JP2006243485A - Automatic light control cell and member for transmitted light - Google Patents

Automatic light control cell and member for transmitted light Download PDF

Info

Publication number
JP2006243485A
JP2006243485A JP2005060617A JP2005060617A JP2006243485A JP 2006243485 A JP2006243485 A JP 2006243485A JP 2005060617 A JP2005060617 A JP 2005060617A JP 2005060617 A JP2005060617 A JP 2005060617A JP 2006243485 A JP2006243485 A JP 2006243485A
Authority
JP
Japan
Prior art keywords
light
electrochromic
transmitted
transmitting
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005060617A
Other languages
Japanese (ja)
Inventor
Akira Sawada
彰 澤田
Keiichi Sasaki
恵一 佐々木
Kengo Wakamatsu
建吾 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005060617A priority Critical patent/JP2006243485A/en
Publication of JP2006243485A publication Critical patent/JP2006243485A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic light control cell for transmitted light, which does not need any power source from the outside, does not need a sensor to detect light quantity and autonomously adjusts transmitted light quantity, further which has a high light shielding function, and which is long-life. <P>SOLUTION: A light transmissive coating film 20 of which the light reflectance is heightened inversely proportional to light transmittance of an electrochromic element 14 is disposed between a light transmissive optical power generation element 13 generating power with light incidence and a light transmissive electrochromic element 14 of which the light transmittance is lowered in proportion to applied electric energy. The optical power generation element 13 and the electrochromic element 14 are electrically connected to each other via a light transmissive electric wiring member 19. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光透過性の光発電素子と、電気エネルギーによって光の透過率が変化する液晶素子またはエレクトロクロミック素子を接合して形成した光透過率自動調光素子を集積して成る透過光自動調光セル及び部材に関するものである。   The present invention relates to a transmitted light automatic dimming device formed by integrating a light transmissive photovoltaic device and a light transmittance automatic dimming device formed by joining a liquid crystal element or an electrochromic element whose light transmittance is changed by electric energy. The present invention relates to a light control cell and a member.

フォトクロミック材料やサーモクロミック材料を利用して光の透過量を変化させる調光部材は液晶素子やエレクトロクロミック素子を利用した調光部材に比較して、電源を必要としないなどの優位な点が存在するが、光の変化に対する応答性が遅い欠点があり、かつ、目的とした光透過量を任意に設定できないなどの欠点もある。また、液晶素子やエレクトロクロミック素子を調光部材として使用する場合は、外部よりそれぞれの素子に電源を供給する必要があり、かつ、透過光量を制御するために、電流や電圧を制御するための制御装置が必要である。   Dimming members that change the amount of light transmitted using photochromic materials or thermochromic materials have advantages such as no need for a power supply compared to dimming members that use liquid crystal elements or electrochromic elements. However, there are drawbacks such as slow response to changes in light, and the desired amount of light transmission cannot be set arbitrarily. In addition, when using a liquid crystal element or an electrochromic element as a light control member, it is necessary to supply power to each element from the outside, and in order to control the amount of transmitted light, to control the current and voltage A control device is required.

発電素子と液晶素子を組み合わせて自立的な光透過量調整を可能としたものがある(例えば、特許文献1参照)。   There is one that can independently adjust the amount of light transmission by combining a power generation element and a liquid crystal element (for example, see Patent Document 1).

液晶パネルに対して偏光板を介して太陽電池パネルを組み合わせて、太陽光線の透過量を制御するようにしたものがある(例えば、特許文献2参照)。   There is one in which a solar cell panel is combined with a liquid crystal panel via a polarizing plate to control the amount of transmitted sunlight (for example, see Patent Document 2).

ITO(透明電極層材料)からなる薄膜基板、透明な光電力素子、透明伝導性電極、エレクトロクロミック薄膜基板と透明電解質からなる調光素子、ITO被膜を順に積層するとともに、その両端のITO電極の端部を配線により電気的に接続する自己電力供給型調光素子がある(例えば、特許文献3参照)。   A thin film substrate made of ITO (transparent electrode layer material), a transparent photovoltaic device, a transparent conductive electrode, a light control device made of an electrochromic thin film substrate and a transparent electrolyte, and an ITO film are laminated in order, There is a self-powered dimming element in which end portions are electrically connected by wiring (see, for example, Patent Document 3).

さらに、薄膜太陽電池とエレクトロクロミック素子とを用いて光の当たったときに透過率を低下させ、自律的透過光を調整するようにした調光装置がある(例えば、特許文献4参照)。
特開2001−183616号公報 特開平8−248376号公報 特開2001−133814号公報 特開9−244072号公報
Furthermore, there is a light control device that uses a thin film solar cell and an electrochromic element to reduce the transmittance when exposed to light and adjust autonomously transmitted light (see, for example, Patent Document 4).
JP 2001-183616 A JP-A-8-248376 JP 2001-133814 A Japanese Patent Laid-Open No. 9-244072

しかし、特許文献1のものでは、透過を抑制した太陽光線のエネルギーが液晶素子に吸収され、液晶素子の温度が上昇する。そのため、組み合わせられた発電素子、例えば、色素増感型太陽電池素子を用いた場合は、太陽電池素子の温度も上昇する。色素増感型太陽電池素子は素子温度が上昇すると発電電力量が増加する特性があり、結果として液晶素子の光透過量がさらに抑制され、液晶素子に吸収される太陽光線のエネルギーが増加し、さらに温度が上昇する。このため、光の透過量はサーモクロミック材料と同じように、温度異存が大きくなるため、光量変化に対する応答性が悪化する。さらに、液晶部材は高温条件で使用すると目覚しく寿命が短くなる特性があり、以上のような構成では光量に対する自動調光の応答性が悪く、かつ寿命の短い自動調光部材しか提供できない。   However, in the thing of patent document 1, the energy of the sunlight which suppressed transmission is absorbed in a liquid crystal element, and the temperature of a liquid crystal element rises. Therefore, when a combined power generation element, for example, a dye-sensitized solar cell element is used, the temperature of the solar cell element also increases. The dye-sensitized solar cell element has a characteristic that the amount of generated power increases as the element temperature rises.As a result, the amount of light transmitted through the liquid crystal element is further suppressed, and the energy of solar rays absorbed by the liquid crystal element increases. Furthermore, the temperature rises. For this reason, since the amount of transmitted light is largely different from that of the thermochromic material, the responsiveness to a change in the amount of light is deteriorated. Further, the liquid crystal member has a characteristic that the lifetime is remarkably shortened when used under a high temperature condition. With the above configuration, the response of the automatic light adjustment with respect to the amount of light is poor and only an automatic light adjustment member with a short life can be provided.

さらに、色素増感型太陽電池素子は発電効率が低く、液晶素子などのデバイスを駆動するための十分な電力を得るためには、駆動する液晶素子よりも大きな面積の太陽電池素子の素子面積が必要であり、駆動する液晶素子と同等の面積で発電した電力で液晶素子を駆動した場合は十分な遮光性能が得られない。   Furthermore, the dye-sensitized solar cell element has low power generation efficiency, and in order to obtain sufficient power for driving a device such as a liquid crystal element, the element area of the solar cell element having a larger area than the liquid crystal element to be driven is large. It is necessary, and when the liquid crystal element is driven with the power generated in the same area as the liquid crystal element to be driven, sufficient light shielding performance cannot be obtained.

このように光の透過量を自律的に調節し、所望の光透過量を得ようとする調光部材においては、応答性が悪かったり、目的とする光透過量を適正に制御することが難しく、かつ、短寿命であるなどの問題点がある。   In such a light control member that autonomously adjusts the amount of light transmission to obtain a desired amount of light transmission, the responsiveness is poor or it is difficult to properly control the target light transmission amount. In addition, there are problems such as short life.

また、特許文献2のものでは、太陽光線の透過量を制御する制御回路が必要となり、遮断した太陽光線はデバイスで熱に変換されるため、デバイスの温度が上昇してしまうという問題がある。特許文献3のものでは、太陽光線の透過量を制御する制御回路は不要となるが、遮断した光線はデバイスで熱に変換されるため、デバイスの温度が上昇するという問題がある。同様に、特許文献4のものでは、遮断した太陽光線はデバイスで熱に変換されるため、デバイスの温度が上がってしまうという問題がある。   Moreover, in the thing of patent document 2, since the control circuit which controls the permeation | transmission amount of a sunlight ray is needed and the cut | disconnected sunlight ray is converted into heat with a device, there exists a problem that the temperature of a device will rise. In the thing of patent document 3, although the control circuit which controls the permeation | transmission amount of a solar ray becomes unnecessary, since the light ray interrupted is converted into heat with a device, there exists a problem that the temperature of a device rises. Similarly, the thing of patent document 4 has the problem that the temperature of a device will go up, since the cut | disconnected solar ray is converted into heat with a device.

本発明の目的は、外部からの電源を必要とせず、光量を検出するためのセンサーが不必要で透過光量を自律的に調整でき、かつ遮光性能が高く長寿命な透過光自動調光セル及び部材を提供することである。   An object of the present invention is to provide a transmitted light automatic dimming cell that does not require an external power source, does not require a sensor for detecting the amount of light, can autonomously adjust the amount of transmitted light, and has a high light shielding performance and a long life. It is to provide a member.

本発明の透過光自動調光セルは、光の入射により発電する光透過性の光発電素子と、印加された電気エネルギーに比例して光の透過率が下がる光透過性のエレクトロクロミック素子と、前記光発電素子と前記エレクトロクロミック素子との間に設けられ前記エレクトロクロミック素子の光の透過率に反比例して光の反射率が上がる光透過性の被膜と、前記光発電素子と前記エレクトロクロミック素子とを電気的に接続する光透過性の電気配線部材とを備えたことを特徴とする。   The transmitted light automatic dimming cell of the present invention includes a light-transmitting photovoltaic element that generates power by the incidence of light, a light-transmitting electrochromic element that reduces the light transmittance in proportion to applied electric energy, and A light-transmitting film provided between the photovoltaic element and the electrochromic element and having a light reflectance that is inversely proportional to the light transmittance of the electrochromic element; the photovoltaic element and the electrochromic element; And a light-transmitting electric wiring member for electrically connecting the two.

また、本発明の透過光自動調光セルは、光の入射により発電する光透過性の光発電素子と、印加された電気エネルギーに比例して光の透過率が上がり通過する光に対して偏光作用を有する光透過性の液晶素子と、前記光発電素子と前記液晶素子との間に設けられ前記液晶素子の電気エネルギーが印加された状態で偏光方向が前記液晶素子の偏光方向と同位相となる偏光部材と、前記光発電素子と前記エレクトロクロミック素子とを電気的に接続する光透過性の電気配線部材とを備えたことを特徴とする。   In addition, the transmitted light automatic dimming cell of the present invention includes a light-transmitting photovoltaic power generation element that generates electric power upon incidence of light, and a light that increases in light transmittance in proportion to applied electric energy and is polarized with respect to light passing therethrough. A light-transmitting liquid crystal element having an action, and the polarization direction of the liquid crystal element provided between the photovoltaic element and the liquid crystal element is the same as the polarization direction of the liquid crystal element in a state where electric energy of the liquid crystal element is applied. And a light transmissive electric wiring member that electrically connects the photovoltaic element and the electrochromic element.

さらにまた、本発明の透過光自動調光セルは、光の入射により発電する光透過性の光発電素子と、印加された電気エネルギーに応じて光の反射率が変化する光透過性のエレクトロクロミックミラー素子と、前記光発電素子と前記エレクトロクロミックミラー素子との共通の陰極を形成する光透過型導電部材とを備えたことを特徴とする。   Furthermore, the transmitted light automatic dimming cell according to the present invention includes a light transmissive photovoltaic element that generates power upon incidence of light, and a light transmissive electrochromic whose light reflectivity changes according to applied electric energy. It is characterized by comprising a mirror element and a light transmission type conductive member forming a common cathode for the photovoltaic element and the electrochromic mirror element.

本発明の透過光自動調光部材は、透明材料基材上に本発明の複数個の自動調光部材を密接して配列配置したことを特徴とする。   The transmitted light automatic light control member of the present invention is characterized in that a plurality of automatic light control members of the present invention are closely arranged on a transparent material substrate.

本発明によれば、透過光量をエレクトロクロミック素子の光の透過率及び光透過性の被膜の反射率によって透過光量を調整するので、調光部材の温度上昇が抑制できる。また、光透過性の被膜の反射光を光発電素子で再利用できるので、発電効率が悪い光発電素子を用いても効率の良い透過光自動調光セルを構成できる。   According to the present invention, since the transmitted light amount is adjusted by the light transmittance of the electrochromic element and the reflectance of the light-transmitting coating film, the temperature rise of the light control member can be suppressed. In addition, since the reflected light of the light-transmitting coating film can be reused by the photovoltaic device, an efficient transmitted light automatic dimming cell can be configured even when a photovoltaic device having poor power generation efficiency is used.

さらに、光透過性の被膜(ハーフミラー)の代わりに偏光部材及び偏光作用を有する液晶素子を用いることで光が照射されると透明になる自動調光セルや、光線の通過方向によって、透過率を変化させることのできる自動調光セルを提供できる。   Furthermore, by using a polarizing member and a liquid crystal element having a polarizing action instead of a light-transmitting film (half mirror), an automatic dimming cell that becomes transparent when irradiated with light, and a transmittance depending on a light passing direction. It is possible to provide an automatic dimming cell capable of changing the above.

さらに、光発電素子と液晶材料またはエレクトロクロミック材料を用いて構成した閉回路型の自動調光セルを格子状に形成した透過光自動調光部材(例えば、板ガラス)では部分的に光透過量を調整できる板ガラス(透過光自動調光部材)を供給でき、かつ、切断使用も可能な板ガラス(透過光自動調光部材)を提供できる。   Furthermore, a transmitted light automatic light control member (for example, a plate glass) in which a closed circuit type automatic light control cell formed using a photovoltaic element and a liquid crystal material or an electrochromic material is formed in a lattice shape partially reduces the light transmission amount. A plate glass (transmitted light automatic dimming member) that can be adjusted can be supplied, and a plate glass (transmitted light automatic dimming member) that can be used for cutting can be provided.

(第1の実施の形態)
図1は本発明の第1の実施の形態に係わる透過光自動調光セルの概略構造を示す断面図である。透過光自動調光セル11は、透明材料基材12−1、12−2の間に光透過性の光発電素子13と光透過性の被膜20と光透過性のエレクトロクロミック素子14とを積層配置して形成される。光発電素子13は、例えば薄膜アモルファスシリコン太陽電池や色素増感型太陽電池などで構成される。図1では色素増感型光発電素子である場合を示している。また、エレクトロクロミック素子14は、光透過性の液晶素子または酸化タングステンなどを用いて形成される。
(First embodiment)
FIG. 1 is a sectional view showing a schematic structure of a transmitted light automatic dimming cell according to a first embodiment of the present invention. The transmitted light automatic dimming cell 11 is formed by laminating a light transmissive photovoltaic element 13, a light transmissive film 20, and a light transmissive electrochromic element 14 between transparent material bases 12-1 and 12-2. Arranged and formed. The photovoltaic device 13 is composed of, for example, a thin film amorphous silicon solar cell or a dye-sensitized solar cell. FIG. 1 shows the case of a dye-sensitized photovoltaic device. The electrochromic element 14 is formed using a light transmissive liquid crystal element or tungsten oxide.

色素増感型の光発電素子13は、電解質溶液15と陽電極16aと陰電極16bとから構成され、光の入射により電解質溶液15で遊離した電子は、陽電極16aと陰電極16bとを通じで光発電素子13の外部へ伝えられ、電気エネルギーとして使用される。   The dye-sensitized photovoltaic device 13 is composed of an electrolyte solution 15, a positive electrode 16a, and a negative electrode 16b. Electrons liberated in the electrolyte solution 15 upon incidence of light are transmitted through the positive electrode 16a and the negative electrode 16b. It is transmitted to the outside of the photovoltaic device 13 and used as electric energy.

エレクトロクロミック素子14は、電解質17と陽電極18aと陰電極18bとから構成される。電解質17は、酸化タングステンなどのエレクトロクロミック材料を含む電解質であり、陽電極18aと陰電極18bによってエレクトロクロミック材料に電圧を印加する構造である。   The electrochromic element 14 includes an electrolyte 17, a positive electrode 18a, and a negative electrode 18b. The electrolyte 17 is an electrolyte containing an electrochromic material such as tungsten oxide, and has a structure in which a voltage is applied to the electrochromic material by the positive electrode 18a and the negative electrode 18b.

光発電素子13の陽電極16aは電気配線部材19aでエレクトロクロミック電解質17の陽電極18aと電気的に結合され、光発電素子13の陰電極16bは電気配線部材19bで陰電極18bと電気的に結合されている。電気配線部材19a、19bは、酸化インジウム、塩化インジウム、酸化錫などの光透過型導電材料で形成される。これにより、光発電素子13の電解質溶液15で発電された電気エネルギーはエレクトロクロミック素子14の電解質17へ印加することができる。   The positive electrode 16a of the photovoltaic device 13 is electrically coupled to the positive electrode 18a of the electrochromic electrolyte 17 by an electric wiring member 19a, and the negative electrode 16b of the photovoltaic device 13 is electrically connected to the negative electrode 18b by an electric wiring member 19b. Are combined. The electrical wiring members 19a and 19b are formed of a light transmissive conductive material such as indium oxide, indium chloride, or tin oxide. Thereby, the electric energy generated by the electrolyte solution 15 of the photovoltaic device 13 can be applied to the electrolyte 17 of the electrochromic device 14.

また、光発電素子13とエレクトロクロミック素子14との間には、光透過性の被膜20(以下、ハーフミラー20という)が設けられている。ハーフミラー20は、銀や錫などの金属薄膜で構成され光の反射と透過の両方の性質を持ち、エレクトロクロミック素子14の光の透過率に反比例して光の反射率が上がる光透過性の被膜である。ハーフミラー20は、エレクトロクロミック素子14の接合面に形成される。   Further, a light-transmitting film 20 (hereinafter referred to as a half mirror 20) is provided between the photovoltaic element 13 and the electrochromic element 14. The half mirror 20 is made of a metal thin film such as silver or tin, has both light reflection and transmission properties, and has a light-transmitting property that increases the light reflectance in inverse proportion to the light transmittance of the electrochromic element 14. It is a film. The half mirror 20 is formed on the joint surface of the electrochromic element 14.

このように、光発電素子13とエレクトロクロミック素子14とは、ハーフミラー20を挟み込む構造で配置されている。さらに、光発電素子13とエレクトロクロミック素子14とハーフミラー20はガラスなどの透明材料基材12で固定され封止されている。   Thus, the photovoltaic element 13 and the electrochromic element 14 are arranged in a structure that sandwiches the half mirror 20. Furthermore, the photovoltaic element 13, the electrochromic element 14, and the half mirror 20 are fixed and sealed with a transparent material substrate 12 such as glass.

このような構成を持つ透過光自動調光セル11において、光発電素子13を配置した方向から太陽光などの光が入射すると、その入射光の強度に応じて光発電素子13が電気エネルギーを発電する。発電した電気エネルギーの量は入射光の強度に比例するため、入射光の強度が強いほど発電電力量も大きくなる。光発電素子13で発電された電気エネルギーは、光透過型導電材料である電気配線部材19a、19bを通じてエレクトロクロミック素子14に印加される。   In the transmitted light automatic dimming cell 11 having such a configuration, when light such as sunlight enters from the direction in which the photovoltaic element 13 is arranged, the photovoltaic element 13 generates electric energy according to the intensity of the incident light. To do. Since the amount of generated electric energy is proportional to the intensity of incident light, the amount of generated power increases as the intensity of incident light increases. The electrical energy generated by the photovoltaic element 13 is applied to the electrochromic element 14 through the electrical wiring members 19a and 19b, which are light transmissive conductive materials.

エレクトロクロミック素子14は印加された電気エネルギー量に比例して光の透過率が下がる。すなわち、光発電素子13に強い光が照射されると光の透過率が下がり、弱い光が照射されると光の透過率が上がる。一方、ハーフミラー20はエレクトロクロミック素子14の光の透過率に反比例して光の反射率が上がる。すなわち、エレクトロクロミック素子14の光の透過率が下がれば、ハーフミラー20の光の反射率が上がり、エレクトロクロミック素子14の光の透過率に上がれば、ハーフミラー20の光の反射率は下がる。   The electrochromic element 14 has a light transmittance that decreases in proportion to the amount of applied electric energy. That is, when the photovoltaic device 13 is irradiated with strong light, the light transmittance decreases, and when weak light is irradiated, the light transmittance increases. On the other hand, the half mirror 20 has a light reflectance that is inversely proportional to the light transmittance of the electrochromic element 14. That is, if the light transmittance of the electrochromic element 14 decreases, the light reflectance of the half mirror 20 increases. If the light transmittance of the electrochromic element 14 increases, the light reflectance of the half mirror 20 decreases.

図2は、透過光自動調光セル11への照射光の強度変化に対する光の透過率の変化と透過光量の変化とを示す特性図である。光発電素子13に強い光が照射されるとエレクトロクロミック素子14とハーフミラー20との作用により光の反射率が上がり、光の透過率が下がって、一定量の光が透過することになる。また、弱い光が照射されると光の透過率が上がって、同様に一定量の光が透過することになり、照射される光の強度に対して自律的に光の透過量が変化し、透過光を一定に保つように動作する。   FIG. 2 is a characteristic diagram showing a change in the light transmittance and a change in the amount of transmitted light with respect to a change in the intensity of light irradiated to the transmitted light automatic dimming cell 11. When the photovoltaic device 13 is irradiated with strong light, the electrochromic device 14 and the half mirror 20 act to increase the light reflectance, reduce the light transmittance, and transmit a certain amount of light. In addition, when weak light is irradiated, the light transmittance increases, and a certain amount of light is transmitted in the same manner, and the amount of light transmission changes autonomously with respect to the intensity of the irradiated light, Operates to keep the transmitted light constant.

前述したように、電気配線部材19a、19bは、塩化インジウム、酸化インジウム、酸化錫などの導電性と光透過性とを有する電気配線部材で形成されるが、電気配線部材19a、19bは、光透過性のエレクトロクロミック素子14に光透過性の光発電素子13の発電電力が適正に供給できるように、その配線長と配線幅を調整して取り付けられる。   As described above, the electrical wiring members 19a and 19b are formed of an electrical wiring member having conductivity and light transmission properties such as indium chloride, indium oxide, and tin oxide, but the electrical wiring members 19a and 19b are optical fibers. The transmissive electrochromic element 14 is attached with its wiring length and wiring width adjusted so that the generated power of the light transmissive photovoltaic element 13 can be properly supplied.

すなわち、光透過性の電気配線部材19a、19bの配線は、光発電素子13から発生した電気エネルギーをエレクトロクロミック素子14に供給する場合、光発電素子13の発電電圧とエレクトロクロミック素子14の定格駆動電圧を整合させるために光透過性の電気配線部材19a、19bの配線長と配線幅とを変化させて、配線の電気抵抗を変化させ調整することで光発電素子12の発電電圧や電流をエレクトロクロミック素子14の定格駆動電圧値や電流値を整合させる。
第1の実施の形態によれば、透過光量をエレクトロクロミック素子14の光の透過率及びハーフミラー20の反射率によって透過光量を調整するので、調光部材の温度上昇が抑制できる。また、ハーフミラー20の反射光を光発電素子13で再利用できるので、発電効率が悪い光発電素子を用いても効率の良い透過光自動調光セルを提供できる。
That is, when the electric energy generated from the photovoltaic element 13 is supplied to the electrochromic element 14, the wiring of the light transmissive electrical wiring members 19 a and 19 b is connected to the generated voltage of the photovoltaic element 13 and the rated drive of the electrochromic element 14. In order to match the voltage, the wiring length and width of the light-transmitting electric wiring members 19a and 19b are changed, and the electric resistance of the wiring 12 is changed and adjusted to change the electric power generation voltage and current of the photovoltaic element 12. The rated drive voltage value and current value of the chromic element 14 are matched.
According to the first embodiment, since the transmitted light amount is adjusted by the light transmittance of the electrochromic element 14 and the reflectance of the half mirror 20, the temperature rise of the light control member can be suppressed. Moreover, since the reflected light of the half mirror 20 can be reused by the photovoltaic device 13, an efficient transmitted light automatic dimming cell can be provided even if a photovoltaic device having poor power generation efficiency is used.

(第2の実施の形態)
図3は本発明の第2の実施の形態に係わる透過光自動調光セルの概略構造を示す断面図である。透過光自動調光セル11は、透明材料基材12−1、12−2の間に光透過性の光発電素子13と偏光部材22と光透過性の液晶素子21とを配置して形成される。図1に示した第1の実施の形態と同一要素には同一符号を付し重複する説明は省略する。
(Second Embodiment)
FIG. 3 is a cross-sectional view showing a schematic structure of a transmitted light automatic dimming cell according to the second embodiment of the present invention. The transmitted light automatic dimming cell 11 is formed by disposing a light transmitting photovoltaic power generation element 13, a polarizing member 22, and a light transmitting liquid crystal element 21 between transparent material substrates 12-1 and 12-2. The The same elements as those in the first embodiment shown in FIG.

この第2の実施の形態における透過光自動調光セル11は、正面及び背面の2つの平面の一方面に照射する光線のみを選択的に透過させ、他方の平面に照射する光線は透過を阻害する特性を持つ透過光自動調光セルである。   The transmitted light automatic dimming cell 11 in the second embodiment selectively transmits only the light beam that irradiates one of the two planes of the front and back surfaces, and the light beam that irradiates the other plane impedes transmission. This is a transmitted light automatic dimming cell having the following characteristics.

光発電素子13は、例えば薄膜アモルファスシリコン太陽電池や色素増感型太陽電池などで構成される。図3では色素増感型光発電素子である場合を示している。また、液晶素子21は、印加された電気エネルギーに比例して光の透過率が上がり通過する光に対して偏光作用を有する。すなわち、液晶素子21の液晶材料23は、通過する光に対して偏光作用を持つツイストネマチック型液晶(TN型液晶)やスーパーツイストネマチック型液晶(STN型液晶)などが用いられる。   The photovoltaic device 13 is composed of, for example, a thin film amorphous silicon solar cell or a dye-sensitized solar cell. FIG. 3 shows the case of a dye-sensitized photovoltaic device. In addition, the liquid crystal element 21 has a light-polarizing effect on light passing therethrough in which light transmittance increases in proportion to applied electric energy. That is, as the liquid crystal material 23 of the liquid crystal element 21, a twisted nematic liquid crystal (TN liquid crystal) or a super twist nematic liquid crystal (STN liquid crystal) having a polarization action with respect to light passing therethrough is used.

また、光発電素子13と液晶素子21との間には偏光ガラスなどの偏光部材22があり、透過光自動調光セル11を通過する光線を偏光する作用を持つ。偏光部材22と液晶素子21との偏光方向は、液晶素子21に電気エネルギーが印加された状態で偏光方向が同位相となるようにしておく。すなわち、光の透過率が上がるように配置されている。このことから、液晶素子21に電気エネルギーが印加されない状態では光の透過率は下がり光の透過量も下がる。   Further, a polarizing member 22 such as polarizing glass is provided between the photovoltaic element 13 and the liquid crystal element 21, and has a function of polarizing a light beam passing through the transmitted light automatic dimming cell 11. The polarization directions of the polarizing member 22 and the liquid crystal element 21 are set so that the polarization directions are in phase with electric energy applied to the liquid crystal element 21. That is, they are arranged so that the light transmittance is increased. For this reason, in a state where no electrical energy is applied to the liquid crystal element 21, the light transmittance is lowered and the light transmission amount is also lowered.

このように構成された透過光自動調光セル11は、光発電素子13の方向から太陽光などの光線が入射した場合は、太陽光により光発電素子13が発電し、その電気エネルギーが光透過型導電材料である電気配線部材19a、19bを通じで液晶素子21に印加される。このため、液晶材料23が荷電によって動作するので、偏光部材22との偏光方向が一致するため光の透過率が上がり太陽光を透過させる。   In the transmitted light automatic dimming cell 11 configured in this way, when a light beam such as sunlight enters from the direction of the photovoltaic element 13, the photovoltaic element 13 generates power by sunlight, and the electric energy is transmitted through the light. It is applied to the liquid crystal element 21 through the electric wiring members 19a and 19b which are type conductive materials. For this reason, since the liquid crystal material 23 operates by charging, the polarization direction coincides with that of the polarizing member 22, so that the light transmittance is increased and sunlight is transmitted.

従って、窓ガラスなどに第2の実施の形態における透過光自動調光セル11を用いた場合は、昼間のように太陽光が窓ガラスに照射する場合は太陽光を室内に透過させる作用をもつ。また、夜間の場合は太陽光の照射が無いので、光発電素子13による発電は行われず、液晶材料23への荷電も無いので偏光部材22と液晶素子21によって光の透過率が低くなる。このとき、例えば室内で電灯などが点灯し、光線が透過光自動調光セルに照射されても、偏光部材22と液晶素子21によって光の透過が妨げられるため、光発電素子13に光線が当たらず、発電はされないため、光の透過率が上がることがない。   Therefore, when the transmitted light automatic dimming cell 11 according to the second embodiment is used for a window glass or the like, when sunlight is irradiated on the window glass as in the daytime, it has an action of transmitting sunlight into the room. . In addition, since there is no sunlight irradiation at night, no power is generated by the photovoltaic element 13 and no charge is applied to the liquid crystal material 23, so that the light transmittance is lowered by the polarizing member 22 and the liquid crystal element 21. At this time, for example, even when an electric lamp or the like is turned on indoors and the light beam is applied to the transmitted light automatic dimming cell, light transmission is prevented by the polarizing member 22 and the liquid crystal element 21, so Since no power is generated, the light transmittance does not increase.

第2の実施の形態によれば、光線の照射する方向により、選択的に光線を透過する透過光自動調光セルを提供できる。   According to the second embodiment, it is possible to provide a transmitted light automatic dimming cell that selectively transmits light according to the direction in which the light is applied.

(第3の実施の形態)
図4は本発明の第3の実施の形態に係わる透過光自動調光セルの概略構造を示す断面図である。この第3の実施の形態における透過光自動調光セル11は、図1に示した第1の実施の形態に対し、光の反射を実現するハーフミラー20に代えて、電気エネルギーによって光の反射率を変更できるエレクトロクロミックミラー素子24を使用することで、ハーフミラー20を不必要とする構成とし、簡易な構造の透過光自動調光セルとしたものである。図1に示した第1の実施の形態と同一要素には同一符号を付し重複する説明は省略する。
(Third embodiment)
FIG. 4 is a sectional view showing a schematic structure of a transmitted light automatic dimming cell according to the third embodiment of the present invention. The transmitted light automatic dimming cell 11 according to the third embodiment is different from the first embodiment shown in FIG. 1 in that light is reflected by electric energy instead of the half mirror 20 that realizes light reflection. By using the electrochromic mirror element 24 capable of changing the rate, the half mirror 20 is not required, and a transmitted light automatic dimming cell having a simple structure is obtained. The same elements as those in the first embodiment shown in FIG.

透過光自動調光セル11は、透明材料基材12−1、12−2の間に光透過性の光発電素子13とエレクトロクロミックミラー素子24とを積層配置し、しかも光発電素子13とエレクトロクロミックミラー素子24との間に両者に共通の陰極を形成する光透過型導電部材25を介挿するように形成されている。エレクトロクロミックミラー素子24は、印加された電気エネルギーに応じて光の反射率が変化する光透過性を有した素子である。   In the transmitted light automatic dimming cell 11, a light transmitting photovoltaic element 13 and an electrochromic mirror element 24 are laminated between the transparent material bases 12-1 and 12-2, and the photovoltaic element 13 and the electrochromic element 24 are electrically connected. A light transmission type conductive member 25 that forms a cathode common to both the chromic mirror element 24 is interposed. The electrochromic mirror element 24 is an element having optical transparency in which the reflectance of light changes according to applied electric energy.

陽電極16aは、光透過型導電材料である電気配線部材19でエレクトロクロミックミラー素子24の陽電極18aと電気的に接続されている。また、エレクトロクロミックミラー素子24の電解液26は、電気エネルギーの印加によって反射率が変化する特性を持つ。   The positive electrode 16a is electrically connected to the positive electrode 18a of the electrochromic mirror element 24 by an electric wiring member 19 which is a light transmission type conductive material. In addition, the electrolyte solution 26 of the electrochromic mirror element 24 has a characteristic that the reflectance is changed by application of electric energy.

光透過型導電部材25は、光発電素子13の電解質溶液15とエレクトロクロミックミラー素子24の電解液26に挟まれており、電解質溶液15と電解液26との分離を行ない、かつ、それぞれの光発電素子13とエレクトロクロミックミラー素子24との共通の陰電極を構成している。このような構成を用いることで、それぞれの光発電素子13とエレクトロクロミックミラー素子24との陰電極間を結ぶ電気配線部材が不必要になる。   The light transmissive conductive member 25 is sandwiched between the electrolyte solution 15 of the photovoltaic element 13 and the electrolyte solution 26 of the electrochromic mirror element 24, and separates the electrolyte solution 15 and the electrolyte solution 26 from each other. A common negative electrode for the power generation element 13 and the electrochromic mirror element 24 is formed. By using such a configuration, an electric wiring member that connects the negative electrodes of the respective photovoltaic elements 13 and the electrochromic mirror element 24 becomes unnecessary.

第3の実施の形態によれば、より簡易な構造で、第1の実施の形態と同様の効果が得られる。さらに、エレクトロクロミックミラー素子24で反射された光線が、再度、光発電素子13を通過し発電効果を得ることができる。すなわち、光発電素子13の発電効率が低くても、反射した光線を発電に再利用することによってエレクトロクロミックミラー素子24を駆動するために十分な電気エネルギーを得ることができる。   According to the third embodiment, the same effects as those of the first embodiment can be obtained with a simpler structure. Furthermore, the light beam reflected by the electrochromic mirror element 24 can pass through the photovoltaic element 13 again to obtain a power generation effect. That is, even if the power generation efficiency of the photovoltaic device 13 is low, sufficient electric energy can be obtained to drive the electrochromic mirror device 24 by reusing the reflected light for power generation.

(第4の実施の形態)
図5は本発明の第4の実施の形態に係わる透過光自動調光部材26の概略構造を示す断面図である。第4の実施の形態における透過光自動調光部材26は、透明材料基材12−1、12−2の間に第1の実施の形態ないし第3の実施の形態のいずれか一の複数個の透過光自動調光セル11を密接して配列配置したものである。
(Fourth embodiment)
FIG. 5 is a sectional view showing a schematic structure of a transmitted light automatic light control member 26 according to the fourth embodiment of the present invention. The transmitted light automatic light control member 26 in the fourth embodiment is a plurality of any one of the first embodiment to the third embodiment between the transparent material substrates 12-1 and 12-2. The transmitted light automatic dimming cells 11 are closely arranged.

図5において、複数個の透過光自動調光セル11a〜11gが透明材料基材12−1、12−2の間に密接して配列配置されている。図5では第3の実施の形態における透過光自動調光セル11を配列した場合を示している。複数個の透過光自動調光セル11a〜11fをガラスなどの透明材料基材12−1、12−2で固定し封止することで、部分的に光透過量が変化する透過光自動調光部材26を形成する。   In FIG. 5, a plurality of transmitted light automatic dimming cells 11a to 11g are closely arranged between the transparent material bases 12-1 and 12-2. FIG. 5 shows a case where the transmitted light automatic dimming cells 11 according to the third embodiment are arranged. Transmitted light automatic dimming in which the amount of transmitted light partially changes by fixing and sealing a plurality of transmitted light automatic dimming cells 11a to 11f with transparent material bases 12-1 and 12-2 such as glass. The member 26 is formed.

図6は、複数個の透過光自動調光セル11を格子状に配列して透過光自動調光部材26を形成した斜視図である。この透過光自動調光部材26は、複数個の透過光自動調光セル11a〜11fを格子状に配列し板ガラスとした場合の一例である。この一例では、透過光自動調光セル11が格子状に配置されているが、配置は任意であり、蜂の巣状に配置することも可能であるし、調光性能よりデザインを重視して、任意の図形を構成するようにセルを配置することもできる。このような構成の板ガラスでは、部分的に光透過量が変化する板ガラスを提供できる。   FIG. 6 is a perspective view in which a plurality of transmitted light automatic light control cells 11 are arranged in a grid pattern to form a transmitted light automatic light control member 26. This transmitted light automatic light control member 26 is an example of a case where a plurality of transmitted light automatic light control cells 11a to 11f are arranged in a lattice shape to form a plate glass. In this example, the transmitted light automatic dimming cells 11 are arranged in a lattice shape, but the arrangement is arbitrary, and can be arranged in a honeycomb shape. It is also possible to arrange cells so as to constitute the figure. The plate glass having such a configuration can provide a plate glass in which the amount of light transmission partially changes.

図7は、部分的に光透過量が変化する透過光自動調光部材26への照射光強度分布と光透過分布の説明図であり、図7(a)は照射光強度分布図、図7(b)は光透過率分布図である。図7(a)に示すように、透過光自動調光部材26である板ガラスに照射する光量が符号Aから符号Eへ徐々に光の強度が減少するような一定の光強度ではない場合(ガラスの一部分だけに光があたっている場合など)でも、それに応じて、図7(b)に示すように、符号aから符号eへ徐々に光の透過率が増加するような板ガラスを構成できるため、全面で一様な透過光量を実現する板ガラスを提供することができる。   FIG. 7 is an explanatory diagram of the irradiation light intensity distribution and the light transmission distribution to the transmitted light automatic dimming member 26 in which the light transmission amount partially changes, and FIG. 7A is an irradiation light intensity distribution diagram. (B) is a light transmittance distribution map. As shown to Fig.7 (a), when the light quantity irradiated to the plate glass which is the transmitted light automatic light control member 26 is not constant light intensity from which the intensity | strength of light reduces gradually from the code | symbol A to the code | symbol E (glass) Even when only a part of the light is shining, a plate glass in which the light transmittance gradually increases from the symbol a to the symbol e can be configured as shown in FIG. 7B. It is possible to provide a plate glass that realizes a uniform transmitted light amount over the entire surface.

また、透過光自動調光セル11は、独立閉回路小型セルであるため大型板ガラスを製作後に、任意の大きさに切断使用しても、切断によって電気的に分断された透過光自動調光セル11以外は自動調光の機能を発揮するため、板ガラスの製作時に必要とする板ガラスの大きさを設定する必要がなく、かつ、任意の窓枠サイズに応じて、切断使用できるなどの作業上の大きな利点を享受することができる。さらに、曲面を持つ板ガラスなどへの応用も可能である。   Further, since the transmitted light automatic dimming cell 11 is an independent closed circuit small cell, the transmitted light automatic dimming cell which is electrically divided by cutting even if it is cut to an arbitrary size after manufacturing a large plate glass. Other than 11, since the function of automatic light control is exhibited, it is not necessary to set the size of the plate glass required when producing the plate glass, and it can be used for cutting according to any window frame size. You can enjoy great benefits. Furthermore, it can be applied to flat glass having a curved surface.

第4の実施の形態によれば、複数個の透過光自動調光セルを平面または曲面に連続的に配列し、かつ、電気的に独立して密接して配置し、1つの透過光自動調光部材26を構成する構造をもつことで、部分的な調光性能を実現することができる。さらに、このように構成された透過光自動調光部材26は任意の大きさに切断されても、切断されたそれぞれの部材が自動調光性能を発揮できるため、透過光自動調光部材26の製作後でも任意の大きさに加工できる。   According to the fourth embodiment, a plurality of transmitted light automatic dimming cells are continuously arranged on a plane or a curved surface, and are arranged in close proximity electrically independently to each other. By having the structure constituting the optical member 26, partial light control performance can be realized. Furthermore, even if the transmitted light automatic light adjustment member 26 configured in this way is cut to an arbitrary size, each of the cut members can exhibit automatic light adjustment performance. It can be processed to any size even after production.

本発明の第1の実施の形態に係わる透過光自動調光セルの概略構造を示す断面図。Sectional drawing which shows schematic structure of the transmitted-light automatic light control cell concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態における透過光自動調光セルへの照射光の強度変化に対する光の透過率の変化と透過光量の変化とを示す特性図。The characteristic view which shows the change of the transmittance | permeability of light with respect to the intensity | strength change of the irradiation light to the transmitted light automatic light control cell in the 1st Embodiment of this invention, and the change of transmitted light amount. 本発明の第2の実施の形態に係わる透過光自動調光セルの概略構造を示す断面図。Sectional drawing which shows schematic structure of the transmitted light automatic light control cell concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係わる透過光自動調光セルの概略構造を示す断面図。Sectional drawing which shows schematic structure of the transmitted light automatic light control cell concerning the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係わる透過光自動調光部材の一例の概略構造を示す断面図。Sectional drawing which shows schematic structure of an example of the transmitted light automatic light control member concerning the 4th Embodiment of this invention. 本発明の第4の実施の形態に係わる透過光自動調光部材の他の一例の構造図。The structural diagram of another example of the transmitted light automatic light control member according to the fourth embodiment of the present invention. 本発明の第4の実施の形態における部分的に光透過量が変化する透過光自動調光部材への照射光強度分布と光透過分布の説明図。Explanatory drawing of the irradiation light intensity distribution and light transmission distribution to the transmitted-light automatic light control member from which the light transmission amount changes partially in the 4th Embodiment of this invention.

符号の説明Explanation of symbols

11…透過光自動調光セル、12−1、12−2…透明材料基材、13…光発電素子、14…エレクトロクロミック素子、15…電解質溶液、16a…陽電極、16b…陰電極、17…電解質、18a…陽電極、18b…陰電極、19…電気配線部材、20…ハーフミラー、21…液晶素子、22…偏光部材、23…液晶材料、24…エレクトロクロミックミラー素子、25…光透過型導電部材、26…電解液 DESCRIPTION OF SYMBOLS 11 ... Transmitted light automatic light control cell, 12-1, 12-2 ... Transparent material base material, 13 ... Photovoltaic element, 14 ... Electrochromic element, 15 ... Electrolyte solution, 16a ... Positive electrode, 16b ... Negative electrode, 17 ... electrolyte, 18a ... positive electrode, 18b ... negative electrode, 19 ... electric wiring member, 20 ... half mirror, 21 ... liquid crystal element, 22 ... polarizing member, 23 ... liquid crystal material, 24 ... electrochromic mirror element, 25 ... light transmission Type conductive member, 26 ... electrolyte

Claims (7)

光の入射により発電する光透過性の光発電素子と、印加された電気エネルギーに比例して光の透過率が下がる光透過性のエレクトロクロミック素子と、前記光発電素子と前記エレクトロクロミック素子との間に設けられ前記エレクトロクロミック素子の光の透過率に反比例して光の反射率が上がる光透過性の被膜と、前記光発電素子と前記エレクトロクロミック素子とを電気的に接続する光透過性の電気配線部材とを備えたことを特徴とする透過光自動調光セル。 A light-transmitting photovoltaic device that generates power upon incidence of light; a light-transmitting electrochromic device that reduces light transmittance in proportion to applied electrical energy; and the photovoltaic device and the electrochromic device. A light-transmitting film that is provided between the photovoltaic element and the electrochromic element, and a light-transmitting film that increases the light reflectance in inverse proportion to the light transmittance of the electrochromic element. An transmitted light automatic dimming cell comprising an electrical wiring member. 光の入射により発電する光透過性の光発電素子と、印加された電気エネルギーに比例して光の透過率が上がり通過する光に対して偏光作用を有する光透過性の液晶素子と、前記光発電素子と前記液晶素子との間に設けられ前記液晶素子の電気エネルギーが印加された状態で偏光方向が前記液晶素子の偏光方向と同位相となる偏光部材と、前記光発電素子と前記エレクトロクロミック素子とを電気的に接続する光透過性の電気配線部材とを備えたことを特徴とする透過光自動調光セル。 A light-transmitting photovoltaic element that generates electric power upon incidence of light; a light-transmitting liquid crystal element that has a light-polarizing effect on light that passes through light that increases in proportion to applied electrical energy; A polarizing member provided between the power generation element and the liquid crystal element, the polarization direction of which is in phase with the polarization direction of the liquid crystal element in a state where electric energy of the liquid crystal element is applied; the photovoltaic element and the electrochromic A transmitted light automatic dimming cell comprising a light transmissive electrical wiring member for electrically connecting an element. 光の入射により発電する光透過性の光発電素子と、印加された電気エネルギーに応じて光の反射率が変化する光透過性のエレクトロクロミックミラー素子と、前記光発電素子と前記エレクトロクロミックミラー素子との共通の陰極を形成する光透過型導電部材とを備えたことを特徴とする透過光自動調光セル。 A light-transmitting photovoltaic element that generates electricity upon incidence of light, a light-transmitting electrochromic mirror element that changes the reflectance of light according to applied electric energy, the photovoltaic element, and the electrochromic mirror element And a light-transmitting conductive member that forms a common cathode with the light-transmitting conductive member. 前記光透過性の被膜は、銀、錫、水銀などの単一金属、またはその他の金属を含む合金を蒸着またはメッキ処理をしたもの、または、光反射性を有する樹脂などの有機材料を塗布したものであることを特徴とする請求項1記載の透過光自動調光セル。 The light-transmitting film is formed by depositing or plating a single metal such as silver, tin, or mercury, or an alloy containing another metal, or an organic material such as a resin having light reflectivity. The transmitted light automatic dimming cell according to claim 1, wherein the transmitted light automatic dimming cell. 前記光発電素子は、薄型アモルファスシリコン光発電素子または色素増感型光発電素子で構成されることを特徴とする請求項1ないし3のいずれか一記載の透過光自動調光セル。 The transmitted light automatic dimming cell according to any one of claims 1 to 3, wherein the photovoltaic element is composed of a thin amorphous silicon photovoltaic element or a dye-sensitized photovoltaic element. 前記電気配線部材は、塩化インジウム、酸化インジウム、酸化錫などの導電性と光透過性とを有する電気配線部材であり、光透過性のエレクトロクロミック素子または液晶素子に光透過性の光発電素子の発電電力が適正に供給できるように、その配線長と配線幅を調整して取り付けられることを特徴とする請求項1または2記載の透過光自動調光セル。 The electric wiring member is an electric wiring member having conductivity and light transmission properties such as indium chloride, indium oxide, and tin oxide. The light transmission electrochromic device or the liquid crystal device has a light transmission photovoltaic device. 3. The transmitted light automatic dimming cell according to claim 1, wherein the transmission light automatic dimming cell is attached by adjusting a wiring length and a wiring width so that the generated power can be properly supplied. 透明材料基材上に前記請求項1ないし6のいずれか一の複数個の透過光自動調光セルを密接して配列配置したことを特徴とする透過光自動調光部材。
A transmitted light automatic light control member, wherein a plurality of transmitted light automatic light control cells according to any one of claims 1 to 6 are closely arranged on a transparent material substrate.
JP2005060617A 2005-03-04 2005-03-04 Automatic light control cell and member for transmitted light Pending JP2006243485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060617A JP2006243485A (en) 2005-03-04 2005-03-04 Automatic light control cell and member for transmitted light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060617A JP2006243485A (en) 2005-03-04 2005-03-04 Automatic light control cell and member for transmitted light

Publications (1)

Publication Number Publication Date
JP2006243485A true JP2006243485A (en) 2006-09-14

Family

ID=37049945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060617A Pending JP2006243485A (en) 2005-03-04 2005-03-04 Automatic light control cell and member for transmitted light

Country Status (1)

Country Link
JP (1) JP2006243485A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234863A (en) * 2006-03-01 2007-09-13 Toyota Motor Corp See-through solar cell module
JP2008258436A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Solar power generator
JP2009289832A (en) * 2008-05-27 2009-12-10 Hitachi Maxell Ltd Solar cell module
JP2010517100A (en) * 2007-01-24 2010-05-20 レイブンブリック,エルエルシー Temperature response switching type optical down-converting filter
JP2011526378A (en) * 2008-06-25 2011-10-06 ソラダイム, インコーポレイテッド Many window glass dynamic window frames and methods of manufacturing the same
EP2449425A1 (en) * 2009-07-02 2012-05-09 TPK Touch Solutions Inc. Display and polarizer capable of photo-electric conversion
KR101199504B1 (en) 2010-02-24 2012-11-14 한국과학기술원 Smart Window Module and Biomimetic Window System Combining the Same Modules
JP2013522900A (en) * 2010-03-16 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Photovoltaic device with switchable light / reflection
US8634137B2 (en) 2008-04-23 2014-01-21 Ravenbrick Llc Glare management of reflective and thermoreflective surfaces
US8643795B2 (en) 2009-04-10 2014-02-04 Ravenbrick Llc Thermally switched optical filter incorporating a refractive optical structure
US8665414B2 (en) 2008-08-20 2014-03-04 Ravenbrick Llc Methods for fabricating thermochromic filters
US8699114B2 (en) 2010-06-01 2014-04-15 Ravenbrick Llc Multifunctional building component
US8755105B2 (en) 2007-07-11 2014-06-17 Ravenbrick Llc Thermally switched reflective optical shutter
US8760750B2 (en) 2007-12-20 2014-06-24 Ravenbrick Llc Thermally switched absorptive window shutter
US8828176B2 (en) 2010-03-29 2014-09-09 Ravenbrick Llc Polymer stabilized thermotropic liquid crystal device
US8867132B2 (en) 2009-10-30 2014-10-21 Ravenbrick Llc Thermochromic filters and stopband filters for use with same
US8908267B2 (en) 2007-09-19 2014-12-09 Ravenbrick, Llc Low-emissivity window films and coatings incorporating nanoscale wire grids
US8947760B2 (en) 2009-04-23 2015-02-03 Ravenbrick Llc Thermotropic optical shutter incorporating coatable polarizers
JP2015138135A (en) * 2014-01-22 2015-07-30 株式会社アツミテック Self-supporting lighting control system
US9116302B2 (en) 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
CN105534259A (en) * 2016-01-18 2016-05-04 潘正高 Intelligent control light-pervious curtain based on graphene
US9341912B2 (en) 2012-03-13 2016-05-17 View, Inc. Multi-zone EC windows
JP2016524343A (en) * 2013-07-11 2016-08-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Optical device with power supply system
WO2017126683A1 (en) * 2016-01-21 2017-07-27 学校法人東京理科大学 Transmission type thin film solar cell
US10247936B2 (en) 2009-04-10 2019-04-02 Ravenbrick Llc Thermally switched optical filter incorporating a guest-host architecture
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234863A (en) * 2006-03-01 2007-09-13 Toyota Motor Corp See-through solar cell module
JP2010517100A (en) * 2007-01-24 2010-05-20 レイブンブリック,エルエルシー Temperature response switching type optical down-converting filter
US8593581B2 (en) 2007-01-24 2013-11-26 Ravenbrick Llc Thermally switched optical downconverting filter
JP2008258436A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Solar power generator
US8755105B2 (en) 2007-07-11 2014-06-17 Ravenbrick Llc Thermally switched reflective optical shutter
US8908267B2 (en) 2007-09-19 2014-12-09 Ravenbrick, Llc Low-emissivity window films and coatings incorporating nanoscale wire grids
US8760750B2 (en) 2007-12-20 2014-06-24 Ravenbrick Llc Thermally switched absorptive window shutter
US8634137B2 (en) 2008-04-23 2014-01-21 Ravenbrick Llc Glare management of reflective and thermoreflective surfaces
JP2009289832A (en) * 2008-05-27 2009-12-10 Hitachi Maxell Ltd Solar cell module
US9116302B2 (en) 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
JP2011526378A (en) * 2008-06-25 2011-10-06 ソラダイム, インコーポレイテッド Many window glass dynamic window frames and methods of manufacturing the same
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same
US9341909B2 (en) 2008-06-25 2016-05-17 View, Inc. Multi-pane dynamic window and method for making same
US9110345B2 (en) 2008-06-25 2015-08-18 View, Inc. Multi-pane dynamic window and method for making same
US8749870B2 (en) 2008-06-25 2014-06-10 View, Inc. Multi-pane dynamic window and method for making same
US9618819B2 (en) 2008-06-25 2017-04-11 View, Inc. Multi-pane dynamic window and method for making same
US10437126B2 (en) 2008-06-25 2019-10-08 View, Inc. Multi-pane dynamic window and method for making same
US8665414B2 (en) 2008-08-20 2014-03-04 Ravenbrick Llc Methods for fabricating thermochromic filters
US9188804B2 (en) 2008-08-20 2015-11-17 Ravenbrick Llc Methods for fabricating thermochromic filters
US10247936B2 (en) 2009-04-10 2019-04-02 Ravenbrick Llc Thermally switched optical filter incorporating a guest-host architecture
US8643795B2 (en) 2009-04-10 2014-02-04 Ravenbrick Llc Thermally switched optical filter incorporating a refractive optical structure
US8947760B2 (en) 2009-04-23 2015-02-03 Ravenbrick Llc Thermotropic optical shutter incorporating coatable polarizers
EP2449425A4 (en) * 2009-07-02 2015-04-15 Tpk Touch Solutions Inc Display and polarizer capable of photo-electric conversion
EP2449425A1 (en) * 2009-07-02 2012-05-09 TPK Touch Solutions Inc. Display and polarizer capable of photo-electric conversion
US8867132B2 (en) 2009-10-30 2014-10-21 Ravenbrick Llc Thermochromic filters and stopband filters for use with same
KR101199504B1 (en) 2010-02-24 2012-11-14 한국과학기술원 Smart Window Module and Biomimetic Window System Combining the Same Modules
JP2013522900A (en) * 2010-03-16 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Photovoltaic device with switchable light / reflection
US9905709B2 (en) 2010-03-16 2018-02-27 Philips Lighting Holdings B.V. Photovoltaic cell device with switchable lighting/reflection
US8828176B2 (en) 2010-03-29 2014-09-09 Ravenbrick Llc Polymer stabilized thermotropic liquid crystal device
US8699114B2 (en) 2010-06-01 2014-04-15 Ravenbrick Llc Multifunctional building component
US9256085B2 (en) 2010-06-01 2016-02-09 Ravenbrick Llc Multifunctional building component
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US9341912B2 (en) 2012-03-13 2016-05-17 View, Inc. Multi-zone EC windows
US11078721B2 (en) 2012-03-13 2021-08-03 View, Inc. Multi-zone EC windows
US10914118B2 (en) 2012-03-13 2021-02-09 View, Inc. Multi-zone EC windows
US11306532B2 (en) 2012-03-13 2022-04-19 View, Inc. Multi-zone EC windows
US10301871B2 (en) 2012-03-13 2019-05-28 View, Inc. Multi-zone EC windows
US11899330B2 (en) 2012-03-13 2024-02-13 View, Inc. Multi-zone EC windows
JP2016524343A (en) * 2013-07-11 2016-08-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Optical device with power supply system
CN106030398A (en) * 2014-01-22 2016-10-12 株式会社渥美精机 Self-dimming system
CN106030398B (en) * 2014-01-22 2019-04-23 株式会社渥美精机 From principal mode light adjusting system
US9678368B2 (en) 2014-01-22 2017-06-13 Atsumitec Co., Ltd. Self-dimming system
WO2015111630A1 (en) * 2014-01-22 2015-07-30 株式会社アツミテック Self-dimming system
JP2015138135A (en) * 2014-01-22 2015-07-30 株式会社アツミテック Self-supporting lighting control system
CN105534259A (en) * 2016-01-18 2016-05-04 潘正高 Intelligent control light-pervious curtain based on graphene
JPWO2017126683A1 (en) * 2016-01-21 2018-11-08 学校法人東京理科大学 Transmission type thin film solar cell
WO2017126683A1 (en) * 2016-01-21 2017-07-27 学校法人東京理科大学 Transmission type thin film solar cell
JP7093988B2 (en) 2016-01-21 2022-07-01 公立大学法人公立諏訪東京理科大学 Transmissive thin film solar cell

Similar Documents

Publication Publication Date Title
JP2006243485A (en) Automatic light control cell and member for transmitted light
EP2548232B1 (en) Photovoltaic cell device with switchable lighting
ES2774573T3 (en) Photovoltaic module
JP4128528B2 (en) Transparent plane
US20180231867A1 (en) Lens device
KR20120117409A (en) Window integrated solar cell module
JP2009289832A (en) Solar cell module
JP2007088280A (en) Transmissive solar battery module
US8884156B2 (en) Solar energy harvesting device using stimuli-responsive material
Liu et al. A review of advanced architectural glazing technologies for solar energy conversion and intelligent daylighting control
JP2020507814A (en) Transparent photovoltaic coating for electrochromic devices
KR20050089380A (en) Smart window apparatus
WO2017061448A1 (en) Optical waveguide device, photoelectric conversion device, architectural structure, electronic apparatus and light-emitting device
US9547212B2 (en) Electrochromic device comprising an integrated heating system
KR101074782B1 (en) Dye-sensitized solar cell module
JP4924724B2 (en) Solar panel
US20110194040A1 (en) Auto light-shading system
WO2016185684A1 (en) Optical device
JPWO2019172133A1 (en) Electrochromic elements and smart windows
KR102204686B1 (en) transparent solar cell and rear-reflective transparent solar cell module used the same
CN112556213B (en) Variable transmittance heliostat device and control method
CN215729178U (en) Electronic curtain structure
CN111338103B (en) Electric control dimming mirror and control method thereof
JP2006041291A (en) Light emitting module and system
KR101518002B1 (en) Film for controlling penetration of light comprising photovoltaic device and articles comprising the same