WO2017126154A1 - Electric power conversion device and control method therefor - Google Patents
Electric power conversion device and control method therefor Download PDFInfo
- Publication number
- WO2017126154A1 WO2017126154A1 PCT/JP2016/075989 JP2016075989W WO2017126154A1 WO 2017126154 A1 WO2017126154 A1 WO 2017126154A1 JP 2016075989 W JP2016075989 W JP 2016075989W WO 2017126154 A1 WO2017126154 A1 WO 2017126154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- input voltage
- control
- reactor
- output voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Definitions
- the present invention relates to a power conversion device having a power factor improvement function and a control method thereof while performing step-up / step-down conversion from AC power to DC power.
- the PFC (Power Factor Correction) circuit used to improve the power factor suppresses harmonics and effectively uses power when stepping up and down converting AC power to DC power. It is widely used as a technique for reducing power consumption and realizing energy saving. Therefore, various types of PFC circuits have been proposed.
- an H-type bridge buck-boost converter is used to individually perform power factor correction control corresponding to boost control, buck control, or buck-boost control.
- a high power factor improvement effect is achieved. I try to get it. Further, since a desired output can be obtained with a single-stage converter, high efficiency can be realized at low cost.
- the microcomputer stores the voltage near the peak of the rectified voltage in the current half cycle, and the voltage near the peak of the rectified voltage in the half cycle before the current half cycle
- the MOSFET is controlled so that the magnitude of the current to the load is maintained when it is determined that there is an instantaneous drop when the difference between the two voltages is greater than a predetermined value.
- control is not performed, and as a result, the output waveform changes.
- the present invention has been made to solve the above-described problems, and is capable of performing a step-up / step-down operation stably so that the output voltage does not fluctuate even when the input voltage fluctuates. It aims at providing the power converter device which has.
- a power converter detects a full-wave rectification circuit that full-wave rectifies an AC voltage of an AC power supply, and an input voltage that has been full-wave rectified by the full-wave rectification circuit.
- An input voltage detection circuit, a switching element, and a reactor, and a converter that converts the input voltage into a target output voltage, an output voltage detection circuit that detects an output voltage after voltage conversion by the converter, and the reactor A power supply main circuit unit having a current detection circuit for detecting a flowing reactor current; and controlling the output voltage by controlling on / off of the switching element based on the input voltage, the output voltage, and the reactor current, and the reactor A power supply control unit that performs power factor correction control to control the current and bring the input current waveform closer to the input voltage waveform
- the power supply control unit controls the reactor current to be set larger than the normal time so that the input voltage is normal.
- the reactor current is set to be smaller than that in the normal state, and control is performed.
- the method for controlling the power converter according to the present invention includes a full-wave rectifier circuit that full-wave rectifies an AC voltage of an AC power supply, and an input voltage detection that detects an input voltage after full-wave rectification by the full-wave rectifier circuit.
- a converter having a circuit, a switching element, and a reactor, which converts the input voltage into a target output voltage, an output voltage detection circuit that detects an output voltage after voltage conversion by the converter, and a reactor current that flows through the reactor
- a power supply main circuit unit having a current detection circuit for detecting the output voltage, and controlling the output voltage by controlling on / off of the switching element based on the input voltage, the output voltage, and the reactor current, and controlling the reactor current
- a power control unit that performs power factor correction control to bring the input current waveform closer to the input voltage waveform.
- An apparatus control method wherein the input voltage detection circuit detects the input voltage, an input voltage detection step, the output voltage detection circuit detects the output voltage, and the power control unit.
- the reactor current is set to be larger than that in the normal time, and the fluctuation in which the input voltage increases from the normal time is controlled.
- a current control step for controlling the reactor current by setting the reactor current to be smaller than normal when detected.
- the power supply control unit of the converter that performs the power factor improvement control by controlling the reactor current has the fluctuation of the input voltage when the fluctuation occurs in the input voltage.
- the power factor improvement control can be performed by appropriate correction according to the input voltage fluctuation.
- FIG. 1 is a circuit block diagram illustrating an overall configuration of a power conversion device according to a first embodiment.
- FIG. 3 is a circuit block diagram illustrating a configuration of a power supply control unit of the power conversion device according to the first embodiment. It is a figure explaining the operation mode of the buck-boost control with respect to the input-output voltage in the power converter device which concerns on Embodiment 1.
- FIG. 4 is a flowchart illustrating a calculation control processing procedure of a power supply control unit in the power conversion device according to the first embodiment. It is a wave form diagram at the time of controlling by the peak current in the conventional power converter device.
- FIG. 3 is a diagram illustrating a method for generating an ideal value of an input voltage in the power conversion device according to Embodiment 1.
- FIG. It is a figure explaining the hysteresis comparator control system in the power converter device which concerns on Embodiment 1.
- FIG. It is a figure explaining the window comparator control system in the power converter device which concerns on Embodiment 1.
- FIG. It is a circuit block diagram which shows the whole structure of the other embodiment of the power converter device which concerns on Embodiment 1.
- FIG. FIG. 3 is a circuit block diagram illustrating an overall configuration of a power conversion device according to a second embodiment.
- FIG. 6 is a circuit block diagram showing a configuration of a power supply control unit of a power conversion device according to a second embodiment.
- FIG. 1 is a circuit block diagram illustrating an overall configuration of the power conversion device according to the first embodiment
- FIG. 2 is a circuit block diagram illustrating a configuration of a power supply control unit of the power conversion device.
- the power conversion apparatus includes a power supply main circuit unit 1 and a power supply control unit 2 that controls the first switching element Q1 and the second switching element Q2 of the converter 5 of the power supply main circuit unit 1.
- the power supply main circuit unit 1 includes a full-wave rectifier circuit 4 including a diode bridge circuit that full-wave rectifies the AC input voltage Vac supplied from the AC power supply 3, and an input voltage after full-wave rectification
- An input voltage detection circuit 7 comprising voltage resistors R1 and R2, an H-type bridge step-up / down converter 5 (hereinafter referred to as a converter) that adjusts a pulsating voltage
- the converter 5 adjusts the pulsating voltage
- the converter 5 includes a first switching element Q1 and a diode D1.
- a step-down arm composed of the second switching element Q2 and the diode D2, a connection point between the first switching element Q1 and the diode D1, and the second switching element Q2 and the diode D2.
- a reactor L connected between the connection points.
- Each of the first and second switching elements Q1 and Q2 includes an FET (Field Effect Transistor) element or an IGBT (Insulated Gate Bipolar Transistor) element, which is used for on / off control generated by the power control unit 2. It is driven by a switch signal.
- the converter 5 has a circuit configuration including a component as a step-up converter and a component as a step-down converter.
- the power supply control unit 2 when the output voltage detection value Vo is less than the input voltage detection value Vin, the power supply control unit 2 always turns on the first switching element Q1 and switches the second switching element Q2. Therefore, when the output voltage detection value Vo is equal to or higher than the input voltage detection value Vin, the second switching element Q2 is always turned off and the first switching element Q1 is switched. It works as a step-down converter.
- the power supply control unit 2 always turns on the first switching element Q1 to perform the switching operation of the second switching element Q2. Therefore, the reactor current IL flowing through the reactor L corresponds to the input current Iin. It will be a thing. Further, during the step-down control operation, the power supply control unit 2 always turns off the second switching element Q2 and performs the switching operation of the first switching element Q1, so that the reactor current IL flowing through the reactor L becomes the output current Io. It will be compatible. Therefore, the current detection circuit 6 detects the current from which the switching frequency component of the input current Iin after full-wave rectification has been removed during the boost control operation, and before the current ripple of the output current Io is removed during the buck control operation. Current is detected.
- the power supply control unit 2 controls the output control amount I for controlling the output voltage Vdc to a desired value from the deviation between the voltage Vo detected by the output voltage detection circuit 8 and the target output voltage Vo *.
- the output control amount calculation unit 21 for calculating **, the voltage Vin detected by the input voltage detection circuit 7 and the voltage Vo detected by the output voltage detection circuit 8 are compared, and the converter 5 is operated for boost control.
- the comparison / determination unit 22 for determining whether to perform the step-down control operation, the selector 23 for selecting the operation of the next stage, and the selector 23 selects the step-up control operation for the converter 5 based on the determination result of the comparison / determination unit 22.
- the step-down control operation of the converter 5 is selected by the step-up control peak current calculation unit 24a for setting the peak current Iref * of the converter 5 from the output control amount I ** and the selector 23.
- the step-down control peak current calculation unit 24b for setting the peak current Iref * during the step-down control operation of the converter 5 from the output control amount I **, the reactor current IL and the peak current Iref * of the step-up control operation or step-down control.
- the peak current control unit 25a or the peak current control unit 25b that performs peak current control from the peak current Iref * of the operation and the output of the peak current control unit 25a or the peak current control unit 25b according to the determination result of the comparison determination unit 22 respectively.
- an on / off signal generator 26 for selecting a signal and outputting a control signal to the switching elements Q1 and Q2.
- the on / off signal generator 26 determines whether the switch control unit 26a and the switch control unit 26b correspond to the peak current control unit 25a and the peak current control unit 25b, and the determination result of the comparison determination unit 22, respectively.
- a selector 26c that selects an output signal of the switch control unit 26b and switches a control signal output to the switching elements Q1 and Q2.
- the power supply control unit 2 is obtained based on the value obtained corresponding to the input current Iin after full-wave rectification during the step-up control operation, and corresponding to the output current Io during the step-down control operation.
- the target reactor current IL * which is the control target for the reactor current IL, is set based on each value.
- the power supply controller 2 can optimally control the phase and waveform of the input current Iin by controlling the reactor current IL to be the target reactor current IL *. Details of how to obtain the target reactor current IL * will be described later.
- the power supply control unit 2 resistance-divides the input voltage detection value Vin detected by dividing the pulsating voltage
- converter 5 functions as a step-up converter
- converter 5 functions as a step-down converter.
- the power supply control unit 2 performs on / off control of the switching elements Q1 and Q2 of the converter 5 by using the detection signals Vin, Vo, and IL described above, so that the power supply control unit 2 can perform both the step-up control operation and the step-down control operation.
- the PFC control function for controlling the input current Iin after full-wave rectification by the full-wave rectifier 4 is provided so that the alternating-current input current Iac has substantially the same phase and waveform as the alternating-current input voltage Vac.
- the target input current Iin * which is a control target value when controlling the input current Iin, has the same pulsating waveform with the same phase as the pulsating voltage
- power supply control unit 2 controls switching elements Q1 and Q2 of converter 5 such that the average of reactor current IL per unit time matches target reactor current IL *.
- the target reactor current IL * is set to a value proportional to the target input current Iin *. Further, during the step-down control operation, a current having a value corresponding to the output current Io flows through the reactor L. Therefore, the target reactor current IL * has a value proportional to the value obtained by converting the target input current Iin * into the output current. Set.
- the target reactor current IL * needs to be controlled so that the average of the reactor current IL per unit time becomes the target reactor current IL *.
- the power supply control unit 2 starts the control process, first, the input voltage detection value Vin detected by dividing the pulsating voltage
- Each of the detected output voltage values Vo detected by resistance-dividing the output voltage Vdc by the detection circuit 8 is fetched, and the target output voltage Vo * indicating the control target value of the output voltage Vo is received from the host system (step 1 (S01)).
- the target output voltage Vo * is received from the outside such as the host system, but is not limited to this and may be a predetermined constant.
- the output control amount calculation unit 21 outputs the output control amount I ** for controlling the output voltage Vdc to a desired value by calculation such as PI control from the deviation between the output voltage detection value Vo and the target output voltage Vo *. Is calculated (step 2 (S02)).
- the comparison / determination unit 22 calculates the input voltage detection value Vin (instantaneous value) and the output voltage detection value Vo in order to obtain the peak current iref * corresponding to the circuit operation status in the power supply main circuit unit 1.
- Vin instantaneous value
- Vo output voltage detection value
- the comparison determination unit 22 connects the common contact c of the upstream selector 23 connected to the output side of the output control amount calculation unit 21 to the individual contact a on the boost control operation side.
- a signal for connecting the individual contact a on the boost control operation side of the selector 26c to the common contact c is sent.
- the input voltage detection value Vin is equal to or higher than the output voltage detection value Vo (Vin ⁇ Vo)
- it is determined that the operation is a step-down control operation, and the process proceeds to step 9 (S09).
- the comparison / determination unit 22 connects the common contact c of the selector 23 in the previous stage connected to the output side of the output control amount calculation unit 21 to the individual contact b on the step-down control operation side. Then, a signal for connecting the individual contact b on the step-down control operation side of the selector 26c in the subsequent stage to the common contact c is sent.
- step 4 step-up control is performed in order to perform PFC control for controlling the input current Iin after full-wave rectification so that the AC input current Iac has substantially the same phase and waveform as the AC input voltage Vac.
- the target reactor current IL * is calculated, and in step 9 (S09), the step-down control target reactor current IL * is calculated.
- a value twice the target reactor current iL * is set as the peak current Iref *.
- the current corresponding to the input current Iin flows through the reactor L during the step-up control operation, and the current corresponding to the output current Io flows during the step-down control operation.
- the method for calculating the target reactor current IL * is changed depending on whether the step-up control operation is performed or the step-down control operation is performed.
- a boost control operation is performed (step 3 (S03)).
- a current corresponding to the input current Iin after full-wave rectification flows through the reactor L, so that the boost control target reactor current IL * controls a current corresponding to the input current Iin.
- the boost control peak current calculation unit 24a first uses the target input current Iin *, which is the target value of the input current Iin, and the output control amount I ** described above, and the boost control target according to the following equation (2). Reactor current IL * is calculated.
- IL * Iin * ⁇ I ** (2)
- the input voltage is replaced with the target input current Iin *.
- the detected value Vin may be used, and therefore the boost control target reactor current IL * during the boost control operation can be set by the following equation (3) (step 4 (S04)).
- IL ** Vin ⁇ I ** (3) Therefore, the peak current Iref * can be expressed by the following equation (4) by substituting equation (3) into equation (1).
- the boost control peak current calculation unit 24a further adds the ideal value Vin_ref of the input voltage generated by the power supply control unit 2 and the input voltage detection value to the peak current Iref * of the equation (4) in the peak current control.
- the boost control peak current Iref * in the peak current control expressed by the following equation (5) is calculated (step 5 (S05)).
- the correction coefficient (Vin_ref / Vin) 2 of the above formula (5) will be described later.
- the reactor current IL detected by the current detection circuit 6 of the power supply main circuit unit 1 is fetched (step 6 (S06)), and the reactor current IL and Peak current control is performed using the peak current Iref * obtained by the boost control peak current calculation unit 24a (step 7 (S07)).
- the peak current control unit 25a is configured so that the reactor current IL is equal to the above-described equation (4) in the state where the first switching element Q1 is always turned on in the on / off signal generation unit 26.
- the second switching element Q2 is controlled to be turned on at the moment when the boost control peak current Iref * obtained in step S3 is reached, and the reactor current IL is reduced. At the moment when the reactor current IL reaches zero, the second switching element Q2 is turned on.
- a signal for controlling the operation of the switch control unit 26a is output so as to increase the reactor current IL by controlling the second switching element Q2 to be off (step 7 (S07)).
- the switch control unit 26a supplies a switch signal for turning on / off to the second switching element Q2 constituting the step-up arm and a switch signal for always turning on the first switching element Q1. Generate and output (step 8 (S08)).
- step 3 (S03) when the comparison determination unit 22 determines that the input voltage detection value Vin is equal to or higher than the output voltage detection value Vo (Vin ⁇ Vo), a step-down control operation is performed (step 3 (S03)).
- a current corresponding to the output current Io flows through the reactor L, so the step-down control target reactor current IL * controls the current corresponding to the output current Io. Therefore, the step-down control peak current calculation unit 24b first calculates the step-down control target reactor current IL * by the following equation (6) using the output current Io and the output control amount I ** described above (step 10 ( S10)).
- IL ** Io ⁇ I ** (6)
- the output current Io is the target input current Iin *, the input voltage detection value Vin, and the output It can convert by following Formula (7) using the voltage detection value Vo.
- Io (Vin ⁇ Iin *) / Vo (7) Therefore, step-down control target reactor current IL * can be expressed by equation (8) using equations (5) and (6).
- IL * (Vin ⁇ Iin *) / Vo ⁇ I ** (8)
- the target input current Iin * is replaced with the target input current Iin *.
- the input voltage detection value Vin may be used, and therefore the step-down control target reactor current IL * during the step-down control operation can be set by the following equation (9) (step 9 (S09)).
- IL * Vin 2 / Vo ⁇ i ** (9) Therefore, the peak current Iref * can be expressed by the following equation (10) by substituting equation (9) into equation (1).
- Iref * (2 ⁇ Vin 2 / Vo) ⁇ I ** (10)
- the step-down control peak current calculation unit 24b adds the ideal value Vin_ref of the input voltage generated by the power supply control unit 2 and the input voltage detection value to the peak current Iref * of the equation (9).
- the step-down control peak current Iref * in the peak current control represented by the following equation (11) is calculated by multiplying the correction coefficient obtained by squaring the ratio with Vin (step 10 (S10)).
- the correction coefficient (Vin_ref / Vin) 2 of the above equation (11) will be described later.
- the reactor current IL detected by the current detection circuit 6 of the power supply main circuit unit 1 is fetched (step 11 (S11)), and the reactor current IL and Peak current control is performed using the peak current Iref * obtained by the step-down control peak current calculation unit 24b (step 12 (S12)).
- the peak current control unit 25b is configured so that the reactor current IL is equal to the above equation (9) in the state where the second switching element Q2 is always turned off in the on / off signal generation unit 26.
- the first switching element Q1 is controlled to be turned off, the reactor current IL is decreased, and at the moment when the reactor current IL reaches zero, The switching element Q1 is controlled to be turned on, and a signal for controlling the operation of the switch control unit 26b is output so as to increase the reactor current IL (step 12 (S12)).
- the switch control unit 26b In response to this, the switch control unit 26b generates an on / off switch signal for the first switching element Q1 constituting the step-down arm and a switch signal for always turning off the second switching element Q2. (Step 13 (S13)).
- the reactor current is controlled during the step-up and step-down control operations of the converter 5, the input current waveform can be brought close to the input voltage waveform, and power factor improvement control is executed.
- the correction coefficient (Vin_ref / Vin) 2 used in the equations (5) and (11) will be described below.
- the peak current Iref * in the conventional peak current control is set by the above-described equation (4).
- control is performed using the peak current Iref * of Equation (4), when a voltage dip or the like that decreases the input voltage occurs when another device connected to the same AC line is activated, the input voltage Since the detection value Vin also decreases, the peak current Iref * also decreases.
- FIG. 6 is a waveform diagram showing fluctuations in the output voltage detection value Vo when the input voltage fluctuates when control is performed using the conventional peak current iref * represented by Expression (4).
- the horizontal axis indicates time
- the upper waveform indicates the peak current Iref *
- the lower waveform indicates the output voltage detection value Vo.
- the input voltage detection value Vin is the gain of the power supply main circuit unit 1 regardless of the step-up control operation and the step-down control operation, and the gain of the power supply control unit 2 as shown in the equation (4). This is due to the fact that That is, when considering a round-trip transfer function of the power supply, when the input voltage fluctuates, the influence is given by the square of Vin.
- control may be performed so that the gain of the round trip transfer function of the power supply does not change. That is, when the input voltage can be controlled in an ideal sine wave form, the gain Gr of the power supply round trip function is expressed by the following equation (12) using the ideal value Vin_ref of the input voltage.
- Gr Vin_ref ⁇ 2 ⁇ Vin_ref ⁇ I ** (12)
- the gain G of the circuit transfer function of the power supply when the input voltage fluctuates due to a voltage dip or the like is expressed by the following equation (13) using the input voltage detection value Vin.
- G Vin ⁇ 2 ⁇ Vin ⁇ i ** (13)
- FIG. 7 shows fluctuations in the detected output voltage Vo when the input voltage fluctuates when controlled using the peak current iref * shown in the equation (5) or the equation (11) corrected with the correction coefficient (Vin_ref / Vin) 2.
- FIG. 7 the horizontal axis indicates time, the upper waveform indicates the peak current iref *, and the lower waveform indicates the output voltage detection value Vo.
- the peak current iref * in FIG. 7 in the case where the correction is performed is larger than that in FIG. 6 in the case where the correction is not performed.
- fluctuations in the output voltage detection value Vo are suppressed.
- the waveform shape of the peak current iref * is one of the major features.
- the peak current iref * is controlled by formula (5) or formula (11)
- the peak current iref * waveform is set larger than the normal level and controlled.
- the waveform of the peak current iref * is controlled to be set smaller than the normal level.
- the correction coefficient (Vin_ref / Vin) 2 in the equations (5) and (11) is characterized in that the control is always performed regardless of the presence or absence of the input voltage fluctuation.
- This coefficient is 1, which is the conventional peak current iref * expression (4). If there is a fluctuation in the input voltage, it is corrected according to this coefficient regardless of the magnitude of the fluctuation, and the fluctuation control is detected by detecting the fluctuation range. There is no need to switch.
- the ideal control method is performed by multiplying the correction coefficient (Vin_ref / Vin) 2 of the equation (5) or the equation (11) of the peak current iref *.
- the peak current iref * is increased by a predetermined value or a correction coefficient corresponding to a predetermined value depending on a value that decreases.
- the control may be such that the peak current iref * is reduced by a constant value or a predetermined correction coefficient corresponding to the increased value. Any control is possible as long as the value of the peak current iref * is controlled to be opposite to the change in the input voltage fluctuation.
- the power supply control unit 2 always captures the input voltage detection value Vin (instantaneous value). Since the input voltage detection value Vin has a signal shape obtained by full-wave rectification of the AC input voltage Vac, as shown in FIG. 8 illustrated as an example at 50 Hz, the input voltage detection value Vin has a waveform shape folded at 0V.
- the input voltage detection value Vin (instantaneous value) is the smallest value near 0 V, and the frequency of the AC input voltage Vac can be determined by the time interval between this minimum value and the minimum value at the next timing.
- a count is made from the minimum value of the input voltage detection value Vin for each sampling period of input voltage detection inside a control IC such as a microcomputer, and a count value (cnt) prepared in advance in a table inside the microcomputer. ) And the ideal value (Vin_ref) of a sine wave that has a one-to-one correspondence.
- a method of generating an ideal value of a sine wave (Vin_ref) using a table stored in a control IC such as a microcomputer is shown, but the present invention is not limited to this.
- a method of calculating a wave to obtain an ideal value (Vin_ref) of the sine wave may be used.
- control units 25a and 25b and the on / off signal generation unit 26 are divided into blocks for each function, such control of each function can be realized by a control IC such as a microcomputer using a control program.
- the present invention can also be applied to a simple boost converter in which the output voltage is always controlled to be larger than the input voltage. Needless to say, the present invention can be applied to all converters that control the peak current of the reactor.
- the power conversion device including the H-type bridge buck-boost converter 5 that converts AC input into DC output includes the power supply control unit 2 that controls the reactor current IL.
- AC is controlled by controlling the switching elements Q ⁇ b> 1 and Q ⁇ b> 2 of the converter 5 while switching between step-up control and step-down control based on a comparison of the magnitude of the input voltage detection value Vin and the output voltage detection value Vo.
- Power factor correction control PFC
- the calculation method is switched between the step-up control operation and the step-down control operation so that the target input current Iin * in the PFC control has the same phase as the pulsating voltage
- the boost control target reactor current IL * is controlled based on the equation (6), and during the step-down control operation, Since a current corresponding to the output current Io flows through the reactor L, the step-down control target reactor current IL * is adjusted to be controlled based on the equation (9), thereby adjusting the reactor current IL flowing through the reactor L, Since the AC input current Iac has the same phase and waveform as the AC input voltage Vac, the power factor can be improved.
- the boost control and step-down control peak current Iref * is multiplied by the square of the ratio of the ideal value (Vin_ref) of the input voltage and the detected input voltage detection value Vin, the output waveform even when the input voltage fluctuates. Fluctuations can be suppressed. Furthermore, since this power converter is composed of a single-stage converter 5 and uses peak current control, the number of components is small, low cost, and high efficiency can be realized.
- the control method of the reactor current IL is the peak current control method.
- the present invention is not limited to such a peak current control method.
- the target reactor current iL * As shown in FIG. 9, the target reactor current iL *
- the peak current Iref * is determined so that the target reactor current IL * is located at the center position between the upper limit peak current Iref1 * and the lower limit peak current Iref2 * of the divided voltage value. It is also possible to apply a window comparator control system that increases or decreases the reactor current IL between the peak currents Iref1 * and Iref2 *.
- the power supply control unit of the converter that performs the power factor improvement control by controlling the reactor current is supplied with the input voltage generated by the power supply control unit.
- the control is performed by setting the peak current multiplied by the correction coefficient obtained by squaring the ratio between the ideal value and the detected value of the input voltage, the square of this ratio is 1 when there is no input voltage fluctuation.
- the power factor improvement control is performed as usual and the input voltage fluctuates, the ratio between the ideal input voltage value and the detected input voltage value changes, and the power factor corresponding to the amount of change in this ratio Since the improvement control is executed, there is an effect that an appropriate correction according to the input voltage fluctuation is possible.
- the converter 5 includes the diodes D1 and D2 and the switching elements Q1 and Q2 has been described.
- the circuit block diagram of the power conversion device according to another embodiment of FIG. the converter 51 may be configured to change the diodes D1 and D2 to switching elements Q3 and Q4 such as FET elements and IGBT elements.
- switching elements Q3 and Q4 such as FET elements and IGBT elements.
- FIG. FIG. 12 is a circuit block diagram illustrating an overall configuration of the power conversion device according to the second embodiment
- FIG. 13 is a circuit block diagram illustrating a configuration of a power supply control unit of the power conversion device.
- an LED lighting apparatus in which a plurality of LEDs (Light Emitting Diodes) 90 are connected in series is connected to the power supply main circuit unit 1 as a load. Yes.
- the LED current detection circuit 91 is added as a detection circuit for detecting LED current ILED which flows into LED with respect to the circuit structure of FIG. 1 (FIG. 1).
- the output control amount calculation unit 21 uses the LED current ILED detected by the LED current detection circuit 91 instead of the output voltage detection value Vo and the target output voltage Vo *, The target output current ILED * is input. Since other components are the same as those in the first embodiment, the description thereof is omitted.
- the LED current ILED flowing through the LED 90 can be controlled by controlling the reactor current IL as in the first embodiment.
- the dimming function for adjusting the amount of light is mounted on the LED illumination, the dimming function is also realized by making the target output current ILED * variable from an external device. be able to.
- connection method of the LED serving as the load 90 is not limited to simply connecting in series, and may be parallel connection or series-parallel connection.
- the load 90 may be another light source such as an organic EL or a laser diode.
- the LED current ILED detected by the LED current detection circuit is fed back to the power supply control unit, and the output control amount
- the calculation unit controls the LED current ILED to be the target output current ILED *, and the switching elements Q1 and Q2 are turned on / off by the peak current calculation unit, the peak current control unit, and the on / off signal generation unit, as in the first embodiment. By controlling, it is possible to suppress flickering of the LED light amount even when the input voltage fluctuates.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
A power supply control unit (2) of the electric power conversion device controls an output voltage (Vo) by performing on/off control of switching components (Q1, Q2) on the basis of an input voltage detection value (Vin), the output voltage detection value (Vo), and a reactor current (IL), and controls the reactor current (IL) such that an input current waveform approaches an input voltage waveform in order to perform power factor improvement control. The power supply control unit performs the power factor improvement control by making an appropriate correction in response to a fluctuation in the input voltage such that the magnitude of a fluctuation in the reactor current (IL) counteracts that of the fluctuation in the input voltage (Vin). Consequently, even in the event of a fluctuation in the input voltage (Vin), a stable step-up/step-down operation can be performed without a fluctuation in the output voltage (Vo).
Description
本発明は、交流電力を直流電力に昇降圧変換するとともに、力率改善機能を備えた電力変換装置及びその制御方法に関するものである。
The present invention relates to a power conversion device having a power factor improvement function and a control method thereof while performing step-up / step-down conversion from AC power to DC power.
力率を改善するために利用されるPFC(PFC:Power Factor Correction)回路は、交流電力を直流電力に昇降圧変換する際に、高調波を抑制して、電力を有効利用することで、ピーク電力を抑え、省エネを実現する手法として、広く利用されている。そこで、様々な方式のPFC回路が提案されている。
The PFC (Power Factor Correction) circuit used to improve the power factor suppresses harmonics and effectively uses power when stepping up and down converting AC power to DC power. It is widely used as a technique for reducing power consumption and realizing energy saving. Therefore, various types of PFC circuits have been proposed.
例えば、特許文献1の電力変換装置では、H型ブリッジ昇降圧コンバータを用いて、昇圧制御時、降圧制御時、又は昇降圧制御時に対応してそれぞれ個別に力率改善制御を行うための目標リアクトル電流IL*の演算を行い、リアクトル電流ILが目標リアクトル電流IL*に一致するようにリアクトルのピーク電流値の制御を行い、入力電流波形を入力電圧波形により近づけることで、高い力率改善効果が得られるようにしている。また、1段のコンバータで所望の出力を得ることができるため、低コストで高効率を実現することを可能としている。
For example, in the power conversion device of Patent Document 1, an H-type bridge buck-boost converter is used to individually perform power factor correction control corresponding to boost control, buck control, or buck-boost control. By calculating the current IL *, controlling the reactor peak current value so that the reactor current IL matches the target reactor current IL *, and bringing the input current waveform closer to the input voltage waveform, a high power factor improvement effect is achieved. I try to get it. Further, since a desired output can be obtained with a single-stage converter, high efficiency can be realized at low cost.
また、特許文献2の力率改善回路では、AC電源からの交流電圧Vinを整流する整流回路の後段に接続され、力率改善回路の入力側に設けられたコンデンサに流れる充放電電流Icがないと仮定したときに、交流電圧Vinの半周期において、半周期における後半の電流量が半周期における前半の電流量よりも大きくなるように回路電流(PFC電流Ipfc)を制御する。これにより、充放電電流によるPFC回路の電流制御への影響を低減することにより、1つのハードウェア構成で複数の入力レベル(あるいは出力レベル)に対応した電源回路を実現している。
Further, in the power factor correction circuit of Patent Document 2, there is no charge / discharge current Ic flowing through a capacitor provided on the input side of the power factor correction circuit, connected to the subsequent stage of the rectifier circuit that rectifies the AC voltage Vin from the AC power supply. Assuming that, in the half cycle of the AC voltage Vin, the circuit current (PFC current Ipfc) is controlled so that the latter half current amount in the half cycle is larger than the first half current amount in the half cycle. Thus, by reducing the influence of the charge / discharge current on the current control of the PFC circuit, a power supply circuit corresponding to a plurality of input levels (or output levels) is realized with one hardware configuration.
しかしながら、特許文献1の電力変換装置では、安定した入力電圧が供給されている場合には問題はないが、同じAC電源に接続されている他の機器が動作している場合には、入力電圧が変動し、瞬時的に出力電圧、出力電流が変化してしまうという課題があった。
However, in the power conversion device of Patent Document 1, there is no problem when a stable input voltage is supplied. However, when other devices connected to the same AC power supply are operating, the input voltage Fluctuated and the output voltage and output current changed instantaneously.
また、特許文献2の力率改善回路では、現在の半周期における整流電圧のピーク付近での電圧をマイコンに記憶させ、現在の半周期の前の半周期の整流電圧のピーク付近での電圧との差を比較し、両電圧の差が所定の値よりも大きい場合に、瞬時低下と判断された場合には、負荷への電流の大きさを維持するように、MOSFETを制御している。しかし、瞬時低下と判断するレベルに達しなかった場合には、制御されず、その結果、出力波形が変化してしまうという課題があった。
In the power factor correction circuit of Patent Document 2, the microcomputer stores the voltage near the peak of the rectified voltage in the current half cycle, and the voltage near the peak of the rectified voltage in the half cycle before the current half cycle The MOSFET is controlled so that the magnitude of the current to the load is maintained when it is determined that there is an instantaneous drop when the difference between the two voltages is greater than a predetermined value. However, there is a problem that when the level that is determined to be an instantaneous drop is not reached, control is not performed, and as a result, the output waveform changes.
本発明は、上記のような課題を解決するためになされたものであり、入力電圧が変動した場合においても、出力電圧が変動しないように安定して昇降圧動作させることができる力率改善回路を有する電力変換装置を提供することを目的としている。
The present invention has been made to solve the above-described problems, and is capable of performing a step-up / step-down operation stably so that the output voltage does not fluctuate even when the input voltage fluctuates. It aims at providing the power converter device which has.
上記課題を解決するために、本発明に係る電力変換装置は、交流電源の交流電圧を全波整流する全波整流回路、前記全波整流回路で全波整流された後の入力電圧を検出する入力電圧検出回路、スイッチング素子及びリアクトルを有すると共に、前記入力電圧を目標とする出力電圧に変換するコンバータ、前記コンバータで電圧変換された後の出力電圧を検出する出力電圧検出回路、及び前記リアクトルに流れるリアクトル電流を検出する電流検出回路を有する電源主回路部と、前記入力電圧、前記出力電圧及び前記リアクトル電流に基づいて前記スイッチング素子をオンオフ制御することにより前記出力電圧を制御すると共に、前記リアクトル電流を制御して入力電流波形を入力電圧波形に近づける力率改善制御を行う電源制御部と、を備え、前記電源制御部は、前記入力電圧検出回路にて、前記入力電圧が正常時より下降する変動を検出した際は、前記リアクトル電流を正常時より大きく設定して制御し、前記入力電圧が正常時より上昇する変動を検出した際は、前記リアクトル電流を正常時より小さく設定して制御を行うことを特徴とするものである。
In order to solve the above problems, a power converter according to the present invention detects a full-wave rectification circuit that full-wave rectifies an AC voltage of an AC power supply, and an input voltage that has been full-wave rectified by the full-wave rectification circuit. An input voltage detection circuit, a switching element, and a reactor, and a converter that converts the input voltage into a target output voltage, an output voltage detection circuit that detects an output voltage after voltage conversion by the converter, and the reactor A power supply main circuit unit having a current detection circuit for detecting a flowing reactor current; and controlling the output voltage by controlling on / off of the switching element based on the input voltage, the output voltage, and the reactor current, and the reactor A power supply control unit that performs power factor correction control to control the current and bring the input current waveform closer to the input voltage waveform When the input voltage detection circuit detects a fluctuation in which the input voltage decreases from the normal time, the power supply control unit controls the reactor current to be set larger than the normal time so that the input voltage is normal. When a fluctuation rising from the time is detected, the reactor current is set to be smaller than that in the normal state, and control is performed.
また、本発明に係る電力変換装置の制御方法は、交流電源の交流電圧を全波整流する全波整流回路、前記全波整流回路で全波整流された後の入力電圧を検出する入力電圧検出回路、スイッチング素子及びリアクトルを有すると共に、前記入力電圧を目標とする出力電圧に変換するコンバータ、前記コンバータで電圧変換された後の出力電圧を検出する出力電圧検出回路、及び前記リアクトルに流れるリアクトル電流を検出する電流検出回路を有する電源主回路部と、前記入力電圧、前記出力電圧及び前記リアクトル電流に基づいて前記スイッチング素子をオンオフ制御することにより前記出力電圧を制御すると共に、前記リアクトル電流を制御して入力電流波形を入力電圧波形に近づける力率改善制御を行う電源制御部と、を備えた電力変換装置の制御方法であって、前記入力電圧検出回路が、前記入力電圧を検出する入力電圧検出ステップと、前記出力電圧検出回路が、前記出力電圧を検出する出力電圧検出ステップと、前記電源制御部が、前記入力電圧検出ステップにおいて、前記入力電圧が正常時より下降する変動を検出した際は、前記リアクトル電流を正常時より大きく設定して制御し、前記入力電圧が正常時より上昇する変動を検出した際は、前記リアクトル電流を正常時より小さく設定して制御を行う電流制御ステップと、を備えることを特徴とするものである。
The method for controlling the power converter according to the present invention includes a full-wave rectifier circuit that full-wave rectifies an AC voltage of an AC power supply, and an input voltage detection that detects an input voltage after full-wave rectification by the full-wave rectifier circuit. A converter having a circuit, a switching element, and a reactor, which converts the input voltage into a target output voltage, an output voltage detection circuit that detects an output voltage after voltage conversion by the converter, and a reactor current that flows through the reactor A power supply main circuit unit having a current detection circuit for detecting the output voltage, and controlling the output voltage by controlling on / off of the switching element based on the input voltage, the output voltage, and the reactor current, and controlling the reactor current And a power control unit that performs power factor correction control to bring the input current waveform closer to the input voltage waveform. An apparatus control method, wherein the input voltage detection circuit detects the input voltage, an input voltage detection step, the output voltage detection circuit detects the output voltage, and the power control unit. However, in the input voltage detection step, when the fluctuation in which the input voltage decreases from the normal time is detected, the reactor current is set to be larger than that in the normal time, and the fluctuation in which the input voltage increases from the normal time is controlled. A current control step for controlling the reactor current by setting the reactor current to be smaller than normal when detected.
本発明の電力変換装置及び電力変換装置の制御方法によれば、リアクトル電流を制御して力率改善制御を行うコンバータの電源制御部は、入力電圧に変動が生じた場合に、入力電圧の変動に対して、リアクトル電流が変動の大小と逆になるように制御を行うことで、入力電圧変動に応じた適切な補正により力率改善制御が可能となるという効果がある。
According to the power conversion device and the method for controlling the power conversion device of the present invention, the power supply control unit of the converter that performs the power factor improvement control by controlling the reactor current has the fluctuation of the input voltage when the fluctuation occurs in the input voltage. On the other hand, by performing control so that the reactor current is opposite to the magnitude of the fluctuation, there is an effect that the power factor improvement control can be performed by appropriate correction according to the input voltage fluctuation.
以下、本発明の実施の形態に係る電力変換装置の構成、動作及び電力変換装置の制御方法の詳細について、図1から図13を参照して説明する。
Hereinafter, the configuration and operation of the power conversion device according to the embodiment of the present invention and details of the control method of the power conversion device will be described with reference to FIGS. 1 to 13.
実施の形態1.
図1は、実施の形態1に係る電力変換装置の全体構成を示す回路ブロック図であり、図2は、電力変換装置の電源制御部の構成を示す回路ブロック図である。Embodiment 1 FIG.
FIG. 1 is a circuit block diagram illustrating an overall configuration of the power conversion device according to the first embodiment, and FIG. 2 is a circuit block diagram illustrating a configuration of a power supply control unit of the power conversion device.
図1は、実施の形態1に係る電力変換装置の全体構成を示す回路ブロック図であり、図2は、電力変換装置の電源制御部の構成を示す回路ブロック図である。
FIG. 1 is a circuit block diagram illustrating an overall configuration of the power conversion device according to the first embodiment, and FIG. 2 is a circuit block diagram illustrating a configuration of a power supply control unit of the power conversion device.
まず、図1及び図2を用いて、実施の形態1に係る電力変換装置の構成について説明する。電力変換装置は、電源主回路部1と、電源主回路部1のコンバータ5の第1のスイッチング素子Q1及び第2のスイッチング素子Q2を制御する電源制御部2と、から構成されている。
First, the configuration of the power conversion device according to the first embodiment will be described with reference to FIGS. 1 and 2. The power conversion apparatus includes a power supply main circuit unit 1 and a power supply control unit 2 that controls the first switching element Q1 and the second switching element Q2 of the converter 5 of the power supply main circuit unit 1.
図1に示すように、電源主回路部1は、交流電源3から供給された交流入力電圧Vacを全波整流するダイオードブリッジ回路からなる全波整流回路4と、全波整流後の入力電圧|Vac|(以下、脈流電圧と称する。)に含まれるノイズを平滑化するための入力コンデンサC1と、脈流電圧|Vac|の入力電圧検出値Vinを検出するための直列に接続された分圧抵抗R1とR2からなる入力電圧検出回路7と、脈流電圧|Vac|を目標とする直流の出力電圧Vdcに調整するH型ブリッジ昇降圧コンバータ5(以下、コンバータと称する。)と、コンバータ5のリアクトルLに流れるリアクトル電流ILを検出する電流検出回路6と、コンバータ5の出力電圧の脈動を平滑化する出力コンデンサC2と、得られた直流の出力電圧Vdcの出力電圧検出値Voを検出するための直列に接続された分圧抵抗R3とR4からなる出力電圧検出回路8と、で構成されている。電源主回路部1の出力側には、負荷9が接続されている。
As shown in FIG. 1, the power supply main circuit unit 1 includes a full-wave rectifier circuit 4 including a diode bridge circuit that full-wave rectifies the AC input voltage Vac supplied from the AC power supply 3, and an input voltage after full-wave rectification | An input capacitor C1 for smoothing noise included in Vac | (hereinafter referred to as a pulsating current voltage) and an amount connected in series for detecting an input voltage detection value Vin of the pulsating voltage | Vac | An input voltage detection circuit 7 comprising voltage resistors R1 and R2, an H-type bridge step-up / down converter 5 (hereinafter referred to as a converter) that adjusts a pulsating voltage | Vac | to a target DC output voltage Vdc, and a converter. Current detecting circuit 6 for detecting the reactor current IL flowing through the reactor L, output capacitor C2 for smoothing the pulsation of the output voltage of the converter 5, and the obtained DC output voltage V An output voltage detection circuit 8 connected in series with voltage dividing resistors R3 and consists R4 for detecting the output voltage detection value Vo of c, in being configured. A load 9 is connected to the output side of the power supply main circuit unit 1.
なお、コンバータ5は、全波整流回路4により全波整流された図3に示す脈流電圧|Vac|を、目標とする出力電圧Vdcに調整するもので、第1のスイッチング素子Q1とダイオードD1で構成される降圧型アームと、第2のスイッチング素子Q2とダイオードD2で構成される昇圧型アームと、第1のスイッチング素子Q1とダイオードD1の接続点及び第2のスイッチング素子Q2とダイオードD2の接続点の間に接続されたリアクトルLと、を備えている。また、第1、第2の各スイッチング素子Q1,Q2には、FET(Field Effect Transistor)素子やIGBT(Insulated Gate Bipolar Transistor)素子などが用いられ、電源制御部2で生成されたオンオフ制御用のスイッチ信号により駆動される。
The converter 5 adjusts the pulsating voltage | Vac | shown in FIG. 3 that has been full-wave rectified by the full-wave rectifier circuit 4 to a target output voltage Vdc. The converter 5 includes a first switching element Q1 and a diode D1. A step-down arm composed of the second switching element Q2 and the diode D2, a connection point between the first switching element Q1 and the diode D1, and the second switching element Q2 and the diode D2. And a reactor L connected between the connection points. Each of the first and second switching elements Q1 and Q2 includes an FET (Field Effect Transistor) element or an IGBT (Insulated Gate Bipolar Transistor) element, which is used for on / off control generated by the power control unit 2. It is driven by a switch signal.
そして、第1のスイッチング素子Q1とダイオードD1は、全波整流回路4の出力側に対して直列に接続され、また、第2のスイッチング素子Q2とダイオードD2は、負荷9に対して直列に接続されている。この構成により、コンバータ5は、昇圧コンバータとしての構成要素と、降圧コンバータとしての構成要素とを備えた回路構成となっている。
The first switching element Q1 and the diode D1 are connected in series to the output side of the full-wave rectifier circuit 4, and the second switching element Q2 and the diode D2 are connected in series to the load 9. Has been. With this configuration, the converter 5 has a circuit configuration including a component as a step-up converter and a component as a step-down converter.
具体的には、電源制御部2は、出力電圧検出値Voが入力電圧検出値Vin未満である場合には、第1のスイッチング素子Q1を常時オンにして、第2のスイッチング素子Q2をスイッチング動作させることで昇圧コンバータとして作用させ、出力電圧検出値Voが入力電圧検出値Vin以上である場合には、第2のスイッチング素子Q2を常時オフにして、第1のスイッチング素子Q1をスイッチング動作させることで降圧コンバータとして作用させる。
Specifically, when the output voltage detection value Vo is less than the input voltage detection value Vin, the power supply control unit 2 always turns on the first switching element Q1 and switches the second switching element Q2. Therefore, when the output voltage detection value Vo is equal to or higher than the input voltage detection value Vin, the second switching element Q2 is always turned off and the first switching element Q1 is switched. It works as a step-down converter.
昇圧制御動作時には、電源制御部2により、第1のスイッチング素子Q1を常時オンにして、第2のスイッチング素子Q2をスイッチング動作させるので、リアクトルLに流れるリアクトル電流ILは、入力電流Iinに対応したものとなる。また、降圧制御動作時には、電源制御部2により、第2のスイッチング素子Q2を常時オフにして、第1のスイッチング素子Q1をスイッチング動作させるので、リアクトルLに流れるリアクトル電流ILは、出力電流Ioに対応したものとなる。そのため、電流検出回路6は、昇圧制御動作時には、全波整流後の入力電流Iinのスイッチング周波数成分を除去した電流を検出し、また、降圧制御動作時には、出力電流Ioの電流リップルを除去する前の電流を検出することになる。
During the step-up control operation, the power supply control unit 2 always turns on the first switching element Q1 to perform the switching operation of the second switching element Q2. Therefore, the reactor current IL flowing through the reactor L corresponds to the input current Iin. It will be a thing. Further, during the step-down control operation, the power supply control unit 2 always turns off the second switching element Q2 and performs the switching operation of the first switching element Q1, so that the reactor current IL flowing through the reactor L becomes the output current Io. It will be compatible. Therefore, the current detection circuit 6 detects the current from which the switching frequency component of the input current Iin after full-wave rectification has been removed during the boost control operation, and before the current ripple of the output current Io is removed during the buck control operation. Current is detected.
図2に示すように、電源制御部2は、出力電圧検出回路8で検出された電圧Voと目標出力電圧Vo*との偏差から出力電圧Vdcを所望の値に制御するための出力制御量I**を算出する出力制御量演算部21と、入力電圧検出回路7で検出された電圧Vinと出力電圧検出回路8で検出された電圧Voとを比較し、コンバータ5を昇圧制御の動作をさせるか、降圧制御の動作をさせるかを判定する比較判定部22と、比較判定部22の判定結果により、次段の動作を選択するセレクタ23と、セレクタ23によりコンバータ5の昇圧制御動作が選択された場合に、出力制御量I**からコンバータ5のピーク電流Iref*を設定する昇圧制御用ピーク電流演算部24aと、セレクタ23によりコンバータ5の降圧制御動作が選択された場合に、出力制御量I**からコンバータ5の降圧制御動作時のピーク電流Iref*を設定する降圧制御用ピーク電流演算部24bと、リアクトル電流ILと昇圧制御動作のピーク電流Iref*あるいは降圧制御動作のピーク電流Iref*とから、それぞれピーク電流制御を行うピーク電流制御部25aあるいはピーク電流制御部25bと、比較判定部22の判定結果により、ピーク電流制御部25aあるいはピーク電流制御部25bの出力信号を選択し、スイッチング素子Q1,Q2に対して制御信号を出力するオンオフ信号生成部26と、で構成されている。
As shown in FIG. 2, the power supply control unit 2 controls the output control amount I for controlling the output voltage Vdc to a desired value from the deviation between the voltage Vo detected by the output voltage detection circuit 8 and the target output voltage Vo *. The output control amount calculation unit 21 for calculating **, the voltage Vin detected by the input voltage detection circuit 7 and the voltage Vo detected by the output voltage detection circuit 8 are compared, and the converter 5 is operated for boost control. Or the comparison / determination unit 22 for determining whether to perform the step-down control operation, the selector 23 for selecting the operation of the next stage, and the selector 23 selects the step-up control operation for the converter 5 based on the determination result of the comparison / determination unit 22. In this case, the step-down control operation of the converter 5 is selected by the step-up control peak current calculation unit 24a for setting the peak current Iref * of the converter 5 from the output control amount I ** and the selector 23. In this case, the step-down control peak current calculation unit 24b for setting the peak current Iref * during the step-down control operation of the converter 5 from the output control amount I **, the reactor current IL and the peak current Iref * of the step-up control operation or step-down control. The peak current control unit 25a or the peak current control unit 25b that performs peak current control from the peak current Iref * of the operation and the output of the peak current control unit 25a or the peak current control unit 25b according to the determination result of the comparison determination unit 22 respectively. And an on / off signal generator 26 for selecting a signal and outputting a control signal to the switching elements Q1 and Q2.
なお、オンオフ信号生成部26は、ピーク電流制御部25a及びピーク電流制御部25bにそれぞれ対応したスイッチ制御部26a及びスイッチ制御部26bと、比較判定部22の判定結果とにより、スイッチ制御部26a及びスイッチ制御部26bの出力信号を選択し、スイッチング素子Q1,Q2に出力する制御信号を切り替えるセレクタ26cと、を備えている。
Note that the on / off signal generator 26 determines whether the switch control unit 26a and the switch control unit 26b correspond to the peak current control unit 25a and the peak current control unit 25b, and the determination result of the comparison determination unit 22, respectively. A selector 26c that selects an output signal of the switch control unit 26b and switches a control signal output to the switching elements Q1 and Q2.
また、電源制御部2は、昇圧制御動作時は、全波整流後の入力電流Iinに対応して得られた値に基づいて、また降圧制御動作時は、出力電流Ioに対応して得られた値に基づいて、それぞれリアクトル電流ILの制御目標となる目標リアクトル電流IL*を設定する。そして、電源制御部2は、リアクトル電流ILが目標リアクトル電流IL*となるように制御することにより、入力電流Iinの位相と波形を最適に制御することが可能となる。なお、目標リアクトル電流IL*の具体的な求め方の詳細については、後述する。
The power supply control unit 2 is obtained based on the value obtained corresponding to the input current Iin after full-wave rectification during the step-up control operation, and corresponding to the output current Io during the step-down control operation. The target reactor current IL *, which is the control target for the reactor current IL, is set based on each value. The power supply controller 2 can optimally control the phase and waveform of the input current Iin by controlling the reactor current IL to be the target reactor current IL *. Details of how to obtain the target reactor current IL * will be described later.
次に、電源制御部2の動作について、図1から図10を参照して説明する。
まず、電源制御部2は、入力電圧検出回路7にて脈流電圧|vac|を抵抗分圧して検出された入力電圧検出値Vinと、出力電圧検出回路8にて出力電圧vdcを抵抗分圧して検出された出力電圧検出値Voとの比較に基づいて、コンバータ5の昇圧制御動作と降圧制御動作とを切り替える。ここで、昇圧制御動作時においては、コンバータ5は昇圧コンバータとして機能し、降圧制御動作時においては、コンバータ5は降圧コンバータとして機能することになる。 Next, the operation of the powersupply control unit 2 will be described with reference to FIGS.
First, the powersupply control unit 2 resistance-divides the input voltage detection value Vin detected by dividing the pulsating voltage | vac | by the input voltage detection circuit 7 and the output voltage vdc by the output voltage detection circuit 8. Based on the comparison with the detected output voltage value Vo, the step-up control operation and the step-down control operation of the converter 5 are switched. Here, during the step-up control operation, converter 5 functions as a step-up converter, and during step-down control operation, converter 5 functions as a step-down converter.
まず、電源制御部2は、入力電圧検出回路7にて脈流電圧|vac|を抵抗分圧して検出された入力電圧検出値Vinと、出力電圧検出回路8にて出力電圧vdcを抵抗分圧して検出された出力電圧検出値Voとの比較に基づいて、コンバータ5の昇圧制御動作と降圧制御動作とを切り替える。ここで、昇圧制御動作時においては、コンバータ5は昇圧コンバータとして機能し、降圧制御動作時においては、コンバータ5は降圧コンバータとして機能することになる。 Next, the operation of the power
First, the power
また、電源制御部2は、前述の各検出信号Vin、Vo、ILを用いて、コンバータ5のスイッチング素子Q1及びQ2をオンオフ制御することにより、昇圧制御動作時と降圧制御動作時のいずれにおいても、交流入力電流Iacが交流入力電圧Vacとほぼ同位相で同波形となるように、全波整流器4による全波整流後の入力電流Iinを制御するPFC制御の機能を備えている。
Further, the power supply control unit 2 performs on / off control of the switching elements Q1 and Q2 of the converter 5 by using the detection signals Vin, Vo, and IL described above, so that the power supply control unit 2 can perform both the step-up control operation and the step-down control operation. The PFC control function for controlling the input current Iin after full-wave rectification by the full-wave rectifier 4 is provided so that the alternating-current input current Iac has substantially the same phase and waveform as the alternating-current input voltage Vac.
上記のPFC制御において、入力電流Iinを制御する際の制御目標値となる目標入力電流Iin*は、力率改善を図る上で、脈流電圧|Vac|と同じ位相で同じ脈流波形となるように生成する必要があるが、コンバータ5のリアクトルLに流れるリアクトル電流ILを制御することにより調整することが可能である。そして、リアクトル電流ILの単位時間ごとの平均が目標リアクトル電流IL*に一致するように、電源制御部2は、コンバータ5のスイッチング素子Q1及びQ2を制御する。
In the PFC control described above, the target input current Iin *, which is a control target value when controlling the input current Iin, has the same pulsating waveform with the same phase as the pulsating voltage | Vac | for improving the power factor. However, it can be adjusted by controlling the reactor current IL flowing through the reactor L of the converter 5. Then, power supply control unit 2 controls switching elements Q1 and Q2 of converter 5 such that the average of reactor current IL per unit time matches target reactor current IL *.
上述したように、昇圧制御動作時においては、リアクトルLには入力電流Iinに対応した値の電流が流れるため、目標リアクトル電流IL*は、目標入力電流Iin*に比例した値を設定する。また、降圧制御動作時においては、リアクトルLには出力電流Ioに対応した値の電流が流れるため、目標リアクトル電流IL*は、目標入力電流Iin*を出力電流に換算したものに比例した値を設定する。
As described above, since the current corresponding to the input current Iin flows through the reactor L during the boost control operation, the target reactor current IL * is set to a value proportional to the target input current Iin *. Further, during the step-down control operation, a current having a value corresponding to the output current Io flows through the reactor L. Therefore, the target reactor current IL * has a value proportional to the value obtained by converting the target input current Iin * into the output current. Set.
したがって、目標リアクトル電流IL*としては、リアクトル電流ILの単位時間ごとの平均が目標リアクトル電流IL*となるように制御する必要がある。そのためには、図4に示すように、ピーク電流制御によって目標リアクトル電流IL*の2倍の値をピーク電流iref*として設定すればよい。すなわち、リアクトル電流ILが0に達した瞬間にリアクトル電流ILを立ち上げ、ピーク電流Iref*に達した瞬間にリアクトル電流ILを立ち下げるようにすれば、リアクトル電流ILが、目標リアクトル電流IL*を超えた分で目標リアクトル電流IL*に達しないリアクトル電流ILの不足分を埋め合わせることになるため、リアクトル電流ILの単位時間ごとの平均を目標リアクトル電流IL*に一致させることができる。このことから、目標リアクトル電流IL*とピーク電流Iref*との関係は、次式(1)に示すものとなる。
Iref*=2×IL* (1)
Therefore, the target reactor current IL * needs to be controlled so that the average of the reactor current IL per unit time becomes the target reactor current IL *. For this purpose, as shown in FIG. 4, a value that is twice the target reactor current IL * may be set as the peak current iref * by peak current control. That is, if the reactor current IL is raised at the moment when the reactor current IL reaches 0 and the reactor current IL is lowered at the moment when the peak current Iref * is reached, the reactor current IL becomes equal to the target reactor current IL *. Since the shortage of the reactor current IL that does not reach the target reactor current IL * due to the excess is compensated for, the average of the reactor current IL per unit time can be matched with the target reactor current IL *. From this, the relationship between the target reactor current IL * and the peak current Iref * is expressed by the following equation (1).
Iref * = 2 × IL * (1)
Iref*=2×IL* (1)
Therefore, the target reactor current IL * needs to be controlled so that the average of the reactor current IL per unit time becomes the target reactor current IL *. For this purpose, as shown in FIG. 4, a value that is twice the target reactor current IL * may be set as the peak current iref * by peak current control. That is, if the reactor current IL is raised at the moment when the reactor current IL reaches 0 and the reactor current IL is lowered at the moment when the peak current Iref * is reached, the reactor current IL becomes equal to the target reactor current IL *. Since the shortage of the reactor current IL that does not reach the target reactor current IL * due to the excess is compensated for, the average of the reactor current IL per unit time can be matched with the target reactor current IL *. From this, the relationship between the target reactor current IL * and the peak current Iref * is expressed by the following equation (1).
Iref * = 2 × IL * (1)
次に、電源制御部2の具体的な演算制御処理の内容について、図5の演算制御処理手順を示すフローチャートを参照して説明する。
Next, the specific contents of the calculation control process of the power supply control unit 2 will be described with reference to the flowchart showing the calculation control process procedure of FIG.
電源制御部2は、制御処理を開始すると、まず、電源主回路部1の入力電圧検出回路7にて脈流電圧|Vac|を抵抗分圧して検出された入力電圧検出値Vin、及び出力電圧検出回路8により出力電圧Vdcを抵抗分圧して検出された出力電圧検出値Voをそれぞれ取り込むとともに、出力電圧Voの制御目標値を示す目標出力電圧Vo*を上位システムから受け取る(ステップ1(S01))。なお、ここでは、目標出力電圧Vo*は、上位システムなどの外部から受け取ることとしているが、これに限らず予め定めた定数であっても構わない。
When the power supply control unit 2 starts the control process, first, the input voltage detection value Vin detected by dividing the pulsating voltage | Vac | by the input voltage detection circuit 7 of the power supply main circuit unit 1 and the output voltage are detected. Each of the detected output voltage values Vo detected by resistance-dividing the output voltage Vdc by the detection circuit 8 is fetched, and the target output voltage Vo * indicating the control target value of the output voltage Vo is received from the host system (step 1 (S01)). ). Here, the target output voltage Vo * is received from the outside such as the host system, but is not limited to this and may be a predetermined constant.
続いて、出力制御量演算部21は、出力電圧検出値Voと目標出力電圧Vo*との偏差からPI制御などの演算により出力電圧Vdcを所望の値に制御するための出力制御量I**を算出する(ステップ2(S02))。
Subsequently, the output control amount calculation unit 21 outputs the output control amount I ** for controlling the output voltage Vdc to a desired value by calculation such as PI control from the deviation between the output voltage detection value Vo and the target output voltage Vo *. Is calculated (step 2 (S02)).
さらに、比較判定部22は、電源主回路部1での回路動作状況に応じたピーク電流iref*を求めるために、入力電圧検出値Vin(瞬時値)の値と出力電圧検出値Voの値とを比較し、電源主回路部1における現在の回路動作状況(昇圧制御動作であるか降圧制御動作であるか)を判定する(ステップ3(S03))。入力電圧検出値Vinが出力電圧検出値Vo未満(Vin<Vo)であると判定された場合には、昇圧制御動作であると判定し、ステップ4(S04)に移行する。併せて、昇圧制御時には、比較判定部22は、出力制御量演算部21の出力側に接続された前段のセレクタ23の共通接点cを昇圧制御動作側の個別接点aに接続し、また、後段のセレクタ26cの各昇圧制御動作側の個別接点aを共通接点cに接続する信号を送出する。一方、入力電圧検出値Vinが出力電圧検出値Vo以上(Vin≧Vo)である場合には、降圧制御動作であると判定し、ステップ9(S09)に移行する。併せて、降圧制御動作には、比較判定部22は、出力制御量演算部21の出力側に接続された前段のセレクタ23の共通接点cを降圧制御動作側の個別接点bに接続し、また、後段のセレクタ26cの各降圧制御動作側の個別接点bを共通接点cに接続する信号を送出する。
Further, the comparison / determination unit 22 calculates the input voltage detection value Vin (instantaneous value) and the output voltage detection value Vo in order to obtain the peak current iref * corresponding to the circuit operation status in the power supply main circuit unit 1. Are compared to determine the current circuit operation status (whether it is a step-up control operation or a step-down control operation) in the power supply main circuit unit 1 (step 3 (S03)). If it is determined that the input voltage detection value Vin is less than the output voltage detection value Vo (Vin <Vo), it is determined that the operation is a step-up control operation, and the process proceeds to step 4 (S04). At the same time, during boost control, the comparison determination unit 22 connects the common contact c of the upstream selector 23 connected to the output side of the output control amount calculation unit 21 to the individual contact a on the boost control operation side. A signal for connecting the individual contact a on the boost control operation side of the selector 26c to the common contact c is sent. On the other hand, if the input voltage detection value Vin is equal to or higher than the output voltage detection value Vo (Vin ≧ Vo), it is determined that the operation is a step-down control operation, and the process proceeds to step 9 (S09). At the same time, in the step-down control operation, the comparison / determination unit 22 connects the common contact c of the selector 23 in the previous stage connected to the output side of the output control amount calculation unit 21 to the individual contact b on the step-down control operation side. Then, a signal for connecting the individual contact b on the step-down control operation side of the selector 26c in the subsequent stage to the common contact c is sent.
次に、交流入力電流Iacが交流入力電圧Vacとほぼ同位相で同波形となるように全波整流後の入力電流Iinを制御するPFC制御を行うために、ステップ4(S04)では、昇圧制御目標リアクトル電流IL*を、ステップ9(S09)では、降圧制御目標リアクトル電流IL*をそれぞれ算出する。ここで、前述の式(1)に示したように、この目標リアクトル電流iL*の2倍の値がピーク電流Iref*として設定される。
Next, in step 4 (S04), step-up control is performed in order to perform PFC control for controlling the input current Iin after full-wave rectification so that the AC input current Iac has substantially the same phase and waveform as the AC input voltage Vac. The target reactor current IL * is calculated, and in step 9 (S09), the step-down control target reactor current IL * is calculated. Here, as shown in the above-described equation (1), a value twice the target reactor current iL * is set as the peak current Iref *.
前述したように、リアクトルLには、昇圧制御動作時においては、入力電流Iinに対応した電流が流れ、降圧制御動作時においては、出力電流Ioに対応した電流が流れるため、電源主回路部1を昇圧制御動作させるか、降圧制御動作させるかによって目標リアクトル電流IL*の演算方法を変更する。
As described above, the current corresponding to the input current Iin flows through the reactor L during the step-up control operation, and the current corresponding to the output current Io flows during the step-down control operation. The method for calculating the target reactor current IL * is changed depending on whether the step-up control operation is performed or the step-down control operation is performed.
すなわち、比較判定部22により、入力電圧検出値Vinが出力電圧検出値Vo未満であると判定された場合(Vin<Vo)には、昇圧制御動作を行う(ステップ3(S03))。この昇圧制御動作時においては、リアクトルLには全波整流後の入力電流Iinに対応した電流が流れるため、昇圧制御目標リアクトル電流IL*は、入力電流Iinに対応する電流を制御することとなる。したがって、昇圧制御用ピーク電流演算部24aにおいて、まず、入力電流Iinの目標値である目標入力電流Iin*と前述の出力制御量I**とを用いて、次式(2)により昇圧制御目標リアクトル電流IL*を算出する。
IL*=Iin*×I** (2)
That is, when thecomparison determination unit 22 determines that the input voltage detection value Vin is less than the output voltage detection value Vo (Vin <Vo), a boost control operation is performed (step 3 (S03)). During this boost control operation, a current corresponding to the input current Iin after full-wave rectification flows through the reactor L, so that the boost control target reactor current IL * controls a current corresponding to the input current Iin. . Accordingly, the boost control peak current calculation unit 24a first uses the target input current Iin *, which is the target value of the input current Iin, and the output control amount I ** described above, and the boost control target according to the following equation (2). Reactor current IL * is calculated.
IL * = Iin * × I ** (2)
IL*=Iin*×I** (2)
That is, when the
IL * = Iin * × I ** (2)
しかし、目標入力電流iin*を脈流電圧|Vac|を検出して得られる入力電圧検出値vinと同じ位相で、同じ脈流波形とするためには、目標入力電流Iin*に代えて入力電圧検出値Vinを使用すればよく、したがって、昇圧制御動作時の昇圧制御目標リアクトル電流IL*は、次式(3)により設定することができる(ステップ4(S04))。
IL*=Vin×I** (3)
したがって、ピーク電流Iref*は、式(1)に式(3)を代入して、次式(4)で表わすことができる。
Iref*=2×IL*=2×Vin×I** (4)
However, in order to make the target input current iin * have the same phase as the input voltage detection value vin obtained by detecting the pulsating voltage | Vac | and the same pulsating waveform, the input voltage is replaced with the target input current Iin *. The detected value Vin may be used, and therefore the boost control target reactor current IL * during the boost control operation can be set by the following equation (3) (step 4 (S04)).
IL ** = Vin × I ** (3)
Therefore, the peak current Iref * can be expressed by the following equation (4) by substituting equation (3) into equation (1).
Iref * = 2 × IL * = 2 × Vin × I ** (4)
IL*=Vin×I** (3)
したがって、ピーク電流Iref*は、式(1)に式(3)を代入して、次式(4)で表わすことができる。
Iref*=2×IL*=2×Vin×I** (4)
However, in order to make the target input current iin * have the same phase as the input voltage detection value vin obtained by detecting the pulsating voltage | Vac | and the same pulsating waveform, the input voltage is replaced with the target input current Iin *. The detected value Vin may be used, and therefore the boost control target reactor current IL * during the boost control operation can be set by the following equation (3) (step 4 (S04)).
IL ** = Vin × I ** (3)
Therefore, the peak current Iref * can be expressed by the following equation (4) by substituting equation (3) into equation (1).
Iref * = 2 × IL * = 2 × Vin × I ** (4)
続いて、昇圧制御用ピーク電流演算部24aは、ピーク電流制御において、(4)式のピーク電流Iref*に、さらに、電源制御部2で生成される入力電圧の理想値Vin_refと入力電圧検出値Vinとの比を2乗した補正係数を乗じて、次式(5)で表わされるピーク電流制御における昇圧制御用ピーク電流Iref*を演算する(ステップ5(S05))。
Iref*=2×IL*
=2×Vin×I**×(Vin_ref/Vin)2 (5)
なお、上記式(5)の補正係数(Vin_ref/Vin)2については、後述する。 Subsequently, the boost control peakcurrent calculation unit 24a further adds the ideal value Vin_ref of the input voltage generated by the power supply control unit 2 and the input voltage detection value to the peak current Iref * of the equation (4) in the peak current control. By multiplying the correction coefficient obtained by squaring the ratio with Vin, the boost control peak current Iref * in the peak current control expressed by the following equation (5) is calculated (step 5 (S05)).
Iref * = 2 × IL *
= 2 × Vin × I *** × (Vin_ref / Vin) 2 (5)
In addition, the correction coefficient (Vin_ref / Vin) 2 of the above formula (5) will be described later.
Iref*=2×IL*
=2×Vin×I**×(Vin_ref/Vin)2 (5)
なお、上記式(5)の補正係数(Vin_ref/Vin)2については、後述する。 Subsequently, the boost control peak
Iref * = 2 × IL *
= 2 × Vin × I *** × (Vin_ref / Vin) 2 (5)
In addition, the correction coefficient (Vin_ref / Vin) 2 of the above formula (5) will be described later.
次に、ピーク電流制御部25aで、ピーク電流制御を行うため、電源主回路部1の電流検出回路6で検出されたリアクトル電流ILを取り込み(ステップ6(S06))、そして、リアクトル電流ILと昇圧制御用ピーク電流演算部24aで得られたピーク電流Iref*を用いてピーク電流制御を行う(ステップ7(S07))。
Next, in order to perform peak current control in the peak current control unit 25a, the reactor current IL detected by the current detection circuit 6 of the power supply main circuit unit 1 is fetched (step 6 (S06)), and the reactor current IL and Peak current control is performed using the peak current Iref * obtained by the boost control peak current calculation unit 24a (step 7 (S07)).
このピーク電流制御においては、図4に示すように、リアクトル電流ILを0の値と式(4)で得られたピーク電流Iref*との間で制御する、いわゆるバングバング(Bang-Bang)制御を行う。
In this peak current control, as shown in FIG. 4, so-called Bang-Bang control for controlling the reactor current IL between the value of 0 and the peak current Iref * obtained by the equation (4) is performed. Do.
すなわち、昇圧制御動作時の場合には、ピーク電流制御部25aは、オンオフ信号生成部26において、第1のスイッチング素子Q1を常にオンにした状態で、リアクトル電流ILが、前述の式(4)で求められた昇圧制御用ピーク電流Iref*に達した瞬間に、第2のスイッチング素子Q2をオンに制御して、リアクトル電流ILを低下させ、また、リアクトル電流ILが0に達した瞬間に第2のスイッチング素子Q2をオフに制御して、リアクトル電流ILを増加させるように、スイッチ制御部26aの動作を制御する信号を出力する(ステップ7(S07))。
That is, in the step-up control operation, the peak current control unit 25a is configured so that the reactor current IL is equal to the above-described equation (4) in the state where the first switching element Q1 is always turned on in the on / off signal generation unit 26. The second switching element Q2 is controlled to be turned on at the moment when the boost control peak current Iref * obtained in step S3 is reached, and the reactor current IL is reduced. At the moment when the reactor current IL reaches zero, the second switching element Q2 is turned on. A signal for controlling the operation of the switch control unit 26a is output so as to increase the reactor current IL by controlling the second switching element Q2 to be off (step 7 (S07)).
これに応じて、スイッチ制御部26aは、昇圧型アームを構成する第2のスイッチング素子Q2に対してオンオフ用のスイッチ信号を、また、第1のスイッチング素子Q1を常にオンにするスイッチ信号をそれぞれ生成して出力する(ステップ8(S08))。
In response to this, the switch control unit 26a supplies a switch signal for turning on / off to the second switching element Q2 constituting the step-up arm and a switch signal for always turning on the first switching element Q1. Generate and output (step 8 (S08)).
一方、比較判定部22により、入力電圧検出値Vinが出力電圧検出値Vo以上であると判定された場合(Vin≧Vo)には、降圧制御動作を行う(ステップ3(S03))。この降圧制御動作時においては、リアクトルLには出力電流Ioに対応した電流が流れるため、降圧制御目標リアクトル電流IL*は、出力電流Ioに対応する電流を制御することとなる。したがって、降圧制御用ピーク電流演算部24bにおいて、まず出力電流Ioと前述の出力制御量I**とを用いて、次式(6)により降圧制御目標リアクトル電流IL*を算出する(ステップ10(S10))。
IL*=Io×I** (6)
On the other hand, when thecomparison determination unit 22 determines that the input voltage detection value Vin is equal to or higher than the output voltage detection value Vo (Vin ≧ Vo), a step-down control operation is performed (step 3 (S03)). During this step-down control operation, a current corresponding to the output current Io flows through the reactor L, so the step-down control target reactor current IL * controls the current corresponding to the output current Io. Therefore, the step-down control peak current calculation unit 24b first calculates the step-down control target reactor current IL * by the following equation (6) using the output current Io and the output control amount I ** described above (step 10 ( S10)).
IL ** = Io × I ** (6)
IL*=Io×I** (6)
On the other hand, when the
IL ** = Io × I ** (6)
電源主回路部1の電力変換効率を100%と仮定すると、入力電力と出力電力はエネルギー保存の法則から等しくなるので、出力電流Ioは、目標入力電流Iin*、入力電圧検出値Vin、及び出力電圧検出値Voを用いて、次式(7)により換算することができる。
Io=(Vin×Iin*)/Vo (7)
よって、式(5)と式(6)とにより、降圧制御目標リアクトル電流IL*は、式(8)で表わすことができる。
IL*=(Vin×Iin*)/Vo×I** (8)
Assuming that the power conversion efficiency of the power supplymain circuit unit 1 is 100%, the input power and the output power are equal from the law of energy conservation, so the output current Io is the target input current Iin *, the input voltage detection value Vin, and the output It can convert by following Formula (7) using the voltage detection value Vo.
Io = (Vin × Iin *) / Vo (7)
Therefore, step-down control target reactor current IL * can be expressed by equation (8) using equations (5) and (6).
IL * = (Vin × Iin *) / Vo × I ** (8)
Io=(Vin×Iin*)/Vo (7)
よって、式(5)と式(6)とにより、降圧制御目標リアクトル電流IL*は、式(8)で表わすことができる。
IL*=(Vin×Iin*)/Vo×I** (8)
Assuming that the power conversion efficiency of the power supply
Io = (Vin × Iin *) / Vo (7)
Therefore, step-down control target reactor current IL * can be expressed by equation (8) using equations (5) and (6).
IL * = (Vin × Iin *) / Vo × I ** (8)
さらに、目標入力電流Iin*を脈流電圧|Vac|を抵抗分圧して検出された入力電圧検出値Vinと同じ位相で、同じ脈流波形とするためには、目標入力電流Iin*に代えて入力電圧検出値Vinを使用すればよく、したがって、降圧制御動作時の降圧制御目標リアクトル電流IL*は、次式(9)により設定することができる(ステップ9(S09))。
IL*=Vin2/Vo×i** (9)
したがって、ピーク電流Iref*は、式(1)に式(9)を代入して、次式(10)で表わすことができる。
Iref*=(2×Vin2/Vo)×I** (10)
Further, in order to make the target input current Iin * to have the same phase and the same pulsating waveform as the input voltage detection value Vin detected by dividing the pulsating voltage | Vac | by resistance, the target input current Iin * is replaced with the target input current Iin *. The input voltage detection value Vin may be used, and therefore the step-down control target reactor current IL * during the step-down control operation can be set by the following equation (9) (step 9 (S09)).
IL * = Vin 2 / Vo × i ** (9)
Therefore, the peak current Iref * can be expressed by the following equation (10) by substituting equation (9) into equation (1).
Iref * = (2 × Vin 2 / Vo) × I ** (10)
IL*=Vin2/Vo×i** (9)
したがって、ピーク電流Iref*は、式(1)に式(9)を代入して、次式(10)で表わすことができる。
Iref*=(2×Vin2/Vo)×I** (10)
Further, in order to make the target input current Iin * to have the same phase and the same pulsating waveform as the input voltage detection value Vin detected by dividing the pulsating voltage | Vac | by resistance, the target input current Iin * is replaced with the target input current Iin *. The input voltage detection value Vin may be used, and therefore the step-down control target reactor current IL * during the step-down control operation can be set by the following equation (9) (step 9 (S09)).
IL * = Vin 2 / Vo × i ** (9)
Therefore, the peak current Iref * can be expressed by the following equation (10) by substituting equation (9) into equation (1).
Iref * = (2 × Vin 2 / Vo) × I ** (10)
続いて、降圧制御用ピーク電流演算部24bは、ピーク電流制御において、(9)式のピーク電流Iref*に、さらに、電源制御部2で生成される入力電圧の理想値Vin_refと入力電圧検出値Vinとの比を2乗した補正係数を乗じて、次式(11)で表わされるピーク電流制御における降圧制御用ピーク電流Iref*を演算する(ステップ10(S10))。
Iref*=2×IL*
=(2×Vin2/Vo)×I**×(Vin_ref/Vin)2
(11)
なお、上記式(11)の補正係数(Vin_ref/Vin)2については、後述する。 Subsequently, in the peak current control, the step-down control peakcurrent calculation unit 24b adds the ideal value Vin_ref of the input voltage generated by the power supply control unit 2 and the input voltage detection value to the peak current Iref * of the equation (9). The step-down control peak current Iref * in the peak current control represented by the following equation (11) is calculated by multiplying the correction coefficient obtained by squaring the ratio with Vin (step 10 (S10)).
Iref * = 2 × IL *
= (2 × Vin 2 / Vo) × I ** × (Vin_ref / Vin) 2
(11)
Note that the correction coefficient (Vin_ref / Vin) 2 of the above equation (11) will be described later.
Iref*=2×IL*
=(2×Vin2/Vo)×I**×(Vin_ref/Vin)2
(11)
なお、上記式(11)の補正係数(Vin_ref/Vin)2については、後述する。 Subsequently, in the peak current control, the step-down control peak
Iref * = 2 × IL *
= (2 × Vin 2 / Vo) × I ** × (Vin_ref / Vin) 2
(11)
Note that the correction coefficient (Vin_ref / Vin) 2 of the above equation (11) will be described later.
次に、ピーク電流制御部25bで、ピーク電流制御を行うため、電源主回路部1の電流検出回路6で検出されたリアクトル電流ILを取り込み(ステップ11(S11))、そして、リアクトル電流ILと降圧制御用ピーク電流演算部24bで得られたピーク電流Iref*を用いてピーク電流制御を行う(ステップ12(S12))。
Next, in order to perform peak current control in the peak current control unit 25b, the reactor current IL detected by the current detection circuit 6 of the power supply main circuit unit 1 is fetched (step 11 (S11)), and the reactor current IL and Peak current control is performed using the peak current Iref * obtained by the step-down control peak current calculation unit 24b (step 12 (S12)).
このピーク電流制御においては、図4に示すように、リアクトル電流ILを0の値と式(9)で得られたピーク電流Iref*との間で制御する、いわゆるバングバング(Bang-Bang)制御を行う。
In this peak current control, as shown in FIG. 4, so-called Bang-Bang control for controlling the reactor current IL between the value of 0 and the peak current Iref * obtained by the equation (9) is performed. Do.
すなわち、降圧制御動作時の場合には、ピーク電流制御部25bは、オンオフ信号生成部26において、第2のスイッチング素子Q2を常にオフにした状態で、リアクトル電流ILが、前述の式(9)で求められた降圧制御用ピーク電流Iref*に達した瞬間に、第1のスイッチング素子Q1をオフに制御して、リアクトル電流ILを低下させ、また、リアクトル電流ILが0に達した瞬間に第1のスイッチング素子Q1をオンに制御して、リアクトル電流ILを増加させるように、スイッチ制御部26bの動作を制御する信号を出力する(ステップ12(S12))。
That is, in the case of the step-down control operation, the peak current control unit 25b is configured so that the reactor current IL is equal to the above equation (9) in the state where the second switching element Q2 is always turned off in the on / off signal generation unit 26. At the moment when the step-down control peak current Iref * obtained in step S3 is reached, the first switching element Q1 is controlled to be turned off, the reactor current IL is decreased, and at the moment when the reactor current IL reaches zero, The switching element Q1 is controlled to be turned on, and a signal for controlling the operation of the switch control unit 26b is output so as to increase the reactor current IL (step 12 (S12)).
これに応じて、スイッチ制御部26bは、降圧型アームを構成する第1のスイッチング素子Q1に対してオンオフ用のスイッチ信号を、また、第2のスイッチング素子Q2を常にオフするスイッチ信号をそれぞれ生成して出力する(ステップ13(S13))。
In response to this, the switch control unit 26b generates an on / off switch signal for the first switching element Q1 constituting the step-down arm and a switch signal for always turning off the second switching element Q2. (Step 13 (S13)).
これらの手順にしたがって、コンバータ5の昇圧及び降圧制御動作時にリアクトル電流が制御され、入力電流波形を入力電圧波形に近づけることができ、力率改善制御が実行される。
According to these procedures, the reactor current is controlled during the step-up and step-down control operations of the converter 5, the input current waveform can be brought close to the input voltage waveform, and power factor improvement control is executed.
式(5)及び式(11)で使用された補正係数(Vin_ref/Vin)2について、以下に説明する。
従来のピーク電流制御におけるピーク電流Iref*は、上述した式(4)により設定される。しかしながら、式(4)のピーク電流Iref*を用いて制御を行った場合、同じACラインに接続された他機器が起動した際に、入力電圧が減少する電圧ディップ等が発生した場合、入力電圧検出値Vinも減少するため、ピーク電流Iref*も小さくなってしまう。 The correction coefficient (Vin_ref / Vin) 2 used in the equations (5) and (11) will be described below.
The peak current Iref * in the conventional peak current control is set by the above-described equation (4). However, when control is performed using the peak current Iref * of Equation (4), when a voltage dip or the like that decreases the input voltage occurs when another device connected to the same AC line is activated, the input voltage Since the detection value Vin also decreases, the peak current Iref * also decreases.
従来のピーク電流制御におけるピーク電流Iref*は、上述した式(4)により設定される。しかしながら、式(4)のピーク電流Iref*を用いて制御を行った場合、同じACラインに接続された他機器が起動した際に、入力電圧が減少する電圧ディップ等が発生した場合、入力電圧検出値Vinも減少するため、ピーク電流Iref*も小さくなってしまう。 The correction coefficient (Vin_ref / Vin) 2 used in the equations (5) and (11) will be described below.
The peak current Iref * in the conventional peak current control is set by the above-described equation (4). However, when control is performed using the peak current Iref * of Equation (4), when a voltage dip or the like that decreases the input voltage occurs when another device connected to the same AC line is activated, the input voltage Since the detection value Vin also decreases, the peak current Iref * also decreases.
図6は、式(4)で示す従来のピーク電流iref*を用いて制御した場合の入力電圧変動時の出力電圧検出値Voの変動を示す波形図である。図6において、横軸に時間を、上側の波形がピーク電流Iref*を、下側の波形が出力電圧検出値Voを示したものである。このように、式(4)で示すピーク電流Iref*を用いて制御すると、出力に必要なエネルギーが不足してしまうため、出力電圧検出値Voが大きく低下してしまうことがわかる。
FIG. 6 is a waveform diagram showing fluctuations in the output voltage detection value Vo when the input voltage fluctuates when control is performed using the conventional peak current iref * represented by Expression (4). In FIG. 6, the horizontal axis indicates time, the upper waveform indicates the peak current Iref *, and the lower waveform indicates the output voltage detection value Vo. Thus, it can be seen that when the control is performed using the peak current Iref * shown in the equation (4), the output voltage detection value Vo is greatly reduced because the energy required for the output is insufficient.
これは、昇圧制御動作時、降圧制御動作時に関わらず、入力電圧検出値Vinが電源主回路部1のゲインになっていることと、式(4)で示されるように電源制御部2のゲインになっていることに起因するものである。つまり、電源の一巡伝達関数を考えた場合、入力電圧変動時はVinの2乗で影響が出ることとなる。
This is because the input voltage detection value Vin is the gain of the power supply main circuit unit 1 regardless of the step-up control operation and the step-down control operation, and the gain of the power supply control unit 2 as shown in the equation (4). This is due to the fact that That is, when considering a round-trip transfer function of the power supply, when the input voltage fluctuates, the influence is given by the square of Vin.
この現象を防止するためには、電源の一巡伝達関数のゲインが変わらないように制御すればよい。つまり、入力電圧が理想的な正弦波状で制御できている場合の、電源の一巡伝達関数のゲインGrは、入力電圧の理想値Vin_refを用いて、次式(12)であらわされる。
Gr=Vin_ref×2×Vin_ref×I** (12)
In order to prevent this phenomenon, control may be performed so that the gain of the round trip transfer function of the power supply does not change. That is, when the input voltage can be controlled in an ideal sine wave form, the gain Gr of the power supply round trip function is expressed by the following equation (12) using the ideal value Vin_ref of the input voltage.
Gr = Vin_ref × 2 × Vin_ref × I ** (12)
Gr=Vin_ref×2×Vin_ref×I** (12)
In order to prevent this phenomenon, control may be performed so that the gain of the round trip transfer function of the power supply does not change. That is, when the input voltage can be controlled in an ideal sine wave form, the gain Gr of the power supply round trip function is expressed by the following equation (12) using the ideal value Vin_ref of the input voltage.
Gr = Vin_ref × 2 × Vin_ref × I ** (12)
一方、入力電圧に電圧ディップ等で変動が発生した場合の電源の一巡伝達関数のゲインGは、入力電圧検出値Vinを用いて、次式(13)で表わされる。
G=Vin×2×Vin×i** (13)
On the other hand, the gain G of the circuit transfer function of the power supply when the input voltage fluctuates due to a voltage dip or the like is expressed by the following equation (13) using the input voltage detection value Vin.
G = Vin × 2 × Vin × i ** (13)
G=Vin×2×Vin×i** (13)
On the other hand, the gain G of the circuit transfer function of the power supply when the input voltage fluctuates due to a voltage dip or the like is expressed by the following equation (13) using the input voltage detection value Vin.
G = Vin × 2 × Vin × i ** (13)
入力電圧に変動が生じた場合、一巡伝達関数のゲインが変わらないようにするためには、式(13)を式(12)にする必要があることから、この場合の一巡伝達関数のゲインGmは、次式(14)となる。
Gm=vin×2×vin×i**×(Vin_ref/Vin)2
(14)
When the input voltage fluctuates, it is necessary to change the equation (13) to the equation (12) so that the gain of the one-round transfer function does not change. Becomes the following equation (14).
Gm = vin × 2 × vin × i ** × (Vin_ref / Vin) 2
(14)
Gm=vin×2×vin×i**×(Vin_ref/Vin)2
(14)
When the input voltage fluctuates, it is necessary to change the equation (13) to the equation (12) so that the gain of the one-round transfer function does not change. Becomes the following equation (14).
Gm = vin × 2 × vin × i ** × (Vin_ref / Vin) 2
(14)
したがって、入力電圧変動時は、上記式(14)の(Vin_ref/Vin)2を電源制御部2のピーク電流iref*に乗算することにより、補正することが可能となる。
Therefore, when the input voltage fluctuates, it can be corrected by multiplying (Vin_ref / Vin) 2 of the above formula (14) by the peak current iref * of the power supply control unit 2.
図7は、補正係数(Vin_ref/Vin)2で補正された式(5)あるいは式(11)で示すピーク電流iref*を用いて制御した場合における入力電圧変動時の出力電圧検出値Voの変動を示す波形図である。図7において、横軸に時間を、上側の波形がピーク電流iref*を、下側の波形が出力電圧検出値Voを示したものである。このように、入力電圧検出値Vinが減少した場合に、補正を行っている場合の図7は、補正を行っていない場合の図6と比較して、ピーク電流iref*が、大きな値をとることで、出力電圧検出値Voの変動を抑制している。
FIG. 7 shows fluctuations in the detected output voltage Vo when the input voltage fluctuates when controlled using the peak current iref * shown in the equation (5) or the equation (11) corrected with the correction coefficient (Vin_ref / Vin) 2. FIG. In FIG. 7, the horizontal axis indicates time, the upper waveform indicates the peak current iref *, and the lower waveform indicates the output voltage detection value Vo. As described above, when the input voltage detection value Vin is decreased, the peak current iref * in FIG. 7 in the case where the correction is performed is larger than that in FIG. 6 in the case where the correction is not performed. As a result, fluctuations in the output voltage detection value Vo are suppressed.
本実施の形態1では、このピーク電流iref*の波形形状が大きな特徴の一つである。ピーク電流iref*を式(5)もしくは式(11)で制御した場合、入力電圧検出値Vinが正常時より下がる変動時には、ピーク電流iref*の波形を正常時より大きく設定して制御し、入力電圧検出値Vinが正常時より上がる変動時には、ピーク電流iref*の波形を正常時より小さく設定して制御する特徴を持つ。
In the first embodiment, the waveform shape of the peak current iref * is one of the major features. When the peak current iref * is controlled by formula (5) or formula (11), when the input voltage detection value Vin fluctuates from the normal level, the peak current iref * waveform is set larger than the normal level and controlled. When the voltage detection value Vin fluctuates from the normal level, the waveform of the peak current iref * is controlled to be set smaller than the normal level.
式(5)及び式(11)における補正係数(Vin_ref/Vin)2は、入力電圧変動の有無に関わらず、常に乗算して制御を行うことを特徴としており、入力電圧変動が無い場合は、この係数は1となり、従来のピーク電流iref*の式(4)となり、入力電圧変動がある場合には、その変動の大小に関わらず、この係数に従って補正され、変動幅を検出して補正制御の切換えを行う必要がない。
The correction coefficient (Vin_ref / Vin) 2 in the equations (5) and (11) is characterized in that the control is always performed regardless of the presence or absence of the input voltage fluctuation. This coefficient is 1, which is the conventional peak current iref * expression (4). If there is a fluctuation in the input voltage, it is corrected according to this coefficient regardless of the magnitude of the fluctuation, and the fluctuation control is detected by detecting the fluctuation range. There is no need to switch.
なお、ここでは、ピーク電流iref*の式(5)もしくは式(11)の補正係数(Vin_ref/Vin)2を乗算することで理想的に制御する方式としたが、制御の精度が粗くてもよい場合には、入力電圧検出値Vinが下がる変動が生じた場合は、ピーク電流iref*を一定値もしくは下がった値に応じて予め決めた値の補正係数分だけ大きくする。また、入力電圧検出値Vinが上がる変動が生じた場合は、ピーク電流iref*を一定値もしくは上がった値に応じて予め決めた値の補正係数分だけ小さくする、といった制御であってもよく、入力電圧変動の大小の変化に対し、ピーク電流iref*の値が反対になるように制御するものであれば、構わない。
Here, the ideal control method is performed by multiplying the correction coefficient (Vin_ref / Vin) 2 of the equation (5) or the equation (11) of the peak current iref *. However, even if the control accuracy is rough, In a case where the input voltage detection value Vin decreases, the peak current iref * is increased by a predetermined value or a correction coefficient corresponding to a predetermined value depending on a value that decreases. Further, when the input voltage detection value Vin increases, the control may be such that the peak current iref * is reduced by a constant value or a predetermined correction coefficient corresponding to the increased value. Any control is possible as long as the value of the peak current iref * is controlled to be opposite to the change in the input voltage fluctuation.
次に、図8を参照して、電源制御部2で生成される入力電圧検出値Vinの理想値Vin_refの生成方法について説明する。
Next, a method of generating the ideal value Vin_ref of the input voltage detection value Vin generated by the power supply control unit 2 will be described with reference to FIG.
電源制御部2では、入力電圧検出値Vin(瞬時値)を常時取り込んでいる。入力電圧検出値Vinは、交流入力電圧Vacを全波整流した信号形状となるため、例として50Hz時で図示した図8に示すように、0Vで折り返した波形形状となる。入力電圧検出値Vin(瞬時値)は0V付近で最も小さい値となり、この最小値と次のタイミングでの最小値の時間間隔で交流入力電圧Vacの周波数を判定することができる。
The power supply control unit 2 always captures the input voltage detection value Vin (instantaneous value). Since the input voltage detection value Vin has a signal shape obtained by full-wave rectification of the AC input voltage Vac, as shown in FIG. 8 illustrated as an example at 50 Hz, the input voltage detection value Vin has a waveform shape folded at 0V. The input voltage detection value Vin (instantaneous value) is the smallest value near 0 V, and the frequency of the AC input voltage Vac can be determined by the time interval between this minimum value and the minimum value at the next timing.
また、上記時間間隔を計測している期間で、最大値を検出することも可能であり、これにより、100V系であるのか、200V系であるのか、あるいは242V系であるのかの判定を行う。
Also, it is possible to detect the maximum value during the time period during which the time interval is measured, thereby determining whether the system is a 100V system, a 200V system, or a 242V system.
上記2つの判定に基づき、入力電圧検出値Vinの最小値から、マイコン等の制御IC内部で入力電圧検出のサンプリング周期毎にカウントを行い、予めマイコン内部のテーブルで用意しているカウント値(cnt)と一対一で対応させた正弦波の理想値(Vin_ref)を用いることで実現することができる。
Based on the above two determinations, a count is made from the minimum value of the input voltage detection value Vin for each sampling period of input voltage detection inside a control IC such as a microcomputer, and a count value (cnt) prepared in advance in a table inside the microcomputer. ) And the ideal value (Vin_ref) of a sine wave that has a one-to-one correspondence.
なお、ここでは、マイコン等の制御IC内部に保存されているテーブルを用いて正弦波の理想値(Vin_ref)を生成する方式を示したが、これに限らず、例えば、マイコンの演算機能で正弦波演算して、正弦波の理想値(Vin_ref)を求める方法であっても構わない。
Here, a method of generating an ideal value of a sine wave (Vin_ref) using a table stored in a control IC such as a microcomputer is shown, but the present invention is not limited to this. A method of calculating a wave to obtain an ideal value (Vin_ref) of the sine wave may be used.
また、本実施の形態1では、電源制御部2において、出力制御量演算部21、比較判定部22、セレクタ23、昇圧制御用ピーク電流演算部24a、降圧制御用ピーク電流演算部24b、ピーク電流制御部25a,25b、オンオフ信号生成部26を機能ごとにブロックに分けているが、制御プログラムを用いてこのような各機能の制御をマイコン等の制御ICで実現することも可能である。
In the first embodiment, in the power supply control unit 2, the output control amount calculation unit 21, the comparison determination unit 22, the selector 23, the step-up control peak current calculation unit 24a, the step-down control peak current calculation unit 24b, the peak current Although the control units 25a and 25b and the on / off signal generation unit 26 are divided into blocks for each function, such control of each function can be realized by a control IC such as a microcomputer using a control program.
また、本実施の形態1では、コンバータとしてH型ブリッジ昇降圧コンバータを用いる場合について説明を行ったが、出力電圧が常に入力電圧より大きく制御する、単純な昇圧コンバータにも適用することが可能であることは言うまでもなく、リアクトルのピーク電流を制御するコンバータ全般に適用することが可能である。
In the first embodiment, the case where an H-type bridge buck-boost converter is used as the converter has been described. However, the present invention can also be applied to a simple boost converter in which the output voltage is always controlled to be larger than the input voltage. Needless to say, the present invention can be applied to all converters that control the peak current of the reactor.
以上のように、本実施の形態1によれば、交流入力を直流出力に変換するH型ブリッジ昇降圧コンバータ5を備えた電力変換装置において、リアクトル電流ILを制御する電源制御部2を備え、この電源制御部2において、入力電圧検出値Vinと出力電圧検出値Voとの大きさの比較に基づき、昇圧制御と降圧制御を切り替えつつ、コンバータ5のスイッチング素子Q1,Q2を制御することにより交流入力電流Iacの波形を交流入力電圧Vacの波形に近づける力率改善制御(PFC)を行う。その際、PFC制御での目標入力電流Iin*が脈流電圧|Vac|と同じ位相で、同じ脈流波形となるように、昇圧制御動作時と降圧制御動作時で演算方法を切り替える。
As described above, according to the first embodiment, the power conversion device including the H-type bridge buck-boost converter 5 that converts AC input into DC output includes the power supply control unit 2 that controls the reactor current IL. In this power supply control unit 2, AC is controlled by controlling the switching elements Q <b> 1 and Q <b> 2 of the converter 5 while switching between step-up control and step-down control based on a comparison of the magnitude of the input voltage detection value Vin and the output voltage detection value Vo. Power factor correction control (PFC) is performed to bring the waveform of the input current Iac closer to the waveform of the AC input voltage Vac. At that time, the calculation method is switched between the step-up control operation and the step-down control operation so that the target input current Iin * in the PFC control has the same phase as the pulsating voltage | Vac | and the same pulsating waveform.
つまり、昇圧制御動作時には、リアクトルLに全波整流後の入力電流Iinに対応した電流が流れるため、昇圧制御目標リアクトル電流IL*は、式(6)に基づいて制御し、降圧制御動作時には、リアクトルLには出力電流Ioに対応した電流が流れるため、降圧制御目標リアクトル電流IL*は、式(9)に基づいて制御するように切り替えることで、リアクトルLに流れるリアクトル電流ILを調整し、交流入力電流Iacを交流入力電圧Vacと同位相、同波形とするので、力率を向上させることができる。また、昇圧制御及び降圧制御用ピーク電流Iref*に、入力電圧の理想値(Vin_ref)と検出された入力電圧検出値Vinの比の2乗を乗算しているため、入力電圧変動時でも出力波形の変動を抑制することができる。さらに、この電力変換装置は、1段のコンバータ5で構成され、かつピーク電流制御を用いることから、部品点数が少なく、低コストで、かつ高効率を実現することができる。
That is, since a current corresponding to the input current Iin after full-wave rectification flows through the reactor L during the boost control operation, the boost control target reactor current IL * is controlled based on the equation (6), and during the step-down control operation, Since a current corresponding to the output current Io flows through the reactor L, the step-down control target reactor current IL * is adjusted to be controlled based on the equation (9), thereby adjusting the reactor current IL flowing through the reactor L, Since the AC input current Iac has the same phase and waveform as the AC input voltage Vac, the power factor can be improved. In addition, since the boost control and step-down control peak current Iref * is multiplied by the square of the ratio of the ideal value (Vin_ref) of the input voltage and the detected input voltage detection value Vin, the output waveform even when the input voltage fluctuates. Fluctuations can be suppressed. Furthermore, since this power converter is composed of a single-stage converter 5 and uses peak current control, the number of components is small, low cost, and high efficiency can be realized.
なお、本実施の形態1では、リアクトル電流ILの制御方式は、ピーク電流制御方式としたが、このようなピーク電流制御方式に限らず、例えば、図9に示すように、目標リアクトル電流iL*に対して、一定幅±ΔTの上下2つのピーク電流Iref1*、Iref2*を定め、両ピーク電流Iref1*とIref2*の間でリアクトル電流ILを増減させるヒステリシスコンパレータ制御方式を適用することができる。また、図10に示すように、上限のピーク電流Iref1*とその分圧値の下限のピーク電流Iref2*との中心位置に目標リアクトル電流IL*が位置するようにピーク電流Iref*を定め、両ピーク電流Iref1*とIref2*の間でリアクトル電流ILを増減させるウインドウコンパレータ制御方式などを適用することも可能である。
In the first embodiment, the control method of the reactor current IL is the peak current control method. However, the present invention is not limited to such a peak current control method. For example, as shown in FIG. 9, the target reactor current iL * On the other hand, it is possible to apply a hysteresis comparator control method in which two upper and lower peak currents Iref1 * and Iref2 * having a constant width ± ΔT are determined and the reactor current IL is increased or decreased between the two peak currents Iref1 * and Iref2 *. Further, as shown in FIG. 10, the peak current Iref * is determined so that the target reactor current IL * is located at the center position between the upper limit peak current Iref1 * and the lower limit peak current Iref2 * of the divided voltage value. It is also possible to apply a window comparator control system that increases or decreases the reactor current IL between the peak currents Iref1 * and Iref2 *.
このように、実施の形態1に係る電力変換装置及びその制御方法によれば、リアクトル電流を制御して力率改善制御を行うコンバータの電源制御部に、電源制御部で生成される入力電圧の理想値と、入力電圧の検出値との比の2乗した補正係数を乗じたピーク電流を設定して制御を行うことにより、入力電圧変動がない場合には、この比の2乗は1となり、従来通りの力率改善制御が行われ、入力電圧変動があった場合には、理想入力電圧値と検出された入力電圧値との比が変化し、この比の変化量に応じた力率改善制御が実行されるため、入力電圧変動に応じた適切な補正が可能となるという効果がある。
As described above, according to the power conversion device and the control method thereof according to Embodiment 1, the power supply control unit of the converter that performs the power factor improvement control by controlling the reactor current is supplied with the input voltage generated by the power supply control unit. When the control is performed by setting the peak current multiplied by the correction coefficient obtained by squaring the ratio between the ideal value and the detected value of the input voltage, the square of this ratio is 1 when there is no input voltage fluctuation. When the power factor improvement control is performed as usual and the input voltage fluctuates, the ratio between the ideal input voltage value and the detected input voltage value changes, and the power factor corresponding to the amount of change in this ratio Since the improvement control is executed, there is an effect that an appropriate correction according to the input voltage fluctuation is possible.
なお、上記実施の形態の説明においては、コンバータ5が、ダイオードD1,D2とスイッチング素子Q1,Q2で構成される場合について述べたが、図11の他の実施態様の電力変換装置の回路ブロック図で示すように、コンバータ51が、ダイオードD1,D2をFET素子やIGBT素子などのスイッチング素子Q3,Q4に変更する構成としてもよく、昇圧制御動作時時には、スイッチング素子Q2とQ4のオンオフを逆論理で、降圧制御動作時には、スイッチング素子Q1とQ3のオンオフを逆論理で動作させる同期整流方式により、同様の効果が得られる。
In the description of the above embodiment, the case where the converter 5 includes the diodes D1 and D2 and the switching elements Q1 and Q2 has been described. However, the circuit block diagram of the power conversion device according to another embodiment of FIG. As shown in the diagram, the converter 51 may be configured to change the diodes D1 and D2 to switching elements Q3 and Q4 such as FET elements and IGBT elements. When the boost control operation is performed, on / off of the switching elements Q2 and Q4 is reversed. Thus, during the step-down control operation, the same effect can be obtained by the synchronous rectification method in which the switching elements Q1 and Q3 are turned on and off with reverse logic.
実施の形態2.
図12は、実施の形態2に係る電力変換装置の全体構成を示す回路ブロック図であり、図13は、電力変換装置の電源制御部の構成を示す回路ブロック図である。実施の形態2に係る電力変換装置では、図12に示すように、電源主回路部1には、複数のLED(Light Emitting Diode)90が直列に接続されたLED照明器具が負荷として接続されている。Embodiment 2. FIG.
FIG. 12 is a circuit block diagram illustrating an overall configuration of the power conversion device according to the second embodiment, and FIG. 13 is a circuit block diagram illustrating a configuration of a power supply control unit of the power conversion device. In the power conversion device according to the second embodiment, as shown in FIG. 12, an LED lighting apparatus in which a plurality of LEDs (Light Emitting Diodes) 90 are connected in series is connected to the power supplymain circuit unit 1 as a load. Yes.
図12は、実施の形態2に係る電力変換装置の全体構成を示す回路ブロック図であり、図13は、電力変換装置の電源制御部の構成を示す回路ブロック図である。実施の形態2に係る電力変換装置では、図12に示すように、電源主回路部1には、複数のLED(Light Emitting Diode)90が直列に接続されたLED照明器具が負荷として接続されている。
FIG. 12 is a circuit block diagram illustrating an overall configuration of the power conversion device according to the second embodiment, and FIG. 13 is a circuit block diagram illustrating a configuration of a power supply control unit of the power conversion device. In the power conversion device according to the second embodiment, as shown in FIG. 12, an LED lighting apparatus in which a plurality of LEDs (Light Emitting Diodes) 90 are connected in series is connected to the power supply
LEDは通常、その特性から電流制御が適している。このため、本実施の形態2では、実施の形態1の回路構成(図1)に対し、LEDに流れるLED電流ILEDを検出するための検出回路としてLED電流検出回路91が追加されている。また、図13に示すように、電源制御部20において、出力制御量演算部21に出力電圧検出値Voや目標出力電圧Vo*に代えて、LED電流検出回路91で検出されたLED電流ILED、及び目標出力電流ILED*が入力されている。他の構成要素は、実施の形態1と同様であるので説明を省略する。
LED is usually suitable for current control due to its characteristics. For this reason, in this Embodiment 2, the LED current detection circuit 91 is added as a detection circuit for detecting LED current ILED which flows into LED with respect to the circuit structure of FIG. 1 (FIG. 1). As shown in FIG. 13, in the power supply control unit 20, the output control amount calculation unit 21 uses the LED current ILED detected by the LED current detection circuit 91 instead of the output voltage detection value Vo and the target output voltage Vo *, The target output current ILED * is input. Since other components are the same as those in the first embodiment, the description thereof is omitted.
この構成を用いて、実施の形態1と同様にリアクトル電流ILを制御することで、LED90に流れるLED電流ILEDを制御することができる。また、LED照明に光量を調整するための調光機能が搭載されている場合には、外部の機器から上記の目標出力電流ILED*を可変にする構成とすることで、調光機能も実現することができる。
Using this configuration, the LED current ILED flowing through the LED 90 can be controlled by controlling the reactor current IL as in the first embodiment. In addition, when the dimming function for adjusting the amount of light is mounted on the LED illumination, the dimming function is also realized by making the target output current ILED * variable from an external device. be able to.
また、従来の式(4)のピーク電流Iref*で制御した場合には、入力電圧変動が発生すると、出力電流が変動してしまいLED光量のチラツキとなって視認される懸念があったため、これを解消するために、出力コンデンサの容量を大きくして対策する必要があった。そのため、回路サイズの大型化や高コスト化を招いていた。しかし、ピーク電流Iref*に式(5)あるいは式(11)を用いることにより、出力コンデンサの容量を大きくすることなく、入力電圧変動時のLED光量のチラツキを抑制することが可能となる。
In addition, when control is performed with the peak current Iref * of the conventional formula (4), there is a concern that when the input voltage fluctuates, the output current fluctuates and the LED light quantity flickers and is visually recognized. In order to solve this problem, it was necessary to take measures by increasing the capacity of the output capacitor. Therefore, the circuit size has been increased and the cost has been increased. However, by using Equation (5) or Equation (11) for the peak current Iref *, it is possible to suppress flickering of the LED light amount when the input voltage fluctuates without increasing the capacity of the output capacitor.
また、負荷90となるLEDの接続方法は、単に直列接続した場合に限らず並列接続や直並列接続としてもよい。また、負荷90は、有機ELやレーザーダイオードといった別の光源であってもかまわない。
Moreover, the connection method of the LED serving as the load 90 is not limited to simply connecting in series, and may be parallel connection or series-parallel connection. The load 90 may be another light source such as an organic EL or a laser diode.
このように、実施の形態2に係る電力変換装置によれば、負荷として複数のLEDを設けた場合に、LED電流検出回路で検出されたLED電流ILEDを電源制御部にフィードバックし、出力制御量演算部でLED電流ILEDが目標出力電流ILED*となるように制御し、実施の形態1と同様、ピーク電流演算部、ピーク電流制御部、及びオンオフ信号生成部によって、スイッチング素子Q1,Q2をオンオフ制御することにより、入力電圧変動時においてもLED光量のチラツキを抑制することができるという効果がある。
Thus, according to the power conversion device according to the second embodiment, when a plurality of LEDs are provided as loads, the LED current ILED detected by the LED current detection circuit is fed back to the power supply control unit, and the output control amount The calculation unit controls the LED current ILED to be the target output current ILED *, and the switching elements Q1 and Q2 are turned on / off by the peak current calculation unit, the peak current control unit, and the on / off signal generation unit, as in the first embodiment. By controlling, it is possible to suppress flickering of the LED light amount even when the input voltage fluctuates.
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments.
また、図中、同一符号は、同一または相当部分を示す。
In the drawings, the same reference numerals indicate the same or corresponding parts.
1,10 電源主回路部、2,20 電源制御部、3 交流電源、4 全波整流回路、5,51 H型ブリッジ昇降圧コンバータ(コンバータ)、6 電流検出回路、7 入力電圧検出回路、8 出力電圧検出回路、9 負荷、21 出力制御量演算部、22 比較判定部、23 セレクタ、24a 昇圧制御用ピーク電流演算部、24b 降圧制御用ピーク電流演算部、25a,25b ピーク電流制御部、26 オンオフ信号生成部、26a,26b スイッチ制御部、26c セレクタ、90 LED、91 LED電流検出回路。
1,10 power supply main circuit section, 2,20 power supply control section, 3 AC power supply, 4 full-wave rectifier circuit, 5,51 H-bridge buck-boost converter (converter), 6 current detection circuit, 7 input voltage detection circuit, 8 Output voltage detection circuit, 9 load, 21 output control amount calculation unit, 22 comparison judgment unit, 23 selector, 24a peak current calculation unit for boost control, 24b peak current calculation unit for step-down control, 25a, 25b peak current control unit, 26 ON / OFF signal generator, 26a, 26b, switch controller, 26c selector, 90 LED, 91 LED current detection circuit.
Claims (10)
- 交流電源の交流電圧を全波整流する全波整流回路、前記全波整流回路で全波整流された後の入力電圧を検出する入力電圧検出回路、スイッチング素子及びリアクトルを有すると共に、前記入力電圧を目標とする出力電圧に変換するコンバータ、前記コンバータで電圧変換された後の出力電圧を検出する出力電圧検出回路、及び前記リアクトルに流れるリアクトル電流を検出する電流検出回路を有する電源主回路部と、
前記入力電圧、前記出力電圧及び前記リアクトル電流に基づいて前記スイッチング素子をオンオフ制御することにより前記出力電圧を制御すると共に、前記リアクトル電流を制御して入力電流波形を入力電圧波形に近づける力率改善制御を行う電源制御部と、を備え、
前記電源制御部は、前記入力電圧検出回路にて、前記入力電圧が正常時より下がる変動を検出した際は、前記リアクトル電流を正常時より大きく設定して制御し、前記入力電圧が正常時より上がる変動を検出した際は、前記リアクトル電流を正常時より小さく設定して制御を行うことを特徴とする電力変換装置。 A full-wave rectifier circuit for full-wave rectification of the AC voltage of the AC power source, an input voltage detection circuit for detecting an input voltage after full-wave rectification by the full-wave rectifier circuit, a switching element and a reactor, and the input voltage A converter for converting to a target output voltage, an output voltage detection circuit for detecting an output voltage after voltage conversion by the converter, and a power supply main circuit unit having a current detection circuit for detecting a reactor current flowing in the reactor;
Power factor improvement to control the output voltage by controlling the switching element on and off based on the input voltage, the output voltage and the reactor current, and to control the reactor current to bring the input current waveform closer to the input voltage waveform A power control unit for performing control,
When the input voltage detection circuit detects a fluctuation in which the input voltage is lower than normal, the power supply control unit controls the reactor current to be set larger than normal, and the input voltage is higher than normal. When detecting the fluctuation | variation which rises, the said reactor current is set smaller than normal time, and it controls, The power converter device characterized by the above-mentioned. - 前記リアクトル電流の制御は、目標リアクトル電流を演算し、前記リアクトル電流が前記目標リアクトル電流に一致するようにピーク電流制御を行う際に、前記入力電圧の理想値と検出された前記入力電圧との比を2乗した補正係数を乗じたピーク電流を設定して制御を行うことを特徴とする請求項1に記載の電力変換装置。 The control of the reactor current is performed by calculating a target reactor current, and performing peak current control so that the reactor current matches the target reactor current, and the ideal value of the input voltage and the detected input voltage. The power converter according to claim 1, wherein control is performed by setting a peak current multiplied by a correction coefficient obtained by squaring the ratio.
- 前記コンバータは、2つのスイッチング素子、2つのダイオード及びリアクトルを有するH型ブリッジ昇降圧コンバータであることを特徴とする請求項1または請求項2に記載の電力変換装置。 The power converter according to claim 1 or 2, wherein the converter is an H-type bridge buck-boost converter having two switching elements, two diodes, and a reactor.
- 前記コンバータは、4つのスイッチング素子及びリアクトルを有するH型ブリッジ昇降圧コンバータであることを特徴とする請求項1または請求項2に記載の電力変換装置。 The power converter according to claim 1 or 2, wherein the converter is an H-type bridge buck-boost converter having four switching elements and a reactor.
- 前記電源制御部は、前記入力電圧が前記出力電圧未満である場合と、前記入力電圧が前記出力電圧以上である場合とで、前記目標リアクトル電流を変更することを特徴とする請求項2に記載の電力変換装置。 The said power supply control part changes the said target reactor current by the case where the said input voltage is less than the said output voltage, and the case where the said input voltage is more than the said output voltage. Power converter.
- 前記入力電圧の理想値は、前記入力電圧の最小値からカウントを行い、そのカウント値に基づいて予め設定された入力電圧理想値テーブルから決定することを特徴とする請求項2に記載の電力変換装置。 3. The power conversion according to claim 2, wherein the ideal value of the input voltage is determined from a minimum value of the input voltage and determined from a preset input voltage ideal value table based on the count value. apparatus.
- 前記電源制御部において、前記リアクトル電流が前記目標リアクトル電流に一致するように制御を行う場合の制御方式として、ヒステリシス制御を用いることを特徴とする請求項2に記載の電力変換装置。 3. The power conversion device according to claim 2, wherein the power supply control unit uses hysteresis control as a control method in the case of performing control so that the reactor current matches the target reactor current.
- 前記電源制御部において、前記リアクトル電流が前記目標リアクトル電流に一致するように制御を行う場合の制御方式として、ウインドウコンパレータ制御を用いることを特徴とする請求項2に記載の電力変換装置。 3. The power converter according to claim 2, wherein window comparator control is used as a control method when the power source control unit performs control so that the reactor current matches the target reactor current.
- 前記電源主回路部には、負荷としてLEDが接続されると共に、前記LEDに流れるLED電流を検出するLED電流検出回路が設けられ、前記電源制御部は、前記LED電流検出回路で検出された前記LED電流に基づいて前記LEDの電流制御を行うことを特徴とする請求項1から請求項8のいずれか1項に記載の電力変換装置。 The power source main circuit unit is connected to an LED as a load, and is provided with an LED current detection circuit that detects an LED current flowing through the LED, and the power source control unit is detected by the LED current detection circuit. 9. The power conversion device according to claim 1, wherein current control of the LED is performed based on an LED current. 10.
- 交流電源の交流電圧を全波整流する全波整流回路、前記全波整流回路で全波整流された後の入力電圧を検出する入力電圧検出回路、スイッチング素子及びリアクトルを有すると共に、前記入力電圧を目標とする出力電圧に変換するコンバータ、前記コンバータで電圧変換された後の出力電圧を検出する出力電圧検出回路、及び前記リアクトルに流れるリアクトル電流を検出する電流検出回路を有する電源主回路部と、前記入力電圧、前記出力電圧及び前記リアクトル電流に基づいて前記スイッチング素子をオンオフ制御することにより前記出力電圧を制御すると共に、前記リアクトル電流を制御して入力電流波形を入力電圧波形に近づける力率改善制御を行う電源制御部と、を備えた電力変換装置の制御方法であって、
前記入力電圧検出回路が、前記入力電圧を検出する入力電圧検出ステップと、
前記出力電圧検出回路が、前記出力電圧を検出する出力電圧検出ステップと、
前記電源制御部が、前記入力電圧検出ステップにおいて、前記入力電圧が正常時より下がる変動を検出した際は、前記リアクトル電流を正常時より大きく設定して制御し、前記入力電圧が正常時より上がる変動を検出した際は、前記リアクトル電流を正常時より小さく設定して制御を行う電流制御ステップと、
を備えることを特徴とする電力変換装置の制御方法。 A full-wave rectifier circuit for full-wave rectification of the AC voltage of the AC power source, an input voltage detection circuit for detecting an input voltage after full-wave rectification by the full-wave rectifier circuit, a switching element and a reactor, and the input voltage A converter for converting to a target output voltage, an output voltage detection circuit for detecting an output voltage after voltage conversion by the converter, and a power supply main circuit unit having a current detection circuit for detecting a reactor current flowing in the reactor; Power factor improvement to control the output voltage by controlling the switching element on and off based on the input voltage, the output voltage and the reactor current, and to control the reactor current to bring the input current waveform closer to the input voltage waveform A control method of a power conversion device including a power supply control unit that performs control,
An input voltage detection step in which the input voltage detection circuit detects the input voltage;
An output voltage detection step in which the output voltage detection circuit detects the output voltage;
When the power supply control unit detects a fluctuation in which the input voltage is lower than normal in the input voltage detection step, the reactor current is controlled to be set larger than normal, and the input voltage is increased from normal. When detecting the fluctuation, a current control step for performing control by setting the reactor current to be smaller than normal; and
The control method of the power converter device characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017562427A JP6309182B2 (en) | 2016-01-22 | 2016-09-05 | Power conversion apparatus and control method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016010282 | 2016-01-22 | ||
JP2016-010282 | 2016-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126154A1 true WO2017126154A1 (en) | 2017-07-27 |
Family
ID=59362298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075989 WO2017126154A1 (en) | 2016-01-22 | 2016-09-05 | Electric power conversion device and control method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6309182B2 (en) |
WO (1) | WO2017126154A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020120472A (en) * | 2019-01-22 | 2020-08-06 | 株式会社Soken | Control device of DCDC converter |
CN111989854A (en) * | 2018-04-17 | 2020-11-24 | 株式会社电装 | Control device for power conversion device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI753801B (en) * | 2021-03-18 | 2022-01-21 | 通嘉科技股份有限公司 | Control methods for changing minimum on-time of synchronous rectifier and related synchronous rectifier controllers |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004120940A (en) * | 2002-09-27 | 2004-04-15 | Texas Instr Japan Ltd | Dc-dc converter |
JP2012085397A (en) * | 2010-10-07 | 2012-04-26 | Nippon Soken Inc | Power conversion device |
JP2015154692A (en) * | 2014-02-19 | 2015-08-24 | 三菱電機株式会社 | Electric power converter |
-
2016
- 2016-09-05 JP JP2017562427A patent/JP6309182B2/en active Active
- 2016-09-05 WO PCT/JP2016/075989 patent/WO2017126154A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004120940A (en) * | 2002-09-27 | 2004-04-15 | Texas Instr Japan Ltd | Dc-dc converter |
JP2012085397A (en) * | 2010-10-07 | 2012-04-26 | Nippon Soken Inc | Power conversion device |
JP2015154692A (en) * | 2014-02-19 | 2015-08-24 | 三菱電機株式会社 | Electric power converter |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111989854A (en) * | 2018-04-17 | 2020-11-24 | 株式会社电装 | Control device for power conversion device |
CN111989854B (en) * | 2018-04-17 | 2023-10-20 | 株式会社电装 | Control device for power conversion device |
JP2020120472A (en) * | 2019-01-22 | 2020-08-06 | 株式会社Soken | Control device of DCDC converter |
JP7235517B2 (en) | 2019-01-22 | 2023-03-08 | 株式会社Soken | Control device for DCDC converter |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017126154A1 (en) | 2018-03-08 |
JP6309182B2 (en) | 2018-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5749063B2 (en) | Dimming control for switching power supply | |
US10491106B2 (en) | Digital control of switched boundary mode interleaved power converter | |
JP6145825B2 (en) | Light emitting diode drive device and semiconductor device | |
US8102683B2 (en) | Phase angle measurement of a dimming circuit for a switching power supply | |
TWI532410B (en) | Dimmable LED driver circuit and its dimming method | |
TWI523569B (en) | Adjustable LED driver circuit and drive method | |
JP6038190B2 (en) | Power converter | |
US9065327B2 (en) | Efficiency optimized power converter with dual voltage power factor correction | |
JP6053706B2 (en) | Power converter | |
KR100764387B1 (en) | Quasi single stage pfc converter | |
CN105637978B (en) | Beat electron energy converter | |
JP2012114410A (en) | Led driving device | |
US10727735B2 (en) | Digital control of switched boundary mode interleaved power converter with reduced crossover distortion | |
JP6599024B2 (en) | Power factor compensation power supply device and LED lighting device | |
CN107925349B (en) | PFC module, operation method and system thereof, operation method and lighting device thereof | |
JP6309182B2 (en) | Power conversion apparatus and control method thereof | |
JP6398537B2 (en) | AC-DC converter | |
JP2017085865A (en) | Power factor compensation device, and led lighting device | |
JP6279423B2 (en) | Power converter | |
JP6422535B2 (en) | Power converter | |
JP2016201194A (en) | LED lighting device | |
JP6186100B1 (en) | Power converter | |
JP6436448B2 (en) | Power converter | |
WO2018216158A1 (en) | Power conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16886394 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017562427 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16886394 Country of ref document: EP Kind code of ref document: A1 |