WO2017124815A1 - 耦合网络、功放装置及通信终端 - Google Patents

耦合网络、功放装置及通信终端 Download PDF

Info

Publication number
WO2017124815A1
WO2017124815A1 PCT/CN2016/104637 CN2016104637W WO2017124815A1 WO 2017124815 A1 WO2017124815 A1 WO 2017124815A1 CN 2016104637 W CN2016104637 W CN 2016104637W WO 2017124815 A1 WO2017124815 A1 WO 2017124815A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
circuit
impedance
signal
coupler
Prior art date
Application number
PCT/CN2016/104637
Other languages
English (en)
French (fr)
Inventor
杨云博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017124815A1 publication Critical patent/WO2017124815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0278Arrangements for impedance matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/04Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers
    • H03F1/06Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers to raise the efficiency of amplifying modulated radio frequency waves; to raise the efficiency of amplifiers acting also as modulators
    • H03F1/07Doherty-type amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for

Definitions

  • the present invention relates to the field of radio frequency power amplifier communication, and in particular, to a coupling network, a power amplifier device, and a communication terminal.
  • the Doherty amplifier is one of the most widely used high-efficiency power amplifier technologies in wireless communication systems. It was invented in 1936 by an American electronics engineer named William H. Doherty. But in the next thirty years or so, people's attention shifted. Until the late 1960s, with the development of communication technologies, especially satellite communications, the efficiency and linearity of power amplifiers were reintroduced in a new historical era. Doherty amplifiers were discovered and widely used in communications in the 1970s. And in the broadcast system. To this day, Doherty amplifiers are combined with DPD (Digital Pre-distortion) technology to become the mainstream form of high-efficiency power amplifiers for wireless communication systems.
  • DPD Digital Pre-distortion
  • the Doherty technology of the power amplifier has become a mature amplifier design.
  • DPD is especially important for the correction of the power amplifier.
  • the quality of the linear correction signal provided by the power amplifier to the DPD is particularly important. High-precision, low-interference signals maximize the DPD's ability to correct and greatly enhance product competitiveness.
  • the current mainstream power amplifier coupling network whether it is microstrip coupling or integrated device coupling, its port impedance design is designed according to the typical characteristic impedance fixed value, which is better in simulation and applied to Doherty.
  • the isolation and directivity are poor.
  • the invention provides a coupling network, a power amplifier device and a communication terminal, which are solved when applied to variable transmission When the impedance structure is out, the isolation of the existing typical coupling network is poor.
  • the present invention provides a coupling network comprising at least four ports and a non-reciprocal coupler matching circuit, wherein at least one port is an impedance variable port, an impedance variable port is used to connect the impedance variable circuit, and the impedance is variable
  • the corresponding coupler isolation port of the port is a non-reciprocal coupler matching port, and the feedback port of the non-reciprocal coupler matching port belongs to the feedback control link for connecting the digital predistortion circuit; the non-reciprocal coupler matching port connection is not reciprocal
  • the coupler matching circuit, the non-reciprocal coupler matching circuit is used to inversely superimpose the reflected interference signal and the transmitted interference signal.
  • the non-reciprocal coupler matching circuit includes a resistive container member corresponding to the resistive capacity of the variable impedance circuit, and one end of the resistive container member is connected to the non-reciprocal coupler matching port, and the other end is grounded.
  • the damper member includes a lumped reactance element.
  • the non-reciprocal coupler matching circuit comprises first, second and third electrolytic capacitors and first, second and third resistors;
  • the first capacitor has an electrolytic pole connected to the non-reciprocal coupler matching port, and the other pole is connected to the first resistor
  • One end of the first resistor is connected to the electrolysis pole of the second electrolytic capacitor and one end of the second resistor, the other pole of the second electrolytic capacitor is grounded, and the other end of the second resistor is connected to one end of the third resistor, and the third resistor
  • the other end of the third electrolytic capacitor is connected to the other end of the third electrolytic capacitor.
  • non-reciprocal coupler matching circuit is further configured to change the RC according to the RC control signal.
  • the non-reciprocal coupler matching circuit is specifically configured to change the phase of the reflected interference signal and/or the transmitted interference signal, so that the reflected interference signal and the transmitted interference signal are inversely superimposed.
  • the invention provides a power amplifier device comprising an impedance variable circuit, a digital predistortion circuit and a coupling network provided by the invention, the signal is transmitted through the impedance variable circuit, and the impedance variable port of the coupling network is connected to the variable impedance circuit, the number
  • the predistortion circuit connects the feedback port of the feedback control link to which the non-reciprocal coupler matches the port, and acquires and corrects the impedance variable circuit by using the feedback signal.
  • the impedance variable circuit includes a Doherty circuit.
  • the coupling network includes four ports, and an output port of the forward coupling link to which the impedance variable port belongs is connected to the circulator.
  • control circuit is further included, wherein the control circuit is configured to obtain a resistance capacity of the variable impedance circuit, and generate and change a resistance capacity of the non-reciprocal coupler matching circuit according to the resistance control signal.
  • the present invention provides a communication terminal comprising the power amplifier device provided by the present invention.
  • the present invention provides a coupling network in which at least one port is an impedance variable port, when in use, The variable impedance port is connected to the variable impedance circuit, and the coupler isolation port corresponding to the variable impedance port is a non-reciprocal coupler matching port, and the feedback port of the feedback control link to which the non-reciprocal coupler matching port belongs is used to connect the digital pre- Distortion circuit; non-reciprocal coupler matching port is connected to the non-reciprocal coupler matching circuit, and the non-reciprocal coupler matching circuit causes the reflected interference signal and the transmitted interference signal to be inversely superimposed to convert the RF energy into heat energy, without affecting The normally coupled signal is based on minimizing the interference it is subject to.
  • the DPD corrects the preamplifier input signal after receiving the forward signal.
  • the traditional coupling method cannot eliminate the signal distortion caused by the superposition of different phase signals caused by multipath interference.
  • the DPD cannot judge the difference between the main signal and the main signal.
  • the correction effect is deteriorated, and the coupling network designed by this patent can ensure the consistency of the coupled signal and the main signal waveform, and maximize the DPD correction effect.
  • 1 is a schematic structural diagram of an existing coupling network
  • FIG. 2 is a schematic structural diagram of a coupling network according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a power amplifier device according to a second embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a coupling network according to a third embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the working principle of a coupling network according to a third embodiment of the present invention.
  • Figure 6 is a circuit diagram of a power amplifier device in a third embodiment of the present invention.
  • Figure 7 is the directionality of the existing coupled network when the port impedance changes
  • FIG. 8 is a directionality of a coupling network in a third embodiment of the present invention when a port impedance changes.
  • the coupling network 1 provided by the present invention includes: at least four ports (P1, P2, P3, and P4). And a non-reciprocal coupler matching circuit 11, wherein at least one port P1 is an impedance variable port, the impedance variable port is used to connect the impedance variable circuit 2, and the coupler isolation port P4 corresponding to the variable impedance port P1 is non-mutual
  • the coupler matching port, the feedback port P3 of the feedback control link of the non-reciprocal coupler matching port P4 is used to connect the digital predistortion circuit 3; the non-reciprocal coupler matching port P4 is connected to the non-reciprocal coupler matching circuit 11,
  • the non-reciprocal coupler matching circuit 11 is configured to inversely superimpose the reflected interference signal and the transmitted interference signal.
  • the non-reciprocal coupler matching circuit 11 in the above embodiment includes a resistive container member corresponding to the resistive capacity of the variable impedance circuit.
  • the corresponding resistive capacitance is equivalent in size, and the resistive member is at one end. Connect the non-reciprocal coupler matching port and ground the other end.
  • the damper member of the above embodiment includes a lumped reactive element.
  • the non-reciprocal coupler matching circuit 11 in the above embodiment includes first, second, and third electrolytic capacitors and first, second, and third resistors; and the first capacitor is connected to the non-reciprocal coupler. a port, the other end is connected to one end of the first resistor, the other end of the first resistor is connected to the electrolysis pole of the second electrolytic capacitor and one end of the second resistor, the other pole of the second electrolytic capacitor is grounded, and the other end of the second resistor is connected One end of the third resistor, the other end of the third resistor is connected to the electrolytic pole of the third electrolytic capacitor, and the other pole of the third electrolytic capacitor is grounded.
  • the non-reciprocal coupler matching circuit 11 in the above embodiment is further configured to change the RC according to the RC control signal.
  • the non-reciprocal coupler matching circuit 11 in the above embodiment is specifically configured to change the phase of the reflected interference signal and/or the transmitted interference signal, so that the reflected interference signal and the transmitted interference signal are inversely superimposed.
  • the power amplifier device provided by the present invention includes:
  • the impedance variable circuit 2, the digital predistortion circuit 3, and the coupling network 1 provided by the present invention transmit signals through the impedance variable circuit 2, and the impedance variable port of the coupling network 1 is connected to the impedance variable circuit 2, and the digital predistortion circuit 3 is connected.
  • the non-reciprocal coupler matches the feedback port of the feedback control link to which the port belongs, and acquires and corrects the impedance variable circuit 2 by using the feedback signal.
  • the impedance variable circuit 2 of the above embodiment includes a Doherty circuit.
  • the coupling network in the above embodiment includes four ports, and the output port of the forward coupled link to which the impedance variable port belongs is connected to the circulator.
  • the power amplifier device in the above embodiment further includes a control circuit 4 for acquiring a resistance capacity of the variable impedance circuit, generating and changing non-reciprocal coupling according to the resistance control signal.
  • the resistance of the matching circuit is not limited to the resistance capacity of the variable impedance circuit.
  • the present invention provides a communication terminal comprising the power amplifier device provided by the present invention.
  • the invention provides a design idea of a high directional non-reciprocal coupling network, and the application range covers all coupling designs under the condition of input and output impedance mismatch, and can be low on the basis of ensuring that the normal coupled signal is not affected.
  • the reflected signal interference is widely used in scenes requiring high-precision coupled signals.
  • This embodiment is used in the design of a Doherty output coupled network in a base station power amplifier.
  • the Doherty technology of the power amplifier has become a mature amplifier design.
  • DPD is especially important for the correction of the power amplifier.
  • the high-end market at home and abroad the linear and near-end spur requirements are often reflected in the core competitiveness of the product. Therefore, the quality of the linear correction signal provided by the power amplifier to the DPD is particularly important. High-precision, low-interference signals maximize the DPD's ability to correct and greatly enhance product competitiveness.
  • the current mainstream power amplifier coupling network whether it is microstrip coupling or integrated device coupling, its port impedance design is designed according to the typical characteristic impedance fixed value, the effect is better in the simulation, and the application In the variable output impedance architecture of Doherty, the isolation index is often unsatisfactory.
  • the coupling network optimization strategy proposed in this application can improve the 10dB isolation above the Doherty framework, which can effectively reduce the interference signal coupling. The effect of the signal improves the DPD improvement.
  • the power amplifier forward network is affected by the reflected signal, which affects the DPD correction effect.
  • the linear index of the power amplifier deteriorates by 2dB.
  • the reason is that the coupler directionality is far from the design goal.
  • the use of an outsourced coupler module has the same problem, and is therefore a change in the directionality of the coupler caused by environmental changes in the circuit application.
  • the classic microstrip coupler design is based on the fact that all four ports are reciprocally easy to implement.
  • the forward-oriented network limits the impedance of a port to other ports due to the Doherty architecture, so the coupler direction Sexual deterioration is serious, and the present invention is mainly to solve the problem of coupler directivity in such non-reciprocal application environments.
  • the technical problem to be solved by the present invention is that the classic Doherty output impedance of the power amplifier is variable, and the isolation under different impedances is maximized in this environment, the degree of interference of the coupled signal is reduced, and the DPD is maximized. Correction effect.
  • the invention effectively reduces the interference of the forward coupled signal, can effectively ensure the performance consistency of the power amplifier product, and reduces the linear jump of the power amplifier, and has a wide application scenario in the current base station products.
  • the invention can be widely applied to all variable impedance application environments including radio frequency bands such as Doherty output variable impedance environment, and is particularly important in an application environment requiring high precision coupled signals.
  • the main structure of the non-reciprocal coupling network provided by the present invention is shown in FIG. 4, and its structure is a typical 4 Port-coupled network, but different from the traditional reciprocal coupler design idea, the coupling network is sensitive to the coupler signal input termination and is not the characteristic of the microstrip/device characteristic impedance.
  • the design is such that the reflected signal due to the port mismatch and the normal isolated terminal leakage signal are superimposed in the opposite direction to eliminate the interference signal energy and maximize the coupler directivity.
  • the traditional coupled network structure diagram shown in Figure 1 can only provide high isolation under the condition of 4-port full matching, and the isolation degree drops rapidly when the port is mismatched. It is not suitable for some applications that require port mismatch. surroundings.
  • the present invention is mainly directed to a non-reciprocal application environment, and a non-reciprocal coupler matching network is added to the coupler isolation end corresponding to the variable impedance port.
  • Port1 is a non-reciprocal port, and the impedance thereof is variable.
  • the traditional characteristic impedances of Port2, Port3, and Port4 are different.
  • the present invention designs a non-reciprocal coupler matching network on the Port 4 port, and inversely superimposes the coupled signals of the multiple reflection signals on the Port 3 port by changing the phase of the isolated end. Offset, which greatly increases the coupler directionality.
  • FIG. 4 is a schematic diagram of a non-reciprocal coupling network design structure
  • FIG. 5 is a schematic diagram of the directionality of the coupler.
  • Figure 6 is a diagram of an embodiment link application.
  • the non-reciprocal coupler design idea provided by this embodiment includes a main signal link, a coupling network, and a reflected interference signal cancellation impedance network.
  • Figure 4 shows a 4-port coupling network.
  • the traditional coupling network design has the same 4-port impedance.
  • the whole structure is reciprocal and symmetrical.
  • the directivity drops sharply.
  • the invention can improve the directivity of the coupler by 20 dB under the premise of ensuring that the coupling degree is almost unchanged.
  • the interference source 1 is a signal reflected by the Port 2 port and is coupled to the Port 3 port after the second reflection of the Port 1 port.
  • Signal, interference source 2 is the signal that Port1 port input signal A enters Port3 port through the reflection of Port4 port.
  • the input signal of port Port1 is A
  • the secondary transmission signal is A1
  • the output signal of port Port2 is B
  • the reflected signal is B1; the coupling of the secondary transmission signal A1 is coupled through the coupling network.
  • the signal is C1
  • the signal of the reflected signal is B1 leaking to the coupling port Port4 is D1
  • the signal C1 and the signal D1 are the interference signals of different paths in the coupled signal C
  • the signal C1 and the signal D1 can be reversely cancelled by involving Zx.
  • Figure 6 shows the role of the position and invention of the Doherty power amplifier structure as an embodiment.
  • the main signal link and coupling network are implemented using a traditional microstrip coupling network, and its application can be extended to coupler integrated devices.
  • the characteristic impedance of the microstrip line is Z0
  • the impedance of the main signal output terminal and the output impedance of the coupling network are both Z0
  • the impedance of the main signal input terminal is Z1 (may be indefinite).
  • the coupler isolation terminal impedance to Z2
  • the directionality of the conventional coupler can be increased by 20 dB.
  • the Z2 impedance can be realized by the lumped reactance component, which mainly changes the phase of the reflected signal interference and the interference signal emitted by the main signal isolation end, so that the RF signal is superimposed in reverse, and the RF energy is converted into heat energy, which does not affect the normal.
  • the coupled signal is based on minimizing the interference it is subjected to.
  • the DPD corrects the amplifier input signal by pre-distortion after receiving the forward signal.
  • the traditional coupling method cannot eliminate the signal distortion caused by the superposition of different phase signals caused by multipath interference. DPD cannot judge the difference between it and the main signal, resulting in poor correction effect.
  • the coupling network designed by this patent can ensure coupling. The consistency of the signal and the main signal waveform maximizes the DPD correction effect.
  • the present invention can effectively reduce the forward coupled signal interference when the DPD is corrected, and the forward coupling directivity index is improved by more than 20 dB, and the bandwidth characteristic can reach 20% of the applied frequency.
  • the DPD system is added to the correction capability of the power amplifier distortion, the linear fluctuation range of the power amplifier is reduced, the linearity of the power amplifier and the near-end spur index are improved, and the competitiveness of the base station product can be effectively improved.
  • the invention has low cost, and the cost is almost unchanged compared with the conventional coupler solution; the space requirement of the invention is low, only the design of one port of the coupler is changed, and the corresponding resistance container can be completely replaced, and the space size overhead is not increased.
  • the invention is simple to implement, and the scheme can be quickly determined through simulation and debugging, and the increased time overhead and labor cost are almost negligible.
  • the present invention provides a coupling network in which at least one port is an impedance variable port.
  • the impedance variable port is connected to the impedance variable circuit, and the coupler isolation port corresponding to the variable impedance port is a non-reciprocal coupler.
  • Matching port, the feedback port of the feedback control link to which the non-reciprocal coupler matching port belongs is used to connect the digital predistortion circuit;
  • the non-reciprocal coupler matching port is connected to the non-reciprocal coupler matching circuit, and the non-reciprocal coupler matching circuit makes The reflected interference signal and the transmitted interference signal are inversely superimposed, and the RF energy is converted into heat energy to be distributed, and the interference received is minimized without affecting the normal coupled signal.
  • the DPD corrects the preamplifier input signal after receiving the forward signal.
  • the traditional coupling method cannot eliminate the signal distortion caused by the superposition of different phase signals caused by multipath interference.
  • the DPD cannot judge the difference between the main signal and the main signal.
  • the correction effect is deteriorated, and the coupling network designed by this patent can ensure the consistency of the coupled signal and the main signal waveform, and maximize the DPD correction effect.
  • the invention relates to the field of radio frequency power amplifier communication, which solves the problem of poor isolation of the existing typical coupling network.
  • the power amplifier design proposed in the present application can be widely applied to various types of base stations, and is particularly suitable for base stations adopting DPD technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供了一种耦合网络、功放装置及通信终端;该耦合网络包括至少四个端口及非互易耦合器匹配电路,其中至少一个端口为阻抗可变端口,阻抗可变端口用于连接阻抗可变电路,与阻抗可变端口对应的耦合器隔离端口为非互易耦合器匹配端口,非互易耦合器匹配端口所属反馈控制链路的反馈端口用于连接数字预失真电路;非互易耦合器匹配端口连接非互易耦合器匹配电路,非互易耦合器匹配电路用于使反射干扰信号及发射干扰信号反相叠加。通过本发明的实施,在使用时,非互易耦合器匹配电路使得反射干扰信号及发射干扰信号反相叠加,将射频能量转换为热能散出,在不影响正常耦合信号的基础上最大限度的降低其受到的干扰。

Description

耦合网络、功放装置及通信终端
本申请基于申请号为CN201610031347.1、申请日为2016年1月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及射频功放通信领域,尤其涉及一种耦合网络、功放装置及通信终端。
背景技术
Doherty功放是无线通信系统目前最为广泛应用的一种高效率功放技术,它是由一位名叫William H.Doherty的美国电子工程师于1936年发明的。但是在接下来的大约三十年时间里,人们的注意力转移了。直到六十年代末期,随着通信技术,特别是卫星通信的发展,将功率放大器的效率和线性问题在一个新的历史场合重新提出,Doherty放大器又被挖掘出来,广泛应用于七十年代的通信和广播系统中。到今天,Doherty功放与DPD(Digital Pre-distortion,数字预失真)技术结合应用,成为无线通信系统基站高效率功放主流的构架形式。
作为基站最核心的功能单元,功放部分Doherty技术已经成为成熟的放大器设计方案,而作为线性改善的手段,DPD对于功放的校正效果尤为重要。尤其对于国内外的高端市场,其线性、近端杂散的要求往往是产品核心竞争力的体现,因此,功放提供给DPD的用于线性校正信号的质量就显得尤为重要。高精度、低干扰的信号能最大限度的发挥DPD的校正能力,极大提升产品竞争力。
但是,如图1所示,目前主流的功放耦合网络无论是微带耦合还是集成器件耦合,其端口阻抗设计都是按典型的特征阻抗固定值设计,在仿真时效果较好,而应用于Doherty这种可变输出阻抗构架时,如图7所示,其隔离度及方向性较差。
针对上述问题,提出一种可以解决当应用到可变输出阻抗构架时,现有典型耦合网络的隔离度较差的技术,是本领域技术人员亟待解决的技术问题。
发明内容
本发明提供了一种耦合网络、功放装置及通信终端,以解决当应用到可变输 出阻抗构架时,现有典型耦合网络的隔离度较差的问题。
本发明提供了一种耦合网络,其包括至少四个端口及非互易耦合器匹配电路,其中至少一个端口为阻抗可变端口,阻抗可变端口用于连接阻抗可变电路,与阻抗可变端口对应的耦合器隔离端口为非互易耦合器匹配端口,非互易耦合器匹配端口所属反馈控制链路的反馈端口用于连接数字预失真电路;非互易耦合器匹配端口连接非互易耦合器匹配电路,非互易耦合器匹配电路用于使反射干扰信号及发射干扰信号反向叠加。
进一步的,非互易耦合器匹配电路包括与阻抗可变电路的阻容相应的阻容器件,阻容器件一端连接非互易耦合器匹配端口,另一端接地。
进一步的,阻容器件包括集总电抗元件。
进一步的,非互易耦合器匹配电路包括第一、二、三电解电容及第一、二、三电阻;第一电容的电解极连接非互易耦合器匹配端口,另一极连接第一电阻的一端,第一电阻的另一端连接第二电解电容的电解极及第二电阻的一端,第二电解电容的另一极接地,第二电阻的另一端连接第三电阻的一端,第三电阻的另一端连接第三电解电容的电解极,第三电解电容的另一极接地。
进一步的,非互易耦合器匹配电路还用于根据阻容控制信号改变阻容。
进一步的,非互易耦合器匹配电路具体用于改变反射干扰信号和/或发射干扰信号的相位,使反射干扰信号及发射干扰信号反向叠加。
本发明提供了一种功放装置,其包括阻抗可变电路、数字预失真电路及本发明提供的耦合网络,通过阻抗可变电路发射信号,耦合网络的阻抗可变端口连接阻抗可变电路,数字预失真电路连接非互易耦合器匹配端口所属反馈控制链路的反馈端口,获取并利用反馈信号校正阻抗可变电路工作。
进一步的,阻抗可变电路包括Doherty电路。
进一步的,耦合网络包括四个端口,阻抗可变端口所属的前向耦合链路的输出端口连接环形器。
进一步的,还包括控制电路,控制电路用于获取阻抗可变电路的阻容,生成并根据阻容控制信号改变非互易耦合器匹配电路的阻容。
本发明提供了一种通信终端,其包括本发明提供的功放装置。
本发明的有益效果:
本发明提供了一种耦合网络,其至少一个端口为阻抗可变端口,在使用时, 阻抗可变端口连接阻抗可变电路,与阻抗可变端口对应的耦合器隔离端口为非互易耦合器匹配端口,非互易耦合器匹配端口所属反馈控制链路的反馈端口用于连接数字预失真电路;非互易耦合器匹配端口连接非互易耦合器匹配电路,非互易耦合器匹配电路使得反射干扰信号及发射干扰信号反向叠加,将射频能量转换为热能散出,在不影响正常耦合信号的基础上最大限度的降低其受到的干扰。同时,DPD在接收到前向信号后对功放输入信号做预失真进行校正,利用传统的耦合方式无法消除多径干扰导致的不同相位信号叠加造成的信号失真,DPD无法判断其和主信号的差异,导致校正效果变差,而采用本专利所设计的耦合网络,可确保耦合信号和主信号波形的一致性,最大限度的发挥DPD校正效果。
附图说明
图1为现有耦合网络的结构示意图;
图2为本发明第一实施例提供的耦合网络的结构示意图;
图3为本发明第二实施例提供的功放装置的结构示意图;
图4为本发明第三实施例提供的耦合网络的电路图;
图5为本发明第三实施例中耦合网络的工作原理图;
图6为本发明第三实施例中功放装置的电路图;
图7为现有耦合网络在端口阻抗变化时的方向性;
图8为本发明第三实施例中的耦合网络在端口阻抗变化时的方向性。
具体实施方式
现通过具体实施方式结合附图的方式对本发明做出进一步的诠释说明。
第一实施例:
图2为本发明第一实施例提供的耦合网络的结构示意图,由图2可知,在本实施例中,本发明提供的耦合网络1包括:至少四个端口(P1、P2、P3及P4)及非互易耦合器匹配电路11,其中至少一个端口P1为阻抗可变端口,阻抗可变端口用于连接阻抗可变电路2,与阻抗可变端口P1对应的耦合器隔离端口P4为非互易耦合器匹配端口,非互易耦合器匹配端口P4所属反馈控制链路的反馈端口P3用于连接数字预失真电路3;非互易耦合器匹配端口P4连接非互易耦合器匹配电路11,非互易耦合器匹配电路11用于使反射干扰信号及发射干扰信号反向叠加。
在一些实施例中,上述实施例中的非互易耦合器匹配电路11包括与阻抗可变电路的阻容相应的阻容器件,在实际应用中,相应包括阻容大小等同,阻容器件一端连接非互易耦合器匹配端口,另一端接地。
在一些实施例中,上述实施例中的阻容器件包括集总电抗元件。
在一些实施例中,上述实施例中的非互易耦合器匹配电路11包括第一、二、三电解电容及第一、二、三电阻;第一电容的电解极连接非互易耦合器匹配端口,另一极连接第一电阻的一端,第一电阻的另一端连接第二电解电容的电解极及第二电阻的一端,第二电解电容的另一极接地,第二电阻的另一端连接第三电阻的一端,第三电阻的另一端连接第三电解电容的电解极,第三电解电容的另一极接地。
在一些实施例中,上述实施例中的非互易耦合器匹配电路11还用于根据阻容控制信号改变阻容。
在一些实施例中,上述实施例中的非互易耦合器匹配电路11具体用于改变反射干扰信号和/或发射干扰信号的相位,使反射干扰信号及发射干扰信号反向叠加。
第二实施例:
图3为本发明第二实施例提供的功放装置的结构示意图,由图3可知,在本实施例中,本发明提供的功放装置,其包括:
阻抗可变电路2、数字预失真电路3及本发明提供的耦合网络1,通过阻抗可变电路2发射信号,耦合网络1的阻抗可变端口连接阻抗可变电路2,数字预失真电路3连接非互易耦合器匹配端口所属反馈控制链路的反馈端口,获取并利用反馈信号校正阻抗可变电路2工作。
在一些实施例中,上述实施例中的阻抗可变电路2包括Doherty电路。
在一些实施例中,上述实施例中的耦合网络包括四个端口,阻抗可变端口所属的前向耦合链路的输出端口连接环形器。
如图3所示,在一些实施例中,上述实施例中的功放装置还包括控制电路4,控制电路用于获取阻抗可变电路的阻容,生成并根据阻容控制信号改变非互易耦合器匹配电路的阻容。
对应的,本发明提供了一种通信终端,其包括本发明提供的功放装置。
现结合具体应用场景对本发明做进一步的诠释说明。
第三实施例:
本发明提供的一种高方向性非互易耦合网络的设计思路,其应用范围涵盖了输入、输出阻抗不匹配条件下的所有耦合设计,能在保证正常耦合信号不受影响的基础上将低其受到的反射信号干扰,在需要高精度耦合信号的场景中具有广泛应用。
本实施例是作为基站功放中Doherty输出耦合网络设计中使用。作为基站最核心的功能单元,功放部分Doherty技术已经成为成熟的放大器设计方案,而作为线性改善的手段,DPD对于功放的校正效果尤为重要。尤其对于国内外的高端市场,其线性、近端杂散的要求往往是产品核心竞争力的体现,因此,功放提供给DPD的用于线性校正信号的质量就显得尤为重要。高精度、低干扰的信号能最大限度的发挥DPD的校正能力,极大提升产品竞争力。正如前文所说,而可惜的是,目前主流的功放耦合网络无论是微带耦合还是集成器件耦合,其端口阻抗设计都是按典型的特征阻抗固定值设计,在仿真时效果较好,而应用于Doherty这种可变输出阻抗构架时,其隔离度指标往往不尽如人意,本申请提出的一种耦合网络优化策略,在Doherty构架上能提升10dB隔离度以上,能有效降低干扰信号对耦合信号的影响,提升DPD改善效果。
采用现有耦合网络,在设备工作中,出现了功放前向网络受到反射信号的干扰,影响DPD校正效果,功放线性指标恶化2dB,经过定位发现,其原因为耦合器方向性远未达到设计目标,而采用外购的耦合器模块存在同样的问题,因此是电路应用中环境改变导致的耦合器方向性恶化。
如图1所示,经典的微带耦合器设计基于4端口全部是互易实现,而在实际应用中,放前向网络由于Doherty构架限制了某个端口阻抗和其他端口不同,因此耦合器方向性恶化严重,本发明主要为解决此类非互易的应用环境中耦合器方向性问题。
基于此,本发明所要解决的技术问题是:功放的经典Doherty输出阻抗可变,在此环境中最大限度的提高在不同阻抗下的隔离度,减小耦合信号被干扰程度,最大限度的发挥DPD校正效果。本发明有效降低了前向耦合信号受到的干扰,能有效保证功放产品性能一致性,减少功放线性跳动,在目前基站产品中有广泛的应用场景。本发明可广泛应用于包含Doherty输出可变阻抗环境等射频频段所有的可变阻抗应用环境,在要求高精度耦合信号的应用环境中尤为重要。
本发明提供的非互易耦合网络主要结构如图4所示,其结构为一个典型的4 端口耦合网络,但与传统互易耦合器设计思路不同,该耦合网络针对于耦合器信号输入端接阻抗可变且并非微带/器件特征阻抗的特性,针对性的对耦合网络隔离端端阻抗进行设计,使由于端口不匹配导致的反射信号和正常的隔离端泄露信号反向叠加,消除干扰信号能量,最大限度的提高耦合器方向性。而传统耦合网络结构图如图1所示,只能在4端口完全匹配的条件下提供较高的隔离度,在端口失配时隔离度迅速下降,不适用于某些需要端口失配的应用环境。
本发明主要是针对于非互易的应用环境,在阻抗可变端口对应的耦合器隔离端增加非互易耦合器匹配网络,如图4所示的Port1为非互易端口,其阻抗可变,和Port2、Port3、Port4传统的特征阻抗不同,此时,本发明通过在Port4端口设计非互易耦合器匹配网络,通过改变隔离端相位使多次反射信号在Port3端口的耦合信号反向叠加抵消,从而大幅提升耦合器方向性。
现结合图4-8具体说明,本实施例提供了一种具体的非互易耦合器设计方案,其中图4为非互易耦合网络设计结构示意图,图5为其提升耦合器方向性原理,图6为实施例链路应用图示。本实施例提供的非互易耦合器设计思路,其结构组成包括主信号链路、耦合网络以及反射干扰信号抵消阻抗网络。
图4给出了4端口耦合网络的图示,传统耦合网络设计4端口阻抗一致,整个结构互易、对称,在端口失配条件下(图示中4端口阻抗失配),方向性急剧下降,本发明通过设计耦合器4端口的非互易耦合器匹配网络,能在保证耦合度几乎不变的前提下,耦合器方向性提升20dB。
根据图5给出的信号流图,指出本发明的实质是两种不同路径干扰信号的反向叠加抵消,干扰源1是Port2端口反射回来的信号在Port1端口二次反射后耦合到Port3端口的信号,干扰源2是Port1端口输入信号A经过Port4端口的反射进入Port3端口的信号。具体的,如图5所示,端口Port1的输入信号为A,二次发射信号为A1,端口Port2的输出信号为B,反射信号为B1;经过耦合网络的耦合,二次发射信号A1的耦合信号为C1,反射信号为B1泄露到耦合端口Port4的信号为D1,信号C1和信号D1是耦合信号C内的种不同路径的干扰信号,通过涉及Zx可以使得信号C1和信号D1反向抵消。
图6给出了作为一个实施例,Doherty功放结构应用此发明的位置和发明的作用。用于Doherty放大器输出时,主信号链路和耦合网络采用传统的微带耦合网络实现,其应用可拓展到耦合器集成器件。假设微带线特征阻抗为Z0,主信号输出端接阻抗和耦合网络输出端接阻抗均为Z0,主信号输入端接阻抗为Z1(可不定), 那么通过设计耦合器隔离端阻抗到Z2,可相比传统的耦合器方向性提升20dB。根据仿真和实测,Z2阻抗可由集总电抗元件实现,其主要改变反射信号干扰和主信号隔离端发射干扰信号的相位,使射频信号反向叠加,射频能量转换为热能散出,在不影响正常耦合信号的基础上最大限度的降低其受到的干扰。DPD在接收到前向信号后对功放输入信号做预失真进行校正。利用传统的耦合方式无法消除多径干扰导致的不同相位信号叠加造成的信号失真,DPD无法判断其和主信号的差异,导致校正效果变差,而采用本专利所设计的耦合网络,可确保耦合信号和主信号波形的一致性,最大限度的发挥DPD校正效果。
如图7及图8所示的仿真结果可知,本发明用于DPD校正时,能有效降低前向耦合信号干扰,前向耦合方向性指标提升20dB以上,其带宽特性可达到应用频率的20%以上,增加DPD系统对于功放失真的校正能力,减小了功放线性波动范围,提高了功放线性、近端杂散指标,能有效提升基站产品竞争力。
同时,本发明成本低廉,相对于传统耦合器方案,成本几乎不变;本发明空间需求低,只改变了耦合器一个端口的设计,完全可用相应阻容器件代替,其空间尺寸开销并未增加;本发明实现简单,通过仿真和调试能迅速确定方案,所增加的时间开销和人力成本几乎可以忽略不计。
综上可知,通过本发明的实施,至少存在以下有益效果:
本发明提供了一种耦合网络,其至少一个端口为阻抗可变端口,在使用时,阻抗可变端口连接阻抗可变电路,与阻抗可变端口对应的耦合器隔离端口为非互易耦合器匹配端口,非互易耦合器匹配端口所属反馈控制链路的反馈端口用于连接数字预失真电路;非互易耦合器匹配端口连接非互易耦合器匹配电路,非互易耦合器匹配电路使得反射干扰信号及发射干扰信号反向叠加,将射频能量转换为热能散出,在不影响正常耦合信号的基础上最大限度的降低其受到的干扰。
同时,DPD在接收到前向信号后对功放输入信号做预失真进行校正,利用传统的耦合方式无法消除多径干扰导致的不同相位信号叠加造成的信号失真,DPD无法判断其和主信号的差异,导致校正效果变差,而采用本专利所设计的耦合网络,可确保耦合信号和主信号波形的一致性,最大限度的发挥DPD校正效果。
工业实用性
本发明涉及射频功放通信领域,用以解决现有典型耦合网络的隔离度较差问题。本申请所提出的功放设计方案可以广泛适用于各种类型的基站,尤其适用于采用DPD技术的基站。
以上仅是本发明的具体实施方式而已,并非对本发明做任何形式上的限制, 凡是依据本发明的技术实质对以上实施方式所做的任意简单修改、等同变化、结合或修饰,均仍属于本发明技术方案的保护范围。

Claims (11)

  1. 一种耦合网络,其中,包括至少四个端口及非互易耦合器匹配电路,其中至少一个端口为阻抗可变端口,所述阻抗可变端口用于连接阻抗可变电路,与所述阻抗可变端口对应的耦合器隔离端口为非互易耦合器匹配端口,所述非互易耦合器匹配端口所属反馈控制链路的反馈端口用于连接数字预失真电路;所述非互易耦合器匹配端口连接所述非互易耦合器匹配电路,所述非互易耦合器匹配电路设置为使反射干扰信号及发射干扰信号反向叠加。
  2. 如权利要求1所述的耦合网络,其中,所述非互易耦合器匹配电路包括与所述阻抗可变电路的阻容相应的阻容器件,所述阻容器件一端连接所述非互易耦合器匹配端口,另一端接地。
  3. 如权利要求2所述的耦合网络,其中,所述阻容器件包括集总电抗元件。
  4. 如权利要求1所述的耦合网络,其中,所述非互易耦合器匹配电路包括第一、二、三电解电容及第一、二、三电阻;所述第一电容的电解极连接所述非互易耦合器匹配端口,另一极连接所述第一电阻的一端,所述第一电阻的另一端连接所述第二电解电容的电解极及所述第二电阻的一端,所述第二电解电容的另一极接地,所述第二电阻的另一端连接所述第三电阻的一端,所述第三电阻的另一端连接所述第三电解电容的电解极,所述第三电解电容的另一极接地。
  5. 如权利要求1所述的耦合网络,其中,所述非互易耦合器匹配电路还设置为根据阻容控制信号改变阻容。
  6. 如权利要求1至5任一项所述的耦合网络,其中,所述非互易耦合器匹配电路设置为改变所述反射干扰信号和/或所述发射干扰信号的相位,使所述反射干扰信号及发射干扰信号反向叠加。
  7. 一种功放装置,其中,包括阻抗可变电路、数字预失真电路及如权利要求1至6任一项所述的耦合网络,通过所述阻抗可变电路发射信号,所述耦合网络的阻抗可变端口连接所述阻抗可变电路,所述数字预失真电路连接所述非互易耦合器匹配端口所属反馈控制链路的反馈端口,获取并利用反馈信号校正所述阻抗可变电路工作。
  8. 如权利要求7所述的功放装置,其中,所述阻抗可变电路包括Doherty电路。
  9. 如权利要求7所述的功放装置,其中,所述耦合网络包括四个端口,所述 阻抗可变端口所属的前向耦合链路的输出端口连接环形器。
  10. 如权利要求7至9任一项所述的功放装置,其中,还包括控制电路,所述控制电路设置为获取所述阻抗可变电路的阻容,生成并根据阻容控制信号改变所述非互易耦合器匹配电路的阻容。
  11. 一种通信终端,其中,包括如权利要求7至10任一项所述的功放装置。
PCT/CN2016/104637 2016-01-18 2016-11-04 耦合网络、功放装置及通信终端 WO2017124815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610031347.1A CN106982181A (zh) 2016-01-18 2016-01-18 耦合网络、功放装置及通信终端
CN201610031347.1 2016-01-18

Publications (1)

Publication Number Publication Date
WO2017124815A1 true WO2017124815A1 (zh) 2017-07-27

Family

ID=59340303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104637 WO2017124815A1 (zh) 2016-01-18 2016-11-04 耦合网络、功放装置及通信终端

Country Status (2)

Country Link
CN (1) CN106982181A (zh)
WO (1) WO2017124815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549717A (zh) * 2022-08-25 2022-12-30 中国人民解放军国防科技大学 有源开关型非互易防护电路和通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036289A (zh) * 2004-09-21 2007-09-12 艾利森电话股份有限公司 可调节预失真器
CN101534093A (zh) * 2009-04-14 2009-09-16 武汉正维电子技术有限公司 用于移动通信基站系统功率放大器的末级三路功率合成放大电路
CN102265506A (zh) * 2011-05-27 2011-11-30 华为技术有限公司 陶赫蒂Doherty电路、多路陶赫蒂Doherty电路和基站设备
CN102983824A (zh) * 2012-12-25 2013-03-20 福建邮科通信技术有限公司 一种自适应预失真功率放大器
US20130099874A1 (en) * 2010-04-25 2013-04-25 Christoph Bromberger Method for designing an electronic circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036289A (zh) * 2004-09-21 2007-09-12 艾利森电话股份有限公司 可调节预失真器
CN101534093A (zh) * 2009-04-14 2009-09-16 武汉正维电子技术有限公司 用于移动通信基站系统功率放大器的末级三路功率合成放大电路
US20130099874A1 (en) * 2010-04-25 2013-04-25 Christoph Bromberger Method for designing an electronic circuit
CN102265506A (zh) * 2011-05-27 2011-11-30 华为技术有限公司 陶赫蒂Doherty电路、多路陶赫蒂Doherty电路和基站设备
CN102983824A (zh) * 2012-12-25 2013-03-20 福建邮科通信技术有限公司 一种自适应预失真功率放大器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549717A (zh) * 2022-08-25 2022-12-30 中国人民解放军国防科技大学 有源开关型非互易防护电路和通信设备
CN115549717B (zh) * 2022-08-25 2024-04-30 中国人民解放军国防科技大学 有源开关型非互易防护电路和通信设备

Also Published As

Publication number Publication date
CN106982181A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
US9762268B2 (en) Wireless transceiver
WO2020220886A1 (zh) 射频装置及终端设备
CN103297069B (zh) 一种全双工无线电射频干扰删除装置与方法
US10644394B2 (en) Technique for full duplex with single antenna
CN102412855B (zh) 阻抗匹配情况确定方法和设备
CN110708029B (zh) 基于非等长传输线的双频带异向功率放大器及其设计方法
CN100470923C (zh) 一种高收发隔离的混合环行器
CN104917472A (zh) 功放电路、功率放大装置及其宽带匹配方法
WO2023045544A1 (zh) 宽带Doherty功率放大器和实现方法
CN113364417A (zh) 一种可调节的负载平衡功放结构
KR20120013138A (ko) 복수 방식을 지원하는 증폭기 및 그 증폭 방법
CN103618519A (zh) 超宽带高线性度有源移相器
WO2017124815A1 (zh) 耦合网络、功放装置及通信终端
CN106537768A (zh) 调相负载装置和方法
KR102071885B1 (ko) 평형구조 및 광대역 0°/180° 전력분배기를 이용한 동일대역 비자성체 전이중통신 무선 전단부 회로
CN103001655B (zh) 电子组件
Regev et al. Modified re-configurable quadrature balanced power amplifiers for half and full duplex RF front ends
CN104270104A (zh) 一种采用apd技术的高互调功率放大器
WO2023088002A1 (zh) 基板匹配电路、射频功率放大器及射频芯片
Watkins et al. Single antenna full duplex cancellation network for ISM band
CN107146956A (zh) 天线单元及多入多出天线系统
US11705935B2 (en) Antenna interface arrangement
US10148310B2 (en) Antenna VSWR RF duplexer
TWI597946B (zh) 天線單元及多入多出天線系統
EP4122107B1 (en) Antenna interface arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886075

Country of ref document: EP

Kind code of ref document: A1