WO2017126683A1 - Transmission type thin film solar cell - Google Patents

Transmission type thin film solar cell Download PDF

Info

Publication number
WO2017126683A1
WO2017126683A1 PCT/JP2017/001996 JP2017001996W WO2017126683A1 WO 2017126683 A1 WO2017126683 A1 WO 2017126683A1 JP 2017001996 W JP2017001996 W JP 2017001996W WO 2017126683 A1 WO2017126683 A1 WO 2017126683A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solar cell
sheet
film solar
sunlight
Prior art date
Application number
PCT/JP2017/001996
Other languages
French (fr)
Japanese (ja)
Inventor
康之 渡邊
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to JP2017562931A priority Critical patent/JP7093988B2/en
Publication of WO2017126683A1 publication Critical patent/WO2017126683A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power

Definitions

  • the present disclosure relates to a transmissive thin film solar cell.
  • a solar cell using sunlight as an energy source has attracted attention as a utilization of natural energy.
  • solar sharing a technology that balances farming with solar power generation using solar cells.
  • solar sharing there is a method of installing a non-translucent solar cell (silicon-based solar cell panel) on farmland. At this time, it is preferable to increase the installation area of the solar cell panel in view of securing the amount of power generation.
  • the solar panels can shade the farmland. For this reason, at present, in order to suppress a decrease in crop yield, solar panels are installed with a certain amount of space secured.
  • the installation area of solar panels necessary to secure the amount of sunshine suitable for the growth of agricultural crops is estimated to be about 30% of the entire farmland, and at present, farmland is used effectively enough for both power generation and agriculture. It is hard to say that it is.
  • a solar cell panel is installed in a part of farmland, an auxiliary light source is driven by the electric power obtained by the solar cell panel, and it is cultivated in other parts of the farmland.
  • a plant cultivation method in which a plant is irradiated with auxiliary light emitted from the auxiliary light source together with sunlight (see JP 2011-200163 A).
  • a greenhouse has been proposed in which auxiliary irradiation light is used in the absence of solar radiation. That is, a thin-film solar cell module that is substantially translucent in the first wavelength region, receives solar radiation, and converts solar radiation in a second wavelength region different from the first wavelength region into electrical energy. And a selective reflection layer disposed opposite the photoelectric layer so as to selectively reflect radiation in the second wavelength region transmitted by the photoelectric layer, and radiation in the second wavelength region.
  • the thin film solar cell module including a band and a second wavelength band of 600 to 700 nm and a second wavelength region including a wavelength range of 500 to 600 nm is disclosed (refer to Japanese Patent Application Publication No. 2014-522101). .
  • a part of external light such as sunlight
  • a phosphor that absorbs light with a wavelength that has a small contribution to photosynthesis of plants and converts it into light with a wavelength that has a large contribution to photosynthesis, and radiation from the phosphor.
  • a plant cultivation apparatus including a daylighting unit having a fluorescent light guide that guides a part of the emitted light and a solar cell element that receives the fluorescent light guide (International Publication WO2012 / 141091 pamphlet).
  • An object of an embodiment of the present invention is a transmission that has a dimming function and a transmissive organic EL sheet, and can control the light environment under the solar cell to a desired state regardless of the intensity of sunlight. It is to provide a type thin film solar cell.
  • Means for solving the problems include the following embodiments.
  • a transmissive thin-film solar cell having a solar cell sheet that transmits at least part of sunlight, a transmissive organic EL (electroluminescence) sheet, and a light control unit that adjusts the amount of transmitted sunlight.
  • the transmissive thin-film solar cell according to ⁇ 1> including the solar cell sheet, the light control unit, and the transmissive organic EL sheet in this order from the sunlight incident side.
  • ⁇ 3> The transmissive thin-film solar cell according to ⁇ 1>, including the solar cell sheet, the transmissive organic EL sheet, and the light control unit in this order from the sunlight incident side.
  • ⁇ 4> The transmissive thin film solar cell according to any one of ⁇ 1> to ⁇ 3>, wherein the solar cell sheet has selective light transmittance.
  • ⁇ 5> The transmissive thin film solar cell according to ⁇ 4>, wherein the selective light transmittance is a characteristic of transmitting light in a visible light region.
  • ⁇ 6> The transmissive thin-film solar cell according to any one of ⁇ 1> to ⁇ 5>, wherein the solar cell sheet is an organic thin-film solar cell sheet.
  • ⁇ 7> Any one of ⁇ 1> to ⁇ 6>, further including a wavelength conversion unit that converts a wavelength of light incident through the solar cell sheet on a side opposite to a sunlight incident side of the solar cell sheet 2.
  • a light amount measuring unit that measures the amount of transmitted light that has passed through the solar cell sheet is provided, and the transmission type is measured when the amount of transmitted light measured by the light amount measuring unit does not reach a predetermined amount.
  • the transmission type thin film solar cell according to any one of ⁇ 1> to ⁇ 7>, in which energy is applied to the organic EL sheet to emit light.
  • a transmissive thin-film solar cell that has a dimming function and can maintain a desired light environment regardless of the amount of received sunlight.
  • FIG. 3 is a graph showing the spectral irradiance of transmitted light of the transmissive thin film solar cell 1 of Example 1.
  • FIG. 4 is a graph showing current-voltage characteristics of the transmission-type thin film solar cell 1 of Example 1 measured under sunlight irradiation. It is a graph which shows the spectral irradiance of the transmitted light of the transmission type thin film solar cell 2 of Example 2 which has a wavelength conversion part.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the transmission-type thin film solar cell of the present disclosure may be referred to as a solar cell sheet that transmits at least part of sunlight (hereinafter, simply referred to as “solar cell sheet”). ), A transmission type organic EL sheet (hereinafter, sometimes simply referred to as “organic EL sheet”), and a light control unit (hereinafter simply referred to as “light control unit”) that adjusts the amount of transmitted sunlight.
  • a thin film solar cell has a solar cell sheet, an organic EL sheet, and a light control part, and may have another member as needed.
  • “having members in this order” constituting the thin-film solar cell means having the members in the predetermined configuration order in each embodiment, It does not prevent having any other members.
  • FIG. 1 is a schematic cross-sectional view showing the layer configuration of the thin-film solar cell 10 of the first embodiment.
  • the thin film solar cell 10 of this embodiment has the solar cell sheet 12, the light control part 14, and the organic EL sheet 16 in this order from the sunlight receiving side.
  • the sunlight receiving side is indicated by an arrow in FIG.
  • There is a region where the light environment is adjusted or controlled on the side opposite to the light receiving side of the thin-film solar cell 10 hereinafter, the region where the light environment is adjusted or controlled may be referred to as a “light environment adjusting region”).
  • the region indicated by (A) on the side opposite to the light receiving side of the thin-film solar cell 10 is an example of the light environment adjustment region, although not illustrated, in FIGS.
  • the region opposite to the light receiving side of the thin-film solar cells 20 and 30 is an optical environment adjustment region similar to the region indicated by (A) in FIG.
  • Examples of the light environment adjustment area include a light-receiving side of a thin-film solar cell, such as a greenhouse that grows plants, a plant factory that uses sunlight, a poultry house, a livestock house that raises animals such as pigs, and a fish farm. Is the region on the opposite side.
  • the solar cell sheet 12 Since the solar cell sheet 12 transmits at least part of sunlight, the light (transmitted light) transmitted through the solar cell sheet 12 reaches the light control unit 14. Further, the transmitted light passes through the light control unit 14 and reaches the organic EL sheet 16, and further passes through the organic EL sheet 16 and reaches the light environment adjustment region.
  • the light control unit 14 adjusts the amount of transmitted light that reaches the light environment adjustment region. For example, when the sunlight is too strong and the leafy vegetables have a light quantity that causes sunburn, the light control unit 14 can reduce the transmitted light of the sunlight to a desired light quantity. At night, in cloudy weather, or when there is no need to reduce the amount of sunlight, the light control unit 14 does not adjust the amount of light and transmits the received light as it is.
  • the light control unit 14 when a chromic material is used for the light control unit 14, the light control unit 14 itself changes color according to the amount of received light and controls light transmission without using a sensor such as a light meter. can do.
  • the light control part 14 is not limited to the aspect using a chromic material.
  • the organic EL sheet 16 emits light when given energy. When the amount of sunlight is small, energy is applied to the organic EL sheet 16 to emit light, and a necessary amount of light is supplied to plants and the like.
  • the energy applied to the organic EL sheet 16 may be the power generated by the solar cell sheet 12 described above, or may be energy supplied as power from an external power source.
  • the thin film solar cell 10 of the first embodiment when the amount of irradiated sunlight is large, power generation by the solar cell sheet 12 is efficiently performed, and the dimmer 14 transmits more sunlight than necessary. Therefore, the amount of light reaches the light environment adjustment region as designed.
  • the light control unit 14 when the amount of irradiated sunlight is small, the light control unit 14 does not suppress the transmission of sunlight, and the organic EL sheet 16 emits light and emits light of a desired wavelength in the light environment adjustment region. It can be supplied with the required amount of light.
  • the thin film solar cell 10 of the present embodiment is applied together with a resin sheet such as a roof sheet or instead of a roof sheet in, for example, a greenhouse, an optical environment adjustment region is formed in the greenhouse, and it is related to the weather.
  • the light environment is controlled to a predetermined condition, and a light quantity suitable for plant growth is supplied.
  • the thin-film solar cell 10 of the present embodiment may further include a light amount measuring unit (not shown) that measures the amount of transmitted light that is incident on the solar cell sheet 12 and transmitted through the solar cell sheet 12.
  • a light amount measuring unit an illuminometer used for measuring the light environment for photosynthesis of plants, a photon sensor having sensitivity in the photosynthesis effective wavelength region, or the like is preferably used.
  • the thin-film solar cell reflects the light amount measurement means, the determination means for comparing and determining the result measured by the light amount measurement means, and the energy application to the organic EL sheet according to the determination by the determination means.
  • the light emission of the organic EL sheet 16 can be controlled, and the light environment in the light environment adjustment region can be controlled easily and precisely.
  • the energy saving effect at the time of maintaining a suitable light environment can also be anticipated by storing the energy generated by the solar cell sheet 12 as the energy for causing the organic EL sheet 16 to emit light and applying it as necessary.
  • the structure of a thin film solar cell is not limited to 1st Embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the thin-film solar cell.
  • the thin film solar cell 20 of the second embodiment shown in FIG. 2 includes the solar cell sheet 12, the organic EL sheet 16, and the light control unit 14 in this order from the sunlight receiving side.
  • the light transmitted through the solar cell sheet 12 is supplied to the transmitted light environment adjustment region through the organic EL sheet 16.
  • the organic EL sheet 16 emits light by applying energy.
  • the light control part 14 by adjusting both the sunlight which permeate
  • solar cell sheet that transmits at least part of sunlight If the solar cell sheet 12 used for the thin film solar cells 10 and 20 of this embodiment is a solar cell sheet which permeate
  • a solar cell sheet that transmits at least part of sunlight for example, an organic thin film solar cell sheet using an organic semiconductor, a dye-sensitized solar cell, a perovskite solar cell, an organic-inorganic hybrid solar cell, a tandem solar cell, Examples thereof include a CuO type solar cell.
  • the solar cell sheet may be an inorganic solar cell sheet using a silicon type, a compound semiconductor, or the like.
  • an organic thin film solar cell sheet is preferable from the viewpoint that it has flexibility and can be manufactured by coating, so that the manufacturing cost is low and it is advantageous for enlargement, and a transmission type using an organic semiconductor A solar cell sheet or the like is more preferable. Both the light transmission and absorption wavelengths of the organic thin film solar cell sheet can be appropriately set by selecting the material.
  • the solar cell sheet means that “at least a part of sunlight is transmitted” means that the solar cell sheet transmits at least a part of the total light of sunlight and receives the solar cell sheet. It means to transmit to the side opposite to the side. At least a part of sunlight is, for example, the amount of light of all light in the visible light region, the ultraviolet light region, the infrared light region, or the total light of sunlight. Refers to at least part of the light.
  • the solar cell sheet has selective light transmission, in other words, can selectively transmit light having a specific wavelength suitable for the light environment adjustment region.
  • the selective light transmittance of the solar cell sheet has a wavelength in the visible light region (400 nm to 700 nm) useful for plant growth. It is preferable that it has the characteristic of transmitting light.
  • the solar cell sheet transmits a part of the light hitting the light receiving surface, and the rest is scattered or absorbed by the solar cell sheet and used for power generation. By selecting a material used for the solar cell sheet, the wavelength of specific light is selectively transmitted or absorbed, so that the amount of light to be transmitted and the conversion efficiency can be adjusted.
  • the solar cell sheet has selective light transmittance.
  • the thin film solar cell of the present disclosure itself also has selective light transmittance. It goes without saying that light having at least one of a preferable light amount and a preferable wavelength can be selectively made to reach the light environment adjustment region on the side opposite to the side.
  • the transmittance when the solar cell sheet transmits at least part of sunlight is not particularly limited, but the transmittance of the thin film solar cell with respect to incident light is preferably 10% or more, and is 30% or more. Is more preferable.
  • the transmittance is obtained by measuring the spectral irradiance in a predetermined wavelength region with respect to the transmitted light on the side opposite to the light-receiving side of the thin-film solar cell with a spectral radiometer, and the spectral irradiance of incident light (sunlight) It can be calculated by measuring the ratio to.
  • a transmission wavelength of 400 nm to less than 500 nm (blue) and a transmission wavelength of 600 nm to less than 800 nm (red) contribute greatly to photosynthesis. It is preferable to transmit at least one of the light.
  • the light transmittance is large at least at any of a transmission wavelength of 400 nm to less than 500 nm (blue) and a transmission wavelength of 600 nm to less than 800 nm (red), and the transmission wavelength is 500 nm to less than 600 nm. It is preferable that (green) light is absorbed by the solar cell sheet and used for power generation.
  • a solar cell sheet as described above that is, having a good light transmittance in at least one of the blue region and the red region as a selective light transmittance
  • Electricity can be generated without impairing the growth effect.
  • the solar cell sheet has selective light transmission, for example, by absorbing ultraviolet rays harmful to certain types of animals and plants to generate power, the arrival of ultraviolet rays to the light environment adjustment region is suppressed, and the light environment adjustment region
  • the light environment in can be made more suitable for animals and plants.
  • the thickness of the solar cell sheet 12 is not particularly limited as long as it can transmit at least part of sunlight.
  • a sheet having a thickness corresponding to the purpose can be selected from 100 ⁇ m to 500 ⁇ m sheets.
  • a commercial item can be used for the solar cell sheet 12.
  • the organic solar cell in the Geoa solar power generation system of Mitsubishi Chemical Corporation etc. is mentioned.
  • the thin film solar cells 10 and 20 have an organic EL sheet 16.
  • the organic EL sheet 16 is not particularly limited as long as it is a sheet that can transmit at least part of sunlight, and a known organic EL sheet can be appropriately selected and used.
  • the organic EL sheet 16 is preferably a flexible sheet.
  • the phrase “can transmit at least part of sunlight” means the same as described in the above-described solar cell sheet, and the organic EL sheet is at least one of the light transmitted by the solar cell sheet. It is preferable that the part can be transmitted.
  • the organic EL sheet 16 may be a double-sided emission type or a single-sided emission type. Among these, the single-sided emission type is preferable from the viewpoint that the emitted light directly reaches the light environment adjustment region and is used efficiently.
  • the organic EL sheet 16 may be integrally laminated on the thin film solar cell 10 or 20.
  • the electric power applied to the light emission of the organic EL sheet 16 may be supplied from an external power source, or the electric power generated by the solar cell sheet 12 may be stored as the power source.
  • the power generation energy by the solar cell sheet 12 as at least a part of the light emission energy of the organic EL sheet 16, the running cost of the thin film solar cell of this embodiment can be further reduced, which is preferable.
  • the organic EL sheet examples include an organic EL sheet having a light emitting layer or a plurality of organic layers including a light emitting layer between a pair of electrodes.
  • the emission color can be changed by mixing various emission dopants in the emission layer.
  • seat 16 which light-emits the light of the wavelength range which contributes to plant growth, for example can be produced.
  • the organic EL sheet 16 is surface emitting, unlike a point light source such as a light emitting diode (LED) light source, the organic EL sheet 16 has a feature that light unevenness is difficult to occur, and can prevent plant growth unevenness due to light unevenness. There is also an advantage of low power consumption.
  • the transmissive organic EL sheet used in the present embodiment does not emit light, it is preferable that sunlight can be transmitted and sunlight necessary for plants can be supplied.
  • organic EL sheets include, for example, N, N′-dinaphthyl-N, N′-diphenylbenzidine on a polyethylene naphthalate (PEN) film with a transparent electrode (indium tin oxide: ITO).
  • Visible light transmission type having ( ⁇ -NPD) as a hole transporting layer, tris (8-hydroxyquinolinato) aluminum (Alq3) as an electron transporting light emitting layer, and using Ga—Zn—O (GZO) as a transparent electrode as an upper electrode Organic EL sheet.
  • the thin film solar cells 10 and 20 of the embodiment include a light control unit 14.
  • a light control unit 14 As long as the light control part 14 can adjust the transmitted light amount of sunlight, there is no restriction
  • the light control unit 14 for example, a sheet of a chromic material that changes color according to the amount of received light, a liquid crystal film, a blind that can be opened and closed, a removable cloth that has a light shielding property, and a member having a liquid flow path
  • examples include, but are not limited to, a member that controls light transmittance by supplying a translucent or light-shielding liquid to the flow path.
  • the light control section 16 includes a chromic material.
  • a chromic material a well-known chromic material, for example, a photochromic material, a gas chromic material, an electrochromic material, etc. are mentioned preferably.
  • a commercially available light control device can also be employed as the light control unit as it is.
  • the thin film solar cell of the embodiment may further include an arbitrary member in addition to the solar cell sheet, the organic EL sheet, and the light control unit.
  • Optional members include, for example, a wavelength conversion unit that converts at least part of sunlight into light having a wavelength that is suitable for plant photosynthesis or suppresses photosynthesis, and reinforcement for improving the physical strength of the thin-film solar cell. Examples thereof include a sheet, an adhesive layer that improves the adhesion between adjacent sheets or members, a sealing material that suppresses moisture permeation into the solar cell, oxygen permeation, and the like, and a protective sheet.
  • the thin-film solar cell of the embodiment preferably further includes a wavelength conversion unit that converts the wavelength of light (transmitted light) incident via the solar cell sheet on the side opposite to the sunlight incident side.
  • the thin-film solar cell is provided with a wavelength conversion unit to reinforce light in a wavelength range effective for photosynthesis of plants absorbed by the solar cell sheet or organic EL sheet, or to absorb ultraviolet rays harmful to animals and plants. The amount reaching the environmental adjustment area can be suppressed.
  • the wavelength conversion unit absorbs harmful ultraviolet light or blue light in the sunlight, converts it into useful visible light, and emits light in the wavelength region useful for plant photosynthesis as fluorescence.
  • a fluorescent radioactive net described in Japanese Patent No. 5505630 or a fluorescent radioactive sheet is preferably exemplified.
  • the fluorescent radiation net or the fluorescent radiation sheet can attenuate ultraviolet rays having a wavelength range of 250 to 320 nm.
  • Each of the fluorescent radiation net or the fluorescent radiation sheet contains a thermoplastic resin capable of forming a net or a sheet and a fluorescent dye such as a fluorescent dye or a fluorescent pigment.
  • fluorescent dyes include perylene dyes, pyrene dyes, xanthene dyes, thioxanthene dyes, coumarin dyes, and the like. Only 1 type of fluorescent dye may be used and it may use 2 or more types together according to the objective.
  • the thin-film solar cell 10 of the present embodiment can further include a light amount measuring unit that measures the amount of transmitted light that is incident on the solar cell sheet 12 and transmitted through the solar cell sheet 12.
  • the light quantity measuring means include an illuminometer used for measuring the light environment for photosynthesis of plants, a photon sensor having sensitivity in the photosynthesis effective wavelength region, and the like. By having such a light quantity measuring means, it is possible to design the organic EL sheet 16 to emit light when the quantity of transmitted light does not reach a predetermined amount.
  • FIG. 3 is a schematic sectional drawing which shows 3rd Embodiment of a thin film solar cell provided with a wavelength conversion part.
  • a thin film solar cell 30 shown in FIG. 3 has a configuration in which the thin film solar cell 10 shown in FIG.
  • the thin-film solar cell 30 shown in FIG. 3 includes a solar cell sheet 12, a light control unit 14, an organic EL sheet 16, and a wavelength conversion unit 18 in this order from the light receiving side.
  • light in a wavelength band useful for photosynthesis of plants out of sunlight passes through the thin film solar cell 30 and reaches the plant. .
  • Part of light in a wavelength band that is not useful for photosynthesis is used for power generation in the solar cell sheet 12.
  • a part of light in a wavelength band that is not useful for photosynthesis reaches the wavelength conversion unit 18, and is converted into light of a desired wavelength, for example, light in a wavelength band necessary for photosynthesis, by the wavelength conversion unit, to the plant. Irradiated to reinforce light in a wavelength band necessary for photosynthesis.
  • the thin film solar cell 30 of the third embodiment when sunlight is not sufficiently irradiated at night, rainy weather, cloudy weather, etc., power is generated by the solar cell sheet 12 and supplied from the stored power or an external power source. When the organic EL sheet 16 emits light using the electric power to be generated, the amount of light necessary for the photosynthesis of the plant can be ensured.
  • the configuration of the thin-film solar cell having the wavelength conversion unit 18 is not limited to the mode illustrated in FIG. 3.
  • the solar cell sheet 12, the light control unit 14, the wavelength conversion unit 18, and the organic EL sheet 16 are arranged from the light receiving side.
  • the aspect provided with the solar cell sheet 12, the organic EL sheet 16, the wavelength conversion part 18, and the light control part 14 in this order may be sufficient.
  • the configuration of the thin-film solar cell 30 illustrated in FIG. 3 is preferable.
  • control of sunlight permeability, power generation by a solar cell sheet, light irradiation by an organic EL sheet, and in a preferred aspect, further a necessary wavelength by a wavelength conversion unit By combining the band light reinforcement, the target light environment can be maintained for a long time. Moreover, since the light environment can be adjusted as desired, its application range is wide.
  • FIG. 4 is a schematic diagram showing a usage mode and light state of the thin-film solar cell 30 when the amount of sunlight is large, such as during daytime when the weather is good in midsummer.
  • the light is represented by arrows or rectangles with the signs (a) to (f), and the area of the area partitioned by the arrows or rectangles schematically indicates the amount of light.
  • the region where the plant is schematically described on the side opposite to the light receiving side of the thin-film solar cell 30 corresponds to the light environment adjustment region shown in FIG. In FIG.
  • the area (a) indicates sunlight that contributes to the growth of the plant among the irradiation light from the sun, and the area indicated by (b) contributes to the growth of the plant dimmed by the dimming unit 14.
  • region shown by (c) shows the sunlight which is absorbed by the solar cell sheet 12 with a part of sunlight which does not contribute so much to plant growth, and is used for electric power generation.
  • the area shown by (d) shows a part of sunlight that does not contribute much to the growth of the plant, and (e) shows that the light shown by (d) is attenuated by the dimming unit 14 and is fluorescent in the wavelength conversion unit 18.
  • the light absorbed by the pigment is shown, and (f) shows the light that is wavelength-converted via the wavelength converter 18 and greatly contributes to plant photosynthesis.
  • Part (d) of the light in the wavelength region that does not contribute much to the photosynthesis of plants is light (e) that is attenuated by the light control unit 14 and absorbed by the wavelength conversion unit 18. The wavelength is converted, and the plant is irradiated as light (f) that greatly contributes to the photosynthesis of the plant. As shown in FIG. 4, when the light environment is suitable for plant growth, the organic EL sheet 16 does not emit light.
  • FIG. 5 is a schematic diagram showing a usage mode of the thin-film solar cell 30 and a light state when the amount of sunlight is moderate during a sunny day.
  • (a), (c), (d), and (f) indicate the same light as shown in FIG.
  • the sunlight (a) that contributes to the growth of the plant passes through the light control unit 14 and the transparent organic EL sheet 16, and is irradiated to the plant in an amount sufficient for growing the plant.
  • Light (c) in the wavelength region that does not contribute much to the photosynthesis of plants is absorbed by the solar cell sheet 12 and used for power generation.
  • a part (d) of the light in the wavelength region that does not contribute much to the photosynthesis of the plant is converted into light (f) having a wavelength that contributes to the photosynthesis of the plant via the wavelength conversion unit 18 and irradiated to the plant.
  • FIG. 6 is a schematic diagram illustrating a usage mode and a light state when adjusting the amount of light irradiated to the plant by the light control unit 14 of the thin-film solar cell 30.
  • (a) and (b) show the same light as shown in FIG.
  • the light control unit 14 shields sunlight (a) from light and light through the light control unit 14 and the transparent organic EL sheet 16 in a predetermined time zone in the morning and evening.
  • a short day treatment for controlling the irradiation time of sunlight can be performed to obtain a desired sunshine time.
  • light (c) in a wavelength region that is not significantly involved in plant photosynthesis is absorbed in the solar cell sheet 12 and used for power generation.
  • FIG. 7 is a schematic diagram showing a usage mode and light state of the thin-film solar cell 30 when sunlight is not irradiated, such as at night.
  • (g) indicates light emitted from the organic EL sheet 16.
  • light (g) supplied from the organic EL sheet 16 is irradiated to the plant as needed even at night when sunlight cannot be obtained, or in the winter morning or evening when the sunshine time is short.
  • Irradiation of light (g) useful for plant growth to the plant can be continued for an arbitrary time. By applying this method, plant growth can be promoted by irradiating a certain amount of light for a long time. It is also possible to irradiate a certain amount of light continuously at a necessary time during the day.
  • FIG. 8 is a schematic view showing a use mode of the thin-film solar cell 30 and a light state during a rainy or cloudy day.
  • sunlight (a) that contributes to the growth of plants is radiated slightly. Since the amount of received sunlight (a) that contributes to the growth of the plant is small, the light control unit 14 does not block the light, and the received sunlight (a) passes through the light control unit 14 and the transparent organic EL sheet 16. The plant is irradiated.
  • Light (c) in a wavelength region that does not contribute much to plant photosynthesis in sunlight is absorbed by the solar cell sheet 12 and used for power generation.
  • the plant can be used throughout the day, regardless of the season, regardless of the weather such as fine weather, cloudy weather, and rainy weather. It can be seen that a light environment suitable for growing can be maintained.
  • a dimming function that operates a dimming unit to block light when there is a large amount of solar radiation from morning to evening, and an amount of solar radiation in the daytime
  • light of the desired illuminance is applied to the crop every day for a certain period of time, regardless of fluctuations in the sunshine hours depending on the season, in plant factories and plastic houses using sunlight.
  • the energy required for light irradiation of an LED light source or the like is 100% electric energy supplied from the outside.
  • sunlight can be used as it is, and furthermore, power can be generated using light in a wavelength band that does not contribute to the cultivation of agricultural products. Cost can be reduced. Since the thin-film solar cell of the present embodiment has a dimming unit, the dimming function effectively blocks midsummer excessive light and effectively suppresses undesired rises in the temperature in the greenhouse, light damage to crops, and the like. be able to.
  • the thin film solar cell of this embodiment When using the thin film solar cell of this embodiment in a plant growing factory, a greenhouse, etc., it is not necessary to use the thin film solar cell for all of the facilities, and the thin film solar cell is applied to at least a part of the sunlight receiving surface. Even if it only does, there exists an effect of this indication. On the other hand, since the thin film solar cell of this indication can be used for the whole area
  • the growth environment can be controlled to a light environment suitable for animal growth.
  • a suitable light environment is controlled by applying the thin film solar cell of the present disclosure when used in outer space, for example, when a human lives in a space colony.
  • the thin film solar cell of the present disclosure will be described in detail with reference to examples, but the thin film solar cell of the present disclosure is not limited to the examples shown below.
  • Example 1 A thin-film solar cell 1 having a layer configuration shown in FIG. 1 including a solar cell sheet, a light control unit, and an organic EL sheet in this order was produced from the sunlight receiving side. Details of each member are as follows.
  • Solar cell sheet (Organic thin film solar cell sheet) Power Plastic, Medium Red: Konarka Inc.
  • Light control part Light control film (LCF-1103DHA, Hitachi Chemical Co., Ltd.)
  • Organic EL sheet An organic sheet having ⁇ -NPD as a hole transport layer, Alq3 as an electron transporting light emitting layer, and GZO as an upper transparent electrode on a PEN film with a transparent electrode (ITO)
  • the light transmittance of the obtained thin film solar cell 1 was measured and evaluated as the illuminance of the light transmitted through the thin film solar cell 1 with a spectroradiometer (portable spectroradiometer MS-720, manufactured by Eihiro Seiki Co., Ltd.). .
  • the result is shown in the graph of FIG.
  • FIG. 9 it was confirmed that the illuminance in the vicinity of wavelengths 450 nm and 650 nm was high, the light transmittance was good, and the light transmittance in the red wavelength band particularly suitable for photosynthesis was excellent.
  • the power generation characteristics of the obtained thin-film solar cell 1 were measured and evaluated using a DC voltage / current source monitor (6241A: ADMT) and a solar simulator (System House Sunrise: automatic measurement software GP-IB library). The result is shown in the graph of FIG. FIG. 10 shows the current-voltage characteristics of the thin-film solar cell 1 measured under irradiation with actual sunlight, similar to the measurement of the light transmission in FIG. Table 1 below shows the characteristics of the thin-film solar cell 1 measured under actual sunlight irradiation as in FIG.
  • the light emission characteristics of the organic EL sheet were evaluated by the following methods.
  • the measuring device used for the evaluation of the light emission characteristics is an ADMT 6241A as a voltage source and an ammeter, and the luminance meter is Konica Minolta Sensing LS-100.
  • System House Sunrise W32-R6243IVL3-R was used as measurement software.
  • the luminance-voltage characteristics of the thin film solar cell 1 are shown in Table 2. From the results in Table 2, it can be seen that the thin-film solar cell 1 can emit light from the organic EL sheet by using the organic thin-film solar cell described in Table 1. It can also be seen that the organic EL sheet has light emission characteristics sufficient to make up for the shortage of sunlight useful for growing plants at night, rainy weather, and cloudy weather.
  • a comparative model greenhouse having the same size and a transparent vinyl chloride sheet disposed on the top surface was prepared.
  • a model greenhouse and a comparative model greenhouse were placed outdoors, and under the same conditions, sanche, a leafy vegetable, was cultivated inside. After 4 weeks, the growth state of Sanche was compared.
  • the model greenhouse in which the thin-film solar cell 1 of Example 1 was installed on the top surface it was confirmed that the growth of the plant was smoother than when the comparative model greenhouse was used.
  • Example 2 In the thin film solar cell 1 of Example 1 having the layer configuration shown in FIG. 1, the organic thin film solar cell sheet 12 is replaced with the solar cell sheet 12 having the following configuration, and further on the side opposite to the light receiving direction of the organic EL sheet 16.
  • the organic thin-film solar cell 2 of Example 2 having the wavelength conversion unit 18 having the layer configuration shown in FIG. 3 was produced in the same manner as Example 1 except that the following wavelength conversion unit 18 was provided.
  • Solar cell sheet Organic thin-film solar cell sheet (Bulk hetero in which transparent PEN film with ITO transparent electrode is mixed with poly (3-hexylthiophene) (P3HT) and [6,6] phenyl-C61-methylbutyrate (PCBM)
  • P3HT poly (3-hexylthiophene)
  • PCBM poly (3-hexylthiophene)
  • Wavelength conversion part fluorescent film made of polyethylene terephthalate (PET) resin containing 0.02% by mass of Lumogen Red 305 manufactured by BASF
  • the light transmittance of the obtained thin film solar cell 2 was evaluated in the same manner as the thin film solar cell 1 of Example 1. The result is shown in the graph of FIG. As is clear from FIG. 11, the illuminance in the vicinity of wavelengths 450 nm and 650 nm is large, the light transmittance is good, the light transmittance in the red wavelength band is particularly suitable for photosynthesis, and the red wavelength is higher than other wavelength ranges It was confirmed that the light transmittance of the band was larger. Moreover, in contrast with FIG. 11 and FIG. 9, it turns out that the amount of light irradiation of the wavelength band which contributes greatly to the photosynthesis of a plant improves more by providing a thin film solar cell further with a wavelength conversion part.
  • the thin film solar cell of the present embodiment can maintain a desired light environment regardless of the amount of received sunlight, so that it can maintain a desired light environment, such as a plant breeding factory, a greenhouse such as a greenhouse, a poultry house, a livestock house, an aquaculture pond, etc. It is suitable for application to animal breeding facilities.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)
  • Protection Of Plants (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A transmission type thin film solar cell (10) which comprises: a solar cell sheet (12) that transmits at least some of sunlight; a transmission type organic EL sheet (16); and a light control unit (14) that controls the transmission amount of the sunlight.

Description

透過型薄膜太陽電池Transmission type thin film solar cell
 本開示は、透過型薄膜太陽電池に関する。 The present disclosure relates to a transmissive thin film solar cell.
 自然エネルギーの利用として太陽光をエネルギー源とする太陽電池が注目されている。農業分野における太陽電池の活用技術としては、営農と太陽電池による太陽光発電とを両立する技術(いわゆるソーラーシェアリング)が検討されている。
 ソーラーシェアリングの一態様として、透光性のない太陽電池(シリコン系太陽電池パネル)を農地に設置すること等が挙げられる。このとき、発電量の確保を考慮すれば、太陽電池パネルの設置面積は大きくすることが好ましい。しかし、太陽電池パネルにより農地に日陰ができるため、農作物への悪影響が懸念される。このため、現状では、農作物の収穫量の減少を抑えるために、ある程度の空間を担保して太陽光パネルが設置されることとなる。農作物の生育に適した日照量を確保するために必要な太陽電池パネルの設置面積は、農地全体の30%程度と試算されており、現状では、発電と農業の両立において農地が十分有効に利用されているとは言い難い。
A solar cell using sunlight as an energy source has attracted attention as a utilization of natural energy. As a technology for utilizing solar cells in the agricultural field, a technology that balances farming with solar power generation using solar cells (so-called solar sharing) is being studied.
As one mode of solar sharing, there is a method of installing a non-translucent solar cell (silicon-based solar cell panel) on farmland. At this time, it is preferable to increase the installation area of the solar cell panel in view of securing the amount of power generation. However, there is concern about adverse effects on agricultural products because the solar panels can shade the farmland. For this reason, at present, in order to suppress a decrease in crop yield, solar panels are installed with a certain amount of space secured. The installation area of solar panels necessary to secure the amount of sunshine suitable for the growth of agricultural crops is estimated to be about 30% of the entire farmland, and at present, farmland is used effectively enough for both power generation and agriculture. It is hard to say that it is.
 従来の太陽電池を農地に利用する技術としては、例えば、農耕地の一部に太陽電池パネルを設置し、該太陽電池パネルで得られる電力で補助光源を駆動し、農地の他部で栽培する植物に、太陽光とともに前記補助光源から発する補助光を照射して生育させる植物栽培方法が提案されている(特開2011-200163号公報参照)。 As a technique for using conventional solar cells for farmland, for example, a solar cell panel is installed in a part of farmland, an auxiliary light source is driven by the electric power obtained by the solar cell panel, and it is cultivated in other parts of the farmland. There has been proposed a plant cultivation method in which a plant is irradiated with auxiliary light emitted from the auxiliary light source together with sunlight (see JP 2011-200163 A).
 また、太陽光放射のない場合、補助の照射光が使用される温室が提案されている。すなわち、第1波長領域では実質的に透光性である薄膜太陽電池モジュールであって、太陽放射を受け取り、第1波長領域とは異なる第2波長領域中の太陽放射を電気エネルギーへ変換するように構成された光電層と、光電層により透過された第2波長領域の放射を選択的に反射するように、光電層に対向して配置された選択的反射層と、第2波長領域における放射を吸収して、電気エネルギーへ変換する追加の光電層とを備え、選択的反射層が光電層と追加の光電層との間に配置され、第1波長領域が350~500nmの第1の波長バンドと600~700nmの第2の波長バンドとを含み、第2波長領域が500~600nmの波長範囲を含む、前記薄膜太陽電池モジュールが開示されている(特表2014-522101号公報参照)。 In addition, a greenhouse has been proposed in which auxiliary irradiation light is used in the absence of solar radiation. That is, a thin-film solar cell module that is substantially translucent in the first wavelength region, receives solar radiation, and converts solar radiation in a second wavelength region different from the first wavelength region into electrical energy. And a selective reflection layer disposed opposite the photoelectric layer so as to selectively reflect radiation in the second wavelength region transmitted by the photoelectric layer, and radiation in the second wavelength region. An additional photoelectric layer that absorbs light and converts it into electrical energy, a selective reflection layer is disposed between the photoelectric layer and the additional photoelectric layer, and a first wavelength region has a first wavelength of 350 to 500 nm The thin film solar cell module including a band and a second wavelength band of 600 to 700 nm and a second wavelength region including a wavelength range of 500 to 600 nm is disclosed (refer to Japanese Patent Application Publication No. 2014-522101). .
 また、太陽光などの外光の一部、具体的には植物の光合成への寄与が小さい波長の光を吸収し光合成への寄与の大きい波長の光に変換する蛍光体と、蛍光体から放射された光の一部を誘導する蛍光導光体と、蛍光導光体を受光する太陽電池素子とを有する採光部を備える植物栽培装置が提案されている(国際公開WO2012/141091パンフレット)。 Also, a part of external light such as sunlight, specifically, a phosphor that absorbs light with a wavelength that has a small contribution to photosynthesis of plants and converts it into light with a wavelength that has a large contribution to photosynthesis, and radiation from the phosphor. There has been proposed a plant cultivation apparatus including a daylighting unit having a fluorescent light guide that guides a part of the emitted light and a solar cell element that receives the fluorescent light guide (International Publication WO2012 / 141091 pamphlet).
 しかし、特開2011-200163号公報に記載の技術では、農地を太陽電池の設置と作物栽培とでシェアしているため太陽電池を設置した部分では作物栽培ができず、発電量の最大化を追求した場合、農作物の生育に必要な日照量を確保できず、農地としての機能が損なわれるおそれがある。
 一方、特表2014-522101号公報に記載の技術では、透光性の薄膜太陽電池モジュールを温室に使用し、太陽光の波長を発電と光合成とに分けて利用することが開示されている。また、特表2014-522101号公報では、500nm~600nmの波長を選択的に反射し、電気エネルギーに変換しているが、光合成に寄与する波長の光に変換することの提案はなされていない。
However, in the technique described in Japanese Patent Application Laid-Open No. 2011-200163, the farmland is shared between the installation of solar cells and the cultivation of crops. When pursued, the amount of sunlight necessary for the growth of agricultural products cannot be secured, and the function as farmland may be impaired.
On the other hand, in the technique described in Japanese Patent Publication No. 2014-522101, it is disclosed that a light-transmitting thin film solar cell module is used in a greenhouse and the wavelength of sunlight is divided into power generation and photosynthesis. In Japanese Patent Laid-Open No. 2014-522101, although a wavelength of 500 nm to 600 nm is selectively reflected and converted into electric energy, there is no proposal to convert it into light having a wavelength that contributes to photosynthesis.
 本発明の一実施形態の目的は、調光機能と透過型有機ELシートとを有し、太陽光の強度に拘わらず、太陽電池の下の光環境を所望の状態に制御することができる透過型薄膜太陽電池を提供することにある。 An object of an embodiment of the present invention is a transmission that has a dimming function and a transmissive organic EL sheet, and can control the light environment under the solar cell to a desired state regardless of the intensity of sunlight. It is to provide a type thin film solar cell.
 課題を解決するための手段は、以下の実施形態を含む。
 <1> 太陽光の少なくとも一部を透過する太陽電池シート、透過型有機EL(エレクトロルミネッセンス)シート、および、太陽光の透過量を調節する調光部、を有する透過型薄膜太陽電池。
 <2> 太陽光の入射側から、前記太陽電池シート、前記調光部、および前記透過型有機ELシートを、この順に有する<1>に記載の透過型薄膜太陽電池。
 <3> 太陽光の入射側から、前記太陽電池シート、前記透過型有機ELシート、および前記調光部を、この順に有する<1>に記載の透過型薄膜太陽電池。
Means for solving the problems include the following embodiments.
<1> A transmissive thin-film solar cell having a solar cell sheet that transmits at least part of sunlight, a transmissive organic EL (electroluminescence) sheet, and a light control unit that adjusts the amount of transmitted sunlight.
<2> The transmissive thin-film solar cell according to <1>, including the solar cell sheet, the light control unit, and the transmissive organic EL sheet in this order from the sunlight incident side.
<3> The transmissive thin-film solar cell according to <1>, including the solar cell sheet, the transmissive organic EL sheet, and the light control unit in this order from the sunlight incident side.
 <4> 前記太陽電池シートが、選択的光透過性を有する<1>~<3>のいずれか1つに記載の透過型薄膜太陽電池。
 <5>前記選択的光透過性は可視光領域の光を透過する特性である<4>に記載の透過型薄膜太陽電池。
 <6> 前記太陽電池シートが、有機薄膜太陽電池シートである<1>~<5>のいずれか1つに記載の透過型薄膜太陽電池。
<4> The transmissive thin film solar cell according to any one of <1> to <3>, wherein the solar cell sheet has selective light transmittance.
<5> The transmissive thin film solar cell according to <4>, wherein the selective light transmittance is a characteristic of transmitting light in a visible light region.
<6> The transmissive thin-film solar cell according to any one of <1> to <5>, wherein the solar cell sheet is an organic thin-film solar cell sheet.
 <7> 前記太陽電池シートの太陽光の入射側とは反対側に、前記太陽電池シートを介して入射した光の波長を変換する波長変換部をさらに有する<1>~<6>のいずれか1項に記載の透過型薄膜太陽電池。 <7> Any one of <1> to <6>, further including a wavelength conversion unit that converts a wavelength of light incident through the solar cell sheet on a side opposite to a sunlight incident side of the solar cell sheet 2. A transmission type thin film solar cell according to item 1.
 <8> さらに、前記太陽電池シートを透過した透過光の光量を測定する光量測定手段を有し、前記光量測定手段により測定した透過光の光量が所定の光量に達しない場合に、前記透過型有機ELシートにエネルギーを付与して発光させる<1>~<7>のいずれか1つに記載の透過型薄膜太陽電池。 <8> Further, a light amount measuring unit that measures the amount of transmitted light that has passed through the solar cell sheet is provided, and the transmission type is measured when the amount of transmitted light measured by the light amount measuring unit does not reach a predetermined amount. The transmission type thin film solar cell according to any one of <1> to <7>, in which energy is applied to the organic EL sheet to emit light.
 本発明の一実施形態によれば、調光機能を有し、太陽光の受光量に係わらず、所望の光環境を維持することができる透過型薄膜太陽電池を提供することができる。 According to one embodiment of the present invention, it is possible to provide a transmissive thin-film solar cell that has a dimming function and can maintain a desired light environment regardless of the amount of received sunlight.
本開示の透過型薄膜太陽電池の一例である第1の実施形態の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of 1st Embodiment which is an example of the transmissive | pervious thin film solar cell of this indication. 本開示の透過型薄膜太陽電池の別の例である第2の実施形態の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of 2nd Embodiment which is another example of the transmissive | pervious thin film solar cell of this indication. 波長変換部を更に有する本開示の透過型薄膜太陽電池の一例である第3の実施形態構成を示す概略断面図である。It is a schematic sectional drawing which shows 3rd Embodiment structure which is an example of the transmission type thin film solar cell of this indication which further has a wavelength conversion part. 日中の太陽光の光量が大きい場合における薄膜太陽電池30の使用態様および光の状態を示す概略図である。It is the schematic which shows the usage condition of the thin film solar cell 30, and the state of light in case the light quantity of sunlight in the daytime is large. 日中の太陽光の光量が適度な場合における薄膜太陽電池30の使用態様および光の状態を示す概略図である。It is the schematic which shows the usage condition and the state of light of the thin film solar cell 30 in case the light quantity of sunlight in the daytime is moderate. 好天の日中、朝又は夕方に、必要に応じて太陽光の透過光量を制御する場合における薄膜太陽電池30の使用態様および光の状態を示す概略図である。It is the schematic which shows the use aspect of the thin film solar cell 30, and the state of light in the case of controlling the transmitted light quantity of sunlight as needed in the daytime of the fine weather, morning or evening. 夜間、太陽光が照射されない場合における薄膜太陽電池30の使用態様および光の状態を示す概略図である。It is the schematic which shows the usage condition and light state of the thin film solar cell 30 when sunlight is not irradiated at night. 雨天または曇天時、太陽光の光量が比較的小さい場合における薄膜太陽電池30の使用態様および光の状態を示す概略図である。It is the schematic which shows the usage condition and light state of the thin film solar cell 30 when the light quantity of sunlight is comparatively small at the time of rainy weather or cloudy weather. 実施例1の透過型薄膜太陽電池1の透過光の分光放射照度を示すグラフである。3 is a graph showing the spectral irradiance of transmitted light of the transmissive thin film solar cell 1 of Example 1. FIG. 実施例1の透過型薄膜太陽電池1の、太陽光の照射下で測定した電流-電圧特性を示すグラフである。4 is a graph showing current-voltage characteristics of the transmission-type thin film solar cell 1 of Example 1 measured under sunlight irradiation. 波長変換部を有する実施例2の透過型薄膜太陽電池2の透過光の分光放射照度を示すグラフである。It is a graph which shows the spectral irradiance of the transmitted light of the transmission type thin film solar cell 2 of Example 2 which has a wavelength conversion part.
 以下、本発明の実施形態を詳細に説明する。
 なお、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
Hereinafter, embodiments of the present invention will be described in detail.
In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
 本開示の透過型薄膜太陽電池(以下、単に「薄膜太陽電池」と称することがある)は、太陽光の少なくとも一部を透過する太陽電池シート(以下、単に「太陽電池シート」と称することがある)、透過型有機ELシート(以下、単に「有機ELシート」と称することがある)、および、太陽光の透過量を調節する調光部(以下、単に「調光部」と称することがある)を有する。薄膜太陽電池は、太陽電池シート、有機ELシートおよび調光部を有し、必要に応じて、さらに他の部材を有してもよい。
 なお、本明細書に説明する薄膜太陽電池の各実施形態において、薄膜太陽電池を構成する部材を「この順に有する」とは、当該部材を各実施形態における所定の構成順に有することを意味し、それ以外の任意の部材を有することを妨げない。
The transmission-type thin film solar cell of the present disclosure (hereinafter, simply referred to as “thin film solar cell”) may be referred to as a solar cell sheet that transmits at least part of sunlight (hereinafter, simply referred to as “solar cell sheet”). ), A transmission type organic EL sheet (hereinafter, sometimes simply referred to as “organic EL sheet”), and a light control unit (hereinafter simply referred to as “light control unit”) that adjusts the amount of transmitted sunlight. Have). A thin film solar cell has a solar cell sheet, an organic EL sheet, and a light control part, and may have another member as needed.
In each embodiment of the thin-film solar cell described in this specification, “having members in this order” constituting the thin-film solar cell means having the members in the predetermined configuration order in each embodiment, It does not prevent having any other members.
 以下、薄膜太陽電池の構成について図を参照して説明する。
 図1は、第1の実施形態の薄膜太陽電池10の層構成を示す概略断面図である。
 本実施形態の薄膜太陽電池10は、太陽光の受光側から、太陽電池シート12、調光部14、および有機ELシート16をこの順に有する。なお、太陽光の受光側を、図1に矢印で示す。
 薄膜太陽電池10の受光側とは反対側に、光環境が調整又は制御される領域がある(以下、光環境が調整又は制御される領域を、「光環境調整領域」と称することがある。なお、図1おいて、薄膜太陽電池10の受光側とは反対側における(A)で示される領域が、光環境調整領域の一例である。図示はされないが、図2、図3においても、薄膜太陽電池20、30の受光側とは反対側の領域が、図1において(A)で示される領域と同様の光環境調整領域となる。
 光環境調整領域としては、例えば、植物を育成するビニールハウス、太陽光利用型植物工場、家禽、豚などの動物を育成する鶏舎、畜舎、魚類の養殖場などの、薄膜太陽電池の受光側とは反対側における領域が挙げられる。
Hereinafter, the configuration of the thin film solar cell will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing the layer configuration of the thin-film solar cell 10 of the first embodiment.
The thin film solar cell 10 of this embodiment has the solar cell sheet 12, the light control part 14, and the organic EL sheet 16 in this order from the sunlight receiving side. The sunlight receiving side is indicated by an arrow in FIG.
There is a region where the light environment is adjusted or controlled on the side opposite to the light receiving side of the thin-film solar cell 10 (hereinafter, the region where the light environment is adjusted or controlled may be referred to as a “light environment adjusting region”). 1, the region indicated by (A) on the side opposite to the light receiving side of the thin-film solar cell 10 is an example of the light environment adjustment region, although not illustrated, in FIGS. The region opposite to the light receiving side of the thin-film solar cells 20 and 30 is an optical environment adjustment region similar to the region indicated by (A) in FIG.
Examples of the light environment adjustment area include a light-receiving side of a thin-film solar cell, such as a greenhouse that grows plants, a plant factory that uses sunlight, a poultry house, a livestock house that raises animals such as pigs, and a fish farm. Is the region on the opposite side.
 太陽電池シート12は、太陽光の少なくとも一部を透過するため、太陽電池シート12を透過した光(透過光)は調光部14に到達する。さらに、透過光は、調光部14を透過して有機ELシート16に到達し、さらに有機ELシート16を透過して光環境調整領域に到達する。調光部14は、光環境調整領域に到達する透過光の量を調節する。
 例えば、太陽光が強過ぎて、葉物野菜等が日焼けを起こすような光量であるときは、調光部14により太陽光の透過光を所望の光量まで低下させることができる。
 夜間、曇天時あるいは太陽光の光量を低下させる必要がない場合には、調光部14は光量調整を行なわず、受光した光をそのまま透過させる。
 調光部14に、後述するように、クロミック材料を用いる場合には、光量計などのセンサーを用いなくても、調光部14自体が、受光量に応じて変色し、光透過性を制御することができる。しかし、調光部14は、クロミック材料を用いた態様に限定されるものではない。
Since the solar cell sheet 12 transmits at least part of sunlight, the light (transmitted light) transmitted through the solar cell sheet 12 reaches the light control unit 14. Further, the transmitted light passes through the light control unit 14 and reaches the organic EL sheet 16, and further passes through the organic EL sheet 16 and reaches the light environment adjustment region. The light control unit 14 adjusts the amount of transmitted light that reaches the light environment adjustment region.
For example, when the sunlight is too strong and the leafy vegetables have a light quantity that causes sunburn, the light control unit 14 can reduce the transmitted light of the sunlight to a desired light quantity.
At night, in cloudy weather, or when there is no need to reduce the amount of sunlight, the light control unit 14 does not adjust the amount of light and transmits the received light as it is.
As will be described later, when a chromic material is used for the light control unit 14, the light control unit 14 itself changes color according to the amount of received light and controls light transmission without using a sensor such as a light meter. can do. However, the light control part 14 is not limited to the aspect using a chromic material.
 有機ELシート16は、エネルギーを付与されることで発光する。太陽光の光量が少ない場合には、有機ELシート16にエネルギーを付与して発光させ、植物などに必要な光量を供給する。有機ELシート16へ付与するエネルギーは、既述の太陽電池シート12で発電された電力を用いてもよく、外部電源より電力として供給されたエネルギーであってもよい。 The organic EL sheet 16 emits light when given energy. When the amount of sunlight is small, energy is applied to the organic EL sheet 16 to emit light, and a necessary amount of light is supplied to plants and the like. The energy applied to the organic EL sheet 16 may be the power generated by the solar cell sheet 12 described above, or may be energy supplied as power from an external power source.
 第1の実施形態の薄膜太陽電池10によれば、照射される太陽光の光量が多い場合には、太陽電池シート12による発電が効率よく行なわれ、調光部14が必要以上の太陽光透過を抑制するため、光環境調整領域には、設計値どおりの光量が到達する。他方、照射される太陽光の光量が少ない場合には、調光部14は太陽光の透過を抑制せず、かつ、有機ELシート16が発光して光環境調整領域に所望の波長の光を必要な光量で供給することができる。
 このため、本実施形態の薄膜太陽電池10を、例えば、ビニールハウスにおいて、屋根シートなどの樹脂シートとともに、あるいは屋根シートに代えて適用すると、ビニールハウス内に光環境調整領域ができ、天候に拘らず、光環境が所定の条件に制御され、植物の成長に好適な光量が供給される。
According to the thin film solar cell 10 of the first embodiment, when the amount of irradiated sunlight is large, power generation by the solar cell sheet 12 is efficiently performed, and the dimmer 14 transmits more sunlight than necessary. Therefore, the amount of light reaches the light environment adjustment region as designed. On the other hand, when the amount of irradiated sunlight is small, the light control unit 14 does not suppress the transmission of sunlight, and the organic EL sheet 16 emits light and emits light of a desired wavelength in the light environment adjustment region. It can be supplied with the required amount of light.
For this reason, when the thin film solar cell 10 of the present embodiment is applied together with a resin sheet such as a roof sheet or instead of a roof sheet in, for example, a greenhouse, an optical environment adjustment region is formed in the greenhouse, and it is related to the weather. First, the light environment is controlled to a predetermined condition, and a light quantity suitable for plant growth is supplied.
 本実施形態の薄膜太陽電池10には、さらに、太陽電池シート12に入射し、太陽電池シート12を透過した透過光の光量を測定する光量測定手段(不図示)を有していてもよい。光量測定手段として、植物の光合成にとっての光環境の測定に用いられる照度計、あるいは光合成有効波長領域に感度を有する光量子センサー等が好ましく使用される。かかる光量測定手段を有することで、透過光の光量が、例えば、植物の育成に必要な量に達していない場合に、有機ELシート16にエネルギーを付与して発光させるよう設計することができる。薄膜太陽電池が、光量測定手段と、光量測定手段により測定された結果を予め設定した値と比較及び判定を行う判定手段と、かかる判定手段による判定に従って有機ELシートへのエネルギー付与に反映させる反映手段と、波長変換素子とを備えることで、有機ELシート16の発光を制御することができ、光環境調整領域の光環境を容易かつ精密に制御できる。
 また、有機ELシート16を発光させるエネルギーに、太陽電池シート12により発電されたエネルギーを蓄電して、必要に応じて適用することで、好適な光環境を維持するに際しての省エネルギー効果も期待できる。
 なお、薄膜太陽電池の構成は、第1の実施形態に限定されない。
The thin-film solar cell 10 of the present embodiment may further include a light amount measuring unit (not shown) that measures the amount of transmitted light that is incident on the solar cell sheet 12 and transmitted through the solar cell sheet 12. As the light amount measuring means, an illuminometer used for measuring the light environment for photosynthesis of plants, a photon sensor having sensitivity in the photosynthesis effective wavelength region, or the like is preferably used. By having such light quantity measuring means, it is possible to design the organic EL sheet 16 to emit light when the quantity of transmitted light does not reach the amount necessary for plant growth, for example. The thin-film solar cell reflects the light amount measurement means, the determination means for comparing and determining the result measured by the light amount measurement means, and the energy application to the organic EL sheet according to the determination by the determination means. By providing the means and the wavelength conversion element, the light emission of the organic EL sheet 16 can be controlled, and the light environment in the light environment adjustment region can be controlled easily and precisely.
Moreover, the energy saving effect at the time of maintaining a suitable light environment can also be anticipated by storing the energy generated by the solar cell sheet 12 as the energy for causing the organic EL sheet 16 to emit light and applying it as necessary.
In addition, the structure of a thin film solar cell is not limited to 1st Embodiment.
 図2は、薄膜太陽電池の第2の実施形態を示す概略断面図である。図2に示す第2の実施形態の薄膜太陽電池20では、太陽光の受光側から、太陽電池シート12、有機ELシート16、および調光部14をこの順に有する。本実施形態では、太陽電池シート12を透過した光は、有機ELシート16を透過光環境調整領域に供給される。有機ELシート16は、供給される光量が不足した場合、エネルギーの付与により発光する。調光部14では、太陽電池シート12を透過した太陽光と、有機ELシート16にて発光した光の双方について、調整可能とすることで、光環境調整領域に到達する光量を好適に制御する。 FIG. 2 is a schematic cross-sectional view showing a second embodiment of the thin-film solar cell. The thin film solar cell 20 of the second embodiment shown in FIG. 2 includes the solar cell sheet 12, the organic EL sheet 16, and the light control unit 14 in this order from the sunlight receiving side. In this embodiment, the light transmitted through the solar cell sheet 12 is supplied to the transmitted light environment adjustment region through the organic EL sheet 16. When the amount of light supplied is insufficient, the organic EL sheet 16 emits light by applying energy. In the light control part 14, by adjusting both the sunlight which permeate | transmitted the solar cell sheet | seat 12, and the light light-emitted in the organic electroluminescent sheet | seat 16, it controls suitably the light quantity which reaches | attains an optical environment adjustment area | region. .
 以下、本開示の薄膜太陽電池が備え得る各部材について詳細に説明する。 Hereinafter, each member that can be provided in the thin film solar cell of the present disclosure will be described in detail.
(太陽光の少なくとも一部を透過する太陽電池シート:太陽電池シート)
 本実施形態の薄膜太陽電池10および20に用いられる太陽電池シート12は、太陽光の少なくとも一部を透過する太陽電池シートであれば特に制限はない。太陽光の少なくとも一部を透過する太陽電池シートとしては、例えば、有機半導体を用いた有機薄膜太陽電池シート、色素増感太陽電池、ペロブスカイト太陽電池、有機無機ハイブリッド型太陽電池、タンデム型太陽電池、CuO型太陽電池等が挙げられる。また、太陽電池シートは、シリコン型、化合物半導体等を用いた無機太陽電池シートであってもよい。
 太陽電池シートとしては、可撓性を有し、塗布で製造可能であるため製造コストが低く、大型化に有利であるという観点から、有機薄膜太陽電池シートが好ましく、有機半導体を用いた透過型太陽電池シート等がさらに好ましい。
 有機薄膜太陽電池シートの光透過および吸収波長は、いずれも材料の選択により適宜設定することができる。
 本明細書において、太陽電池シートが、「太陽光の少なくとも一部を透過する」とは、太陽電池シートが、太陽光の全光のうち、少なくとも一部を透過させて、太陽電池シートの受光側とは反対側へ透過させること意味する。
 太陽光の少なくとも一部とは、例えば、太陽光において、全光のうち、可視光領域、紫外光領域、赤外光領域の少なくともいずれかの波長の光、太陽光の全光のうち、光量の少なくとも一部の光などを指す。
(Solar cell sheet that transmits at least part of sunlight: solar cell sheet)
If the solar cell sheet 12 used for the thin film solar cells 10 and 20 of this embodiment is a solar cell sheet which permeate | transmits at least one part of sunlight, there will be no restriction | limiting in particular. As a solar cell sheet that transmits at least part of sunlight, for example, an organic thin film solar cell sheet using an organic semiconductor, a dye-sensitized solar cell, a perovskite solar cell, an organic-inorganic hybrid solar cell, a tandem solar cell, Examples thereof include a CuO type solar cell. The solar cell sheet may be an inorganic solar cell sheet using a silicon type, a compound semiconductor, or the like.
As a solar cell sheet, an organic thin film solar cell sheet is preferable from the viewpoint that it has flexibility and can be manufactured by coating, so that the manufacturing cost is low and it is advantageous for enlargement, and a transmission type using an organic semiconductor A solar cell sheet or the like is more preferable.
Both the light transmission and absorption wavelengths of the organic thin film solar cell sheet can be appropriately set by selecting the material.
In this specification, the solar cell sheet means that “at least a part of sunlight is transmitted” means that the solar cell sheet transmits at least a part of the total light of sunlight and receives the solar cell sheet. It means to transmit to the side opposite to the side.
At least a part of sunlight is, for example, the amount of light of all light in the visible light region, the ultraviolet light region, the infrared light region, or the total light of sunlight. Refers to at least part of the light.
 太陽電池シートは、選択的光透過性を有すること、言い換えれば、光環境調整領域に好適な特定の波長の光を選択的に透過させ得ることが好ましい。
 例えば、光環境調整領域に置いて植物を栽培する場合には、上記のなかでも、太陽電池シートの選択的光透過性が、植物の成長に有用な可視光領域(400nm~700nm)の波長の光を透過する特性であることが好ましい。
 太陽電池シートは、受光面にあたる光の一部を透過し、残りは、散乱されたり、或いは、太陽電池シートに吸収されて発電に使用されたりする。
 太陽電池シートに用いられる材料を選択することにより、特定の光の波長を選択的に透過したり、吸収したりするため、透過させる光の量と変換効率を調整できる。
 本開示好ましい態様では、太陽電池シートが選択的光透過性を有するが、その場合には、本開示の薄膜太陽電池自体もまた、選択的光透過性を有することになり、薄膜太陽電池の受光側とは反対側の光環境調整領域に対し、選択的に好ましい光量及び好ましい波長の少なくともいずれかの光を到達させ得ることはいうまでもない。
It is preferable that the solar cell sheet has selective light transmission, in other words, can selectively transmit light having a specific wavelength suitable for the light environment adjustment region.
For example, when a plant is cultivated in the light environment adjustment region, among the above, the selective light transmittance of the solar cell sheet has a wavelength in the visible light region (400 nm to 700 nm) useful for plant growth. It is preferable that it has the characteristic of transmitting light.
The solar cell sheet transmits a part of the light hitting the light receiving surface, and the rest is scattered or absorbed by the solar cell sheet and used for power generation.
By selecting a material used for the solar cell sheet, the wavelength of specific light is selectively transmitted or absorbed, so that the amount of light to be transmitted and the conversion efficiency can be adjusted.
In a preferred embodiment of the present disclosure, the solar cell sheet has selective light transmittance. In this case, the thin film solar cell of the present disclosure itself also has selective light transmittance. It goes without saying that light having at least one of a preferable light amount and a preferable wavelength can be selectively made to reach the light environment adjustment region on the side opposite to the side.
 太陽電池シートが太陽光の少なくとも一部を透過する場合の、透過率は、特に限定されないが、薄膜太陽電池の入射光に対する透過率が10%以上であることが好ましく、30%以上であることがより好ましい。
 透過率は、例えば、薄膜太陽電池の受光側とは反対側の透過光について、予め定められた波長領域における分光放射照度を分光放射計にて測定し、入射光(太陽光)の分光放射照度に対する比率を測定することにより算出できる。
The transmittance when the solar cell sheet transmits at least part of sunlight is not particularly limited, but the transmittance of the thin film solar cell with respect to incident light is preferably 10% or more, and is 30% or more. Is more preferable.
For example, the transmittance is obtained by measuring the spectral irradiance in a predetermined wavelength region with respect to the transmitted light on the side opposite to the light-receiving side of the thin-film solar cell with a spectral radiometer, and the spectral irradiance of incident light (sunlight) It can be calculated by measuring the ratio to.
 太陽電池シート12の選択的光透過性の好ましい態様としては、例えば農業用途で植物栽培に用いる場合、光合成に大きく寄与する透過波長400nm以上500nm未満(青色)および透過波長600nm以上800nm未満(赤色)の少なくともいずれか一方の光を透過することが好ましい。可視光領域に吸収をもつ薄膜太陽電池であれば、透過波長400nm以上500nm未満(青色)および透過波長600nm以上800nm未満(赤色)の少なくともいずれかにおける光透過率が大きく、透過波長500nm以上600nm未満(緑色)の光が、太陽電池シートに吸収されて発電に利用されることが好ましい。 As a preferable aspect of the selective light transmittance of the solar cell sheet 12, for example, when used for plant cultivation in agricultural applications, a transmission wavelength of 400 nm to less than 500 nm (blue) and a transmission wavelength of 600 nm to less than 800 nm (red) contribute greatly to photosynthesis. It is preferable to transmit at least one of the light. In the case of a thin-film solar cell having absorption in the visible light region, the light transmittance is large at least at any of a transmission wavelength of 400 nm to less than 500 nm (blue) and a transmission wavelength of 600 nm to less than 800 nm (red), and the transmission wavelength is 500 nm to less than 600 nm. It is preferable that (green) light is absorbed by the solar cell sheet and used for power generation.
 既述の態様、即ち、選択的光透過性として青色領域及び赤色領域の少なくともいずれかの領域における良好な光透過性を有する太陽電池シートを選択することにより、有用な波長の太陽光による植物の育成効果を損なわず、発電を行なうことができる。
 また、太陽電池シートが選択的光透過性を有する場合、例えば、ある種の動植物に有害な紫外線を吸収して発電することにより、光環境調整領域への紫外線到達を抑制し、光環境調整領域における光環境を、動植物により適するものとすることができる。
By selecting a solar cell sheet as described above, that is, having a good light transmittance in at least one of the blue region and the red region as a selective light transmittance, Electricity can be generated without impairing the growth effect.
In addition, when the solar cell sheet has selective light transmission, for example, by absorbing ultraviolet rays harmful to certain types of animals and plants to generate power, the arrival of ultraviolet rays to the light environment adjustment region is suppressed, and the light environment adjustment region The light environment in can be made more suitable for animals and plants.
 太陽電池シート12の厚みは、太陽光の少なくとも一部を透過しうる限り、特に制限はない。例えば、100μm~500μmのシートから、目的に応じた厚みのシートを選択して用いることができる。
 太陽電池シート12は、市販品を用いることができる。市販品としては、三菱化学株式会社のジオア太陽光発電システムにおける有機太陽電池などが挙げられる。
The thickness of the solar cell sheet 12 is not particularly limited as long as it can transmit at least part of sunlight. For example, a sheet having a thickness corresponding to the purpose can be selected from 100 μm to 500 μm sheets.
A commercial item can be used for the solar cell sheet 12. As a commercial item, the organic solar cell in the Geoa solar power generation system of Mitsubishi Chemical Corporation etc. is mentioned.
(透過型有機ELシート:有機ELシート)
 薄膜太陽電池10および20は、有機ELシート16を有する。
 有機ELシート16は、太陽光の少なくとも一部を透過しうるシートであれば特に制限なく、公知の有機ELシートを適宜選択して使用することができる。有機ELシート16は、可撓性を有するシートであることが好ましい。
 なお、「太陽光の少なくとも一部を透過しうる」とは、既述の太陽電池シートにおいて述べたのと同様のことを意味し、有機ELシートは、太陽電池シートが透過する光の少なくとも一部を透過させ得ることが好ましい。
 有機ELシート16は、両面発光型でも、片面発光型でもよい。なかでも、発光された光が光環境調整領域に直接到達して効率よく使用されるという観点から、片面発光型が好ましい。
 有機ELシート16は、薄膜太陽電池10または20に一体に積層されていてもよい。
(Transmission type organic EL sheet: organic EL sheet)
The thin film solar cells 10 and 20 have an organic EL sheet 16.
The organic EL sheet 16 is not particularly limited as long as it is a sheet that can transmit at least part of sunlight, and a known organic EL sheet can be appropriately selected and used. The organic EL sheet 16 is preferably a flexible sheet.
The phrase “can transmit at least part of sunlight” means the same as described in the above-described solar cell sheet, and the organic EL sheet is at least one of the light transmitted by the solar cell sheet. It is preferable that the part can be transmitted.
The organic EL sheet 16 may be a double-sided emission type or a single-sided emission type. Among these, the single-sided emission type is preferable from the viewpoint that the emitted light directly reaches the light environment adjustment region and is used efficiently.
The organic EL sheet 16 may be integrally laminated on the thin film solar cell 10 or 20.
 既述のように、有機ELシート16の発光に適用される電力は、外部電源より、供給してもよく、太陽電池シート12で発電した電力を蓄電したものを電源として発光させてもよい。有機ELシート16の発光エネルギーとして、その少なくとも一部として太陽電池シート12による発電エネルギーを使用することで、本実施形態の薄膜太陽電池のランニングコストをより低減することができ、好ましい。 As described above, the electric power applied to the light emission of the organic EL sheet 16 may be supplied from an external power source, or the electric power generated by the solar cell sheet 12 may be stored as the power source. By using the power generation energy by the solar cell sheet 12 as at least a part of the light emission energy of the organic EL sheet 16, the running cost of the thin film solar cell of this embodiment can be further reduced, which is preferable.
 有機ELシートとしては、一対の電極間に、発光層または発光層を含む複数の有機層を有する有機ELシートが挙げられる。
 有機ELシート16では、様々な発光ドーパントを発光層に混合させることによって発光色を変えることができる。このため、例えば、植物の生育に寄与する波長域の光を発光する有機ELシート16を作製することができる。また、有機ELシート16は面発光なので、発光ダイオード(LED)光源の如き点光源とは異なり、光ムラができ難いという特徴があり、光ムラによる植物の生育ムラを防止することができる。また、消費電力も少ないというメリットもある。さらに、本実施形態において使用される透過型有機ELシートは、発光していない場合には、太陽光を透過させ、植物に必要な太陽光を供給可能であることが好ましい。
Examples of the organic EL sheet include an organic EL sheet having a light emitting layer or a plurality of organic layers including a light emitting layer between a pair of electrodes.
In the organic EL sheet 16, the emission color can be changed by mixing various emission dopants in the emission layer. For this reason, the organic EL sheet | seat 16 which light-emits the light of the wavelength range which contributes to plant growth, for example can be produced. In addition, since the organic EL sheet 16 is surface emitting, unlike a point light source such as a light emitting diode (LED) light source, the organic EL sheet 16 has a feature that light unevenness is difficult to occur, and can prevent plant growth unevenness due to light unevenness. There is also an advantage of low power consumption. Furthermore, when the transmissive organic EL sheet used in the present embodiment does not emit light, it is preferable that sunlight can be transmitted and sunlight necessary for plants can be supplied.
 有機ELシートのより具体的な例としては、例えば、透明電極(酸化インジウム錫:ITO)付のポリエチレンナフタレート(PEN)フィルム上に、N,N’-ジナフチル-N,N’-ジフェニルベンジジジン(α-NPD)を正孔輸送層、トリス(8-ヒドロキシキノリナト)アルミニウム(Alq3)を電子輸送性発光層、上部電極としてGa-Zn-O(GZO)を透明電極として有する可視光透過型の有機ELシートが挙げられる。 More specific examples of organic EL sheets include, for example, N, N′-dinaphthyl-N, N′-diphenylbenzidine on a polyethylene naphthalate (PEN) film with a transparent electrode (indium tin oxide: ITO). Visible light transmission type having (α-NPD) as a hole transporting layer, tris (8-hydroxyquinolinato) aluminum (Alq3) as an electron transporting light emitting layer, and using Ga—Zn—O (GZO) as a transparent electrode as an upper electrode Organic EL sheet.
(太陽光の透過量を調節する調光部:調光部)
 実施形態の薄膜太陽電池10および20は、調光部14を備える。調光部14は、太陽光の透過量を調節することができる限りにおいて、特に材料、構成に制限はない。調光部14としては、例えば、受光量に応じて色が変化するクロミック材料のシート、液晶フィルム、遮光性を有する開閉可能なブラインド、遮光性を有する着脱可能な布帛、液体流路を有する部材であって流路に半透明或いは遮光性の液体を供給することで光透過性を制御する部材などが挙げられるが、これらに限定されない。
(Light control unit that adjusts the amount of transmitted sunlight: Light control unit)
The thin film solar cells 10 and 20 of the embodiment include a light control unit 14. As long as the light control part 14 can adjust the transmitted light amount of sunlight, there is no restriction | limiting in particular in a material and a structure. As the light control unit 14, for example, a sheet of a chromic material that changes color according to the amount of received light, a liquid crystal film, a blind that can be opened and closed, a removable cloth that has a light shielding property, and a member having a liquid flow path In addition, examples include, but are not limited to, a member that controls light transmittance by supplying a translucent or light-shielding liquid to the flow path.
 なかでも、特に光量を測定して、その結果に応じて調光操作を必要とせず、光量を一定に維持することができるという観点から、調光部16としては、クロミック材料を備える調光部が好ましい。クロミック材料としては、公知のクロミック材料、例えば、フォトクロミック材料、ガスクロミック材料、エレクトロクロミック材料等が好ましく挙げられる。
 また、市販の調光デバイスを、そのまま調光部として採用することもできる。
Among them, in particular, from the viewpoint that the light quantity can be kept constant without requiring a light control operation according to the result of measuring the light quantity, the light control section 16 includes a chromic material. Is preferred. As a chromic material, a well-known chromic material, for example, a photochromic material, a gas chromic material, an electrochromic material, etc. are mentioned preferably.
Moreover, a commercially available light control device can also be employed as the light control unit as it is.
(任意の部材)
 実施形態の薄膜太陽電池は、太陽電池シート、有機ELシート、および調光部に加え、任意の部材をさらに有していてもよい。
 任意の部材としては、例えば、太陽光の少なくとも一部を、植物の光合成に適する或いは、光合成を抑制する波長の光に変換する波長変換部、薄膜太陽電池の物理的強度を向上させるための補強シート、隣接するシートまたは部材同士の接着性を向上させる接着層、太陽電池への水分の浸入、酸素透過等を抑制する封止材、保護シート等が挙げられる。
(Any member)
The thin film solar cell of the embodiment may further include an arbitrary member in addition to the solar cell sheet, the organic EL sheet, and the light control unit.
Optional members include, for example, a wavelength conversion unit that converts at least part of sunlight into light having a wavelength that is suitable for plant photosynthesis or suppresses photosynthesis, and reinforcement for improving the physical strength of the thin-film solar cell. Examples thereof include a sheet, an adhesive layer that improves the adhesion between adjacent sheets or members, a sealing material that suppresses moisture permeation into the solar cell, oxygen permeation, and the like, and a protective sheet.
(波長変換部)
 実施形態の薄膜太陽電池は、太陽光の入射側とは反対側に、太陽電池シートを介して入射した光(透過光)の波長を変換する波長変換部をさらに有することが好ましい。
 薄膜太陽電池が波長変換部を備えることで、太陽電池シート或いは有機ELシートにより吸収される、植物の光合成に有効な波長域の光を補強したり、動植物に有害な紫外線等を吸収し、光環境調整領域への到達量を抑制したりすることができる。
 波長変換部は、例えば、太陽光のうち、有害な紫外線や青色光領域の光を吸収して、有用な可視光線に変換し、植物の光合成反応に有用な波長域の光を蛍光として放射することが好ましく、したがって、250nm~650nmの波長域の光を吸収して、波長域450nm~700nmの蛍光を発するものが好ましい。蛍光発光波長域がこの範囲内であれば、薄膜太陽電池を植物の育成に使用する場合、十分な植物に対する光合成の促進効果を得ることができる。
(Wavelength converter)
The thin-film solar cell of the embodiment preferably further includes a wavelength conversion unit that converts the wavelength of light (transmitted light) incident via the solar cell sheet on the side opposite to the sunlight incident side.
The thin-film solar cell is provided with a wavelength conversion unit to reinforce light in a wavelength range effective for photosynthesis of plants absorbed by the solar cell sheet or organic EL sheet, or to absorb ultraviolet rays harmful to animals and plants. The amount reaching the environmental adjustment area can be suppressed.
For example, the wavelength conversion unit absorbs harmful ultraviolet light or blue light in the sunlight, converts it into useful visible light, and emits light in the wavelength region useful for plant photosynthesis as fluorescence. Therefore, it is preferable to absorb light in the wavelength range of 250 nm to 650 nm and emit fluorescence in the wavelength range of 450 nm to 700 nm. When the fluorescence emission wavelength region is within this range, when the thin film solar cell is used for plant growth, a sufficient effect of promoting photosynthesis for the plant can be obtained.
 波長変換部としては、例えば、特許第5505630号公報に記載の蛍光放射性ネット、或いは、蛍光放射性シートが好ましく挙げられる。
 蛍光放射性ネット或いは蛍光放射性シートは、波長域250~320nmの紫外線を減衰させることができる。蛍光放射性ネット或いは蛍光放射性シートは、いずれもネットまたはシートを形成しうる熱可塑性樹脂と蛍光染料、蛍光顔料などの蛍光色素とを含有する。蛍光色素としては、例えば、ペリレン系色素、ピレン系色素、キサンテン系色素、チオキサンテン系色素、クマリン色素などが挙げられる。蛍光色素は1種のみを用いてもよく、目的に応じて2種以上を併用してもよい。
As the wavelength conversion unit, for example, a fluorescent radioactive net described in Japanese Patent No. 5505630 or a fluorescent radioactive sheet is preferably exemplified.
The fluorescent radiation net or the fluorescent radiation sheet can attenuate ultraviolet rays having a wavelength range of 250 to 320 nm. Each of the fluorescent radiation net or the fluorescent radiation sheet contains a thermoplastic resin capable of forming a net or a sheet and a fluorescent dye such as a fluorescent dye or a fluorescent pigment. Examples of fluorescent dyes include perylene dyes, pyrene dyes, xanthene dyes, thioxanthene dyes, coumarin dyes, and the like. Only 1 type of fluorescent dye may be used and it may use 2 or more types together according to the objective.
 本実施形態の薄膜太陽電池10には、さらに、太陽電池シート12に入射し、太陽電池シート12を透過した透過光の光量を測定する光量測定手段を有することができる。
 光量測定手段として、植物の光合成にとっての光環境の測定に用いられる照度計、あるいは光合成有効波長領域に感度を有する光量子センサー等が挙げられる。かかる光量測定手段を有することで、透過光の光量が所定の量に達していない場合に、有機ELシート16にエネルギーを付与して発光させるよう設計することができる。
The thin-film solar cell 10 of the present embodiment can further include a light amount measuring unit that measures the amount of transmitted light that is incident on the solar cell sheet 12 and transmitted through the solar cell sheet 12.
Examples of the light quantity measuring means include an illuminometer used for measuring the light environment for photosynthesis of plants, a photon sensor having sensitivity in the photosynthesis effective wavelength region, and the like. By having such a light quantity measuring means, it is possible to design the organic EL sheet 16 to emit light when the quantity of transmitted light does not reach a predetermined amount.
 図3は、波長変換部を備える薄膜太陽電池の第3の実施形態を示す概略断面図である。図3に示す薄膜太陽電池30は、図1に示す薄膜太陽電池10が波長変換部18をさらに備えた構成を有する。
 図3に示す薄膜太陽電池30は、受光側から、太陽電池シート12、調光部14、有機ELシート16および波長変換部18をこの順に備える。
 植物の育成を例に挙げれば、第3の実施形態の薄膜太陽電池30では、太陽光のうち、植物の光合成に有用な波長帯域の光は、薄膜太陽電池30を透過して植物に到達する。光合成に有用ではない波長帯域の光の一部は、太陽電池シート12において発電に用いられる。また、光合成に有用ではない波長帯域の光の一部は、波長変換部18に到達し、波長変換部で所望の波長の光、例えば、光合成に必要な波長帯域の光に変換されて植物に照射され、光合成に必要な波長帯域の光が補強される。
 第3の実施形態の薄膜太陽電池30においても、夜間、雨天、曇天時等の太陽光が十分に照射されない場合には、太陽電池シート12により発電され、蓄電された電力あるいは外部電源から供給される電力を使って有機ELシート16が発光することにより、植物の光合成に必要な光量を確保することができる。
FIG. 3: is a schematic sectional drawing which shows 3rd Embodiment of a thin film solar cell provided with a wavelength conversion part. A thin film solar cell 30 shown in FIG. 3 has a configuration in which the thin film solar cell 10 shown in FIG.
The thin-film solar cell 30 shown in FIG. 3 includes a solar cell sheet 12, a light control unit 14, an organic EL sheet 16, and a wavelength conversion unit 18 in this order from the light receiving side.
Taking plant growth as an example, in the thin film solar cell 30 of the third embodiment, light in a wavelength band useful for photosynthesis of plants out of sunlight passes through the thin film solar cell 30 and reaches the plant. . Part of light in a wavelength band that is not useful for photosynthesis is used for power generation in the solar cell sheet 12. In addition, a part of light in a wavelength band that is not useful for photosynthesis reaches the wavelength conversion unit 18, and is converted into light of a desired wavelength, for example, light in a wavelength band necessary for photosynthesis, by the wavelength conversion unit, to the plant. Irradiated to reinforce light in a wavelength band necessary for photosynthesis.
Also in the thin film solar cell 30 of the third embodiment, when sunlight is not sufficiently irradiated at night, rainy weather, cloudy weather, etc., power is generated by the solar cell sheet 12 and supplied from the stored power or an external power source. When the organic EL sheet 16 emits light using the electric power to be generated, the amount of light necessary for the photosynthesis of the plant can be ensured.
 波長変換部18を有する薄膜太陽電池の構成は、図3に示す態様には限定されず、例えば、受光側から、太陽電池シート12、調光部14、波長変換部18および有機ELシート16をこの順に備える態様、受光側から、太陽電池シート12、有機ELシート16、調光部14、および波長変換部18をこの順に備える態様。太陽電池シート12、有機ELシート16、波長変換部18および調光部14をこの順に備える態様であってもよい。なお、光環境の制御を行なうための選択の幅が拡がるという観点からは、波長変換部18を有する場合、図3に示す薄膜太陽電池30の構成であることが好ましい。 The configuration of the thin-film solar cell having the wavelength conversion unit 18 is not limited to the mode illustrated in FIG. 3. For example, the solar cell sheet 12, the light control unit 14, the wavelength conversion unit 18, and the organic EL sheet 16 are arranged from the light receiving side. The aspect provided in this order, the aspect provided with the solar cell sheet 12, the organic EL sheet 16, the light control part 14, and the wavelength conversion part 18 in this order from the light-receiving side. The aspect provided with the solar cell sheet 12, the organic EL sheet 16, the wavelength conversion part 18, and the light control part 14 in this order may be sufficient. In addition, from the viewpoint of expanding the range of selection for controlling the light environment, when the wavelength conversion unit 18 is provided, the configuration of the thin-film solar cell 30 illustrated in FIG. 3 is preferable.
 第3の実施形態の薄膜太陽電池によれば、太陽光の透過性の制御、太陽電池シートによる発電、有機ELシートによる光照射、そして、好適な態様においては、さらに波長変換部による必要な波長帯域の光の補強を組み合わせることで、目的とする光環境を長時間に亘り維持することができる。また、光環境を所望により調整することができるため、その応用範囲は広い。 According to the thin-film solar cell of the third embodiment, control of sunlight permeability, power generation by a solar cell sheet, light irradiation by an organic EL sheet, and in a preferred aspect, further a necessary wavelength by a wavelength conversion unit By combining the band light reinforcement, the target light environment can be maintained for a long time. Moreover, since the light environment can be adjusted as desired, its application range is wide.
 以下、図3に示す第3の実施形態の薄膜太陽電池30を植物栽培に使用した場合の例を挙げ、詳細に説明する。
 図4は、真夏の好天の日中等、太陽光の光量が大きい場合の薄膜太陽電池30の使用態様および光の状態を示す概略図である。以下の図4~図8では、光を(a)~(f)の符号を付した矢印または矩形で表し、矢印又は矩形で区画された領域の面積は光量を模式的に示している。
 図4~図8において、薄膜太陽電池30の受光側と反対側の、模式的に植物が記載されている領域が、図1において(A)で示す光環境調整領域に相当する。
 図4中、(a)の領域は太陽からの照射光の内、植物の生育に寄与する太陽光を示し、(b)で示す領域は調光部14により減光された植物の生育に寄与する太陽光を示し、(c)で示す領域は、植物の生育にあまり寄与しない太陽光の一部で太陽電池シート12に吸収され、発電に供される太陽光を示す。(d)で示す領域は、植物の生育にあまり寄与しない太陽光の一部を示し、(e)は、(d)で示す光が調光部14により減光され、波長変換部18において蛍光色素に吸収される光を示し、(f)は、波長変換部18を介して波長変換され、植物の光合成に大きく寄与する光を示す。
Hereinafter, an example in which the thin film solar cell 30 of the third embodiment shown in FIG. 3 is used for plant cultivation will be described in detail.
FIG. 4 is a schematic diagram showing a usage mode and light state of the thin-film solar cell 30 when the amount of sunlight is large, such as during daytime when the weather is good in midsummer. In FIGS. 4 to 8 below, the light is represented by arrows or rectangles with the signs (a) to (f), and the area of the area partitioned by the arrows or rectangles schematically indicates the amount of light.
4 to 8, the region where the plant is schematically described on the side opposite to the light receiving side of the thin-film solar cell 30 corresponds to the light environment adjustment region shown in FIG.
In FIG. 4, the area (a) indicates sunlight that contributes to the growth of the plant among the irradiation light from the sun, and the area indicated by (b) contributes to the growth of the plant dimmed by the dimming unit 14. The area | region shown by (c) shows the sunlight which is absorbed by the solar cell sheet 12 with a part of sunlight which does not contribute so much to plant growth, and is used for electric power generation. The area shown by (d) shows a part of sunlight that does not contribute much to the growth of the plant, and (e) shows that the light shown by (d) is attenuated by the dimming unit 14 and is fluorescent in the wavelength conversion unit 18. The light absorbed by the pigment is shown, and (f) shows the light that is wavelength-converted via the wavelength converter 18 and greatly contributes to plant photosynthesis.
 図4に示すように、真夏の好天の日中は太陽光が強過ぎるので、育成される植物が日焼けを起こすような葉物野菜等である場合には、図4に示すように、植物の生育に寄与する太陽光(a)の一部が調光部14にて遮光され、植物の育成に適する光量とされた残部(b)が調光部14および透明な有機ELシート16を通過して植物に照射され、植物の育成に供される。
 植物の光合成にあまり寄与しない波長域の光(c)は、太陽電池シート12に吸収され、発電に使用される。植物の光合成にあまり寄与しない波長域の光のうち一部(d)は、調光部14にて減光され、波長変換部18に吸収される光(e)であり、波長変換部18にて波長変換され、植物の光合成に大きく寄与する光(f)として植物に照射される。
 図4に示す如き、光環境が植物の育成に好適な場合、有機ELシート16は発光を行なわない。
As shown in FIG. 4, since the sunlight is too strong during the daytime in midsummer, when the plant to be cultivated is a leafy vegetable or the like that causes sunburn, as shown in FIG. Part of the sunlight (a) that contributes to the growth of the plant is shielded by the light control unit 14, and the remaining part (b) that is set to a light quantity suitable for plant growth passes through the light control unit 14 and the transparent organic EL sheet 16. The plant is then irradiated to grow the plant.
Light (c) in the wavelength region that does not contribute much to the photosynthesis of plants is absorbed by the solar cell sheet 12 and used for power generation. Part (d) of the light in the wavelength region that does not contribute much to the photosynthesis of plants is light (e) that is attenuated by the light control unit 14 and absorbed by the wavelength conversion unit 18. The wavelength is converted, and the plant is irradiated as light (f) that greatly contributes to the photosynthesis of the plant.
As shown in FIG. 4, when the light environment is suitable for plant growth, the organic EL sheet 16 does not emit light.
 図5は、好天の日中における太陽光の光量が適度な場合の薄膜太陽電池30の使用態様および光の状態を示す概略図である。
 図5中、(a)、(c)、(d)および(f)は図4に示すのと同様の光を示す。
 図5に示すように、好天の日中で太陽光の光量が適度な場合には、調光部14による遮光は行わない。
 植物の生育に寄与する太陽光(a)は、調光部14および透明な有機ELシート16を通過して植物の育成に十分な量で植物に照射される。植物の光合成にあまり寄与しない波長域の光(c)は、太陽電池シート12に吸収され、発電に使用される。また、植物の光合成にあまり寄与しない波長域の光のうち一部(d)は、波長変換部18を介して、植物の光合成に寄与する波長の光(f)に変換され、植物に照射される。その結果、植物の育成に有用な光環境を維持することができる。
 図5に示す如き、光環境が植物の育成に好適な場合、有機ELシート16は発光を行なわない。
FIG. 5 is a schematic diagram showing a usage mode of the thin-film solar cell 30 and a light state when the amount of sunlight is moderate during a sunny day.
In FIG. 5, (a), (c), (d), and (f) indicate the same light as shown in FIG.
As shown in FIG. 5, when the amount of sunlight is moderate during a sunny day, light control by the light control unit 14 is not performed.
The sunlight (a) that contributes to the growth of the plant passes through the light control unit 14 and the transparent organic EL sheet 16, and is irradiated to the plant in an amount sufficient for growing the plant. Light (c) in the wavelength region that does not contribute much to the photosynthesis of plants is absorbed by the solar cell sheet 12 and used for power generation. Further, a part (d) of the light in the wavelength region that does not contribute much to the photosynthesis of the plant is converted into light (f) having a wavelength that contributes to the photosynthesis of the plant via the wavelength conversion unit 18 and irradiated to the plant. The As a result, a light environment useful for plant growth can be maintained.
As shown in FIG. 5, when the light environment is suitable for plant growth, the organic EL sheet 16 does not emit light.
 図6は、薄膜太陽電池30の調光部14により植物に照射される光量を調整する場合の使用態様および光の状態を示す概略図である。
 図6中、(a)および(b)は図4に示すのと同様の光を示す。
 夏季のように日照時間が長い場合、朝、夕の予め決められた時間帯に調光部14により太陽光(a)を遮光することで、調光部14および透明な有機ELシート16を通過して植物に照射される光(b)をほぼ0とすることにより、太陽光の照射時間を制御する短日処理を行なって、所望の日照時間を得ることができる。
 また、図4と同様に、太陽光のうち、植物の光合成にあまり関与しない波長域の光(c)は、太陽電池シート12に吸収され、発電に使用される。
FIG. 6 is a schematic diagram illustrating a usage mode and a light state when adjusting the amount of light irradiated to the plant by the light control unit 14 of the thin-film solar cell 30.
In FIG. 6, (a) and (b) show the same light as shown in FIG.
When the sunshine hours are long as in summer, the light control unit 14 shields sunlight (a) from light and light through the light control unit 14 and the transparent organic EL sheet 16 in a predetermined time zone in the morning and evening. Thus, by setting the light (b) irradiated to the plant to almost zero, a short day treatment for controlling the irradiation time of sunlight can be performed to obtain a desired sunshine time.
Similarly to FIG. 4, light (c) in a wavelength region that is not significantly involved in plant photosynthesis is absorbed in the solar cell sheet 12 and used for power generation.
 図7は、夜間等、太陽光が照射されない場合の薄膜太陽電池30の使用態様および光の状態を示す概略図である。図6中、(g)は有機ELシート16にて発光した光を示す。
 図7に示すように、太陽光が得られない夜間、或いは、日照時間が短い冬期の朝または夕刻においても、必要に応じて有機ELシート16から供給される光(g)が植物に照射され、植物の育成に有用な光(g)の植物への照射を、任意の時間に亘り継続することができる。この方法を適用することで、長時間、一定の光量を照射することにより、植物の育成を促進することができる。また、一日の間の必要な時間に継続して一定の光量を照射することもできる。
FIG. 7 is a schematic diagram showing a usage mode and light state of the thin-film solar cell 30 when sunlight is not irradiated, such as at night. In FIG. 6, (g) indicates light emitted from the organic EL sheet 16.
As shown in FIG. 7, light (g) supplied from the organic EL sheet 16 is irradiated to the plant as needed even at night when sunlight cannot be obtained, or in the winter morning or evening when the sunshine time is short. Irradiation of light (g) useful for plant growth to the plant can be continued for an arbitrary time. By applying this method, plant growth can be promoted by irradiating a certain amount of light for a long time. It is also possible to irradiate a certain amount of light continuously at a necessary time during the day.
 次に、曇天または雨天時における第3の実施形態の薄膜太陽電池30の態様について説明する。なお、(a)~(g)の符号は、図4~図7に示すのと同様の光を示している。 Next, the aspect of the thin film solar cell 30 of the third embodiment at the time of cloudy or rainy weather will be described. The symbols (a) to (g) indicate the same light as shown in FIGS.
 図8は、雨天または曇天の日中における薄膜太陽電池30の使用態様および光の状態を示す概略図である。
 図8に示すように、雨天または曇天の日中においても、僅かではあるが植物の生育に寄与する太陽光(a)は照射されている。植物の生育に寄与する太陽光(a)の受光量が少ないため、調光部14では遮光を行なわず、受光した太陽光(a)は、調光部14および透明な有機ELシート16を通過して植物に照射される。太陽光のうち植物の光合成にあまり寄与しない波長域の光(c)は太陽電池シート12に吸収され、発電に使用される。
 一方で、太陽光の受光量が少ないと、植物の育成に十分な光量が得られないため、有機ELシート16にエネルギーを付与して発光させ、有機ELシート16が発光した光(g)が、植物に照射される。その結果、太陽光の照射量が少ない、雨天又は曇天時においても、植物の育成に有用な光環境を維持することができる。なお、有機ELシート16が発光した光(g)の一部は、波長変換部18を介して、植物の光合成により大きく寄与する波長に変換されて植物に照射されることがある。
 図4~図8に記載の例より、本実施形態の薄膜太陽電池30を用いることで、一日を通して、季節を問わず、或いは、好天、曇天、雨天等の天候に拘らず、植物の育成に好適な光環境を維持することができることがわかる。
FIG. 8 is a schematic view showing a use mode of the thin-film solar cell 30 and a light state during a rainy or cloudy day.
As shown in FIG. 8, even in the rainy or cloudy day, sunlight (a) that contributes to the growth of plants is radiated slightly. Since the amount of received sunlight (a) that contributes to the growth of the plant is small, the light control unit 14 does not block the light, and the received sunlight (a) passes through the light control unit 14 and the transparent organic EL sheet 16. The plant is irradiated. Light (c) in a wavelength region that does not contribute much to plant photosynthesis in sunlight is absorbed by the solar cell sheet 12 and used for power generation.
On the other hand, when the amount of received sunlight is small, a sufficient amount of light for plant growth cannot be obtained. Therefore, energy (g) emitted from the organic EL sheet 16 is emitted by applying energy to the organic EL sheet 16 to emit light. The plant is irradiated. As a result, it is possible to maintain a light environment useful for growing plants even in rainy weather or cloudy weather when the amount of sunlight irradiation is small. Note that part of the light (g) emitted from the organic EL sheet 16 may be converted to a wavelength that greatly contributes to the photosynthesis of the plant via the wavelength conversion unit 18 and may be irradiated to the plant.
From the examples shown in FIGS. 4 to 8, by using the thin film solar cell 30 of the present embodiment, the plant can be used throughout the day, regardless of the season, regardless of the weather such as fine weather, cloudy weather, and rainy weather. It can be seen that a light environment suitable for growing can be maintained.
 既述の本実施形態の薄膜太陽電池を農作物の育成に用いる場合、例えば、調光部を操作して、朝から夕刻において、日射量が多い場合に遮光する調光機能と、昼間において日射量が少ない場合および夜間の有機ELシートによる照明とを組み合わせることにより、太陽光利用型植物工場、ビニールハウス等において、季節による日照時間の変動に関わらず、農作物に毎日一定時間、所望の照度の光を供給することができる。
 これにより、農作物の生育、出荷等のタイミングを制御することが可能となり、計画生産による高収益農業の実現を図ることができる。
 公知の人工光型植物工場では、例えば、LED光源などの光照射にかかるエネルギーは100%外部より供給される電気エネルギーである。これに対し、本実施形態の薄膜太陽電池では、太陽光をそのまま利用することができ、さらに農作物の育成に寄与しない波長帯域の光を用いて発電できるため。コストの低減を図ることができる。
 本実施形態の薄膜太陽電池は調光部を有するため、調光機能により、真夏の過度な光を遮光し、温室内の温度の所望されない上昇、農作物への光障害等を効果的に抑制することができる。
When the thin-film solar cell of the present embodiment described above is used for growing crops, for example, a dimming function that operates a dimming unit to block light when there is a large amount of solar radiation from morning to evening, and an amount of solar radiation in the daytime When there is little light, and when combined with lighting using organic EL sheets at night, light of the desired illuminance is applied to the crop every day for a certain period of time, regardless of fluctuations in the sunshine hours depending on the season, in plant factories and plastic houses using sunlight. Can be supplied.
As a result, it is possible to control the timing of growth, shipment, etc. of crops, and it is possible to achieve high-profit agriculture through planned production.
In a known artificial light plant factory, for example, the energy required for light irradiation of an LED light source or the like is 100% electric energy supplied from the outside. On the other hand, in the thin film solar cell of the present embodiment, sunlight can be used as it is, and furthermore, power can be generated using light in a wavelength band that does not contribute to the cultivation of agricultural products. Cost can be reduced.
Since the thin-film solar cell of the present embodiment has a dimming unit, the dimming function effectively blocks midsummer excessive light and effectively suppresses undesired rises in the temperature in the greenhouse, light damage to crops, and the like. be able to.
 植物育成工場、ビニールハウスなどに本実施形態の薄膜太陽電池を使用する場合、設備の全てに薄膜太陽電池を使用する必要はなく、太陽光の受光面の少なくとも一部に、薄膜太陽電池を適用するのみであっても本開示効果を奏する。一方で、太陽光の受光面の全領域に本開示の薄膜太陽電池を用いることができるため、大面積での発電が可能となり、発電した電力を外部に供給することもできる。
 なお、既述のように、公知の光を透過しない太陽電池パネルでは、植物の育成環境を維持するためには、農地の総面積の30%程度の使用が限度であるが、本開示の薄膜太陽電池では、農地の総面積の100%に設置が可能であり、太陽電池シートによる発電効率が、従来の固定式無機太陽電池パネルの発電効率よりも若干低い場合であっても、総発電量はより大きくなることが期待される。
When using the thin film solar cell of this embodiment in a plant growing factory, a greenhouse, etc., it is not necessary to use the thin film solar cell for all of the facilities, and the thin film solar cell is applied to at least a part of the sunlight receiving surface. Even if it only does, there exists an effect of this indication. On the other hand, since the thin film solar cell of this indication can be used for the whole area | region of the light-receiving surface of sunlight, electric power generation in a large area is attained, and the generated electric power can also be supplied outside.
As described above, in the known solar cell panel that does not transmit light, the use of about 30% of the total area of the farmland is the limit in order to maintain the plant growth environment. The solar cell can be installed in 100% of the total area of the farmland, and even if the power generation efficiency by the solar cell sheet is slightly lower than the power generation efficiency of the conventional fixed inorganic solar cell panel, the total power generation amount Is expected to be larger.
 また、農作物などの植物のみならず、鶏舎、畜舎、魚類の養殖池などに本開示の薄膜太陽電池を使用することで、生育環境を、動物の成育に好適な光環境に制御することができる。さらに、宇宙空間での利用、例えば、スペースコロニーで人間が生活する際に、本開示の薄膜太陽電池を適用することで、好適な光環境を制御することが期待される。 Further, by using the thin film solar cell of the present disclosure not only for plants such as agricultural crops but also for poultry houses, livestock houses, fish culture ponds, etc., the growth environment can be controlled to a light environment suitable for animal growth. . Furthermore, it is expected that a suitable light environment is controlled by applying the thin film solar cell of the present disclosure when used in outer space, for example, when a human lives in a space colony.
 以下に本開示の薄膜太陽電池を、実施例を挙げて詳細に説明するが、本開示の薄膜太陽電池は以下に示す実施例に限定されるものではない。 Hereinafter, the thin film solar cell of the present disclosure will be described in detail with reference to examples, but the thin film solar cell of the present disclosure is not limited to the examples shown below.
[実施例1]
 太陽光の受光側から、太陽電池シート、調光部、および有機ELシートをこの順に備える図1に示す層構成の薄膜太陽電池1を作製した。各部材の詳細は以下の通りである。
[Example 1]
A thin-film solar cell 1 having a layer configuration shown in FIG. 1 including a solar cell sheet, a light control unit, and an organic EL sheet in this order was produced from the sunlight receiving side. Details of each member are as follows.
 太陽電池シート:(有機薄膜太陽電池シート)Power Plastic、Midium Red:Konarka社
 調光部:調光フィルム(LCF-1103DHA、日立化成(株))
 有機ELシート:透明電極(ITO)付のPENフィルム上に、α-NPDを正孔輸送層、Alq3を電子輸送性発光層、GZOを上部透明電極として有する有機シート
Solar cell sheet: (Organic thin film solar cell sheet) Power Plastic, Medium Red: Konarka Inc. Light control part: Light control film (LCF-1103DHA, Hitachi Chemical Co., Ltd.)
Organic EL sheet: An organic sheet having α-NPD as a hole transport layer, Alq3 as an electron transporting light emitting layer, and GZO as an upper transparent electrode on a PEN film with a transparent electrode (ITO)
(光透過性の評価)
 得られた薄膜太陽電池1の光透過性を、薄膜太陽電池1を透過した光の照度として、分光放射計(携帯型分光放射計 MS-720、英弘精機株式会社製)にて測定し評価した。その結果を図9のグラフに示す。
 図9に明らかなように、波長450nmおよび650nm近傍の照度が高く、光透過性が良好であり、特に光合成に好適な、赤色波長帯域の光透過性に優れることが確認された。
(Evaluation of light transmission)
The light transmittance of the obtained thin film solar cell 1 was measured and evaluated as the illuminance of the light transmitted through the thin film solar cell 1 with a spectroradiometer (portable spectroradiometer MS-720, manufactured by Eihiro Seiki Co., Ltd.). . The result is shown in the graph of FIG.
As is clear from FIG. 9, it was confirmed that the illuminance in the vicinity of wavelengths 450 nm and 650 nm was high, the light transmittance was good, and the light transmittance in the red wavelength band particularly suitable for photosynthesis was excellent.
(発電特性の評価)
 得られた薄膜太陽電池1の発電特性を、直流電圧電流源モニタ(6241A:ADCMT)及びソーラーシミュレータ((株)システムハウス・サンライズ:自動計測ソフトGP-IBライブラリ)を用いて、測定評価した。その結果を図10のグラフに示す。
 図10は、図9において、光透過性を測定したのと同様の、実際の太陽光が照射下で測定した、薄膜太陽電池1の電流-電圧特性である。
 また、図10におけるのと同じ、実際の太陽光の照射下で測定した薄膜太陽電池1の特性を下記表1に示す。
(Evaluation of power generation characteristics)
The power generation characteristics of the obtained thin-film solar cell 1 were measured and evaluated using a DC voltage / current source monitor (6241A: ADMT) and a solar simulator (System House Sunrise: automatic measurement software GP-IB library). The result is shown in the graph of FIG.
FIG. 10 shows the current-voltage characteristics of the thin-film solar cell 1 measured under irradiation with actual sunlight, similar to the measurement of the light transmission in FIG.
Table 1 below shows the characteristics of the thin-film solar cell 1 measured under actual sunlight irradiation as in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(有機ELシートの発光の評価)
 得られた薄膜太陽電池1において、有機ELシートの発光特性を以下の方法で評価した。
 発光特性の評価に用いた測定装置は、電圧源及び電流計としてADCMT 6241A、輝度計はコニカミノルタセンシング LS-100である。また、測定用ソフトとしてシステムハウス・サンライズW32-R6243IVL3-Rを使用した。
 薄膜太陽電池1の輝度-電圧特性を表2に示す。
 表2の結果より、薄膜太陽電池1は、前記表1に記載の有機薄膜太陽電池を用いることで、有機ELシートを発光させることが可能であることがわかる。また、有機ELシートは、夜間、雨天、曇天時等において、植物の育成に有用な太陽光の不足を補うに足る発光特性を持っていることがわかる。
(Evaluation of light emission of organic EL sheet)
In the obtained thin film solar cell 1, the light emission characteristics of the organic EL sheet were evaluated by the following methods.
The measuring device used for the evaluation of the light emission characteristics is an ADMT 6241A as a voltage source and an ammeter, and the luminance meter is Konica Minolta Sensing LS-100. In addition, System House Sunrise W32-R6243IVL3-R was used as measurement software.
The luminance-voltage characteristics of the thin film solar cell 1 are shown in Table 2.
From the results in Table 2, it can be seen that the thin-film solar cell 1 can emit light from the organic EL sheet by using the organic thin-film solar cell described in Table 1. It can also be seen that the organic EL sheet has light emission characteristics sufficient to make up for the shortage of sunlight useful for growing plants at night, rainy weather, and cloudy weather.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(植物栽培への適用)
 幅150cm、長さ210cm、高さ190cmのモデルビニールハウスを作製し、得られた薄膜太陽電池1を、モデルビニールハウスの天面に配置した。
 対照例として、同じサイズであり、天面に透明の塩化ビニルシートを配置した比較モデルビニールハウスを作製した。
 モデルビニールハウスと比較モデルビニールハウスとを屋外に配置し、同じ条件にて、内部で葉物野菜であるサンチェを栽培した。4週間経過後にサンチェの生育状態を比較した。天面に実施例1の薄膜太陽電池1を設置したモデルビニールハウスを用いた場合、比較モデルビニールハウスを用いた場合に比べ、植物の生育がより順調であることが確認された。
(Application to plant cultivation)
A model greenhouse having a width of 150 cm, a length of 210 cm, and a height of 190 cm was produced, and the obtained thin-film solar cell 1 was placed on the top surface of the model greenhouse.
As a control example, a comparative model greenhouse having the same size and a transparent vinyl chloride sheet disposed on the top surface was prepared.
A model greenhouse and a comparative model greenhouse were placed outdoors, and under the same conditions, sanche, a leafy vegetable, was cultivated inside. After 4 weeks, the growth state of Sanche was compared. When using the model greenhouse in which the thin-film solar cell 1 of Example 1 was installed on the top surface, it was confirmed that the growth of the plant was smoother than when the comparative model greenhouse was used.
[実施例2]
 図1に示す層構成の実施例1の薄膜太陽電池1において、有機薄膜太陽電池シート12を、以下の構成の太陽電池シート12に代え、さらに、有機ELシート16の受光方向とは反対側に、下記波長変換部18を備えた以外は、実施例1と同様にして、図3に示す層構成の、波長変換部18を有する実施例2の有機薄膜太陽電池2を作製した。
 太陽電池シート:有機薄膜太陽電池シート(ITO透明電極付透明PENフィルムに、ポリ(3-ヘキシルチオフェン)(P3HT)と、[6,6]フェニル-C61-酪酸メチル(PCBM)とを混合したバルクヘテロ構造の発電層を作製後、GZO透明電極を成膜した透明太陽電池シート)
 波長変換部:BASF社製のLumogen Red 305 を0.02質量%含有するポリエチレンテレフタレート(PET)樹脂製の蛍光性フィルム
[Example 2]
In the thin film solar cell 1 of Example 1 having the layer configuration shown in FIG. 1, the organic thin film solar cell sheet 12 is replaced with the solar cell sheet 12 having the following configuration, and further on the side opposite to the light receiving direction of the organic EL sheet 16. The organic thin-film solar cell 2 of Example 2 having the wavelength conversion unit 18 having the layer configuration shown in FIG. 3 was produced in the same manner as Example 1 except that the following wavelength conversion unit 18 was provided.
Solar cell sheet: Organic thin-film solar cell sheet (Bulk hetero in which transparent PEN film with ITO transparent electrode is mixed with poly (3-hexylthiophene) (P3HT) and [6,6] phenyl-C61-methylbutyrate (PCBM) A transparent solar cell sheet with a GZO transparent electrode formed after producing a power generation layer with a structure)
Wavelength conversion part: fluorescent film made of polyethylene terephthalate (PET) resin containing 0.02% by mass of Lumogen Red 305 manufactured by BASF
(光透過性の評価)
 得られた薄膜太陽電池2の光透過性を、実施例1の薄膜太陽電池1と同様にして評価した。その結果を図11のグラフに示す。
 図11に明らかなように、波長450nmおよび650nm近傍の照度が大きく、光透過性が良好であり、特に光合成に好適な、赤色波長帯域の光透過性に優れ、その他の波長域よりも赤色波長帯域の光透過性がより大きいことが確認された。
 また、図11と図9との対比において、薄膜太陽電池が、波長変換部をさらに備えることで、植物の光合成に大きく寄与する波長帯域の光照射量がより向上することが分かる。
(Evaluation of light transmission)
The light transmittance of the obtained thin film solar cell 2 was evaluated in the same manner as the thin film solar cell 1 of Example 1. The result is shown in the graph of FIG.
As is clear from FIG. 11, the illuminance in the vicinity of wavelengths 450 nm and 650 nm is large, the light transmittance is good, the light transmittance in the red wavelength band is particularly suitable for photosynthesis, and the red wavelength is higher than other wavelength ranges It was confirmed that the light transmittance of the band was larger.
Moreover, in contrast with FIG. 11 and FIG. 9, it turns out that the amount of light irradiation of the wavelength band which contributes greatly to the photosynthesis of a plant improves more by providing a thin film solar cell further with a wavelength conversion part.
 本実施形態の薄膜太陽電池は、太陽光の受光量に係わらず、所望の光環境を維持することができるため、植物育成工場、ビニールハウスなどの農作物育成施設、および鶏舎、畜舎、養殖池などの動物飼育施設への適用に好適である。 The thin film solar cell of the present embodiment can maintain a desired light environment regardless of the amount of received sunlight, so that it can maintain a desired light environment, such as a plant breeding factory, a greenhouse such as a greenhouse, a poultry house, a livestock house, an aquaculture pond, etc. It is suitable for application to animal breeding facilities.
 2016年1月21日に出願された日本国特許出願2016-010051の開示は参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application 2016-010051 filed on January 21, 2016 is incorporated herein by reference.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (8)

  1. 太陽光の少なくとも一部を透過する太陽電池シート、透過型有機ELシート、および、太陽光の透過量を調節する調光部、を有する透過型薄膜太陽電池。 A transmissive thin film solar cell having a solar cell sheet that transmits at least part of sunlight, a transmissive organic EL sheet, and a light control unit that adjusts the amount of transmitted sunlight.
  2. 太陽光の入射側から、前記太陽電池シート、前記調光部、および前記透過型有機ELシートを、この順に有する請求項1に記載の透過型薄膜太陽電池。 The transmission type thin film solar cell according to claim 1, comprising the solar cell sheet, the light control unit, and the transmission type organic EL sheet in this order from a sunlight incident side.
  3. 太陽光の入射側から、前記太陽電池シート、前記透過型有機ELシート、および前記調光部を、この順に有する請求項1に記載の透過型薄膜太陽電池。 The transmission type thin film solar cell according to claim 1, wherein the solar cell sheet, the transmission type organic EL sheet, and the light control unit are provided in this order from the sunlight incident side.
  4. 前記太陽電池シートが、選択的光透過性を有する請求項1~請求項3のいずれか1項に記載の透過型薄膜太陽電池。 The transmissive thin-film solar cell according to any one of claims 1 to 3, wherein the solar cell sheet has selective light transmittance.
  5. 前記選択的光透過性は可視光領域の光を透過する特性である請求項4に記載の透過型薄膜太陽電池。 The transmissive thin film solar cell according to claim 4, wherein the selective light transmittance is a characteristic of transmitting light in a visible light region.
  6. 前記太陽電池シートが、有機太陽電池シートである請求項1~請求項5のいずれか1項に記載の透過型薄膜太陽電池。 The transmission thin film solar cell according to any one of claims 1 to 5, wherein the solar cell sheet is an organic solar cell sheet.
  7. 前記太陽電池シートの太陽光の入射側とは反対側に、前記太陽電池シートを介して入射した光の波長を変換する波長変換部をさらに有する請求項1~請求項6のいずれか1項に記載の透過型薄膜太陽電池。 7. The wavelength converter according to claim 1, further comprising a wavelength conversion unit that converts a wavelength of light incident through the solar cell sheet on a side opposite to a sunlight incident side of the solar cell sheet. The transmissive thin film solar cell described.
  8. さらに、前記太陽電池シートを透過した透過光の光量を測定する光量測定手段を有し、前記光量測定手段により測定した透過光の光量が所定の光量に達しない場合に、前記透過型有機ELシートにエネルギーを付与して発光させる、請求項1~請求項7のいずれか1項に記載の透過型薄膜太陽電池。 Further, the transmission type organic EL sheet has a light amount measuring means for measuring the amount of transmitted light transmitted through the solar cell sheet, and the transmitted type organic EL sheet when the amount of transmitted light measured by the light amount measuring means does not reach a predetermined amount. The transmissive thin-film solar cell according to any one of claims 1 to 7, wherein energy is applied to the substrate to emit light.
PCT/JP2017/001996 2016-01-21 2017-01-20 Transmission type thin film solar cell WO2017126683A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017562931A JP7093988B2 (en) 2016-01-21 2017-01-20 Transmissive thin film solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-010051 2016-01-21
JP2016010051 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017126683A1 true WO2017126683A1 (en) 2017-07-27

Family

ID=59361983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001996 WO2017126683A1 (en) 2016-01-21 2017-01-20 Transmission type thin film solar cell

Country Status (2)

Country Link
JP (1) JP7093988B2 (en)
WO (1) WO2017126683A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220122132A (en) * 2021-02-26 2022-09-02 한국광기술원 photosynthesis wavelength transmission type solar light emitting pannel and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243485A (en) * 2005-03-04 2006-09-14 Toshiba Corp Automatic light control cell and member for transmitted light
JP2009289832A (en) * 2008-05-27 2009-12-10 Hitachi Maxell Ltd Solar cell module
JP2014165258A (en) * 2013-02-22 2014-09-08 Ito Denshi Kogyo Kk Light-emitting device superimposing organic solar cell and organic el element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287134A (en) * 1989-12-06 1991-12-17 Ryuichi Yamamoto Automatic dimming device
JP2006319026A (en) 2005-05-11 2006-11-24 Tokyo Univ Of Science Solar cell module, window material equipped therewith, solar energy power generation system, building material, and building
US7982127B2 (en) 2006-12-29 2011-07-19 Industrial Technology Research Institute Thin film solar cell module of see-through type
JP2011119455A (en) 2009-12-03 2011-06-16 Nec Lighting Ltd Organic el device including solar cell
CN101924146A (en) 2010-03-02 2010-12-22 新奥光伏能源有限公司 Light ray-adjustable non-light tight membrane photovoltaic component and manufacturing method thereof
CN103460429B (en) 2011-04-05 2016-03-02 佛罗里达大学研究基金会有限公司 For providing the method and apparatus of the window with one-sided transmitting OLED illumination transparent at least partly and IR sensitive photovoltaic panel
US20140352762A1 (en) 2012-02-03 2014-12-04 The Regents Of The University Of California Luminescent Electricity-Generating Window for Plant Growth
TW201503575A (en) 2013-02-25 2015-01-16 Univ California Transparent organic solar cells for agronomic applications
JP2015154727A (en) 2014-02-20 2015-08-27 パイオニア株式会社 Harvest timing determination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243485A (en) * 2005-03-04 2006-09-14 Toshiba Corp Automatic light control cell and member for transmitted light
JP2009289832A (en) * 2008-05-27 2009-12-10 Hitachi Maxell Ltd Solar cell module
JP2014165258A (en) * 2013-02-22 2014-09-08 Ito Denshi Kogyo Kk Light-emitting device superimposing organic solar cell and organic el element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220122132A (en) * 2021-02-26 2022-09-02 한국광기술원 photosynthesis wavelength transmission type solar light emitting pannel and method of manufacturing the same
KR102521335B1 (en) * 2021-02-26 2023-04-13 한국광기술원 photosynthesis wavelength transmission type solar light emitting pannel and method of manufacturing the same

Also Published As

Publication number Publication date
JP7093988B2 (en) 2022-07-01
JPWO2017126683A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
Moraitis et al. Nanoparticles for luminescent solar concentrators-a review
CN101677513B (en) Shading device
US20170288080A1 (en) Luminescent Electricity-Generating Window for Plant Growth
US11503773B2 (en) Sunlight converting device comprising wavelength converting film
CN103503173A (en) Method and means for enhancing greenhouse lights
JPWO2011149028A1 (en) Wavelength conversion film
KR102225203B1 (en) Smart plant cultivating system using solar photovoltaic power generation
KR20170111906A (en) Solar Energy Generation Greenhouse Using Solar Cell
CN103615677A (en) LED synchronous red-blue light panel light source used for promoting plant growth
CN102561611A (en) Building structure with semitransparent solar photoelectric plate
WO2020022465A1 (en) Illumination device
CN106025791A (en) Laser radiation source plant growth device
CN110915001A (en) Light-emitting optical element for agricultural applications
WO2017126683A1 (en) Transmission type thin film solar cell
WO2012128244A1 (en) Plant factory and solar cell system
JP6267843B2 (en) Lighting device
CN206004132U (en) Lasing source plant growing device
JP2017023029A (en) Illumination covering material, and method for cultivating plant
KR20180080453A (en) Greenhouse for solar cell installation
US9520521B2 (en) Optically active coating for improving the yield of photosolar conversion
KR102575203B1 (en) Plant cultivation facility
KR102017999B1 (en) Energy independent cultivation apparatus utilizing artificial light source
JP3187750U (en) Lighting device
CN117424552A (en) Self-powered green energy system
da Silva et al. Photonic Nanodevices and Technologies against Light Pollution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741560

Country of ref document: EP

Kind code of ref document: A1