WO2017128781A1 - 抗坏血酸提高微藻生物量的用途 - Google Patents

抗坏血酸提高微藻生物量的用途 Download PDF

Info

Publication number
WO2017128781A1
WO2017128781A1 PCT/CN2016/103009 CN2016103009W WO2017128781A1 WO 2017128781 A1 WO2017128781 A1 WO 2017128781A1 CN 2016103009 W CN2016103009 W CN 2016103009W WO 2017128781 A1 WO2017128781 A1 WO 2017128781A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
ascorbic acid
culture solution
culture
chlorella
Prior art date
Application number
PCT/CN2016/103009
Other languages
English (en)
French (fr)
Inventor
王文国
汤晓玉
祝其丽
邓良伟
Original Assignee
农业部沼气科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 农业部沼气科学研究所 filed Critical 农业部沼气科学研究所
Publication of WO2017128781A1 publication Critical patent/WO2017128781A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Definitions

  • the invention belongs to the field of environmental protection and renewable energy, and relates to new uses of ascorbic acid, in particular to the use of ascorbic acid to increase the biomass of microalgae.
  • biodiesel is considered to be an ideal alternative energy source because of its characteristics of renewable, easy degradation and low pollutant emissions after combustion, but it faces the dilemma of insufficient raw material sources.
  • the preparation of biodiesel from microalgae has the advantages of high oil content, short growth period and no occupation of cultivated land. However, the density of microalgae cultivation is low and the cultivation cost is too high.
  • L-Ascorbic acid also known as vitamin C, is a water-soluble vitamin found in the lemon juice by the Norwegian chemist Holst in 1907. It was obtained in 1934 and is now synthetic. Ascorbic acid has biological activities such as promoting collagen biosynthesis, promoting metabolism of tyrosine and tryptophan in amino acids, and preventing cardiovascular diseases. There are no reports of ascorbic acid and microalgae, and no report of ascorbic acid increasing the biomass of microalgae in organic wastewater.
  • An object of the present invention is to provide a use of ascorbic acid or a pharmaceutically acceptable salt, ester, hydrate or glycoside derivative thereof to increase microalgae biomass and a microalgae culture method.
  • the present invention provides the use of ascorbic acid or a pharmaceutically acceptable salt, ester, hydrate or glycoside derivative thereof to increase the biomass of microalgae.
  • Microalgae biomass refers to the weight of microalgae in a unit volume.
  • microalgae are Chlorella, Scenedesmus, Phaeodactylum, Parachlorella, Dunaliella, Phaeodactylum Tricornutum) or Botryococcus braunii.
  • the invention also provides a microalgae cultivation method, the steps are as follows:
  • microalgae are inoculated into the microalgae culture solution having an ammonia nitrogen content of 10 to 1000 mg/L, and ascorbic acid or a pharmaceutically acceptable salt, ester, hydrate or glycoside derivative thereof is added and cultured for 5 to 14 days.
  • Microalgae culture solution refers to a liquid capable of maintaining the growth and reproduction of microalgae, including various waste water such as municipal wastewater, domestic sewage, food processing wastewater, aquaculture wastewater including biogas slurry, and artificially prepared culture medium.
  • the microalgae culture solution having an ammonia nitrogen content of 10 to 1000 mg/L means that the weight of the ammonia nitrogen per 1 L of the microalgae culture solution is 10-1000 mg.
  • microalgae is Chlorella, Scenedesmus, Spirulina, Chlorella, Dalbergia, Phaeodactylum or Brown.
  • microalgae culture solution was inoculated with 0.1-2 g of microalgae per liter.
  • the inoculated microalgae refers to the microalgae obtained by centrifugation after activation in the activation medium to the logarithmic growth phase, and the centrifugation condition may be 4000 rpm, 2-5 min, and the microalgae 0.1-2 g is the microalgae wet weight 0.1- 2g.
  • the microalgae culture liquid is municipal wastewater, domestic sewage, food processing wastewater, and aquaculture wastewater.
  • the aquaculture wastewater is a biogas slurry.
  • the biogas slurry is a fermentation liquid produced by anaerobic fermentation of biogas fermentation raw materials. It is rich in essential materials for the growth of microalgae such as nitrogen and phosphorus, and has high content of ammonia nitrogen, and belongs to high-concentration organic wastewater. Most of the fermented raw materials are livestock and poultry manure.
  • biogas slurry is subjected to solid-liquid separation before inoculation of the microalgae, and the liquid portion is collected;
  • the method of solid-liquid separation is standing, flocculation, filtration, and/or centrifugation.
  • the concentration of ascorbic acid in the microalgae culture solution was maintained at 50-300 mg/L.
  • the method for maintaining the concentration of ascorbic acid is: after inoculating the microalgae, adding ascorbic acid for the first time, and then adding ascorbic acid again every 2-5 days;
  • the amount of ascorbic acid added for the first time is 50-150 mg of ascorbic acid per liter of the culture solution, and the amount of ascorbic acid added after each addition is 150-300 mg of ascorbic acid per liter of the culture solution.
  • the most common method for improving the biomass of microalgae in wastewater culture is to dilute the wastewater with fresh water to reduce the concentration of organic matter in the wastewater.
  • the invention unexpectedly found in the research that ascorbic acid can significantly increase the biomass of the microalgae, and can increase the microalgae biomass in the high concentration ammonia nitrogen wastewater by 3.1-6.1 times, and achieves completely unexpected technical effects.
  • the ascorbic acid of the invention can turn the organic wastewater into waste, improve the utilization value of the organic wastewater, and is beneficial to the protection of the ecological environment; and the method of the invention is simple and easy to operate, and has good application prospect.
  • the reagents and instruments used in the present invention are all commercially available.
  • the microalgae is activated after purchase, and the activation step is as follows: under aseptic conditions, each microalgae is inoculated separately in the respective medium, cultured at 25 ° C for 7 days, centrifuged (4000 rpm, 2-5 min), and the cells are collected and weighed. Body wet weight, spare;
  • Chlorella and Scenedesmus are BG11 medium
  • Brown grape algae is SE medium.
  • inoculate chlorella inoculate 2 g of chlorella per liter of microalgae culture solution, add ascorbic acid at a final concentration of 100 mg/L for 5 days, add ascorbic acid at a final concentration of 250 mg/L, continue to culture, and then each The ascorbic acid was added to a final concentration of 250 mg/L for 2 days to continue the culture; after a total of 10 days of cultivation, the algal bodies were collected.
  • the biogas slurry of Sichuan pig farm (measured, ammonia nitrogen content is 300-350mg/L), the biogas slurry is centrifuged at 3000rpm for 10min, and the liquid part is taken as the microalgae culture liquid.
  • inoculate the S. algae inoculate 0.1 g of S. algae per liter of microalgae culture solution, add ascorbic acid at a final concentration of 125 mg/L, culture for 4 days, and then add 150 mg/L of ascorbic acid every 2 days to continue the culture; After culturing for 12 days, the algae body can be collected.
  • the biogas slurry of Sichuan pig farm was centrifuged at 3000 rpm for 8 min, and the liquid portion was adjusted to a salinity of 40 with Nacl as a microalgae culture solution.
  • inoculate the salt algae inoculate 0.1 g of salt algae per liter of microalgae culture solution, add ascorbic acid at a final concentration of 100 mg/L, culture for 3 days, add ascorbic acid at a final concentration of 150 mg/L, continue to culture, and then each The culture was continued by adding 150 mg/L of ascorbic acid every 3 days; the whole culture was carried out for 10 days, and the algae was collected.
  • the biogas slurry was centrifuged at 4000rpm for 5min, and the liquid portion was adjusted with sodium soda to adjust the pH value above 8.0 as the microalgae culture solution.
  • inoculate spirulina inoculate 0.1 g of spirulina per liter of microalgae culture solution, add ascorbic acid at a final concentration of 150 mg/L, culture for 5 days, add ascorbic acid at a final concentration of 150 mg/L, continue to culture, and then each The culture was continued by adding 300 mg/L of ascorbic acid every 5 days; the whole culture was carried out for 14 days, and the algae was collected.
  • the microalgae culture solution is divided into two parts, one part each, 1 L of each, one of which is inoculated with chlorella in the microalgae culture solution, and 2 g of chlorella per liter of the microalgae culture solution is inoculated, directly cultured for 10 days, and the small balls are collected.
  • the algae were dried in an oven at 60 ° C and weighed to determine the chlorella biomass.
  • inoculate chlorella inoculate 2g of chlorella per liter of microalgae culture solution, add 150mg/L ascorbic acid, culture for 4d, then add 200mg/L ascorbic acid every 2d to continue culture.
  • the culture was carried out for 10 days in total, and the chlorella was collected, dried in an oven at 60 ° C, and weighed to determine the biomass of the chlorella.
  • the chlorella biomass is 0.33 g/L in the ascorbic acid-treated biogas slurry, and the chlorella biomass is 1.02 g/L in the ascorbic acid-treated biogas slurry, and the ascorbic acid is not added.
  • the chlorella biomass dry weight increased by 3.1 times.
  • the microalgae culture solution was divided into two parts, one part each, 1 L of each, one of which was inoculated with S. cerevisiae in the microalgae culture solution, and 0.4 g of S. cerevisiae was inoculated per liter of the microalgae culture solution, and the bacterium was directly cultured for 12 days to collect the Phytobacterium. It was dried and weighed in an oven at 60 ° C to determine the biomass of the genus.
  • ascorbic acid can greatly increase the biomass of microalgae, and add ascorbic acid or a pharmaceutically acceptable salt, ester, hydrate or glycoside derivative thereof to a microalgae culture solution having an ammonia nitrogen content of 10-1000 mg/L, not only Significantly increase the biomass of microalgae and reduce the production cost of microalgae; and improve the utilization value of wastewater, which is conducive to the protection of ecological environment and has a good application prospect.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

提供了抗坏血酸或其药学上可接受的盐、酯、水合物、糖苷衍生物提高微藻生物量的用途;还提供了微藻培养方法。抗坏血酸可以提高微藻的生物量,并且促进废水再利用,具有良好的应用前景。

Description

抗坏血酸提高微藻生物量的用途 技术领域
本发明属于环境保护领域和可再生能源领域,涉及抗坏血酸的新用途,特别涉及抗坏血酸提高微藻生物量的用途。
背景技术
能源危机和水体污染是目前可持续发展面临的两大难题。其中,生物柴油具有可再生、易降解、燃烧后污染物排放低等特点而被认为是理想的可替代能源,但面临原料来源不足的困境。以微藻为原料制备生物柴油具有油脂含量高、生长周期短、不占用耕地的优点,不过目前微藻培养的密度较低、培养成本过高。
另一方面,随着我们经济的发展,大量富含氮磷等物质的有机废水未经处理就被排放入公共环境中,引发严重的水环境污染。废水的脱氮除磷是目前废水处理的一大难题,处理成本较高,并且会造成氮磷等资源的浪费。
利用有机废水来培养微藻,既可以降低微藻培养的成本,又可以达到废水资源化利用的目的,受到越来越多研究者的关注。但是目前市政废水、食品加工废水和养殖废水中多含有高浓度氨氮等不利于微藻的生长。目前提高废水养殖微藻生物量最常用的方法是用淡水对废水进行稀释,该方法需要消耗大量的淡水资源,实际应用价值较低,不利于微藻培养产业的发展。
抗坏血酸(L-Ascorbic acid),又名维生素C,是一种水溶性维生素,1907年由挪威化学家霍尔斯特在柠檬汁中发现,1934年获得纯品,现已可人工合成。抗坏血酸具有促进骨胶原生物合成、促进氨基酸中酪氨酸和色氨酸的代谢、预防心血管病等生物活性。目前未见抗坏血酸与微藻相关的报道,更未见抗坏血酸提高有机废水中微藻生物量的报道。
发明内容
本发明的目的在于提供抗坏血酸或其药学上可接受的盐、酯、水合物、糖苷衍生物提高微藻生物量的用途和一种微藻培养方法。
本发明提供了抗坏血酸或其药学上可接受的盐、酯、水合物、糖苷衍生物提高微藻生物量的用途。
微藻生物量:指微藻在单位体积内的重量。
其中,所述微藻为小球藻属(Chlorella)、栅藻属(Scenedesmus)、螺旋藻属(Phaeodactylum)、拟小球藻属(Parachlorella)、盐藻(Dunaliella)、三角褐指藻(Phaeodactylum tricornutum)或布朗葡萄藻(Botryococcus braunii)。
本发明还提供了一种微藻培养方法,步骤如下:
取微藻,接种于氨氮含量为10-1000mg/L的微藻培养液中,加入抗坏血酸或其药学上可接受的盐、酯、水合物、糖苷衍生物,培养5-14天,即可。
微藻培养液:是指能够维持微藻生长繁殖的液体,包括各种废水例如市政废水、生活污水、食品加工废水、养殖废水包括沼液等和人工配制的培养基。
氨氮含量为10-1000mg/L的微藻培养液:是指每1L微藻培养液中的氨态氮的重量为10-1000mg。
其中,所述微藻为小球藻属、栅藻属、螺旋藻属、拟小球藻属、盐藻、三角褐指藻或布朗葡萄藻。
其中,每升微藻培养液,接种微藻0.1-2g。
接种的微藻是指经过在活化培养基中活化到对数生长期后,离心得到的微藻,离心的条件可以是4000rpm,2-5min,微藻0.1-2g即为微藻湿重0.1-2g。
其中,所述微藻培养液为市政废水、生活污水、食品加工废水、养殖废水。
进一步地,所述养殖废水为沼液。
沼液是沼气发酵原料经过厌氧发酵生成的发酵液,它富含氮磷等微藻生长所必须物质,且氨氮等含量高,属于高浓度有机废水。发酵原料多是畜禽粪便。
其中,所述沼液在接种微藻前进行了固液分离,收集液体部分;
所述固液分离的方法为静置、絮凝、过滤和/或离心。
其中,微藻培养过程中,抗坏血酸在微藻培养液中的浓度维持在50-300mg/L。
其中,维持抗坏血酸浓度的方法是:接种微藻后,首次加入抗坏血酸,之后每间隔2-5天再次加入抗坏血酸;
其中,首次加入的抗坏血酸用量为每升培养液加入抗坏血酸50-150mg,以后每次加入的抗坏血酸用量为每升培养液加入抗坏血酸150-300mg。
目前提高废水养殖微藻生物量最常用的方法是用淡水对废水进行稀释,以降低废水中的有机物浓度。本发明在研究中意外发现,抗坏血酸可以显著提高微藻的生物量,可使高浓度氨氮废水中的微藻生物量提高3.1-6.1倍,取得了完全意料不到的技术效果。
另一方面,本发明抗坏血酸可以使有机废水变废为宝,提高了有机废水的利用价值,有利于生态环境的保护;而且本发明方法简单易行、便于操作,具有良好的应用前景。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其他多种形式的修改、替换或变更。
下面以实施例对本发明内容作进一步说明,但本发明不局限于这些实施例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
具体实施方式
本发明所用的试剂及仪器均为市售。
所有微藻均购买自中国科学院淡水藻种库。
微藻购买后进行活化,活化步骤如下:无菌条件下,将各微藻分别接种于各自培养基中,25℃培养7d后,离心(4000rpm,2-5min),收集菌体,称量菌体湿重,备用;
其中,小球藻和栅藻为BG11培养基,布朗葡萄藻为SE培养基。
实施例1本发明微藻培养方法
在四川简阳某养猪场沼液(经测定,氨氮含量为200-350mg/L)中,接种小球藻,每升沼液接种0.1g小球藻,加入终浓度为150mg/L的抗坏血酸培养4d(4天)后,加入终浓度为200mg/L的抗坏血酸继续培养,然后每隔2d加入终浓度为200mg/L的抗坏血酸继续培养;共计培养10d后,收集藻体,即可。
实施例2本发明微藻培养方法
在四川简阳某养猪场沼液(经测定,氨氮含量为200-350mg/L)中,取沼液4000rpm离心5min,取液体部分作为微藻培养液。
在微藻培养液中,接种小球藻,每升微藻培养液接种2g小球藻,加入终浓度为100mg/L的抗坏血酸培养5d,加入终浓度为250mg/L的抗坏血酸继续培养,然后每隔2d加入终浓度为250mg/L的抗坏血酸继续培养;共计培养10d后,收集藻体,即可。
实施例3本发明微藻培养方法
在四川简阳某养猪场沼液(经测定,氨氮含量为10-200mg/L)中,接种三角褐指藻,每升沼液接种1g三角褐指藻,加入终浓度为150mg/L的抗坏血酸培养3d,每隔3d加入终浓度为250mg/L的抗坏血酸继续培养;共计培养7d后,收集藻体,即可。
实施例4本发明微藻培养方法
在四川简阳某养猪场沼液(经测定,氨氮含量为10-200mg/L)中,接种布朗葡萄藻,每升沼液接种2g布朗葡萄藻,加入终浓度为150mg/L的抗坏血酸培养2d,然后每隔2d加入终浓度为250mg/L的抗坏血酸继续培养;共计培养14d后,收集藻体,即可。
实施例5本发明微藻培养方法
在四川邛崃某猪场沼液(经测定,氨氮含量为300-350mg/L)中,接种栅藻,每升沼液接种0.1g栅藻,加入终浓度为300mg/L的抗坏血酸培养12d,收集藻体,即可。
实施例6本发明微藻培养方法
在四川邛崃某猪场沼液(经测定,氨氮含量为300-350mg/L)中,取沼液3000rpm离心10min,取液体部分作为微藻培养液。
在微藻培养液中,接种栅藻,每升微藻培养液接种0.1g栅藻,加入终浓度为125mg/L的抗坏血酸,培养4d,然后每隔2d加入150mg/L的抗坏血酸继续培养;共计培养12d,收集藻体,即可。
实施例7本发明微藻培养方法
在四川邛崃某猪场沼液(经测定,氨氮含量为400-500mg/L)中,取沼液3000rpm离心8min,取液体部分用Nacl调节盐度为40,作为微藻培养液。
在微藻培养液中,接种盐藻,每升微藻培养液接种0.1g盐藻,加入终浓度为100mg/L的抗坏血酸,培养3d,加入终浓度为150mg/L的抗坏血酸继续培养,然后每隔3d加入150mg/L的抗坏血酸继续培养;共计培养10d,收集藻体,即可。
实施例8本发明微藻培养方法
在四川邛崃某猪场沼液(经测定,氨氮含量为700-1000mg/L)中,取沼液4000rpm离心5min,取液体部分用小苏打调节pH值在8.0以上,作为微藻培养液。
在微藻培养液中,接种螺旋藻,每升微藻培养液接种0.1g螺旋藻,加入终浓度为150mg/L的抗坏血酸,培养5d,加入终浓度为150mg/L的抗坏血酸继续培养,然后每隔5d加入300mg/L的抗坏血酸继续培养;共计培养14d,收集藻体,即可。
下面以具体试验数据说明本发明的有益效果。
试验例1抗坏血酸在微藻培养中的效果
一、实验方法
取四川简阳某养猪场沼液(经测定,氨氮含量为298mg/L),离心,取液体部分作为微藻培养液。
将微藻培养液平均分为两份,每份1L,其中,一份在微藻培养液中,接种小球藻,每升微藻培养液接种2g小球藻,直接培养10d,收集小球藻,在60℃的烘箱中烘干、称重以测定小球藻生物量。
另外一份,在微藻培养液中,接种小球藻,每升微藻培养液接种2g小球藻,加入150mg/L的抗坏血酸,培养4d,然后每隔2d加入200mg/L的抗坏血酸继续培养;共计培养10d,收集小球藻,在60℃的烘箱中烘干、称重以测定小球藻生物量。
二、实验结果
见表1。
表1不同处理的小球藻生物量对比
不同处理 小球藻生物量(g/L)
未加入抗坏血酸 0.33
加入抗坏血酸 1.02
由表1可见,未加入抗坏血酸处理的沼液中,小球藻生物量为0.33g/L,而加入抗坏血酸处理的沼液中,小球藻生物量为1.02g/L,与未加入抗坏血酸对照相比,小球藻生物量(干重)提高了3.1倍。
试验例2抗坏血酸在微藻培养中的效果
一、实验方法
取四川邛崃某养猪场沼液(经测定,氨氮含量为355mg/L),离心,取液体部分作为微藻培养液。
将微藻培养液平均分为两份,每份1L,其中,一份在微藻培养液中,接种栅藻,每升微藻培养液接种0.4g栅藻,直接培养12d,收集栅藻,在60℃的烘箱中烘干、称重以测定栅藻生物量。
另外一份,在微藻培养液中,接种栅藻,每升微藻培养液接种0.4g栅藻,加入150mg/L的抗坏血酸,培养4d,然后每隔2d加入150mg/L的抗坏血酸继续培养;共计培养12d,收集栅藻,在60℃的烘箱中烘干、称重以测定栅藻生物量。
二、实验结果
见表2。
表2不同处理的栅藻生物量对比
不同处理 栅藻生物量(g/L)
未加入抗坏血酸 0.28
加入抗坏血酸 1.71
由表2可见,未加入抗坏血酸处理的沼液中,栅藻生物量为0.28g/L,而加入抗坏血酸处理的沼液中,小球藻生物量为1.71g/L,与未加入抗坏血酸对照相比,小球藻生物量(干重)提高了6.1倍。
综上,抗坏血酸可以大大提高微藻的生物量,将抗坏血酸或其药学上可接受的盐、酯、水合物、糖苷衍生物加入到氨氮含量为10-1000mg/L的微藻培养液中,不仅显著提高微藻的生物量,降低微藻的生产成本;而且提高了废水的利用价值,有利于生态环境的保护,具有良好的应用前景。

Claims (10)

  1. 抗坏血酸或其药学上可接受的盐、酯、水合物、糖苷衍生物提高微藻生物量的用途。
  2. 根据权利要求1所述的用途,其特征在于,所述微藻为小球藻属、栅藻属、螺旋藻属、拟小球藻属、盐藻、三角褐指藻或布朗葡萄藻。
  3. 一种微藻培养方法,其特征在于:步骤如下:
    取微藻,接种于氨氮含量为10-1000mg/L的微藻培养液中,加入抗坏血酸或其药学上可接受的盐、酯、水合物、糖苷衍生物,培养5-14天,即可。
  4. 根据权利要求3所述的方法,其特征在于:所述微藻为小球藻属、栅藻属、螺旋藻属、拟小球藻属、盐藻、三角褐指藻或布朗葡萄藻。
  5. 根据权利要求3所述的方法,其特征在于:每升微藻培养液接种微藻0.1-2g。
  6. 根据权利要求3所述的方法,其特征在于:所述微藻培养液为市政废水、生活污水、食品加工废水、养殖废水。
  7. 根据权利要求6所述的方法,其特征在于:所述养殖废水为沼液。
  8. 根据权利要求3所述的方法,其特征在于:所述沼液在接种微藻前进行了固液分离,收集液体部分;
    所述固液分离的方法为静置、絮凝、过滤和/或离心。
  9. 根据权利要求3所述的方法,其特征在于:微藻培养过程中,抗坏血酸在微藻培养液中的浓度维持在50-300mg/L。
  10. 根据权利要求9所述的方法,其特征在于:维持抗坏血酸浓度的方法是:接种微藻后,首次加入抗坏血酸,之后每间隔2-5天再次加入抗坏血酸;
    其中,首次加入的抗坏血酸用量为每升培养液加入抗坏血酸50-150mg,以后每次加入的抗坏血酸用量为每升培养液加入抗坏血酸150-300mg。
PCT/CN2016/103009 2016-01-29 2016-10-24 抗坏血酸提高微藻生物量的用途 WO2017128781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610070888.5 2016-01-29
CN201610070888.5A CN105524872A (zh) 2016-01-29 2016-01-29 抗坏血酸提高微藻生物量的用途

Publications (1)

Publication Number Publication Date
WO2017128781A1 true WO2017128781A1 (zh) 2017-08-03

Family

ID=55767402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103009 WO2017128781A1 (zh) 2016-01-29 2016-10-24 抗坏血酸提高微藻生物量的用途

Country Status (2)

Country Link
CN (1) CN105524872A (zh)
WO (1) WO2017128781A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944735A (zh) * 2020-09-03 2020-11-17 上饶师范学院 一种促进微藻在畜禽养殖废水中生长的方法
CN112028251A (zh) * 2020-09-03 2020-12-04 上饶师范学院 一种提高微藻对畜禽养殖废水中氨氮去除效果的方法
CN112126597A (zh) * 2020-08-29 2020-12-25 东台市赐百年生物工程有限公司 一种基于沼液培养螺旋藻的方法
CN114561295A (zh) * 2022-03-14 2022-05-31 福建农林大学 一种促进微藻岩藻黄素积累和脂质合成的培养方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105524872A (zh) * 2016-01-29 2016-04-27 农业部沼气科学研究所 抗坏血酸提高微藻生物量的用途
CN106318620A (zh) * 2016-08-15 2017-01-11 中国石油大学(华东) 微藻天然染料的制备及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521090A (en) * 1985-07-01 1996-05-28 Bio-Technical Resources L-ascorbic acid containing biomass of chlorella pyrenoidosa
CN1150459A (zh) * 1994-02-10 1997-05-21 生物技术资源公司 微生物生产l-抗坏血酸
KR20040064243A (ko) * 2004-05-14 2004-07-16 최점출 녹색 담수 클로렐라의 배양방법과 조성물
CN104017730A (zh) * 2014-06-23 2014-09-03 临沂大学 利用罐头厂废水培养椭圆双眉藻的培养基及培养方法
CN105524872A (zh) * 2016-01-29 2016-04-27 农业部沼气科学研究所 抗坏血酸提高微藻生物量的用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618446B (zh) * 2012-04-16 2013-04-24 北京昊业怡生科技有限公司 一种利用粪便污水培养产油微藻的方法
CN104212718A (zh) * 2014-09-01 2014-12-17 临沂大学 以羊粪浸出液培养蛋白核小球藻的培养基及培养方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521090A (en) * 1985-07-01 1996-05-28 Bio-Technical Resources L-ascorbic acid containing biomass of chlorella pyrenoidosa
CN1150459A (zh) * 1994-02-10 1997-05-21 生物技术资源公司 微生物生产l-抗坏血酸
KR20040064243A (ko) * 2004-05-14 2004-07-16 최점출 녹색 담수 클로렐라의 배양방법과 조성물
CN104017730A (zh) * 2014-06-23 2014-09-03 临沂大学 利用罐头厂废水培养椭圆双眉藻的培养基及培养方法
CN105524872A (zh) * 2016-01-29 2016-04-27 农业部沼气科学研究所 抗坏血酸提高微藻生物量的用途

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126597A (zh) * 2020-08-29 2020-12-25 东台市赐百年生物工程有限公司 一种基于沼液培养螺旋藻的方法
CN112126597B (zh) * 2020-08-29 2022-08-12 东台市赐百年生物工程有限公司 一种基于沼液培养螺旋藻的方法
CN111944735A (zh) * 2020-09-03 2020-11-17 上饶师范学院 一种促进微藻在畜禽养殖废水中生长的方法
CN112028251A (zh) * 2020-09-03 2020-12-04 上饶师范学院 一种提高微藻对畜禽养殖废水中氨氮去除效果的方法
CN111944735B (zh) * 2020-09-03 2023-07-04 上饶师范学院 一种促进微藻在畜禽养殖废水中生长的方法
CN114561295A (zh) * 2022-03-14 2022-05-31 福建农林大学 一种促进微藻岩藻黄素积累和脂质合成的培养方法
CN114561295B (zh) * 2022-03-14 2023-10-31 福建农林大学 一种促进微藻岩藻黄素积累和脂质合成的培养方法

Also Published As

Publication number Publication date
CN105524872A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2017128781A1 (zh) 抗坏血酸提高微藻生物量的用途
Guo et al. Nutrient removal and biogas upgrading by integrating fungal–microalgal cultivation with anaerobically digested swine wastewater treatment
CN102618446B (zh) 一种利用粪便污水培养产油微藻的方法
CN102533718A (zh) 一种高效降解餐厨垃圾的复合菌剂和制备方法及用途
CN102765972B (zh) 一种有机垃圾腐熟菌剂及其制备方法和应用
CN102732425B (zh) 利用畜禽粪便初级废水生产微藻的方法
Ramaraj et al. Potential evaluation of biogas production and upgrading through algae
CN105985917B (zh) 一种提高小球藻在养猪废水中生物量的方法
Agwa et al. Utilization of poultry waste for the cultivation of Chlorella sp. for biomass and lipid production
CN103074231B (zh) 利用生物丁醇的工业废水废气生产微藻的方法及其应用
CN112457994B (zh) 一种利用挥发性脂肪酸促进蛋白核小球藻生长的方法
CN103300209A (zh) 一种沼泽红假单胞菌活菌制剂及其制备方法
CN108004190B (zh) 芽孢杆菌用于增加小球藻生物量的方法
CN101665805A (zh) 用养殖废水生产微生物絮凝剂的方法
CN103361281A (zh) 一种高温降解菌及其应用
CN106554976B (zh) 一种利用单针藻生产微藻油脂的方法
CN102326668B (zh) 利用微生物菌株18d-ta厌氧降解羽毛角蛋白的方法
CN103087920B (zh) 一株混合营养型栅藻及其在污水资源化处理中的应用
CN107841464B (zh) 一种藻类的培养方法
CN105803004A (zh) 一种利用农业废弃物低温发酵沼气的方法
CN110981563A (zh) 一种抗生素菌渣的处理方法及其应用
CN106987572A (zh) 一种厌氧发酵玉米秸秆生产木聚糖酶的方法
CN102943058A (zh) 一种利用沼液厌氧震荡培养光合细菌的方法
CN107746809B (zh) 提高藻类生物量的方法
CN108085283B (zh) 一种菌藻共生高密度藻类培养方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887654

Country of ref document: EP

Kind code of ref document: A1