WO2017124616A1 - 一种汽车无线充电对准匹配系统及方法 - Google Patents

一种汽车无线充电对准匹配系统及方法 Download PDF

Info

Publication number
WO2017124616A1
WO2017124616A1 PCT/CN2016/075848 CN2016075848W WO2017124616A1 WO 2017124616 A1 WO2017124616 A1 WO 2017124616A1 CN 2016075848 W CN2016075848 W CN 2016075848W WO 2017124616 A1 WO2017124616 A1 WO 2017124616A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
sensor chip
solenoid
wireless charging
magnetic
Prior art date
Application number
PCT/CN2016/075848
Other languages
English (en)
French (fr)
Inventor
杨瑞聪
林桂江
廖建平
杨凤炳
刘玉山
任连峰
沈滨旭
Original Assignee
厦门新页科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门新页科技有限公司 filed Critical 厦门新页科技有限公司
Publication of WO2017124616A1 publication Critical patent/WO2017124616A1/zh
Priority to US16/003,715 priority Critical patent/US10427549B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the field of wireless charging technology, in particular to a wireless charging alignment matching system and method for a vehicle using a photosensitive sensor and a magnetic sensor.
  • the existing electric vehicle adopting the wireless charging mode needs to align the vehicle bottom wireless charging receiving board with the ground wireless charging transmitting board to ensure the charging efficiency is maximized when charging into the wireless charging station, and the existing alignment manner is generally It is the driver controlling the car to position and align according to the positioning mark of the charging station, or moving the car according to the positioning instruction of the in-vehicle electronic indicating system or controlling the charging receiving plate to align with the wireless charging transmitting board, regardless of which of the above methods is required, the driver is required.
  • the manual control is used to achieve wireless transmission and reception board alignment, which is slow and inefficient.
  • an invention patent with the application number 201110276928.9 discloses a wireless electromagnetic coupling type electric vehicle wireless charging device, which comprises a mains power supply, a primary rectification filter, a primary converter, and a primary side of the separable electromagnetic coupler.
  • the power frequency alternating current is input to the primary rectification filter, the stable direct current is output from the primary rectification filter, and the high frequency alternating current after high frequency inverter conversion is performed by the primary converter, and the alternating current is transmitted to the primary side coil of the separable electromagnetic coupler.
  • the primary side coil of the separable electromagnetic coupler has a polymagnetic core, and the primary side coil of the separated electromagnetic coupler can move up and down through the movable primary coil holder and the secondary side coil of the separable electromagnetic coupler passes through the movable secondary coil holder Strong electromagnetic coupling occurs between the up and down movements, thus achieving high magnetic density energy transfer.
  • the patent uses a primary coil that can move up and down respectively.
  • the secondary side coil device after moving the automobile so that the secondary side coil on the vehicle is just aligned above the primary side coil, the two devices move up and down and close the original secondary side coil to achieve the purpose of providing power conversion efficiency;
  • the disadvantage is that the driver needs to move the car to realize that the secondary coil is just aligned on the primary coil to meet the preconditions for achieving the patent target, and the device moves up and down. After the charging is completed, it takes a time to ensure the primary coil and After the secondary side coil is recovered to the initial position, the car can be driven away, which increases the process and time of the entire charging process of the automobile, and is easy to cause the original secondary coil device to be scraped and damaged due to the driver moving the car early.
  • Another invention patent No. 201080058025.7 discloses a wireless charging system and a charging method for an electric vehicle, the charging system comprising: a power control device, which is disposed at a wireless charging station and controls all wireless power transmission devices; a wireless power transmission device in the parking area and a ground short-range wireless communication module; the wireless power transmission device is disposed on the ground of the parking area in a plurality of quantities, and selects a part of the wireless transmission panel that is opposite to the charging information of the electric vehicle; and A plurality of wireless transmission panels capable of lifting and lowering are installed at the bottom of the electric vehicle, and a wireless power receiver and a wireless charging terminal, a short-range wireless communication module and a charging controller are provided in the electric vehicle, and wireless charging is realized by the driver of the wireless charging terminal.
  • the patent has a plurality of receiving coils arranged at the bottom of the vehicle. When the vehicle is parked in the charging position, the driver selects the optimal effect receiving board to realize optimal wireless charging.
  • the patent has the following advantages in the optimal positioning of the transmitter receiving device. To be sure, one needs the driver to manually select the appropriate receiving board to work, and the other is that it is expensive to arrange multiple receiving boards at the bottom of the vehicle.
  • the electric vehicle wireless charging system comprises a wireless transmitting board and a wireless receiving board, and further comprises a supporting platform for powering the vehicle to park and a supporting assembly for supporting the wireless transmitting board; the wireless receiving board is disposed at the bottom of the electric vehicle and the receiving surface thereof a bottom surface; at least a height between the support assembly and the support platform can be adjusted Position adjustment mechanism.
  • the height of the wireless transmitting board can be quickly adjusted according to the position of the vehicle, the distance between the wireless transmitting board and the wireless receiving board can be shortened, the power transmission loss caused by the position of the vehicle and the wireless transmitting board is effectively reduced, the energy transmission efficiency is improved, and the radiation is also reduced accordingly.
  • the patent uses a movable wireless charging and emitting board to realize the alignment positioning of the transmitting board and the receiving board to improve the wireless charging transmission performance.
  • the disadvantage of this patent is that the movable transmitting board needs to carry a large workload on the ground of the parking space. For the earth-breaking project, it is necessary to excavate enough space for the device to be buried.
  • the use of the metal frame structure as the supporting surface increases the cost of the whole system, and the metal frame structure supporting surface also has the possibility that the metal absorbs heat from electromagnetic waves.
  • the present invention provides a wireless charging alignment matching method and system for a vehicle using a photosensitive sensor and a magnetic sensor.
  • the detection and positioning method based on the photosensitive sensor and the magnetic sensor is not only convenient, high-efficiency, but also low in cost. Manual intervention to solve the shortcomings of the prior art.
  • the idea adopted by the present invention is to perform detection based on the photosensitive sensor and the magnetic sensor, and drive the ground wireless charging and emitting board to the in-vehicle wireless charging receiving board by controlling the driving device (stepping motor positioning system).
  • the periodic detection of the photosensitive sensor chip can automatically detect whether the car is parked above the wireless charging pad.
  • the magnetic sensor detection and positioning method is adopted to realize automatic and rapid positioning alignment of the ground wireless charging and transmitting board and the vehicle wireless charging receiving board, thereby improving the wireless charging speed and making the wireless charging process of the electric vehicle more intelligent, convenient and efficient.
  • the technical solution adopted by the present invention is a wireless charging alignment matching system for a vehicle, comprising a wireless charging receiving device disposed in a lower portion of the electric vehicle, a wireless charging transmitting device disposed on the ground of the parking area, and a wireless charging receiving device. Establishing a communication connection with the wireless charging transmitting device within a certain distance, and automatically starting wireless power transmission;
  • the wireless charging receiving device includes a wireless receiving board and a detecting and aligning module; the wireless receiving board is provided with a receiving coil, and the detecting and aligning module comprises a first magnetic sensor chip array composed of a plurality of magnetic sensor chips and a plurality of snails generating a magnetic field a first solenoid group composed of a line tube, each of the magnetic sensor chips of the first magnetic sensor chip array and the respective solenoids of the first solenoid group are disposed around the receiving coil;
  • the wireless charging transmitting device includes a wireless transmitting board and a driving device for driving the wireless transmitting board to move, wherein the wireless transmitting board is provided with a transmitting coil, and the detecting matching module comprises a photosensitive sensor chip array composed of a plurality of photosensitive sensor chips, and a plurality of magnetic waves. a second magnetic sensor chip array composed of a sensor chip and a second solenoid group composed of a plurality of solenoids generating a magnetic field; the wireless transmitting plate is disposed on the driving device and is driven by the driving device, for example Move back and forth, left and right, and turn 15 degrees clockwise and 15 degrees counterclockwise.
  • the magnetic sensor chips of the first magnetic sensor chip array and the second magnetic sensor chip array are each arranged to allow only vertical magnetic lines of force to pass; the photosensitive sensor chips of the photosensor chip array are arranged to receive only vertical light rays.
  • the driving device comprises a horizontal and vertical rail
  • the wireless transmitting board is movably disposed on the vertical and horizontal rails, and is vertically and horizontally moved on the horizontal and vertical rails under the driving of the driving device.
  • the driving device includes a plurality of driving motors respectively installed around the wireless transmitting board.
  • the driving device is implemented by using a driving motor, and the driving motor is provided in plurality, and at least one of the driving motors is a fine adjustment driving motor.
  • the first magnetic sensor chip array includes at least four magnetic sensor chips, which are respectively recorded as a first magnetic sensor chip, a second magnetic sensor chip, a third magnetic sensor chip, and a fourth magnetic
  • the sensor chip, the first magnetic sensor chip, the second magnetic sensor chip, the third magnetic sensor chip, and the fourth magnetic sensor chip are disposed clockwise around the receiving coil
  • the first solenoid group includes at least four solenoids, First solenoid, second solenoid, third solenoid, and fourth spiral a first solenoid, a second solenoid, a third solenoid, and a fourth solenoid, respectively, and the first magnetic sensor chip, the second magnetic sensor chip, the third magnetic sensor chip, and the fourth magnetic sensor chip Interval setting.
  • the first magnetic sensor chip, the second magnetic sensor chip, the third magnetic sensor chip, and the fourth magnetic sensor chip may be implemented by a single chip, or may be a chip array composed of a plurality of chips.
  • a single chip can perform the functions described in the present invention, but for better alignment and faster alignment, the first magnetic sensor chip, the second magnetic sensor chip, the third magnetic sensor chip, and the first application are actually applied.
  • the four magnetic sensor chips are all implemented by a chip array.
  • the first solenoid and the third solenoid generate the same pole magnetic field (for example, the same N pole), and the second solenoid and the fourth solenoid generate the same pole a magnetic field (eg, the same S pole), and the first solenoid and the second solenoid generate magnetic fields of different poles; at the same time, the first magnetic sensor chip and the third magnetic sensor chip are used to detect the magnetic field of the same pole (for example The magnetic field of the S pole; the second magnetic sensor chip and the fourth magnetic sensor chip are used to detect the magnetic field of the same pole (for example, the magnetic field of the N pole).
  • the second magnetic sensor chip array includes at least four magnetic sensor chips, which are respectively recorded as a fifth magnetic sensor chip, a sixth magnetic sensor chip, a seventh magnetic sensor chip, and an eighth magnetic sensor chip,
  • the five magnetic sensor chip, the sixth magnetic sensor chip, the seventh magnetic sensor chip and the eighth magnetic sensor chip are sequentially arranged in a clockwise arrangement around the transmitting coil;
  • the second solenoid group includes at least four solenoids, which are recorded as a fifth solenoid, a sixth solenoid, a seventh solenoid, and an eighth solenoid, a fifth solenoid, a sixth solenoid, a seventh solenoid, and an eighth solenoid respectively
  • the five magnetic sensor chip, the sixth magnetic sensor chip, the seventh magnetic sensor chip, and the eighth magnetic sensor chip are spaced apart.
  • the fifth magnetic sensor chip, the sixth magnetic sensor chip, the seventh magnetic sensor chip, and the eighth magnetic sensor chip may be implemented by a single chip, or may be composed of multiple chips. Chip array.
  • a single chip can perform the functions described in the present invention, but for better alignment and faster alignment, the fifth magnetic sensor chip, the sixth magnetic sensor chip, the seventh magnetic sensor chip, and the Eight magnetic sensor chips can be implemented by chip array.
  • the fifth solenoid and the seventh solenoid generate the same pole magnetic field (for example, the same N pole)
  • the sixth solenoid and the eighth solenoid generate the same pole magnetic field (for example, the same The S pole)
  • the fifth solenoid and the sixth solenoid generate magnetic fields of different poles
  • the fifth magnetic sensor chip and the seventh magnetic sensor chip are used to detect the magnetic field of the same pole (for example, detecting the magnetic field of the S pole)
  • the sixth magnetic sensor chip and the eighth magnetic sensor chip are used to detect a magnetic field of the same pole (for example, an N-pole magnetic field)
  • the fifth magnetic sensor chip and the sixth magnetic sensor chip detect magnetic fields of different poles.
  • the photosensor chip array includes at least four photosensor chips, which are referred to as a first photosensor chip, a second photosensor chip, a third photosensor chip, and a fourth photosensor chip, and the first photosensor chip and the second photosensor
  • the chip, the third photosensor chip, and the fourth photosensor chip are disposed on the periphery of the second magnetic sensor chip array and the second solenoid group.
  • the first photosensor chip, the second photosensor chip, the third photosensor chip, and the fourth photosensor chip may be implemented by a single chip, or may be a chip array composed of a plurality of chips. In theory, a single chip can perform the functions described in the present invention, but for better alignment and faster alignment, the first photosensor chip, the second photosensor chip, the third photosensor chip, and the first The four photosensor chips can be implemented by using a chip array.
  • the magnetic sensor chip of the first magnetic sensor chip array and the solenoid of the second solenoid group are in one-to-one correspondence, and the magnetic field detected by the magnetic sensor chip is the same as the magnetic field generated by the corresponding solenoid; the second magnetic sensor The magnetic sensor chip of the chip array and the solenoid of the first solenoid group are in one-to-one correspondence, and the magnetic field detected by the magnetic sensor chip is the same as the magnetic field generated by the corresponding solenoid; thus, when detecting, the magnetic transmission is performed.
  • the device is precisely aligned.
  • An automotive wireless charging alignment matching method based on the above system includes the following steps:
  • Step 1 set a wireless charging receiving device at the bottom of the electric vehicle, and set a wireless charging transmitting device on the ground of the parking area;
  • the wireless charging receiving device comprises a wireless receiving board and a detecting and aligning module.
  • the wireless receiving board is provided with a receiving coil.
  • the detecting and aligning module comprises a first magnetic sensor chip array composed of a plurality of magnetic sensor chips and a plurality of solenoids generating a magnetic field. a first solenoid group
  • the wireless charging transmitting device comprises a wireless transmitting board, a detecting matching module and a driving device for driving the wireless transmitting board to move, the wireless transmitting board is disposed on the driving device; the wireless transmitting board is provided with a transmitting coil, and the detecting matching module comprises a plurality of photosensitive sensor chips. a photosensor chip array, a second magnetic sensor chip array composed of a plurality of magnetic sensor chips, and a second solenoid group composed of a plurality of solenoids generating a magnetic field; the wireless transmitting plate is disposed on the driving device and is in the driving device Moving alignment under the drive;
  • Each of the first magnetic sensor chip array and the second magnetic sensor chip array is disposed to allow only vertical magnetic lines of force to pass; each photosensitive sensor chip of the photosensor chip array is configured to receive only vertical light rays;
  • the magnetic sensor chip of the first magnetic sensor chip array and the solenoid of the second solenoid group are in one-to-one correspondence, and the magnetic sensor chip of the second magnetic sensor chip array and The solenoids of the first solenoid group are in one-to-one correspondence;
  • Step 2 detecting a first solenoid group of the alignment module to generate a magnetic field, and detecting a second solenoid group of the matching module to generate a magnetic field;
  • the photosensor chip array detects whether the current light is blocked
  • Magnetic flux shielding device is installed on all magnetic sensor chips, and only vertical magnetic lines are allowed to pass;
  • the second magnetic sensor chip array detects a magnetic field generated by the first solenoid group to determine whether the second magnetic sensor chip array is in one-to-one correspondence with the first solenoid group of the detection alignment module; the first magnetic sensor chip array pair The magnetic field generated by the second solenoid group is detected to determine whether the first magnetic sensor chip array is in one-to-one correspondence with the second solenoid group of the detection alignment module;
  • Step 3 The driving device drives the wireless transmitting board to move until the magnetic sensor chip of the first magnetic sensor chip array and the solenoid of the second solenoid group are in one-to-one correspondence, and the magnetic sensor of the second magnetic sensor chip array The chip has a one-to-one correspondence with the solenoid of the first solenoid group.
  • the present invention adopts the above-mentioned scheme.
  • the driver places the parking space of the car with a wireless charging transmitting device on the ground (parking space).
  • a wireless charging transmitting device on the ground
  • four photosensitive sensor chips (first photosensitive sensor chip, second photosensitive sensor chip, third photosensitive sensor chip and fourth photosensitive sensor chip) of the photosensitive sensor chip array periodically detect whether a vehicle is parked at Above the ground wireless charging transmitter. If the first photosensor chip, the second photosensor chip, the third photosensor chip or the fourth photosensor chip detects that a car is parked, it is fed back to the driver, for example through a display screen: the car is already wirelessly chargeable.
  • the fifth solenoid and the seventh solenoid are energized to generate an N-pole magnetic field
  • the sixth solenoid and the eighth solenoid are energized to generate an S-pole magnetic field.
  • the drive motor starts to move the wireless charging transmitter according to the trajectory, and the trajectory is along the trajectory The direction is scanned line by line.
  • the sixth solenoid and the eighth solenoid are aligned with the S-pole magnetic of the first magnetic sensor chip array
  • the invention adopts a photosensitive sensor to detect the vehicle stop and the magnetic sensor positioning technology controls the stepping motor to drive the ground wireless charging and transmitting board to realize the automatic alignment of the vehicle wireless charging receiving board, and has an automatic manner with respect to the existing manual control vehicle alignment manner.
  • FIG. 1 is a schematic view of a vehicle and a ground according to an embodiment of the present invention
  • FIG. 2a is a schematic diagram of a wireless charging receiving apparatus according to an embodiment of the present invention.
  • FIG. 2b is a schematic diagram of a wireless charging transmitting apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a photosensor chip array according to an embodiment of the present invention.
  • 4a is a schematic diagram of a magnetic sensor chip array (detecting only an S-pole magnetic field) according to an embodiment of the present invention
  • 4b is a schematic diagram of a magnetic sensor chip array (detecting only an N-pole magnetic field) according to an embodiment of the present invention
  • FIG. 5a is a schematic diagram of a movement trajectory of a wireless charging transmitting apparatus according to an embodiment of the present invention.
  • FIG. 5b is a schematic diagram of a rotational trajectory of a wireless charging and transmitting device according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of a method for wireless charging alignment of a vehicle according to the present invention.
  • a vehicle wireless charging alignment matching system of the present invention comprises a wireless charging receiving device 1000 disposed at a lower portion of an electric vehicle, a wireless charging transmitting device 2000 disposed on a ground of a parking area, and a ground wireless charging system for processing the entire system flow.
  • the wireless charging receiving device 1000 includes a wireless receiving board and a detecting and aligning module; the wireless receiving board a receiving coil is disposed, the detecting and aligning module comprises a first magnetic sensor chip array composed of a plurality of magnetic sensor chips, and a first solenoid group composed of a plurality of solenoids generating a magnetic field, and each of the first magnetic sensor chip arrays The magnetic sensor chip and each of the solenoids of the first solenoid group are disposed around the receiving coil; the wireless charging transmitting device includes a wireless transmitting board, a detecting matching module, and a driving device for driving the wireless transmitting board to move, wherein the wireless transmitting board is provided There is a transmitting coil, and the detecting matching module includes a plurality of photosensitive sensor chips a photosensitive sensor chip array, a second magnetic sensor chip array composed of a plurality of magnetic sensor
  • the driving device comprises a horizontal and vertical track
  • the wireless transmitting plate is movably disposed on the vertical and horizontal track, and is vertically and horizontally moved on the horizontal and vertical tracks under the driving of the driving device.
  • the drive unit also includes a plurality of motors for driving the movement of the wireless transmitting plates on its tracks.
  • the driving device includes a first driving motor, a second driving motor, and a fine adjustment driving motor. The invention is illustrated below in a specific embodiment.
  • the above detection alignment module includes a plurality of magnetic sensor arrays (each magnetic sensor array is composed of Multiple magnetic sensor chips, for example at least 3) a first solenoid sensor chip array group composed of a first magnetic sensor chip array group and a plurality of solenoids generating a magnetic field, respective magnetic sensor arrays of the first magnetic sensor chip array group and respective spirals of the first solenoid group
  • the tube is placed around the receiving coil.
  • the detecting matching module comprises a plurality of photosensitive sensor chip arrays (each photosensitive sensor chip array is composed of a plurality of photosensitive sensor chips, for example, at least 3), a photosensitive sensor chip array group, and a plurality of magnetic sensor arrays.
  • a second set of solenoids consisting of an array of arrays and a plurality of solenoids that generate a magnetic field.
  • the magnetic sensor chip is a first magnetic sensor chip array group (composed of a plurality of magnetic sensor arrays); in the detecting matching module, the photosensitive sensor is a photosensitive sensor chip array group (a plurality of photosensitive sensors)
  • the chip array is composed of a magnetic sensor chip which is a second magnetic sensor chip array group (composed of a plurality of magnetic sensor arrays).
  • the second magnetic sensor chip array group includes at least four magnetic sensor chip sets, which are respectively recorded as a fifth magnetic sensor chip set 208, a sixth magnetic sensor chip set 206, and a seventh magnetic sensor chip.
  • Group 204 and eighth magnetic sensor chipset 202 are respectively recorded as a fifth magnetic sensor chip set 208, a sixth magnetic sensor chip set 206, and a seventh magnetic sensor chip.
  • the photosensor chip array includes at least four photosensor chip sets, denoted as a first photosensor chipset 2004, a second photosensor chipset 2005, a third photosensor chipset 2006, and a fourth photosensor chipset 2007, first photosensitive
  • the sensor chipset 2004, the second photosensor chipset 2005, the third photosensor chipset 2006, and the fourth photosensor chipset 2007 are sequentially disposed clockwise around the transmitting coil 200, and periodically detect whether a vehicle is parked on the ground. Above the wireless charging transmitter 2000. If the first photosensor chipset 2004, the second photosensor chipset 2005, the third photosensor chipset 2006, and the fourth photosensor chipset 2007 detect that a car is parked, feedback is given to the driver, for example, through the display 4000. : The car is ready for wireless charging.
  • the first magnetic sensor chip array group includes at least Four magnetic sensor chip arrays, denoted as a first magnetic sensor chip array 101, a second magnetic sensor chip array 103, a third magnetic sensor chip array 105, and a fourth magnetic sensor chip array 107, respectively, a first magnetic sensor chip array 101, The second magnetic sensor chip array 103, the third magnetic sensor chip array 105, and the fourth magnetic sensor chip array 107 are disposed clockwise around the receiving coil 100.
  • the first magnetic sensor chip array 101, the second magnetic sensor chip array 103, the third magnetic sensor chip array 105, and the fourth magnetic sensor chip array 107 are enabled to start working.
  • VOUT H (output high level).
  • the first solenoid group includes four solenoids, which are referred to as a first solenoid 102, a second solenoid 104, a third solenoid 106, and a fourth.
  • the solenoid 108, the second solenoid group includes four solenoids, which are referred to as a fifth solenoid 207, a sixth solenoid 205, a seventh solenoid 203, and an eighth solenoid 201.
  • the eighth solenoid 201 and the sixth solenoid 205 are energized to generate an S-pole magnetic field
  • the seventh solenoid 203 and the fifth solenoid 207 are energized to generate an N-pole magnetic field.
  • the first drive motor 2001 and the second drive motor 2002 start moving the wireless charge transmitting device 2000 in accordance with the trajectory, and the trajectory is progressively scanned along the trajectory XY direction.
  • the tube 207 is aligned with the second magnetic sensor chip 103 array and the fourth magnetic sensor chip array 107 in the N-pole magnetic sensor chip array, the first magnetic sensor chip array 101, the second magnetic sensor chip array 103, and the third magnetic sensor chip array 105.
  • the fourth magnetic sensor chip array 107, VOUT L (output low level).
  • the first solenoid 102 and the third solenoid 106 are energized to generate an N-pole magnetic field, and the second solenoid 104 and the fourth solenoid 108 are energized to generate an S-pole magnetic field, if the eighth magnetic sensor chip array 202 and the seventh magnetic
  • Each of the magnetic sensor chips of the first magnetic sensor chip array and the second magnetic sensor chip array is disposed to allow only vertical magnetic lines of force to pass through, and can be implemented by installing a magnetic line shielding device; each photosensitive sensor chip of the photosensitive sensor chip array is set to only Receive vertical light passing through.
  • FIG. 5a is a schematic diagram of a movement trajectory of a wireless charging transmitting device according to the present invention
  • FIG. 5b is a schematic diagram of a rotational trajectory of the wireless charging transmitting device according to an embodiment of the present invention.
  • the first driving motor 2001 and the second driving motor 2002 drive the motor mobile wireless charging transmitting device 2000
  • the fine tuning driving motor 2003 is used for horizontally fine-tuning the rotating wireless charging transmitting device 2000.
  • the four-corner positions AA, BB, CC, DD (see Fig. 2a) of the in-vehicle wireless charging receiving device 1000 placed at the bottom of the vehicle are close to the four-corner position of the ground wireless charging system 3000, AAA, BBB, CCC, DDD (see figure 2b).
  • the second solenoid 104, the third magnetic sensor chip array 105, the third solenoid 106, the fourth magnetic sensor chip array 107, and the fourth solenoid 108 are disposed at the transmitting coil 200 and the eighth solenoid 201.
  • the chip array 208 is directly above.
  • FIG. 6 is a flow chart of a method for matching a wireless charging alignment of a vehicle in actual application of the present invention.
  • the method for matching wireless charging alignment of a vehicle of the present invention comprises the following steps:
  • Step 1 Park the car on the wireless charging parking space
  • Step 3 The wireless charging receiving device 1000 of the vehicle receiving end activates the detecting and aligning module, and the first magnetic sensor chip array 101, the second magnetic sensor chip array 103, the third magnetic sensor chip array 105, and the fourth magnetic sensor chip array 107 are enabled. ;
  • Step 4 Start the matching detection module
  • Step 5 The eighth solenoid 201 and the sixth solenoid 205 are energized to generate an S-pole magnetic field, and the seventh solenoid 203 and the fifth solenoid 207 are energized to generate an N-pole magnetic field;
  • Step 6 In the X and Y directions, the first driving motor 2001 and the second driving motor 2002 start to drive the wireless charging transmitting device 2000 to move;
  • Step 7 The eighth solenoid 201 and the sixth solenoid 205 are aligned with the first magnetic sensor chip array 101 and the third magnetic sensor chip array 105, and the seventh solenoid 203 and the fifth solenoid 207 are aligned.
  • VOUT L, then go to step 8;
  • Step 8 The first solenoid 102 and the third solenoid 106 are energized to generate an N-pole magnetic field, and the second solenoid 104 and the fourth solenoid 108 are energized to generate an S-pole magnetic field;
  • Step 10 X, Y direction first drive motor 2001, second drive motor 2002 stop, fine-tuning drive motor 2003 start, start to enter the fine-tuning mode, turn the wireless charging transmitter 2000;
  • Step 11 The first solenoid 102 and the third solenoid 106 are aligned with the eighth magnetic sensor chip array 202 and the sixth magnetic sensor chip array 206, and the second solenoid 104 and the fourth solenoid 108 are aligned.
  • Step 12 Lock the VOUT state of the first magnetic sensor chip array 101, the second magnetic sensor chip array 103, the third magnetic sensor chip array 105, and the fourth magnetic sensor chip array 107, and lock the eighth magnetic sensor chip array 202, and the seventh.
  • the VOUT state of the magnetic sensor chip array 204, the sixth magnetic sensor chip array 206, and the fifth magnetic sensor chip array 208, the first solenoid 102, the second solenoid 104, the third solenoid 106, and the fourth spiral When the tube 108 is powered off, the eighth solenoid 201, the seventh solenoid 203, the sixth solenoid 205, and the fifth solenoid 207 are powered off;
  • Step 13 Turn on the charging coil 200 to start emitting energy, and the vehicle receiving coil 100 starts to receive energy;
  • Step 14 Complete the match.
  • the invention adopts the alignment mode of the photosensitive sensor + the magnetic sensor, and has the advantage of low power consumption operation in the non-charge state.
  • the invention adopts a photosensitive sensor to detect the parking of the automobile, uses a magnetic sensor to locate, and controls the wireless charging and transmitting board of the stepping motor to drive the ground to realize the wireless charging receiving board for the vehicle.
  • the automatic alignment has the advantages of automatic, fast and accurate alignment with respect to the existing manual control of the car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种汽车无线充电对准匹配系统及方法,该系统包括设于电动汽车下部的无线充电接收装置(1000)、设于停车区域地面上的无线充电发射装置(2000);无线充电接收装置包括无线接收板和检测对准模块;无线接收板上设有接收线圈(100),检测对准模块包括第一磁传感器芯片阵列(101,103,105,107)和第一螺线管组(102,104,106,108),第一磁传感器芯片阵列的各磁传感器芯片和第一螺线管组围绕接收线圈而设置;无线充电发射装置包括无线发射板、检测匹配模块以及驱动无线发射板进行移动的驱动装置(2001,2002),其中,无线发射板设有发射线圈(200),检测匹配模块包括光敏传感器芯片阵列(2004,2005,2006,2007)、第二磁传感器芯片阵列(208,206,204,202)和第二螺线管组(207,205,203,201);无线发射板设于驱动装置上,并在驱动装置的驱动下实现移动和对准。

Description

一种汽车无线充电对准匹配系统及方法 技术领域
本发明涉及无线充电技术领域,具体是一种应用光敏传感器及磁传感器的汽车无线充电对准匹配系统及方法。
背景技术
现有的采用无线充电方式的电动汽车在进入无线充电站充电时,需要将车载底部无线充电接收板与地面的无线充电发射板对准才能保证充电效率的最大化,现有的对准方式一般是司机控制汽车根据充电站的定位标志来定位对准,或者是根据车载电子指示系统的定位指令移动汽车或控制充电接收板对准无线充电发射板,无论采用上述哪种方式都是需要驾驶员的人工控制来实现无线发送、接收板的对准,这个过程缓慢而低效。
为此,一篇申请号为201110276928.9的发明专利,公开了一种强电磁耦合式电动汽车无线充电装置,其包括市电电源,初级整流滤波器,初级变换器,可分离电磁耦合器的原边线圈,可活动原边线圈支架,可分离电磁耦合器副边线圈,聚磁铁芯,可活动副边线圈支架,次级整流滤波器,充电控制器,蓄电池,电动汽车。把工频交流电输入到初级整流滤波器,从初级整流滤波器输出稳定的直流电,经初级变换器进行高频逆变变换后的高频交流电,该交流电输送至可分离电磁耦合器的原边线圈,可分离电磁耦合器的原边线圈内有聚磁铁芯,分离电磁耦合器的原边线圈通过可活动原边线圈支架可以上下移动与可分离电磁耦合器副边线圈通过可活动副边线圈支架上下移动发生强电磁耦合,这样实现高磁密度的能量传输。该专利采用的是分别能够上下移动的原边线圈装 置和副边线圈装置,在移动汽车使车上的副边线圈正好对准到原边线圈上方后,两装置上下移动并将原副边线圈贴近来实现提供电能转换效率的目的;该专利方案的缺点是需要司机移动汽车以实现副边线圈正好对准在原边线圈上才能满足实现该专利目标的前提条件,并且该装置是上下移动,在充电结束后,需要一个时间来保证原边线圈和副边线圈回收到初始位置后汽车才可驶离,增加了汽车整个充电的过程程序和时间,并容易由于司机提早移动汽车而导致原副边线圈装置被刮蹭而损坏。
另有一篇申请号为201080058025.7的发明专利,公开了一种电动汽车用无线充电系统及充电方法,其充电系统包括:电力控制装置,其设置于无线充电所并控制所有无线电力传输装置;设置于停车区域的无线电力传输装置及地面近距离无线通讯模块;无线电力传输装置,其以多个数量设置于停车区域的地面、选择运行随电动汽车的充电信息对向的一部分无线传输面板;以及,在电动汽车的底部安装能够升降的多个无线传输面板,在电动汽车内具备无线电力接收机和无线充电终端及近距离无线通信模块和充电控制器,通过无线充电终端驾驶员的选择实现无线充电的最优化。该专利在车底部布置有多个接收线圈,当车停在充电车位上后由司机选择最优效果的接收板来实现最优化无线充电,该专利在发射机收装置最优定位实现上有以下确定,一是需要司机来人工选择合适的接收板来工作,二是在车底布置多个接收板成本昂贵。
另外一篇申请号为201310043965.4的发明专利,公开了一种电动汽车无线充电系统,解决了现有的原边线圈与副边线圈对接匹配难的问题。该电动汽车无线充电系统,包括无线发射板和无线接收板,还包括供电动汽车停泊的支撑平台和用于支撑无线发射板的支撑组件;无线接收板设置于电动汽车的底部且其接收面朝下底面;支撑组件和支撑平台之间至少设有能调节无线发射板高度 的位置调节机构。可根据车辆位置快速调整无线发射板的高度,缩短无线发射板与无线接收板的距离,有效降低了由于车辆及无线发射板的位置引起的电量传输损耗,提升了能量传输效率,辐射也相应降低。该专利采用可移动的无线充电发射板来实现发射板与接收板的对准定位以实现提高无线充电传输效能,该专利的缺点是可移动的发射板需要在车位地面进行较大工作量的地面破土工程,并需要挖掘出足够其装置预埋的空间,如采用金属架结构作为支撑面则增加了整个系统的成本,且金属架结构支撑面也存在着金属对电磁波吸收发热的危险可能。
发明内容
因此,针对上述的问题,本发明提出一种应用光敏传感器及磁传感器的汽车无线充电对准匹配方法及系统,基于光敏传感器和磁传感器的检测定位方法,不仅方便、高效,而且成本低廉,无需人工干预,解决现有技术之不足。
为了解决上述技术问题,本发明所采用的思路是,基于光敏传感器和磁传感器进行检测,通过控制驱动装置(步进电机定位系统)驱动地面无线充电发射板对准车载无线充电接收板。采用光敏传感器芯片周期性定时检测,可自动检测到是否汽车停靠在无线充电板上方。采用磁传感器检测定位方法,实现地面无线充电发射板与车载无线充电接收板的自动、快速定位对准,提高无线充电速度,让电动汽车无线充电过程更加智能、方便和高效。
具体的,本发明所采用的技术方案是,一种汽车无线充电对准匹配系统,包括设于电动汽车下部的无线充电接收装置、设于停车区域地面上的无线充电发射装置,无线充电接收装置和无线充电发射装置在一定距离内建立通讯连接,并自动开始无线电力传输;
所述无线充电接收装置包括无线接收板和检测对准模块;无线接收板上设有接收线圈,检测对准模块包括多个磁传感器芯片组成的第一磁传感器芯片阵列和产生磁场的多个螺线管组成的第一螺线管组,第一磁传感器芯片阵列的各磁传感器芯片和第一螺线管组的各螺线管围绕接收线圈而设置;
所述无线充电发射装置包括无线发射板以及驱动无线发射板进行移动的驱动装置,其中,无线发射板设有发射线圈,检测匹配模块包括多个光敏传感器芯片组成的光敏传感器芯片阵列、多个磁传感器芯片组成的第二磁传感器芯片阵列和产生磁场的多个螺线管组成的第二螺线管组;所述无线发射板设于驱动装置上,并在驱动装置的驱动下进行移动,例如前后左右移动及顺时针十五度、逆时针十五度转动。第一磁传感器芯片阵列和第二磁传感器芯片阵列的各磁传感器芯片均设置为只允许垂直方向磁力线通过;光敏传感器芯片阵列的各光敏传感器芯片设置为只接收垂直方向光线通过。
作为一种简单可行的方案,所述驱动装置包括横纵轨道,无线发射板可移动的设于该纵横轨道上,并在驱动装置的驱动下在横纵轨道做纵横移动。
作为一种简单可行的方案,所述驱动装置包括分别安装于无线发射板四周的多个驱动电机。优选的,所述驱动装置是采用驱动电机实现,驱动电机设有多个,驱动电机中至少有一个是微调驱动电机。
为了方便检测,检测对准模块中,所述第一磁传感器芯片阵列至少包括四个磁传感器芯片,分别记为第一磁传感器芯片、第二磁传感器芯片、第三磁传感器芯片和第四磁传感器芯片,第一磁传感器芯片、第二磁传感器芯片、第三磁传感器芯片和第四磁传感器芯片顺时针围绕接收线圈而设置;第一螺线管组至少包括四个螺线管,记为第一螺线管、第二螺线管、第三螺线管和第四螺线 管,第一螺线管、第二螺线管、第三螺线管、第四螺线管分别与第一磁传感器芯片、第二磁传感器芯片、第三磁传感器芯片和第四磁传感器芯片间隔设置。
上述检测对准模块中,第一磁传感器芯片、第二磁传感器芯片、第三磁传感器芯片和第四磁传感器芯片可以是单个芯片实现,也可以是多个芯片组成的芯片阵列。理论上,单个芯片即可完成本发明所述功能,但是为了更好的对准以及更快速的对准,实际应用时第一磁传感器芯片、第二磁传感器芯片、第三磁传感器芯片和第四磁传感器芯片均采用芯片阵列实现。
为了更方便更精确的检测,所述第一螺线管和第三螺线管产生相同极的磁场(例如,同为N极),第二螺线管和第四螺线管产生相同极的磁场(例如,同为S极),且第一螺线管和第二螺线管产生不同极的磁场;同时,第一磁传感器芯片和第三磁传感器芯片用来检测同一极的磁场(例如S极的磁场);第二磁传感器芯片和第四磁传感器芯片用来检测同一极的磁场(例如N极的磁场)。
同样的,检测匹配模块中,第二磁传感器芯片阵列至少包括四个磁传感器芯片,分别记为第五磁传感器芯片、第六磁传感器芯片、第七磁传感器芯片和第八磁传感器芯片,第五磁传感器芯片、第六磁传感器芯片、第七磁传感器芯片和第八磁传感器芯片按顺时针排列依次设于发射线圈的四周;第二螺线管组至少包括四个螺线管,记为第五螺线管、第六螺线管、第七螺线管和第八螺线管,第五螺线管、第六螺线管、第七螺线管、第八螺线管分别与第五磁传感器芯片、第六磁传感器芯片、第七磁传感器芯片和第八磁传感器芯片间隔设置。
上述检测匹配模块中,第五磁传感器芯片、第六磁传感器芯片、第七磁传感器芯片和第八磁传感器芯片可以是单个芯片实现,也可以是多个芯片组成的 芯片阵列。理论上,单个芯片即可完成本发明所述功能,但是为了更好的对准以及更快速的对准,实际应用中第五磁传感器芯片、第六磁传感器芯片、第七磁传感器芯片和第八磁传感器芯片均可采用芯片阵列实现。
对应的,所述第五螺线管和第七螺线管产生相同极的磁场(例如,同为N极),第六螺线管和第八螺线管产生相同极的磁场(例如,同为S极),且第五螺线管和第六螺线管产生不同极的磁场;同时,第五磁传感器芯片和第七磁传感器芯片用来检测同一极的磁场(例如检测S极的磁场);第六磁传感器芯片和第八磁传感器芯片用来检测同一极的磁场(例如N极的磁场),且第五磁传感器芯片和第六磁传感器芯片检测不同极的磁场。
所述光敏传感器芯片阵列至少包括四个光敏传感器芯片,记为第一光敏传感器芯片、第二光敏传感器芯片、第三光敏传感器芯片和第四光敏传感器芯片,第一光敏传感器芯片、第二光敏传感器芯片、第三光敏传感器芯片和第四光敏传感器芯片设于第二磁传感器芯片阵列和第二螺线管组的外围。第一光敏传感器芯片、第二光敏传感器芯片、第三光敏传感器芯片和第四光敏传感器芯片可以是单个芯片实现,也可以是多个芯片组成的芯片阵列。理论上,单个芯片即可完成本发明所述功能,但是为了更好的对准以及更快速的对准,实际应用中第一光敏传感器芯片、第二光敏传感器芯片、第三光敏传感器芯片和第四光敏传感器芯片均可采用芯片阵列实现。
在设置时,第一磁传感器芯片阵列的磁传感器芯片和第二螺线管组的螺线管一一对应,且磁传感器芯片检测的磁场和对应螺线管产生的磁场相同;第二磁传感器芯片阵列的磁传感器芯片和第一螺线管组的螺线管一一对应,且磁传感器芯片检测的磁场和对应螺线管产生的磁场相同;这样,在检测时,令磁传 感器芯片阵列在无磁场穿过芯片阵列时记为VOUT=H,若磁场穿过芯片阵列中任意一芯片时记为VOUT=L,那么当VOUT=L时使得无线充电接收装置和无线充电发射装置精确对准。
基于上述系统的一种汽车无线充电对准匹配方法,包括如下步骤:
步骤1:在电动汽车底部设置无线充电接收装置,在停车区域地面上设置无线充电发射装置;
无线充电接收装置包括无线接收板和检测对准模块,无线接收板上设有接收线圈,检测对准模块包括多个磁传感器芯片组成的第一磁传感器芯片阵列和产生磁场的多个螺线管组成的第一螺线管组;
无线充电发射装置包括无线发射板、检测匹配模块以及驱动无线发射板进行移动的驱动装置,无线发射板设于驱动装置上;无线发射板设有发射线圈,检测匹配模块包括多个光敏传感器芯片组成的光敏传感器芯片阵列、多个磁传感器芯片组成的第二磁传感器芯片阵列和产生磁场的多个螺线管组成的第二螺线管组;无线发射板设于驱动装置上,并在驱动装置的驱动下进行移动对准;
第一磁传感器芯片阵列和第二磁传感器芯片阵列的各磁传感器芯片均设置为只允许垂直方向磁力线通过;光敏传感器芯片阵列的各光敏传感器芯片设置为只接收垂直方向光线通过;
当无线充电接收装置和无线充电发射装置精确对准时,第一磁传感器芯片阵列的磁传感器芯片和第二螺线管组的螺线管一一对应,第二磁传感器芯片阵列的磁传感器芯片和第一螺线管组的螺线管一一对应;
步骤2:检测对准模块的第一螺线管组产生磁场,检测匹配模块的第二螺线管组产生磁场;
光敏传感器芯片阵列检测其当前光线是否被遮挡;
在所有的磁传感器芯片安装磁力线屏蔽装置,只允许垂直方向磁力线通过;
第二磁传感器芯片阵列对第一螺线管组产生的磁场进行检测以判断第二磁传感器芯片阵列是否与检测对准模块的第一螺线管组一一对应;第一磁传感器芯片阵列对第二螺线管组产生的磁场进行检测以判断第一磁传感器芯片阵列是否与检测对准模块的第二螺线管组一一对应;
步骤3:驱动装置驱动无线发射板进行移动,直到同时满足:第一磁传感器芯片阵列的磁传感器芯片和第二螺线管组的螺线管一一对应,第二磁传感器芯片阵列的磁传感器芯片和第一螺线管组的螺线管一一对应。
本发明采用上述方案,在具体使用时,驾驶员将汽车泊位设有无线充电发射装置的停车区域地面上(停车位)。地面上的无线充电发射装置中,光敏传感器芯片阵列四个光敏传感器芯片(第一光敏传感器芯片、第二光敏传感器芯片、第三光敏传感器芯片和第四光敏传感器芯片)定时检测是否有车辆停靠在地面无线充电发射装置的上方。如果第一光敏传感器芯片、第二光敏传感器芯片、第三光敏传感器芯片或者第四光敏传感器芯片检测到有汽车停靠,则反馈给驾驶员,例如通过显示屏显示:汽车已经可以进行无线充电。驾驶员开启车载无线充电接收装置的无线充电功能后,无线充电接收装置中磁传感器芯片阵列的四个磁传感器芯片(第一磁传感器芯片、第二磁传感器芯片、第三磁传感器芯片和第四磁传感器芯片)使能开始工作,并令VOUT=H(输出高电平)。第五螺线管、第七螺线管通电产生N极磁场,第六螺线管和第八螺线管通电产生S极磁场。驱动电机开始按照轨迹移动无线充电发射板,轨迹是沿着轨迹XY 方向逐行扫描。当第五螺线管和第七螺线管对准第一磁传感器芯片阵列的N极磁传感器芯片,第六螺线管和第八螺线管对准第一磁传感器芯片阵列的S极磁传感器芯片,则VOUT=L(输出低电平),第一螺线管和第三螺线管通电产生N极磁场,第二螺线管和第四螺线管通电产生S极磁场,若第八磁传感器芯片阵列、第七磁传感器芯片阵列、第六磁传感器芯片阵列或者第五磁传感器芯片阵列中有一个VOUT=L(输出低电平),那么表示对准完毕,则驱动电机停止工作。
本发明采用光敏传感器检测汽车停靠、磁传感器定位技术控制步进电机驱动地面无线充电发射板实现对车载无线充电接收板的自动对准,相对于现有的人工控制汽车的对准方式,具有自动、快速、准确对准的优势。
附图说明
图1为本发明的实施例的汽车与地面的示意图;
图2a为本发明的实施例的无线充电接收装置的示意图;
图2b为本发明的实施例的无线充电发射装置的示意图;
图3为本发明的实施例的光敏传感器芯片阵列示意图;
图4a为本发明的实施例的磁传感器芯片阵列(只检测S极磁场)的示意图;
图4b为本发明的实施例的磁传感器芯片阵列(只检测N极磁场)的示意图;
图5a为本发明的实施例的无线充电发射装置移动轨迹示意图;
图5b为本发明的实施例的无线充电发射装置转动轨迹示意图;
图6为本发明的汽车无线充电对准匹配方法的流程图。
具体实施方式
现结合附图和具体实施方式对本发明进一步说明。
本发明的一种汽车无线充电对准匹配系统,包括设于电动汽车下部的无线充电接收装置1000、设于停车区域地面上的无线充电发射装置2000、用于处理整个系统流程的地面无线充电系统3000以及显示屏4000,无线充电接收装置1000和无线充电发射装置2000在一定距离内建立通讯连接,并自动开始无线电力传输;无线充电接收装置1000包括无线接收板和检测对准模块;无线接收板上设有接收线圈,检测对准模块包括多个磁传感器芯片组成的第一磁传感器芯片阵列和产生磁场的多个螺线管组成的第一螺线管组,第一磁传感器芯片阵列的各磁传感器芯片和第一螺线管组的各螺线管围绕接收线圈而设置;无线充电发射装置包括无线发射板、检测匹配模块以及驱动无线发射板进行移动的驱动装置,其中,无线发射板设有发射线圈,检测匹配模块包括多个光敏传感器芯片组成的光敏传感器芯片阵列、多个磁传感器芯片组成的第二磁传感器芯片阵列和产生磁场的多个螺线管组成的第二螺线管组;无线发射板设于驱动装置上,并在驱动装置的驱动下进行移动对准,本实施例中,实现前后左右移动及顺时针十五度、逆时针十五度转动。
其中,作为一个简单的方案,驱动装置包括横纵轨道,无线发射板可移动的设于该纵横轨道上,并在驱动装置的驱动下在横纵轨道做纵横移动。另外,驱动装置还包括多个电机,用以驱动其轨道上的无线发射板移动。本实施例中,驱动装置包括第一驱动电机、第二驱动电机和微调驱动电机。下面以一个具体实施例来说明本发明。
由于单个磁传感器芯片的磁力线以及单个光敏传感器芯片的光线的强度和密度均有限,不利于校准对位,为了精确快速校准,上述检测对准模块包括多个磁传感器阵列(每个磁传感器阵列由多个磁传感器芯片组成,例如至少3个) 组成的第一磁传感器芯片阵列组和产生磁场的多个螺线管组成的第一螺线管组,第一磁传感器芯片阵列组的各磁传感器阵列和第一螺线管组的各螺线管围绕接收线圈而设置。检测匹配模块包括多个光敏传感器芯片阵列(每个光敏传感器芯片阵列由多个光敏传感器芯片组成,例如至少3个)组成的光敏传感器芯片阵列组、多个磁传感器阵列组成的第二磁传感器芯片阵列组和产生磁场的多个螺线管组成的第二螺线管组。
本实施例中,检测对准模块中,其磁传感器芯片是第一磁传感器芯片阵列组(多个磁传感器阵列组成);检测匹配模块中,光敏传感器是光敏传感器芯片阵列组(多个光敏传感器芯片阵列组成),磁传感器芯片是第二磁传感器芯片阵列组(多个磁传感器阵列组成)。参见图1和图2b,驾驶员将汽车泊位设有无线充电发射装置2000的停车区域地面上(停车位)。地面上的无线充电发射装置2000中,第二磁传感器芯片阵列组至少包括四个磁传感器芯片组,分别记为第五磁传感器芯片组208、第六磁传感器芯片组206、第七磁传感器芯片组204和第八磁传感器芯片组202。光敏传感器芯片阵列至少包括四个光敏传感器芯片组,记为第一光敏传感器芯片组2004、第二光敏传感器芯片组2005、第三光敏传感器芯片组2006和第四光敏传感器芯片组2007,第一光敏传感器芯片组2004、第二光敏传感器芯片组2005、第三光敏传感器芯片组2006和第四光敏传感器芯片组2007按顺时针排列依次设于发射线圈200的四周,并定时检测是否有车辆停靠在地面无线充电发射装置2000的上方。如果第一光敏传感器芯片组2004、第二光敏传感器芯片组2005、第三光敏传感器芯片组2006和第四光敏传感器芯片组2007测到有汽车停靠,则反馈给驾驶员,例如通过显示屏4000显示:汽车已经可以进行无线充电。
参见图2a,无线充电接收装置1000中,第一磁传感器芯片阵列组至少包括 四个磁传感器芯片阵列,分别记为第一磁传感器芯片阵列101、第二磁传感器芯片阵列103、第三磁传感器芯片阵列105和第四磁传感器芯片阵列107,第一磁传感器芯片阵列101、第二磁传感器芯片阵列103、第三磁传感器芯片阵列105和第四磁传感器芯片阵列107顺时针围绕接收线圈100而设置。驾驶员开启车载无线充电接收装置1000的无线充电功能后,第一磁传感器芯片阵列101、第二磁传感器芯片阵列103、第三磁传感器芯片阵列105和第四磁传感器芯片阵列107使能开始工作,VOUT=H(输出高电平)。
参见图2a和图2b,本实施例中,第一螺线管组包括四个螺线管,记为第一螺线管102、第二螺线管104、第三螺线管106和第四螺线管108,第二螺线管组包括四个螺线管,记为第五螺线管207、第六螺线管205、第七螺线管203和第八螺线管201。
第八螺线管201、第六螺线管205通电产生S极磁场,第七螺线管203、第五螺线管207通电产生N极磁场。第一驱动电机2001、第二驱动电机2002开始按照轨迹移动无线充电发射装置2000,轨迹是沿着轨迹XY方向逐行扫描。
当第八螺线管201、第六螺线管205对准S极磁传感器芯片中的第一磁传感器芯片阵列101和第三磁传感器芯片阵列105,第七螺线管203、第五螺线管207对准N极磁传感器芯片阵列中的第二磁传感器芯片103阵列和第四磁传感器芯片阵列107,第一磁传感器芯片阵列101、第二磁传感器芯片阵列103、第三磁传感器芯片阵列105、第四磁传感器芯片阵列107,VOUT=L(输出低电平)。第一螺线管102、第三螺线管106通电产生N极磁场,第二螺线管104、第四螺线管108通电产生S极磁场,若第八磁传感器芯片阵列202、第七磁传感器芯片阵列204、第六磁传感器芯片阵列206、第五磁传感器芯片阵列208其中 有一个VOUT=L(输出低电平),则第一驱动电机2001和第二驱动电机2002停止。
图4a和图4b分别是只检测S极磁场的磁传感器芯片阵列和只检测N极磁场的磁传感器芯片阵列;其中,对于磁传感器芯片阵列,在无磁场穿过磁传感器芯片,则VOUT=H,若磁场穿过磁传感器芯片阵列当中的任一颗,令VOUT=L。
对于光敏传感器芯片阵列,其中任一芯片检测到其上方光线被遮挡,则令VOUT=L。
上述第一磁传感器芯片阵列和第二磁传感器芯片阵列的各磁传感器芯片均设置为只允许垂直方向磁力线通过,可通过安装磁力线屏蔽装置来实现;光敏传感器芯片阵列的各光敏传感器芯片设置为只接收垂直方向光线通过。
开启微调驱动电机2003,以无线充电发射装置2000中心位置顺时针最大转动15度,如果在转动过程中第八磁传感器芯片阵列202、第七磁传感器芯片阵列204、第六磁传感器芯片阵列206、第五磁传感器芯片阵列208全部满足VOUT=L(输出低电平),此时完成位置匹配,微调驱动电机2003停止。如果第八磁传感器芯片阵列202、第七磁传感器芯片阵列204、第六磁传感器芯片阵列206、第五磁传感器芯片阵列208没有全部满足VOUT=L,那么微调驱动电机2003回到原点,以无线充电发射装置2000中心位置逆时针最大转动15度,如果在转动过程中第八磁传感器芯片阵列202、第七磁传感器芯片阵列204、第六磁传感器芯片阵列206、第五磁传感器芯片阵列208全部满足VOUT=L,此时完成位置匹配,微调驱动电机2003停止;否则,微调驱动电机2003回到原点,第一驱动电机2001、第二驱动电机2002重新启动,沿着轨迹XY方向逐行 继续扫描步进。如此循环,直到第八磁传感器芯片阵列202、第七磁传感器芯片阵列204、第六磁传感器芯片阵列206、第五磁传感器芯片阵列208全部满足VOUT=L(输出低电平),此时完成位置匹配,锁定第一磁传感器芯片阵列101、第二磁传感器芯片阵列103、第三磁传感器芯片阵列105、第四磁传感器芯片阵列107的VOUT状态,锁定第八磁传感器芯片阵列202、第七磁传感器芯片阵列204、第六磁传感器芯片阵列206、第五磁传感器芯片阵列208的VOUT状态;第一螺线管102、第二螺线管104、第三螺线管106、第四螺线管108断电,第八螺线管201、第七螺线管203、第六螺线管205、第五螺线管207断电;开启充电线圈200开始发射能量,车载接收线圈100开始接受能量。图5a为本发明的无线充电发射装置移动轨迹示意图,图5b为本发明的实施例的无线充电发射装置转动轨迹示意图。
上述过程中,第一驱动电机2001、第二驱动电机2002驱动电机移动无线充电发射装置2000,微调驱动电机2003用于水平微调转动无线充电发射装置2000。
汽车泊车后,置于车底的车载无线充电接收装置1000的四角位置AA、BB、CC、DD(见图2a),接近地面无线充电系统3000四角位置AAA、BBB、CCC、DDD(见图2b)。若完全对准匹配,AA、BB、CC、DD处于A、B、C、D正上方,接收线圈100、第一磁传感器芯片阵列101、第一螺线管102、第二磁传感器芯片阵列103、第二螺线管104、第三磁传感器芯片阵列105、第三螺线管106、第四磁传感器芯片阵列107、第四螺线管108将处在发射线圈200、第八螺线管201、第八磁传感器芯片阵列202、第七螺线管203、第七磁传感器芯片阵列204、第六螺线管205、第六磁传感器芯片阵列206、第五螺线管207、第五磁传感器芯片阵列208正上方。
图6为本发明的实际应用时,汽车无线充电对准匹配方法的流程图。参见图6,本发明的汽车无线充电对准匹配方法,包括如下步骤:
步骤1:将车停靠在无线充电停车位上;
步骤2:系统检测到汽车停靠,也就是说第一光敏传感器芯片组2004、第二光敏传感器芯片组2005、第三光敏传感器芯片组2006和第四光敏传感器芯片组2007全部满足VOUT=L;
步骤3:车载接收端的无线充电接收装置1000启动检测对准模块,第一磁传感器芯片阵列101、第二磁传感器芯片阵列103、第三磁传感器芯片阵列105、第四磁传感器芯片阵列107使能;
步骤4:启动匹配检测模块;
步骤5:第八螺线管201、第六螺线管205通电产生S极磁场,第七螺线管203、第五螺线管207通电产生N极磁场;
步骤6:在X、Y方向,第一驱动电机2001和第二驱动电机2002开始驱动无线充电发射装置2000移动;
步骤7:第八螺线管201、第六螺线管205对准第一磁传感器芯片阵列101、第三磁传感器芯片阵列105,第七螺线管203、第五螺线管207对准第二磁传感器芯片阵列103、第四磁传感器芯片阵列107,然后当第一磁传感器芯片阵列101、第二磁传感器芯片阵列103、第三磁传感器芯片阵列105、第四磁传感器芯片阵列107全部满足VOUT=L,则转到步骤8;
步骤8:第一螺线管102、第三螺线管106通电产生N极磁场,第二螺线管104、第四螺线管108通电产生S极磁场;
步骤9:第八磁传感器芯片阵列202、第七磁传感器芯片阵列204、第六磁传感器芯片阵列206、第五磁传感器芯片阵列208中只要其中一个VOUT=L,则转到步骤10;
步骤10:X、Y方向第一驱动电机2001、第二驱动电机2002停止,微调驱动电机2003启动,开始进入微调模式,转动无线充电发射装置2000;
步骤11:第一螺线管102、第三螺线管106对准第八磁传感器芯片阵列202、第六磁传感器芯片阵列206,第二螺线管104、第四螺线管108对准第七磁传感器芯片阵列204、第五磁传感器芯片阵列208,然后当第八磁传感器芯片阵列202、第七磁传感器芯片阵列204、第六磁传感器芯片阵列206、第五磁传感器芯片阵列208全部满足VOUT=L,则转到步骤12;
步骤12:锁定第一磁传感器芯片阵列101、第二磁传感器芯片阵列103、第三磁传感器芯片阵列105、第四磁传感器芯片阵列107的VOUT状态,锁定第八磁传感器芯片阵列202、第七磁传感器芯片阵列204、第六磁传感器芯片阵列206、第五磁传感器芯片阵列208的VOUT状态,第一螺线管102、第二螺线管104、第三螺线管106、第四螺线管108断电,第八螺线管201、第七螺线管203、第六螺线管205、第五螺线管207断电;
步骤13:开启充电线圈200开始发射能量,车载接收线圈100开始接受能量;
步骤14:完成匹配。
本发明采用光敏传感器+磁传感器的对准方式,在非充电状态具有低功耗运行的优点。另外,本发明采用光敏传感器检测汽车停靠、采用磁传感器来定位,并控制步进电机驱动地面的无线充电发射板来实现对车载无线充电接收板 的自动对准,相对于现有的人工控制汽车的对准方式,具有自动、快速、准确对准的优势。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (9)

  1. 一种汽车无线充电对准匹配系统,包括设于电动汽车下部的无线充电接收装置、设于停车区域地面上的无线充电发射装置,无线充电接收装置和无线充电发射装置在一定距离内建立通讯连接,并自动开始无线电力传输;
    所述无线充电接收装置包括无线接收板和检测对准模块;无线接收板上设有接收线圈,检测对准模块包括多个磁传感器芯片组成的第一磁传感器芯片阵列和产生磁场的多个螺线管组成的第一螺线管组,第一磁传感器芯片阵列的各磁传感器芯片和第一螺线管组的各螺线管围绕接收线圈而设置;
    所述无线充电发射装置包括无线发射板、检测匹配模块以及驱动无线发射板进行移动的驱动装置,其中,无线发射板设有发射线圈,检测匹配模块包括多个光敏传感器芯片组成的光敏传感器芯片阵列、多个磁传感器芯片组成的第二磁传感器芯片阵列和产生磁场的多个螺线管组成的第二螺线管组;所述无线发射板设于驱动装置上,并在驱动装置的驱动下实现移动和对准。
  2. 根据权利要求1所述的一种汽车无线充电对准匹配系统,其特征在于:所述第一磁传感器芯片阵列至少包括四个磁传感器芯片,分别记为第一磁传感器芯片、第二磁传感器芯片、第三磁传感器芯片和第四磁传感器芯片,第一磁传感器芯片、第二磁传感器芯片、第三磁传感器芯片和第四磁传感器芯片顺时针围绕接收线圈而设置;第一螺线管组至少包括四个螺线管,记为第一螺线管、第二螺线管、第三螺线管和第四螺线管,第一螺线管、第二螺线管、第三螺线管、第四螺线管分别与第一磁传感器芯片、第二磁传感器芯片、第三磁传感器芯片和第四磁传感器芯片间隔设置。
  3. 根据权利要求2所述的一种汽车无线充电对准匹配系统,其特征在于:所述第一螺线管和第三螺线管产生相同极的磁场,第二螺线管和第四螺线管产生相同极的磁场,且第一螺线管和第二螺线管产生不同极的磁场;同时,第一 磁传感器芯片和第三磁传感器芯片用来检测同一极的磁场;第二磁传感器芯片和第四磁传感器芯片用来检测同一极磁场。
  4. 根据权利要求1所述的一种汽车无线充电对准匹配系统,其特征在于:第二磁传感器芯片阵列至少包括四个磁传感器芯片,分别记为第五磁传感器芯片、第六磁传感器芯片、第七磁传感器芯片和第八磁传感器芯片,第五磁传感器芯片、第六磁传感器芯片、第七磁传感器芯片和第八磁传感器芯片按顺时针排列依次设于发射线圈的四周;第二螺线管组至少包括四个螺线管,记为第五螺线管、第六螺线管、第七螺线管和第八螺线管,第五螺线管、第六螺线管、第七螺线管、第八螺线管分别与第五磁传感器芯片、第六磁传感器芯片、第七磁传感器芯片和第八磁传感器芯片间隔设置。
  5. 根据权利要求4所述的一种汽车无线充电对准匹配系统,其特征在于:所述第五螺线管和第七螺线管产生相同极的磁场,第六螺线管和第八螺线管产生相同极的磁场,且第五螺线管和第六螺线管产生不同极的磁场;同时,第五磁传感器芯片和第七磁传感器芯片用来检测同一极的磁场;第六磁传感器芯片和第八磁传感器芯片用来检测同一极的磁场,且第五磁传感器芯片和第六磁传感器芯片检测不同极的磁场。
  6. 根据权利要求1或2或3或4或5所述的一种汽车无线充电对准匹配系统,其特征在于:所述光敏传感器芯片阵列至少包括四个光敏传感器芯片,记为第一光敏传感器芯片、第二光敏传感器芯片、第三光敏传感器芯片和第四光敏传感器芯片,第一光敏传感器芯片、第二光敏传感器芯片、第三光敏传感器芯片和第四光敏传感器芯片设于第二磁传感器芯片阵列和第二螺线管组的外围。
  7. 根据权利要求1所述的一种汽车无线充电对准匹配系统,其特征在于:所述 驱动装置包括横纵轨道,无线发射板可移动的设于该纵横轨道上,并在驱动装置的驱动下在横纵轨道做纵横移动。
  8. 根据权利要求1或7所述的一种汽车无线充电对准匹配系统,其特征在于:所述驱动装置包括分别安装于无线发射板四周的多个驱动电机。
  9. 一种汽车无线充电对准匹配方法,包括如下步骤:
    步骤1:在电动汽车底部设置无线充电接收装置,在停车区域地面上设置无线充电发射装置;
    无线充电接收装置包括无线接收板和检测对准模块,无线接收板上设有接收线圈,检测对准模块包括多个磁传感器芯片组成的第一磁传感器芯片阵列和产生磁场的多个螺线管组成的第一螺线管组;
    无线充电发射装置包括无线发射板、检测匹配模块以及驱动无线发射板进行移动的驱动装置,无线发射板设于驱动装置上;无线发射板设有发射线圈,检测匹配模块包括多个光敏传感器芯片组成的光敏传感器芯片阵列、多个磁传感器芯片组成的第二磁传感器芯片阵列和产生磁场的多个螺线管组成的第二螺线管组;无线发射板设于驱动装置上,并在驱动装置的驱动下实现移动和对准;
    第一磁传感器芯片阵列和第二磁传感器芯片阵列的各磁传感器芯片均设置为只允许垂直方向磁力线通过;光敏传感器芯片阵列的各光敏传感器芯片设置为只接收垂直方向光线通过;
    步骤2:检测对准模块的第一螺线管组产生磁场,检测匹配模块的第二螺线管组产生磁场;
    光敏传感器芯片阵列检测其当前光线是否被遮挡;
    在所有的磁传感器芯片安装磁力线屏蔽装置,只允许垂直方向磁力线通过;第二磁传感器芯片阵列对第一螺线管组产生的磁场进行检测以判断第二磁传感器芯片阵列是否与检测对准模块的第一螺线管组一一对应;第一磁传感器芯片阵列对第二螺线管组产生的磁场进行检测以判断第一磁传感器芯片阵列是否与检测对准模块的第二螺线管组一一对应;
    步骤3:驱动装置驱动无线发射板进行移动,直到同时满足第一磁传感器芯片阵列的磁传感器芯片和第二螺线管组的螺线管一一对应,第二磁传感器芯片阵列的磁传感器芯片和第一螺线管组的螺线管一一对应,则完成对准。
PCT/CN2016/075848 2016-01-20 2016-03-08 一种汽车无线充电对准匹配系统及方法 WO2017124616A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/003,715 US10427549B2 (en) 2016-01-20 2018-06-08 Aligning and matching system and method for wireless charging of automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610034847.0 2016-01-20
CN201610034847.0A CN105539186B (zh) 2016-01-20 2016-01-20 一种汽车无线充电对准匹配系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/003,715 Continuation US10427549B2 (en) 2016-01-20 2018-06-08 Aligning and matching system and method for wireless charging of automobile

Publications (1)

Publication Number Publication Date
WO2017124616A1 true WO2017124616A1 (zh) 2017-07-27

Family

ID=55818904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075848 WO2017124616A1 (zh) 2016-01-20 2016-03-08 一种汽车无线充电对准匹配系统及方法

Country Status (3)

Country Link
US (1) US10427549B2 (zh)
CN (1) CN105539186B (zh)
WO (1) WO2017124616A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646749B (zh) * 2017-12-01 2019-01-01 林久晃 Wireless automatic charging system for electric vehicles
CN109228900A (zh) * 2018-08-02 2019-01-18 三峡大学 一种车底式电动汽车无线充电系统
CN110323844A (zh) * 2018-03-30 2019-10-11 Tdk株式会社 无线受电装置、及无线电力传输系统

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105966260A (zh) * 2016-06-20 2016-09-28 黄杰 电动汽车无线充电自动定位装置
CN108226385B (zh) * 2016-12-14 2020-09-08 盟立自动化股份有限公司 环境侦测系统
WO2018113489A1 (zh) * 2016-12-20 2018-06-28 上海掌门科技有限公司 一种非接触式充电系统和方法
CN106849215A (zh) * 2016-12-20 2017-06-13 上海掌门科技有限公司 一种非接触式充电系统和方法
RU2719085C1 (ru) * 2017-01-30 2020-04-17 Ниссан Мотор Ко., Лтд. Способ помощи при парковке и устройство помощи при парковке
CN106936189A (zh) * 2017-04-14 2017-07-07 特斯联(北京)科技有限公司 一种非接触式充电系统
US10493855B2 (en) 2017-04-19 2019-12-03 Arnold Chase Intelligent autonomous vehicle charging system
US10850634B2 (en) * 2017-10-20 2020-12-01 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-turn configurable grid charging coil
CN107672473A (zh) * 2017-10-30 2018-02-09 宁波力芯科信息科技有限公司 一种用于车库的快速无线充电装置及充电控制方法
US10668829B2 (en) * 2018-05-04 2020-06-02 Witricity Corporation Passive flux bridge for charging electric vehicles
WO2019223720A1 (zh) * 2018-05-22 2019-11-28 苏州宝时得电动工具有限公司 自动工作系统和自移动设备控制方法
US10988042B1 (en) 2018-10-12 2021-04-27 Arnold Chase Vehicle charging system
CN109435717A (zh) * 2018-12-17 2019-03-08 北华大学 一种电动汽车无线充电定位系统
CN109849697A (zh) * 2019-01-14 2019-06-07 深圳大学 一种用于车辆无线充电对位偏差检测装置和方法
CN109950980A (zh) * 2019-03-25 2019-06-28 武汉理工大学 用于无人机的自主无线充电平台及控制方法
CN109895642B (zh) * 2019-04-18 2023-11-17 合肥有感科技有限责任公司 一种电动汽车无线充电定位系统及方法
CN110103741A (zh) * 2019-05-24 2019-08-09 北京有感科技有限责任公司 一种电动汽车无线充电系统的线圈对位结构
CN112152325B (zh) 2019-06-28 2023-06-20 北京小米移动软件有限公司 线圈位置调整方法、装置和存储介质
CN112421787B (zh) * 2019-08-21 2023-12-19 北京小米移动软件有限公司 无线充电装置、系统、控制方法、充电设备及存储介质
CN110649719A (zh) * 2019-08-23 2020-01-03 华为技术有限公司 一种无线充电方法及电子设备
CN112994130A (zh) * 2019-12-16 2021-06-18 北京小米移动软件有限公司 无线充电对准方法及装置、电子设备、无线充电设备
CN111833536A (zh) * 2020-07-10 2020-10-27 济南爱默生电源有限公司 一种地沟式自动寻的无线充电停车场系统及方法
CN112477663A (zh) * 2020-11-12 2021-03-12 东南大学 一种无线充电汽车的定位方法及其系统、汽车
KR102268919B1 (ko) * 2021-01-29 2021-06-25 임상우 전기자동차용 무선전력 충전시스템 및 그에 따른 무선전력 충전방법
US11485246B1 (en) 2021-04-05 2022-11-01 Arnold Chase Individualized vehicular charging mat
CN113479078B (zh) * 2021-05-26 2022-12-13 中汽研汽车检验中心(天津)有限公司 一种电动汽车无线充电车位匹配方法
CN116331010B (zh) * 2023-05-26 2024-03-19 威泊(上海)新能源科技股份有限公司 一种电动汽车移动无线充电全自动启动设备的方法
CN117799477A (zh) * 2024-03-01 2024-04-02 福建时代星云科技有限公司 一种新型充电站及其充电资源自动分配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161530A1 (en) * 2010-12-28 2012-06-28 Tdk Corporation Wireless power feeder and wireless power receiver
CN103633697A (zh) * 2013-11-22 2014-03-12 北京航空航天大学 电磁感应式非接触充电系统及其对准方法
CN104485723A (zh) * 2014-12-31 2015-04-01 深圳市泰金田科技有限公司 电动汽车无线充电装置定位系统
CN205311361U (zh) * 2016-01-20 2016-06-15 厦门新页科技有限公司 一种汽车无线充电对准匹配系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466654B2 (en) * 2008-07-08 2013-06-18 Qualcomm Incorporated Wireless high power transfer under regulatory constraints
US8598743B2 (en) * 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US10343535B2 (en) * 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
CN103283110B (zh) * 2010-12-27 2016-01-13 日产自动车株式会社 非接触充电装置
US9637014B2 (en) * 2011-06-28 2017-05-02 Wireless Ev Charge, Llc Alignment, verification, and optimization of high power wireless charging systems
CN105119335B (zh) * 2015-09-01 2017-04-19 捷开通讯科技(上海)有限公司 充电控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161530A1 (en) * 2010-12-28 2012-06-28 Tdk Corporation Wireless power feeder and wireless power receiver
CN103633697A (zh) * 2013-11-22 2014-03-12 北京航空航天大学 电磁感应式非接触充电系统及其对准方法
CN104485723A (zh) * 2014-12-31 2015-04-01 深圳市泰金田科技有限公司 电动汽车无线充电装置定位系统
CN205311361U (zh) * 2016-01-20 2016-06-15 厦门新页科技有限公司 一种汽车无线充电对准匹配系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646749B (zh) * 2017-12-01 2019-01-01 林久晃 Wireless automatic charging system for electric vehicles
CN110323844A (zh) * 2018-03-30 2019-10-11 Tdk株式会社 无线受电装置、及无线电力传输系统
CN109228900A (zh) * 2018-08-02 2019-01-18 三峡大学 一种车底式电动汽车无线充电系统
CN109228900B (zh) * 2018-08-02 2023-10-27 三峡大学 一种车底式电动汽车无线充电系统

Also Published As

Publication number Publication date
CN105539186A (zh) 2016-05-04
CN105539186B (zh) 2017-07-07
US10427549B2 (en) 2019-10-01
US20180290550A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2017124616A1 (zh) 一种汽车无线充电对准匹配系统及方法
CN205311361U (zh) 一种汽车无线充电对准匹配系统
WO2017129144A1 (zh) 一种用于立体车库的非接触式感应充电装置
CN103336268B (zh) 感应式非接触充电位置对正装置及其方法
CN207078322U (zh) 一种用于高压输电线路巡检的可续航无人机
CN105186593A (zh) 一种电动汽车无线充电发射接收自动对准系统
CN104682581B (zh) 基于分段导轨均衡场强的可移动设备动态无线供电装置及其动态无线供电方法
CN105691222A (zh) 一种接收电磁铁组件位置可调的电动汽车无线充电装置
CN103683521A (zh) 激光定位智能对接电动汽车无线充电收发系统
US20120319644A1 (en) Contactless charging system
JP5839039B2 (ja) 移動車両給電システム
CN204856221U (zh) 电动汽车无线充电发射接收自动对准系统
JP5966407B2 (ja) 移動車両及び非接触電力伝送装置
KR20150112446A (ko) 차량 무선 충전 시스템
JP5966332B2 (ja) 移動車両及び非接触電力伝送装置
CN109017426A (zh) 一种集成辅助对位功能的电动汽车无线充电系统
CN209948766U (zh) 一种巡检机器人无线充电系统
CN204808055U (zh) 一种电动汽车无线充电发射接收自动对准系统
CN109895642B (zh) 一种电动汽车无线充电定位系统及方法
JP2011116246A (ja) 電力転送装置、電力転送システム及び電力転送方法
CN218086069U (zh) 一种太阳能无线充电停机坪装置
CN110011392A (zh) 一种巡检机器人无线充电系统及方法
CN207631004U (zh) 自对准无线充电系统
CN205753664U (zh) 自动移动路障系统
CN114142624B (zh) 无人机坞站式无线充电装置及其向无人机无线供电的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885889

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.2.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16885889

Country of ref document: EP

Kind code of ref document: A1