WO2017126500A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2017126500A1
WO2017126500A1 PCT/JP2017/001405 JP2017001405W WO2017126500A1 WO 2017126500 A1 WO2017126500 A1 WO 2017126500A1 JP 2017001405 W JP2017001405 W JP 2017001405W WO 2017126500 A1 WO2017126500 A1 WO 2017126500A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
optical system
light
source device
source unit
Prior art date
Application number
PCT/JP2017/001405
Other languages
English (en)
French (fr)
Inventor
松島 竹夫
靖 尾前
元典 多田
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to US16/070,967 priority Critical patent/US10845010B2/en
Priority to KR1020187020732A priority patent/KR102105611B1/ko
Priority to CN201780004568.2A priority patent/CN108368978B/zh
Publication of WO2017126500A1 publication Critical patent/WO2017126500A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • F21S2/005Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/04Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages the fastening being onto or by the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/02Fastening of light sources or lamp holders with provision for adjustment, e.g. for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/70391Addressable array sources specially adapted to produce patterns, e.g. addressable LED arrays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/02Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with provision for adjustment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light source device, and more particularly, to a light source device including a plurality of LED elements.
  • an exposure apparatus is used for fine processing using light.
  • exposure techniques have been developed in various fields, and are used for producing relatively large patterns and for three-dimensional fine processing among fine processing. More specifically, for example, an exposure technique is used for manufacturing an electrode pattern of an LED, a manufacturing process of MEMS (Micro Electro Mechanical Systems) represented by an acceleration sensor, and the like.
  • MEMS Micro Electro Mechanical Systems
  • Patent Document 1 discloses an exposure apparatus in which a unit composed of a plurality of LED elements is used as a light source, and a fly-eye lens is disposed between the light source and a mask.
  • an object of the present invention is to provide a light source device that includes a plurality of LED elements, and that can suppress a decrease in illuminance caused by a positional shift.
  • the light source device includes: A light source unit in which a plurality of LED elements are arranged; A first optical system for collimating each of the light emitted from the light source unit; A second optical system for condensing a plurality of lights emitted from the first optical system, At least one of the light source unit and the first optical system is provided with an adjustment mechanism for adjusting a relative positional relationship between the light source unit and the first optical system.
  • the light emitted from one LED element has a lower luminance than the lamp. For this reason, when it is assumed that the light source is used for a light source that requires a lot of light, such as an exposure apparatus, it is important to collect the light from many LED elements without reducing the luminance as much as possible. .
  • the light emitted from the plurality of LED elements is condensed after being collimated in the first optical system.
  • the emitted light from each LED element can be imaged in a condensing position.
  • the light emitted from each LED element can narrow the interval between the emitted light beams by adjusting the arrangement of the collimating lens (first optical system), and a light source with a small non-light emitting area is configured. Thereby, a light source device with high luminance is realized.
  • the adjusting mechanism for adjusting the relative positional relationship between the light source unit and the first optical system is provided. For this reason, even when the light source device is installed in a state in which a positional deviation occurs between each LED element included in the light source unit and the corresponding collimating lens (first optical system), the adjustment mechanism By adjusting the position of the second optical system, it is possible to correct the shift of the light collection position by the second optical system, and the light is efficiently guided to the subsequent stage of the second optical system.
  • the plurality of LED elements are arranged on a predetermined plane
  • the adjustment mechanism may be configured to be capable of adjusting a relative positional relationship between the light source unit and the first optical system with respect to a direction parallel to the predetermined plane.
  • the adjustment mechanism may be configured such that at least one of the light source unit and the first optical system is rotatable on a plane parallel to the predetermined plane.
  • the light source unit may include an LED board
  • the adjustment mechanism may be attached to the LED board
  • the first optical system is stored in the lens holder.
  • the adjustment mechanism may be attached to the lens holder.
  • an integrator optical system in which an incident surface is disposed at a focal position of the second optical system may be provided.
  • the light emitted from the LED element has less radiated light flux than the lamp. For this reason, for example, in order to use it as a light source device for exposure, it is necessary to collect as much light as possible from a plurality of LED elements. For this purpose, it is necessary to increase the number of LED elements arranged as light sources.
  • the LED element since the LED element requires a wiring pattern for supplying power, the LED element itself cannot be arranged completely closely. That is, when arranging a plurality of LED elements, it is necessary to leave a certain distance between adjacent LED elements. The region forming this interval constitutes a region that does not emit light (non-light emitting region). For this reason, even if a plurality of LED elements are simply arranged and the emitted light from each LED element is condensed, a non-light emitting region is inevitably generated. Therefore, simply condensing the light emitted from the plurality of LED elements causes a decrease in luminance on the irradiated surface.
  • the light emitted from the plurality of LED elements is condensed after being collimated in the first optical system.
  • the emitted light from each LED element can be imaged in a condensing position.
  • the light emitted from each LED element can narrow the interval between the emitted light beams by adjusting the arrangement of the collimating lens (first optical system), and a light source with a small non-light emitting area is configured. .
  • a light source device with high luminance is realized.
  • the integrator optical system may be configured by a light guide member that guides light incident from the incident surface to the exit surface while repeating reflection on the inner surface.
  • a light guide member it can comprise with a rod integrator or a light tunnel, for example.
  • the integrator optical system may be configured by a fly-eye lens in which a plurality of lenses are arranged in a matrix.
  • the illuminance distribution on the irradiated surface can be made uniform by the fly-eye lens. Thereby, the light source device with high luminance and uniform illuminance distribution can be realized.
  • a positional deviation occurs between the optical system and the LED element, a decrease in luminance and illuminance associated with the positional deviation is suppressed. Can do.
  • FIG. 1 is a drawing schematically showing an example of an optical system of a light source device.
  • the light source device 1 includes a light source unit 2, a first optical system 5, a second optical system 7, and an integrator optical system 8.
  • the light source unit 2 is accommodated in the LED board 22, and the first optical system 5 is accommodated in the lens holder 23.
  • the LED board 22 and the lens holder 23 are configured so that the relative positional relationship between them can be adjusted. An example of a specific configuration will be described later.
  • the light source unit 2 includes a plurality of LED elements 3.
  • the some LED element 3 is arrange
  • any arrangement mode of the plurality of LED elements 3 may be used.
  • the first optical system 5 is an optical system that collimates the light emitted from the plurality of LED elements 3, and is configured by arranging a plurality of collimating lenses 6 corresponding to the LED elements 3.
  • the second optical system 7 is an optical system that condenses the light emitted from the first optical system 5 at the focal point 7f of the second optical system 7.
  • the integrator optical system 8 is constituted by a rod integrator 9.
  • the rod integrator 9 is arranged such that the incident surface 9a is positioned at the focal point 7f of the second optical system 7.
  • “arranged at the focal position” means that the lens is moved by a distance of ⁇ 10% in a direction parallel to the optical axis 11 with respect to the focal distance, in addition to the case where it completely coincides with the focal position. It is assumed that the concept includes a position.
  • the optical axis 11 in FIG. 1 is an axis orthogonal to the incident surface of the integrator optical system 8, that is, the incident surface 9a of the rod integrator 9.
  • the rod integrator 9 has a function of uniformizing the illuminance distribution of light on the exit surface 9b by guiding the light incident on the entrance surface 9a to the exit surface 9b while repeating total reflection on the side surface.
  • a light guide member includes, for example, a columnar member made of a light-transmitting material such as glass or resin, a hollow member whose inner surface is formed of a reflecting mirror, and the like. The latter configuration is sometimes called a light tunnel.
  • the light guide member may be configured by dividing a plurality of optical paths in a direction parallel to the optical axis.
  • FIG. 2 is a drawing showing an example of an arrangement relationship between the light source unit 2 and the first optical system 5, respectively.
  • the LED board 22 in which the light source unit 2 is accommodated and the lens holder 23 in which the first optical system 5 is accommodated are integrally held with screws or the like.
  • a clamping screw 41 provided separately from the screw is shown. This clamping screw 41 is an example of an adjusting mechanism.
  • FIG. 3 is an example of a schematic plan view when the inside of FIG. 2 is viewed from the LED board 22 side.
  • FIG. 4 is a perspective view schematically showing the inside of FIG.
  • the LED board 22 and the lens holder 23 are configured such that the positional relationship can be adjusted by three clamping screws 41 and two ball plungers 42.
  • FIG. 4 for convenience of illustration, a part of the clamping screw 41 and the ball plunger 42 are not shown.
  • the ball plunger 42 has a built-in spring.
  • the hard sphere at the tip of the ball plunger 42 moves.
  • the relative positional relationship between the LED board 22 and the lens holder 23 can be adjusted.
  • movement in the X direction, movement in the Y direction, and rotational movement in the ⁇ direction are possible.
  • the some LED element 3 is arrange
  • FIGS. 5A to 5D schematically shows a photograph of an image at each time point.
  • a reference area is indicated by reference numeral 61
  • an area appearing as an image is indicated by reference numeral 60.
  • a position that is the center of the image 60 is indicated by reference numeral 62.
  • the light source unit 2 is configured by arranging 85 LED elements 3 in an 80 mm square region.
  • the clamping screw 41 can move in the forward and backward directions of 0.4 mm by making one turn, and can be moved by 0.1 mm by making 1/4 turn.
  • the lens holder 23 can be rotated with respect to the LED board 22 by relatively moving the two clamping screws 41 provided on the same side.
  • the relative positional relationship between the two clamping screws 41 is about 1 mm, ( 2 and a half) can be realized by shifting.
  • the relative positional relationship may be shifted by moving only one clamping screw 41 out of the two clamping screws 41, or moving one forward and moving the other backward. By doing so, the relative positional relationship may be shifted.
  • FIG. 5A corresponds to the initial time, for example. 5A shows that the center 62 of the image is shifted from the center O of the reference region 61. FIG. Moreover, since the image 60 has shown the circular shape and the image 60 is blurred, it turns out that it cannot be said that the light from each LED element 3 is condensed on the substantially same location. Such a situation suggests that a positional shift has occurred between the light source unit 2 and the first optical system 3.
  • FIG. 5B shows the measurement results after the lens holder 23 is rotated by 1 ° with respect to the LED board 22 by operating the adjustment mechanism from the state of FIG. 5A.
  • An image 60 shown in FIG. 5B has a rectangular shape corresponding to the shape of the light source unit 2, and it can be seen that the image is clearly displayed as compared with the state of FIG. 5A. Thereby, it can be seen that the center of the LED element 3 and the optical axis of the corresponding collimating lens 6 are closer than in the state of FIG. 5A.
  • FIG. 5C shows a measurement result after the lens holder 23 is moved 0.2 mm in the X direction with respect to the LED board 22 by further operating the adjustment mechanism from the state of FIG. 5B.
  • FIG. 5D shows the measurement results after the lens holder 23 is moved 0.2 mm in the Y direction with respect to the LED board 22 by further operating the adjustment mechanism from the state of FIG. 5C. .
  • the position of the center 62 of the image 60 is closer to the center O of the reference region 61. In the state of FIG. Approaching 61 center O.
  • the cam 44 may be used as shown in FIG. 6A, or the pin 45 may be used as shown in FIG. 6B.
  • the rotation axis of the cam 44 may be attached to the lens holder 23 or the LED board 22.
  • the base portion of the pin 45 may be attached to the lens holder 23 or the LED board 22.
  • the integrator optical system 8 may be composed of a fly-eye lens 10. Also in this case, high-intensity light is collected on the incident surface of the fly-eye lens 10, and high-intensity light is emitted from the fly-eye lens 10. Note that in another configuration described above, the integrator optical system 8 may be configured by the fly-eye lens 10.
  • FIG. 8 is a drawing schematically showing a configuration of an exposure apparatus including the light source device 1.
  • the exposure device 19 includes a projection optical system 15 and a mask 16 at the subsequent stage of the integrator optical system 8, and a projection lens 17 as necessary.
  • a mask 16 is placed at a position projected by the projection optical system 15, and a photosensitive substrate 18 to be a target for printing a pattern image of the mask 16 is placed after the mask 16.
  • the light is collected by the second optical system 7, and then irradiated to the projection optical system 15 as light whose illuminance distribution is uniformed by the rod integrator 9. Is done.
  • the projection optical system 15 projects the pattern image of the mask 16 onto the photosensitive substrate 18 directly or via the projection lens 17.
  • an ultraviolet light emitting element is often used as the LED element 3.
  • the light emitted from the LED element 3 is ultraviolet light
  • the image cannot be visually recognized.
  • a plate coated with a phosphor is disposed on the light incident surface of the integrator optical system 8 (the light incident surface 9a of the rod integrator 9), and the phosphor is excited with ultraviolet light to form an image. It is also possible to adjust the relative positional relationship between the LED board 22 and the lens holder 23 by operating an adjustment mechanism (such as the clamping screw 41) after making it visible.
  • the lens holder 23 can be moved in the X direction, the Y direction, and the rotation direction on the XY plane with respect to the LED board 22.
  • it may be configured to be movable in at least one of these directions, or may be configured to be movable in another direction (for example, a direction orthogonal to the XY plane).
  • the LED board 22 may be configured to be movable with respect to the lens holder 23.
  • the light source device 1 may include an optical system such as a reflection optical system as appropriate for the purpose of changing the optical path.
  • Light source device 2 Light source unit 3: LED element 5: First optical system 6: Collimating lens 7: Second optical system 7f: Focus of second optical system 8: Integrator optical system 9: Rod integrator 9a: Rod integrator Entrance surface 9b: Exit surface of rod integrator 10: Fly eye lens 11: Optical axis 15: Projection optical system 16: Mask 17: Projection lens 18: Photosensitive substrate 19: Exposure device 22: LED board 23: Lens holder 41: Clan Ping screw 42: Ball plunger 44: Cam 45: Pin 60: Image 61: Reference area 62: Image center

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Microscoopes, Condenser (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

複数のLED素子を含み、位置ずれに伴う照度の低下を抑制することのできる光源装置を実現する。 光源装置は、複数のLED素子が配置された光源部と、光源部から射出された光をそれぞれコリメートする第一光学系と、第一光学系から射出された複数の光を集光する第二光学系とを備え、光源部と第一光学系の少なくとも一方に、光源部と前記第一光学系との相対的な位置関係を調整するための調整機構が備えられている。

Description

光源装置
 本発明は、光源装置に関し、特に、複数のLED素子を備えた光源装置に関する。
 従来、光を活用した光処理技術が多様な分野で利用されている。例えば、光を用いた微細加工に露光装置が利用されている。近年では、露光技術は種々の分野で展開されており、微細加工の中でも比較的大きなパターンの作製や三次元的な微細加工に利用されている。より具体的には、例えばLEDの電極パターンの作製や、加速度センサーに代表されるMEMS(Micro Electro Mechanical Systems)の製造工程などに露光技術が利用されている。
 これらの光処理技術において、光源としては、以前から輝度の高い放電ランプが用いられていた。しかし、近年の固体光源技術の進歩に伴い、複数のLED素子が配置されたものを光源として利用することが検討されている。このような技術として、例えば特許文献1には、複数のLED素子からなるユニットを光源とし、この光源とマスクの間にフライアイレンズが配置された露光装置が開示されている。
特開2004-335953号公報
 光源をランプで構成した光源装置と比較して、光源をLED素子で構成する場合には放射光束が少ない。このため、高い光出力を実現する光源装置を構成するためには、複数のLED素子からの射出光をできる限り集める必要がある。このとき、複数のLED素子とその後の光学系との間に位置ずれが生じると、光を利用する目的とする光学系に対して十分な光量の光を導くことができない。このような位置ずれは、程度の多少こそあれ、不可避的に発生する。
 本発明は、上記の課題に鑑み、複数のLED素子を備えた光源装置であって、位置ずれに伴う照度の低下を抑制することのできる光源装置を提供することを目的とする。
 本発明に係る光源装置は、
 複数のLED素子が配置された光源部と、
 前記光源部から射出された光をそれぞれコリメートする第一光学系と、
 前記第一光学系から射出された複数の光を集光する第二光学系とを備え、
 前記光源部と前記第一光学系の少なくとも一方に、前記光源部と前記第一光学系との相対的な位置関係を調整するための調整機構が備えられていることを特徴とする。
 前述したように、一つのLED素子から射出される光は、ランプに比べて輝度が小さい。このため、例えば露光装置など、多くの光を必要とする用途の光源に利用されることを想定した場合には、なるべく輝度を落とすことなく、多くのLED素子の光を集めることが重要となる。
 上記構成によれば、複数のLED素子から射出された光を、第一光学系においてコリメートした後に、集光している。これにより、各LED素子からの射出光を、集光位置で結像させることができる。また、各LED素子からの射出光は、コリメートレンズ(第一光学系)の配置を調整することで射出された光束同士の間隔を狭めることができ、非発光領域の少ない光源が構成される。これにより、輝度の高い光源装置が実現される。
 そして、このような構成において、仮に光源部と第一光学系との間に、位置ずれが生じた場合、第二光学系の後段に導かれる光量が減少することが想定される。具体的には、例えば、各LED素子と、これに対応するコリメートレンズ(第一光学系)との間の位置関係に、個々にずれが生じていると、第二光学系の集光位置がずれてしまい、第二光学系の後段に効率よく光を導くことが難しくなる。この結果、第二光学系の後段に導かれる光量が減少し、例えば露光装置として利用する場合には露光面に対する照度が低下する。
 上記の構成によれば、光源部と第一光学系との相対的な位置関係を調整する調整機構が備えられている。このため、光源部に含まれる各LED素子と、これに対応するコリメートレンズ(第一光学系)との間に位置ずれが生じた状態で光源装置が設置された場合であっても、調整機構を介して調整することで、第二光学系による集光位置のずれを補正することができ、第二光学系の後段に効率的に光が導かれる。
 前記複数のLED素子は、所定の平面上に配置されており、
 前記調整機構は、前記所定の平面に平行な方向に関して、前記光源部と前記第一光学系との相対的な位置関係を調整可能に構成されているものとしても構わない。
 また、前記調整機構は、前記所定の平面に平行な平面上において、前記光源部又は前記第一光学系の少なくとも一方を回転可能に構成されているものとしても構わない。
 また、具体的な態様として、前記光源部が収容されたLEDボードを有し、前記調整機構が前記LEDボードに付設されているものとしても構わないし、前記第一光学系が収容されたレンズホルダを有し、前記調整機構が前記レンズホルダに付設されているものとしても構わない。
 また、上記の構成において、入射面が前記第二光学系の焦点位置に配置されたインテグレータ光学系を備えるものとしても構わない。
 LED素子から射出される光は、ランプと比べると放射光束が少ない。このため、例えば露光用の光源装置として使用するためには、複数のLED素子からの射出光をできる限り集める必要がある。このためには、光源として配置されるLED素子の個数を増やす必要がある。
 ところで、LED素子は、電源供給のための配線パターンが不可欠であるため、LED素子自体を完全に密接して配置することができない。つまり、複数のLED素子を配置するに際しては、隣接するLED素子同士に一定の間隔を空けざるを得ない。この間隔を形成する領域は、光を射出しない領域(非発光領域)を構成する。このため、単に複数のLED素子を配置し、各LED素子からの射出光を集光したとしても、非発光領域が不可避的に生じてしまう。よって、複数のLED素子から射出された光を単に集光しただけでは、照射面での輝度の低下を招いてしまう。
 上記構成によれば、複数のLED素子から射出された光を、第一光学系においてコリメートした後に、集光している。これにより、各LED素子からの射出光を、集光位置で結像させることができる。また、各LED素子からの射出光は、コリメートレンズ(第一光学系)の配置を調整することで、射出された光束同士の間隔を狭めることができ、非発光領域の少ない光源が構成される。これにより、輝度の高い光源装置が実現される。
 また、前記インテグレータ光学系は、前記入射面から入射された光を、内側面で反射を繰り返させながら射出面へと導く導光部材で構成されるものとしても構わない。
 この構成によれば、導光部材の入射面に対して、放射強度の高い光が集光されるため、導光部材の射出面から、輝度が高く照度分布が均一化された光を射出することができる。なお、導光部材としては、例えばロッドインテグレータやライトトンネルで構成することができる。
 また、前記インテグレータ光学系は、複数のレンズがマトリクス状に配置されたフライアイレンズで構成されるものとしても構わない。
 フライアイレンズによって、照射面における照度分布を均一化させることができる。これにより、輝度が高く照度分布が均一化された光源装置が実現できる。
 本発明によれば、複数のLED素子を備えた光源装置において、光学系とLED素子との間の位置ずれが生じた場合であっても、位置ずれに伴う輝度や照度の低下を抑制することができる。
光源装置の光学系の一例を模式的に示す図面である。 光源部と第一光学系との配置関係の一例を模式的に示す図面である。 光源部と第一光学系との配置関係の一例を模式的に示す図面である。 光源部と第一光学系との配置関係の一例を模式的に示す図面である。 位置調整前における、ロッドインテグレータの入射面における像を模式的に示す図面である。 第一段階の調整を行った後の、ロッドインテグレータの入射面における像を模式的に示す図面である。 第二段階の調整を行った後の、ロッドインテグレータの入射面における像を模式的に示す図面である。 第三段階の調整を行った後の、ロッドインテグレータの入射面における像を模式的に示す図面である。 光源部と第一光学系との配置関係の一例を模式的に示す図面である。 光源部と第一光学系との配置関係の一例を模式的に示す図面である。 光源装置の光学系の一例を模式的に示す図面である。 露光装置の構成の一例を模式的に示す図面である。
 以下、本発明の光源装置につき、図面を参照して説明する。なお、各図における寸法比は、実際の寸法比と必ずしも一致していない。
 図1は、光源装置の光学系の一例を模式的に示す図面である。光源装置1は、光源部2と、第一光学系5と、第二光学系7と、インテグレータ光学系8とを備える。なお、本実施形態における光源装置1では、光源部2がLEDボード22に収容されており、第一光学系5がレンズホルダ23に収容されている。図1には図示されていないが、このLEDボード22とレンズホルダ23とは、相互間の相対的な位置関係を調整することができるように構成されている。具体的な構成の一例は後述される。
 光源部2は、複数のLED素子3を含む。本実施形態では、一例として複数のLED素子3は、所定の平面上に配置されている。ただし、本発明において、複数のLED素子3の配置態様は、どのようなものであっても構わない。
 第一光学系5は、複数のLED素子3から射出された光をそれぞれコリメートする光学系であり、各LED素子3に対応して複数のコリメートレンズ6が配置されて構成されている。
 第二光学系7は、第一光学系5から射出された光を、第二光学系7の焦点7fに集光する光学系である。
 本実施形態では、インテグレータ光学系8がロッドインテグレータ9によって構成されている。ロッドインテグレータ9は、その入射面9aが、第二光学系7の焦点7fの位置になるように配置されている。ただし、本明細書では、「焦点位置に配置する」とは、完全に焦点の位置に一致する場合の他、焦点距離に対して光軸11に平行な方向に±10%の距離だけ移動した位置を含む概念であるものとする。なお、図1における光軸11とは、インテグレータ光学系8の入射面、すなわちロッドインテグレータ9の入射面9aに対して直交する軸としている。
 ロッドインテグレータ9は、入射面9aに入射された光を、側面で全反射を繰り返させながら射出面9bへと導くことで、射出面9bにおける光の照度分布を均一化する機能を有する導光部材(光ガイド)の一例である。このような導光部材は、例えば、ガラスや樹脂などの光透過性の材料からなる柱状部材、内面が反射鏡で構成された中空部材等で構成される。後者の構成のものは、特にライトトンネルと称されることがある。なお、導光部材は、その内部において、光軸に平行な方向に複数の光路が分割されて構成されていても構わない。
 図2、図3、及び図4は、それぞれ光源部2と第一光学系5との配置関係の一例を示す図面である。図2に示す例では、光源部2が収容されたLEDボード22と、第一光学系5が収容されたレンズホルダ23とが、ネジ等で一体的に保持されている。なお、図2では、ネジとは別に設けられたクランピングスクリュー41が図示されている。このクランピングスクリュー41が、調整機構の一例である。
 図3は、図2の内部をLEDボード22側から見たときの模式的な平面図の一例である。また、図4は、図2の内部を模式的に示した斜視図である。この例では、LEDボード22とレンズホルダ23とが、3本のクランピングスクリュー41と、2本のボールプランジャ42とで位置関係の調整が可能に構成されている。なお、図4では、図示の都合上、クランピングスクリュー41の一部と、ボールプランジャ42とが図示されていない。
 ボールプランジャ42には、バネが内蔵されている。LEDボード22とレンズホルダ23との間のネジ止めを少し緩めた状態で、3箇所のクランピングスクリュー41を押し引きすると、ボールプランジャ42の先端の剛球が移動する。この移動により、LEDボード22とレンズホルダ23の相対的な位置関係を調整することができる。具体的には、図3に示すような、X方向の移動、Y方向の移動、及びθ方向の回転移動が可能である。なお、ここでいうX方向とY方向とで構成される平面(XY平面)上に、複数のLED素子3が配置されている。
 実際に、光源部2を構成する複数のLED素子3を点灯させた状態で、調整機構(この例ではクランピングスクリュー41)を操作して、LEDボード22とレンズホルダ23の相対的な位置関係を調整しながら、ロッドインテグレータの入射面9aにおける像を測定した。図5A~図5Dの各図は、各時点における像の写真を、模式的に図示したものである。各図において、基準となる領域を符号61で示し、像として現れている領域を符号60で示している。また、像60の中心となる位置を符号62で示している。ここでは、光源部2が、80mm□の領域内に85個のLED素子3が配置されて構成されているものとした。
 一例として、クランピングスクリュー41は、1周させることで0.4mm前後方向に移動し、1/4周させることで0.1mm移動させることができる。また、図3に示したように、同一の辺上に設けられている2つのクランピングスクリュー41を相対的に移動させることで、LEDボード22に対してレンズホルダ23を回転させることができる。一例として、上記2つのクランピングスクリュー41の間隔を60nmとすると、80mm□の光源部2を1°回転させるためには、上記2つのクランピングスクリュー41の相対的な位置関係を約1mm、(2周半)ずらすことで実現できる。このとき、上記2つのクランピングスクリュー41のうちの、一方のクランピングスクリュー41のみを前進又は後退させることで、相対的な位置関係をずらすものとしても構わないし、一方を前進させ、他方を後退させることで、相対的な位置関係をずらすものとしても構わない。
 図5Aは例えば初期時に対応する。図5Aによれば、像の中心62が基準領域61の中心Oからずれていることが分かる。また、像60が円形状を示しており、像60がぼやけていることから、各LED素子3からの光がほぼ同一の箇所に集光されている状態とまではいえないことが分かる。このような状況は、光源部2と第一光学系3との間で位置ずれが生じていることを示唆するものである。
 図5Bは、図5Aの状態から、調整機構を操作することで、LEDボード22に対してレンズホルダ23を1°回転移動させた後に、測定された結果である。図5Bに示される像60は、光源部2の形状に対応した矩形形状を示しており、図5Aの状態と比較して像がはっきりと映し出されていることが分かる。これにより、LED素子3の中心と、対応するコリメートレンズ6の光軸とが、図5Aの状態よりも接近したことが分かる。
 図5Cは、図5Bの状態から、更に調整機構を操作することで、LEDボード22に対してレンズホルダ23をX方向に0.2mm移動させた後に、測定された結果である。また、図5Dは、図5Cの状態から、更に調整機構を操作することで、LEDボード22に対してレンズホルダ23をY方向に0.2mm移動させた後に、測定された結果である。。図5Bの状態と比較して、図5Cの状態では像60の中心62の位置が基準領域61の中心Oに近づいており、図5Dの状態では、この像60の中心60が、更に基準領域61の中心Oに近づいている。
 このように、調整機構を操作することで、複数のLED素子3から射出された光をほぼ一点に集めることができるようになると共に、その集光位置を調整することが可能となる。特に、ロッドインテグレータ9の光入射面9aの中心箇所に、集光位置を移動させることで、ロッドインテグレータ9の光射出面9b上に照度の高い光を導くことができる。
 なお、本実施形態では、調整機構としてクランピングスクリュー41を用いる場合について説明したが、調整機構はこの構成に限られない。例えば、図6Aに示すようにカム44を用いるものとしても構わないし、図6Bに示すようにピン45を用いるものとしても構わない。図6Aの構成においては、カム44の回転軸をレンズホルダ23又はLEDボード22に取り付けるものとして構わない。また、図6Bの構成においては、ピン45のベース部をレンズホルダ23又はLEDボード22に取り付けるものとして構わない。
 [別実施形態]
 以下、別実施形態について説明する。
 〈1〉図7に示すように、インテグレータ光学系8がフライアイレンズ10で構成されていても構わない。この場合においても、フライアイレンズ10の入射面には高輝度の光が集光され、フライアイレンズ10からは高輝度の光が射出される。なお、上述した別の構成において、インテグレータ光学系8をフライアイレンズ10で構成しても構わない。
 〈2〉上述した光源装置1は、露光装置やプロジェクタ用の光源として利用することができる。図8は、光源装置1を含む露光装置の構成を模式的に示す図面である。
 露光装置19は、インテグレータ光学系8の後段に投影光学系15及びマスク16を備え、必要に応じて投影レンズ17を備える。投影光学系15によって投影される位置にマスク16を設置し、マスク16の後段にマスク16のパターン像を焼き付ける対象となる感光性基板18を設置する。この状態で、光源部2から光が射出されると、この光が第二光学系7によって集光された後、ロッドインテグレータ9で照度分布が均一化された光として、投影光学系15に照射される。投影光学系15は、この光を、マスク16のパターン像を直接又は投影レンズ17を介して感光性基板18上に投影する。
 光源装置1が露光装置19に用いられる場合、LED素子3として紫外光発光素子が用いられることが多い。このように、LED素子3から射出される光が紫外光の場合、像を視認することができない。このような場合には、インテグレータ光学系8の光入射面(ロッドインテグレータ9の光入射面9a)に蛍光体を塗布したプレートを配置させて、前記蛍光体を紫外光で励起させることで像を可視化させた状態とした上で、調整機構(クランピングスクリュー41等)を操作することで、LEDボード22及びレンズホルダ23の相対的な位置関係を調整するものとしても構わない。
 〈3〉上述した実施形態では、LEDボード22に対してレンズホルダ23を、X方向、Y方向、及びXY平面上の回転方向にそれぞれ移動させることができるものとした。しかし、これらのうちの少なくとも一の方向に移動可能に構成されていても構わないし、更に別の方向(例えばXY平面に直交する方向など)に移動可能に構成されていても構わない。また、レンズホルダ23に対してLEDボード22が移動可能に構成されていても構わない。
 〈4〉上述した各実施形態において、光源装置1が、光路を変更する目的で、反射光学系等の光学系を適宜追加して備えるものとしても構わない。
    1      :  光源装置
    2      :  光源部
    3      :  LED素子
    5      :  第一光学系
    6      :  コリメートレンズ
    7      :  第二光学系
    7f     :  第二光学系の焦点
    8      :  インテグレータ光学系
    9      :  ロッドインテグレータ
    9a     :  ロッドインテグレータの入射面
    9b     :  ロッドインテグレータの射出面
   10      :  フライアイレンズ
   11      :  光軸
   15      :  投影光学系
   16      :  マスク
   17      :  投影レンズ
   18      :  感光性基板
   19      :  露光装置
   22      :  LEDボード
   23      :  レンズホルダ
   41      :  クランピングスクリュー
   42      :  ボールプランジャ
   44      :  カム
   45      :  ピン
   60      :  像
   61      :  基準領域
   62      :  像の中心

Claims (8)

  1.  複数のLED素子が配置された光源部と、
     前記光源部から射出された光をそれぞれコリメートする第一光学系と、
     前記第一光学系から射出された複数の光を集光する第二光学系とを備え、
     前記光源部と前記第一光学系の少なくとも一方に、前記光源部と前記第一光学系との相対的な位置関係を調整するための調整機構が備えられていることを特徴とする光源装置。
  2.  前記複数のLED素子は、所定の平面上に配置されており、
     前記調整機構は、前記所定の平面に平行な方向に関して、前記光源部と前記第一光学系との相対的な位置関係を調整可能に構成されていることを特徴とする請求項1に記載の光源装置。
  3.  前記調整機構は、前記所定の平面に平行な平面上において、前記光源部又は前記第一光学系の少なくとも一方を回転可能に構成されていることを特徴とする請求項2に記載の光源装置。
  4.  前記光源部が収容されたLEDボードを有し、
     前記調整機構が前記LEDボードに付設されていることを特徴とする請求項1~3のいいずれか1項に記載の光源装置。
  5.  前記第一光学系が収容されたレンズホルダを有し、
     前記調整機構が前記レンズホルダに付設されていることを特徴とする請求項1~4のいずれか1項に記載の光源装置。
  6.  入射面が前記第二光学系の焦点位置に配置されたインテグレータ光学系を備えたことを特徴とする請求項1~5のいずれか1項に記載の光源装置。
  7.  前記インテグレータ光学系は、前記入射面から入射された光を、内側面で反射を繰り返させながら射出面へと導く導光部材で構成されていることを特徴とする請求項6に記載の光源装置。
  8.  前記インテグレータ光学系は、複数のレンズがマトリクス状に配置されたフライアイレンズで構成されていることを特徴とする請求項6に記載の光源装置。
PCT/JP2017/001405 2016-01-20 2017-01-17 光源装置 WO2017126500A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/070,967 US10845010B2 (en) 2016-01-20 2017-01-17 Light source device
KR1020187020732A KR102105611B1 (ko) 2016-01-20 2017-01-17 광원 장치
CN201780004568.2A CN108368978B (zh) 2016-01-20 2017-01-17 光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-009241 2016-01-20
JP2016009241A JP6866565B2 (ja) 2016-01-20 2016-01-20 光源装置

Publications (1)

Publication Number Publication Date
WO2017126500A1 true WO2017126500A1 (ja) 2017-07-27

Family

ID=59362370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001405 WO2017126500A1 (ja) 2016-01-20 2017-01-17 光源装置

Country Status (5)

Country Link
US (1) US10845010B2 (ja)
JP (1) JP6866565B2 (ja)
KR (1) KR102105611B1 (ja)
CN (1) CN108368978B (ja)
WO (1) WO2017126500A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020086393A (ja) * 2018-11-30 2020-06-04 キヤノン株式会社 光源装置、照明装置、露光装置及び物品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6709405B1 (ja) * 2019-07-03 2020-06-17 フェニックス電機株式会社 光源装置、およびそれを備える照明装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248627A (ja) * 1988-08-11 1990-02-19 Nikon Corp 照明光学装置およびそれを用いた露光装置
JP2003015314A (ja) * 2001-07-02 2003-01-17 Nikon Corp 照明光学装置および該照明光学装置を備えた露光装置
JP2004253758A (ja) * 2002-12-27 2004-09-09 Nikon Corp 照明光源ユニット、露光装置及び露光方法
JP2007059510A (ja) * 2005-08-23 2007-03-08 Nikon Corp 照明光学装置、露光装置及びマイクロデバイスの製造方法
JP2014003086A (ja) * 2012-06-15 2014-01-09 Ushio Inc 光照射装置、露光装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918583A (en) * 1988-04-25 1990-04-17 Nikon Corporation Illuminating optical device
JP2004335953A (ja) 2002-11-25 2004-11-25 Nikon Corp 露光装置及び露光方法
JP2005157059A (ja) 2003-11-27 2005-06-16 Seiko Epson Corp 照明装置及びプロジェクタ
US7427146B2 (en) * 2004-02-11 2008-09-23 3M Innovative Properties Company Light-collecting illumination system
JP4349356B2 (ja) * 2005-11-01 2009-10-21 セイコーエプソン株式会社 プロジェクタ
JP2007212496A (ja) 2006-02-07 2007-08-23 Seiko Epson Corp 光学装置及びプロジェクタ並びに光学装置の製造方法
WO2012128323A1 (ja) * 2011-03-22 2012-09-27 株式会社ニコン 光学素子、照明装置、測定装置、フォトマスク、露光方法、及びデバイス製造方法
RU2642682C2 (ru) * 2012-09-04 2018-01-25 Конинклейке Филипс Н.В. Система и способ выборочного освещения младенца во время фототерапии
JP6089616B2 (ja) * 2012-11-20 2017-03-08 セイコーエプソン株式会社 光源装置及びプロジェクター
JP6008810B2 (ja) * 2013-09-05 2016-10-19 ウシオ電機株式会社 レーザ光源装置
CN203641956U (zh) * 2014-01-14 2014-06-11 东莞华明灯具有限公司 一种可调节光束角的灯具
JP5804101B2 (ja) * 2014-02-12 2015-11-04 ウシオ電機株式会社 レーザ光源装置及び画像投影装置
US10459241B2 (en) * 2014-04-30 2019-10-29 Hewlett-Packard Development Company, L.P. Imaging apparatus and methods using diffraction-based illumination
CN203980157U (zh) * 2014-06-27 2014-12-03 深圳市明日系统集成有限公司 激光设备和调节组件
US10412806B2 (en) * 2016-11-10 2019-09-10 Hong Kong Beida Jade Bird Display Limited Multi-color micro-LED array light source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248627A (ja) * 1988-08-11 1990-02-19 Nikon Corp 照明光学装置およびそれを用いた露光装置
JP2003015314A (ja) * 2001-07-02 2003-01-17 Nikon Corp 照明光学装置および該照明光学装置を備えた露光装置
JP2004253758A (ja) * 2002-12-27 2004-09-09 Nikon Corp 照明光源ユニット、露光装置及び露光方法
JP2007059510A (ja) * 2005-08-23 2007-03-08 Nikon Corp 照明光学装置、露光装置及びマイクロデバイスの製造方法
JP2014003086A (ja) * 2012-06-15 2014-01-09 Ushio Inc 光照射装置、露光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020086393A (ja) * 2018-11-30 2020-06-04 キヤノン株式会社 光源装置、照明装置、露光装置及び物品の製造方法
JP7210249B2 (ja) 2018-11-30 2023-01-23 キヤノン株式会社 光源装置、照明装置、露光装置及び物品の製造方法

Also Published As

Publication number Publication date
JP6866565B2 (ja) 2021-04-28
JP2017130363A (ja) 2017-07-27
CN108368978B (zh) 2020-11-27
KR20180096720A (ko) 2018-08-29
CN108368978A (zh) 2018-08-03
US10845010B2 (en) 2020-11-24
US20190032869A1 (en) 2019-01-31
KR102105611B1 (ko) 2020-04-28

Similar Documents

Publication Publication Date Title
KR101139051B1 (ko) 집광 광학계, 광원 유닛, 조명 광학 장치 및 노광 장치
KR20040099311A (ko) 조명 방법, 노광 방법 및 그 장치
US8330938B2 (en) Solid-state array for lithography illumination
CN108803244B (zh) 照明装置及照明方法和一种光刻机
TW202349136A (zh) 曝光方法
JP6057072B2 (ja) 光源装置
WO2017126500A1 (ja) 光源装置
JP7185193B2 (ja) 光源装置
JP6651124B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
WO2013187300A1 (ja) 光照射装置、露光装置
JP6172540B2 (ja) 光源装置
JP6471900B2 (ja) 光源装置、露光装置
JP6970369B2 (ja) 光源装置の光軸調整用器具、光源装置、及び光源装置の光軸調整方法
WO2017138523A1 (ja) 光源装置
JP2007080953A (ja) 照明装置及び露光装置
JP6128348B2 (ja) 光源装置、露光装置
US11971163B2 (en) Light source device
WO2013018799A1 (ja) 照明装置
JP2023139483A (ja) 光照射装置、およびそれを用いたフォトマスク描画装置
JP2023158018A (ja) 照明光学系、露光装置、及びデバイス製造方法
JP2001210586A (ja) 照明光学装置、投影露光装置、半導体素子製造方法および露光方法
JP2002334834A (ja) 照明光学装置、投影露光装置、半導体素子製造方法および露光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187020732

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020732

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741378

Country of ref document: EP

Kind code of ref document: A1