WO2017128300A1 - 一种聚合物中空微球及其制备方法和应用 - Google Patents

一种聚合物中空微球及其制备方法和应用 Download PDF

Info

Publication number
WO2017128300A1
WO2017128300A1 PCT/CN2016/072807 CN2016072807W WO2017128300A1 WO 2017128300 A1 WO2017128300 A1 WO 2017128300A1 CN 2016072807 W CN2016072807 W CN 2016072807W WO 2017128300 A1 WO2017128300 A1 WO 2017128300A1
Authority
WO
WIPO (PCT)
Prior art keywords
initiator
solution
monomer
hours
hollow microspheres
Prior art date
Application number
PCT/CN2016/072807
Other languages
English (en)
French (fr)
Inventor
陈少军
卓海涛
赖丽君
杨景皓
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2016/072807 priority Critical patent/WO2017128300A1/zh
Publication of WO2017128300A1 publication Critical patent/WO2017128300A1/zh
Priority to US16/027,254 priority patent/US10538658B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/447Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds

Definitions

  • the invention belongs to the field of preparation of polymer materials, in particular to a polymer hollow microsphere and a preparation method and application thereof.
  • Insulation materials are important new materials related to the people's death technology and reflect the national comprehensive demonstration project.
  • the external wall insulation materials have become one of the main products of building energy conservation.
  • Reflective thermal insulation coatings developed in recent years can actively reflect the energy of sunlight, reduce indoor temperature, fundamentally reduce the use rate of air conditioners, and greatly reduce energy consumption.
  • Insulation reflective coating is a new type of functional coating; it can effectively block, reflect, and radiate solar heat, reduce the surface of the exterior wall and indoor temperature, thus improving the working environment and reducing energy consumption.
  • white reflective coatings using titanium dioxide as a pigment have become the most widely used thermal insulation materials because of their reflectance ratio of more than 80%.
  • the light color or white coating film has the disadvantage of poor stain resistance, and the heat reflection performance is greatly degraded due to the surface of the paint film becoming dirty and discolored after being used for a period of time outdoors.
  • inorganic powders such as titanium dioxide are used in heat-reflective coatings because of their high refractive index.
  • Hollow glass microspheres exhibit excellent thermal insulation, and their reflectivity is directly related to the refractive index of the glass component. Research and calculations also show that the larger the refractive index of an object, the greater the reflectivity.
  • the polymer hollow microsphere refers to a polymer hollow microsphere containing one or more cavity structures therein, and the shell layer is composed of a polymer or a plurality of polymers, and the particles are synthesized on the basis of polymer synthesis technology.
  • These hollow microspheres with special characteristics have broad application prospects in nanoreactors, drug controlled release, bioimaging, catalysis, photonic crystals and the like. If it is possible to prepare a polymer hollow microsphere with a high refractive index, it will be realized by applying it to a formulated coating. Good insulation reflection effect.
  • the technical problem to be solved by the present invention is to provide a polymer hollow microsphere and a preparation method and application thereof, aiming at obtaining a high refractive index polymer hollow microsphere, and simultaneously applying it to formulating a coating to achieve better Insulation reflection effect.
  • the present invention is achieved by a method for preparing a polymer hollow microsphere, comprising the following steps:
  • Step 1 mixing and reacting styrene monomer A, acrylic monomer B and acrylate monomer C with an initiator to obtain a seed emulsion;
  • Step 2 keeping the temperature of the seed emulsion unchanged, mixing the styrene monomer A, the acrylate monomer C, the sulfur-containing acrylic monomer D with the initiator, and adding the product to the seed emulsion to obtain a product;
  • Step 3 adding an alkaline solution to the product, then adding an acidic solution, and then performing neutralization treatment to obtain hollow microspheres.
  • the initiator is a free radical water-soluble initiator, including ammonium persulfate, potassium persulfate or a redox initiator.
  • the redox initiator is hydrogen peroxide-ferrous sulfate or ammonium persulfate-potassium sulfite.
  • the mass ratio of the three substances A, B, and C is 20 to 80: 10 to 40: 10 to 40; and the mass of the initiator is the total mass of the three substances A, B, and C. 1 wt% to 2 wt%; reaction temperature is 0 to 90 ° C, and the reaction time is 3 to 5 hours.
  • the mass ratio of the three substances A, C, and D is 10 to 30: 10 to 30: 40 to 80; and the mass of the initiator is the total mass of the three substances A, B, and C. 1 wt% to 2 wt%; reaction temperature is 0 to 90 ° C, and the reaction time is 3 to 5 hours.
  • step 3 is specifically: maintaining the temperature at 80-130 ° C, adding an alkaline solution to the product to adjust the pH of the system to 11.0 to 14.0, and reacting for 1 to 3 hours; then adding an acidic solution, The pH of the system is adjusted to 1.0 to 4.0, and the reaction is carried out for 1 to 3 hours. Finally, an alkaline solution is added to adjust the pH of the system to 6.5 to 7.5.
  • the concentration of the alkaline solution is 5-20%, the alkaline solution is a KOH or NaOH solution; the concentration of the acidic solution is 5-20%, and the acidic solution is hydrochloric acid, sulfuric acid or phosphoric acid solution. .
  • the present invention also provides a polymer hollow microsphere, which is produced by the preparation method described.
  • the polymer hollow microspheres have an Abbe refractive index n>1.6, a pore diameter of 100 nm to 2000 nm, and a shell layer thickness of 50 nm to 100 nm.
  • the invention also provides the use of the above polymeric hollow microspheres for pharmaceutical engineering, catalytic technology, biotechnology, electronic information, materials engineering or architectural coatings.
  • the present invention also provides an insulating reflective coating comprising the polymeric hollow microspheres.
  • the invention has the beneficial effects that the preparation method of the polymer hollow microspheres of the invention has simple operation process and is easy to expand production.
  • the polymer hollow microspheres prepared therefrom have an Abbe refractive index n > 1.6 and a high refractive index.
  • the high refractive index polymer hollow microspheres of the invention are directly prepared by an aqueous solution polymerization method, and the products can be directly used for arranging coatings, and the prepared coatings have excellent heat preservation and heat insulation reflection effects.
  • Figure 1 is a schematic view showing the preparation of a seed emulsion of Example 1 of the present invention.
  • Example 2 is a schematic view showing the preparation of the core-shell structure emulsion of Example 1 of the present invention.
  • Figure 3 is a schematic view showing the preparation of hollow microspheres of the polymer of Example 1 of the present invention.
  • Figure 4 is a schematic view showing the structure of a sulfur-containing acrylic acid monomer of Example 2 of the present invention.
  • Figure 5 is a schematic view showing the structure of a sulfur-containing acrylic monomer according to Example 3 of the present invention.
  • Figure 6 is a schematic view showing the structure of a sulfur-containing acrylic acid monomer of Example 4 of the present invention.
  • Figure 7 is a schematic view showing the structure of a sulfur-containing acrylic acid monomer of Example 5 of the present invention.
  • the polymer hollow microspheres are prepared according to the technical scheme of the invention, and the process is as follows:
  • Step 1 According to the styrene monomer A, the acrylic monomer B and the acrylate monomer C mass ratio of 20 ⁇ 80: 10 ⁇ 40: 10 ⁇ 40 weigh these raw materials, adding the quality of A, B And 1% to 2% by weight of the total mass of the three substances of the initiator, maintaining the temperature at 0 to 90 ° C for 3 to 5 hours to obtain a seed emulsion;
  • Step 2 keep the temperature of the seed emulsion unchanged from 0 to 90 ° C, and the mass ratio of the styrene monomer A, the acrylate monomer C and the sulfur-containing acrylic monomer D is 10 to 30:10 to 30:40. 80 Weigh these raw materials, add 1wt% to 2wt% of the total mass of the three substances A, B, D, and evenly add to the above seed emulsion for 3 to 5 hours to obtain the core-shell structure. ball;
  • Step 3 Maintaining the temperature at 80-130 ° C, adding an alkaline solution to the core-shell microspheres to adjust the pH of the system to 11.0 to 14.0, and reacting for 1 to 3 hours; then adding an acidic solution to adjust the pH of the system to 1.0. ⁇ 4.0, the reaction is 1-3 hours; finally, the pH of the alkaline solution is adjusted to 6.5-7.5 to obtain polymer hollow microspheres.
  • the styrene monomer A means a derivative of styrene or styrene, preferably styrene;
  • the acrylic monomer B means a monomer having an acrylic structural characteristic, preferably acrylic acid, methacrylic acid; acrylate type
  • the body C refers to a monomer having an acrylate structure, preferably ethyl acrylate or butyl acrylate.
  • Sulfur-containing acrylic monomer D refers to a monomer containing an acrylic structure and a sulfur-containing element, preferably thiophenol methacrylate (TPMA), 4,4'-dimercaptodiphenyl sulfide dimethacrylate (MDPSDMA).
  • TPMA thiophenol methacrylate
  • MDPSDMA 4,4'-dimercaptodiphenyl sulfide dimethacrylate
  • the initiator is a free radical water-soluble initiator, including ammonium persulfate, potassium persulfate or a redox initiator, and the redox initiator may be hydrogen peroxide-ferrous sulfate, ammonium persulfate-potassium sulfite, etc. .
  • the concentration of the alkaline solution is 5-20%, and the alkaline solution is a KOH or NaOH solution; the acidic solution The concentration of the liquid is 5 to 20%, and the acidic solution is a hydrochloric acid, sulfuric acid or phosphoric acid solution.
  • the carboxyl group-containing monomer (monomer B and monomer C) is emulsion copolymerized with other unsaturated monomers to obtain a carboxyl group-containing seed emulsion, which is an acidic core.
  • What is carried out in the second step is the polymerization of the seed emulsion, which polymerizes the shell layer on the acidic core to form a permeable hard shell, and the seed becomes the core of the latex particle.
  • Step 3 is the swelling process of the core.
  • the alkali solution is added for swelling.
  • the seed is swollen by adding an alkali solution.
  • the lye enters the interior of the seed and neutralizes with the acidic core, producing an ionization process that removes the core of the core-shell microspheres.
  • the hydration expands the volume of the shell several times to several tens of times, so that the shell layer is stretched in two dimensions and the shell expands accordingly.
  • the temperature is lowered to below the Tg of the shell polymer, and the shell is solidified and frozen under the expanded state, and cannot be retracted.
  • the hollow microspheres can be obtained.
  • the pH of the acid adjustment system is added and treated to form a solid shell structure; finally, the alkali solution is added for neutralization treatment to obtain hollow microspheres.
  • the copolymerization system has an acidic group, which tends to increase the affinity for water, and causes the material to be sensitive to humidity, and at the same time, it is easy to cause the polymerization system to be easily flocculated, and the core is not easily coated by the shell.
  • Adjusting the amount of the initiator to be added, the mass ratio of each reaction raw material, and controlling the reaction temperature and the reaction time can avoid the above problems to some extent.
  • differences in the raw materials and their amounts, and the reaction parameters in the preparation process may affect the structure of the prepared polymer hollow microspheres, thereby affecting the properties thereof.
  • the use of a sulfur monomer and a benzene-containing monomer as a raw material to prepare a polymer to form a hollow polymer microsphere structure does not change the physical properties of the polymer.
  • the polymer hollow microspheres prepared by the technical scheme of the present invention have an Abbe refractive index n>1.6, a pore diameter of 100 nm to 2000 nm, and a shell layer thickness of 50 nm to 100 nm. The greater the refractive index of the object, the greater the reflectivity.
  • the high refractive index polymer hollow microspheres or microbeads prepared by the invention have wide application in many fields such as medical engineering, catalytic technology, biotechnology, electronic information, material engineering, architectural coatings and the like.
  • the polymer hollow microspheres have The resin has good compatibility, and the large amount does not affect the film forming performance and gloss of the coating; therefore, the polymer hollow microspheres are important for improving the film forming properties of the heat-insulating reflective coating and improving the heat-insulating reflection effect. Functional filler.
  • the pH of the solution was adjusted to 12, and the core of the core-shell microspheres prepared above was removed for 2 hours; then the pH of the system was adjusted to 2.0 by using a 10% diluted hydrochloric acid solution for 2 hours to form a solid shell structure, and finally Neutralization treatment, the pH of the system was adjusted to 6.5 with a 10% KOH solution to obtain hollow microspheres (as shown in Figure 3).
  • FIG. 1 is a schematic diagram of the process of preparing a seed emulsion.
  • the carboxyl group-containing monomeric acrylic acid (AA) is emulsion-polymerized with other unsaturated monomers styrene (St) and butyl acrylate (BA) to prepare a carboxyl group-containing PS-AA seed.
  • the emulsion is an acidic core.
  • 2 is a schematic view of preparing a core-shell structure emulsion for polymerizing a shell layer on an acidic core, a PS-AA seed emulsion and a sulfur-containing acrylic monomer thiophenol methacrylate (SAM), an unsaturated monomer styrene (St).
  • SAM sulfur-containing acrylic monomer thiophenol methacrylate
  • FIG. 3 is a schematic view showing the process of preparing polymer hollow microspheres. Under high temperature conditions, the solution is treated with NaOH solution, and NaOH enters the core shell, and ionizes with the acidic core therein to remove the core of the core-shell microspheres. The hydration expands the volume of the shell several times to several tens of times, so that the shell layer is stretched in two dimensions and the shell expands accordingly. Then, hydrochloric acid is continuously added under high temperature for treatment to form hollow microspheres having a solid shell structure.
  • the prepared coating has thermal insulation function and heat insulation reflection function, which can improve film formation performance and hiding performance. It also has sound absorption and noise reduction functions.
  • the prepared coating has thermal insulation function and heat insulation reflection function, which can improve film formation performance and hiding performance. It also has sound absorption and noise reduction functions.
  • the prepared coating has thermal insulation function and heat insulation reflection function, which can improve film formation performance and hiding performance. It also has sound absorption and noise reduction functions.
  • styrene, 15 g of methacrylic acid and 15 g of ethyl acrylate were mixed with 1.8 g of ammonium persulfate in 400 ml of deionized water; the seed emulsion was prepared by reacting at 65 ° C for 3 hours; then, the reaction temperature of the seed emulsion was kept constant.
  • 30 g of styrene, 20 g of ethyl acrylate, 50 g of 2-phenylthiothiol methacrylate (Fig. 6) and 1 g of ammonium persulfate were uniformly mixed in 500 ml of deionized water, and then continuously and uniformly added dropwise through a dropping funnel.
  • the reaction was continued for 5 hours to obtain core-shell microspheres; then, the core-shell microspheres prepared above were prepared by adjusting the pH of the system to 12 at 10 ° C with a 10% NaOH solution for 5 hours.
  • the core is removed; then the 10% sulfuric acid solution is used to adjust the pH of the system to 2.0, and the treatment is carried out for 5 hours to form a solid shell structure.
  • the pH of the system is adjusted to 7.0 with a 10% NaOH solution, and the treatment is neutralized to obtain a hollow micro ball.
  • the prepared coating has thermal insulation function and heat insulation reflection function, which can improve film formation performance and hiding performance. It also has sound absorption and noise reduction functions.
  • the core of the ball is removed; then the pH of the system is adjusted to 2.5 using a 10% phosphoric acid solution for 4 hours to form a solid shell structure. Finally, the pH of the system is adjusted to 7.0 by a 10% KOH solution to obtain a hollow micro. ball.
  • the prepared coating has thermal insulation function and heat insulation reflection function, which can improve film formation performance and hiding performance. It also has sound absorption and noise reduction functions.
  • Table 1 shows the test results of the relevant properties of the coatings prepared in Examples 1 to 5 and Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

一种聚合物中空微球的制备方法,步骤如下:将苯乙烯类单体A,丙烯酸类单体B和丙烯酸酯类单体C与引发剂混合并反应,获得种子乳液;保持种子乳液温度不变,将苯乙烯类单体A,丙烯酸酯类单体C,含硫丙烯酸单体D与引发剂混合后,滴加到所述种子乳液中获得产物;向产物中加入碱性溶液,然后加入酸性溶液,最后进行中和处理,得到中空微球。

Description

一种聚合物中空微球及其制备方法和应用 技术领域
本发明属于聚合物材料制备领域,尤其涉及一种聚合物中空微球及其制备方法和应用。
背景技术
隔热保温材料是关系民生科技,体现国家综合示范工程的重要新材料,其中外墙隔热保温材料已经成为建筑节能的主要产品之一。近年来发展的反射隔热涂料能主动反射太阳光的能量,降低室内温度,从根本上减少空调的使用率,大大降低能耗。隔热反射涂料是一种新型的功能性涂料;它能够有效地阻隔、反射、辐射太阳热,降低外墙表面和室内温度,从而达到改善工作环境、降低能耗的目的。目前应用的反射隔热涂料中,以二氧化钛为颜料的白色反射涂料因其反射比可达到80%以上而成为应用最广泛的隔热保温材料。但是,实际应用中,浅色或白色涂膜存在耐污性差的缺点,在户外使用一段时间后会因为漆膜表面变脏、变色导致热反射性能大大下降。大量研究表明,二氧化钛等无机粉体应用于隔热反射涂料是因为其具有较高的光折射率。空心玻璃微球表现出优异的隔热作用,也是其反射率直接与玻璃组分的光折射率有关。研究与计算也表明,物体的折射率越大,反射率越大。
聚合物中空微球是指内部包含有一个或多个空腔结构的聚合物中空微球体,其壳层由一种聚合物或多种聚合物组成,是在高分子合成技术的基础上进行粒子形态控制的典型产物之一。这些具有特殊特性的中空微球在纳米反应器、药物控制释放、生物成像、催化、光子晶体等具有广阔的应用前景。若是可以制备出一种具有高折射率的聚合物中空微球,将其应用于配制涂料将会实现更 好的隔热反射效果。但目前国内外还没有一种可以获得高折射率聚合物中空微球的制备方法,也没有将其应用于隔热反射涂料的相关报道。
发明内容
本发明所要解决的技术问题在于提供一种聚合物中空微球及其制备方法和应用,旨在获得一种高折射率的聚合物中空微球,同时将其应用于配制涂料以实现更好的隔热反射效果。
本发明是这样实现的,一种聚合物中空微球的制备方法,包括以下步骤:
步骤一:将苯乙烯类单体A,丙烯酸类单体B和丙烯酸酯类单体C与引发剂混合并反应,获得种子乳液;
步骤二:保持种子乳液温度不变,将苯乙烯类单体A,丙烯酸酯类单体C,含硫丙烯酸单体D与引发剂混合后,滴加到所述种子乳液中获得产物;
步骤三:向产物中加入碱性溶液,然后加入酸性溶液,再进行中和处理,得到中空微球。
进一步地,所述引发剂为自由基水溶性引发剂,包括过硫酸铵、过硫酸钾或氧化还原类引发剂。
进一步地,所述氧化还原类引发剂为过氧化氢-硫酸亚铁或过硫酸氨-亚硫酸钾。
进一步地,所述步骤一中:A、B、C三种物质的质量比为20~80:10~40:10~40;所述引发剂质量为A、B、C三种物质总质量的1wt%~2wt%;反应温度为0~90℃,反应时间为3~5小时。
进一步地,所述步骤二中:A、C、D三种物质的质量比为10~30:10~30:40~80;所述引发剂质量为A、B、C三种物质总质量的1wt%~2wt%;反应温度为0~90℃,反应时间为3~5小时。
进一步地,所述步骤三具体为:保持温度在80~130℃,向产物中加入碱性溶液调节体系的pH值至11.0~14.0,反应1~3小时;然后加入酸性溶液, 调节体系的pH值至1.0~4.0,反应1~3小时;最后再加入碱性溶液调节体系的pH值至6.5~7.5。
进一步地,所述碱性溶液的浓度为5~20%,所述碱性溶液为KOH或NaOH溶液;所述酸性溶液的浓度为5~20%,所述酸性溶液为盐酸、硫酸或磷酸溶液。
为解决上述技术问题,本发明还提供了一种聚合物中空微球,采用所述的制备方法制成。
进一步地,所述聚合物中空微球的阿贝折射率n>1.6,孔径100nm~2000nm,壳层厚度50nm~100nm。
本发明还提供了上述聚合物中空微球的应用,所述聚合物中空微球在医药工程、催化技术、生物技术、电子信息、材料工程或建筑涂料方面的应用。
本发明还提供了一种隔热反射涂料,包括所述的聚合物中空微球。
本发明与现有技术相比,有益效果在于:本发明的聚合物中空微球的制备方法,操作工艺简单,容易进行扩大生产。由其制备的聚合物中空微球的阿贝折射率n>1.6,具有很高的折射率。本发明的高折射率聚合物中空微球直接采用水溶液聚合方法制备,产品可以直接用于配置涂料,且制备的涂料具有极佳的保温及隔热反射作用。
附图说明
图1是本发明实施例1种子乳液制备示意图。
图2是本发明实施例1核壳结构乳液制备示意图。
图3是本发明实施例1聚合物中空微球制备示意图。
图4是本发明实施例2的含硫丙烯酸单体结构示意图。
图5是本发明实施例3的含硫丙烯酸单体结构示意图。
图6是本发明实施例4的含硫丙烯酸单体结构示意图。
图7是本发明实施例5的含硫丙烯酸单体结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
按照比发明的技术方案制备聚合物中空微球,过程如下:
步骤一:按苯乙烯类单体A,丙烯酸类单体B和丙烯酸酯类单体C质量比为20~80:10~40:10~40称取这几种原料,加入质量为A、B、C三种物质总质量的1wt%~2wt%的引发剂,保持温度为0~90℃进行反应3~5小时,获得种子乳液;
步骤二:保持种子乳液温度为0~90℃不变,按苯乙烯类单体A,丙烯酸酯类单体C和含硫丙烯酸单体D的质量比为10~30:10~30:40~80称取这几种原料,加入质量为A、B、D三种物质总质量的1wt%~2wt%的引发剂,均匀滴加到上述种子乳液中反应3~5小时,获得核壳结构微球;
步骤三:将保持温度在80~130℃,向核壳结构微球中加入碱性溶液调节体系的pH值至11.0~14.0,反应1~3小时;然后加入酸性溶液,调节体系的pH值1.0~4.0,反应1~3小时;最后再加入碱性溶液调节体系的pH值至6.5~7.5,得到聚合物中空微球。
具体地,苯乙烯类单体A是指苯乙烯或苯乙烯的衍生物,优选苯乙烯;丙烯酸类单体B是指具有丙烯酸结构特征的单体,优先丙烯酸,甲基丙烯酸;丙烯酸酯类单体C是指具有丙烯酸酯结构的单体,优先丙烯酸乙酯,丙烯酸丁酯。含硫丙烯酸单体D是指含有丙烯酸结构和含硫元素的单体,优先甲基丙烯酸苯硫酚酯(TPMA),4,4’-二巯基二苯硫醚双甲基丙烯酸酯(MDPSDMA),甲基丙烯酸-2-苯基硫代硫醇酯(MPSDMA),一缩乙二硫醇双甲基丙烯酸酯(MESDMA)。引发剂为自由基水溶性引发剂,包括过硫酸铵、过硫酸钾或氧化还原类引发剂,所述氧化还原类引发剂可以为过氧化氢-硫酸亚铁,过硫酸氨-亚硫酸钾等。所述碱性溶液的浓度为5~20%,所述碱性溶液为KOH或NaOH溶液;所述酸性溶 液的浓度为5~20%,所述酸性溶液为盐酸、硫酸或磷酸溶液。
具体地,本发明步骤一中为制备种子乳液的过程,含羧基的单体(单体B和单体C)与其他不饱和单体进行乳液共聚制得含羧基的种子乳液,为酸性核。
步骤二中进行的是种子乳液的聚合,为酸性核上聚合壳层,形成可渗透的硬壳,而种子成为乳胶粒的核。
步骤三为核的溶胀过程,首先是加入碱液进行溶胀。具体为在壳聚合物的Tg(玻璃化温度,Tg=80℃)或Tg以上,加入碱液对种子进行溶胀。碱液进入种子内部与酸性核中和,产生离子化过程,将核壳结构微球的内核除去。水化作用使壳的体积膨胀至原来的几倍至几十倍,从而壳层被二维拉伸而增大,壳也相应的发生膨胀。待种子体积膨胀至所需的程度,将温度降至壳聚合物的Tg以下,壳在膨胀状态下,固化冻结而不能回缩,待粒子中的水分挥发后,即可得到中空微球。加入酸液调节体系pH,并处理,形成坚实壳结构;最后再加入碱液进行中和处理,即得到中空微球。
本发明中共聚体系具有酸性基团,这样势必增加对水的亲和力,造成材料对湿度的敏感,同时极易造成聚合体系易絮凝,核不易被壳包覆等问题。调整加入引发剂的量,各反应原料的质量比,及控制反应温度和反应时间可在一定程度上避免上述问题。此外,制备过程中的各原料及其用量、各反应参数等出现差异,都会对制备的聚合物中空微球的结构有所影响,进而影响到其所具有的性能。
采用硫单体和含苯环单体为原料制备聚合物,制作成中空聚合物微球结构,这并不会改变聚合物的物理性能。由本发明的技术方案制备的聚合物中空微球,其阿贝折射率n>1.6,孔径100nm~2000nm,壳层厚度50nm~100nm。物体的折射率越大,反射率越大。本发明制备的高折射率聚合物中空微球或微珠在医药工程、催化技术、生物技术、电子信息、材料工程、建筑涂料等诸多方面有广泛的应用。特别是在涂料应用中,具有保温功能和隔热反射功能,能改善成膜性能和遮盖性能;还具有吸音减噪功能。而且,聚合物空心微球由于具有与涂 料树脂很好的相容性,用量大也不会影响涂料的成膜性能和光泽度等;因此,聚合物中空微球成为提高隔热反射涂料的成膜性能和改善隔热反射效果的重要功能填料。
下面结合具体实施例对本发明的技术方案进行说明。
实施例1
将60g苯乙烯(St),20g丙烯酸(AA)和20g丙烯酸丁酯(BA)与1g过硫酸钾在400ml去离子水中混合均匀;在75℃下反应3小时制备PS-AA种子乳液(如图1所示);然后,保持种子乳液反应温度不变,将20g苯乙烯,20g丙烯酸丁酯,60g甲基丙烯酸苯硫酚酯(SAM)与1g过硫酸钾在400ml去离子水中混合均匀,再通过滴液漏斗连续均匀滴加到上述种子乳液中,继续反应3小时,得到PS/PSAM核壳结构微球(如图2所示);然后,在90℃下,利用10%KOH溶液调节体系的pH值至12,处理2小时,将上述制备的核壳结构微球的内核除去;然后再利用10%稀盐酸溶液,调节体系的pH值2.0,处理2小时,形成坚实壳结构,最后是中和处理,用10%KOH溶液调节体系的pH值至6.5,即得到中空微球(如图3所示)。
图1中为制备种子乳液的过程示意图,含羧基的单体丙烯酸(AA)与其他不饱和单体苯乙烯(St)和丙烯酸丁酯(BA)进行乳液共聚制得含羧基的PS-AA种子乳液,为酸性核。图2是制备核壳结构乳液示意图,为在酸性核上聚合壳层,PS-AA种子乳液与含硫丙烯酸单体甲基丙烯酸苯硫酚酯(SAM)、不饱和单体苯乙烯(St)进行乳液聚合形成PS/PSAM核壳乳液。图3中制备聚合物中空微球的过程示意图,在高温状态下,利用NaOH溶液进行处理,NaOH进入核壳内,与其中的酸性核发生离子化作用,将核壳结构微球的内核除去。水化作用使壳的体积膨胀至原来的几倍至几十倍,从而壳层被二维拉伸而增大,壳也相应的发生膨胀。然后继续在高温状态下加入盐酸进行处理,形成坚实壳结构的中空微球。
所制备的聚合物中空微球的阿贝折射率n=2.2,孔径1500nm~2000nm,壳层厚度50nm~80nm。将其用于涂料制备应用中,所制备的涂料具有保温功能和隔热反射功能,能改善成膜性能和遮盖性能;还具有吸音减噪功能。
实施例2
将50g苯乙烯,25g甲基丙烯酸和25g丙烯酸乙酯与1g过硫酸铵在400ml去离子水中混合均匀;在65℃下反应3小时制备种子乳液;然后,保持种子乳液反应温度不变,将30g苯乙烯,20g丙烯酸乙酯,50g甲基丙烯酸苯硫酚酯(图4)与1g过硫酸铵在400ml去离子水中混合均匀,再通过滴液漏斗连续均匀滴加到上述种子乳液中,继续反应4小时,得到核壳结构微球;然后,在100℃下,利用10%NaOH溶液调节体系的pH值至13,处理3小时,将上述制备的核壳结构微球的内核除去;然后再利用10%稀盐酸溶液,调节体系的pH值2.5,处理3小时,形成坚实壳结构,最后用10%NaOH溶液调节体系的pH值至7.5,中和处理,即得到中空微球。
所制备的聚合物中空微球的阿贝折射率n=2.0,孔径1800nm~2000nm,壳层厚度90nm~100nm。将其用于涂料制备应用中,所制备的涂料具有保温功能和隔热反射功能,能改善成膜性能和遮盖性能;还具有吸音减噪功能。
实施例3
将30g苯乙烯,30g丙烯酸和40g丙烯酸乙酯与1.5g过硫酸钾在400ml去离子水中混合均匀;在80℃下反应3小时制备种子乳液;然后,保持种子乳液反应温度不变,将30g苯乙烯,20g丙烯酸乙酯,50g,4,4’-二巯基二苯硫醚双甲基丙烯酸酯(图5)与1g过硫酸钾在200ml去离子水中混合均匀,再通过滴液漏斗连续均匀滴加到上述种子乳液中,继续反应3小时,得到核壳结构微球;然后,在95℃下,利用10%KOH溶液调节体系的pH值至12.5,处理5小时,将上述制备的核壳结构微球的内核除去;然后再利用10%硫酸溶液,调节体系的pH值2.0,处理5小时,形成坚实壳结构,最后用10%KOH溶液调节体系的pH值至7.0,中和处理,即得到中空微球。
所制备的聚合物中空微球的阿贝折射率n=1.7,孔径100nm~200nm,壳层厚度50nm~70nm。将其用于涂料制备应用中,所制备的涂料具有保温功能和隔热反射功能,能改善成膜性能和遮盖性能;还具有吸音减噪功能。
实施例4
将70g苯乙烯,15g甲基丙烯酸和15g丙烯酸乙酯与1.8g过硫酸铵在400ml去离子水中混合均匀;在65℃下反应3小时制备种子乳液;然后,保持种子乳液反应温度不变,将30g苯乙烯,20g丙烯酸乙酯,50g甲基丙烯酸-2-苯基硫代硫醇酯(图6)与1g过硫酸铵在500ml去离子水中混合均匀,再通过滴液漏斗连续均匀滴加到上述种子乳液中,继续反应5小时,得到核壳结构微球;然后,在100℃下,利用10%NaOH溶液调节体系的pH值至12,处理5小时,将上述制备的核壳结构微球的内核除去;然后再利用10%硫酸溶液,调节体系的pH值2.0,处理5小时,形成坚实壳结构,最后用10%NaOH溶液调节体系的pH值至7.0,中和处理,即得到中空微球。
所制备的聚合物中空微球的阿贝折射率n=2.6,孔径300nm~500nm,壳层厚度50nm~60nm。将其用于涂料制备应用中,所制备的涂料具有保温功能和隔热反射功能,能改善成膜性能和遮盖性能;还具有吸音减噪功能。
实施例5
将50g苯乙烯,30g甲基丙烯酸和20g丙烯酸乙酯与2g过硫酸钾在500ml去离子水中混合均匀;在75℃下反应3小时制备种子乳液;然后,保持种子乳液反应温度不变,将20g苯乙烯,30g丙烯酸乙酯,50g一缩乙二硫醇双甲基丙烯酸酯(结构式如图7所示)与1g过硫酸铵在500ml去离子水中混合均匀,再通过滴液漏斗连续均匀滴加到上述种子乳液中,继续反应5小时,得到核壳结构微球;然后,在100℃下,利用10%KOH溶液调节体系的pH值至13,处理5小时,将上述制备的核壳结构微球的内核除去;然后再利用10%磷酸溶液,调节体系的pH值2.5,处理4小时,形成坚实壳结构,最后用10%KOH溶液调节体系的pH值至7.0中和处理,即得到中空微球。
所制备的聚合物中空微球的阿贝折射率n=1.62,孔径800nm~1000nm,壳层厚度80nm~100nm。将其用于涂料制备应用中,所制备的涂料具有保温功能和隔热反射功能,能改善成膜性能和遮盖性能;还具有吸音减噪功能。
对比例
取与各实施例其它成分完全相同、只是未添加聚合物中空微球的涂料进行相同的保温和隔热反射性能测试。
表1为实施例1~5和对比例中所制备的涂料的相关性能测试结果。
表1
Figure PCTCN2016072807-appb-000001
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种聚合物中空微球的制备方法,其特征在于,包括以下步骤:
    步骤一:将苯乙烯类单体A,丙烯酸类单体B和丙烯酸酯类单体C与引发剂混合并反应,获得种子乳液;
    步骤二:保持种子乳液温度不变,将苯乙烯类单体A,丙烯酸酯类单体C,含硫丙烯酸单体D与引发剂混合后,滴加到所述种子乳液中获得产物;
    步骤三:向产物中加入碱性溶液,然后加入酸性溶液,再进行中和处理,得到中空微球。
  2. 如权利要求1中所述的制备方法,其特征在于,所述引发剂为自由基水溶性引发剂,包括过硫酸铵、过硫酸钾或氧化还原类引发剂。
  3. 如权利要求1中所述的制备方法,其特征在于,所述步骤一中:A、B、C三种物质的质量比为20~80:10~40:10~40;所述引发剂质量为A、B、C三种物质总质量的1wt%~2wt%;反应温度为0~90℃,反应时间为3~5小时。
  4. 如权利要求1中所述的制备方法,其特征在于,所述步骤二中:A、C、D三种物质的质量比为10~30:10~30:40~80;所述引发剂质量为A、B、C三种物质总质量的1wt%~2wt%;反应温度为0~90℃,反应时间为3~5小时。
  5. 如权利要求1中所述的制备方法,其特征在于,所述步骤三具体为:保持温度在80~130℃,向产物中加入碱性溶液调节体系的pH值至11.0~14.0,反应1~3小时;加入酸性溶液,调节体系的pH值至1.0~4.0,反应1~3小时;再加入碱性溶液调节体系的pH值至6.5~7.5。
  6. 如权利要求5中所述的制备方法,其特征在于,所述碱性溶液的浓度为5~20%,所述碱性溶液为KOH或NaOH溶液;所述酸性溶液的浓度为5~20%,所述酸性溶液为盐酸、硫酸或磷酸溶液。
  7. 一种聚合物中空微球,其特征在于,采用权利要求1~6任意一项所述的制备方法制成。
  8. 如权利要求7所述的聚合物中空微球,其特征在于,所述聚合物中空微 球的阿贝折射率n>1.6,孔径100nm~2000nm,壳层厚度50nm~100nm。
  9. 如权利要求7或8所述的聚合物中空微球的应用,其特征在于,所述聚合物中空微球在医药工程、催化技术、生物技术、电子信息、材料工程或建筑涂料方面的应用。
  10. 一种隔热反射涂料,其特征在于,包括如权利要求7或8所述的聚合物中空微球。
PCT/CN2016/072807 2016-01-29 2016-01-29 一种聚合物中空微球及其制备方法和应用 WO2017128300A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/072807 WO2017128300A1 (zh) 2016-01-29 2016-01-29 一种聚合物中空微球及其制备方法和应用
US16/027,254 US10538658B2 (en) 2016-01-29 2018-07-03 Polymer hollow microspheres and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/072807 WO2017128300A1 (zh) 2016-01-29 2016-01-29 一种聚合物中空微球及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/027,254 Continuation US10538658B2 (en) 2016-01-29 2018-07-03 Polymer hollow microspheres and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2017128300A1 true WO2017128300A1 (zh) 2017-08-03

Family

ID=59397186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072807 WO2017128300A1 (zh) 2016-01-29 2016-01-29 一种聚合物中空微球及其制备方法和应用

Country Status (2)

Country Link
US (1) US10538658B2 (zh)
WO (1) WO2017128300A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410612A (zh) * 2020-03-31 2020-07-14 常州大学 用于常温下氧化还原制备苯丙乳液的还原剂单体及其合成方法
CN113788906A (zh) * 2021-08-20 2021-12-14 江南大学 一种基于静电自吸引的P(St-X)@Ag导电材料的制备方法
CN115286968A (zh) * 2022-08-30 2022-11-04 铁科金化检测中心有限公司 一种预防纵连无砟高速铁路混凝土温度应力病害的反射隔热涂料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390244B (zh) * 2019-08-18 2023-07-21 宋文良 一种中空聚合物微球以及相应中空碳球的制备方法
CN117164776B (zh) * 2023-09-05 2024-01-26 江门市金桥新材料有限公司 一种成膜型遮盖丙烯酸微球乳液及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077320A (en) * 1989-06-23 1991-12-31 Nippon Zeon Co., Ltd. Microvoid-containing polymer particles
US6235810B1 (en) * 1997-03-05 2001-05-22 Neste Chemicals Oy Method for the preparation of hollow polymer particle latex
CN102311555A (zh) * 2011-06-07 2012-01-11 三棵树涂料股份有限公司 一种利用聚合物中空微球包覆二氧化硅的制备方法
CN105542087A (zh) * 2016-01-29 2016-05-04 深圳大学 一种聚合物中空微球及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8841358B2 (en) * 2009-04-29 2014-09-23 Tundra Composites, LLC Ceramic composite
US8940363B2 (en) * 2012-08-17 2015-01-27 Nan Ya Plastics Corporation Preparation of hollow polymer microspheres

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077320A (en) * 1989-06-23 1991-12-31 Nippon Zeon Co., Ltd. Microvoid-containing polymer particles
US6235810B1 (en) * 1997-03-05 2001-05-22 Neste Chemicals Oy Method for the preparation of hollow polymer particle latex
CN102311555A (zh) * 2011-06-07 2012-01-11 三棵树涂料股份有限公司 一种利用聚合物中空微球包覆二氧化硅的制备方法
CN105542087A (zh) * 2016-01-29 2016-05-04 深圳大学 一种聚合物中空微球及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAVLYUCHENKO, V.N. ET AL.: "Hollow-Particle Latexes: Preparation and Properties", JOURNAL OF POLYMER SCIENCE : PART A: POLYMER CHEMISTRY, vol. 39, no. 9, 31 December 2001 (2001-12-31), pages 1435 - 1449, XP055401810 *
WANG, DONGWEI: "Hollow-Particle Latexes: Preparation and Properties", SHANDONG UNIVERSITY MASTER'S THESIS, 1 May 2008 (2008-05-01), pages 2 - 4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410612A (zh) * 2020-03-31 2020-07-14 常州大学 用于常温下氧化还原制备苯丙乳液的还原剂单体及其合成方法
WO2021196775A1 (zh) * 2020-03-31 2021-10-07 常州大学 用于常温下氧化还原制备苯丙乳液的还原剂单体及其合成方法
US11377511B2 (en) 2020-03-31 2022-07-05 Changzhou University Reducing agent monomer for preparing styrene-acrylic emulsion by oxidation-reduction reaction at room temperature, and synthesis method thereof
CN113788906A (zh) * 2021-08-20 2021-12-14 江南大学 一种基于静电自吸引的P(St-X)@Ag导电材料的制备方法
CN115286968A (zh) * 2022-08-30 2022-11-04 铁科金化检测中心有限公司 一种预防纵连无砟高速铁路混凝土温度应力病害的反射隔热涂料及其制备方法和应用

Also Published As

Publication number Publication date
US20180312681A1 (en) 2018-11-01
US10538658B2 (en) 2020-01-21

Similar Documents

Publication Publication Date Title
US10538658B2 (en) Polymer hollow microspheres and preparation method and application thereof
CN104725971B (zh) 一种含二氧化钛/凹凸棒石纳米复合材料的多功能隔热涂料及其制备方法
CN102304316B (zh) 聚丙烯酸酯/纳米ZnO复合涂饰剂及其制备方法
CN108517024B (zh) Pickering细乳液聚合法制备聚丙烯酸酯/纳米ZnO复合皮革涂饰剂及制备方法
CN111058334B (zh) 一种改性聚丙烯酸酯防水防粘剂、制备方法和应用
TW200833763A (en) Low refractive index composition
CN102248722B (zh) 一种基于水凝胶体系纳米级相变的温度敏感型智能玻璃
CN104262530A (zh) 未改性硅溶胶/聚苯乙烯-丙烯酸酯纳米核壳乳液及其制备方法
CN111154033A (zh) 一种凝固温度和透光度可调的凝胶型冰雪材料及制备方法
CA2283480A1 (en) A method for the preparation of hollow polymer particle latex
CN102911540A (zh) 一种疏水性mma树脂地坪涂料及其制备方法
AU2006248948A1 (en) Coloured polymer system with improved elasticity
CN105542087B (zh) 一种聚合物中空微球及其制备方法和应用
CN102898577A (zh) 一种聚合物中空乳胶粒及其制备方法
CN104262531A (zh) 未改性硅溶胶/聚丙烯酸酯核壳乳液及其制备方法
CN106397662B (zh) 一种具有自动修复功能的丙烯酸微凝胶乳液及其制备方法
CN106632791B (zh) 一种抗新鲜水泥泛碱底漆苯丙乳液及其制备方法
CN103665242B (zh) 一种硅溶胶/丙烯酸酯纳米核壳复合乳液及其制备方法
CN112625289B (zh) 一种基于聚丙烯酸的结构色弹性体及其制备方法和应用
CN100532478C (zh) 含有含氟丙烯酸酯嵌段共聚物的复合涂料及其生产方法
CN106977829B (zh) 一种溶胶沉积空心聚苯乙烯建筑保温材料的制备方法
CN105802306A (zh) 一种建筑物防火涂料的制备方法
CN100572406C (zh) 一种疏水性可再分散乳胶粉
CN108912288A (zh) 一种高熔融指数的热塑性弹性体及其制备方法
CN103265659B (zh) 高遮盖力聚醋酸乙烯酯/聚苯乙烯复合乳液及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887184

Country of ref document: EP

Kind code of ref document: A1