JP2016201194A - LED lighting device - Google Patents

LED lighting device Download PDF

Info

Publication number
JP2016201194A
JP2016201194A JP2015078865A JP2015078865A JP2016201194A JP 2016201194 A JP2016201194 A JP 2016201194A JP 2015078865 A JP2015078865 A JP 2015078865A JP 2015078865 A JP2015078865 A JP 2015078865A JP 2016201194 A JP2016201194 A JP 2016201194A
Authority
JP
Japan
Prior art keywords
circuit
lighting device
voltage
led
led lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015078865A
Other languages
Japanese (ja)
Other versions
JP6527741B2 (en
Inventor
充弘 門田
Michihiro Kadota
充弘 門田
古矢 幸生
Yukio Furuya
幸生 古矢
古城 卓也
Takuya Kojo
卓也 古城
菅原 浩一
Koichi Sugawara
浩一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2015078865A priority Critical patent/JP6527741B2/en
Publication of JP2016201194A publication Critical patent/JP2016201194A/en
Application granted granted Critical
Publication of JP6527741B2 publication Critical patent/JP6527741B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED lighting device which is compact in size and high in efficiency, and can reduce the pulsation (peak value) of LED current to a predetermined value or less.SOLUTION: An LED lighting device includes an AC-DC circuit for rectifying an AC power supply voltage, a first capacitor for smoothing an output voltage of the AC-DC circuit, an LED load, a semiconductor element and current detecting means which are connected between the output terminals of the AC-DC circuit, and a control circuit for controlling the AC-DC circuit and the semiconductor element. The control circuit performs two operations of a first operation using the semiconductor element as an element for a dropper type (linear regulator type) constant current circuit, and a second operation of controlling the output by the AC-DC circuit while the semiconductor element is set to ON (through) state.SELECTED DRAWING: Figure 1

Description

本発明は,LED点灯装置に関する。
The present invention relates to an LED lighting device.

発光ダイオード(以下,LED:Light Emitting Diode)は,高効率かつ長寿命の光源デバイスであり,自動車の車内照明やヘッドライト,信号機,液晶ディスプレイのバックライト,一般照明などの幅広い分野において利用されている。また,オフィス,店舗,工場といったあらゆる施設において,省エネ施策としてLED照明の導入が進んでいる。   Light emitting diodes (LEDs) are high-efficiency and long-life light source devices that are used in a wide range of fields such as automobile interior lighting, headlights, traffic lights, liquid crystal display backlights, and general lighting. Yes. In addition, LED lighting has been introduced as an energy-saving measure in all facilities such as offices, stores, and factories.

LEDを点灯させるLED点灯装置は,電力変換回路を備えており,これによって電源電圧を変換してLED負荷に給電する。照明用途などで交流電源を用いる場合,上記の電力変換回路の構成として,AC−DC回路によって交流電源電圧を一旦直流電圧に変換し,この直流電圧をDC−DC回路によって電圧変換してLED負荷に給電する構成が用いられる。このうちAC−DC回路は,入力電流の低次高調波成分を低減する力率改善(PFC:Power Factor Correction)回路としての役割を担い,DC−DC回路は,LED負荷に出力する電流(以下,LED電流と記す)を制御する。具体的な回路方式として,AC−DC回路を全波整流回路(ダイオードブリッジ)と昇圧チョッパで,DC−DC回路を降圧チョッパでそれぞれ実現する方式がよく用いられる。すなわち,AC−DC回路とDC−DC回路の両者にスイッチング方式の電源回路を利用する方式である。   An LED lighting device for lighting an LED includes a power conversion circuit, which converts a power supply voltage and supplies power to the LED load. When using an AC power supply for lighting applications, etc., the AC power supply voltage is temporarily converted to a DC voltage by the AC-DC circuit as a configuration of the power conversion circuit, and the DC voltage is converted by the DC-DC circuit to the LED load. A configuration for supplying power to the battery is used. Among these, the AC-DC circuit plays a role as a power factor correction (PFC) circuit that reduces low-order harmonic components of the input current, and the DC-DC circuit is a current output to the LED load (hereinafter, referred to as a power factor correction circuit). , LED current). As a specific circuit system, a system in which an AC-DC circuit is realized by a full-wave rectifier circuit (diode bridge) and a step-up chopper and a DC-DC circuit is realized by a step-down chopper is often used. That is, a switching type power supply circuit is used for both the AC-DC circuit and the DC-DC circuit.

近年、小型のLED点灯装置の実現が望まれている。   In recent years, realization of a small LED lighting device has been desired.

上記の構成と比べて小型のLED点灯装置を実現するために,DC−DC回路を省略し,AC−DC回路の出力をLED負荷に直接接続する構成(ワンコンバータ方式と呼ばれることもある)が考えられる。   In order to realize a small LED lighting device compared to the above configuration, a configuration in which the DC-DC circuit is omitted and the output of the AC-DC circuit is directly connected to the LED load (sometimes referred to as a one-converter method) Conceivable.

小型のLED点灯装置を実現する別の方式として,DC−DC回路として降圧チョッパのようなスイッチング回路の代わりにドロッパ方式の電源回路(以下、ドロッパ回路)を用いる構成が考えられる。ドロッパ回路は,スイッチング回路において大きな体積を占めるチョークコイル(またはトランス)が不要であるため,LED点灯装置の小型化に有利である。また,AC−DC回路の出力電圧をLED負荷の電圧(以下,LED電圧と記す)より十分高く設定して,ドロッパ回路を定電流回路として動作させれば,AC−DC回路を力率改善動作させる場合もLED電流を一定に(脈動なしで)制御できる。特開2006−314168号(特許文献1)には,ドロッパ回路(文献ではシリーズレギュレータと記載されているが,ドロッパ回路と考えられる)によってLEDに給電する構成が示されている。
As another method for realizing a small LED lighting device, a configuration using a dropper type power supply circuit (hereinafter referred to as a dropper circuit) instead of a switching circuit such as a step-down chopper as a DC-DC circuit is conceivable. Since the dropper circuit does not require a choke coil (or transformer) that occupies a large volume in the switching circuit, it is advantageous for downsizing the LED lighting device. Also, if the output voltage of the AC-DC circuit is set sufficiently higher than the voltage of the LED load (hereinafter referred to as LED voltage) and the dropper circuit is operated as a constant current circuit, the AC-DC circuit can be operated as a power factor. Also in the case of making it, the LED current can be controlled to be constant (without pulsation). Japanese Patent Laying-Open No. 2006-314168 (Patent Document 1) shows a configuration in which power is supplied to an LED by a dropper circuit (which is described as a series regulator in the literature, but is considered a dropper circuit).

特開2006−314168号公報JP 2006-314168 A

ワンコンバータ方式では,AC−DC回路によって力率改善を行う都合上,LED電流が交流電源(の2倍)の周波数で大きく脈動する。LED及び点灯装置の寿命を考慮すると,この脈動の振幅,特にピーク値は小さくするべきである。また,周波数が高いとはいえ,ちらつき(フリッカ)の点からもLED電流の脈動は小さい方がよい。AC−DC回路の出力端子間に接続するコンデンサを大容量化すればLED電流の脈動を低減できるが,コンデンサの体積が大きくなり,LED点灯装置を小型化するメリットは損なわれる。   In the one-converter system, the LED current pulsates greatly at the frequency of the AC power supply (twice that of the AC power supply) for the purpose of improving the power factor by the AC-DC circuit. Considering the lifetime of the LED and the lighting device, the amplitude of the pulsation, particularly the peak value should be reduced. Moreover, although the frequency is high, it is preferable that the pulsation of the LED current is small from the point of flicker. If the capacity of the capacitor connected between the output terminals of the AC-DC circuit is increased, the pulsation of the LED current can be reduced, but the volume of the capacitor increases and the merit of downsizing the LED lighting device is lost.

一方,ドロッパ方式定電流回路でも半導体素子を利用するが,その制御方式がスイッチング回路の場合とは異なる。ドロッパ回路では,入力電圧の大きさに依らず一定の電流を出力するように半導体素子の導通抵抗が制御される。その結果,半導体素子には入力電圧と負荷電圧の差分がドロップ電圧として印加される。ドロップ電圧と負荷電流の積として大きな損失が発生し,LED点灯装置の効率を低下させる。また,放熱フィンを取り付けるなどして半導体素子の放熱を強化する必要があり,これがLED点灯装置の大型化を招く。   On the other hand, semiconductor elements are also used in the dropper type constant current circuit, but the control method is different from that of the switching circuit. In the dropper circuit, the conduction resistance of the semiconductor element is controlled so as to output a constant current regardless of the magnitude of the input voltage. As a result, the difference between the input voltage and the load voltage is applied to the semiconductor element as a drop voltage. A large loss occurs as a product of the drop voltage and the load current, which reduces the efficiency of the LED lighting device. In addition, it is necessary to enhance the heat radiation of the semiconductor element by attaching a heat radiation fin, which leads to an increase in the size of the LED lighting device.

以上を踏まえて,小型・高効率であり,LED電流の脈動(ピーク値)を所定値以下に低減可能なLED点灯装置を実現することが本発明の課題である。

Based on the above, it is an object of the present invention to realize an LED lighting device that is small and highly efficient and that can reduce the pulsation (peak value) of the LED current to a predetermined value or less.

上記課題は,交流電源電圧を整流するAC−DC回路と,該AC−DC回路の出力電圧を平滑する第1コンデンサと,前記AC−DC回路の出力端子間に接続されるLED負荷と半導体素子と電流検出手段と,前記AC−DC回路と前記半導体素子を制御する制御回路を備え,該制御回路は,前記半導体素子をドロッパ方式(リニアレギュレータ方式)定電流回路用の素子として利用する第1動作と,前記半導体素子をオン(スルー)状態として前記AC−DC回路によって出力を制御する第2動作の2通りの動作を行うことを特徴とするLED点灯装置によって解決される。
An object of the present invention is to provide an AC-DC circuit for rectifying an AC power supply voltage, a first capacitor for smoothing the output voltage of the AC-DC circuit, an LED load connected between output terminals of the AC-DC circuit, and a semiconductor element. And a current detection means, a control circuit for controlling the AC-DC circuit and the semiconductor element, and the control circuit uses the semiconductor element as an element for a dropper type (linear regulator type) constant current circuit. The LED lighting device is characterized in that it performs two operations: an operation and a second operation in which the output is controlled by the AC-DC circuit while the semiconductor element is turned on (through).

小型・高効率であり,LED電流の脈動(ピーク値)を所定値以下に低減可能なLED点灯装置を実現する。
An LED lighting device that is small and highly efficient and can reduce the pulsation (peak value) of the LED current to a predetermined value or less is realized.

実施例1におけるLED点灯装置のブロック図である。It is a block diagram of the LED lighting device in Example 1. 実施例1の動作タイミングチャートである。3 is an operation timing chart of the first embodiment. 本発明(図2)との比較対象であり,AC−DC回路の出力をLED負荷に直接接続する構成において考えられる動作タイミングチャートである。It is a comparison object with this invention (FIG. 2), and is an operation | movement timing chart considered in the structure which connects the output of an AC-DC circuit directly to LED load. 実施例1(図1)におけるAC−DC回路102と制御回路106の具体例である。This is a specific example of the AC-DC circuit 102 and the control circuit 106 in the first embodiment (FIG. 1). 実施例1の別例であり,AC−DC回路102としてフライバックコンバータ118を,半導体素子104としてバイポーラトランジスタを用いる構成である。This is another example of the first embodiment, in which a flyback converter 118 is used as the AC-DC circuit 102 and a bipolar transistor is used as the semiconductor element 104. 実施例1の別例であり,AC−DC回路102として昇圧チョッパ125を用いる構成である。This is another example of the first embodiment, in which a boost chopper 125 is used as the AC-DC circuit 102. 実施例2の動作タイミングチャートである。6 is an operation timing chart of Embodiment 2. 実施例2における制御回路106の具体例である。7 is a specific example of a control circuit 106 according to the second embodiment. 実施例3の動作タイミングチャートである。10 is an operation timing chart of Embodiment 3. 実施例3におけるLED点灯装置の具体例である。It is a specific example of the LED lighting device in Example 3. 実施例3の動作タイミングチャートの別例である。10 is another example of an operation timing chart of Embodiment 3. 実施例4におけるLED点灯装置のブロック図である。It is a block diagram of the LED lighting device in Example 4. 実施例4の動作タイミングチャートである。10 is an operation timing chart of Embodiment 4.

以下,本発明の実施例について,図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<ブロック図>
図1は,実施例1におけるLED点灯装置のブロック図である。図1のLED点灯装置は,外部から入力される交流電源100の電圧を変換してLED負荷101に出力(給電)する。LED点灯装置は,交流電源100の電圧を整流するAC−DC回路102と,AC−DC回路102の出力電圧を平滑するコンデンサ103(第1コンデンサ)と,AC−DC回路102の出力端子間に接続されるLED負荷101と半導体素子104と電流検出手段105と,AC−DC回路102と半導体素子104を制御する制御回路106を備える。
<Block diagram>
FIG. 1 is a block diagram of the LED lighting device according to the first embodiment. The LED lighting device of FIG. 1 converts the voltage of the AC power supply 100 input from the outside and outputs (power feeds) the LED load 101. The LED lighting device includes an AC-DC circuit 102 that rectifies the voltage of the AC power supply 100, a capacitor 103 (first capacitor) that smoothes the output voltage of the AC-DC circuit 102, and an output terminal of the AC-DC circuit 102. The LED load 101, the semiconductor element 104, the current detection means 105, the AC-DC circuit 102, and the control circuit 106 for controlling the semiconductor element 104 are provided.

LED負荷101は,少なくとも1個のLEDを備える。LED負荷101が複数のLEDを備えるとき,LEDの個数や接続形態は問わない。また,LEDには,保護用素子などを内蔵したLEDモジュールも含まれる。   The LED load 101 includes at least one LED. When the LED load 101 includes a plurality of LEDs, the number of LEDs and the connection form are not limited. Further, the LED includes an LED module incorporating a protection element or the like.

図1では,半導体素子104としてMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)を示したが,バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor)など他種の素子であってもよい。   In FIG. 1, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is shown as the semiconductor element 104, but other types of elements such as a bipolar transistor and an IGBT (Insulated Gate Bipolar Transistor) may be used.

電流検出手段105として,抵抗(シャント抵抗)が一般的であるが,ホールセンサなど他種の検出手段であってもよい。電流検出手段105は,LED電流を検出するために利用されるが,図1のようにLED電流を直接検出する位置に接続する必要はない。例えば,AC−DC回路102の部品に流れる電流を検出する位置に電流検出手段105を接続し,この部品の電流から間接的にLED電流を検出してもよい。   A resistor (shunt resistor) is generally used as the current detection means 105, but other types of detection means such as a Hall sensor may be used. The current detection unit 105 is used to detect the LED current, but does not need to be connected to a position for directly detecting the LED current as shown in FIG. For example, the current detection means 105 may be connected to a position where the current flowing through the component of the AC-DC circuit 102 is detected, and the LED current may be indirectly detected from the current of this component.

制御回路106は,図1に記載したように,半導体素子104をドロッパ方式(リニアレギュレータ方式)定電流回路用の素子として利用する第1動作と,半導体素子104をオン(スルー)状態としてAC−DC回路102によって出力電流を制御する第2動作の2通りの動作を行う。   As shown in FIG. 1, the control circuit 106 performs a first operation that uses the semiconductor element 104 as an element for a dropper type (linear regulator type) constant current circuit, and an AC− The DC circuit 102 performs two operations of the second operation for controlling the output current.

図1では,制御回路106がAC−DC回路102に発生する電圧または電流を検出する構成を示したが,制御回路106の構成によってはこの検出を省略できる。また,図1では,LED点灯装置の外部から制御回路106に調光信号が入力され,制御回路106が調光信号に従ってLED電流を可変することを想定した。調光信号は,専用の制御配線を介して制御回路106に入力されるものであっても,無線通信によって制御回路106に入力されるものであってもよい。LED電流を一定値に制御するのであれば,調光信号は不要である。
Although FIG. 1 shows a configuration in which the control circuit 106 detects a voltage or current generated in the AC-DC circuit 102, this detection can be omitted depending on the configuration of the control circuit 106. In FIG. 1, it is assumed that a dimming signal is input to the control circuit 106 from the outside of the LED lighting device, and the control circuit 106 varies the LED current according to the dimming signal. The dimming signal may be input to the control circuit 106 via a dedicated control wiring, or may be input to the control circuit 106 by wireless communication. A dimming signal is not required if the LED current is controlled to a constant value.

<動作タイミングチャート>
図2は,実施例1の動作タイミングチャートである。具体的には,交流電源100の1周期における交流電源100の電圧,AC−DC回路102の出力電圧,LED電圧,半導体素子104の電圧,LED電流の動作波形を示した。半導体素子104の電圧とは,半導体素子104がMOSFETであればそのドレイン−ソース電圧,バイポーラトランジスタやIGBTであればコレクタ−エミッタ電圧である。また,図2には制御回路106の動作についても記載しており,制御回路106は(1)と記載された期間において上記の第1動作を,(2)と記載された期間において第2動作をそれぞれ行う。図2では,AC−DC回路102によって力率改善を行う,すなわちPFC回路として動作させることを想定した。そのため,図2のようにLED電流は脈動するが,後に説明するようにAC−DC回路102によってその平均値を所定の第1設定値(I1)に制御することを想定した。
<Operation timing chart>
FIG. 2 is an operation timing chart of the first embodiment. Specifically, the operation waveforms of the voltage of the AC power supply 100, the output voltage of the AC-DC circuit 102, the LED voltage, the voltage of the semiconductor element 104, and the LED current in one cycle of the AC power supply 100 are shown. The voltage of the semiconductor element 104 is the drain-source voltage if the semiconductor element 104 is a MOSFET, and the collector-emitter voltage if the semiconductor element 104 is a bipolar transistor or IGBT. 2 also describes the operation of the control circuit 106. The control circuit 106 performs the first operation in the period described as (1) and the second operation in the period described as (2). Do each. In FIG. 2, it is assumed that the AC-DC circuit 102 performs power factor improvement, that is, operates as a PFC circuit. Therefore, although the LED current pulsates as shown in FIG. 2, it is assumed that the average value is controlled to a predetermined first set value (I1) by the AC-DC circuit 102 as will be described later.

図3には,本発明(図2)との比較対象として,AC−DC回路の出力をLED負荷に直接接続する(図1において半導体素子104をショートする)構成において考えられる動作タイミングチャートを示した。図3は本発明の動作タイミングチャートではないため,交流電源やAC−DC回路などに付加する符号は省略した。既に説明したように,AC−DC回路が力率改善動作する場合,LED電流は交流電源(の2倍)の周波数でほぼ正弦波状に脈動する。LED電流の平均値については図2と同様にI1とし,その振幅をΔIとした。LED電圧もLED電流と同期して脈動するが,LED負荷の電圧−電流(V−I)特性上,LED電流に比べて脈動振幅は十分小さいため,図3では一定値とした。なお,電流検出手段での電圧降下を無視すれば,図3に記載したようにAC−DC回路の出力電圧とLED電圧は一致する。   FIG. 3 shows an operation timing chart conceivable in the configuration in which the output of the AC-DC circuit is directly connected to the LED load (shorting the semiconductor element 104 in FIG. 1) as a comparison object with the present invention (FIG. 2). It was. Since FIG. 3 is not an operation timing chart of the present invention, reference numerals added to an AC power supply, an AC-DC circuit, and the like are omitted. As described above, when the AC-DC circuit performs the power factor correction operation, the LED current pulsates substantially sinusoidally at the frequency of the AC power supply (twice the frequency). The average value of the LED current was set to I1 as in FIG. 2, and its amplitude was set to ΔI. Although the LED voltage pulsates in synchronization with the LED current, the pulsation amplitude is sufficiently smaller than the LED current due to the voltage-current (V-I) characteristics of the LED load. If the voltage drop at the current detection means is ignored, the output voltage of the AC-DC circuit and the LED voltage match as shown in FIG.

図2の本発明では,交流電源周期のうちLED電流が大きくなる期間において,制御回路106が第1動作を行う。すなわち,半導体素子104をドロッパ方式定電流回路の素子として利用し,その電流設定値を所定の第2設定値(I2)とすることで,LED電流のピーク値をI2に抑制(クランプ)する。図2では省略したが,制御回路106は,半導体素子104に流れる電流がI2で一定になるように,半導体素子104に制御信号を出力する(半導体素子104がMOSFETやIGBTであれば,ゲート電圧を出力し,バイポーラトランジスタであれば,ベース電流を出力する)。LED電流がI2で一定となる一方,AC−DC回路102の出力電圧がLED電圧より高くなり,図2のように変動する。半導体素子104の電圧,すなわちドロップ電圧は,AC−DC回路102の出力電圧とLED電圧の差分となる。以上から,LED電流脈動のピーク値を所定値に制御可能であり,LED負荷101やLED点灯装置に過大な電流が流れること,ひいては,これらの寿命短縮を防止できる。ただし,この期間では,上記の通り半導体素子104でドロップ電圧が発生するため,ドロップ電圧とI2の積として半導体素子104の損失が発生する。   In the present invention shown in FIG. 2, the control circuit 106 performs the first operation during the period in which the LED current increases during the AC power supply period. That is, the semiconductor element 104 is used as an element of a dropper type constant current circuit, and the current setting value is set to a predetermined second setting value (I2), thereby suppressing (clamping) the peak value of the LED current to I2. Although omitted in FIG. 2, the control circuit 106 outputs a control signal to the semiconductor element 104 so that the current flowing through the semiconductor element 104 becomes constant at I2 (if the semiconductor element 104 is a MOSFET or IGBT, the gate voltage If it is a bipolar transistor, it outputs a base current). While the LED current becomes constant at I2, the output voltage of the AC-DC circuit 102 becomes higher than the LED voltage and fluctuates as shown in FIG. The voltage of the semiconductor element 104, that is, the drop voltage is the difference between the output voltage of the AC-DC circuit 102 and the LED voltage. From the above, it is possible to control the peak value of the LED current pulsation to a predetermined value, and it is possible to prevent an excessive current from flowing through the LED load 101 and the LED lighting device, and in turn, shortening of their lifetime. However, during this period, a drop voltage is generated in the semiconductor element 104 as described above, and thus a loss of the semiconductor element 104 occurs as a product of the drop voltage and I2.

LED電流が小さくなる期間では,制御回路106は第2動作を行い,半導体素子104をオン(スルー)状態にする。このオン状態とは,半導体素子104がスイッチング電源回路の素子として利用される場合のオン状態を意味する。制御回路106の具体的な動作としては,半導体素子104がMOSFETやIGBTであれば,そのオン閾値電圧より十分高い電圧をゲートに印加すればよい。半導体素子104のドロップ電圧は略ゼロ,すなわち半導体素子104は短絡状態と見なせる。したがって,この期間では半導体素子104の損失は小さくなる。その一方,LED電流は図2のように脈動する。   In a period in which the LED current is small, the control circuit 106 performs the second operation, and the semiconductor element 104 is turned on (through). This ON state means an ON state when the semiconductor element 104 is used as an element of a switching power supply circuit. As a specific operation of the control circuit 106, if the semiconductor element 104 is a MOSFET or IGBT, a voltage sufficiently higher than the ON threshold voltage may be applied to the gate. The drop voltage of the semiconductor element 104 is substantially zero, that is, the semiconductor element 104 can be regarded as a short circuit state. Therefore, the loss of the semiconductor element 104 is reduced during this period. On the other hand, the LED current pulsates as shown in FIG.

以上のように,本発明の第1実施例では,交流電源周期の一部期間において制御回路106が第1動作を,残りの期間において第2動作を行う。これによって,従来(図3)と比べて同じ容量すなわち寸法のコンデンサ103に対してLED電流の脈動をより小さくできる。言い換えれば,同じLED電流の条件に対して,コンデンサ103を小容量化すなわち小型化できる。また,従来(特許文献1から考えられる構成)と比べて半導体素子104のドロップ電圧による損失を低減でき,LED点灯装置を高効率化できる。   As described above, in the first embodiment of the present invention, the control circuit 106 performs the first operation in the partial period of the AC power supply cycle and the second operation in the remaining period. As a result, the pulsation of the LED current can be made smaller with respect to the capacitor 103 having the same capacity, that is, the size compared with the conventional case (FIG. 3). In other words, the capacitor 103 can be reduced in capacity, that is, downsized for the same LED current condition. Further, the loss due to the drop voltage of the semiconductor element 104 can be reduced compared with the conventional one (configuration considered from Patent Document 1), and the efficiency of the LED lighting device can be improved.

図2の動作タイミングチャートを実現するためには,第2設定値I2を適切に設定する必要がある。図2から分かるように,I2は,第1設定値I1より大きく設定される。また,図3の動作タイミングチャートを,特にLED電流の脈動振幅ΔIを実験または回路シミュレーションによって測定できるのであれば,I2は(I1+ΔI)より小さく設定することが目安となる。すなわち,I2の設定範囲は,I1<I2<(I1+ΔI)となる。
In order to realize the operation timing chart of FIG. 2, it is necessary to appropriately set the second set value I2. As can be seen from FIG. 2, I2 is set larger than the first set value I1. Further, if the LED timing pulsation amplitude ΔI can be measured by experiment or circuit simulation, it is a guideline to set I2 to be smaller than (I1 + ΔI). That is, the setting range of I2 is I1 <I2 <(I1 + ΔI).

<AC−DC回路102の具体例>
図4では,図1に示したLED点灯装置について,AC−DC回路102及び制御回路106の構成をより具体的に示した。AC−DC回路102は,整流回路107と昇降圧チョッパ108を備える。これらの他に,ノイズフィルタやヒューズなどを備えていてもよい。図4では,電流検出手段105を抵抗116として構成した。抵抗116に発生する電圧が,LED電流及び半導体素子104に流れる電流を示す。
<Specific Example of AC-DC Circuit 102>
4, the configurations of the AC-DC circuit 102 and the control circuit 106 are more specifically shown for the LED lighting device shown in FIG. The AC-DC circuit 102 includes a rectifier circuit 107 and a step-up / step-down chopper 108. In addition to these, a noise filter or a fuse may be provided. In FIG. 4, the current detection means 105 is configured as a resistor 116. The voltage generated in the resistor 116 indicates the LED current and the current flowing through the semiconductor element 104.

整流回路107の具体的構成として,ダイオードブリッジによる全波整流回路が考えられる。図4の昇降圧チョッパ108は,スイッチング素子であるMOSFET(109と110)とダイオード(111と112)を2個ずつ,さらにチョークコイル113を備えるHブリッジ方式である。昇降圧チョッパ108は,力率改善回路として利用可能であり,また,名称の通り降圧も昇圧も可能であるため,他の方式と比べて幅広い入力電圧条件に対応できる。スイッチング素子として,MOSFETの他にバイポーラトランジスタやIGBTを用いてもよい。昇降圧チョッパ108の詳細な動作については説明を省略する。
As a specific configuration of the rectifier circuit 107, a full-wave rectifier circuit using a diode bridge can be considered. The step-up / step-down chopper 108 of FIG. 4 is an H-bridge type that includes two MOSFETs (109 and 110) and two diodes (111 and 112), which are switching elements, and a choke coil 113. The step-up / step-down chopper 108 can be used as a power factor correction circuit, and, as the name suggests, can be stepped down or boosted, so that it can cope with a wide range of input voltage conditions compared to other methods. As the switching element, a bipolar transistor or IGBT may be used in addition to the MOSFET. Description of the detailed operation of the step-up / down chopper 108 is omitted.

<制御回路106の具体例>
図2を用いて説明した動作を実現できれば,制御回路106の具体的な構成については問わない。ここでは,図4を用いてその一例について説明する。
<Specific Example of Control Circuit 106>
As long as the operation described with reference to FIG. 2 can be realized, the specific configuration of the control circuit 106 does not matter. Here, an example will be described with reference to FIG.

制御回路106の電流設定値生成部は,第1設定値I1を生成する。図4のように,外部から入力される調光信号がある場合,調光信号にしたがってI1を可変する。   The current set value generation unit of the control circuit 106 generates the first set value I1. As shown in FIG. 4, when there is a dimming signal input from the outside, I1 is varied according to the dimming signal.

抵抗116によって検出されるLED電流は,図2で示したように脈動,すなわちAC成分を含む。制御回路の平均値演算部は,AC成分を除去して交流電源周期におけるLED電流の平均値を計算する。   The LED current detected by the resistor 116 includes pulsation, that is, an AC component as shown in FIG. The average value calculator of the control circuit calculates the average value of the LED current in the AC power supply period by removing the AC component.

I1と検出したLED電流との誤差は,制御演算部に入力される。制御演算部は,例えばPI(比例−積分)制御などの演算によって上記の誤差を増幅する,すなわちエラーアンプとして動作する。その一方,制御回路106は,整流回路107の直流出力電圧に当たる整流電圧を検出する。なお,整流電圧を検出する過程で,分圧,ローパスフィルタリングなどの処理を実施してもよい。検出した整流電圧は,乗算部にて上記の制御演算部の出力と乗算される。乗算の結果は,AC−DC回路102の電流設定値となり,その波形は全波整流された正弦波状になる。PWM制御部は,AC−DC回路102のスイッチング素子やチョークコイルに流れる電流を上記の設定値にしたがって制御するように,AC−DC回路102の駆動信号を生成する。これらの部品に流れる電流の波形は,設定値と同様,全波整流された正弦波状となる。結果として,LED点灯装置に入力される電流波形は正弦波状となり,力率改善が実現される。以上の制御演算によって,LED電流の平均値をI1に制御し,かつ,入力電流波形を正弦波状にする力率改善動作が可能である。制御演算部とPWM制御部の詳細な動作については省略する。   An error between I1 and the detected LED current is input to the control calculation unit. The control operation unit amplifies the above error by an operation such as PI (proportional-integral) control, that is, operates as an error amplifier. On the other hand, the control circuit 106 detects a rectified voltage corresponding to the DC output voltage of the rectifier circuit 107. In the process of detecting the rectified voltage, processing such as voltage division and low-pass filtering may be performed. The detected rectified voltage is multiplied by the output of the control calculation unit in the multiplication unit. The result of the multiplication is the current setting value of the AC-DC circuit 102, and the waveform is a full-wave rectified sine wave. The PWM control unit generates a drive signal for the AC-DC circuit 102 so as to control the current flowing through the switching element and the choke coil of the AC-DC circuit 102 according to the set value. The waveform of the current flowing through these parts is a full-wave rectified sinusoidal wave, similar to the set value. As a result, the current waveform input to the LED lighting device is sinusoidal, and power factor improvement is realized. With the above control calculation, it is possible to perform the power factor improving operation by controlling the average value of the LED current to I1 and making the input current waveform sinusoidal. Detailed operations of the control calculation unit and the PWM control unit are omitted.

制御回路106のI2演算部は,I1をもとにドロッパ方式定電流回路の電流設定値である第2設定値I2を生成する。既に説明したように,I2はI1より大きい値に設定される。図4のように外部から入力される調光信号を利用する場合,I2演算部はI1の変更に合わせて適宜I2を変更する。調光信号を利用せず,I1を一定にする場合では,I2演算部を省略してもよい。   The I2 calculation unit of the control circuit 106 generates a second set value I2, which is a current set value of the dropper type constant current circuit, based on I1. As already described, I2 is set to a value larger than I1. When using a dimming signal input from the outside as shown in FIG. 4, the I2 calculation unit changes I2 as appropriate in accordance with the change of I1. In the case where I1 is constant without using the dimming signal, the I2 calculation unit may be omitted.

制御回路106の半導体素子制御部は,第1動作を行う,すなわち,半導体素子104をドロッパ方式定電流回路の素子として動作させるために,オペアンプ(演算増幅器)114を備える。図4には,オペアンプ114の動作電圧を生成する直流電源115を示した。直流電源115の生成方法については問わないが,検出した整流電圧を利用する方法が考えられる。直流電源115の電圧は,半導体素子104をオン(スルー)状態にするために十分な電圧とする。半導体素子104がMOSFETやIGBTであれば,そのオン閾値電圧より十分高い電圧,例えば8V以上とすればよい。   The semiconductor element control unit of the control circuit 106 includes an operational amplifier (operational amplifier) 114 to perform the first operation, that is, to operate the semiconductor element 104 as an element of a dropper type constant current circuit. FIG. 4 shows a DC power supply 115 that generates an operating voltage of the operational amplifier 114. A method for generating the DC power supply 115 is not limited, but a method using the detected rectified voltage is conceivable. The voltage of the DC power supply 115 is set to a voltage sufficient to turn on the semiconductor element 104 (through). If the semiconductor element 104 is a MOSFET or IGBT, the voltage may be sufficiently higher than the ON threshold voltage, for example, 8 V or more.

オペアンプ114のプラス入力端子には,ドロッパ方式定電流回路の電流設定値I2に対応する電圧が印加される。LED電流を検出する抵抗116の抵抗値をRsとすると,+端子に印加する電圧を(Rs×I2)とすればよい。オペアンプ114のマイナス入力端子には,抵抗116に発生する電圧,すなわち,検出したLED電流に対応する電圧が印加される。オペアンプ114の出力端子は,半導体素子104の制御端子,すなわち,半導体素子104がMOSFETやIGBTであればそのゲート端子に,バイポーラトランジスタであればそのベース端子に接続される。図4では,抵抗117を介してゲート端子に接続する構成としたが,抵抗117は省略(短絡)してもよい。   A voltage corresponding to the current setting value I2 of the dropper type constant current circuit is applied to the plus input terminal of the operational amplifier 114. If the resistance value of the resistor 116 for detecting the LED current is Rs, the voltage applied to the + terminal may be (Rs × I2). A voltage generated in the resistor 116, that is, a voltage corresponding to the detected LED current is applied to the negative input terminal of the operational amplifier 114. The output terminal of the operational amplifier 114 is connected to the control terminal of the semiconductor element 104, that is, the gate terminal if the semiconductor element 104 is a MOSFET or IGBT, and the base terminal if the semiconductor element 104 is a bipolar transistor. In FIG. 4, the resistor 117 is connected to the gate terminal via the resistor 117, but the resistor 117 may be omitted (short-circuited).

オペアンプ114,半導体素子104,抵抗116によって構成されるドロッパ方式定電流回路によって,LED電流はI2より大きくなることはない。図2でも説明したように,交流電源周期のうちLED電流が大きくなる期間でも,LED電流をI2に抑制できる。この動作は,制御回路106の第1動作に当たる。一方,LED電流がI2より小さくなる期間,すなわち,ドロッパ回路による電流制限が不要となる期間では,オペアンプ114の出力が飽和する。このとき,直流電源115の電圧が半導体素子104のゲートに印加され,半導体素子104はオン状態となる。すなわち,制御回路106は第2動作を行う。   The LED current does not become larger than I2 by the dropper type constant current circuit constituted by the operational amplifier 114, the semiconductor element 104, and the resistor 116. As described with reference to FIG. 2, the LED current can be suppressed to I2 even during the period in which the LED current increases in the AC power supply cycle. This operation corresponds to the first operation of the control circuit 106. On the other hand, the output of the operational amplifier 114 saturates during a period in which the LED current is smaller than I2, that is, a period in which current limitation by the dropper circuit is not necessary. At this time, the voltage of the DC power supply 115 is applied to the gate of the semiconductor element 104, and the semiconductor element 104 is turned on. That is, the control circuit 106 performs the second operation.

以上から,制御回路106は,交流電源100の位相やLED点灯装置の動作状態に応じて第1動作と第2動作を切り替えることができる。これによって,制御目的であるLED電流の平均値を制御すること,LED電流のピーク値を制限すること,力率改善動作をすることの3点を実現できる。   From the above, the control circuit 106 can switch between the first operation and the second operation according to the phase of the AC power supply 100 and the operating state of the LED lighting device. As a result, it is possible to realize three points of controlling the average value of the LED current, which is a control purpose, limiting the peak value of the LED current, and performing the power factor improving operation.

以上で説明した制御回路106の各構成要素の実現方法は問わないが,簡単なアナログ回路によって実現可能である。また,制御回路106の実現においてマイクロコンピュータ(以下,マイコンと記す),DSP(Digital Signal Processor),ICといった制御デバイスを利用する場合,これらの全部または一部をこれらの制御デバイスに実装してもよい。
The method for realizing each component of the control circuit 106 described above is not limited, but can be realized by a simple analog circuit. Further, when a control device such as a microcomputer (hereinafter referred to as a microcomputer), a DSP (Digital Signal Processor), or an IC is used to realize the control circuit 106, all or a part of them may be mounted on these control devices. Good.

<AC−DC回路102と半導体素子104の別例>
図5は,AC−DC回路102としてフライバックコンバータ118を,半導体素子104としてバイポーラトランジスタを用いる構成である。フライバックコンバータ118は,トランス119を備え,その1次側にはスイッチング素子であるMOSFET120を,2次側にはダイオード121をそれぞれ備える。トランス119の1次巻線には,コンデンサ122,抵抗123,ダイオード124から成るスナバ回路が接続される。フライバックコンバータ118は,交流電源100とLED負荷101の間で絶縁が必要な場合に利用可能であり,昇降圧チョッパ108と同様に降圧も昇圧も可能であるため,幅広い入力電圧条件に対応できる。
<Another Example of AC-DC Circuit 102 and Semiconductor Element 104>
FIG. 5 shows a configuration in which a flyback converter 118 is used as the AC-DC circuit 102 and a bipolar transistor is used as the semiconductor element 104. The flyback converter 118 includes a transformer 119, which includes a MOSFET 120 as a switching element on the primary side and a diode 121 on the secondary side. A snubber circuit including a capacitor 122, a resistor 123, and a diode 124 is connected to the primary winding of the transformer 119. The flyback converter 118 can be used when insulation is required between the AC power supply 100 and the LED load 101. Since the flyback converter 118 can step up and step down like the step-up / down chopper 108, it can cope with a wide range of input voltage conditions. .

制御回路106は第2動作において,バイポーラトランジスタがオン状態となるのに十分なベース電流を供給すればよい。図4に示した制御回路106の構成を適用し,直流電源115の電圧及び抵抗117を調整することでこれを実現できる。   The control circuit 106 may supply a base current sufficient to turn on the bipolar transistor in the second operation. This can be realized by applying the configuration of the control circuit 106 shown in FIG. 4 and adjusting the voltage of the DC power supply 115 and the resistor 117.

図6は,AC−DC回路102として昇圧チョッパ125を用いる構成である。昇圧チョッパ125は,スイッチング素子であるMOSFET126,ダイオード127,チョークコイル128を備え,図4の昇降圧チョッパ108より少ない部品数で構成できる。   FIG. 6 shows a configuration in which a boost chopper 125 is used as the AC-DC circuit 102. The step-up chopper 125 includes a switching element MOSFET 126, a diode 127, and a choke coil 128, and can be configured with a smaller number of components than the step-up / step-down chopper 108 of FIG.

しかし,昇圧チョッパ125は名称の通り昇圧しかできないため,昇圧チョッパ125で安定に力率改善動作を行うためには,LED電圧を交流電源100のピーク電圧より高く設定する必要がある。例えば,交流電源100の電圧実効値が200Vacであるとき,そのピーク値は約283Vであり,LED電圧の設定例として約300Vが考えられる。LED電圧は,LED負荷101におけるLEDの直列接続数によって調整可能である。   However, since the boost chopper 125 can only boost as the name suggests, the LED voltage needs to be set higher than the peak voltage of the AC power supply 100 in order for the boost chopper 125 to perform the power factor correction operation stably. For example, when the voltage effective value of the AC power supply 100 is 200 Vac, the peak value is about 283 V, and about 300 V can be considered as a setting example of the LED voltage. The LED voltage can be adjusted by the number of LEDs connected in series in the LED load 101.

なお,以上の別例は,本発明の全ての実施例に適用できる。
The other examples described above can be applied to all the embodiments of the present invention.

図7は,本発明の実施例2における動作タイミングチャートであり,図8は,これを実現する制御回路106の具体例である。実施例2において,制御回路106以外の構成については,実施例1で説明した構成をそのまま適用できる。図7と図2を比較すると分かるように,実施例1とほぼ同様の動作タイミングチャートとなる。そのため,図7の詳細な説明については省略する。   FIG. 7 is an operation timing chart according to the second embodiment of the present invention, and FIG. 8 is a specific example of the control circuit 106 for realizing this. In the second embodiment, the configuration described in the first embodiment can be applied to the configuration other than the control circuit 106 as it is. As can be seen by comparing FIG. 7 and FIG. 2, the operation timing chart is almost the same as in the first embodiment. Therefore, the detailed description of FIG. 7 is omitted.

図8の制御回路106は,検出されたLED電流の最小値検出部を備え,交流電源周期におけるLED電流の最小値を検出する。この最小値検出は,マイコンやDSPといった制御デバイスを用いて簡単に実現できる。制御回路106は,LED電流の最小値を所定の第3設定値(I3)に制御するようにAC−DC回路102の駆動信号を生成する。すなわち,実施例1ではLED電流の平均値を制御することに対して,実施例2ではLED電流の最小値を制御する。制御回路106の第1動作と合わせて,LED電流の最大値をI2に,最小値をI3にそれぞれ制御可能であり,脈動振幅を実施例1より厳密に制御できる。   The control circuit 106 of FIG. 8 includes a detected LED current minimum value detection unit, and detects the minimum value of the LED current in the AC power supply cycle. This minimum value detection can be easily realized by using a control device such as a microcomputer or a DSP. The control circuit 106 generates a drive signal for the AC-DC circuit 102 so as to control the minimum value of the LED current to a predetermined third set value (I3). That is, in Example 1, the average value of the LED current is controlled, whereas in Example 2, the minimum value of the LED current is controlled. In combination with the first operation of the control circuit 106, the maximum value of the LED current can be controlled to I2 and the minimum value can be controlled to I3, and the pulsation amplitude can be controlled more strictly than in the first embodiment.

第3設定値I3は,I2より小さく設定されることはもちろん,実施例1で説明したLED電流の平均値に関する第1設定値I1より小さく設定される。実施例2の制御動作は,以下で説明する他の実施例にも適用できる。
The third set value I3 is set to be smaller than I2, and is set to be smaller than the first set value I1 related to the average value of the LED current described in the first embodiment. The control operation of the second embodiment can also be applied to other embodiments described below.

図9は,本発明の実施例3における動作タイミングチャートである。図9では,制御回路106が調光信号にしたがってLED電流の平均値(上記の第1設定値I1)を可変することを前提として,(a)調光レベル(I1)が所定の閾値より大きい場合,(b)調光レベル(I1)が同閾値より小さい場合について示した。図9(a)の調光レベルが大きい場合,制御回路106の動作,及び,タイミングチャートは,図2に示した実施例1と同様である。一方,図9(b)の調光レベルが小さい場合,制御回路106は第1動作のみを行う。このとき,LED電流は上記の第2設定値(図9(a)のI2とは異なる値であるため,図9(b)では区別するためにI2’と記した)に従って一定に制御される。図9(b)に記載した通り,I2’はI1と同値に設定される。AC−DC回路102が力率改善動作をするため,その出力電圧は交流電源(の2倍の)周波数で脈動するが,交流電源周期に渡ってLED電圧より高くなるように制御される。   FIG. 9 is an operation timing chart according to the third embodiment of the present invention. In FIG. 9, assuming that the control circuit 106 varies the average value of the LED current (the first set value I1) in accordance with the dimming signal, (a) the dimming level (I1) is greater than a predetermined threshold value. In this case, (b) the case where the dimming level (I1) is smaller than the threshold value is shown. When the dimming level in FIG. 9A is large, the operation and timing chart of the control circuit 106 are the same as those in the first embodiment shown in FIG. On the other hand, when the dimming level in FIG. 9B is small, the control circuit 106 performs only the first operation. At this time, the LED current is controlled to be constant according to the second set value (which is different from I2 in FIG. 9 (a), so that it is indicated as I2 ′ in FIG. 9 (b) for distinction). . As described in FIG. 9B, I2 'is set to the same value as I1. Since the AC-DC circuit 102 performs the power factor correction operation, the output voltage pulsates at a frequency (twice that of the AC power supply), but is controlled to be higher than the LED voltage over the AC power supply cycle.

図10は,図9の動作を実現するLED点灯装置,特に制御回路106の具体例である。図10と図4を比較すると分かるように,制御回路106以外の構成については,図4の実施例1と同様である。図10のように,制御回路106は,LED電流の平均値をI1に制御する構成と,AC−DC回路102の出力電圧を所定の第4設定値(V1)に制御する構成の両方を備え,調光レベルによっていずれかの制御構成を選択する。図9の動作を実現するためには,(a)調光レベルが所定の値より大きい場合,LED電流の制御を選択し,(b)調光レベルが同値より小さい場合,AC−DC回路102の出力電圧の制御を選択すればよい。2通りの制御構成のうちLED電流の平均値を制御する構成については,実施例1(図4)と同様であるため,詳細な説明を省略する。なお,図10では,(b)調光レベルが所定の値より小さい場合について示した。   FIG. 10 is a specific example of the LED lighting device that realizes the operation of FIG. As can be seen by comparing FIG. 10 with FIG. 4, the configuration other than the control circuit 106 is the same as that of the first embodiment of FIG. As shown in FIG. 10, the control circuit 106 has both a configuration for controlling the average value of the LED current to I1 and a configuration for controlling the output voltage of the AC-DC circuit 102 to a predetermined fourth set value (V1). , Select one of the control configurations according to the dimming level. In order to realize the operation of FIG. 9, (a) when the dimming level is larger than a predetermined value, the LED current control is selected, and (b) when the dimming level is smaller than the same value, the AC-DC circuit 102 is selected. The control of the output voltage may be selected. Of the two control configurations, the configuration for controlling the average value of the LED current is the same as that of the first embodiment (FIG. 4), and thus detailed description thereof is omitted. In FIG. 10, (b) the case where the dimming level is smaller than a predetermined value is shown.

制御回路106の設定値生成部は,I1の他にV1を生成する。既に説明した通り,V1はLED電圧より高い値に設定される。また,制御回路106は,AC−DC回路102の出力電圧を検出する。制御切替部は,V1と検出されたAC−DC回路102の出力電圧の誤差,または,I1と検出されたLED電流の誤差のうち,どちらを制御演算部に入力するか選択する。また,制御切替部は,どちらの制御を行うかによって,制御演算部のゲインを変更する機能を備えていてもよい。なお,AC−DC回路102の出力電圧を直接検出してこれを制御する構成の他に,半導体素子104の電圧を検出し,これを所定の値に制御する構成もある。   The set value generation unit of the control circuit 106 generates V1 in addition to I1. As already described, V1 is set to a value higher than the LED voltage. The control circuit 106 detects the output voltage of the AC-DC circuit 102. The control switching unit selects which of the error in the output voltage of the AC-DC circuit 102 detected as V1 or the error in the LED current detected as I1 is input to the control calculation unit. Further, the control switching unit may have a function of changing the gain of the control calculation unit depending on which control is performed. In addition to the configuration in which the output voltage of the AC-DC circuit 102 is directly detected and controlled, there is a configuration in which the voltage of the semiconductor element 104 is detected and controlled to a predetermined value.

制御回路106のI2演算部は,I1に基づいてI2を生成する。調光レベルが所定の閾値より大きい場合,すなわち,図9(a)の場合については,実施例1と同様であるため説明を省略する。調光レベルが同閾値より小さい場合,すなわち,図9(b)の場合については,I2’をI1と同値に設定すればよい。上記の通りAC−DC回路102の出力電圧がLED電圧より常に高く制御されれば,半導体素子104は自動的にドロッパ方式定電流回路の素子として動作し,LED電流はI2’で一定に制御される。   The I2 calculation unit of the control circuit 106 generates I2 based on I1. The case where the light control level is larger than the predetermined threshold, that is, the case of FIG. When the dimming level is smaller than the threshold value, that is, in the case of FIG. 9B, I2 'may be set to the same value as I1. If the output voltage of the AC-DC circuit 102 is always controlled to be higher than the LED voltage as described above, the semiconductor element 104 automatically operates as an element of a dropper type constant current circuit, and the LED current is controlled to be constant at I2 ′. The

調光レベルが小さい場合,LED電流が小さいため,半導体素子104をドロッパ方式定電流回路で動作させたときの損失も小さくなる。図9(b)に示した動作によって,半導体素子104の損失低減と比べてLED電流の脈動低減を優先し,LED電流を一定値に制御できる。   When the dimming level is small, the LED current is small, so that the loss when the semiconductor element 104 is operated by the dropper type constant current circuit is also small. With the operation shown in FIG. 9B, priority is given to reducing the pulsation of the LED current over the reduction of the loss of the semiconductor element 104, and the LED current can be controlled to a constant value.

図11は,本発明の実施例3における動作タイミングチャートの別例である。図11では,(a)調光レベルが所定の閾値より大きい場合,制御回路106は第2動作のみを行う。これを実現するためには,図10の制御回路106において,I2をI1に比べて十分大きく設定すればよい。なお,(b)調光レベルが同閾値より大きい場合については,図9(b)の動作と同様である。   FIG. 11 is another example of an operation timing chart according to the third embodiment of the present invention. In FIG. 11, (a) when the dimming level is higher than a predetermined threshold, the control circuit 106 performs only the second operation. In order to realize this, it is only necessary to set I2 sufficiently larger than I1 in the control circuit 106 of FIG. Note that (b) the case where the dimming level is greater than the threshold value is the same as the operation of FIG. 9B.

調光レベルが大きい場合,LED電流が大きいため,半導体素子104をドロッパ方式定電流回路で動作させたときの損失も大きくなる。図11(a)の動作によって,LED電流の脈動低減と比べて半導体素子104の損失低減を優先し,半導体素子104のドロップ電圧を略ゼロにして損失を低減できる。   When the dimming level is large, the LED current is large, so that the loss when the semiconductor element 104 is operated by the dropper type constant current circuit is also large. With the operation of FIG. 11A, priority is given to reducing the loss of the semiconductor element 104 over reducing the pulsation of the LED current, and the drop voltage of the semiconductor element 104 can be made substantially zero to reduce the loss.

以上から,実施例3では,制御回路106は調光レベル(I1)に応じて第1動作と第2動作を切り替えると言うこともできる。
From the above, it can be said that in the third embodiment, the control circuit 106 switches between the first operation and the second operation in accordance with the dimming level (I1).

図12は,本発明の実施例4におけるLED点灯装置のブロック図であり,図13は動作タイミングチャートである。図12のように,AC−DC回路102の出力を平滑するコンデンサ103(第1コンデンサ)とは別に,LED負荷101と並列にコンデンサ129(第2コンデンサ)を接続する。これによって,図13のようにLED電流の脈動をより低減できる。また,LED電流に含まれる高周波成分を低減し,脈動波形を正弦波に近づけることができる。なお,実施例4の構成は,本発明の全ての実施例に適用できる。

FIG. 12 is a block diagram of an LED lighting device according to Embodiment 4 of the present invention, and FIG. 13 is an operation timing chart. As shown in FIG. 12, a capacitor 129 (second capacitor) is connected in parallel with the LED load 101 separately from the capacitor 103 (first capacitor) that smoothes the output of the AC-DC circuit 102. As a result, the pulsation of the LED current can be further reduced as shown in FIG. In addition, the high-frequency component included in the LED current can be reduced, and the pulsation waveform can be brought close to a sine wave. The configuration of the fourth embodiment can be applied to all the embodiments of the present invention.

100 交流電源
101 LED負荷
102 AC−DC回路
103 コンデンサ(122,129も同様)
104 半導体素子
105 電流検出手段
106 制御回路
107 整流回路
108 Hブリッジ方式昇降圧チョッパ
109 MOSFET(110,120,126も同様)
111 ダイオード(112,121,124,127も同様)
113 チョークコイル(128も同様)
114 オペアンプ
115 直流電源
116 抵抗(117,123も同様)
118 フライバックコンバータ
119 トランス
125 昇圧チョッパ
100 AC power supply 101 LED load 102 AC-DC circuit 103 Capacitor (122 and 129 are the same)
104 Semiconductor element 105 Current detection means 106 Control circuit 107 Rectifier circuit 108 H-bridge type buck-boost chopper 109 MOSFET (110, 120, 126 are the same)
111 diode (112, 121, 124, 127 are the same)
113 Choke coil (same for 128)
114 Operational amplifier 115 DC power supply 116 Resistance (117 and 123 are also the same)
118 Flyback Converter 119 Transformer 125 Boost Chopper

Claims (10)

交流電源電圧を整流するAC−DC回路と,該AC−DC回路の出力電圧を平滑する第1コンデンサと,前記AC−DC回路の出力端子間に接続されるLED負荷と半導体素子と電流検出手段と,前記AC−DC回路と前記半導体素子を制御する制御回路を備え,
該制御回路は,前記半導体素子をドロッパ方式(リニアレギュレータ方式)定電流回路用の素子として利用する第1動作と,前記半導体素子をオン(スルー)状態として前記AC−DC回路によって出力を制御する第2動作の2通りの動作を行うことを特徴とするLED点灯装置。
AC-DC circuit for rectifying AC power supply voltage, first capacitor for smoothing output voltage of AC-DC circuit, LED load connected between output terminals of AC-DC circuit, semiconductor element, and current detection means And a control circuit for controlling the AC-DC circuit and the semiconductor element,
The control circuit controls the output by the AC-DC circuit with the first operation using the semiconductor element as an element for a dropper type (linear regulator type) constant current circuit, and turning the semiconductor element on (through). An LED lighting device characterized by performing two operations of a second operation.
請求項1に記載のLED点灯装置において,
前記AC−DC回路は,前記LED負荷に流れる電流の平均値を所定の第1設定値に制御し,前記制御回路は,前記第1動作における前記ドロッパ方式定電流回路の電流設定値を所定の第2設定値に設定し,該第2設定値は,前記第1設定値より大きいことを特徴とするLED点灯装置。
The LED lighting device according to claim 1,
The AC-DC circuit controls the average value of the current flowing through the LED load to a predetermined first set value, and the control circuit sets the current set value of the dropper type constant current circuit in the first operation to a predetermined value. An LED lighting device that is set to a second set value, and the second set value is larger than the first set value.
請求項1に記載のLED点灯装置において,
前記AC−DC回路は,前記LED負荷に流れる電流の最小値を所定の第3設定値に制御し,前記制御回路は,前記第1動作における前記ドロッパ方式定電流回路の電流設定値を所定の第2設定値に設定し,該第2設定値は,前記第3設定値より大きいことを特徴とするLED点灯装置。
The LED lighting device according to claim 1,
The AC-DC circuit controls a minimum value of a current flowing through the LED load to a predetermined third set value, and the control circuit sets a current set value of the dropper type constant current circuit in the first operation to a predetermined value. An LED lighting device, characterized in that the second set value is set to be greater than the third set value.
請求項1乃至3の何れか1項に記載のLED点灯装置において,
前記制御回路は,前記交流電源の周期の一部期間において前記第1動作を行い,残りの期間において前記第2動作を行うことを特徴とするLED点灯装置。
In the LED lighting device according to any one of claims 1 to 3,
The LED lighting device, wherein the control circuit performs the first operation in a partial period of the cycle of the AC power supply and performs the second operation in the remaining period.
請求項1乃至4の何れか1項に記載のLED点灯装置において,
前記制御回路は,前記LED負荷に流れる電流の平均値を可変する機能を備え,前記LED負荷に流れる電流の平均値を所定の閾値より小さく制御するとき,前記第1動作のみを行うとともに,前記AC−DC回路の出力電圧を所定の第4設定値に制御し,該第4設定値は,前記LED負荷の電圧より高いことを特徴とするLED点灯装置。
In the LED lighting device according to any one of claims 1 to 4,
The control circuit has a function of changing an average value of the current flowing through the LED load, and performs only the first operation when controlling the average value of the current flowing through the LED load to be smaller than a predetermined threshold. An LED lighting device, wherein an output voltage of an AC-DC circuit is controlled to a predetermined fourth set value, and the fourth set value is higher than a voltage of the LED load.
請求項5に記載のLED点灯装置において,
前記制御回路は,前記LED負荷に流れる電流の平均値を前記所定の閾値より大きく制御するとき,前記第2動作のみを行うことを特徴とするLED点灯装置。
The LED lighting device according to claim 5,
The LED lighting device according to claim 1, wherein the control circuit performs only the second operation when controlling an average value of a current flowing through the LED load to be larger than the predetermined threshold value.
請求項1乃至6の何れか1項に記載のLED点灯装置において,
前記AC−DC回路は,前記交流電源電圧を整流して整流電圧を生成する整流回路と,前記整流電圧を変換して前記LED負荷に給電する昇降圧チョッパを備え,前記制御回路は,前記昇降圧チョッパを力率改善(PFC)回路として動作させることを特徴とするLED点灯装置。
The LED lighting device according to any one of claims 1 to 6,
The AC-DC circuit includes a rectifier circuit that rectifies the AC power supply voltage to generate a rectified voltage, and a step-up / step-down chopper that converts the rectified voltage and supplies the LED load to the LED load. An LED lighting device characterized by operating a pressure chopper as a power factor correction (PFC) circuit.
請求項1乃至6の何れか1項に記載のLED点灯装置において,
前記AC−DC回路は,前記交流電源電圧を整流して整流電圧を生成する整流回路と,前記整流電圧を変換して前記LED負荷に給電する昇圧チョッパを備え,前記制御回路は,前記昇圧チョッパを力率改善(PFC)回路として動作させ,前記LED負荷の電圧は,前記交流電源の電圧のピーク値より高く設定されることを特徴とするLED点灯装置。
The LED lighting device according to any one of claims 1 to 6,
The AC-DC circuit includes a rectifier circuit that rectifies the AC power supply voltage to generate a rectified voltage, and a boost chopper that converts the rectified voltage and supplies power to the LED load. The control circuit includes the boost chopper Is operated as a power factor correction (PFC) circuit, and the LED load voltage is set higher than the peak value of the voltage of the AC power supply.
請求項1乃至8の何れか1項に記載のLED点灯装置において,
前記LED負荷と並列に接続される第2コンデンサを備えることを特徴とするLED点灯装置。
In the LED lighting device according to any one of claims 1 to 8,
An LED lighting device comprising a second capacitor connected in parallel with the LED load.
請求項2乃至9の何れか1項に記載のLED点灯装置において,
前記電流検出手段は,前記半導体素子に流れる電流を電圧に変換して検出する抵抗であり,
前記制御回路は,前記第1動作を行うためのオペアンプ(演算増幅器)を備え,該オペアンプのプラス入力端子には,前記第2設定値に相当する電圧が入力され,前記オペアンプのマイナス入力端子には,前記抵抗に発生する電圧が入力され,前記オペアンプの出力端子は,前記半導体素子の制御端子に接続され,前記オペアンプを動作させる直流電源の電圧は,前記半導体素子をオン状態にするのに十分な電圧に設定されることを特徴とするLED点灯装置。
The LED lighting device according to any one of claims 2 to 9,
The current detection means is a resistor that detects a current flowing through the semiconductor element by converting it into a voltage,
The control circuit includes an operational amplifier (operational amplifier) for performing the first operation. A voltage corresponding to the second set value is input to a positive input terminal of the operational amplifier, and a negative input terminal of the operational amplifier is input to the control circuit. The voltage generated in the resistor is input, the output terminal of the operational amplifier is connected to the control terminal of the semiconductor element, and the voltage of the DC power source that operates the operational amplifier is used to turn on the semiconductor element. An LED lighting device characterized by being set to a sufficient voltage.
JP2015078865A 2015-04-08 2015-04-08 LED lighting device Expired - Fee Related JP6527741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078865A JP6527741B2 (en) 2015-04-08 2015-04-08 LED lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078865A JP6527741B2 (en) 2015-04-08 2015-04-08 LED lighting device

Publications (2)

Publication Number Publication Date
JP2016201194A true JP2016201194A (en) 2016-12-01
JP6527741B2 JP6527741B2 (en) 2019-06-05

Family

ID=57423242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078865A Expired - Fee Related JP6527741B2 (en) 2015-04-08 2015-04-08 LED lighting device

Country Status (1)

Country Link
JP (1) JP6527741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120680A (en) * 2017-01-23 2018-08-02 パナソニックIpマネジメント株式会社 Illuminance sensor and illumination system
JP2021007070A (en) * 2019-06-27 2021-01-21 パナソニックIpマネジメント株式会社 Lighting device, light source unit and luminaire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034728A (en) * 2009-07-30 2011-02-17 Rohm Co Ltd Light source device for illumination
JP2015041430A (en) * 2013-08-20 2015-03-02 パナソニックIpマネジメント株式会社 Lighting device and luminaire using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034728A (en) * 2009-07-30 2011-02-17 Rohm Co Ltd Light source device for illumination
JP2015041430A (en) * 2013-08-20 2015-03-02 パナソニックIpマネジメント株式会社 Lighting device and luminaire using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120680A (en) * 2017-01-23 2018-08-02 パナソニックIpマネジメント株式会社 Illuminance sensor and illumination system
JP2021007070A (en) * 2019-06-27 2021-01-21 パナソニックIpマネジメント株式会社 Lighting device, light source unit and luminaire

Also Published As

Publication number Publication date
JP6527741B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
US9907130B2 (en) High-efficiency LED driver and driving method
US9516708B2 (en) Method for operating an LLC resonant converter for a light-emitting means, converter, and LED converter device
US8816597B2 (en) LED driving circuit
JP5117580B2 (en) Electronic drive circuit and method
JP6038190B2 (en) Power converter
KR20010098937A (en) Light emitting diode driving apparatus
US9484812B2 (en) Direct-current power supply device
US10924004B2 (en) AC-DC converter circuit arrangement and method for operating a respective AC-DC converter circuit arrangement
JP2012029363A (en) Power supply circuit
US9433060B2 (en) Power factor correction circuit, operating device for a light-emitting means and method for controlling a power factor correction circuit
JP2020014325A (en) Lighting device and light fixture
JP5686218B1 (en) Lighting device and lighting apparatus
JP2013045754A (en) Power supply circuit for driving led illumination
JP6527741B2 (en) LED lighting device
WO2017126154A1 (en) Electric power conversion device and control method therefor
JP5743041B1 (en) Lighting device and lighting apparatus
JP2016170894A (en) Lighting device and illuminating fixture
JP2014082148A (en) Led lighting device, and led illuminating fixture
JP6134492B2 (en) Lighting device
JP2018073702A (en) Illumination device and lighting fixture
JP2013048022A (en) Led lighting device
JP6186100B1 (en) Power converter
KR101680025B1 (en) Multi phase alternation method of parallel ups for increasing efficiency and light weight of ups
JP2015154502A (en) Lighting device and lighting fixture
JP2015139275A (en) Load drive device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190513

R150 Certificate of patent or registration of utility model

Ref document number: 6527741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees