WO2017126581A1 - 被動形流体機械の配管 - Google Patents

被動形流体機械の配管 Download PDF

Info

Publication number
WO2017126581A1
WO2017126581A1 PCT/JP2017/001663 JP2017001663W WO2017126581A1 WO 2017126581 A1 WO2017126581 A1 WO 2017126581A1 JP 2017001663 W JP2017001663 W JP 2017001663W WO 2017126581 A1 WO2017126581 A1 WO 2017126581A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
bend
inlet pipe
piping
fluid machine
Prior art date
Application number
PCT/JP2017/001663
Other languages
English (en)
French (fr)
Inventor
中庭 彰宏
彰範 田▲崎▼
Original Assignee
三菱重工業株式会社
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工コンプレッサ株式会社 filed Critical 三菱重工業株式会社
Priority to EP17741458.8A priority Critical patent/EP3392510B1/en
Priority to US16/071,678 priority patent/US20190032833A1/en
Publication of WO2017126581A1 publication Critical patent/WO2017126581A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • F15D1/04Arrangements of guide vanes in pipe elbows or duct bends; Construction of pipe conduit elements for elbows with respect to flow, e.g. for reducing losses of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/292Three-dimensional machined; miscellaneous tapered

Definitions

  • the present invention relates to the piping of the driven fluid machine and is devised so as to realize space saving.
  • centrifugal compressors are used in plants such as petrochemical, chemical and air separation.
  • One type of centrifugal compressor is a single-shaft multistage centrifugal compressor.
  • the single-shaft multistage centrifugal compressor includes a plurality of impellers on a single shaft in multiple stages along the axial direction, and compresses fluid in stages.
  • FIG. 12 is a schematic perspective view
  • FIG. 13 is an arrangement configuration diagram.
  • a uniaxial multistage centrifugal compressor 3 is supported by a gantry 2 provided on a foundation (ground) 1. That is, the single-shaft multistage centrifugal compressor 3 is installed at an upper position when viewed from the foundation (ground) 1.
  • the single-shaft multistage centrifugal compressor 3 is supplied with fluid through a supply pipe 11 arranged horizontally along the foundation 1, a bend (bent pipe) 12, and an inlet pipe 13 arranged vertically.
  • the supply pipe 11, the bend 12 and the inlet pipe 13 are circular pipes (tubes having a circular cross section perpendicular to the pipe axis).
  • the inlet pipe 13 is a pipe connected to a suction port provided in the casing of the single-shaft multistage centrifugal compressor 3, and extends downward in the vertical direction when viewed from the casing.
  • the fluid supplied through the supply pipe 11 flows through the inlet pipe 13 after the traveling direction of the bend 12 is bent by 90 °. Since the fluid flows while bending in the bend 12, as shown in FIG. 14, the flow velocity V1 on the inner peripheral side of the bend 12 is different from the flow velocity V2 on the outer peripheral side, which causes vortices and separation to disturb the flow of the fluid. .
  • the fluid in which the flow including the vortex and the like is turbulent in this manner is weakened while the fluid flows through the straightly extending inlet pipe 13, and the fluid flows in the uniaxial multistage centrifugal compressor 3 in a state where the flow velocity becomes substantially uniform. Sucked inside. That is, the fluid is sucked into the single-shaft multistage centrifugal compressor 3 with the flow at the compressor inlet made uniform.
  • the inlet pipe 13 is provided to weaken the vortex generated by circulating the bend 12.
  • the diameter (inner diameter) of the supply pipe 11 is D and the axial length of the inlet pipe 13 is L
  • the inlet pipe 13 is normally (conventional) so that L ⁇ 3D.
  • the axial length is set.
  • the axial length of the inlet pipe 13 is insufficient, a fluid whose turbulent flow or the like is disturbed is sucked into the single-shaft multistage centrifugal compressor 3, so that the performance of the compressor is lowered and the operating range is reduced. It is necessary that the axial length of the inlet pipe 13 is not insufficient.
  • the present invention can reduce the axial length of the inlet pipe and save space by devising the shape of the pipe of the driven fluid machine while reliably suppressing fluid disturbance. It is characterized by providing a devised piping for a driven fluid machine.
  • the present invention for solving the above problems
  • a pipe comprising an inlet pipe connected to a suction port provided in a casing of a driven fluid machine, a supply pipe for supplying fluid, and a bend connecting the supply pipe and the inlet pipe
  • the bend has a shape in which a pipe width in a plane including the pipe axis of the inlet pipe and the pipe axis of the supply pipe gradually decreases from the upstream side part to the bent part.
  • the present invention also provides The bend gradually decreases in width in a plane including the pipe axis of the inlet pipe and the pipe axis of the supply pipe as it goes from the upstream side to the bent part, and the pipe axis of the inlet pipe and the supply pipe
  • the pipe width in the plane including the pipe axis of the inlet pipe is gradually increased with respect to the plane including the pipe axis.
  • the present invention also provides The bend has the same pipe cross-sectional area from the upstream portion to the bent portion.
  • the present invention also provides In the bend, a plate-like rectifying member that is arranged along the fluid flow direction and guides the fluid is arranged.
  • the present invention also provides
  • the driven fluid machine is a single-shaft multi-stage centrifugal compressor,
  • the inlet pipe is arranged in the vertical direction,
  • the supply pipe is arranged in a horizontal direction.
  • the pipe width in the plane including the pipe axis of the inlet pipe and the pipe axis of the supply pipe gradually decreases from the upstream side part to the bent part.
  • FIG. IV-IV sectional view of FIG. VV sectional view of FIG. FIG. 6 is a sectional view taken along line VI-VI in FIG. 3. VII-VII sectional view of FIG. VIII-VIII sectional view of FIG. Sectional drawing which shows an example of the bend as Example 2 of this invention. Sectional drawing which shows the other example of the bend as Example 2 of this invention. Sectional drawing which shows the XI-XI cross section of FIG.
  • the schematic perspective view which shows an example of the arrangement
  • Example 1 shows an example in which a single-shaft multistage centrifugal compressor is employed as a driven fluid machine.
  • FIG. 1 is a schematic perspective view showing an example of an arrangement state
  • FIG. 2 is an arrangement configuration diagram.
  • a uniaxial multistage centrifugal compressor 3 is supported by a gantry 2 provided on a foundation (ground) 1. That is, the single-shaft multistage centrifugal compressor 3 is installed at an upper position when viewed from the foundation (ground) 1.
  • the uniaxial multistage centrifugal compressor 3 is supplied with fluid through a supply pipe 111 arranged horizontally along the foundation 1, a bend (bent pipe) 112, and an inlet pipe 113 which is a straight pipe arranged vertically.
  • the inlet pipe 113 is a pipe connected to the suction port 3b provided in the casing 3a of the uniaxial multistage centrifugal compressor 3, and extends downward in the vertical direction when viewed from the casing 3a.
  • the supply pipe 111 and the inlet pipe 113 are connected via a bend 112, and the fluid supplied through the supply pipe 111 flows through the inlet pipe 113 after the traveling direction is bent 90 ° in the bend 112, and is uniaxially multistage. It is sucked into the centrifugal compressor 3.
  • the pipe shape of the supply pipe 111 is a circular pipe (a pipe having a circular cross section perpendicular to the pipe axis) as in the conventional one, but the pipe shapes of the bend 112 and the inlet pipe 113 are different from the conventional one. ing.
  • the vertical cross section is a surface including the pipe axis of the inlet pipe 113 arranged vertically and the pipe axis of the supply pipe 111 arranged horizontally.
  • the horizontal cross section is orthogonal to the plane (vertical cross section) including the pipe axis of the inlet pipe 113 arranged vertically and the pipe axis of the supply pipe 111 arranged horizontally, and the supply pipe
  • the surface includes 111 tube axes.
  • FIGS. 3 to 7 The shape of the bend 112 will be described with reference to FIGS. 3 to 7 as well as FIGS. 3 is a sectional view of the bend 112 taken along the vertical section
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3
  • FIG. 5 is a sectional view taken along the line VV in FIG.
  • FIG. 7 is a sectional view taken along the line VII-VII in FIG.
  • the portion connected to the supply pipe 111 is the upstream side portion 112a, and the portion bent 90 ° from the horizontal direction and directed upward in the vertical direction is the bent portion 112b.
  • the portion connected to 113 is the downstream side portion 112c.
  • the bend 112 extends from the upstream side portion 112a to the bent portion 112b.
  • the tube width in the vertical section is gradually reduced from D to d (see FIG. 3)
  • the bend 112 has the same pipe cross-sectional area (the cross-sectional areas shown in FIGS. 4, 5, and 6) from the upstream side portion 112a to the bent portion 112b.
  • the pipe cross-sectional area is a pipe cross-sectional area along a plane orthogonal to the vertical cross section and the horizontal cross section, that is, a pipe cross-sectional area along a plane orthogonal to the flow direction of the fluid flowing in the bend 112.
  • the cross-sectional shape of the downstream side portion 112c is as shown in FIG. 7, and the bent portion 112b having the cross-sectional shape shown in FIG. 6 is bent 90 ° and rises upward.
  • the bent portion 112b of the bend 112 has a narrow pipe width d in the vertical cross section, so that the difference between the flow velocity V11 on the inner peripheral side and the flow velocity V12 on the outer peripheral side of the bend 112 is shown in FIG. Becomes smaller and less vortices and separation occur.
  • the tube width of the bent portion of the bend is as large as D, and the difference between the flow velocity V1 on the inner peripheral side and the flow velocity V2 on the outer peripheral side is large, and many vortices and separation occur. .
  • the bend 112 has the same pipe cross-sectional area from the upstream side portion 112a to the bent portion 112b and further to the downstream side portion 112c. For this reason, the flow velocity of the fluid flowing from the upstream side portion 112a through the curved portion 112b to the downstream side portion 112c is constant from the upstream side portion 112a through the curved portion 112b to the downstream side portion 112c.
  • the cross-sectional shape of the inlet pipe 113 (see FIG. 8, which is a cross-sectional view taken along the line VIII-VIII in FIG. 2) is the same as the cross-sectional shape of the downstream side portion 112c of the bend 112 (see FIG. 7). Further, the axial length L1 of the inlet pipe 113 is L1 ⁇ 3 ⁇ d, which is shorter than the conventional one. Conventionally, L ⁇ 3 ⁇ D, and the axial length of the inlet pipe is long.
  • the bend 112 a constant velocity fluid flows, and the occurrence of vortices and separation is reduced.
  • the vortex generated at the downstream side portion 112c of the bend 112 is determined by the size of the tube width d. Therefore, if the axial length L1 of the inlet pipe 113 is set to L1 ⁇ 3 ⁇ d, a rectifying effect comparable to that of the conventional L ⁇ 3 ⁇ D can be obtained.
  • the arrangement height H1 (see FIG. 1) of the single-shaft multistage centrifugal compressor 3 is increased.
  • the height is lower than that of the conventional arrangement height H (see FIG. 13), and space saving can be realized and the incidental structure can be made small.
  • the fluid rectification effect is equivalent to that of the conventional one, the performance of the compressor is not deteriorated.
  • the pipe cross-sectional area is made equal from the upstream side portion 112a to the bent portion 112b and further to the downstream side portion 112c, but the pipe cross-sectional area from the upstream side portion 112a to the bent portion 112b is gradually increased. It may be narrower. In this case, the flow velocity of the fluid flowing through the bend 112 is accelerated.
  • the inlet pipe 113 is connected to the casing 3a in a state where the h direction (see FIG. 8) of the inlet pipe 113 is in the same direction as the radial width W (see FIG. 2) of the casing 3a of the single-shaft multistage centrifugal compressor 3. In this case, h ⁇ W. That is, the maximum value of the pipe width h of the inlet pipe 113 is W.
  • the bend 112 shown in FIG. 9 includes two bent plates (rectifying members) 112 ⁇ that rectify while guiding the fluid inside the bent portion 112b.
  • the bending plate 112 ⁇ is a plate extending along the flow direction of the fluid flowing in the bend 112. Note that the number of the bent plates 112 ⁇ is not limited to two.
  • the bend 112 shown in FIG. 11 which is a XI-XI cross section of FIGS. 10 and 10 includes a bent plate structure (rectifying member) 112 ⁇ which rectifies while guiding the fluid inside the bent portion 112b.
  • the bent plate structure 112 ⁇ extends along the flow direction of the fluid flowing in the bend 112, and a plurality of parallel flow paths (in this example) are formed from the upstream side portion 112a to the bent portion 112b and further to the downstream side portion 112c. Then, it is divided into 8 flow paths).
  • the generated vortex and separation can be further reduced. Since the generation of vortices and the like can be further reduced in this way, the axial length of the inlet pipe 113 can be further shortened.
  • the supply pipe is arranged horizontally and the inlet pipe is arranged vertically, but the supply pipe and the inlet pipe are also arranged horizontally, and the supply pipe and the inlet pipe are connected by a bend.
  • the present invention can also be applied to piping.
  • the bend goes from the upstream side to the bend, (1) The tube width in the horizontal section is gradually reduced, (2) The tube width in the vertical section is gradually increasing. Shape.
  • the bend may have a shape in which the pipe width gradually decreases in the plane including the pipe axis of the inlet pipe and the pipe axis of the supply pipe as it goes from the upstream side portion to the bent portion.
  • the bend gradually decreases in width in the plane including the pipe axis of the inlet pipe and the pipe axis of the supply pipe as it goes from the upstream side portion to the bent portion, and the pipe pipe and the supply pipe of the inlet pipe are supplied.
  • the pipe width is gradually increased with respect to the plane including the pipe axis of the pipe and in the plane including the pipe axis of the inlet pipe.
  • a pipe cross-sectional area is the same from an upstream part to a bending part.
  • the present invention can be applied to piping for supplying fluid to a driven fluid machine that converts mechanical work into hydrodynamic energy, such as a pump and a blower, in addition to a compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Pipe Accessories (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

圧縮機(3)には、供給管(111),ベンド(112)及び入口配管(113)を介して流体が供給される。ベンド(112)は、上流側部から曲がり部に至るに従い、入口配管(113)の管軸と供給管(111)の管軸を含む面である鉛直面内における管幅が漸減する形状にした。このため、曲がり部において発生する渦などの乱れが抑制され、入口配管(113)の長さを短くしても流体の乱れを整えることができる。入口配管(113)を短くできるため、省スペース化を実現することができる。

Description

被動形流体機械の配管
 本発明は、被動形流体機械の配管に関し、省スペース化を実現できるように工夫したものである。
 石油化学、化学、空気分離などのプラントでは、多くの遠心圧縮機が使用されている。遠心圧縮機の一つのタイプとして、一軸多段遠心圧縮機がある。一軸多段遠心圧縮機は、一本の軸に複数のインペラを軸方向に沿って多段に備えており、流体を段階的に圧縮するものである。
 ここで、一軸多段遠心圧縮機及びこれに流体を供給する配管を含めた、配置状態の一例を概略斜視図である図12及び配置構成図である図13を参照して説明する。
 両図に示すように、基礎(地面)1に備えた架台2により、一軸多段遠心圧縮機3は支持されている。つまり、一軸多段遠心圧縮機3は基礎(地面)1からみて上方位置に設置されている。この一軸多段遠心圧縮機3には、基礎1に沿い水平配置された供給管11と、ベンド(曲がり管)12と、鉛直に配置された入口配管13を通して、流体が供給される。これら供給管11,ベンド12及び入口配管13は円管(管軸に対して直交した断面形状が円形の管材)である。なお、入口配管13は、一軸多段遠心圧縮機3のケーシングに備えた吸込み口に接続されている管であり、ケーシングから見て鉛直方向の下方に向かって延びている。
 供給管11を通して供給された流体は、ベンド12において進行方向が90°曲がってから入口配管13を流れる。流体はベンド12内を曲がりながら流れるため、図14に示すように、ベンド12の内周側の流速V1と外周側の流速V2が異なり、これにより渦や剥離が発生して流体の流れが乱れる。このように渦などを含む流れが乱れた流体は、真っ直ぐに伸びた入口配管13を流通する間に渦などが弱まり、流速が略均一になった状態で、流体が一軸多段遠心圧縮機3の内部に吸い込まれる。つまり、圧縮機入口での流れを均一化した状態で、流体が一軸多段遠心圧縮機3の内部に吸い込まれる。
 入口配管13は、上記のように、ベンド12を流通することにより発生した渦などを弱めるために設けたものである。このような効果を得るため、供給管11の直径(内径)をD、入口配管13の軸方向長さをLとすると、通常(従来)では、L≧3Dとなるように、入口配管13の軸方向長さを設定している。
 なお入口配管13の軸方向長さが不足すると、渦などを含む流れが乱れた流体が一軸多段遠心圧縮機3に吸引されるため、圧縮機の性能が低下すると共に作動範囲が減少するため、入口配管13の軸方向長さが不足しないようにする必要がある。
特開2010-71140号公報
 上述したように、従来では、流速が略均等になった流体を一軸多段遠心圧縮機3に供給することを目的として、軸方向長さが長い入口配管13を使用しているため、架台2が高くなり、一軸多段遠心圧縮機3の配置高さHが高くなるという課題があった。また、付帯構造物も大きくなるというデメリットがあった。
 上記の例は、一軸多段遠心圧縮機について説明したが、圧縮機、ポンプ、送風機などのように機械的仕事を流体力学的エネルギーに変換する被動形流体機械に対して、供給管,ベンド及び入口配管を介して流体を供給する場合においても、入口配管の軸方向長さが長くなるという問題があった。
 本発明は、上記従来技術に鑑み、被動形流体機械の配管の形状を工夫することにより、流体の乱れを確実に抑制しつつ入口配管の軸方向長さを短縮して省スペース化できるように工夫した、被動形流体機械の配管を提供することを特徴とする。
 上記課題を解決する本発明は、
 被動形流体機械のケーシングに備えた吸込み口に接続される入口配管と、流体を供給する供給管と、前記供給管と前記入口配管とを接続するベンドと、からなる配管において、
 前記ベンドは、上流側部から曲がり部に至るに従い、前記入口配管の管軸と前記供給管の管軸を含む面内における管幅が漸減する形状になっていることを特徴とする。
 また本発明は、
 前記ベンドは、上流側部から曲がり部に至るに従い、前記入口配管の管軸と前記供給管の管軸を含む面内における管幅が漸減し、且つ、前記入口配管の管軸と前記供給管の管軸を含む面に対して直交すると共に前記入口配管の管軸を含む面内における管幅が漸増する形状になっていることを特徴とする。
 また本発明は、
 前記ベンドは、上流側部分から曲がり部に至るまで管断面積が同一であることを特徴とする。
 また本発明は、
 前記ベンド内には、流体の流れ方向に沿い配置されて流体をガイドする板状の整流部材が配置されていることを特徴とする。
 また本発明は、
 前記被動形流体機械は一軸多段遠心圧縮機であり、
 前記入口配管は鉛直方向に配置されており、
 前記供給管は水平方向に配置されていることを特徴とする。
 本発明によれば、ベンド部において、上流側部から曲がり部に至るに従い、入口配管の管軸と供給管の管軸を含む面内における管幅が漸減する形状にしたため、曲がり部において発生する渦などの乱れが抑制される結果、入口配管の長さを短くすることができる。このため、省スペース化を実現することができる。
本発明の実施例1に係る配管の配置状態の一例を示す概略斜視図。 本発明の実施例1に係る配管の配置状態の一例を示す構成図。 実施例1に用いるベンドを示す断面図。 図3のIV-IV断面図。 図3のV-V断面図。 図3のVI-VI断面図。 図3のVII-VII断面図。 図2のVIII-VIII断面図。 本発明の実施例2としてのベンドの一例を示す断面図。 本発明の実施例2としてのベンドの他の例を示す断面図。 図10のXI-XI断面を示す断面図。 従来技術に係る配管の配置状態の一例を示す概略斜視図。 従来技術に係る配管の配置状態の一例を示す構成図。 従来のベンドを示す断面図。
 以下、本発明に係る被動形流体機械の配管を、実施例に基づき詳細に説明する。
 実施例1では、被動形流体機械として一軸多段遠心圧縮機を採用した例を示す。図1は、配置状態の一例を示す概略斜視図であり、図2は配置構成図である。
 両図に示すように、基礎(地面)1に備えた架台2により、一軸多段遠心圧縮機3は支持されている。つまり、一軸多段遠心圧縮機3は基礎(地面)1からみて上方位置に設置されている。
 一軸多段遠心圧縮機3には、基礎1に沿い水平配置された供給管111と、ベンド(曲がり管)112と、鉛直に配置された真っ直ぐな管である入口配管113を通して流体が供給される。
 入口配管113は、一軸多段遠心圧縮機3のケーシング3aに備えた吸込み口3bに接続されている管であり、ケーシング3aから見て鉛直方向の下方に向かって延びている。供給管111と入口配管113は、ベンド112を介して接続されており、供給管111を介して供給される流体は、ベンド112において進行方向が90°曲がってから入口配管113を流れ、一軸多段遠心圧縮機3に吸い込まれる。
 供給管111の配管形状は従来のものと同様に円管(管軸に対して直交した断面形状が円形の管材)であるが、ベンド112及び入口配管113の配管形状は、従来ものとは異なっている。
 まず、ベンド112及び入口配管113の形状を特定するために必要な面について説明する。
(1)鉛直断面は、本例では、鉛直配置された入口配管113の管軸と、水平配置された供給管111の管軸とを含む面になっている。
(2)水平断面は、本例では、鉛直配置された入口配管113の管軸と、水平配置された供給管111の管軸とを含む面(鉛直断面)に対して直交すると共に、供給管111の管軸を含む面である。
 ベンド112の形状を、図1,図2のみならず、図3から図7も参照しつつ説明する。図3はベンド112を鉛直断面に沿い破断した断面図であり、図4は図3のIV-IV断面図であり、図5は図3のV-V断面図であり、図6は図3のVI-VI断面図であり、図7は図3のVII-VII断面図である。
 図3に示すように、ベンド112のうち、供給管111と接続される部分が上流側部112aであり、水平方向から90°曲がって鉛直方向上方に向かう部分が曲がり部112bであり、入口配管113と接続される部分が下流側部112cである。
 ベンド112は、上流側部112aから曲がり部112bに至るに従い、
(1)鉛直断面における管幅が、Dからdにまで漸減しており(図3参照)、
(2)水平断面における管幅が、H(=D)からhにまで漸増している(図4から図6参照)。
 しかも、ベンド112は、上流側部112aから曲がり部112bに至るまで、管断面積(図4、図5、図6に示す断面積)が等しくなっている。なお管断面積とは、鉛直断面及び水平断面に対して直交する面に沿う管断面積、即ち、ベンド112内を流れる流体の流れ方向に対して直交する面に沿う管断面積である。
 下流側部112cの断面形状は図7のようになっており、図6に示す断面形状となっている曲がり部112bが90°曲がって上方に立ち上がった形状になっている。
 このようにベンド112の曲がり部112bにおいて、鉛直断面における管幅がdと狭くなっているので、図3に示すように、ベンド112の内周側の流速V11と外周側の流速V12との差が小さくなり、発生する渦や剥離は少なくなる。
 ちなみに従来では、図14に示すように、ベンドの曲がり部の管幅はDと大きく、内周側の流速V1と外周側の流速V2との差が大きく、渦や剥離が多く発生していた。
 また、ベンド112は、上流側部112aから曲がり部112bに至り更に下流側部112cに至るまで、管断面積が等しくなっている。このため、上流側部112aから曲がり部112bを過ぎ下流側部112cに至り流れる流体の流速は、上流側部112aから曲がり部112bを過ぎ下流側部112cに至るまで等速である。
 入口配管113の断面形状(図2のVIII-VIII断面図である図8参照)は、ベンド112の下流側部112cの断面形状(図7参照)と同じになっている。また、入口配管113の軸方向長さL1は、L1≧3×dとしており従来に比べて短くなっている。
 なお従来では、L≧3×Dとなっており、入口配管の軸方向長さは長くなっている。
 このようにベンド112においては、等速の流体が流れ、しかも、渦や剥離の発生が少なくなる。ベンド112の下流側部112cで発生する渦などは、管幅dの大きさで決まる。したがって、入口配管113の軸方向長さL1を、L1≧3×dとしておけば、従来のL≧3×Dと同程度の整流効果を得ることができる。
 このように、流体の整流効果を得つつ、入口配管113の軸方向長さL1を従来に比べて短くすることができるため、一軸多段遠心圧縮機3の配置高さH1(図1参照)が、従来の配置高さH(図13参照)に比べて低くなり、省スペース化を実現できると共に付帯構造物を小さくすることができるという効果を奏することができる。また、流体の整流効果は従来と同等であるため、圧縮機の性能が低下することもない。
 なお上記の例では、上流側部112aから曲がり部112bに至り更に下流側部112cに至るまで、管断面積を等しくしているが、上流側部112aから曲がり部112bに至る管断面積を徐々に狭くしてもよい。このようにした場合には、ベンド112を流通する流体の流速は加速される。
 また、入口配管113のh方向(図8参照)が、一軸多段遠心圧縮機3のケーシング3aの半径方向幅W(図2参照)と同じ向きになる状態で、入口配管113をケーシング3aに接続した場合には、h≦Wとなる。つまり入口配管113の管幅hの最大値はWである。
 次に、実施例1において採用したベンド112を更に改良したものを、実施例2として説明する。
 図9に示すベンド112では、曲がり部112bの内部に、流体をガイドしつつ整流する2枚の曲げ板(整流部材)112αを備えている。曲げ板112αは、ベンド112内を流れる流体の流れ方向に沿い伸びた板である。なお曲げ板112αの配置枚数は2枚に限定するものではない。
 図10及び図10のXI-XI断面である図11に示すベンド112では、曲がり部112bの内部に、流体をガイドしつつ整流する曲げ板構造(整流部材)112βを備えている。この曲げ板構造112βは、ベンド112内を流れる流体の流れ方向に沿い伸びており、上流側部112aから曲がり部112bに至り更に下流側部112cに至る流路を並列の複数流路(本例では8流路)に分けるものである。
 このように、曲げ板112αや曲げ板構造112βをベンド112内に組み込むことにより、発生する渦や剥離をより低減することができる。このように渦などの発生をより低減できるので、入口配管113の軸方向長さを更に短くすることができる。
 上記の各実施例では、供給管が水平配置されており、入口配管が鉛直配置されている例であるが、供給管も入口配管も水平配置されておりベンドにより供給管と入口配管を接続した配管にも本発明を適用することができる。
 この場合には、
 ベンドは、上流側部から曲がり部に至るに従い、
(1)水平断面における管幅が、漸減しており、
(2)鉛直断面における管幅が、漸増している、
形状にする。
 また、本発明では、ベンドは、上流側部から曲がり部に至るに従い、入口配管の管軸と供給管の管軸を含む面内における管幅が漸減する形状になっていればよい。
 また、本発明では、ベンドは、上流側部から曲がり部に至るに従い、入口配管の管軸と供給管の管軸を含む面内における管幅が漸減し、且つ、入口配管の管軸と供給管の管軸を含む面に対して直交すると共に入口配管の管軸を含む面内における管幅が漸増する形状になっていることが好ましい。
 更には、本発明では、上流側部分から曲がり部に至るまで管断面積が同一であることが好ましい。
 本発明は、圧縮機の他に、ポンプ、送風機などのように、機械的仕事を流体力学的エネルギーに変換する被動形流体機械に、流体を供給する配管に適用することができる。
 1 基礎(地面)
 2 架台
 3 一軸多段遠心圧縮機
 3a ケーシング
 3b 吸込み口
 11,111 供給管
 12,112 ベンド(曲がり管)
 112a 上流側部
 112b 曲がり部
 112c 下流側部
 112α 曲げ板
 112β 曲げ板構造
 13,113 入口配管

Claims (5)

  1.  被動形流体機械のケーシングに備えた吸込み口に接続される入口配管と、流体を供給する供給管と、前記供給管と前記入口配管とを接続するベンドと、からなる配管において、
     前記ベンドは、上流側部から曲がり部に至るに従い、前記入口配管の管軸と前記供給管の管軸を含む面内における管幅が漸減する形状になっている、
     ことを特徴とする被動形流体機械の配管。
  2.  請求項1において、
     前記ベンドは、上流側部から曲がり部に至るに従い、前記入口配管の管軸と前記供給管の管軸を含む面内における管幅が漸減し、且つ、前記入口配管の管軸と前記供給管の管軸を含む面に対して直交すると共に前記入口配管の管軸を含む面内における管幅が漸増する形状になっている、
     ことを特徴とする被動形流体機械の配管。
  3.  請求項1または請求項2において、
     前記ベンドは、上流側部分から曲がり部に至るまで管断面積が同一である、
     ことを特徴とする被動形流体機械の配管。
  4.  請求項1から請求項3のいずれか一項において、
     前記ベンド内には、流体の流れ方向に沿い配置されて流体をガイドする板状の整流部材が配置されている、
     ことを特徴とする被動形流体機械の配管。
  5.  請求項1から請求項4のいずれか一項において、
     前記被動形流体機械は一軸多段遠心圧縮機であり、
     前記入口配管は鉛直方向に配置されており、
     前記供給管は水平方向に配置されている、
     ことを特徴とする被動形流体機械の配管。
PCT/JP2017/001663 2016-01-22 2017-01-19 被動形流体機械の配管 WO2017126581A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17741458.8A EP3392510B1 (en) 2016-01-22 2017-01-19 Piping for driven-type fluid machine
US16/071,678 US20190032833A1 (en) 2016-01-22 2017-01-19 Piping for driven-type fluid machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-010522 2016-01-22
JP2016010522A JP6762724B2 (ja) 2016-01-22 2016-01-22 被動形流体機械の配管

Publications (1)

Publication Number Publication Date
WO2017126581A1 true WO2017126581A1 (ja) 2017-07-27

Family

ID=59362384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001663 WO2017126581A1 (ja) 2016-01-22 2017-01-19 被動形流体機械の配管

Country Status (4)

Country Link
US (1) US20190032833A1 (ja)
EP (1) EP3392510B1 (ja)
JP (1) JP6762724B2 (ja)
WO (1) WO2017126581A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109519580A (zh) * 2017-09-19 2019-03-26 费希尔控制产品国际有限公司 具有导向叶片的控制阀
WO2022176662A1 (ja) * 2021-02-17 2022-08-25 パナソニックIpマネジメント株式会社 遠心圧縮機の吸入配管、吸入配管付き遠心圧縮機、及び冷凍装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446705B2 (ja) * 2015-01-09 2019-01-09 三菱重工業株式会社 エンジンシステム
CN112360813B (zh) * 2020-10-09 2022-06-21 江苏大学 一种泵用吸入管非均匀来流主动控制装置及泵
US20220299146A1 (en) * 2021-03-19 2022-09-22 Akron Brass Company Fluid monitor elbow
JP2023173534A (ja) * 2022-05-26 2023-12-07 セイコーエプソン株式会社 シート製造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161019A (ja) * 1974-11-26 1976-05-27 Mitsubishi Heavy Ind Ltd Erubo
JPS6429693A (en) * 1987-07-23 1989-01-31 Mitsubishi Heavy Ind Ltd Centrifugal compressor
JPH0564510U (ja) * 1992-02-12 1993-08-27 株式会社アマダ 整流板付きエルボ,ベンド管

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623511A (en) * 1970-02-16 1971-11-30 Bvs Tubular conduits having a bent portion and carrying a fluid
FR2867239B1 (fr) * 2004-03-05 2008-08-08 Peugeot Citroen Automobiles Sa Dispositif de guidage d'un flux gazeux dans un conduit d'ecoulement coude
US9476531B2 (en) * 2007-07-27 2016-10-25 Dieterich Standard, Inc. Elliptical flow conditioning pipe elbow
JP5228069B2 (ja) * 2011-01-21 2013-07-03 株式会社小松製作所 送気管及び過給器
US8434306B2 (en) * 2011-02-25 2013-05-07 Honda Motor Co., Ltd. Vehicular engine having turbocharger and vehicle including same
JP5787790B2 (ja) * 2012-02-29 2015-09-30 三菱重工業株式会社 遠心流体機械の吸気管構造
WO2014128896A1 (ja) * 2013-02-21 2014-08-28 三菱重工業株式会社 流体機械及びこれを備えた流体機械システム
DE102014212909A1 (de) * 2014-07-03 2016-01-07 Siemens Aktiengesellschaft Strömungsumlenkung bei einer Strömungsmaschine
CN104564452A (zh) * 2014-12-26 2015-04-29 曹铃强 汽车发动机进气管及其一体化制造工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161019A (ja) * 1974-11-26 1976-05-27 Mitsubishi Heavy Ind Ltd Erubo
JPS6429693A (en) * 1987-07-23 1989-01-31 Mitsubishi Heavy Ind Ltd Centrifugal compressor
JPH0564510U (ja) * 1992-02-12 1993-08-27 株式会社アマダ 整流板付きエルボ,ベンド管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392510A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109519580A (zh) * 2017-09-19 2019-03-26 费希尔控制产品国际有限公司 具有导向叶片的控制阀
EP3685081B1 (en) * 2017-09-19 2023-01-18 Fisher Controls International Llc Control valve with guide vane
CN109519580B (zh) * 2017-09-19 2023-07-04 费希尔控制产品国际有限公司 具有导向叶片的控制阀
WO2022176662A1 (ja) * 2021-02-17 2022-08-25 パナソニックIpマネジメント株式会社 遠心圧縮機の吸入配管、吸入配管付き遠心圧縮機、及び冷凍装置

Also Published As

Publication number Publication date
JP6762724B2 (ja) 2020-09-30
US20190032833A1 (en) 2019-01-31
JP2017129097A (ja) 2017-07-27
EP3392510A4 (en) 2018-12-26
EP3392510B1 (en) 2020-01-08
EP3392510A1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2017126581A1 (ja) 被動形流体機械の配管
JP5879103B2 (ja) 遠心式流体機械
JP6352936B2 (ja) ねじられた戻り流路ベーンを備える遠心圧縮機
US20150337665A1 (en) Low-Turbulence Impeller for a Fluid Pump
US9334885B2 (en) Pump suction pipe
US11073162B2 (en) Return stage of a multi-staged compressor or expander with twisted guide vanes
US20180347382A1 (en) Centrifugal compressor and turbocharger
US10527054B2 (en) Impeller for centrifugal fans
US20230235751A1 (en) Volute Design For Lower Manufacturing Cost and Radial Load Reduction
JP2013136973A (ja) 軸流ファン
EP3063414B1 (en) Centrifugal compressor impeller with blades having an s-shaped trailing edge
KR20140136382A (ko) 풀-아웃형 입축 펌프
JP6064003B2 (ja) 遠心式流体機械
CN112196827A (zh) 抗汽蚀水泵
JPWO2017145368A1 (ja) 冷却装置、圧縮機システム
US20090247062A1 (en) Oil smoke exhausting device
KR100925157B1 (ko) 양흡입형 수중펌프
JP6624962B2 (ja) 多段水中ポンプ用の吸込ケーシング、および、多段水中ポンプ
CN108700241B (zh) 弯管及具备该弯管的流体机械
WO2017119229A1 (ja) 圧縮機
KR20180056118A (ko) 손실 저감형 임펠러 및 이를 구비한 원심압축기
JP2011117402A (ja) 遠心流体機械の吸込ケーシング
JPS60256501A (ja) 流れの方向が変化する際にタ−ボ機械及び装置中に生ずる水頭損失を減少させる為の方法と構造
US11053951B2 (en) Centrifugal compressor impeller and compressor comprising said impeller
WO2018105329A1 (ja) ケーシングおよびターボ機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017741458

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017741458

Country of ref document: EP

Effective date: 20180717