WO2017124995A1 - 初期径流污染联控消纳装置及方法 - Google Patents

初期径流污染联控消纳装置及方法 Download PDF

Info

Publication number
WO2017124995A1
WO2017124995A1 PCT/CN2017/071352 CN2017071352W WO2017124995A1 WO 2017124995 A1 WO2017124995 A1 WO 2017124995A1 CN 2017071352 W CN2017071352 W CN 2017071352W WO 2017124995 A1 WO2017124995 A1 WO 2017124995A1
Authority
WO
WIPO (PCT)
Prior art keywords
water level
water
reservoir
gate valve
detecting device
Prior art date
Application number
PCT/CN2017/071352
Other languages
English (en)
French (fr)
Inventor
梁新强
华桂芬
王志荣
周柯锦
李美儒
于宇雷
金熠
楼莉萍
林琦
李华
田光明
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610033456.7A external-priority patent/CN105684837B/zh
Priority claimed from CN201610032819.5A external-priority patent/CN105668797B/zh
Priority claimed from CN201610030882.5A external-priority patent/CN105507221B/zh
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US15/554,712 priority Critical patent/US10414679B2/en
Publication of WO2017124995A1 publication Critical patent/WO2017124995A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/162Sequential operation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the field of agricultural non-point source pollution control, and particularly relates to a joint runoff pollution control device and method for initial runoff pollution.
  • the invention patent No. CN201410625297.0 discloses an ecological interception blocking system for controlling non-point source pollution of rice fields, including ecological ditches and paddy wetlands: the ditch wall of the ecological ditches is provided with a groove greening plant, and the ditch bottom cloth is provided. Water-producing plants; rice grown in paddy wetlands, using water from upstream through rice fields and ecological ditches as a source of irrigation water and fertilizer.
  • the system can play a certain role in pollutants, but its utilization efficiency is limited by the capacity of the ditches and rice fields, and it is impossible to maximize the reduction of pollutants during the rainstorm period.
  • the invention patent No. CN201510245277.5 discloses a method for controlling surface source pollution of rice fields and an artificial rice paddy wetland system, and a rice field wetland system for improving N and P utilization rates in rice fields.
  • the structure of the system is upstream of the paddy field, and a paddy field wetland is constructed downstream of the paddy field drainage, and the paddy field wetland is built beside the river channel.
  • the invention utilizes the barrier, absorption and utilization of water pollutants by the rice field itself to reduce the pollutants in the discharged water, but there are also efficiency problems similar to the previous patent.
  • the invention patent No. C201510183146.9 discloses an initial runoff collection irrigation system for agricultural land, including drainage ditches, diversion channels, drainage ditches, initial runoff sensors, electric water collection valves, collecting basins, lifting pumps, Agricultural irrigation pipes, farm irrigation sprinklers.
  • the drainage ditch is arranged at the upper part of the gutter to excavate the square non-rainfall drain; the electric flow controlled by the initial runoff sensor is arranged on the diversion channel
  • a water collection valve that collects initial runoff and is used for daily farming irrigation.
  • the system accumulates the initial runoff through the sump and is used for subsequent irrigation, but during the rainstorm, there is also a problem of limited storage capacity.
  • the invention patent No. CN201510890262.4 discloses a rice field source pollution control and nitrogen and phosphorus recovery and utilization system.
  • the water flow passes through each unit in turn, adsorbs nitrogen and phosphorus through the nitrogen and phosphorus adsorption substances, and passes through the artificial wetland. Absorption further reduces the content of nitrogen and phosphorus in the water to reduce the risk of eutrophication of the water;
  • the rice field is irrigated, the water flows through the adsorption unit into the irrigation ditches, and the adsorbed substances release the adsorbed nitrogen and phosphorus substances into the irrigation water through desorption. It is used in rice field. Compared with the former two, the invention can improve certain pollutant reduction efficiency by tail water reuse, but its facilities are complicated, and the concentration of pollutants in different stages of the rice field ecosystem is not analyzed, so the efficiency needs to be further improved.
  • the object of the present invention is to solve the problems existing in the prior art and to provide an initial runoff pollution combined control device.
  • the consumption in the present invention refers to the use of the rice field ecosystem to reduce the nutrient salt pollutants such as N and P in the runoff, thereby reducing the harm to the eutrophication of the water body.
  • the initial runoff according to the present invention refers to a water flow generated on the surface of the surface due to direct evaporation, plant interception, infiltration into the ground, and filling of the depression during the rainfall process, and the part of the water flow contains high concentration pollutants.
  • Initial runoff pollution combined control and dissipating device including water supply pipe, first water storage tank, control device, feed water pump, rice field, control gate, second water storage tank, return pump, water outlet gate, first water level detecting device, The two water level detecting device and the third water level detecting device, a plurality of water collecting pipes for collecting the initial runoff are collected and connected to the first water storage tank, and the feed water pump is connected to the first water storage tank through one end of the pipeline, and the other end is connected with the rice field.
  • the nozzles are connected; the rice fields are divided into a number of long strips of sub-fields, and the control gates are arranged on the fields between the connected sub-fields.
  • the control gates are staggered so that the initial runoff of the inlets flows through the longest distance.
  • the water outlet is discharged;
  • the water outlet of the rice field is connected to the second water storage tank, and the second water storage tank is connected to the water inlet of the rice field through a reflux pump;
  • the first water level is provided with a first water level detecting device, and the rice field is provided with a first
  • the second water level detecting device is provided with a third water level detecting device in the second water storage tank, the control device and the control gate, the feed water pump, the return pump, the water outlet gate, the first water level detecting device, and the second Third level detecting means and level detection means coupled to and controlling the operating state.
  • the runoff in the water pipeline is discharged into the first reservoir for accumulation, and the paddy field divided into a plurality of long strips forms a push-flow ecological treatment system similar to the oxidation ditch.
  • the flow mode continuous discharge is continuously discharged
  • the accumulation process can be used (discharge after a period of time).
  • the water storage capacity of different sections of the system can be reasonably utilized through different water storage tanks and water level detection devices in the rice fields, and the high-concentration initial runoff can be accumulated in the system as much as possible.
  • the joint control device further includes a first gate valve, an overrunning pipe, a second gate valve, a third gate valve, a pollutant concentration detecting device, and a rain sensor connected to the control device;
  • the concentration detecting device is connected with the collection place of the water pipeline, the first reservoir, the rice field and the second reservoir, and is used for measuring the concentration of pollutants in the runoff at each position;
  • the water supply pipe at the front end of the first gate valve is connected with the overrunning pipe, and the second gate valve and the third gate valve controlled by the control device are arranged on the overrunning pipe, second
  • the overrunning pipe at the front end of the gate valve is connected to the rice field inlet; the overrunning pipe between the second gate valve and the third gate valve is connected to the second reservoir.
  • the first water level detecting device is provided with a first sensor, a second sensor and a third sensor, wherein the first sensor, the second sensor and the third sensor are respectively at a first height The upper water level, starting water level and lower water level of the reservoir.
  • the second water level detecting device adopts a U-shaped tube, and the second water level detecting device has a hole in one of the pipe walls and is buried in the paddy soil, and the other side is suspended outside the field, and the second water level detecting device
  • the fourth inductor and the fifth inductor are disposed in the side of the suspended side; the fourth inductor is disposed at 5-8 cm above the surface, and the fifth inductor is disposed at 2-4 cm above the surface.
  • the third water level detecting device is provided with a sixth inductor and a seventh inductor, which are respectively disposed at the upper limit water level and the lower limit water level of the second water storage tank.
  • a rain sensor connected to the control device is further disposed, and a first gate valve for controlling the water inlet is further disposed between the water supply pipe and the first water reservoir, and the first gate valve is controlled by the control device.
  • the water supply pipe at the front end of the first gate valve is connected to the overrunning pipe, and the second gate valve and the third gate valve controlled by the control device are arranged on the overrunning pipe, and the overrunning pipe at the front end of the second gate valve is connected with the rice field water inlet;
  • the overrunning pipe between the gate valve and the third gate valve is connected to the second reservoir.
  • the program is applicable to the improvement of the first scheme.
  • the pollutant concentration detecting device is reduced, and it can be applied to an area with less rainfall, and the low-concentration water flow is not discharged, and the runoff water can be accumulated as much as possible to improve the water use efficiency.
  • a plurality of control gates are opened and closed or individually opened and closed.
  • the gate is opened at the same time or closed at the same time, the independence between the connected sub-blocks can be adjusted.
  • the linkage opening mode can be adopted.
  • different sub-blocks can be adjusted. Crop flooding.
  • Another object of the present invention is to provide an integrated runoff pollution joint control method using the device, the steps are as follows:
  • the control device opens the first gate valve and connects the water pipeline The initial runoff is discharged into the first reservoir for storage; when the rainfall sensor senses that the field rainfall reaches a preset starting value and the water level in the first reservoir has reached the first sensor on the first water level detecting device If the water level in the paddy field does not reach the fourth sensor on the second water level detecting device, the control device closes the first gate valve and closes the second gate valve, and discharges the initial runoff in the water pipeline into the rice field; when the rainfall sensor senses the field The rainfall reaches the preset starting value and the water level in the first reservoir has reached the first sensor on the first water level detecting device, and the water level in the rice field reaches the fourth sensor and the second reservoir on the second water level detecting device.
  • the control device closes the first gate valve, opens the second gate valve and closes the third gate valve, and discharges the initial runoff in the water pipe into the second storage.
  • Pool when the rainfall sensor senses that the rainfall reaches a preset starting value and the water level in the first reservoir has reached the first sensor on the first water level detecting device, and the rice water level reaches the second water level detecting device
  • the control device closes the first gate valve, opens the second gate valve and the third gate valve, and starts the initial runoff in the water pipeline. Directly discharged through the over-pipe; when the rainfall sensor senses that the field rainfall reaches the preset closing value, the control device closes the first gate valve and opens the second gate valve and the third gate valve to directly pass the initial runoff in the water pipeline through Pipe discharge
  • the control device activates the water pump to the first water reservoir The runoff in the middle is discharged into the rice field; when the water level of the first reservoir is lower than the third sensor on the first water level detecting device, the control device turns off the feed water pump;
  • the outlet gate is intermittently opened and closed by the control device according to the height of the rice field surface water.
  • the water gate is opened, and the discharged runoff is accumulated in the second.
  • the reservoir is for reflow; when the water level of the paddy field does not reach the fourth sensor on the second water level detecting device, the water gate is closed;
  • the control device turns on the reflux pump, when the water level of the rice field reaches the first
  • the control device turns off the return pump; when the water level of the second reservoir is lower than the seventh sensor on the third water level detecting device, the control device turns off the return pump;
  • the control device closes the first gate valve and the water outlet gate, and opens the inlet water pump and the return pump according to the height of the rice field surface water, and uses the initial runoff for irrigation to achieve the pollutant consumption function.
  • the preset starting value is the rainfall that can generate the initial runoff in the initial runoff catchment area; the preset closing value is such that the initial runoff pollutant concentration generated in the initial runoff catchment area is 2-5 of the pollutant concentration in the rainwater. The rainfall in times.
  • the preset starting value is a rainfall that enables initial runoff in the initial runoff catchment area; and the predetermined closing value is an initial runoff pollutant concentration generated in the initial runoff catchment area.
  • the rainfall when the concentration of pollutants in the rainwater is 2 to 5 times.
  • the invention has the beneficial effects that the initial runoff with high pollutant concentration and high damage to the water body can be reasonably accumulated in the water storage tank, and is used for irrigation and utilization during non-rainfall period, and the rice field is used as an ecological wetland for pollutant elimination. Na. Through specially designed rice fields, the residence time of runoff water can be maximized to achieve the maximum amount of pollutants.
  • 1 is a schematic view of an initial runoff pollution combined control device
  • FIG. 2 is a schematic view of a combined runoff pollution control device with an overrunning pipeline
  • FIG. 3 is a schematic structural view of a first water level detecting device of the present invention.
  • FIG. 4 is a schematic structural view of a second water level detecting device of the present invention.
  • Figure 5 is a schematic view showing the installation manner of the second water level detecting device of the present invention.
  • Figure 6 is a schematic structural view of a third water level detecting device of the present invention.
  • FIG. 7 is a schematic view of an initial runoff pollution combined control device equipped with a pollutant concentration detecting device
  • Fig. 8 is a schematic view showing another structure of the second water level detecting device of the present invention.
  • the initial runoff pollution combined control device is as shown in FIG. 1.
  • the coordinated control device includes a water supply pipe 1, a first water storage tank 3, a feed water pump 6, a rice field 7, a control gate 8, and a first
  • the two reservoirs 9, the return pump 10 and the water outlet gate 12, and a plurality of water collecting pipes 1 for collecting the initial runoff are collected and connected to the first water storage tank 3.
  • the starting point of the water pipeline 1 can be set in vegetable fields, bamboo forests, livestock and poultry free-range points, etc., which can easily generate initial runoff with high concentration of pollutants during heavy rain. It can be gravity-flowed, but it can also be used in low-lying areas. Pump station pumping form.
  • the water pipe 1 can be in the form of an open channel or a PVC pipe.
  • the inlet pump 6 is connected to the first reservoir 3 through one end of the pipe, and the other end is connected to the inlet of the rice paddy 7.
  • Paddy Field 7 was originally a field under traditional farming conditions, where it was divided into a number of long strips of sub-field blocks, each of which was separated by a field of 15 to 25 cm, and the connected sub-fields were
  • a control gate 8 is provided on each of the fields. The function of the control gate 8 is to open or close according to the actual situation to adjust the water level of the adjacent two sub-blocks.
  • the control gates 8 are staggered, that is, the control gates 8 on the two adjacent fields are respectively disposed on different sides, so that the water inlet is in the shape of a bow, and the initial runoff of the inflow must flow through the longest distance to be discharged from the water outlet. .
  • Several control gates 8 are opened and closed or opened and closed separately. Normally, the control gates 8 are all open, and the runoff water can be arched, only when different fields need different irrigation modes or different plants need different water level heights. The water level can be controlled separately.
  • the water outlet of the paddy field 7 is connected to the second reservoir 9, and the second reservoir 9 is connected to the water inlet of the rice field 7 by a reflux pump 10.
  • the control device can be set to perform central control, and network control of each device can be realized by using a single chip microcomputer, a PLC, and the like.
  • water level detection devices can be installed in each reservoir and rice field to achieve automatic irrigation and drainage control.
  • a first water level detecting device 14 is disposed in the first water storage tank 3
  • a second water level detecting device 15 is disposed in the rice field 7
  • a third water level detecting device 16 is disposed in the second water storage tank 9, Control device 4 and control gate 8, feed water pump 6, return pump 10, and water outlet gate 12 first water level detecting device 14.
  • the second water level detecting device 15 is connected to the third water level detecting device 16 and controls its operating state. When the concentration of runoff water discharged from paddy field 7 is high, it can be used for refluxing or irrigating other farmland.
  • the system in order to prevent the overflow of the reservoir and the paddy field during the rainstorm period, is further provided with a rainfall sensor 5 connected to the control device 4, which can sense the rainfall in real time, and This is fed back to the control device 4 to adjust the operating state of each gate valve, water pump, etc., and to change the accumulation, discharge or deployment of the runoff.
  • a first gate valve 2 for controlling the water inlet is also provided between the water supply pipe 1 and the first water storage tank 3, and the first gate valve 2 is controlled by the control device 4. When the first gate valve 2 is opened, the runoff in the water pipe 1 can flow directly into the first reservoir 3.
  • the water supply pipe 1 at the front end of the first gate valve 2 is connected to the overrunning pipe 11, and the overrunning pipe 11 is provided with a second gate valve 13 and a third gate valve 17 controlled by the control device 4, and the overrunning pipe 11 at the front end of the second gate valve 13 and the rice field 7
  • the water inlet is connected; the overrunning pipe 11 between the second gate valve 13 and the third gate valve 17 is connected to the second reservoir 9.
  • the water level detecting device can be realized by a pressure type, an ultrasonic wave, a photoelectric liquid level meter or the like.
  • the first water level detecting device 14 is provided with a first sensor 1401, a second sensor 1402, and a third sensor 1403. Both are used to sense the water level.
  • the heights of the first sensor 1401, the second inductor 1402, and the third inductor 1403 are respectively the upper limit water level, the starting water level, and the lower limit water level of the first reservoir 3.
  • the upper limit water level is the water level height corresponding to the maximum safe capacity that the first reservoir 3 can accommodate, and the lower limit water level is the lowest water level height that the first reservoir 3 can use for irrigation, and the starting water level is between the upper limit water level and the lower limit water level.
  • a water level between the water level when the water level reaches the height, the feed water pump 6 is started to pump the water in the first water storage tank 3 into the rice field 7 for irrigation to maintain a certain pool storage capacity.
  • the setting of the starting water level can make the runoff of the stock transfer to the paddy field in time during the runoff, leaving more storage capacity to accommodate the high concentration initial runoff that may occur. Meanwhile, as shown in FIGS.
  • the second water level detecting device 15 may adopt a U-shaped tube, and the second water level detecting device 15 has a hole in one of the pipe walls and is buried in the paddy soil, and the other side is suspended in the field.
  • the second water level detecting device 15 is provided with a fourth inductor 1501 and a fifth inductor 1502 in the hanging body; the fourth sensor 1501 is disposed at 5-8 cm above the surface (this height roughly corresponds to the maximum flooding of the paddy field) The height of the water, when the paddy field is planted by flood irrigation, the maximum floodable height can be determined according to the test and adjusted.
  • the fifth sensor 1502 is located 2-4 cm above the surface (this height roughly corresponds to the paddy field)
  • the minimum flooding height can also be determined and adjusted according to the experiment according to different planting methods or irrigation methods.
  • U When the side of the opening of the tubular type second water level detecting device 15 is buried in the soil, a layer of gauze may be wrapped on the outside for filtering the soil particles. Through the U-tube, it is ensured that the water level on the side of the sensor is kept consistent with the soil water level, so that the soil water level measurement is more accurate.
  • the third water level detecting device 16 is provided with a sixth inductor 1601 and a seventh inductor 1602, which are respectively disposed at the upper limit water level and the lower limit water level of the second water storage tank 9.
  • the upper limit water level is the water level height corresponding to the maximum safe capacity that the second reservoir 9 can accommodate, and the lower limit water level is the lowest water level height at which the second reservoir 9 can be used for irrigation.
  • the above three water level detecting devices can selectively use one or more of them according to actual conditions.
  • the first reservoir 3 and the second reservoir 9 can be used in natural ponds or rivers to reduce damage to the ecological environment and maximize the use of the local environment.
  • the water pipe 1 is disposed in the initial runoff catchment area, so that the runoff in the catchment area can flow into the first reservoir 3.
  • the first gate valve 2 is set to be closed in the initial state, the control gates 8 are all opened, and the water outlet gate 12 is closed.
  • the control device 4 opens the first gate valve. 2.
  • the initial runoff in the water pipe 1 is discharged into the first reservoir 3 for storage; when the rainfall sensor 5 senses that the rainfall reaches the preset starting value and the water level in the first reservoir 3 has been reached.
  • the first sensor 1401 on the first water level detecting device 14 does not reach the fourth sensor 1501 on the second water level detecting device 15, and the control device 4 closes the first gate valve 2 and closes the second gate valve 13,
  • the initial runoff in the water pipe 1 is discharged into the paddy field 7; when the rainfall sensor 5 senses that the field rainfall reaches a preset starting value and the water level in the first reservoir 3 has reached the first position on the first water level detecting device 14
  • the sensor 1401 and the paddy field 7 reach the fourth sensor 1501 on the second water level detecting device 15, and the water level in the second reservoir 9 does not
  • the control device 4 closes the first gate valve 2, opens the second gate valve 13 and the third gate valve 17, and discharges the initial runoff in the water pipe 1 directly through the overrunning pipe 11;
  • the sensor 5 senses that the rainfall of the field reaches the preset closing value, the control device 4 closes the first gate valve 2 and opens the second gate valve 13 and the third gate valve 17, and directly passes the initial runoff in the water pipe 1 through the overrunning pipe 11 discharge.
  • the control device 4 When the water level of the first reservoir 3 reaches the second sensor 1402 on the first water level detecting device 14, and the water level of the rice field 7 does not reach the fourth sensor 1501 on the second water level detecting device 15, the control device 4 is activated.
  • the water pump 6 discharges the runoff in the first reservoir 3 into the rice paddy 7. If the continuous flow of continuous water is used for the push-flow treatment, the water intake should be adjusted to a certain level to avoid exceeding the ecosystem processing load.
  • the control device 4 turns off the feed water pump 6.
  • the control device 4 turns off the feed water pump 6 when the water level of the paddy 7 reaches the fourth sensor 1501 on the second water level detecting device 15. After a certain period of time, the water in the rice field is discharged, and then the feed water pump 6 is turned on again, and the circulation is continued. Thus, the runoff water accumulated therein is used for irrigation to save water resources.
  • the water outlet gate 12 is intermittently opened and closed by the control device 4 according to the paddy water level of the paddy field 7.
  • the water outlet gate 12 is opened.
  • the discharged runoff is accumulated in the second reservoir 9 for reflow use; when the paddy 7 water level does not reach the fourth sensor 1501 on the second water level detecting device 15, the water outlet gate 12 is closed.
  • the non-rainfall period when the runoff accumulation time in the paddy field 7 reaches the corresponding threshold (which can be determined according to the test), it can be considered that the treatment limit of the ecosystem has been reached, and the water gate 12 can be opened to discharge the runoff to the second reservoir. 9, then the new treated runoff in the first reservoir 3 is discharged into the paddy field 7 for treatment; of course, the continuous continuous water inflow can be used.
  • the runoff in the second reservoir 9 has been subjected to the rice field treatment, so the concentration of pollutants has been weakened. Therefore, when runoff is present in the first reservoir 3, the runoff of the first reservoir 3 should be preferentially treated.
  • the medium runoff of the second reservoir 9 serves as a supplementary recharge water.
  • the control device 4 closes the first gate valve 2 and the water outlet gate 12, and opens the feed water pump 6 and the return pump 10 according to the paddy water level of the rice field 7, and uses the initial runoff for irrigation. Contaminant absorption function is achieved.
  • the numbering of the above steps is only one way, and does not necessarily mean that it must be executed in this order.
  • the order of the design can be optimized based on the utilization of the storage capacity or the efficiency of the runoff processing.
  • the preset starting value is the amount of rainfall that enables the initial runoff in the initial runoff catchment area, which can be determined by the rainfall-runoff test.
  • the preset closing value is the rainfall when the initial runoff pollutant concentration generated in the initial runoff catchment area is 2 to 5 times the concentration of the pollutant in the rainwater. At this concentration, the pollutants in the runoff will not cause too much damage to the water body, and because the concentration is not high, the processing efficiency of the rice field wetland system is not high and can be directly discharged.
  • a contaminant concentration detecting device 18 may be further provided on the basis of the coordinated control device shown in FIG. As shown in FIG. 7, the pollutant concentration detecting device 18 is connected to the pool of the water pipe 1, the first reservoir 3, the rice field 7, and the second reservoir 9, for measuring the concentration of pollutants in the runoff at each position. .
  • the pollutant concentration detecting device 18 can adopt an integrated environmental water quality automatic monitoring system, and the water samples at different points to be monitored are sent to the monitoring system for analysis through a water pipe, and a distributed complete water quality automatic monitoring system can also be adopted. Or the pollutant sensing probe directly analyzes the concentration of pollutants in the water at different points to be monitored.
  • the runoff concentration in the present invention refers to the pollutants in the runoff
  • Concentration the same below
  • the present invention also provides a method for maximizing the reduction of initial runoff pollution by using the apparatus, the steps are as follows:
  • Pipe layout The water pipe 1 is disposed in the initial runoff catchment area, so that the runoff energy in the catchment area can flow into the first reservoir 3.
  • the gate valve 2 closes the second gate valve 13 to discharge the initial runoff in the water pipe 1 into the paddy field 7; when the rainfall sensor 5 senses that the field rainfall reaches a preset starting value and the water level in the first reservoir 3 has reached The first water level detecting device 14 The sensor 1401, the paddy field 7 reaches the fourth sensor 1501 on the second water level detecting device 15, the water level in the second reservoir 9 does not reach the sixth sensor 1601 on the third water level detecting device 16, and the pollutant concentration is detected.
  • the control device 4 closes the first gate valve 2 and the third gate valve 17, and opens the second gate valve 13 to receive the water.
  • the initial runoff in the pipe 1 is discharged into the second water storage tank 9; when the rainfall sensor 5 senses that the field rainfall reaches a preset starting value and the water level in the first water storage tank 3 has reached the first water level detecting device 14 When the first sensor 1401, the paddy field 7 reaches the fourth sensor 1501 on the second water level detecting device 15, and the water level in the second reservoir 9 reaches the sixth sensor 1601 on the third water level detecting device 16, the control is performed.
  • the device 4 closes the first gate valve 2, opens the second gate valve 13 and the third gate valve 17, and discharges the initial runoff in the water pipe 1 directly through the overrunning pipe 11; when the rainfall sensor 5 senses that the rainfall reaches the preset start Value and detection by the pollutant concentration detecting device 18 When the concentration of the runoff at the collection point of the water supply pipe 1 is smaller than the concentration of the water sample in the second storage tank 9, the control device 4 closes the first gate valve 2, opens the second gate valve 13 and the third gate valve 17, and connects the water supply pipe 1 The initial runoff is directly discharged through the overrunning pipe 11; when the rainfall sensor 5 senses that the field rainfall reaches a preset closing value, the control device 4 closes the first gate valve 2 and opens the second gate valve 13 and the third gate valve 17 to receive the water.
  • the initial runoff in the pipe 1 is directly discharged through the overrunning pipe 11; when the rain sensor 5 senses the end of the field rainfall, the control device 4 closes the first gate valve 2 and the water outlet gate 12, according to the height of the paddy field and the concentration of the pollutants in the paddy field 7
  • the concentration of the pollutant detected by the device 18 turns on the feed water pump 6 and the return pump 10, and the initial runoff is used for irrigation to achieve the pollutant consumption function.
  • the utilization mode of the runoff in the first reservoir 3 when the water level of the first reservoir 3 reaches the second sensor 1402 on the first water level detecting device 14, the water level of the rice field 7 does not reach the second water level detecting device 15
  • the fourth inductor 1501 and the pollutant concentration detecting device 18 detects that the first reservoir 3 has a runoff concentration greater than that of the rice
  • the control device 4 activates the feed water pump 16 to discharge the runoff in the first reservoir 3 into the rice field 7; the runoff that has been consumed by the rice field enters the second reservoir 9 and accumulates again, and The situation is back.
  • the control device 4 When the pollutant concentration detecting device 18 detects that the first reservoir 3 runoff concentration is less than the paddy field 7 surface water concentration, the control device 4 turns off the feed water pump 16, and at this time, it is possible to selectively discharge the drain through the first reservoir 3. Water or irrigation when the rice fields are dry. When the water level of the first reservoir 3 is lower than the third sensor 1403 on the first water level detecting device 14, the control device 4 closes the feed water pump 16 and waits for the next rain to refill the water.
  • Mode of regulation of water level in paddy field 7 During the rainfall process, the outlet gate 12 is intermittently opened and closed by the control device 4 depending on the height of the paddy field. When the water level of the paddy field 7 exceeds the fourth sensor 1501 on the second water level detecting device 15, the water outlet gate 12 is opened, and the discharged runoff is accumulated in the second reservoir 9 for reflow use; when the water level of the paddy field 7 does not reach the second water level detection When the fourth sensor 1501 on the device 15 is closed, the water gate 12 is closed. When the runoff accumulation time in the paddy field 7 reaches a corresponding threshold (which can be determined according to the test), the water gate 12 can be opened to discharge the runoff to the second reservoir 9.
  • a corresponding threshold which can be determined according to the test
  • the runoff accumulation time in the paddy field 7 reaches the corresponding threshold (which can be determined according to the test)
  • the water gate 12 can be opened to discharge the runoff to the second storage.
  • the pool 9 then re-discharges the new to-be-processed runoff in the first reservoir 3 into the paddy field 7; it is of course also possible to use the continuous continuous water inflow as described above.
  • the control device 4 turns on the reflux pump 10; when the water level in the paddy field 7 reaches the fourth sensor 1501 on the second water level detecting device 15, the control device 4 turns off the reflux pump 10 .
  • the runoff water accumulated therein is continuously used for irrigation to save water resources.
  • the control device 4 turns off the reflux pump 10.
  • the method increases the detection step of the contaminant concentration detecting device 18 to store the pollutant concentration in the runoff, and when the concentration in the runoff is lower than a certain value, the method can directly discharge, and Not still accumulating in the system. Thereby, it is possible to maintain the remaining capacity of the entire dissipating device as much as possible, and to store a high-concentration initial runoff.
  • the rice fields of the present invention may also employ different irrigation modes, such as dry and wet alternate irrigation (AWD). Therefore, adjustment of the second water level detecting device of the present invention can be considered.
  • FIG. 8 it is another structural schematic diagram of the second water level detecting device.
  • the second water level detecting device 15 is provided with four sensors in the side of the hanging body, both of which are used for sensing the water level.
  • the top two sensors act on the same device in Figure 2, while the third sensor from top to bottom remains flush with the soil surface for sensing the soil surface location.
  • the bottom sensor can be placed 13-15cm below the surface, because in the general AWD irrigation mode, after the soil water level falls within this range, it needs to be refilled and restored to the state of retaining the surface water.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

一种初期径流污染联控消纳装置,若干条用于收集初期径流的纳水管道(1)汇集后连入第一蓄水池(3),进水泵(6)一端与第一蓄水池(3)相连,另一端与稻田(7)进水口相连;稻田(7)分割为若干块长条形的子田块并设置控制闸门(8);稻田(7)的出水口与第二蓄水池(9)相连,第二蓄水池(9)通过回流泵(10)与稻田(7)的进水口相连;第一蓄水池(3)中设置有第一水位探测装置(14),稻田(7)中设置有第二水位探测装置(15),第二蓄水池(9)中设置有第三水位探测装置(16)。

Description

初期径流污染联控消纳装置及方法 技术领域
本发明属于农业面源污染控制领域,具体涉及一种初期径流污染联控消纳装置及方法。
背景技术
近年来,国内外开展了大量农田径流污染物流失特征的研究,发现径流氮磷浓度峰值出现在径流产流后半个小时甚至更短的时间内(即初期径流),其后径流氮磷浓度主要与雨水本身氮磷浓度相关,因此控制浓度高的初期径流的排出对于减缓农业面源污染来说至关重要。而在生态环境意义上,稻田可定义为浅水湿地,可极大的影响地表径流中氮、磷营养物质的迁移转化过程,具有调节农业生产基地多余水分排放和营养物质循环的功能。因此,利用稻田充分利用高生态位产生的初期径流,最大化减少污染物的输出是一种有效的方法
申请号为CN201410625297.0的发明专利公开了一种控制稻田面源污染的生态拦截阻断系统,包括生态沟渠和稻田湿地两部分:生态沟渠的沟壁布设有沟体绿化植物,沟底布设有挺水植物;稻田湿地中种植水稻,以从上游流经稻田和生态沟渠后的水作为灌溉水和肥料来源。该系统能够起到一定的污染物消纳作用,但是其利用效率收到沟渠和稻田容量的限制,在暴雨期无法最大化削减污染物。
申请号为CN201510245277.5的发明专利公开一种控制稻田面源污染的方法和人工稻田湿地系统,提高稻田N、P利用率的稻田湿地系统。该系统结构以稻田为上游,在稻田的排水下游构建稻田湿地,稻田湿地建在河道旁。该发明利用稻田本身对水体污染物质的阻挡、吸收和利用,达到减少排出水体中污染物质,但也存在与前一个专利类似的效率问题。
申请号为C201510183146.9的发明专利公开一种农业用地初期径流收集灌溉系统,包括排水沟渠、导流渠、排水沟渠挡流堰、初期径流感应器、电动集水阀门、集水池、提升泵、农业灌溉管道、农田灌溉喷头。其中排水沟渠挡流堰高上处开凿方形非降雨期排水口;在导流渠上设置通过初期径流感应器控制的电动 集水阀门,收集初期径流并用于日常农事灌溉。该系统通过集水池对初期径流进行了蓄积,从而用于后续的灌溉,但在暴雨期,也存在蓄积容量受限制的问题。
申请号为CN201510890262.4的发明专利公开一种水稻田面源污染控制与氮磷回收利用系统,水稻田排水时,水流依次经过各单元,通过氮磷吸附物质对氮磷吸附,并通过人工湿地吸收进一步降低水中氮磷物质含量,达到降低水体富营养化发生风险的目的;稻田灌溉时,水流经吸附单元进入灌溉沟渠,吸附物质通过脱附作用将吸附的氮磷物质释放到灌溉水中,重新进入稻田被利用。与前两者相比,该发明通过尾水回用能够提高一定的污染物削减效率,但其设施复杂,且没有分析稻田生态系统中不同阶段的污染物浓度,因此效率有待进一步提升。
发明内容
本发明的目的在于解决现有技术中存在的问题,并提供一种初期径流污染联控消纳装置。本发明中的消纳是指利用稻田生态系统,对径流中的N、P等营养盐污染物进行削减,减少其对水体富营养化的危害。本发明所述的初期径流是指因降雨过程中除了直接蒸发、植物截留、渗入地下、填充洼地外,在地表产生的水流,该部分水流中包含了高浓度污染物。
本发明所采用的具体技术方案如下:
初期径流污染联控消纳装置,包括纳水管道、第一蓄水池、控制装置、进水泵、稻田、控制闸门、第二蓄水池、回流泵、出水闸门、第一水位探测装置、第二水位探测装置和第三水位探测装置,若干条用于收集初期径流的纳水管道汇集后连入第一蓄水池,进水泵通过管道一端与第一蓄水池相连,另一端与稻田进水口相连;稻田分割为若干块长条形的子田块,相连的子田块之间的田埂上均设置控制闸门,控制闸门交错设置使进水口流入的初期径流需流经最长距离才能从出水口排出;稻田的出水口与第二蓄水池相连,第二蓄水池通过回流泵与稻田的进水口相连;第一蓄水池中设置有第一水位探测装置,稻田中设置有第二水位探测装置,第二蓄水池中设置有第三水位探测装置,控制装置与控制闸门、进水泵、回流泵、出水闸门、第一水位探测装置、第二水位探测装置和第三水位探测装置相连并控制其运行状态。
纳水管道中的径流排入第一蓄水池进行蓄积,分割为若干块长条形的子田块后的稻田形成了一个类似氧化沟的推流式生态处理系统,该系统中可采用推流式运行方式(连续排入连续排出),也可以采用蓄积处理(排入后一段时间再排出)。 降雨过程中,可通过不同的蓄水池和稻田中设置的水位探测装置,合理利用系统中不同区段的蓄水容积,将高浓度的初期径流尽可能蓄积于系统中。
作为上述方案的一种进一步优选方案,联控消纳装置中还包括第一闸阀、超越管道、第二闸阀、第三闸阀、污染物浓度检测装置以及与控制装置相连的雨量感应器;污染物浓度检测装置与纳水管道的汇集处、第一蓄水池、稻田及第二蓄水池相连,用于测定各位置的径流中污染物浓度;纳水管道与第一蓄水池之间还设有控制进水的第一闸阀,第一闸阀由控制装置控制;第一闸阀前端的纳水管道与超越管道相连,超越管道上设有由控制装置控制的第二闸阀和第三闸阀,第二闸阀前端的超越管道与稻田进水口相连;第二闸阀和第三闸阀之间的超越管道与第二蓄水池相连。由于仅仅依靠水位探测装置,只能够尽可能提高蓄积水量,但是径流发生过程中,水中的污染物浓度无法监测。如果将低浓度的径流全部蓄积与系统中,当继续产生高浓度径流时,容易导致库容被占满,无法继续蓄积。因此采用该优选方案,可以进一步提高存有库容余量的可能性,尽可能收集高浓度的径流水。
基于上述两种方案,还可以提供如下改进方案,且各优选方案中的技术特征若没有冲突,均可进行相互组合。
作为一种优选,第一水位探测装置上设有第一感应器、第二感应器和第三感应器,第一感应器、第二感应器和第三感应器所处的高度分别为第一蓄水池的上限水位、启动水位和下限水位。
作为另一种优选,第二水位探测装置采用U型管,第二水位探测装置一侧部分管壁上开孔并埋入稻田土壤中,另一侧悬空于田埂之外,第二水位探测装置悬空一侧管体内设有第四感应器、第五感应器;第四感应器设在地表以上5-8cm处,第五感应器设在地表以上2-4cm处。
作为另一种优选,第三水位探测装置上设有第六感应器和第七感应器,分别设置于第二蓄水池的上限水位和下限水位处。
作为另一种优选,还设有与控制装置相连的雨量感应器,纳水管道与第一蓄水池之间还设有控制进水的第一闸阀,第一闸阀由控制装置控制。再进一步的,第一闸阀前端的纳水管道与超越管道相连,超越管道上设有由控制装置控制的第二闸阀和第三闸阀,第二闸阀前端的超越管道与稻田进水口相连;第二闸阀和第三闸阀之间的超越管道与第二蓄水池相连。该方案适用于第一种方案的改进,相 对于第二种方案减少了污染物浓度检测装置,可以应用于降雨量较少的地区,不会将低浓度的水流排放,可以尽可能的将径流水进行蓄积,提高水的利用效率。
作为另一种优选,若干个控制闸门联动开闭或单独开闭。闸门同时开启或者同时关闭,可以调整相连的子田块之间的独立性,当需要推流式处理径流时,可以采用联动开启方式,当闸门同时关闭或者单独关闭时,可以调整不同子田块的作物淹水情况。
本发明的另一目的在于提供一种利用所述装置的初期径流污染联控消纳方法,步骤如下:
1)将纳水管道布设于初期径流集水区域,使集水区域内的径流能汇流进入第一蓄水池内;
2)设定第一闸阀在初始状态关闭,控制闸门均开启,出水闸门关闭;
3)当雨量感应器感应到本场降雨量达到预设启动值且第一蓄水池水位未达到第一水位探测装置上的第一感应器时,控制装置开启第一闸阀,将纳水管道中的初期径流排入第一蓄水池内进行存储;当雨量感应器感应到本场降雨量达到预设启动值且第一蓄水池中水位已达到第一水位探测装置上的第一感应器、稻田水位未达到第二水位探测装置上的第四感应器,则控制装置关闭第一闸阀并关闭第二闸阀,将纳水管道中的初期径流排入稻田;当雨量感应器感应到本场降雨量达到预设启动值且第一蓄水池中水位已达到第一水位探测装置上的第一感应器、稻田水位达到第二水位探测装置上的第四感应器、第二蓄水池中水位未达到第三水位探测装置上的第六感应器时,则控制装置关闭第一闸阀、开启第二闸阀并关闭第三闸阀,将纳水管道中的初期径流排入第二蓄水池;当雨量感应器感应到本场降雨量达到预设启动值且第一蓄水池中水位已达到第一水位探测装置上的第一感应器、稻田水位达到第二水位探测装置上的第四感应器、第二蓄水池中水位达到第三水位探测装置上的第六感应器时,则控制装置关闭第一闸阀、开启第二闸阀与第三闸阀,将纳水管道中的初期径流直接通过超越管道排出;当雨量感应器感应到本场降雨量达到预设关闭值时,控制装置关闭第一闸阀并开启第二闸阀与第三闸阀,将纳水管道中的初期径流直接通过超越管道排出;
4)当第一蓄水池水位达到第一水位探测装置上的第二感应器、稻田水位未达到第二水位探测装置上的第四感应器时,控制装置启动进水泵将第一蓄水池中的径流排入稻田中;当第一蓄水池水位低于第一水位探测装置上的第三感应器时,控制装置关闭进水泵;
5)降雨过程中,出水闸门由控制装置视稻田田面水高度进行间歇性开闭,当稻田水位超过第二水位探测装置上的第四感应器时,开启出水闸门,排出的径流蓄积于第二蓄水池供回流使用;当稻田水位未达到第二水位探测装置上的第四感应器时,关闭出水闸门;
6)当第二蓄水池水位达到第三水位探测装置上的第六感应器、稻田水位未达到第二水位探测装置上的第四感应器时,控制装置开启回流泵,当稻田水位达到第二水位探测装置上的第四感应器时,控制装置关闭回流泵;当第二蓄水池水位低于第三水位探测装置上的第七感应器时,控制装置关闭回流泵;
7)当雨量感应器感应到本场降雨结束时,控制装置关闭第一闸阀和出水闸门,根据稻田田面水高度开启进水泵及回流泵,将初期径流用于灌溉,达到污染物消纳功能。
作为优选,预设启动值为能使初期径流集水区域产生初期径流的降雨量;预设关闭值为使初期径流集水区域产生的初期径流污染物浓度为雨水中污染物浓度的2~5倍时的降雨量。
作为上述方法的优选,所述的预设启动值为能使初期径流集水区域产生初期径流的降雨量;所述的预设关闭值为使初期径流集水区域产生的初期径流污染物浓度为雨水中污染物浓度的2~5倍时的降雨量。
本发明的有益效果是能将污染物浓度较高、对水体危害较大的初期径流合理地蓄积于蓄水池中,并在非降雨时段进行灌溉利用,将稻田作为一个生态湿地进行污染物消纳。而通过特殊设计的稻田,能最大程度延长径流水的停留时间,达到最大量消纳污染物的目的。
附图说明
图1为一种初期径流污染联控消纳装置的示意图;
图2为设有超越管道的初期径流污染联控消纳装置的示意图;
图3为本发明的第一水位探测装置结构示意图;
图4为本发明的第二水位探测装置结构示意图;
图5为本发明的第二水位探测装置安装方式示意图;
图6为本发明的第三水位探测装置结构示意图;
图7为设有污染物浓度检测装置的初期径流污染联控消纳装置的示意图;
图8为本发明的第二水位探测装置的另一种结构示意图。
图中:纳水管道1、第一蓄水池3、控制装置4、雨量感应器5、进水泵6、稻田7、控制闸门8、第二蓄水池9、回流泵10、超越管道11、出水闸门12、第二闸阀13、第一水位探测装置14、第二水位探测装置15、第三水位探测装置16、第三闸阀17和污染物浓度检测装置18。
具体实施方式
下面结合附图和实施例对本发明做进一步阐述。需要指出的是,各实施例中的技术特征在没有相互冲突的情况下,均可进行自由组合,不构成对本发明的限制。
在一个实施例中,初期径流污染联控消纳装置如图1所示,联控消纳装置包括纳水管道1、第一蓄水池3、进水泵6、稻田7、控制闸门8、第二蓄水池9、回流泵10和出水闸门12,若干条用于收集初期径流的纳水管道1汇集后连入第一蓄水池3。纳水管道1的起点可设置于菜地、竹林、畜禽散养点等容易在暴雨期产生具有高浓度污染物的初期径流之处,可通过重力自流方式,但碰到低洼处也可采用泵站抽水形式。纳水管道1可采用明渠或者PVC管道形式。进水泵6通过管道一端与第一蓄水池3相连,另一端与稻田7进水口相连。作为进水的动力。稻田7原本为传统耕作状态下的田块,此处将其分割为若干块长条形的子田块,各子田块之间均通过15~25cm的田埂进行相隔,相连的子田块之间的田埂上均设置控制闸门8。控制闸门8的作用是根据实际情况选择打开或者关闭,以调节相邻两子田块的水位高度。控制闸门8交错设置,即相邻的两条田埂上的控制闸门8分别设置在不同的侧边上,使进水口呈弓字形流向,流入的初期径流需流经最长距离才能从出水口排出。若干个控制闸门8联动开闭或单独开闭,通常情况下控制闸门8均为开启状态,径流水能弓字形环流,仅当不同田块需要采用不同灌溉模式或不同植物需要不同的水位高度时,可单独控制水位高度。稻田7的出水口与第二蓄水池9相连,第二蓄水池9通过回流泵10与稻田7的进水口相连。另外,可以设置控制装置进行中央控制,对各设备进行联网控制,可以采用单片机、PLC等设备实现。
另外,各蓄水池和稻田中还可以设置水位探测装置,以实现自动化的灌水排水控制。如图2所示,第一蓄水池3中设置有第一水位探测装置14,稻田7中设置有第二水位探测装置15,第二蓄水池9中设置有第三水位探测装置16,控制装置4与控制闸门8、进水泵6、回流泵10、出水闸门12第一水位探测装置 14、第二水位探测装置15和第三水位探测装置16相连并控制其运行状态。当稻田7排出的径流水浓度较高时,可用于回流或灌溉其他的农田。
在另一实施例中,如图2所示,为了防止暴雨期蓄水池、稻田过满溢流,系统中还设有与控制装置4相连的雨量感应器5,可以实时感应降雨量,并将其反馈给控制装置4,从而调整各个闸阀、水泵等设备的运行状态,改变径流的蓄积、排放或者调配。纳水管道1与第一蓄水池3之间还设有控制进水的第一闸阀2,第一闸阀2由控制装置4控制。当第一闸阀2开启时,纳水管道1中的径流可直接流入第一蓄水池3中。第一闸阀2前端的纳水管道1与超越管道11相连,超越管道11上设有由控制装置4控制的第二闸阀13和第三闸阀17,第二闸阀13前端的超越管道11与稻田7进水口相连;第二闸阀13和第三闸阀17之间的超越管道11与第二蓄水池9相连。当第一闸阀2关闭时,纳水管道1中的径流通过超越管道11流出;而当第二闸阀13关闭时,径流流入稻田7中;当第二闸阀13打开时,径流继续通过第二闸阀13。然后,当第二闸阀13关闭时,径流流入第二蓄水池9,当第二闸阀13打开时,径流被直接排出,流入周边水体。
水位探测装置可采用压力式、超声波、光电式液位计等实现。在另一实施例中,为了能够实现基于水位的自动物联网灌溉,如图3所示,第一水位探测装置14上设有第一感应器1401、第二感应器1402和第三感应器1403,均用于感应水位。第一感应器1401、第二感应器1402和第三感应器1403所处的高度分别为第一蓄水池3的上限水位、启动水位和下限水位。上限水位为第一蓄水池3所能容纳的最大安全容量所对应的水位高度,下限水位为第一蓄水池3可用于灌溉的最低水位高度,启动水位为介于上限水位和下限水位之间的一个水位高度,当水位达到该高度时,启动进水泵6将第一蓄水池3中的水抽至稻田7中进行灌溉,以维持一定的水池库容。启动水位的设置可以使径流发生过程中,及时将库存的径流转移至稻田中,留出更多的库容容纳可能发生的高浓度初期径流。同时,如图4和5所示,第二水位探测装置15可采用U型管,第二水位探测装置15一侧部分管壁上开孔并埋入稻田土壤中,另一侧悬空于田埂之外,第二水位探测装置15悬空一侧管体内设有第四感应器1501、第五感应器1502;第四感应器1501设在地表以上5-8cm处(该高度大致对应于稻田的最大淹水高度,当稻田为采用漫灌方式种植时,也可以根据试验确定其最高可淹水高度并调整取值),第五感应器1502设在地表以上2-4cm处((该高度大致对应于稻田的最小淹水高度,根据不同的种植方式或灌溉方式时,也可以根据试验确定并调整取值)。U 型管式的第二水位探测装置15开孔一侧埋入土壤时,可在外侧包裹一层纱布,用于过滤土壤颗粒。通过该U型管,能够保证其设置感应器一侧的水位与土壤水位保持一致,使土壤水位测量更准确。而如图6所示,第三水位探测装置16上设有第六感应器1601和第七感应器1602,分别设置于第二蓄水池9的上限水位和下限水位处。上限水位为第二蓄水池9所能容纳的最大安全容量所对应的水位高度,下限水位为第二蓄水池9可用于灌溉的最低水位高度。上述三种水位探测装置可根据实际情况选择性使用其中的一个或多个。
第一蓄水池3和第二蓄水池9可采用天然池塘或河道,以减少对生态环境的破坏,又能最大限度利用当地的环境。
上述多个实施例中的具体技术特征可以相互组合,但是结合图2所示的联控消纳装置以及图3~6所示的传感器,即实现了本发明的一种较佳的优化装置。基于该装置,还可以提供一种利用该装置的初期径流污染联控消纳方法,步骤如下:
1)将纳水管道1布设于初期径流集水区域,使集水区域内的径流能汇流进入第一蓄水池3内。
2)设定第一闸阀2在初始状态关闭,控制闸门8均开启,出水闸门12关闭。
3)当雨量感应器5感应到本场降雨量达到预设启动值且第一蓄水池3水位未达到第一水位探测装置14上的第一感应器1401时,控制装置4开启第一闸阀2,将纳水管道1中的初期径流排入第一蓄水池3内进行存储;当雨量感应器5感应到本场降雨量达到预设启动值且第一蓄水池3中水位已达到第一水位探测装置14上的第一感应器1401、稻田7水位未达到第二水位探测装置15上的第四感应器1501,则控制装置4关闭第一闸阀2并关闭第二闸阀13,将纳水管道1中的初期径流排入稻田7;当雨量感应器5感应到本场降雨量达到预设启动值且第一蓄水池3中水位已达到第一水位探测装置14上的第一感应器1401、稻田7水位达到第二水位探测装置15上的第四感应器1501、第二蓄水池9中水位未达到第三水位探测装置16上的第六感应器1601时,则控制装置4关闭第一闸阀2、开启第二闸阀13并关闭第三闸阀17,将纳水管道1中的初期径流排入第二蓄水池9;当雨量感应器5感应到本场降雨量达到预设启动值且第一蓄水池3中水位已达到第一水位探测装置14上的第一感应器1401、稻田7水位达到第二水位探测装置15上的第四感应器1501、第二蓄水池9中水位达到第三水位探测装置16上的第六感应器1601时,则控制装置4关闭第一闸阀2、开启第二闸阀13与第三闸阀17,将纳水管道1中的初期径流直接通过超越管道11排出;当雨量 感应器5感应到本场降雨量达到预设关闭值时,控制装置4关闭第一闸阀2并开启第二闸阀13与第三闸阀17,将纳水管道1中的初期径流直接通过超越管道11排出。
4)当第一蓄水池3水位达到第一水位探测装置14上的第二感应器1402、稻田7水位未达到第二水位探测装置15上的第四感应器1501时,控制装置4启动进水泵6将第一蓄水池3中的径流排入稻田7中。若采用连续进水连续出水的推流式处理时,需调整进水量维持在一定水平,以免超出生态系统处理负荷。当第一蓄水池3水位低于第一水位探测装置14上的第三感应器1403时,控制装置4关闭进水泵6。当采用非连续的处理方式时,当稻田7水位达到第二水位探测装置15上的第四感应器1501时,控制装置4关闭进水泵6。一定时间后排放稻田中的水,然后再次开启进水泵6,不断循环。由此,将其中蓄积的径流水用于灌溉,以节省水资源。
5)降雨过程中,出水闸门12由控制装置4视稻田7田面水高度进行间歇性开闭,当稻田7水位超过第二水位探测装置15上的第四感应器1501时,开启出水闸门12,排出的径流蓄积于第二蓄水池9供回流使用;当稻田7水位未达到第二水位探测装置15上的第四感应器1501时,关闭出水闸门12。在非降雨时期,当稻田7中的径流蓄积时间达到相应的阈值(可根据试验确定)后,可认为已达到生态系统的处理极限,可开启出水闸门12,将径流排放至第二蓄水池9,然后重新将第一蓄水池3中新的待处理径流排入稻田7进行处理;当然也可以采用前述的连续进水连续出水的方式。
6)当第二蓄水池9水位达到第三水位探测装置16上的第六感应器1601、稻田7水位未达到第二水位探测装置15上的第四感应器1501时,控制装置4开启回流泵10,当稻田7水位达到第二水位探测装置15上的第四感应器1501时,控制装置4关闭回流泵10。由此不断将第二蓄水池9中的径流用于回灌稻田7。当第二蓄水池9水位低于第三水位探测装置16上的第七感应器1602时,控制装置4关闭回流泵10。
需要注意的是,一般而言,第二蓄水池9中的径流已经经过了稻田的消纳处理,因此污染物浓度已经得到了削弱。因此,当第一蓄水池3中存有径流时,应优先处理第一蓄水池3的径流。第二蓄水池9的中径流作为补充的回灌用水。
7)当雨量感应器5感应到本场降雨结束时,控制装置4关闭第一闸阀2和出水闸门12,根据稻田7田面水高度开启进水泵6及回流泵10,将初期径流用于灌溉,达到污染物消纳功能。
上述各步骤的编号仅作为一种方式,并不表示一定需要按照该顺序执行,可以基于库容利用率或径流处理效率,优化设计其顺序。
预设启动值为能使初期径流集水区域产生初期径流的降雨量,该值可通过降雨-径流试验进行确定。预设关闭值为使初期径流集水区域产生的初期径流污染物浓度为雨水中污染物浓度的2~5倍时的降雨量。在该浓度下,径流中污染物已经不会对水体造成太大的危害,且由于浓度不高,稻田湿地系统的处理效率也不高,可直接排放。
再进一步的,在另一实施例中,还可以在图2所展示的联控消纳装置基础上,再设置一个污染物浓度检测装置18。如图7所示,污染物浓度检测装置18与纳水管道1的汇集处、第一蓄水池3、稻田7及第二蓄水池9相连,用于测定各位置的径流中污染物浓度。污染物浓度检测装置18可采用集成式的环境水质自动监测系统,通过取水管将不同待监测点位处的水样输送至该监测系统中进行分析,也可以采用分布式的成套水质自动监测系统或者污染物感应探头,直接在不同的待监测点分析水中污染物浓度。
由此,通过不同的水位探测装置可以感应两个蓄水池以及稻田内的水位高度,同时通过污染物浓度检测装置18可以得到不同区段的径流浓度(本发明中径流浓度指径流中污染物浓度,下同),从而通过调节水泵、闸阀的开关,调整水流的蓄积、排放或者调度,在联控消纳装置的蓄水容积能够满足径流收集要求时,最大化的将径流截留在系统中,经过稻田处理后排放。而在蓄水容积无法满足径流收集要求时,可将高污染物浓度的径流截留在系统中,而将低浓度的径流进行排放。由此,实现了径流中污染物的最大化削减。
基于该实施例的装置,本发明还提供了一种利用该装置的最大化消减初期径流污染的方法,步骤如下:
1)管道布设:将纳水管道1布设于初期径流集水区域,使集水区域内的径流能汇流进入第一蓄水池3内。
2)初始状态设置:设定第一闸阀2在初始状态关闭,控制闸门8均开启,出水闸门12关闭。
3)降雨时的蓄积方式:当雨量感应器5感应到本场降雨量达到预设启动值、第一蓄水池3水位未达到第一水位探测装置14上的第一感应器1401且污染物浓度检测装置18检测到纳水管道1的汇集处径流浓度大于第一蓄水池3中的径流浓度时,控制装置4开启第一闸阀2,将纳水管道1中的初期径流排入第一蓄水池3内进行存储;当雨量感应器5感应到本场降雨量达到预设启动值且第一蓄水池3中水位已达到第一水位探测装置14上的第一感应器1401、稻田7水位未达到第二水位探测装置15上的第四感应器1501且污染物浓度检测装置18检测到纳水管道1的汇集处径流浓度大于稻田7田面水浓度时,则控制装置4关闭第一闸阀2并关闭第二闸阀13,将纳水管道1中的初期径流排入稻田7;当雨量感应器5感应到本场降雨量达到预设启动值且第一蓄水池3中水位已达到第一水位探测装置14上的第一感应器1401、稻田7水位达到第二水位探测装置15上的第四感应器1501、第二蓄水池9中水位未达到第三水位探测装置16上的第六感应器1601且污染物浓度检测装置18检测到纳水管道1的汇集处径流浓度大于第二蓄水池9中水样浓度时,则控制装置4关闭第一闸阀2及第三闸阀17、开启第二闸阀13,将纳水管道1中的初期径流排入第二蓄水池9;当雨量感应器5感应到本场降雨量达到预设启动值且第一蓄水池3中水位已达到第一水位探测装置14上的第一感应器1401、稻田7水位达到第二水位探测装置15上的第四感应器1501、第二蓄水池9中水位达到第三水位探测装置16上的第六感应器1601时,则控制装置4关闭第一闸阀2、开启第二闸阀13与第三闸阀17,将纳水管道1中的初期径流直接通过超越管道11排出;当雨量感应器5感应到本场降雨量达到预设启动值且污染物浓度检测装置18检测到纳水管道1的汇集处径流浓度小于第二蓄水池9中水样浓度时,则控制装置4关闭第一闸阀2、开启第二闸阀13与第三闸阀17,将纳水管道1中的初期径流直接通过超越管道11排出;当雨量感应器5感应到本场降雨量达到预设关闭值时,控制装置4关闭第一闸阀2并开启第二闸阀13与第三闸阀17,将纳水管道1中的初期径流直接通过超越管道11排出;当雨量感应器5感应到本场降雨结束时,控制装置4关闭第一闸阀2和出水闸门12,根据稻田7田面水高度以及污染物浓度检测装置18检测到的污染物浓度开启进水泵6及回流泵10,将初期径流用于灌溉,达到污染物消纳功能。
4)第一蓄水池3中径流的利用方式:当第一蓄水池3水位达到第一水位探测装置14上的第二感应器1402、稻田7水位未达到第二水位探测装置15上的第四感应器1501且污染物浓度检测装置18检测到第一蓄水池3径流浓度大于稻 田7田面水浓度时,控制装置4启动进水泵16将第一蓄水池3中的径流排入稻田7中;经过稻田消纳的径流会进入第二蓄水池9中再次蓄积,并视情况回流。当污染物浓度检测装置18检测到第一蓄水池3径流浓度小于稻田7田面水浓度时,控制装置4关闭进水泵16,此时可选择直接通过第一蓄水池3的排水口排放蓄水或者在稻田干旱的时候抽水灌溉。当第一蓄水池3水位低于第一水位探测装置14上的第三感应器1403时,控制装置4关闭进水泵16,等待下一次降雨再次蓄水。
5)稻田7中水位的调控方式:降雨过程中,出水闸门12由控制装置4视稻田7田面水高度进行间歇性开闭。当稻田7水位超过第二水位探测装置15上的第四感应器1501时,开启出水闸门12,排出的径流蓄积于第二蓄水池9供回流使用;当稻田7水位未达到第二水位探测装置15上的第四感应器1501时,关闭出水闸门12。当稻田7中的径流蓄积时间达到相应的阈值(可根据试验确定)后,可开启出水闸门12,将径流排放至第二蓄水池9。另外,在非降雨时期,当稻田7中的径流蓄积时间达到相应的阈值(可根据试验确定)后,可认为已达到生态系统的处理极限,可开启出水闸门12,将径流排放至第二蓄水池9,然后重新将第一蓄水池3中新的待处理径流排入稻田7进行处理;当然也可以采用前述的连续进水连续出水的方式。
6)第二蓄水池9中水位的调控、利用方式:如前所述,当第一蓄水池3中存有径流时,应优先处理第一蓄水池3的径流,第二蓄水池9的中径流作为补充的回灌用水。当第二蓄水池9水位达到第三水位探测装置16上的第六感应器1601、稻田7水位未达到第二水位探测装置15上的第四感应器1501且污染物浓度检测装置18检测到第二蓄水池9浓度大于稻田7田面水浓度时,控制装置4开启回流泵10;当稻田7水位达到第二水位探测装置15上的第四感应器1501时,控制装置4关闭回流泵10。由此,将其中蓄积的径流水不断用于灌溉,以节省水资源。当第二蓄水池9水位低于第三水位探测装置16上的第七感应器1602时,控制装置4关闭回流泵10。
该方法与前一种污染物联控消纳方法相比,增加了污染物浓度检测装置18对待蓄积径流中污染物浓度的检测步骤,当径流中浓度低于一定值时,可以直接排放,而不是依然蓄积在系统中。由此,能够保持整个消纳装置的可蓄积容量最大可能得保有余量,用于蓄积高浓度的初期径流。
另外,在其它实施例中,本发明的稻田也可以采用不同的灌溉模式,如干湿交替灌溉(AWD)。因此,可以考虑对本发明的第二水位探测装置进行调整。如图8所示,为第二水位探测装置的另一种结构示意图。第二水位探测装置15悬空一侧管体内设有四个感应器,均用于感应水位。最上部的两个感应器作用于图2中的装置相同,而从上往下第3个传感器可保持与土壤表面平齐,用于感应土壤表面位置。最下方的传感器可设在地表以下13-15cm处,因为一般AWD灌溉模式下,土壤水位落至该范围后,需要重新灌水,恢复至保有田面水的状态。
以上所述的实施例只是本发明的一些较佳的方案,然而其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。由此可见,凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

  1. 一种初期径流污染联控消纳装置,其特征在于,包括纳水管道(1)、第一蓄水池(3)、控制装置(4)、进水泵(6)、稻田(7)、控制闸门(8)、第二蓄水池(9)、回流泵(10)、出水闸门(12)、第一水位探测装置(14)、第二水位探测装置(15)和第三水位探测装置(16),若干条用于收集初期径流的纳水管道(1)汇集后连入第一蓄水池(3),进水泵(6)通过管道一端与第一蓄水池(3)相连,另一端与稻田(7)进水口相连;稻田(7)分割为若干块长条形的子田块,相连的子田块之间的田埂上均设置控制闸门(8),控制闸门(8)交错设置使进水口流入的初期径流需流经最长距离才能从出水口排出;稻田(7)的出水口与第二蓄水池(9)相连,第二蓄水池(9)通过回流泵(10)与稻田(7)的进水口相连;第一蓄水池(3)中设置有第一水位探测装置(14),稻田(7)中设置有第二水位探测装置(15),第二蓄水池(9)中设置有第三水位探测装置(16),控制装置(4)与控制闸门(8)、进水泵(6)、回流泵(10)、出水闸门(12)、第一水位探测装置(14)、第二水位探测装置(15)和第三水位探测装置(16)相连并控制其运行状态。
  2. 如权利要求1所述的初期径流污染联控消纳装置,其特征在于,还包括第一闸阀(2)、超越管道(11)、第二闸阀(13)、第三闸阀(17)、污染物浓度检测装置(18)以及与控制装置(4)相连的雨量感应器(5),;所述的污染物浓度检测装置(18)与纳水管道(1)的汇集处、第一蓄水池(3)、稻田(7)及第二蓄水池(9)相连,用于测定各位置的径流中污染物浓度;所述的纳水管道(1)与第一蓄水池(3)之间还设有控制进水的第一闸阀(2),第一闸阀(2)由控制装置(4)控制;所述的第一闸阀(2)前端的纳水管道(1)与超越管道(11)相连,超越管道(11)上设有由控制装置(4)控制的第二闸阀(13)和第三闸阀(17),第二闸阀(13)前端的超越管道(11)与稻田(7)进水口相连;第二闸阀(13)和第三闸阀(17)之间的超越管道(11)与第二蓄水池(9)相连。
  3. 如权利要求1或2所述的初期径流污染联控消纳装置,其特征在于,所述的第一水位探测装置(14)上设有第一感应器(1401)、第二感应器(1402)和第三感应器(1403),第一感应器(1401)、第二感应器(1402)和第三感应器(1403)所处的高度分别为第一蓄水池(3)的上限水位、启动水位和下限水位。
  4. 如权利要求3所述的初期径流污染联控消纳装置,其特征在于,所述的第二水位探测装置(15)采用U型管,第二水位探测装置(15)一侧部分管壁上开孔并埋入稻田土壤中,另一侧悬空于田埂之外,第二水位探测装置(15)悬空一侧管体内设有第四感应器(1501)、第五感应器(1502);第四感应器(1501)设在地表以上5-8cm处,第五感应器(1502)设在地表以上2-4cm处。
  5. 如权利要求4所述的初期径流污染联控消纳装置,其特征在于,所述的第三水位探测装置(16)上设有第六感应器(1601)和第七感应器(1602),分别设置于第二蓄水池(9)的上限水位和下限水位处。
  6. 如权利要求1所述的初期径流污染联控消纳装置,其特征在于,还设有与控制装置(4)相连的雨量感应器(5),所述的纳水管道(1)与第一蓄水池(3)之间还设有控制进水的第一闸阀(2),第一闸阀(2)由控制装置(4)控制。
  7. 如权利要求6所述的初期径流污染联控消纳装置,其特征在于,所述的第一闸阀(2)前端的纳水管道(1)与超越管道(11)相连,超越管道(11)上设有由控制装置(4)控制的第二闸阀(13)和第三闸阀(17),第二闸阀(13)前端的超越管道(11)与稻田(7)进水口相连;第二闸阀(13)和第三闸阀(17)之间的超越管道(11)与第二蓄水池(9)相连。
  8. 如权利要求1所述的初期径流污染联控消纳装置,其特征在于,若干个控制闸门(8)联动开闭或单独开闭。
  9. 一种利用如权利要求5所述联控消纳装置的初期径流污染联控消纳方法,其特征在于,步骤如下:
    1)将纳水管道(1)布设于初期径流集水区域,使集水区域内的径流能汇流进入第一蓄水池(3)内;
    2)设定第一闸阀(2)在初始状态关闭,控制闸门(8)均开启,出水闸门(12)关闭;
    3)当雨量感应器(5)感应到本场降雨量达到预设启动值且第一蓄水池(3)水位未达到第一水位探测装置(14)上的第一感应器(1401)时,控制装置(4)开启第一闸阀(2),将纳水管道(1)中的初期径流排入第一蓄水池(3)内进行存储;当雨量感应器(5)感应到本场降雨量达到预设启动值且第一蓄水池(3)中水位已达到第一水位探测装置(14)上的第一感应器(1401)、稻田(7)水位未达到第二水位探测装置(15)上的第四感应器(1501),则控制装置(4)关闭第一闸阀(2)并关闭第二闸阀(13),将纳水管道(1)中的初期径流排入稻田 (7);当雨量感应器(5)感应到本场降雨量达到预设启动值且第一蓄水池(3)中水位已达到第一水位探测装置(14)上的第一感应器(1401)、稻田(7)水位达到第二水位探测装置(15)上的第四感应器(1501)、第二蓄水池(9)中水位未达到第三水位探测装置(16)上的第六感应器(1601)时,则控制装置(4)关闭第一闸阀(2)、开启第二闸阀(13)并关闭第三闸阀(17),将纳水管道(1)中的初期径流排入第二蓄水池(9);当雨量感应器(5)感应到本场降雨量达到预设启动值且第一蓄水池(3)中水位已达到第一水位探测装置(14)上的第一感应器(1401)、稻田(7)水位达到第二水位探测装置(15)上的第四感应器(1501)、第二蓄水池(9)中水位达到第三水位探测装置(16)上的第六感应器(1601)时,则控制装置(4)关闭第一闸阀(2)、开启第二闸阀(13)与第三闸阀(17),将纳水管道(1)中的初期径流直接通过超越管道(11)排出;当雨量感应器(5)感应到本场降雨量达到预设关闭值时,控制装置(4)关闭第一闸阀(2)并开启第二闸阀(13)与第三闸阀(17),将纳水管道(1)中的初期径流直接通过超越管道(11)排出;
    4)当第一蓄水池(3)水位达到第一水位探测装置(14)上的第二感应器(1402)、稻田(7)水位未达到第二水位探测装置(15)上的第四感应器(1501)时,控制装置(4)启动进水泵(6)将第一蓄水池(3)中的径流排入稻田(7)中;当第一蓄水池(3)水位低于第一水位探测装置(14)上的第三感应器(1403)时,控制装置(4)关闭进水泵(6);
    5)降雨过程中,出水闸门(12)由控制装置(4)视稻田(7)田面水高度进行间歇性开闭,当稻田(7)水位超过第二水位探测装置(15)上的第四感应器(1501)时,开启出水闸门(12),排出的径流蓄积于第二蓄水池(9)供回流使用;当稻田(7)水位未达到第二水位探测装置(15)上的第四感应器(1501)时,关闭出水闸门(12);
    6)当第二蓄水池(9)水位达到第三水位探测装置(16)上的第六感应器(1601)、稻田(7)水位未达到第二水位探测装置(15)上的第四感应器(1501)时,控制装置(4)开启回流泵(10),当稻田(7)水位达到第二水位探测装置(15)上的第四感应器(1501)时,控制装置(4)关闭回流泵(10);当第二蓄水池(9)水位低于第三水位探测装置(16)上的第七感应器(1602)时,控制装置(4)关闭回流泵(10);
    7)当雨量感应器(5)感应到本场降雨结束时,控制装置(4)关闭第一闸阀(2)和出水闸门(12),根据稻田(7)田面水高度开启进水泵(6)及回流泵(10),将初期径流用于灌溉,达到污染物消纳功能。
  10. 如权利要求9所述的方法,其特征在于,所述的预设启动值为能使初期径流集水区域产生初期径流的降雨量;所述的预设关闭值为使初期径流集水区域产生的初期径流污染物浓度为雨水中污染物浓度的2~5倍时的降雨量。
PCT/CN2017/071352 2016-01-18 2017-01-17 初期径流污染联控消纳装置及方法 WO2017124995A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/554,712 US10414679B2 (en) 2016-01-18 2017-01-17 Integrated device and method for eliminating initial runoff pollution

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610033456.7A CN105684837B (zh) 2016-01-18 2016-01-18 基于awd灌溉技术的稻田污染物输出控制系统及方法
CN201610032819.5A CN105668797B (zh) 2016-01-18 2016-01-18 利用稻田最大化消减初期径流污染的装置及方法
CN201610032819.5 2016-01-18
CN201610030882.5 2016-01-18
CN201610030882.5A CN105507221B (zh) 2016-01-18 2016-01-18 基于液位控制的稻田污染物联控消纳装置及方法
CN201610033456.7 2016-01-18

Publications (1)

Publication Number Publication Date
WO2017124995A1 true WO2017124995A1 (zh) 2017-07-27

Family

ID=59361942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071352 WO2017124995A1 (zh) 2016-01-18 2017-01-17 初期径流污染联控消纳装置及方法

Country Status (2)

Country Link
US (1) US10414679B2 (zh)
WO (1) WO2017124995A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793309A (zh) * 2018-07-25 2018-11-13 中国科学院南京土壤研究所 一种基于生物质炭和生物质醋液的农田面源污染控制系统及控制方法
JP7173545B2 (ja) * 2018-12-27 2022-11-16 株式会社ほくつう 水栓装置
US10823720B2 (en) * 2018-12-28 2020-11-03 Wenbin Yang Deep soil water percolation monitor and monitoring method therefor
CN110668574A (zh) * 2019-10-25 2020-01-10 三峡大学 坡地条件下构建植物篱拦截农田径流磷素污染的应用方法及其植物篱系统
JP7437348B2 (ja) 2021-05-11 2024-02-22 株式会社クボタ 水管理システム、水管理方法およびコンピュータプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041213A (ja) * 2003-08-04 2004-02-12 Tadashi Matsumoto 水田の自動給水装置
CN103437577A (zh) * 2013-09-03 2013-12-11 中国水产科学研究院长江水产研究所 一种稻田鱼塘种养复合系统
CN104782447A (zh) * 2015-04-17 2015-07-22 浙江大学 一种农业用地初期径流收集灌溉系统及其方法
CN105507221A (zh) * 2016-01-18 2016-04-20 浙江大学 基于液位控制的稻田污染物联控消纳装置及方法
CN105668797A (zh) * 2016-01-18 2016-06-15 浙江大学 利用稻田最大化消减初期径流污染的装置及方法
CN105684837A (zh) * 2016-01-18 2016-06-22 浙江大学 基于awd灌溉技术的稻田污染物输出控制系统及方法
CN205367893U (zh) * 2016-01-18 2016-07-06 浙江大学 一种利用稻田最大化消减初期径流污染的装置
CN205475135U (zh) * 2016-01-18 2016-08-17 浙江大学 一种基于液位控制的稻田污染物联控消纳装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910787B (zh) * 2012-11-06 2014-03-19 重庆大学 一种用于居民小区内的花园式雨水处理回用一体化系统
CN104563266B (zh) * 2014-06-17 2016-05-11 贵州大学 一种农村生活污水高埂稻田灌溉调控系统及其建造方法
CN104355410B (zh) 2014-11-07 2016-08-17 上海交通大学 一种控制稻田面源污染的生态拦截阻断系统
CN104891661A (zh) 2015-05-14 2015-09-09 上海交通大学 一种人工稻田湿地系统及控制农田面源污染的方法
CN105417867B (zh) 2015-12-07 2018-06-15 江苏启德水务有限公司 一种水稻田面源污染控制与氮磷回收利用系统和方法
CN105421566B (zh) 2015-12-18 2017-11-14 浙江大学 一种稻田污染物联控消纳装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041213A (ja) * 2003-08-04 2004-02-12 Tadashi Matsumoto 水田の自動給水装置
CN103437577A (zh) * 2013-09-03 2013-12-11 中国水产科学研究院长江水产研究所 一种稻田鱼塘种养复合系统
CN104782447A (zh) * 2015-04-17 2015-07-22 浙江大学 一种农业用地初期径流收集灌溉系统及其方法
CN105507221A (zh) * 2016-01-18 2016-04-20 浙江大学 基于液位控制的稻田污染物联控消纳装置及方法
CN105668797A (zh) * 2016-01-18 2016-06-15 浙江大学 利用稻田最大化消减初期径流污染的装置及方法
CN105684837A (zh) * 2016-01-18 2016-06-22 浙江大学 基于awd灌溉技术的稻田污染物输出控制系统及方法
CN205367893U (zh) * 2016-01-18 2016-07-06 浙江大学 一种利用稻田最大化消减初期径流污染的装置
CN205475135U (zh) * 2016-01-18 2016-08-17 浙江大学 一种基于液位控制的稻田污染物联控消纳装置

Also Published As

Publication number Publication date
US10414679B2 (en) 2019-09-17
US20180170778A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2017124995A1 (zh) 初期径流污染联控消纳装置及方法
KR101293752B1 (ko) 온실용 빗물 이용 시스템
CN204098204U (zh) 初期雨水调蓄装置
US20130180903A1 (en) Stormwater filtration systems and related methods
CN105668797B (zh) 利用稻田最大化消减初期径流污染的装置及方法
Bahçeci et al. Water and salt balance studies, using SaltMod, to improve subsurface drainage design in the Konya–Çumra Plain, Turkey
CN105967339A (zh) 一种重金属污染灌溉水的生态塘净化处理的方法及装置
CN210726285U (zh) 智能化屋面雨水收集处理浇灌装置
CN106223551A (zh) 一种屋顶蓄水绿化结构
CN105421566B (zh) 一种稻田污染物联控消纳装置及方法
Oosterbaan Agricultural drainage criteria
KR101676378B1 (ko) 하천하상 계류순환 시스템
CN106760257A (zh) 一种光伏绿化复合屋面的雨水回收系统
CN109704468A (zh) 一种阶梯式人工湿地
CN211353410U (zh) 坡地茶园渗管取水集水滴灌系统
CN205662974U (zh) 一种山丘区生态型雨水分质集蓄系统
CN110093967B (zh) 一种用于道路雨水径流控制的系统及其效果监测方法
CN106045102A (zh) 一种雨水收集综合利用系统
CN106917473B (zh) 一种光伏绿化复合屋面的雨水回收方法
CN205367893U (zh) 一种利用稻田最大化消减初期径流污染的装置
CN109626751A (zh) 一种自动曝气式雨水净水系统及其工作方法
CN108557988A (zh) 一种农业面源污染控制的旱地土壤渗滤系统及方法
CN205475135U (zh) 一种基于液位控制的稻田污染物联控消纳装置
CN108093992A (zh) 一种园林用保温花坛
CN100398466C (zh) 北方低温地区潜流人工湿地冬季运行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554712

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741026

Country of ref document: EP

Kind code of ref document: A1