向通道确定触摸点对应的纵向坐标包括:检测并行接收横向通道信号的各纵向通道上的电容量是否发生变化,若检测到某纵向通道上的电容量发生变化,则确定电容量发生变化的该纵向通道对应的纵向坐标为触摸点对应的纵向坐标。
结合第一方面,第一方面的第一种可能的实现方式至第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,目标子区域的数量为2,且2个目标子区域中的横向通道的数量相等。即:通常使用二分法将目标区域划分成上半屏和下半屏两个目标子区域,对上半屏的横向通道进行并行扫描和对下半屏的横向通道进行并行扫描,确定存在触摸点的半屏区域。另外,本发明实施例中的相等不一定是完全相等,还可以是近似相等。
需要说明的是,结合第一方面,在一些实施例中,可以将目标区域通过三分法、四分法等其他N分法进行划分,再在划分之后的每一个目标子区域中进行横向通道并行扫描。本发明实施例只是通过二分法进行举例,而不是限定。
通过二分法将存在触摸点的目标区域分成上半屏和下半屏,相比其他N分法(例如:三分法、四分法)来说,可以更方便对目标区域进行划分,减轻处理器的负担。
第二方面,本发明实施例提供了一种触摸点定位装置,触摸屏的可触摸区域为扫描触摸点的初始目标区域,该触摸点定位装置包括:
扫描模块,用于针对目标区域中的每个目标子区域,对目标子区域中的横向通道进行并行扫描,确定存在触摸点的目标子区域,其中,目标子区域为根据目标区域的横向通道所指示的方向划分所得,目标子区域的数量大于1且小于等于目标区域中的横向通道的数量;横向坐标确定模块,用于判断存在触摸点的目标子区域是否可被划分,若该存在触摸点的目标子区域可被划分,则将存在触摸点的目标子区域作为目标区域;若该存在触摸点的目标子区域不可被划分,则确定触摸点的横向坐标;纵向坐标确定模块,根据并行接收横向通道的信号的纵向通道来确定触摸点对应的纵向坐标。
结合第二方面,在第二方面的第一种可能的实现方式中,扫描模块,具体用于:依次对多个目标子区域中的每个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。
结合第二方面,在第二方面的第二种可能的实现方式中,扫描模块,具体用于:并行地对多个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。
结合第二方面,第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,横向坐标确定模块,在用于判断存在触摸点的目标子区域是否可被划分方面具体用于:判断存在触摸点的目标子区域中是否只有一个横向通道,若存在触摸点的目标子区域中只有一个横向通道,则确定存在触摸点的目标子区域不可被划分;若存在触摸点的目标子区域中有多个横向通道,则确定存在触摸点的目标子区域可被划分。
结合第二方面中的任一种可能的实现方式,横向坐标确定模块,在用于确定触摸点的横向坐标方面具体用于:确定触摸点所在的目标子区域的横向通道的横向坐标为触摸点的横向坐标。
结合第二方面中的任一种可能的实现方式,纵向坐标确定模块具体用于:检测并行接收横向通道信号的各纵向通道上的电容量是否发生变化,若检测到纵向通道上的电容量发生变化,则确定电容量发生变化的纵向通道对应的纵向坐标为触摸点对应的纵向坐标。
结合第二方面中的任一种可能的实现方式,目标子区域的数量为2,且2个目标子区域中的横向通道的数量相等。
第三方面,本发明实施例提供了一种终端设备,该终端设备包括触摸屏以及与触摸屏连接的触摸点定位装置,触摸屏的可触摸区域为初始的目标区域,触摸点定位装置为第二方面中的任一项所描述的触摸点定位装置。
具体的,终端设备可以包括:手持设备、车载设备、可穿戴设备、计算设备以及各种形式的用户设备(User Equipment,UE),例如:手机、平板电脑等设备。
第四方面,本发明实施例提供了一种终端设备,该终端设备包括:触摸屏、与触摸屏连接的触摸屏控制器、其中,触摸屏包括多个横向电极以及多个纵向电极;触摸屏控制器,用于针对触摸屏中的目标区域中的每个目标子区域,控制目标子区域中的横向电极并行发送激励信号,纵向的所有电极并行接收激励信号的方式进行扫描,确定存在触摸点的目标子区域,其中,目标子区域为根据目标区域的横向电极组成的横向通道所指示的方向划分 所得,目标子区域的数量大于1且小于等于目标区域中的横向电极组成的横向通道的数量;判断存在触摸点的目标子区域是否可被划分,若可被划分,则确定存在触摸点的目标子区域为目标区域,针对目标区域中的每个目标子区域,控制目标子区域中的横向电极并行发送激励信号,纵向的所有电极并行接收激励信号的方式继续进行扫描;若不可被划分,则确定触摸点的横向坐标;根据并行接收横向电极信号的纵向电极所在的纵向通道确定触摸点对应的纵向坐标。
结合第四方面,本发明实施例中的触摸屏还具有第一方面的第一种可能的实现方式至第一方面的第五种可能的实现方式中的任一种可能的实现方式中所描述的功能。
第五方面,本发明实施例还提供一种计算机存储介质,该介质存储有程序,该程序执行时包括上述第一方面的方法中的部分或者全部步骤。
从以上技术方案可以看出,本发明实施例的方案具有如下有益效果:
本发明实施例中,并不是对触摸屏进行逐行扫描,而是采用多通道并行发射扫描横坐标,并按N分法迭代递减方式缩小扫描范围,从而能逐步将触摸屏扫描范围减小,最终确定触摸点所在的具体位置,从而能够节省扫描时间,提高报点率。
附图说明
图1-1是互电容式触摸屏的正投影主视示意图;
图1-2是图1-1的剖视图;
图1-3是互电容式触摸屏中的驱动层200的正投影主视示意图;
图1-4是互电容式触摸屏中的传感层300的正投影主视示意图;
图1-5是图1-4中某个点未被触摸时的电场分布示意图;
图1-6是图1-4中某个点被触摸时的电场分布示意图;
图2为本发明实施例中现有技术中交互电容触摸屏的扫描方法示意图;
图3为本发明实施例中触摸屏的触摸点定位方法的一种流程图;
图4为本发明实施例中触摸屏快速扫描的一种示意图;
图5为本发明实施例中单点触控时的二分法扫描示意图;
图6为本发明实施例中多点触控时的二分法扫描示意图;
图7为本发明实施例中的触摸点定位装置的功能结构模块示意图;
图8为本发明实施例中终端设备的一种硬件结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明实施例中的交互电容也称之为互电容,采用该技术的触摸屏称之为交互电容屏、互电容屏或互电容式触摸屏。在检测互电容屏中的电容大小时,横向的电极依次发出激励信号,纵向的所有电极同时接收信号,这样可以得到所有横向和纵向电极交汇点的电容值 大小,即整个触摸屏的二维平面的电容大小。根据触摸屏二维电容变化量数据,可以计算出每一个触摸点的坐标。因此,屏上即使有多个触摸点,也能计算出每个触摸点的真实坐标。
本发明中的互电容式触摸屏,用于覆盖在用作图形或者图像显示的显示屏表面,通过外设的控制装置对显示屏显示的内容进行控制。现有技术中的互电容式触摸屏的一种具体结构及触摸点定位的原理如图1-1至图1-6所示,下面进行详细介绍。
互电容式触摸屏的的结构图如图1-1所示,剖面图如图1-2所示,包括触摸平面100,不在同一平面的驱动层200和传感层300,以及夹在驱动层200和传感层300之间的透明绝缘介质平面910。另外,还可以设置用透明绝缘材料制成的保护平面120。所述驱动层200,传感层300和介质平面910被设置在触摸平面100与保护平面120之间,所述保护平面120与显示屏(或显示面板)接触。
如图1-3所示,驱动层200包括有:在同一平面内间隔分布的多个用透明导电材料制成的平板驱动电极211,驱动电极211通过驱动电极连接线220被分组串联成几组驱动线210。驱动电极211称之为横向的电极,驱动线210为本发明实施例中的横向X通道或横向通道。
如图1-4所示,传感层300包括有:在同一平面内间隔分布的用透明导电材料制成的平板传感电极311,传感电极311通过传感电极线320被分组串联成几组传感线310。传感电极311称之为纵向的电极,传感线310为本发明实施例中的纵向Y通道或纵向通道。
各驱动线210相互平行,各传感线310相互平行,驱动线210与传感线310垂直交叉。驱动线210电连接激励信号模块,传感线310电连接传感控制模块,从而在驱动线210与传感线310之间形成互电容,如图1-5所示。
在检测互电容大小时,通过触摸屏控制装置控制横向的电极发出激励信号,纵向的所有电极同时接收信号,通过传感控制模块可以检测到所有横向电极与纵向电极交汇点的电容值大小(即驱动线210与传感线310的之间形成各个互电容)。如图1-6所示,当手指150接触触摸平面100并在触摸区域内时,该手指150相当于在传感线310之上的一个电极,改变了驱动线210与传感线310顶部之间的电场,这种改变可以看做手指510将驱动线210到传感线310顶部的电场线被吸走,从而使该触摸点所触摸区域的互电容发生变化,从而传感控制电路可以确定触摸区域内被触摸的位置。
在现有技术中,触摸屏控制装置控制横向的电极逐行(即逐条驱动线210)发出激励信号,纵向的所有电极(即触摸屏中的所有传感线310)同时接收信号,当手指触控到该条驱动线对应的触摸屏位置时,连接纵向电极的传感控制模块可以检测到触控点对应的某条传感线上电容量的变化,即可以通过软件计算方式确定对应的触控点的二维平面的纵向坐标,根据当前发送的激励信号的驱动线210,可以确定触控点的二维平面的横向坐标。
目前,对于常用5寸触摸屏而言,电容矩阵通常为22×9(横向X通道数为22,纵向Y通道数为9)。5寸触摸屏的扫描示意图如图2所示,图中黑点表示触摸点,横向通道(X通道,或横向X通道,即图1所示的实施例中的驱动线210)数为22,确定触摸屏中的触摸点的位置所需的扫描次数为22次,若t表示其中一个横向X通道扫描一次所用的时间,则确定触摸屏中的触摸点位置的扫描时间为22t。
因为现有技术在触摸点定位时,扫描时长为22t,检测触摸点的扫描时间过长,报点率受限制。本发明实施例提出了一种触摸屏快速扫描和检测的方法,可以有效缩短扫描时间,提高报点率,使用户体验更加舒适流畅。
下面结合图3对本发明实施例中的触摸屏的触摸点定位方法流程进行详细介绍,该方法的由触摸屏控制装置(或触摸屏控制器)执行,触摸屏控制装置具体可以是位于触摸屏中的微控制单元(Microcontroller Unit,MCU),也可以是位于终端设备中的应用处理器或集成电路(integrated circuit,IC)。
301、针对目标区域中的每个目标子区域,对目标子区域中的横向通道进行并行扫描,确定存在触摸点的目标子区域;
本发明实施例是采用触摸屏控制装置控制多个横向通道并行发射激励信号(也称静电场线),多个纵向通道并行接收的方式进行扫描,并通过将目标扫描区域划分成多个目标子区域的方式迭代递减缩小扫描范围。
将目标扫描区域划分成多个目标子区域的方式在本发明实施例中称之为N分法,具体为:将触摸屏的可触摸区域作为扫描的初始目标区域,将目标区域从横向通道所指示的方向划分成N个目标子区域,每个目标子区域分别包含M1,M2,……MN个横向通道,其中,
Figure PCTCN2017071495-appb-000001
的值为该目标区域的横向X通道的个数。
。在首次划分时,扫描的目标区域为触摸屏的整个可触摸区域,
Figure PCTCN2017071495-appb-000002
的值为整个触摸屏的横向X通道的个数,在之后的划分中,
Figure PCTCN2017071495-appb-000003
为相应的扫描目标区域的横向X通道的个数。
N分法的优选划分方式为均等划分,以使得各子区域的横向X通道的数量相同或者相近,即各子区域的横向通道数Mi的值相同或相近。N
N分法具体可以是二分法,三分法等其他分法,其中,N为正整数,必须大于1,且不能大于触摸屏的横向X通道的数量。优选的,一般采用二分法。
例如:如果是二分法,对于常用5寸触摸屏而言,横向X通道数为22,则通过二分法,可以划分成横向X通道数分别为11的上下屏两个目标子区域。
如图4所示,该触摸屏为横向X通道数为9,纵向Y通道数为7,如果是二分法,则将该触摸屏划分成横向X通道数为5的上半屏(图4中的1所示部分)和横向X通道数为4的下半屏(图4中的2所示部分)两个目标子区域。
需要说明的是,在实际应用程序实现中,处理器不一定会先将扫描的目标区域划分成N个目标子区域,而可以是直接指定每个进程需要扫描的通道的编号,因此,在本发明实施例中的N分法并不一定有实际的划分动作,而只是表述一种将扫描区域进行划分的方式。
将触摸屏划分成N个目标子区域后,针对每个目标子区域,在该目标子区域中的横向X通道采用多通道并行发射静电场线,纵向Y通道并行接收静电场线的方式进行扫描,若扫描该目标子区域时,扫描前后的该区域中有电容量发生变化,则确定该目标子区域存在触摸点。
如图4所示,将触摸屏划分成上半屏和下半屏两个目标子区域后,对触摸屏的上半屏中5个X通道同时发射静电场线,纵向所有的通道(Y通道)并行接收静电场线的方式进行扫描;对下半屏也采取同样的扫描方式,对下半屏中4个X通道同时发射静电场线,纵 向Y通道并行接收静电场线的方式进行扫描。通过扫描前后的电容的变化,获知上半屏存在触摸点,下半屏不存在触摸点。
可选的,对目标子区域中的横向通道进行并行扫描的方式有以下两种:
1、针对划分出的多个目标子区域,一次只对一个目标子区域中的横向通道进行并行扫描,扫描完一个目标子区域,再对另一个目标子区域进行扫描,直至所有的目标子区域都扫描完,确定存在触摸点的目标子区域。此种扫描方式为依次扫描,依次扫描的顺序可以从上至下,也可以是从下至上,还可以是按随机的顺序。
2、针对划分出的多个目标子区域,一次对多个目标子区域同时进行并行扫描,例如:当触摸屏被划分成A、B、C三个目标子区域时,同时对A、B、C中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。
需要说明的是,第2种并行扫描的方式,需要处理器的处理速度能够支持多个目标子区域同时并行扫描。
302、包含触摸点的目标子区域是否可被划分。
因为是通过横向通道并行发射激励信号,纵向通道并行接收的方式进行扫描,而不是通过采用现有技术中的横向通道逐行扫描的方式,因此,每一次N分法划分扫描后,只能确定触摸点存在于哪些目标子区域,而不能精确触摸点的横向坐标。所以,需要再对存在触摸点的目标子区域再进行划分,直到不能再进行划分时,就可以精确触摸点的横向坐标。
判断存在触摸点的目标子区域是否可被划分的过程为:判断存在触摸点的目标子区域中是否只有一个横向通道,若存在触摸点的目标子区域中只有一个横向通道,则确定存在触摸点的目标子区域不可被划分;若存在触摸点的目标子区域中有多个横向通道,则确定存在触摸点的目标子区域可被划分。
303、确定存在触摸点的目标子区域为所述目标区域;
在对触摸屏中的目标子区域都完成一次扫描后,当确定存在触摸点的目标子区域仍可被划分时,将存在触摸点的目标子区域作为目标区域再划分并继续进行迭代扫描,即继续执行步骤301和302进行迭代扫描,在后续的扫描中逐步缩小扫描区域。在此过程中,对不存在触摸点的目标子区域不再进行迭代扫描。
按此方式迭代扫描直至存在触摸点的目标子区域不可以继续被划分时,则执行步骤304。
在此过程中,在每次(除了第一次)对存在触摸点的区域进行划分之前,需要先判断该触摸点所在的该目标子区域是否可以继续被划分。
在一种实现方式下,目标区域对应一个变量,存储触摸点的目标子区域或该目标子区域的指代对象被赋值给该变量。
304、确定所述触摸点的横向坐标;
在重复执行步骤301、步骤302和步骤303,直到存在触摸点的目标子区域为一个横向X通道,不能再进行横向X通道的划分时,即可确定触摸点所在的横向X通道的横向坐标即为触摸点的横向坐标。
如图4所示,在经过第一次划分后,再将存在触摸点的上半屏作为目标区域,将上半屏通过二分法划分成横向X通道数为3的目标子区域(图4中的3所示部分)和横向X通道数为2的目标子区域(图4中的4所示部分),再重复步骤步骤301、步骤302和步骤303, 之后,将存在触摸点的横向X通道数为2的目标子区域作为目标区域,再进行二分法划分,获得横向X通道分别为1的两个目标子区域(分别是图4中的5和7所示的部分),此时,存在触摸点的上半区域只有一个横向X通道,不能再进行划分,即可以确定该横向X通道的横向坐标即为触摸点的横向坐标。
305、根据并行接收横向通道的信号的纵向通道来确定所述触摸点对应的纵向坐标。
对于触摸点的纵向坐标的检测与图1所示的实施例中描述的相同,因为在横向X通道扫描发射静电场时纵向Y通道采用了同时全部并行接收静电场的方式,所以在扫描到触摸点时,传感控制模块可以检测到触控点对应的某条传感线上电容量的变化,该电容量发生变化的纵向Y通道对应的纵向坐标为当前目标子区域中的触摸点对应的纵向坐标,可以通过软件计算方式确定对应的触控点的二维平面的纵向坐标。
需要说明的是,确定触摸点的纵向坐标可以在第一次扫描到触摸点时进行确定,还可以是在进行迭代扫描的任何一次扫描到触摸点的时候进行确定,例如:可以是在步骤304中,当存在触摸点的目标子区域不能再进行划分,确定触摸点的横向坐标时,同时确定纵向坐标。
另外,步骤304和步骤301、步骤302、步骤303之间没有明确的先后顺序关系,可以在执行步骤301、步骤302、步骤303的过程中同时执行步骤304。
触摸点的坐标位置信息即为步骤304中获得的横向坐标,和步骤305中获得的纵向坐标。
本发明实施例中,并不是对触摸屏进行逐行扫描,而是基于N分法,将触摸屏划分成N个目标子区域,分别对每一个目标子区域中的全部横向X通道进行并行扫描,对不存在触摸点的目标子区域不再进行扫描,对存在触摸点的目标子区域再重复上述动作进行迭代N分法划分进行扫描,直到不能再进行划分时,则可判断出触摸点的位置信息。本发明实施例采用多通道并行发射扫描横坐标,并按二分法迭代递减方式缩小扫描范围。能逐步将触摸屏扫描范围减小,节省扫描时间,提高报点率。
如图4所示,该触摸屏为横向X通道数为9,纵向Y通道数为7,如果采用图2中所示的现有技术中的横向X通道逐行发射的扫描方法,则扫描时间为9t(t表示X通道扫描一次的时间),通过本发明实施例,如果采用二分法,只需要经过三次划分,总共的扫描时间为至多为7t。因此能够节省扫描时间,提高报点率。
优选的,N分法通常使用为二分法。且本发明实施例不仅可以适用于单点触控,还可以适用于多点触控。下面基于二分法,对单点触控扫描和多点触控扫描分别进行详细介绍。
一、单点触控扫描
针对单点触控时,扫描示意图如图5所示。该图采用常用5寸触摸屏,其电容矩阵为22×9(横向X通道数为22,纵向Y通道数为9),图中黑点表示触摸点,具体扫描方法如下:
步骤1:基于二分法思想,将触摸屏划分为上下两个半屏区域之后,分别对上半屏和下半屏的横向多通道进行并行扫描,根据触摸屏的处理单元可支持的处理速度的不同,具体的扫描顺序可以是以下两种方式:
第一种:依次对上半屏和下半屏的横向多通道进行并行扫描:通常是先扫描上半屏, 再对下半屏进行扫描,当然也可以先扫描下半屏,再扫描上半屏。
第二种:同时进行上半屏和下半屏的横向多通道并行扫描,即:在对上半屏的横向通道进行并行扫描的同时,对下半屏的横向通道进行并行扫描
下面以第一种扫描方式中的先对上半屏进行扫描,再对下半屏进行扫描的方式对单点触控的扫描过程进行介绍:
步骤2:第一次触摸屏控制装置控制上半屏的所有横向电极同时发出激励信号,并行扫描上半屏中全部电容(图5的1所示部分),扫描前后电容量发生变化说明该区域存在触摸点;第二次并行扫描下半屏中全部横向电容(图5中的2所示部分),扫描时电容没有发生变化,后续将不再扫描该区域,以此逐步缩小扫描区域。此时触摸屏的所有区域都已扫描,则结束该轮扫描。
步骤3:第三、四次扫描是基于步骤1中的上半屏(即图5中1所示的部分)进行的扫描。将上半屏划分为上下两个区域(图5中的3和4所示部分)进行扫描,直至扫描到第9次和第10次时,不能再进行区域划分时,即可确定存在触摸点的第9次扫描的区域即为触摸点的横向位置。
步骤4:对于纵向位置的判断,在横向X通道扫描发射静电场时,纵向Y通道同时全部并行接收,通过软件实现纵向位置的判断。
在本发明实施例中,确定触摸点的位置信息所采用的扫描次数为10次,扫描时间为10t(t表示X通道扫描一次的时间),因此,相比采用现有技术中的横向X通道逐行发射的扫描方法的22t时间来说,大大缩短了扫描的时间,因此能够节省扫描时间,提高报点率。
另外,如果采用上述第二种扫描方式:同时进行上半屏和下半屏的横向多通道并行扫描,则确定触摸点的位置信息所采用扫描时间为依次扫描的一半,即为5t,则更加节省了扫描时间。
二、多点触控扫描
针对多点触控时,扫描示意图如图6所示。该图同样采用常用5寸触摸屏,其电容矩阵为22×9(横向X通道数为22,纵向Y通道数为9),图中黑点表示触摸点,具体扫描方法如下:
步骤1:基于二分法思想,将触摸屏划分为上下两个半屏区域,横向X通道采用多通道并行发射方式,纵向Y通道并行接收。
下面同样以图5所示的实施例中的第一种扫描方式中的先对上半屏进行扫描,再对下半屏进行扫描的方式对多点触控的扫描过程进行介绍:
步骤2:第1次并行扫描上半屏中全部横向电容,扫描前后电容发生变化说明该区域存在触摸点,继续迭代扫描该区域;第2次并行扫描下半屏中全部横向电容,同样存在触摸点,继续迭代扫描该区域。此时触摸屏的所有区域都已扫描,则结束该轮扫描。
步骤3:第3、4次扫描和第5、7次扫描分别基于步骤2中上、下半屏再进行的扫描,继续迭代将上半屏划分成上下两个子区域,将下半屏划分为上下两个子区域进行扫描,直至扫描到第17次和第18次时,两个区域都不能再进行划分时,则可确定存在触摸点的第17次和18次扫描的区域为触摸点横向位置。
步骤4:对于纵向位置的判断,在横向X通道扫描发射静电场时,纵向Y通道同时全部并行接收,通过软件实现纵向位置的判断。
在本发明实施例中,确定触摸点的位置信息所采用的扫描次数为18次,扫描时间为18t(t表示X通道扫描一次的时间),因此,相比采用现有技术中的横向X通道逐行发射的扫描方法的22t时间来说,缩短了扫描的时间,因此能够节省扫描时间,提高报点率。
另外,如果采用上述第二种扫描方式:同时进行上半屏和下半屏的横向多通道并行扫描,则确定触摸点的位置信息所采用扫描时间为依次扫描的一半,即为9t,则更加节省了扫描时间。
以上是对本发明实施例中的触摸屏的触摸点定位方法的介绍,下面从功能模块结构角度对本发明实施例中的触摸点定位装置进行介绍。
图7本发明实施例中的触摸点定位装置的功能模块结构示意图,包括:
扫描模块701,用于针对目标区域中的每个目标子区域,对所述目标子区域中的横向通道进行并行扫描,确定存在触摸点的目标子区域,其中,目标子区域为根据目标区域的横向通道所指示的方向划分所得,所述目标子区域的数量大于1且小于等于所述目标区域中的横向通道的数量;
横向坐标确定模块702,用于判断存在触摸点的目标子区域是否可被划分,若可被划分,则将存在触摸点的目标子区域作为目标区域;若不可被划分,则确定触摸点的横向坐标;
纵向坐标确定模块703,根据并行接收横向通道的信号的纵向通道来确定触摸点对应的纵向坐标;
触摸点的横向坐标和纵向坐标为触摸点的位置信息。
优选的,在一些具体的实施中,扫描模块701,具体用于:依次对多个目标子区域中的每个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。
可选的,在一些具体的实施中,扫描模块701,具体用于:并行地对多个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。
优选的,在一些具体的实施中,横向坐标确定模块,在用于判断存在触摸点的目标子区域是否可被划分方面具体用于:判断存在触摸点的目标子区域中是否只有一个横向通道,若存在触摸点的目标子区域中只有一个横向通道,则确定存在触摸点的目标子区域不可被划分;若存在触摸点的目标子区域中有多个横向通道,则确定存在触摸点的目标子区域可被划分。
优选的,在一些具体的实施中,横向坐标确定模块,在用于确定触摸点的横向坐标方面具体用于:确定触摸点所在的目标子区域的横向通道的横向坐标为触摸点的横向坐标。
优选的,在一些具体的实施中,纵向坐标确定模块具体用于:检测并行接收横向通道信号的各纵向通道上的电容量是否发生变化,若检测到纵向通道上的电容量发生变化,则确定电容量发生变化的纵向通道对应的纵向坐标为触摸点对应的纵向坐标。
优选的,在一些具体的实施中,目标子区域的数量为2,且两个目标子区域中的横向通道的数量相等或近似相等。此时,扫描模块701,具体用于将目标区域划分成上半屏和下半屏两个目标子区域,分别对上半屏和下半屏的横向多通道进行并行扫描,确定存在触 摸点的半屏区域。
本发明实施例中的触摸点定位装置7的各功能模块之间的详细交互过程请参考图3、图4及图5及图6所示的实施例,此处不再赘述。
本发明实施例中,触摸点定位装置的扫描模块701并不是对触摸屏进行逐行扫描,而是基于N分法,将触摸屏划分成N个目标子区域,分别对每一个目标子区域中的全部横向X通道进行并行扫描,对不存在触摸点的目标子区域不再进行扫描,对存在触摸点的目标子区域再重复上述动作进行迭代N分法划分进行扫描,直到不能再进行划分时,横向坐标确定模块701则可判断出触摸点的横向坐标,纵向坐标确定模块703根据并行接收横向通道的信号的纵向通道来确定触摸点对应的纵向坐标。本发明实施例采用多通道并行发射扫描横坐标,并按二分法迭代递减方式缩小扫描范围。能逐步将触摸屏扫描范围减小,节省扫描时间,提高报点率。
本发明实施例提供了一种终端设备,该终端设备包括触摸屏以及与实施例7中所描述的触摸点定位装置,该触摸屏的可触摸区域为初始的目标区域,触摸屏与触摸点定位装置可以通过物理方式连接,也可能是具备信息传输关系。
本发明实施例还提供了一种终端设备,如图8所示,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该终端设备可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑、可穿戴设备等任意终端设备,下面以手机为例进行说明:
图8示出的是与本发明实施例提供的终端设备相关的手机的部分结构的框图。本领域技术人员可以理解,图8中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图8对手机的各个构成部件进行具体的介绍:
输入单元830可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元830可包括触摸屏831(或触摸面板)和其他输入设备832。本发明实施例中的触摸屏为交互电容屏,至少包括:多个驱动电极,多个传感电极,驱动电极组成多条横向的驱动线、传感电极组成多条纵向的传感线,由驱动电极与传感电极形成交互电容,具体的硬件结构请参阅图1-1至图1-6,此处不再赘述。
触摸屏831可收集用户在其上或附近的触摸操作,并根据预先设定的程式驱动相应的连接装置。可选的,触摸屏831还包括触摸检测装置和触摸屏控制器两个部分。其中,触摸检测装置用于检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸屏控制器从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器880,并能接收处理器880发来的命令并加以执行。
其中,触摸屏控制器具体用于控制触摸屏中的驱动线发射激励信号,传感线接收激励信号,执行本发明的方法实施例中的全部或部分动作。需要说明的是,触摸屏控制器具体可以是位于触摸屏中的微控制单元(Microcontroller Unit,MCU)。
具体的,手机内部一种具体的处理触摸点的实现方式为:在触摸检测装置检测到触摸点后,触摸屏中的触摸屏控制器将触摸点上报给处理器中的应用处理器(Application Processor,AP),由应用处理器AP将所检测到的触摸点转换为与显示在触摸屏上的用户界 面对象(例如,一个或多个软按键、图标、网页或图像)的交互。也可以是触摸屏将触摸点上报给协处理器,由协处理器进行触摸点的数据进行预处理后,再上报给AP。
在一些实施例中,触摸屏控制器可以不位于触摸屏中,而可以是通过终端设备中的应用处理器或集成电路(integrated circuit,IC)来直接执行上述方法实施例中的全部或部分动作。
除此之外,本发明实施例中的触摸屏831还可以包含图1中没有包括的其他部件,例如:缓存;位于驱动层和传感层之间用于抗电磁干扰的屏蔽层;其他保护层等部件,具体此处不做具体介绍。
显示单元840可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元840可包括显示面板841,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板841。进一步的,触摸屏831可覆盖显示面板841,当触摸屏831检测到在其上或附近的触摸操作后,传送给处理器880以确定触摸事件的类型,随后处理器880根据触摸事件的类型在显示面板841上提供相应的视觉输出。虽然在图8中,触控面板831与显示面板841是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板831与显示面板841集成而实现手机的输入和输出功能。
存储器820可用于存储软件程序以及模块,处理器880通过运行存储在存储器820的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器820可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器820可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
手机还可包括至少一种传感器850,比如光传感器、运动传感器以及其他传感器,在此不做具体赘述。
另外,本发明实施例中的RF电路810可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器880处理;另外,将设计上行的数据发送给基站。音频电路860可提供用户与手机之间的音频接口。手机通过WiFi模块870可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图8示出了WiFi模块870,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器880是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器820内的软件程序和/或模块,以及调用存储在存储器820内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器880可包括一个或多个处理单元;优选的,处理器880可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器880中。
手机还包括给各个部件供电的电源890(比如电池),优选的,电源可以通过电源管理 系统与处理器880逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (15)

  1. 一种触摸点定位方法,其特征在于,包括:
    步骤1:针对目标区域中的每个目标子区域,对所述目标子区域中的横向通道进行并行扫描,确定存在触摸点的目标子区域,其中,所述目标子区域为根据所述目标区域的横向通道所指示的方向划分所得,所述目标子区域的数量大于1且小于等于所述目标区域中的横向通道的数量;
    步骤2:判断所述存在触摸点的目标子区域是否可被划分,若所述存在触摸点的目标子区域可被划分,则确定所述存在触摸点的目标子区域为所述目标区域,并重复执行所述步骤1和步骤2;
    若所述存在触摸点的目标子区域不可被划分,则确定所述触摸点的横向坐标;
    根据并行接收横向通道信号的纵向通道确定所述触摸点对应的纵向坐标。
  2. 根据权利要求1所述的方法,其特征在于,针对目标区域中的每个目标子区域,对所述目标子区域中的横向通道进行并行扫描,确定存在触摸点的目标子区域,包括:
    依次对多个目标子区域中的每个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域;
    或者,并行地对多个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。
  3. 根据权利要求1或2所述的方法,其特征在于,所述判断所述存在触摸点的目标子区域是否可被划分,包括:
    判断所述存在触摸点的目标子区域中是否只有一个横向通道,若所述存在触摸点的目标子区域中只有一个横向通道,则确定所述存在触摸点的目标子区域不可被划分;若所述存在触摸点的目标子区域中有多个横向通道,则确定所述存在触摸点的目标子区域可被划分。
  4. 根据权利要求3所述的方法,其特征在于,所述确定所述触摸点的横向坐标包括:
    确定所述触摸点所在的目标子区域的横向通道的横向坐标为所述触摸点的横向坐标。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述根据并行接收横向通道信号的纵向通道确定所述触摸点对应的纵向坐标,包括:
    检测并行接收横向通道信号的各纵向通道上的电容量是否发生变化,若检测到纵向通道上的电容量发生变化,则确定电容量发生变化的纵向通道对应的纵向坐标为所述触摸点的纵向坐标。
  6. 根据权利要求1-5中任意一项所述的方法,其特征在于,所述目标子区域的数量为2,且2个所述目标子区域中的横向通道的数量相等。
  7. 一种触摸点定位装置,其特征在于,包括:
    扫描模块,用于针对目标区域中的每个目标子区域,对所述目标子区域中的横向通道进行并行扫描,确定存在触摸点的目标子区域,其中,所述目标子区域为根据所述目标区域的横向通道所指示的方向划分所得,所述目标子区域的数量大于1且小于等于所述目标区域中的横向通道的数量;
    横向坐标确定模块,用于判断所述存在触摸点的目标子区域是否可被划分,若所述存 在触摸点的目标子区域可被划分,则确定所述存在触摸点的目标子区域为所述目标区域;若所述存在触摸点的目标子区域不可被划分,则确定所述触摸点的横向坐标;
    纵向坐标确定模块,根据并行接收横向通道信号的纵向通道确定所述触摸点对应的纵向坐标。
  8. 根据权利要求7所述的触摸点定位装置,其特征在于,所述扫描模块,具体用于:
    依次对多个目标子区域中的每个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。
  9. 根据权利要求7所述的触摸点定位装置,其特征在于,所述扫描模块,具体用于:
    并行地对多个目标子区域中的横向通道进行并行扫描,并确定存在触摸点的目标子区域。
  10. 根据权利要求7-9中任一项所述的触摸点定位装置,其特征在于,所述横向坐标确定模块,在用于判断所述存在触摸点的目标子区域是否可被划分方面具体用于:
    判断所述存在触摸点的目标子区域中是否只有一个横向通道,若所述存在触摸点的目标子区域中只有一个横向通道,则确定所述存在触摸点的目标子区域不可被划分;若所述存在触摸点的目标子区域中有多个横向通道,则确定所述存在触摸点的目标子区域可被划分。
  11. 根据权利要求10所述的触摸点定位装置,其特征在于,所述横向坐标确定模块,在用于确定所述触摸点的横向坐标方面具体用于:
    确定所述触摸点所在的目标子区域的横向通道的横向坐标为所述触摸点的横向坐标。
  12. 根据权利要求7-11中任一项所述的触摸点定位装置,其特征在于,所述纵向坐标确定模块具体用于:
    检测并行接收横向通道信号的各纵向通道上的电容量是否发生变化,若检测到纵向通道上的电容量发生变化,则确定电容量发生变化的纵向通道对应的纵向坐标为所述触摸点对应的纵向坐标。
  13. 根据权利要求7-12中任意一项所述的触摸点定位装置,其特征在于,所述目标子区域的数量为2,且2个所述目标子区域中的横向通道的数量相等。
  14. 一种终端设备,其特征在于,所述终端设备包括触摸屏以及与所述触摸屏连接的触摸点定位装置,所述触摸屏的可触摸区域为初始的目标区域,所述触摸点定位装置为权利要求7至13中任一项所述的触摸点定位装置。
  15. 一种终端设备,其特征在于,所述终端设备包括:触摸屏、与所述触摸屏连接的触摸屏控制器、其中,触摸屏包括多个横向电极以及多个纵向电极;
    所述触摸屏控制器,用于针对所述触摸屏的目标区域中的每个目标子区域,控制所述目标子区域中的横向电极并行发送激励信号,纵向的所有电极并行接收所述激励信号的方式进行扫描,确定存在触摸点的目标子区域,其中,所述目标子区域为根据所述目标区域的横向电极组成的横向通道所指示的方向划分所得,所述目标子区域的数量大于1且小于等于所述目标区域中的横向电极组成的横向通道的数量;判断所述存在触摸点的目标子区域是否可被划分,若所述存在触摸点的目标子区域可被划分,则确定所述存在触摸点的目标子区域为所述目标区域,针对目标区域中的每个目标子区域,控制所述目标子区域中的 横向电极并行发送激励信号,纵向的所有电极并行接收所述激励信号的方式继续进行扫描;若所述存在触摸点的目标子区域不可被划分,则确定所述触摸点的横向坐标;根据并行接收横向电极信号的纵向电极所在的纵向通道确定所述触摸点对应的纵向坐标。
PCT/CN2017/071495 2016-01-28 2017-01-18 一种触摸点定位方法、装置及终端设备 WO2017129007A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17743622.7A EP3404518A4 (en) 2016-01-28 2017-01-18 Touch point positioning method and apparatus, and terminal device
US16/047,568 US20180356935A1 (en) 2016-01-28 2018-07-27 Touch point positioning method and apparatus, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610061741.XA CN105589613B (zh) 2016-01-28 2016-01-28 一种触摸点定位方法、装置及终端设备
CN201610061741.X 2016-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/047,568 Continuation US20180356935A1 (en) 2016-01-28 2018-07-27 Touch point positioning method and apparatus, and terminal device

Publications (1)

Publication Number Publication Date
WO2017129007A1 true WO2017129007A1 (zh) 2017-08-03

Family

ID=55929240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071495 WO2017129007A1 (zh) 2016-01-28 2017-01-18 一种触摸点定位方法、装置及终端设备

Country Status (4)

Country Link
US (1) US20180356935A1 (zh)
EP (1) EP3404518A4 (zh)
CN (1) CN105589613B (zh)
WO (1) WO2017129007A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110502160A (zh) * 2019-08-19 2019-11-26 青岛海信商用显示股份有限公司 触摸点的分类方法及装置、触摸屏和显示器

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589613B (zh) * 2016-01-28 2019-04-19 华为技术有限公司 一种触摸点定位方法、装置及终端设备
CN106462310B (zh) * 2016-09-28 2019-04-19 深圳市汇顶科技股份有限公司 触控芯片和触控芯片检测触摸屏的触摸点的方法
US10175839B2 (en) * 2016-12-30 2019-01-08 Qualcomm Incorporated Highly configurable front end for touch controllers
CN108700977A (zh) * 2017-04-20 2018-10-23 华为技术有限公司 一种信号上报方法及装置
CN108255342B (zh) * 2018-01-19 2021-12-21 昆山龙腾光电股份有限公司 触控显示面板的驱动方法、驱动电路以及触控显示装置
CN109032439A (zh) * 2018-08-27 2018-12-18 无锡华润矽科微电子有限公司 触摸屏触点的检测方法及相应的触摸屏检测控制电路
CN111385761A (zh) * 2018-12-29 2020-07-07 北京聚利科技有限公司 车辆位置的确定方法、装置及存储介质
CN109976651B (zh) * 2019-01-29 2021-09-17 上海思立微电子科技有限公司 指纹数据获取方法及指纹识别设备
CN109917963B (zh) * 2019-03-05 2022-06-24 广州视源电子科技股份有限公司 触摸屏及其驱动方法、存储介质、处理器
CN110007811A (zh) * 2019-03-29 2019-07-12 京东方科技集团股份有限公司 一种处理触控信息的方法、装置、计算机存储介质及终端
CN111475054B (zh) * 2020-05-28 2023-10-17 Tcl华星光电技术有限公司 一种互电容式触摸屏驱动方法、装置及终端设备
CN111880676B (zh) * 2020-06-22 2022-03-15 深圳市鸿合创新信息技术有限责任公司 一种分区触控方法、装置、电子设备及存储介质
CN114077359A (zh) * 2020-08-11 2022-02-22 青岛海信商用显示股份有限公司 触摸识别方法及显示设备
CN112148541A (zh) * 2020-09-16 2020-12-29 珠海格力电器股份有限公司 触摸屏测试方法及电子设备
CN114415864B (zh) * 2020-10-13 2024-02-02 青岛海信商用显示股份有限公司 触摸区域的确定方法与显示设备
CN112947791B (zh) * 2021-03-12 2023-08-25 深圳市汇顶科技股份有限公司 用于触控屏中多个通道触控检测的方法和装置
CN114995741B (zh) * 2022-08-02 2022-11-08 广州市保伦电子有限公司 一种多屏显示的多点触控方法、装置及系统
CN116301440B (zh) * 2023-05-23 2023-08-29 深圳曦华科技有限公司 信号处理方法、装置、电子设备及存储介质
CN116841415B (zh) * 2023-07-05 2024-03-29 湖南兴悦科技有限公司 一种防跳点触摸屏控制系统及触摸屏
CN117742531B (zh) * 2024-02-20 2024-05-07 广东视安通实业有限公司 高精度多点触控电容触摸屏及其蚀刻工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706698A (zh) * 2009-11-23 2010-05-12 深圳市汇顶科技有限公司 一种触摸感应扫描检测方法、系统及电容型触摸传感器
CN102681715A (zh) * 2010-12-31 2012-09-19 乐金显示有限公司 用于驱动触摸传感器的设备和方法
US20130127774A1 (en) * 2011-11-21 2013-05-23 Samsung Electro-Mechanics Co., Ltd. Touch sensing apparatus and method thereof
CN104331196A (zh) * 2013-07-22 2015-02-04 株式会社日本显示器 触摸检测装置、带触摸检测功能的显示装置及电子设备
CN105589613A (zh) * 2016-01-28 2016-05-18 华为技术有限公司 一种触摸点定位方法、装置及终端设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8723825B2 (en) * 2009-07-28 2014-05-13 Cypress Semiconductor Corporation Predictive touch surface scanning
TWI439892B (zh) * 2010-07-19 2014-06-01 Princeton Technology Corp 偵測觸控面板之觸控點之方法及觸控裝置
US9013441B2 (en) * 2010-08-24 2015-04-21 Cypress Semiconductor Corporation Smart scanning for a capacitive sensing array
EP2562627B1 (en) * 2011-08-26 2016-11-09 LG Display Co., Ltd. Touch sensing device
US20140375590A1 (en) * 2013-06-19 2014-12-25 Ronald Steven Cok Multi-resolution micro-wire touch-sensing method
EP3186697A1 (en) * 2014-08-25 2017-07-05 3M Innovative Properties Company Capacitive-based touch apparatus and method with reduced interference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706698A (zh) * 2009-11-23 2010-05-12 深圳市汇顶科技有限公司 一种触摸感应扫描检测方法、系统及电容型触摸传感器
CN102681715A (zh) * 2010-12-31 2012-09-19 乐金显示有限公司 用于驱动触摸传感器的设备和方法
US20130127774A1 (en) * 2011-11-21 2013-05-23 Samsung Electro-Mechanics Co., Ltd. Touch sensing apparatus and method thereof
CN104331196A (zh) * 2013-07-22 2015-02-04 株式会社日本显示器 触摸检测装置、带触摸检测功能的显示装置及电子设备
CN105589613A (zh) * 2016-01-28 2016-05-18 华为技术有限公司 一种触摸点定位方法、装置及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404518A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110502160A (zh) * 2019-08-19 2019-11-26 青岛海信商用显示股份有限公司 触摸点的分类方法及装置、触摸屏和显示器
CN110502160B (zh) * 2019-08-19 2023-03-28 青岛海信商用显示股份有限公司 触摸点的分类方法及装置、触摸屏和显示器

Also Published As

Publication number Publication date
EP3404518A1 (en) 2018-11-21
US20180356935A1 (en) 2018-12-13
CN105589613B (zh) 2019-04-19
EP3404518A4 (en) 2018-12-05
CN105589613A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2017129007A1 (zh) 一种触摸点定位方法、装置及终端设备
US9870137B2 (en) Speed/positional mode translations
KR101542799B1 (ko) 터치패널 제어장치 및 그의 제어 방법
US9658757B2 (en) Method and device for managing progress indicator display
US9182884B2 (en) Pinch-throw and translation gestures
RU2686629C2 (ru) Разводка проводящих дорожек для датчиков дисплея и лицевой панели
CN107741824B (zh) 对可重定位触摸表面上的姿态朝向的检测
US10747357B2 (en) Coordinate measuring apparatus for measuring input position of a touch and a coordinate indicating apparatus and driving method thereof
US20150084921A1 (en) Floating touch method and touch device
CN109062464B (zh) 触控操作方法、装置、存储介质和电子设备
CN105094487B (zh) 触摸屏及其控制方法、控制装置、触摸显示装置
WO2013167063A2 (zh) 一种触摸屏终端、控制装置以及触摸屏终端的工作方法
US20150128095A1 (en) Method, device and computer system for performing operations on objects in an object list
US20110216017A1 (en) Touch Panel Apparatus
EP2339436A2 (en) Display apparatus and touch sensing method
CN102662511A (zh) 通过触摸屏进行控制操作的方法及终端
KR20140141305A (ko) 화면분할이 가능한 이동통신단말기 및 그 제어방법
EP2833245A2 (en) Display apparatus and control method thereof
KR102476607B1 (ko) 좌표 측정 장치 및 그 제어 방법
WO2017084469A1 (zh) 触摸控制方法、用户设备、输入处理方法和移动终端
CN108021313B (zh) 一种图片浏览方法及终端
CN104932755B (zh) 输入系统及其操作方法
CN110874141A (zh) 图标移动的方法及终端设备
KR101935023B1 (ko) 정전용량식 대형 전자칠판
KR101935024B1 (ko) 정전용량식 대형 전자칠판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017743622

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017743622

Country of ref document: EP

Effective date: 20180813