WO2017128905A1 - 一种单主机多环most网络通信系统 - Google Patents

一种单主机多环most网络通信系统 Download PDF

Info

Publication number
WO2017128905A1
WO2017128905A1 PCT/CN2016/111946 CN2016111946W WO2017128905A1 WO 2017128905 A1 WO2017128905 A1 WO 2017128905A1 CN 2016111946 W CN2016111946 W CN 2016111946W WO 2017128905 A1 WO2017128905 A1 WO 2017128905A1
Authority
WO
WIPO (PCT)
Prior art keywords
host
network
communication
ring
data
Prior art date
Application number
PCT/CN2016/111946
Other languages
English (en)
French (fr)
Inventor
叶少甘
乐宏德
Original Assignee
叶少甘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 叶少甘 filed Critical 叶少甘
Publication of WO2017128905A1 publication Critical patent/WO2017128905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present invention relates to the field of in-vehicle communication network technologies, and in particular, to a single-host multi-ring MOST network communication system.
  • MOST Media Oriented Systems Transport
  • MOST Media Oriented Systems Transport
  • FIG. 1 is a structural block diagram of a common MOST network system in an existing in-vehicle entertainment system.
  • a MOST network ring can connect up to 64 communication nodes in series, and each peripheral communication node is installed in a passenger-carrying vehicle for users in each seat to select and prefer. Entertainment program.
  • the basic unit of the vehicle MOST ring network is a node.
  • a node is a logical unit that can communicate independently and transmit data in both directions.
  • the nodes and nodes are connected in series to form a closed MOST ring network.
  • the node installed on the host is a special node, which serves as a platform for collecting, integrating and distributing all information in the entire MOST network system.
  • the host first collects different entertainment information, encapsulates the relevant information into the MOST data format according to the requirements of other nodes, and converts it into a digital signal and transmits it on the corresponding transmission medium, which can be numbered as “0”; other nodes are peripheral communication.
  • the node (the number range is greater than or equal to 1, less than or equal to 63) is a receiving end with a human-machine interface; the user sends relevant information requirements to the host through the receiving end, and extracts and outputs the MOST data through the transmission medium.
  • the formatted information is decapsulated and output to the display at the receiving end.
  • the host When adding or subtracting nodes, the host will automatically assign the address/number of the receiving node on the MOST network in order to identify which receiving end each information request comes from.
  • the MOST ring network supports the transmission of a large number of different entertainment information to support different receiving end nodes to present different entertainment information at the same time.
  • the total bandwidth of the standard MOST ring network is 150Mbps, and the maximum number of nodes supported is 64, then each receiving
  • the minimum available bandwidth of the end node is 150/64 Mbps (actually due to the presence of the synchronization signal, the bandwidth is slightly reduced), such bandwidth can meet the user's requirements for the quality of the media display.
  • the technical problem to be solved by the present invention is to provide a single-host multi-ring MOST network communication system, which can realize two or more MOST ring networks in a single host, so as to expand the number of communication nodes connected by a single host, and improve the single The host's carrying capacity and system construction cost savings.
  • an embodiment of the present invention provides a single-host multi-ring MOST network communication system, including: a host, and multiple sets of MOST ring networks connected in parallel on the host; each group of MOST ring networks includes a TCP/IP Channel and multiple communication nodes;
  • Each of the communication nodes performs TCP/IP data transmission with the host through the MOST ring network in which it is located, and realizes data communication and transmission with the Internet via an external network connection interface on the host.
  • the host establishes an IP external network communication network segment through an Ethernet card and/or a wireless communication module to implement a communication connection with the Internet.
  • each of the communication nodes is respectively provided with an independent intranet IP, and the communication network segment where the intranet IP is located is different from the IP extranet communication network segment; each of the communication nodes is used Routing the data through the intranet IP, sending data to the host, or receiving data from the host; the host, after processing data received from the intranet IP, Transmitting the processed data to the Internet via the IP external network communication network segment; or receiving downlink data obtained from the Internet via the IP external network communication network segment, and processing the downlink data after processing It is mapped to the intranet IP for transmission to the communication node in the MOST ring network corresponding to the intranet IP.
  • the host further has a TCP/IP forwarding module, configured to perform address translation on the transmission data on the host: converting the intranet IP where the uplink data is located to the external network IP connected to the Internet; or Convert the external network IP where the Internet downlink data is located to the intranet IP connected to the MOST ring network communication node.
  • a TCP/IP forwarding module configured to perform address translation on the transmission data on the host: converting the intranet IP where the uplink data is located to the external network IP connected to the Internet; or Convert the external network IP where the Internet downlink data is located to the intranet IP connected to the MOST ring network communication node.
  • the host is further configured to forward data of different communication nodes between different MOST ring networks, and implement data transmission and reception of the boast network segment.
  • each group of MOST ring networks respectively includes an initial communication node and a peripheral communication node; each of the peripheral communication nodes is connected to the host hardware through a MOST network physical interface on the initial communication node; An intelligent network interface control module is provided; each peripheral communication node on the MOST ring network is connected to the host hardware, and then communicates with the intelligent network interface control module through an MLB bus or a USB bus.
  • a plurality of communication nodes on each group of MOST ring networks use optical fibers, and are sequentially connected from the initial communication nodes in order to form a MOST closed loop network; each peripheral communication node is provided with MOST network physics.
  • the host has a software application platform; the software application platform includes a controller, and a plurality of communication protocols and drivers for supporting data transmission with external devices; and the data transmission is supported for supporting external devices.
  • the communication protocol includes a TCP/IP internet communication protocol stack, a UDP protocol, and a TCP protocol; the driver includes a separate USB driver, an MLB driver, a NAPI driver, an ISOC driver, and a control driver; wherein the controller is used to generate each group of MOSTs
  • the intelligent network interface in the ring network controls control information of the control channel between the modules; the control driver is configured to start normal operation of the controller; the NAPI driver is used to drive operation of the Ethernet card; the ISOC driver Used to drive the transmission of the TS code stream in the host.
  • the software application platform is configured to start an application service on the host by software initialization, including: determining whether each group of MOST ring networks is a closed loop network; and when each group of MOST ring networks is a closed ring network Allocating MAC addresses to communication nodes of each group of MOST ring networks; detecting whether each communication node obtains a MAC address; if so, starting a host to record all communication node information and start various application services of each group of MOST ring networks; if not, Then the error message is prompted by the host.
  • each communication node of each group of the MOST ring network is further configured to separately send a multimedia play request to the host; the host is further configured to: according to the multimedia play request, execute the result according to the The TCP/IP Internet communication protocol stack, the UDP protocol, and the TCP protocol are sent to the corresponding communication node through the NAPI driver, and the multimedia data is transmitted to the corresponding communication node by the TSC stream through the ISOC driver.
  • the single-host multi-ring MOST network communication system realizes the interconnection of multiple sets of MOST ring networks on the host and realizes the communication nodes of each group of MOST ring networks by assigning settings to the TCP/IP channels of each group of MOST ring networks.
  • the number of communication nodes supported by a single host is theoretically unlimited.
  • the actual application is determined according to the performance of the host (hardware and software configuration); further, multimedia (such as movies, music, MTV, etc.) files are stored.
  • each communication node is independent of each other, and according to the MOST standard design, the average bandwidth of each communication node is not less than 150/64 Mbps, satisfying the user's on-board multimedia The display quality requirements.
  • the technical solution provided by the invention can effectively expand the number of MOST ring network communication nodes connected by a single host, improve the communication bearer capacity of a single host in a low construction cost manner, realize multiple communication nodes and each communication node and Data communication and transmission between the Internet, and can further receive independent multimedia on-demand requests sent by users through various receiving end nodes to meet the development needs of in-vehicle entertainment.
  • FIG. 1 is a structural block diagram of a common MOST network system in an existing in-vehicle entertainment system.
  • FIG. 2 is a schematic topological diagram of an embodiment of a single-host multi-ring MOST network communication system provided by the present invention.
  • FIG. 3 is a schematic diagram showing the internal structure of an embodiment of an initial communication node provided by the present invention.
  • FIG. 4 is a schematic diagram showing the internal structure of an embodiment of a peripheral communication node provided by the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of a MOST software architecture of a host provided by the present invention.
  • FIG. 6 is a schematic structural diagram of an embodiment of a MOST software architecture of a communication node provided by the present invention.
  • FIG. 7 is a schematic diagram of a software initialization process of a single-host multi-ring MOST ring network provided by the present invention.
  • FIG. 2 it is a schematic diagram of a topology structure of an embodiment of a single-host multi-ring MOST network communication system provided by the present invention.
  • the single-host multi-ring MOST network communication system includes: a host 100, and a plurality of sets of MOST ring networks (1 to N, N ⁇ 2) connected in parallel to the host 100; each group of MOST The ring network includes a TCP/IP channel and multiple communication nodes (1 to M, 1 ⁇ M ⁇ 64).
  • a single host can connect two or more MOST closed ring networks in parallel.
  • Each MOST ring network complies with the MOST standard and supports up to 64 nodes.
  • Each MOST ring network supports a bandwidth of up to 150 Mbps.
  • the number of communication nodes that the MOST network communication system provided by this embodiment can theoretically support will be unlimited (actually subject to the hardware and software performance of the host 100), and at the same time, the communication node of each MOST ring network
  • the average bandwidth (also known as the receiving end node) is not less than 150/64 Mbps.
  • Each of the communication nodes performs TCP/IP data transmission with the host 100 through the MOST ring network in which it is located, and realizes data communication and transmission with the Internet via the external network connection interface of the host 100.
  • Each MOST ring network includes a TCP/IP channel, and each communication node includes an independent IP (Internet Protocol) address; each communication node arrives at the host 100 through the MOST ring network where it is located, and is executed by the host 100.
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • Stack Internet communication protocol stack
  • the host 100 establishes an IP external network communication network segment through the Ethernet card and/or the wireless communication module 101 to implement communication connection with the Internet.
  • the Ethernet card or wireless communication module 101 is a hardware device on the host 100 for connecting to the Internet.
  • the Ethernet card includes a 100M network card, a Gigabit network card, etc.
  • the wireless communication module includes functional modules such as 2G (second generation mobile communication), 3G (third generation mobile communication), 4G (fourth generation mobile communication) communication module.
  • IP_X is a dynamic IP assigned by the Internet operator.
  • the common format is 192.168.x.y or 10.10.x.y.
  • the value range of x is greater than or equal to 0, and less than or equal to 254, and the range of y is greater than equal to 2 and less than or equal to 254.
  • the Ethernet card and the wireless communication module may be either selected or coexisted in the host 100.
  • each of the communication nodes is respectively provided with an independent intranet IP, and the communication network segment where the intranet IP is located is different from the IP extranet communication network segment.
  • the routing address of the IP external network communication network segment can be marked as IP_X
  • the intranet IP of each communication node of the first MOST ring network is marked as IP_1_1 ⁇ IP_1_63; and so on, the Nth MOST
  • the intranet IP addresses of the communication nodes of the ring network are labeled IP_N_1 to IP_N_63.
  • the parameters N and X in IP_N and IP_X can be used as the identifiers of the network segments and are different from each other to distinguish between the intranet IP address and the external network IP address.
  • the IP_1 address of node 0 can be set to 10.0.0.1, the IP_1_1 address of node 1 can be 10.0.1.101, and the IP_1_2 address of node 2 can be 10.0. .1.102, and so on, the IP address of node 63 can be set to 10.0.1.163; in another implementation, the IP_1 address of node 0 can also be 192.168.1.1, and the IP_1_1 address of node 1 can be 192.168.1.101.
  • the IP_1_2 address of node 2 may be 192.168.1.102, and the IP address of node 63 is set to 192.168.1.163.
  • the IP address of the N node of the MOST ring network may be:
  • the IP address of node 0 may be 10.0.N.1; the IP_1_1 of node 1 may be 10.0.N.101, node 2 IP_1_2 may be 10.0.N.102, and the IP address of the node 63 is 10.0.N.163.
  • the IP_1 of the node 0 may also be 192.168.N.1, and the IP_1_1 of the node 1 may be 192.168.N.101, IP_2_2 of node 2 may be 192.168.N.102, and the IP address of node 63 is 192.168.N.163.
  • the value of the number M of the MOST ring network is greater than or equal to 1, less than or equal to 254. The value of N in the actual application will be limited, and the value is determined by the hardware and software capabilities of the host 100.
  • Each of the communication nodes is configured to perform routing addressing by using the intranet IP, send data to the host 100, or receive data from the host 100;
  • the host 100 is configured to: after processing the data received from the intranet IP, upload the processed data to the Internet via the IP extranet communication network segment; or, receive the IP from the Internet via the IP
  • the downlink data obtained by the external network communication network segment is processed and mapped to the corresponding intranet IP for transmission to the communication node in the corresponding MOST ring network.
  • the host 100 is further provided with a TCP/IP forwarding module 102 for performing address translation on the transmission data on the host 100: converting the intranet IP where the uplink data is located to the external network connected to the Internet. IP; or, the external network IP where the downlink data of the Internet is located is converted to the intranet IP connected to the MOST ring network communication node.
  • a TCP/IP forwarding module 102 for performing address translation on the transmission data on the host 100: converting the intranet IP where the uplink data is located to the external network connected to the Internet. IP; or, the external network IP where the downlink data of the Internet is located is converted to the intranet IP connected to the MOST ring network communication node.
  • the TCP/IP forwarding module 102 on the host 100 can be implemented by using a routing hardware chip or an operating system-based routing software, and the function is to process the data of the IP_N address of the internal network, and uplink to the IP_X address of the external network, thereby The data is sent to the Internet; when the data in the Internet goes down to the TCP/IP forwarding module 102, the TCP/IP forwarding module 102 processes the data and the address, and then forwards it to the intranet IP_N for distribution to the corresponding communication node.
  • the host 100 is further configured to forward data of different communication nodes between different MOST ring networks, and implement data transmission and reception of the boast network segment.
  • the host 100 Through the forwarding of the host 100, communication between different nodes between different MOST ring networks can be realized.
  • the communication node 1 in the MOST ring network 1 and the node 63 in the MOST ring network N (N takes a value greater than 1), through the forwarding of the host 100, realize information transmission and reception of the boast network segment.
  • Each group of MOST ring networks includes an initial communication node (node 0) and a peripheral communication node (nodes 1 to 63); each of said peripheral communication nodes passes through a MOST network physical interface on said initial communication node and said host 100 hardware
  • the initial communication node is provided with an Intelligent Network Interface Card (INIC); each peripheral communication node on the MOST ring network is connected to the host hardware and then passes through the MLB (Media Local Bus).
  • a bus or USB (Universal Serial Bus) bus is in communication connection with the intelligent network interface control module INIC.
  • the MLB bus is a multimedia local bus, which can be used as a vehicle bus for fast two-way transmission.
  • the USB bus is a serial bus that is relatively easy to use, low cost, and fast bidirectional transmission.
  • the host 100 is provided with a separate MLB bus and a USB drive to support multiple MOST ring networks. in parallel.
  • the peripheral communication node receiving end node
  • the USB driver will not be used; if it uses the USB driver, the MLB bus will not be used, and in actual use, it is utilized.
  • One of the two can be used for data transmission.
  • the intelligent network interface control module can be integrated into an INIC chip, such as an electronic chip produced by Microchip, and a commonly used intelligent network interface controller (OS81118, OS81110, etc.).
  • INIC chip such as an electronic chip produced by Microchip, and a commonly used intelligent network interface controller (OS81118, OS81110, etc.).
  • a plurality of communication nodes on each group of MOST ring networks adopt optical fibers, and are sequentially connected (series) in order from the initial communication nodes to form a MOST closed loop network; each peripheral communication node is provided with a MOST network physical interface and an intelligent network interface control.
  • the module INIC, display screen, audio output device, touch interaction device, MLB bus or USB bus One or more of the module INIC, display screen, audio output device, touch interaction device, MLB bus or USB bus.
  • the initial communication node (ie, node 0) of each group of MOST ring networks is disposed on the host 100 and communicatively coupled to the TCP/IP forwarding module 102 on the host 100.
  • FIG. 3 is a schematic diagram of an internal structure of an embodiment of an initial communication node provided by the present invention.
  • FIG. 4 it is a schematic diagram of an internal structure of an embodiment of a peripheral communication node provided by the present invention.
  • a structural composition as shown in FIG. 4 can be employed.
  • the physical interface of the MOST network can be connected by using an optical fiber, including two channels: one is an output end, and the other is an input end.
  • the display screen is set on the peripheral communication node, and by being installed on the in-vehicle device, the user can view the media video signal (movie, MTV, etc.) in the MOST network.
  • the audio output device is a device for the user to listen to media audio signals (movies, MTV, music, etc.) in the MOST network.
  • the user can perform MOST network media control (play, pause, etc.) interaction with each communication node through the touch interaction device.
  • the hardware connection of a specific set of MOST ring networks is: the MLB bus or the USB bus of each host 100 is connected to the INIC chip; the INIC chip is connected to the MOST network physical interface on the host 100; the MOST network of the node 0 on the host 100
  • the output of the physical interface is connected to the input of the physical interface of the MOST network of the peripheral communication node 1; the output of the physical interface of the MOST network of the peripheral communication node 1 is connected to the input of the physical interface of the MOST network of the node 2; according to the peripheral communication node M-1 (M takes The value range is greater than or equal to 1, less than or equal to 63)
  • the MOST network physical interface output is connected to the peripheral communication node M (M takes a value range greater than or equal to 1, less than or equal to 63) MOST network physical interface input; last periphery
  • the MOST network physical interface output end of the communication node M is connected to the MOST network
  • the TCP/IP forwarding module is integrated into a routing chip, and when different communication nodes in the MOST ring network need to access the Internet based on the TCP/IP protocol, the host 100 forwards and processes the IP data through the forwarding, and the routing chip can quickly forward and process the IP data. IP data forwarding processing can also be performed through the software application platform based on different operating systems, and the chip can be replaced by software.
  • the host 100 is provided with a software application platform; the software application platform includes a controller CONTROL, and a plurality of communication protocols and drivers for supporting data transmission with external devices.
  • the communication protocol for supporting data transmission with an external device includes a TCP/IP Internet communication protocol stack, a UDP (User Datagram Protocol) protocol, and a TCP (Transmission Control Protocol) protocol;
  • the drive includes a separate USB drive, an MLB driver, a NAPI (New Application Programming Interface) driver, an ISOC driver (an INIC chip in the MOST network as a drive module for transmitting the TS), and a control driver;
  • the controller is configured to generate control information of a control channel between the intelligent network interface control modules in each group of MOST ring networks; the control driver is configured to start normal operation of the controller; and the NAPI driver is used to drive an Ethernet card
  • the ISOC driver is used to drive the transmission of a TS (Transport Stream) code stream in the host 100.
  • FIG. 5 it is a schematic structural diagram of an embodiment of a MOST software architecture of a host provided by the present invention.
  • FIG. 6 is a schematic structural diagram of an embodiment of a MOST software architecture of a communication node provided by the present invention.
  • the system provided in this embodiment is used to start various different applications of the MOST ring network, as follows:
  • the communication node accesses the Internet through the host 100, the communication is performed using the NAPI driver, the TCP/IP protocol, the TCP protocol, and/or the UDP protocol in FIG. 5, FIG.
  • the peripheral communication node uses Figure 5, NAPI driver, TCP/IP protocol, TCP protocol and/or UDP protocol in Figure 6 to specifically control the playback information (such as play, pause, repeat play, last one)
  • the next instruction is sent to the host 100, and the host 100 sends the result of the execution to the corresponding communication node through the NAPI driver, the TCP/IP protocol, the TCP protocol, and/or the UDP protocol in FIG. 100 transmits the media data specified by the communication node to the communication node through the ISOC driver in FIG. 5 and FIG. 6, and the communication node receives the TS stream through the ISOC driver in FIG. 5 and FIG. 6, and decodes it and displays it to the user accurately.
  • FIG. 7 it is a schematic diagram of a software initialization process of a single-host multi-ring MOST ring network provided by the present invention.
  • the software application platform provided in this embodiment is used to start an application service on the host 100 by software initialization. As shown in Figure 7, its specific functions include:
  • Step S701 The host starts to determine whether each group of the MOST ring network is a closed loop network
  • Step S702 specifically determining whether each group of MOST ring networks are closed loop networks, and if so, executing step S703; if not, prompting the error message through the host 100, and returning to step S701;
  • Step S703 Allocating a MAC address to a communication node of each group of MOST ring networks when each group of MOST ring networks is a closed loop network;
  • Step S704 It is detected whether each communication node obtains a MAC address; if yes, step S704 is performed; if not, an error message is prompted by the host 100.
  • Step S705 The startup host 100 records all communication node information and starts various application services on each group of MOST ring networks.
  • the MAC (Media Access Control) address is the physical address of the Ethernet card in the TCP/IP protocol.
  • the current standard MAC address is 6 bytes, for example, 02:00:00:00:01:01.
  • each communication node of each group of the MOST ring network is further configured to separately send a multimedia play request to the host 100; the host 100 is further configured to perform an execution result according to the multimedia play request according to the
  • the TCP/IP internet communication protocol stack, the UDP protocol, and the TCP protocol are sent to the corresponding communication node through the NAPI driver, and the multimedia data is transmitted to the corresponding communication node in the TS code stream through the ISOC driver.
  • the single-host multi-ring MOST network communication system realizes the interconnection of multiple sets of MOST ring networks on the host and realizes the communication nodes of each group of MOST ring networks by assigning settings to the TCP/IP channels of each group of MOST ring networks.
  • the number of communication nodes supported by a single host is theoretically unlimited.
  • the actual application is determined according to the performance of the host (hardware and software configuration); further, multimedia (such as movies, music, MTV, etc.) files are stored.
  • each communication node is independent of each other, and according to the MOST standard design, the average bandwidth of each communication node is not less than 150/64 Mbps, satisfying the user's on-board multimedia The display quality requirements.
  • the technical solution provided by the invention can effectively expand the number of MOST ring network communication nodes connected by a single host, improve the communication bearer capacity of a single host in a low construction cost manner, realize multiple communication nodes and each communication node and Data communication and transmission between the Internet, and can further receive independent multimedia on-demand requests sent by users through various receiving end nodes to meet the development needs of in-vehicle entertainment.
  • the above upgrade system and its functional units can be implemented by software, hardware or a combination of software and hardware.
  • the hardware portion can be implemented using dedicated logic; the software portion can be stored in memory and executed by a suitable instruction execution system, such as a microprocessor or dedicated design hardware.
  • a suitable instruction execution system such as a microprocessor or dedicated design hardware.
  • the upgrade system is implemented in software, it is the above upgrade procedure.
  • processor control code such as a carrier medium such as a magnetic disk, CD or DVD-ROM, such as read-only.
  • Such code is provided on a programmable memory of memory (firmware) or on a data carrier such as an optical or electronic signal carrier.
  • the system and its functional unit in the present invention can be composed of such as super Large-scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or hardware circuit implementations of programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc., can also be used by various types of processors
  • the implemented software implementation can also be implemented by a combination of the above hardware circuits and software, such as firmware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明公开了一种单主机多环MOST网络通信系统,包括:主机以及并联在所述主机上的多组MOST环网;每组MOST环网包括一个TCP/IP通道和多个通信节点;每个通信节点分别通过其所在的MOST环网与主机进行TCP/IP数据传输,经由主机上的对外网络连接接口,实现与互联网的数据通信和传输。本发明提供的单主机多环MOST网络通信系统,有效拓展单个主机所连接的MOST环网通信节点的数量,以较低构造成本的方式提升单个主机的通信承载能力,实现多个通信节点之间以及各个通信节点与互联网之间的数据通信与传输,并可以进一步接收各个接收端节点发出的独立多媒体点播请求,满足车载娱乐的发展需要。

Description

一种单主机多环MOST网络通信系统 技术领域
本发明涉及车载通信网络技术领域,尤其涉及一种单主机多环MOST网络通信系统。
背景技术
MOST(Media Oriented Systems Transport,媒体导向系统传输)网络作为一种车载多媒体网络传输技术,负责车载信息娱乐和远程信息设备的数据传输,目前主要以环形拓扑结构传送娱乐数据的信息。
图1为现有车载娱乐系统中常见的MOST网络系统结构框图。在图1所示的多节点应用案例中,基于MOST标准,一个MOST网络环最多可以串联64个通信节点,各个外围通信节点安装于载客的交通工具,供每个座位上的用户选取所喜好的娱乐节目。其中,车载MOST环形网络的基础单位是节点。节点是一个独立可通信,双向传输数据的逻辑单位。节点与节点之间串联成为一个封闭的MOST环网。其中,安装在主机上的节点是一个特殊的节点,该节点在整个MOST网络系统中作为收集、整合、发放所有信息的平台。主机先将不同的娱乐信息收集,根据其他节点的要求将相关信息封包成MOST数据格式,再将其转换成数字信号在相应的传输介质上传送,可以编号为“0”;其他节点为外围通信节点(编号取值范围大于等于1,小于等于63),是一种具备人机界面的接收端;用户通过接收端,向主机提出相关的信息需求,并通过在传输介质上提取并将MOST数据格式的信息解封,输出在接收端的显示器。
当新增或减少节点,主机会自动按次序分配接收端节点在MOST网络上的地址/编号,以识别每个信息需求来自哪一台接收端。MOST环网支持传送大量不同的娱乐信息,以支持不同接收端的节点会在同一时间提出不同的娱乐信息。标准MOST环网的总带宽为150Mbps,支持的最大的节点数为64,则每个接收 端节点最少的可用带宽为150/64Mbps(实际由于存在同步信号,带宽略有减少),这样的带宽可以满足用户对媒体显示画质的要求。
但是,目前在很多的应用场合,比如双层巴士,火车,高铁,轮船和飞机上,所需支持的接收端节点数目或外围通信节点均远超过64个,因此,拓展单个主机支持的通信节点,是一项基于现有MOST标准必须攻克的技术难题。
发明内容
本发明所要解决的技术问题是,提供一种单主机多环MOST网络通信系统,实现单个主机可以并联两个或两个以上的MOST环网,以拓展单个主机所连接的通信节点数量,提高单主机的承载能力和节省系统构造成本。
为解决以上技术问题,本发明实施例提供一种单主机多环MOST网络通信系统,包括:主机,以及并联在所述主机上的多组MOST环网;每组MOST环网包括一个TCP/IP通道和多个通信节点;
每个所述通信节点分别通过其所在的MOST环网与所述主机进行TCP/IP数据传输,经由所述主机上的对外网络连接接口,实现与互联网的数据通信和传输。
优选地,所述主机通过以太网卡和/或无线通信模块建立IP外网通信网段,实现与互联网通信连接。
进一步地,每个所述通信节点上分别设有一个独立的内网IP,所述内网IP所在的通信网段与所述IP外网通信网段相区别;每个所述通信节点,用于通过所述内网IP进行路由寻址,将数据发送至所述主机,或者,接收来自于所述主机的数据;所述主机,用于对从内网IP中接收的数据进行处理后,经由所述IP外网通信网段,将处理后的数据上传至互联网;或者,用于接收从互联网经由所述IP外网通信网段获得的下行数据,并对所述下行数据进行加工处理后映射至内网IP上,以传输至与所述内网IP对应的MOST环网中的通信节点。
优选地,所述主机还设有TCP/IP转发模块,用于对主机上的传输数据进行地址转换:将上行数据所在的内网IP转换至与互联网通信连接的外网IP;或者, 将互联网下行数据所在的外网IP转换至与MOST环网通信节点连接的内网IP。
进一步地,所述主机还用于对不同MOST环网之间的不同通信节点的数据转发,实现夸网段的数据发送和接收。
进一步地,每组MOST环网分别包括初始通信节点和外围通信节点;每个所述外围通信节点通过所述初始通信节点上的MOST网络物理接口与所述主机硬件连接;所述初始通信节点上设有智能网络接口控制模块;每组MOST环网上的外围通信节点与所述主机硬件连接后通过MLB总线或USB总线与所述智能网络接口控制模块进行通信连接。
在一种可实现的方式中,每组MOST环网上的多个通信节点采用光纤,从所述初始通信节点按顺序依次连接,形成MOST封闭环网络;每个外围通信节点上设有MOST网络物理接口、智能网络接口控制模块、显示屏幕、音频输出装置、触摸交互装置、MLB总线或USB总线中的一项或多项。
进一步地,所述主机上设有软件应用平台;所述软件应用平台包括控制器,以及,多种用于支持与外部器件数据传输的通信协议和驱动器;所述用于支持与外部器件数据传输的通信协议包括TCP/IP互联网通信协议栈、UDP协议和TCP协议;所述驱动器包括独立的USB驱动器、MLB驱动器、NAPI驱动器、ISOC驱动器和控制驱动器;其中,所述控制器用于产生各组MOST环网中的智能网络接口控制模块之间的控制通道的控制信息;所述控制驱动器,用于启动所述控制器的正常运行;所述NAPI驱动器用于驱动以太网卡的运行;所述ISOC驱动器用于驱动所述主机中的TS码流的传输。
再进一步地,所述软件应用平台,用于通过软件初始化启动所述主机上的应用服务,包括:判断每组MOST环网是否为封闭环网络;在每组MOST环网均为封闭环网络时对各组MOST环网上的通信节点分配MAC地址;检测每个通信节点是否均获得MAC地址;若是,则启动主机记录所有通信节点信息和启动各组MOST环网上的各种应用服务;若否,则通过主机提示错误信息。
优选地,每组MOST环网的各个通信节点还用于独立地向所述主机发送多媒体播放请求;所述主机还用于根据所述多媒体播放请求,将执行结果根据所 述TCP/IP互联网通信协议栈、UDP协议、TCP协议,通过NAPI驱动器发送至对应的通信节点,并通过所述ISOC驱动器将多媒体数据以TS码流方式传输至相应的通信节点。
本发明实施例提供的单主机多环MOST网络通信系统,通过对每组MOST环网的TCP/IP通道分配设置,实现在主机上并联多组MOST环网以及实现各组MOST环网上的通信节点的数据传输,并且,通过所述主机的数据转发和地址转换,实现各个通信节点与互联网的数据通信和传输。进行网络拓展后,单个主机所支持的通信节点数量理论上不受限制,实际应用时根据主机的性能(硬件和软件配置)进行决定;进一步地,多媒体(如电影,音乐,MTV等)文件存放在主机上,以支持各个外围通信节点或接收端节点的独立点播需要;各个通信节点相互独立,由于依照MOST标准进行设计,各个通信节点的平均带宽不低于150/64Mbps,满足用户对车载多媒体的显示画质需求。本发明提供的技术方案,可以有效拓展单个主机所连接的MOST环网通信节点的数量,以较低构造成本的方式提升单个主机的通信承载能力,实现多个通信节点之间以及各个通信节点与互联网之间的数据通信与传输,并可以进一步接收用户通过各个接收端节点发出的独立多媒体点播请求,满足车载娱乐的发展需要。
附图说明
图1为现有车载娱乐系统中常见的MOST网络系统结构框图。
图2是本发明提供的单主机多环MOST网络通信系统的一个实施例的拓扑结构示意图。
图3是本发明提供的初始通信节点的一种实施例的内部结构示意图。
图4是本发明提供的外围通信节点的一种实施例的内部结构示意图。
图5是本发明提供的主机的MOST软件架构的一个实施例的架构示意图。
图6是本发明提供的通信节点的MOST软件架构的一个实施例的架构示意图。
图7是本发明提供的单主机多环MOST环网的软件初始化流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
参看图2,是本发明提供的单主机多环MOST网络通信系统的一个实施例的拓扑结构示意图。
在本实施例中,所述的单主机多环MOST网络通信系统,包括:主机100,以及并联在所述主机100上的多组MOST环网(1~N,N≥2);每组MOST环网包括一个TCP/IP通道和多个通信节点(1~M,1≤M≤64)。单个主机可以并联两个或两个以上的MOST封闭环形网络,每个MOST环网均符合MOST标准,支持最多64个节点,每个MOST环网最高支持150Mbps的带宽。对网络进行拓展后,本实施例提供的MOST网络通信系统理论上可以支持的通信节点数将是无限的(实际受制于主机100的硬件和软件性能),同时,每个MOST环网的通信节点(又称为接收端节点)的平均带宽不低于150/64Mbps。
每个所述通信节点分别通过其所在的MOST环网与所述主机100进行TCP/IP数据传输,经由所述主机100的对外网络连接接口,实现与互联网的数据通信和传输。每个MOST环网均包含一个TCP/IP通道,每个通信节点包含独立的IP(Internet Protocol,网络协议)地址;每个通信节点通过其所在的MOST环网到达主机100后,经主机100进行TCP/IP数据转发。TCP/IP(Transmission Control Protocol/Internet Protocol)又译为互联网通信协议栈(Stack),其作为一个网络通信模型,包含整个网络传输协议族,是互联网的基础通信架构。
在本实施例中,所述主机通100过以太网卡和/或无线通信模块101建立IP外网通信网段,实现与互联网通信连接。
以太网卡或无线通信模块101是主机100上的用于连接互联网的硬件设备。 其中,以太网卡包括百兆网卡,千兆网卡等,无线通信模块包含2G(第二代移动通信)、3G(第三代移动通信)、4G(第四代移动通信)通信模块等功能模块。IP_X是由互联网运营商分配的动态IP,一般常见的格式为192.168.x.y或10.10.x.y等。其中x的取值范围是大于等0,小于等于254,而y的取值范围是大于等2,小于等于254。以太网卡和无线通信模块可以二者选其一,或共存于主机100中。
具体实施时,每个所述通信节点上分别设有一个独立的内网IP,所述内网IP所在的通信网段与所述IP外网通信网段相区别。如图2所示,可以将IP外网通信网段的路由地址标记为IP_X,将第一个MOST环网的各个通信节点的内网IP标记为IP_1_1~IP_1_63;如此类推,将第N个MOST环网的各个通信节点的内网IP标记为IP_N_1~IP_N_63;其中,IP_N和IP_X中的参数N和X可以作为网段的标识并互不相同,以区分内网IP地址和外网IP地址。
譬如,以MOST环网1为例:在一种可实现的方式中,节点0的IP_1地址可以设置为10.0.1.1,节点1的IP_1_1地址可以是10.0.1.101,节点2的IP_1_2地址可以是10.0.1.102,如此类推,节点63的IP地址可设置为10.0.1.163;在另一种可实现的方式中,节点0的IP_1地址也可以是192.168.1.1,节点1的IP_1_1地址可以是192.168.1.101,节点2的IP_1_2地址可以是192.168.1.102,节点63的IP地址设为192.168.1.163。
同理,MOST环网N节点IP地址可以是:在一种可实现的方式中,节点0的IP地址可以是10.0.N.1;节点1的IP_1_1可以是10.0.N.101,节点2的IP_1_2可以是10.0.N.102,节点63的IP地址是10.0.N.163;在另一种可实现的方式中,节点0的IP_1也可以是192.168.N.1,节点1的IP_1_1可以是192.168.N.101,节点2的IP_1_2可以是192.168.N.102,节点63的IP地址是192.168.N.163。具体实施时,MOST环网数量N的取值大于或等于1,小于或等于254,实际应用中N的取值将受限,数值大小由主机100的硬件和软件能力决定。
每个所述通信节点,用于通过所述内网IP进行路由寻址,将数据发送至所述主机100,或者,接收来自于所述主机100的数据;
所述主机100,用于对从内网IP中接收的数据进行处理后,经由所述IP外网通信网段,将处理后的数据上传至互联网;或者,用于接收从互联网经由所述IP外网通信网段获得的下行数据,并对所述下行数据进行加工处理后映射至相应的内网IP上,以传输至对应的MOST环网中的通信节点。
在本实施例中,所述主机100还设有TCP/IP转发模块102,用于对主机100上的传输数据进行地址转换:将上行数据所在的内网IP转换至与互联网通信连接的外网IP;或者,将互联网下行数据所在的外网IP转换至与MOST环网通信节点连接的内网IP。主机100上的TCP/IP转发模块102可以利用路由硬件芯片或者是基于操作系统的路由软件进行实现,其作用是将内网IP_N地址的数据进行加工处理,上行到外网IP_X地址中,从而将数据发送到互联网;互联网中的数据下行到TCP/IP转发模块102时,TCP/IP转发模块102对数据和地址进行加工处理后,将其转发到内网IP_N中分发至相应的通信节点。
所述主机100还用于对不同MOST环网之间的不同通信节点的数据转发,实现夸网段的数据发送和接收。经主机100的转发,可实现不同MOST环网之间的不同节点间的通信。例如,MOST环网1中的通信节点1和MOST环网N(N取值大于1)中的节点63,通过主机100的转发,实现夸网段的信息发送和接收。
每组MOST环网分别包括初始通信节点(节点0)和外围通信节点(节点1~63);每个所述外围通信节点通过所述初始通信节点上的MOST网络物理接口与所述主机100硬件连接;所述初始通信节点上设有智能网络接口控制模块(Intelligent Network Interface Card,简称INIC);每组MOST环网上的外围通信节点与所述主机硬件连接后通过MLB(Media Local Bus,多媒体局部总线)总线或USB(Universal Serial Bus)总线与所述智能网络接口控制模块INIC进行通信连接。
其中,MLB总线是一种多媒体局部总线,可以用作快速双向传输的车载总线。USB总线是目前较为常用的易于使用、成本低廉、快速双向传输的串行总线。主机100设有独立的MLB总线和USB驱动器,以支持多个MOST环网的 并联。而对于外围通信节点(接收端节点),若其利用MLB驱动来进行数据传输,则不会用到USB驱动器;若其利用到USB驱动器,则不会用到MLB总线,在实际运用时,利用两者之一进行数据传输即可。
智能网络接口控制模块可以集成为INIC芯片,如Microchip公司生产的电子芯片,常用的有OS81118,OS81110等型号的智能网络接口控制器(Intelligent Network Interface Controller)。
每组MOST环网上的多个通信节点采用光纤,从所述初始通信节点按顺序依次连接(串联),形成MOST封闭环网络;每个外围通信节点上设有MOST网络物理接口、智能网络接口控制模块INIC、显示屏幕、音频输出装置、触摸交互装置、MLB总线或USB总线中的一项或多项。具体实施时,每组MOST环网的初始通信节点(即节点0)设置在主机100上,与主机100上的TCP/IP转发模块102通信连接。
参看图3,是本发明提供的初始通信节点的一种实施例的内部结构示意图;参看图4,是本发明提供的外围通信节点的一种实施例的内部结构示意图。
对于每组MOST环网的初始通信节点(节点0),其均可以采用如图3所示的结构组成;同理,对于每组MOST环网的外围通信节点(节点1~63),其均可以采用如图4所示的结构组成。其中,MOST网络物理接口可以采用光纤进行连接,包括两路通道:一路为输出端,另一路为输入端。显示屏幕设置在外围通信节点上,通过安装在车载设备上,用户可以观看到MOST网络中的媒体视频信号(电影,MTV等)。音频输出装置是供用户收听MOST网络中的媒体音频信号(电影,MTV,音乐等)的器件。此外,用户通过触摸交互装置可以与各个通信节点进行MOST网络媒体控制(播放,暂停等)交互。
具体的一组MOST环网的硬件连接为:主机100上的每个的MLB总线或USB总线连接INIC芯片;INIC芯片连接到主机100上的MOST网络物理接口;主机100上的节点0的MOST网络物理接口的输出连接到外围通信节点1的MOST网络物理接口的输入端;外围通信节点1的MOST网络物理接口的输出端连接到节点2的MOST网络物理接口输入端;按照外围通信节点M-1(M取 数值范围是大于或等于1,小于等于63)的MOST网络物理接口输出端连接到外围通信节点M(M取数值范围是大于或等于1,小于等于63)的MOST网络物理接口输入端;最后外围通信节点M(M取数值范围是大于或等于1,小于等于63)的MOST网络物理接口输出端连接到主机100上节点0的MOST网络物理接口输入端。如此这样就组成了一个MOST封闭环网络。
TCP/IP转发模块集成为路由芯片,用于当MOST环网中的不同通信节点需要基于TCP/IP协议访问互联网时,主机100通过其转发处理IP数据,此路由芯片可以快速转发处理IP数据,基于不同的操作系统也可以通过软件应用平台进行IP数据转发处理,此芯片可被软件所替代。
进一步地,所述主机100上设有软件应用平台;所述软件应用平台包括控制器CONTROL,以及,多种用于支持与外部器件数据传输的通信协议和驱动器。其中,所述用于支持与外部器件数据传输的通信协议包括TCP/IP互联网通信协议栈、UDP(User Datagram Protocol,用户数据报协议)协议和TCP(Transmission Control Protocol,传输控制协议)协议;所述驱动器包括独立的USB驱动器、MLB驱动器、NAPI(New Application Programming Interface,新的应用程序接口)驱动器、ISOC驱动器(MOST网络中的INIC芯片作为传输TS的驱动模块)和控制驱动器;其中,所述控制器用于产生各组MOST环网中的智能网络接口控制模块之间的控制通道的控制信息;所述控制驱动器,用于启动所述控制器的正常运行;所述NAPI驱动器用于驱动以太网卡的运行;所述ISOC驱动器用于驱动所述主机100中的TS(Transport Stream,传输码流)码流的传输。
参看图5,是本发明提供的主机的MOST软件架构的一个实施例的架构示意图。参看图6,是本发明提供的通信节点的MOST软件架构的一个实施例的架构示意图。
本实施例提供的系统在启动MOST环网的各种不同的应用程序,举例如下:
a.在同一组或不同组的MOST环网中的通信节点进行应用协议通信时,使用图5,图6中的NAPI驱动、TCP/IP协议、TCP协议和/或UDP协议进行通 信。
b.通信节点通过主机100访问互联网时,使用图5,图6中的NAPI驱动、TCP/IP协议、TCP协议和/或UDP协议进行通信。
c.外围通信节点(接收端节点)使用图5,图6中的NAPI驱动、TCP/IP协议、TCP协议和/或UDP协议将具体控制播放信息(如播放,暂停,重复播放,上一首,下一首等指令)发送给主机100,主机100将执行的结果通过图5,图6中的NAPI驱动、TCP/IP协议,TCP协议和/或UDP协议发送给对应的通信节点,同时主机100将通信节点指定的媒体数据通过图5,图6中的ISOC驱动传送给通信节点,通信节点通过图5,图6中的ISOC驱动收到TS流,进行解码后准确地显示给用户。
参看图7,是本发明提供的单主机多环MOST环网的软件初始化流程示意图。
本实施例提供的所述软件应用平台,用于通过软件初始化启动所述主机100上的应用服务。如图7所示,其具体功能包括:
步骤S701:主机启动判断每组MOST环网是否为封闭环网络;
步骤S702:具体判断每一组MOST环网是否均为封闭环网络,若是,执行步骤S703;若否,则通过主机100提示错误信息,并返回步骤S701;
步骤S703:在每组MOST环网均为封闭环网络时对各组MOST环网上的通信节点分配MAC地址;
步骤S704:检测每个通信节点是否均获得MAC地址;若是,则执行步骤S704;若否,则通过主机100提示错误信息。
步骤S705:启动主机100记录所有通信节点信息和启动各组MOST环网上的各种应用服务。
MAC(Media Access Control,介质访问控制)地址是TCP/IP协议中以太网卡的物理地址,目前标准的MAC地址为6个字节,比如:02:00:00:00:01:01。使用图5,图6中的控制器驱动(CONTROL Driver)、控制器(CONTROL)进行测试,可以判定每组MOST环网是否封闭以及每个通信节点是否获得MAC 地址。
在本实施例中,每组MOST环网的各个通信节点还用于独立地向所述主机100发送多媒体播放请求;所述主机100还用于根据所述多媒体播放请求,将执行结果根据所述TCP/IP互联网通信协议栈、UDP协议、TCP协议,通过NAPI驱动器发送至对应的通信节点,并通过所述ISOC驱动器将多媒体数据以TS码流方式传输至相应的通信节点。
本发明实施例提供的单主机多环MOST网络通信系统,通过对每组MOST环网的TCP/IP通道分配设置,实现在主机上并联多组MOST环网以及实现各组MOST环网上的通信节点的数据传输,并且,通过所述主机的数据转发和地址转换,实现各个通信节点与互联网的数据通信和传输。进行网络拓展后,单个主机所支持的通信节点数量理论上不受限制,实际应用时根据主机的性能(硬件和软件配置)进行决定;进一步地,多媒体(如电影,音乐,MTV等)文件存放在主机上,以支持各个外围通信节点或接收端节点的独立点播需要;各个通信节点相互独立,由于依照MOST标准进行设计,各个通信节点的平均带宽不低于150/64Mbps,满足用户对车载多媒体的显示画质需求。本发明提供的技术方案,可以有效拓展单个主机所连接的MOST环网通信节点的数量,以较低构造成本的方式提升单个主机的通信承载能力,实现多个通信节点之间以及各个通信节点与互联网之间的数据通信与传输,并可以进一步接收用户通过各个接收端节点发出的独立多媒体点播请求,满足车载娱乐的发展需要。
需要说明的是,上述升级系统及其功能单元(模块)可以以软件、硬件或者软件和硬件的结合来实现。其中硬件部分可以利用专用逻辑来实现;软件部分可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。当升级系统以软件方式实现时,即为上述的升级程序。本领域的普通技术人员可以理解上述方案的全部或部分可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本发明中的系统及其功能单元可以由诸如超 大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用由各种类型的处理器执行的软件实现,也可以由上述硬件电路和软件的结合例如固件来实现。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种单主机多环MOST网络通信系统,其特征在于,包括:主机,以及并联在所述主机上的多组MOST环网;每组MOST环网包括一个TCP/IP通道和多个通信节点;
    每个所述通信节点分别通过其所在的MOST环网与所述主机进行TCP/IP数据传输,经由所述主机上的对外网络连接接口,实现与互联网的数据通信和传输。
  2. 如权利要求1所述单主机多环MOST网络通信系统,其特征在于,所述主机通过以太网卡和/或无线通信模块建立IP外网通信网段,实现与互联网通信连接。
  3. 如权利要求2所述的单主机多环MOST网络通信系统,其特征在于,每个所述通信节点上分别设有一个独立的内网IP,所述内网IP所在的通信网段与所述IP外网通信网段相区别;
    每个所述通信节点,用于通过所述内网IP进行路由寻址,将数据发送至所述主机,或者,接收来自于所述主机的数据;
    所述主机,用于对从内网IP中接收的数据进行处理后,经由所述IP外网通信网段,将处理后的数据上传至互联网;或者,用于接收从互联网经由所述IP外网通信网段获得的下行数据,并对所述下行数据进行加工处理后映射至内网IP,以传输至与所述内网IP对应的MOST环网中的通信节点。
  4. 如权利要求2或3所述的单主机多环MOST网络通信系统,其特征在于,所述主机还设有TCP/IP转发模块,用于对主机上的传输数据进行地址转换:将上行数据所在的内网IP转换至与互联网通信连接的外网IP;或者,将互联网下行数据所在的外网IP转换至与MOST环网通信节点连接的内网IP。
  5. 如权利要求1所述的单主机多环MOST网络通信系统,其特征在于,所述主机还用于对不同MOST环网之间的不同通信节点的数据转发,实现夸网段的数据发送和接收。
  6. 如权利要求1所述的单主机多环MOST网络通信系统,其特征在于,每组MOST环网分别包括初始通信节点和外围通信节点;每个所述外围通信节点通过所述初始通信节点上的MOST网络物理接口与所述主机硬件连接;
    所述初始通信节点上设有智能网络接口控制模块;每组MOST环网上的外围通信节点与所述主机硬件连接后通过MLB总线或USB总线与所述智能网络接口控制模块进行通信连接。
  7. 如权利要求6所述的单主机多环MOST网络通信系统,其特征在于,每组MOST环网上的多个通信节点采用光纤,从所述初始通信节点按顺序依次连接,形成MOST封闭环网络;
    每个外围通信节点上设有MOST网络物理接口、智能网络接口控制模块、显示屏幕、音频输出装置、触摸交互装置、MLB总线或USB总线中的一项或多项。
  8. 如权利要求7所述的单主机多环MOST网络通信系统,其特征在于,所述主机上设有软件应用平台;所述软件应用平台包括控制器,以及,多种用于支持与外部器件数据传输的通信协议和驱动器;
    所述用于支持与外部器件数据传输的通信协议包括TCP/IP互联网通信协议栈、UDP协议和TCP协议;所述驱动器包括独立的USB驱动器、MLB驱动器、NAPI驱动器、ISOC驱动器和控制驱动器;
    其中,所述控制器用于产生各组MOST环网中的智能网络接口控制模块之间的控制通道的控制信息;所述控制驱动器,用于启动所述控制器的正常运行;
    所述NAPI驱动器用于驱动以太网卡的运行;所述ISOC驱动器用于驱动所 述主机中的TS码流的传输。
  9. 如权利要求8所述的单主机多环MOST网络通信系统,其特征在于,所述软件应用平台,用于通过软件初始化启动所述主机上的应用服务,包括:
    判断每组MOST环网是否为封闭环网络;
    在每组MOST环网均为封闭环网络时对各组MOST环网上的通信节点分配MAC地址;
    检测每个通信节点是否均获得MAC地址;若是,则启动主机记录所有通信节点信息和启动各组MOST环网上的各种应用服务;若否,则通过主机提示错误信息。
  10. 如权利要求8所述的单主机多环MOST网络通信系统,其特征在于,每组MOST环网的各个通信节点还用于独立地向所述主机发送多媒体播放请求;
    所述主机还用于根据所述多媒体播放请求,将执行结果根据所述TCP/IP互联网通信协议栈、UDP协议、TCP协议,通过NAPI驱动器发送至对应的通信节点,并通过所述ISOC驱动器将多媒体数据以TS码流方式传输至相应的通信节点。
PCT/CN2016/111946 2016-01-28 2016-12-24 一种单主机多环most网络通信系统 WO2017128905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610059599.5 2016-01-28
CN201610059599.5A CN105634896A (zh) 2016-01-28 2016-01-28 一种单主机多环most网络通信系统

Publications (1)

Publication Number Publication Date
WO2017128905A1 true WO2017128905A1 (zh) 2017-08-03

Family

ID=56049426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111946 WO2017128905A1 (zh) 2016-01-28 2016-12-24 一种单主机多环most网络通信系统

Country Status (2)

Country Link
CN (1) CN105634896A (zh)
WO (1) WO2017128905A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112087342A (zh) * 2020-09-21 2020-12-15 天津飞旋科技有限公司 多环网双向通信拓扑系统、通信方法及电子设备
CN112218205A (zh) * 2020-09-04 2021-01-12 武汉海微科技有限公司 一种基于inic的环形网络音频系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634896A (zh) * 2016-01-28 2016-06-01 叶少甘 一种单主机多环most网络通信系统
CN111290793B (zh) * 2020-01-13 2023-02-07 广东胜越智联科技有限公司 一种most网络初始化的方法
CN111245658B (zh) * 2020-01-13 2023-01-06 广东胜越智联科技有限公司 一种基于most150的网络带宽动态调整方法
CN113242460A (zh) * 2021-05-08 2021-08-10 斑马网络技术有限公司 一种车载双模式多区域多媒体播放的方法、装置和系统
CN117240653A (zh) * 2023-09-09 2023-12-15 东莞市鸿泰信息科技有限公司 单主机多环most网络结构及其初始化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611719A (zh) * 2011-01-21 2012-07-25 汽车零部件研究及发展中心有限公司 一种车载most网络系统
CN103716715A (zh) * 2013-12-20 2014-04-09 叶少甘 一种基于most光纤网络的车载点播系统
CN103731694A (zh) * 2013-11-29 2014-04-16 叶少甘 一种基于most网络的车载卫星电视广播系统及方法
US20150358210A1 (en) * 2001-06-28 2015-12-10 Fortinet, Inc. Identifying nodes in a ring network
CN105634896A (zh) * 2016-01-28 2016-06-01 叶少甘 一种单主机多环most网络通信系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360017A1 (de) * 2003-12-19 2005-07-21 Siemens Ag Audio- und/oder Videosystem für ein Kraftfahrzeug
CN101155295A (zh) * 2006-09-28 2008-04-02 李典 基于区域数据环存的网络流媒体数据分发方法
CN102882828A (zh) * 2011-07-11 2013-01-16 上海可鲁系统软件有限公司 一种内网与外网间的信息安全传输控制方法及其网关
CN202818349U (zh) * 2012-10-14 2013-03-20 吉林大学 一种most网络与以太网络网关
CN104917791A (zh) * 2014-03-12 2015-09-16 海尔集团公司 一种发送控制指令的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150358210A1 (en) * 2001-06-28 2015-12-10 Fortinet, Inc. Identifying nodes in a ring network
CN102611719A (zh) * 2011-01-21 2012-07-25 汽车零部件研究及发展中心有限公司 一种车载most网络系统
CN103731694A (zh) * 2013-11-29 2014-04-16 叶少甘 一种基于most网络的车载卫星电视广播系统及方法
CN103716715A (zh) * 2013-12-20 2014-04-09 叶少甘 一种基于most光纤网络的车载点播系统
CN105634896A (zh) * 2016-01-28 2016-06-01 叶少甘 一种单主机多环most网络通信系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218205A (zh) * 2020-09-04 2021-01-12 武汉海微科技有限公司 一种基于inic的环形网络音频系统
CN112087342A (zh) * 2020-09-21 2020-12-15 天津飞旋科技有限公司 多环网双向通信拓扑系统、通信方法及电子设备

Also Published As

Publication number Publication date
CN105634896A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017128905A1 (zh) 一种单主机多环most网络通信系统
KR101536141B1 (ko) 이더넷과 can 통신 간의 신호 변환을 제공하는 차량용 장치 및 그 제어방법
JP5542707B2 (ja) 装置接続形態における音声/ビデオ・ストリーミングのためのメッセージを送る構成
KR101673304B1 (ko) 차량용 이더넷을 위한 avb 스트림 제어 방법 및 장치
CN105027104B (zh) 用于多分支数字总线的方法和装置
US8417860B2 (en) Hybrid in-vehicle infotainment network
US10693668B2 (en) Operation method of communication node in network
CN101465779A (zh) 中央车载电子系统的联网方法和系统
CN101242284B (zh) 基于spi总线的通信方法和网络设备
US11368404B2 (en) Method of releasing resource reservation in network
CN107026889A (zh) 网络中的通信节点的操作方法
CN101662453A (zh) 一种针对协同标准的数据转换方法及设备
CN101346945A (zh) 通过数据传输系统发送和/或接收多媒体数据的方法、多媒体设备和根据FlexRay标准将多媒体设备连接到数据传输系统上的网关
US20170331719A1 (en) Method for configuring stream communication path in network
US20110176549A1 (en) Method of bus configuration to enable device bridging over dissimilar buses
US7853709B2 (en) Multimedia data sharing system and method for MOST network
CN114095901A (zh) 通信数据处理方法及装置
CN110225289B (zh) 一种会议终端及接口信号转换方法
WO2015141014A1 (en) Method of constructing software-defined pci express (pci-e) switch
KR101515853B1 (ko) Most 디바이스와 tcp 디바이스 간의 데이터 통신을 위한 게이트웨이 및 그 동작 방법
US20120324139A1 (en) Wireless communication for point-to-point serial link protocol
JP3982779B2 (ja) ノード認識方法
WO2017112294A1 (en) Technologies for wireless transmission of digital media
CN105718401A (zh) 一种多路smii信号到一路mii信号的复用方法及系统
WO2024082919A1 (zh) 一种拓扑网络及管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.1.19)

122 Ep: pct application non-entry in european phase

Ref document number: 16887776

Country of ref document: EP

Kind code of ref document: A1