WO2017124329A1 - 脉冲波速度的检测方法和装置及智能手环 - Google Patents

脉冲波速度的检测方法和装置及智能手环 Download PDF

Info

Publication number
WO2017124329A1
WO2017124329A1 PCT/CN2016/071462 CN2016071462W WO2017124329A1 WO 2017124329 A1 WO2017124329 A1 WO 2017124329A1 CN 2016071462 W CN2016071462 W CN 2016071462W WO 2017124329 A1 WO2017124329 A1 WO 2017124329A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
signal
antenna
phase shifter
center point
Prior art date
Application number
PCT/CN2016/071462
Other languages
English (en)
French (fr)
Inventor
刘彤浩
胡格丽
Original Assignee
悦享趋势科技(北京)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 悦享趋势科技(北京)有限责任公司 filed Critical 悦享趋势科技(北京)有限责任公司
Priority to PCT/CN2016/071462 priority Critical patent/WO2017124329A1/zh
Publication of WO2017124329A1 publication Critical patent/WO2017124329A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves

Definitions

  • the present invention relates to the field of detection, and in particular to a method and device for detecting pulse wave velocity and a smart bracelet.
  • the Pulse Wave Velocity (PWV) of the arteries is a very important physiological index of human body. It can be used to calculate a number of human physiological indexes such as blood flow velocity and blood pressure of the artery through pulse wave velocity, which is an important physiological health of the human body. Physiological parameters can be used to monitor human health and prevent related diseases by detecting pulse wave velocity.
  • the conventional method for detecting pulse wave velocity in the related art is to use a pressure sensor for measurement.
  • PulsePen which is currently used globally
  • PulsePen when measuring, places one pressure sensor at the carotid artery and another pressure sensor at the femoral artery.
  • Measure the time difference between the two pulse sensors receiving the pulse wave measure the distance between the two pressure sensors on the human body with a tape measure, and estimate the actual internal artery of the human body based on the distance between the two pressure sensors.
  • Distance, the estimated arterial distance from the blood vessel is divided by the time difference, and the pulse wave velocity is obtained, which is the measurement method of the current global gold standard.
  • This method requires two expensive pressure sensors, which are bulky, inconvenient to carry, and inconvenient for one person to perform measurement operations, and require assistance from others.
  • this method requires a tape measure to measure the distance, and the measurement process is complicated.
  • the main object of the present invention is to provide a method and device for detecting pulse wave velocity and a smart bracelet to solve the complicated operation of the method for measuring pulse wave velocity in the related art.
  • a pulse wave velocity detecting device comprises: a transmitting antenna for transmitting a radar signal; a first receiving antenna for receiving a reflected signal of the radar signal reflected by the artery to obtain a first received signal; and a second receiving antenna for receiving the radar signal for reflection by the artery Reflecting the signal to obtain a second received signal; the first phase shifter is connected to the first receiving antenna for adjusting a first receiving center point for receiving the first received signal; and the second phase shifter is opposite to the second receiving antenna a connection for adjusting a second receiving center point for receiving the second received signal; and a central processor, the first phase shifter and the second The phase shifter is connected to determine a receiving point distance between the first receiving center point and the second receiving center point, calculate a receiving time difference between the first receiving signal and the second receiving signal, and calculate according to the receiving point distance and the receiving time difference Pulse wave speed.
  • the transmit antenna includes one or more transmit antennas.
  • the device further includes: a control switch respectively connected to the central processor and the plurality of transmitting antennas, configured to switch the plurality of transmitting antennas to alternately transmit the radar signals according to the preset time interval according to the control of the central processor.
  • first phase shifter and the second phase shifter are any one of the following phase shifters: a tunable capacitor; an analog phase shifter; and a digital phase shifter.
  • the device includes one or more receiving antennas in addition to the first receiving antenna and the second receiving antenna.
  • the transmitting antenna, the first receiving antenna, and the second receiving antenna are integrated on the flexible circuit board.
  • the apparatus further includes a radar signal generating module for transmitting the radar signal.
  • a smart bracelet is provided.
  • the smart wristband includes the pulse wave velocity detecting device of the present invention.
  • a method of detecting a pulse wave velocity includes: controlling a transmitting antenna to transmit a radar signal; adjusting a first phase shifter to adjust a first receiving center point at which the first receiving antenna receives the first received signal, wherein the first received signal is a radar received by the first receiving antenna The signal passes through the reflected signal reflected by the artery, the first receiving center point is a receiving point at which the first receiving antenna receives the first receiving signal; the first receiving antenna receives the first receiving signal through the first receiving center point; and the second phase shifter is adjusted to Adjusting a second receiving center point of the second receiving antenna to receive the second receiving signal, wherein the second receiving signal is a reflected signal of the radar signal received by the second receiving antenna and reflected by the artery, and the second receiving center point is the second receiving antenna Receiving a receiving point of the second receiving signal; the second receiving antenna receives the second receiving signal through the second receiving center point; determining a receiving point distance between the
  • the transmitting antenna includes a first transmitting antenna and a second transmitting antenna
  • controlling the transmitting antenna to transmit the radar signal includes: controlling the first transmitting antenna and the second transmitting antenna to alternately transmit the radar signal according to a preset time interval, wherein the first receiving signal The radar signal transmitted by the first transmitting antenna received by the first receiving antenna passes through the reflected signal reflected by the artery, and the second received signal is the reflected signal of the radar signal transmitted by the second transmitting antenna received by the second receiving antenna and reflected by the artery.
  • the method further includes: determining the first control parameter, wherein the first control parameter is the first receiving The control parameter of the first phase shifter corresponding to the center point
  • the method further includes: determining the second control parameter, wherein The second control parameter is a control parameter of the second phase shifter corresponding to the second receiving center point, and determining the receiving point distance between the first receiving center point and the second receiving center point comprises: according to the first control parameter and the second The control parameter determines a receiving point distance between the first receiving center point and the second receiving center point.
  • calculating the pulse wave velocity according to the preset algorithm according to the receiving point distance and the receiving time difference comprises: determining the length of the artery according to the receiving point distance, wherein the artery length is the first reflection point on the artery and the second reflection point on the artery a distance between the first reflection point being a reflection point on the artery corresponding to the first received signal, the second reflection point being a reflection point on the artery corresponding to the second received signal, and dividing the length of the artery by the reception time difference to obtain Pulse wave speed.
  • adjusting the first phase shifter to adjust the first receiving center point of the first receiving antenna to receive the first receiving signal comprises: adjusting the first phase shifter to maximize the signal amplitude of the first receiving signal, and adjusting the second shift
  • the phaser adjusting the second receiving center point of the second receiving antenna to receive the second received signal comprises: adjusting the second phase shifter to maximize the signal amplitude of the second received signal.
  • the invention adopts a transmitting antenna for transmitting a radar signal, a first receiving antenna and a second receiving antenna for receiving a reflected signal of the radar signal reflected by the artery; and a first phase shifter connected to the first receiving antenna to adjust the receiving a first receiving center point of the received signal, and a second phase shifter connected to the second receiving antenna adjusts a second receiving center point for receiving the second received signal, and is connected to the first phase shifter and the second phase shifter
  • the central processing unit calculates the pulse wave velocity according to the receiving point distance between the first receiving center point and the second receiving center point and the receiving time difference between the first receiving signal and the second receiving signal, and solves the measurement of the pulse wave speed in the related art.
  • the method operates on complex problems, and thus achieves the effect of simplifying the measurement of the pulse wave velocity operation.
  • FIG. 1 is a schematic view of a pulse wave velocity detecting apparatus according to a first embodiment of the present invention
  • Figure 2 is a schematic diagram of a pulse wave velocity detecting apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a flow chart of a method of detecting a pulse wave velocity according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a smart bracelet in accordance with an embodiment of the present invention.
  • Embodiments of the present invention provide a pulse wave velocity detecting device.
  • FIG. 1 is a schematic diagram of a pulse wave velocity detecting apparatus according to a first embodiment of the present invention.
  • the apparatus includes a transmitting antenna 10, a first receiving antenna 20, a second receiving antenna 30, a first phase shifter 40, a second phase shifter 50 and a central processing unit 60.
  • the transmitting antenna 10 is used to transmit a radar signal.
  • the transmitting antenna 10 may be an antenna in the form of a wire disposed on a flexible circuit board.
  • the radar signal may be a radar signal generated by a Doppler radar or a radar signal generated by a frequency modulation radar.
  • the radar signal is transmitted through the transmitting antenna 10, and after reflecting the target, it is reflected back to the reflected signal.
  • the radar can recognize the target as an artery.
  • the first receiving antenna 20 is configured to receive a reflected signal of the radar signal reflected by the artery and obtain a first received signal; the second receiving antenna 30 is configured to receive the reflected signal of the radar signal reflected by the artery and obtain a second received signal, when the first receiving When the position of the antenna 20 and the second receiving antenna 30 are different, the positions of the reflection points corresponding to the arteries of the first received signal and the second received signal are different.
  • the first receiving antenna 20 and the second receiving antenna 30 may be antennas in the form of wires integrated with the transmitting antenna 10 on a flexible circuit board.
  • the apparatus may further comprise a radar signal generating module for transmitting a radar signal, preferably the radar signal generating module is a Doppler radar, and the Doppler radar can detect the moving target.
  • the first phase shifter 40 is connected to the first receiving antenna 20 for adjusting a first receiving center point for receiving the first received signal; the second phase shifter 50 is connected to the second receiving antenna 30 for adjusting the receiving end. Second receiving signal The second receiving center point.
  • the first phase shifter 40 is coupled to the central processor 60 and can receive control from the central processor 60.
  • the central processor 60 adjusts the phase shift of the signal received by the first phase shifter 40 to the first receiving antenna 20 by adjusting the control parameters of the first phase shifter 40, wherein the phase shift is a change in the phase of the signal, for the first
  • the phase shift of the received signal may change the amplitude of the first received signal, and the first phase shifter 40 is adjusted to phase shift the first received signal, and the phase shift of the first received signal is equivalent to the first receive antenna 20 relative to the artery.
  • the displacement of the position of the receiving point of the reflection point of the reflected radar signal, that is, the equivalent receiving point on the first receiving antenna 20, the receiving point on the first receiving antenna 20 is referred to as the first receiving center point
  • the reflection point on the corresponding artery is the first reflection point
  • the central processing unit 60 can save the control parameter of the first phase shifter 40, and can obtain the phase shift of the first received signal according to the control parameter, thereby obtaining the first A relative position of the receiving center point in the first receiving antenna 20.
  • the central processing unit 60 can apply the same processing method to the second phase shifter 50 and determine the relative position of the second receiving center point in the first receiving antenna 20.
  • the positional relationship between the first receiving antenna 20 and the second receiving antenna 30 is known, and therefore, the central processing unit 60 can determine the receiving point distance between the first receiving center point and the second receiving center point.
  • the central processing unit 60 can adjust the first phase shifter 40 until the signal amplitude of the first received signal is the largest, or the signal amplitude of the first received signal is close to the maximum value, at which time the first receiving antenna 20 receives
  • the signal of the radar signal reflected by the artery is the strongest, that is, the reflection point of the radar signal reflected on the artery is closest to the distance of the first receiving antenna 20.
  • the central processor 60 can also adjust the second phase shifter 50 to maximize or approach the signal amplitude of the second received signal.
  • the first phase shifter 40 and the second phase shifter 50 may be any one of the following phase shifters: a tunable capacitor, an analog phase shifter, and a digital phase shifter.
  • the adjustable capacitor may be connected in parallel with the first receiving antenna 20 or the second receiving antenna 30 and connected to the central processing unit 60; the analog phase shifter may be connected in series with the first receiving antenna 20 or the second receiving antenna 30 and processed centrally
  • the controllers 60 are connected; the digital phase shifters can be connected in series with the first receiving antenna 20 or the second receiving antenna 30 and connected to the central processing unit 60.
  • the first phase shifter 40 and the second phase shifter 50 adopt any one of the phase shifters described above to adjust their own control parameters according to the control of the central processing unit 60 to adjust the first received signal or the second receive.
  • the phase shift of the signal For the tunable capacitor, the central processor 60 can adjust the phase shift of the received signal to the receiving antenna by adjusting the DC voltage applied to the tunable capacitor, by phase shifting And the period T of the radar signal can calculate the delay to the received signal Delay Phase shift
  • the relationship is
  • the adjustable capacitor can be a varactor, and Table 1 is the voltage V of the varactor and the corresponding delay. Relationship table.
  • the central processor 60 collects the signals received by the two receiving antennas, and calculates the first received signal according to the collected first received signal and the second received signal.
  • the second received signal receives a received time difference of the reflected signal of the same radar signal, the received time difference being a time difference of the received signal caused by the distance between the first reflected point and the second reflected point on the artery.
  • the central processor 60 calculates the pulse wave velocity based on the received dot distance and the received time difference after calculating the reception time difference.
  • the receiving point distance is a receiving point distance between the first receiving center point and the second receiving center point, which may be approximated as a distance between two reflection points on the artery, or may be calculated by using the prior art The distance between the reflection points. For example, a linear distance between the first receiving center point and the first reflecting point can be estimated according to US Patent No.
  • the transmitting antenna 10 may include one or more transmitting antennas, and the detecting device for the pulse wave speed may include one or more receiving antennas in addition to the first receiving antenna 20 and the second receiving antenna 30.
  • the detecting device of the pulse wave speed may control the plurality of transmitting antennas by using a control switch, and the control switch is respectively connected to the central processing unit 60 and the plurality of transmitting antennas, and the plurality of transmitting antennas may be switched according to the control of the central processing unit 60 according to the preset. Radar signals are alternately transmitted at time intervals.
  • the two transmitting antennas may be used to transmit the radar signal, and the transmitting antenna 10 includes the first transmitting antenna 10 and the second.
  • the transmitting antenna 10 includes the first transmitting antenna 10 and the second.
  • the first transmitting antenna 10 is spaced apart from the first receiving antenna 20 by a first predetermined distance
  • the second transmitting antenna 10 is spaced apart from the second receiving antenna 30 by a second predetermined distance, wherein the first preset distance and the second The preset distance is less than the preset interval distance.
  • the central processing unit 60 can switch the radar signal transmitted through the first transmitting antenna 10 or the second transmitting antenna 10 by controlling a single-pole double-throwing control switch, and the control switch and the central processing unit 60, the first transmitting antenna 10, and the second transmitting antenna 10 Connected separately.
  • the central processing unit 60 controls the first transmitting antenna 10 and the second transmitting antenna 10 to switch the transmitting radar signal at the stage of phase shifting the received signal of the receiving antenna by the phase shifter, first controlling the first transmitting antenna 10 to transmit the radar signal, and controlling The first phase shifter 40 phase shifts the first received signal, then switches to the second transmitting antenna 10 to transmit a radar signal, and controls the second phase shifter 50 to phase shift the second received signal.
  • the central processing unit 60 does not change the control parameters of the phase shifter, and switches the first transmitting antenna 10 and the second transmitting antenna 10 to alternately transmit the radar signals according to the preset time interval.
  • the transmitting antenna 10 transmits the radar signal
  • the signal of the first receiving antenna 20 is recorded, and the signal of the second receiving antenna 30 is not recorded. Since the first transmitting antenna 10 transmits the radar signal according to the preset time interval, the first receiving antenna 20 receives the signal.
  • the signals are spaced, and the central processor 60 recovers the continuous original signal waveform according to the sampling principle, wherein the preset time interval of the central processor 60 switching the first transmitting antenna 10 and the second transmitting antenna 10 needs to follow Nyquist
  • the sampling principle is such that the original continuous waveform of the first received signal can be recovered from the sampled signal of the first received signal. The steps are the same when the second transmitting antenna 10 transmits the radar signal, and details are not described herein again.
  • the apparatus for detecting pulse wave velocity provided by the embodiment, by the transmitting antenna 10 for transmitting a radar signal, the first receiving antenna 20 and the second receiving antenna 30 for receiving a reflected signal of the radar signal reflected by the artery;
  • the first phase shifter 40 connected to the receiving antenna 20 adjusts the first receiving center point that receives the first received signal, and the second phase shifter 50 connected to the second receiving antenna 30 adjusts the second receiving that receives the second received signal.
  • the central processor 60 connected to the first phase shifter 40 and the second phase shifter 50 according to the first receiving center point and the second
  • the receiving point distance between the receiving center points and the receiving time difference between the first receiving signal and the second receiving signal are used to calculate the pulse wave speed, which solves the complicated operation of the method for measuring the pulse wave speed in the related art, thereby achieving the simplified measuring pulse wave.
  • the effect of speed operation is used to calculate the pulse wave speed, which solves the complicated operation of the method for measuring the pulse wave speed in the related art, thereby achieving the simplified measuring pulse wave.
  • FIG. 2 is a schematic diagram of a pulse wave velocity detecting apparatus according to a second embodiment of the present invention.
  • the device includes: a first transmitting antenna 11, a second transmitting antenna 12, a first receiving antenna 20, a second receiving antenna 30, a first phase shifter 40, a second phase shifter 50, and central processing.
  • the control switch 70 can be a single-pole double-throw switch.
  • the central processing unit 60 is connected to the control switch 70.
  • the first transmitting antenna 11 or the second transmitting antenna 12 is switched by the control switch 70 to alternately transmit radar signals, thereby avoiding two paths.
  • the transmitting antenna simultaneously transmits a radar signal to generate signal interference.
  • the first receiving antenna 20 and the second receiving antenna 30 are respectively configured to receive the reflected signals of the radar signals transmitted by the first transmitting antenna 11 and the second transmitting antenna 12 through the artery, and can calculate two signals according to the signals received by the two receiving antennas. The time difference between the signals received by the receiving antennas.
  • the central processor 60 records the first received signal of the first receiving antenna 20 when the first transmitting antenna 11 transmits a signal, and records the second receiving of the second receiving antenna 30 when the second transmitting antenna 12 transmits a signal. signal.
  • the first phase shifter 40 is connected to the first receiving antenna 20 for adjusting a phase shift of the first received signal received by the first receiving antenna 20, wherein the first received signal is a radar signal transmitted by the first transmitting antenna 11.
  • the relationship between the second phase shifter 50 and the second receiving antenna 30 is the same as that of the first phase shifter 40 and the first receiving antenna 20, and details are not described herein again.
  • the maximum amplitude of the signal received by the two receiving antennas can be searched by adjusting the first phase shifter 40 and the second phase shifter 50, and the received signal is strongest when the amplitude of the signal received by the receiving antenna is maximum. Specifically, searching for the maximum amplitude of the signals received by the two receiving antennas can be changed by the central processing unit 60 to continuously adjust the control parameters of the first phase shifter 40 and the second phase shifter 50 to change the first receiving antenna 20 and The second accepts the phase shift of the signal of the antenna 30 until the received signal obtains the maximum amplitude.
  • the central processing unit 60 can adjust the phase shift of the first phase shifter 40 to the first received signal and the second phase shifter 50 to the second by controlling the control parameters of the first phase shifter 40 and the second phase shifter 50, respectively.
  • the phase shift of the received signal, the phase shift of the phase shifter by the phase shifter is equivalent to shifting the position of the equivalent receiving point of the receiving antenna, and the central processor 60 can determine the phase shifter to receive the signal according to the control parameter of the phase shifter.
  • the phase shift can calculate the position of the receiving center point of the receiving antenna according to the phase shift, the wavelength, period or frequency of the radar signal. After finding the position of the receiving center point of the two receiving antennas, two can be calculated.
  • the central processing unit 60 switches the first transmitting antenna 11 or the second transmitting antenna 12 to alternately transmit radar signals according to preset time intervals by controlling the control switch 70, and the first receiving antenna 20 and the second receiving antenna 30 receive discontinuous sampling. After the signal, the central processor 60 can recover the original continuous waveform of the first received signal and the second received signal according to the sampling principle. The central processing unit 60 can calculate the reception time difference between the first receiving antenna 20 and the second receiving antenna 30 according to the waveforms of the first received signal and the second received signal, The pulse wave velocity is obtained by dividing the length of the artery by the difference in reception time.
  • Embodiments of the present invention also provide a method of detecting pulse wave velocity. It should be noted that the method of detecting the pulse wave velocity according to the embodiment of the present invention can be performed by the pulse wave velocity detecting device of the present invention.
  • FIG. 3 is a flow chart of a method of detecting a pulse wave velocity according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
  • Step S301 controlling the transmitting antenna to transmit a radar signal.
  • the radar signal may be a Doppler radar signal, and the radar signal is transmitted through the transmitting antenna, and the radar signal is reflected when the moving target object is encountered.
  • the target object is an artery, and the radar signal is reflected when it is incident on the artery. A reflected signal is generated.
  • the transmitting antenna comprises a first transmitting antenna and a second transmitting antenna
  • controlling the transmitting antenna to transmit the radar signal comprises controlling the first transmitting antenna and the second transmitting antenna to alternately transmit the radar signal according to a preset time interval
  • the first receiving signal is The radar signal transmitted by the first transmitting antenna received by the first receiving antenna passes through the reflected signal reflected by the artery
  • the second received signal is the reflected signal of the radar signal transmitted by the second transmitting antenna received by the second receiving antenna and reflected by the artery.
  • the two transmitting antennas are used for alternate transmission, so that the first receiving antenna and the second receiving antenna receive the radar signals in a time-sharing manner, which can avoid signal interference caused by receiving the reflected signals simultaneously between the two receiving antennas when one transmitting antenna transmits the radar signal.
  • Step S302 adjusting the first phase shifter to adjust the first receiving center point at which the first receiving antenna receives the first received signal.
  • the first received signal is a reflected signal of the radar signal received by the first receiving antenna and reflected by the artery
  • the first receiving center point is a receiving point at which the first receiving antenna receives the first received signal.
  • the first phase shifter is connected to the first receiving antenna, and can adjust the first receiving center point at which the first receiving antenna receives the first received signal.
  • the central processor adjusts a phase shift of the signal received by the first phase shifter to the first receiving antenna by adjusting a control parameter of the first phase shifter, and phase shifting the first received signal may change a magnitude of the first received signal Adjusting the first phase shifter to phase shift the first received signal, and phase shifting the first received signal is equivalent to shifting the position of the receiving point of the first receiving antenna relative to the reflected point of the reflected radar signal on the artery, That is, the phase shift of the first received signal changes the equivalent receiving point on the first receiving antenna, and the reflected point on the corresponding artery is the first reflecting point, and the central processor can save the control parameter of the first phase shifter. And determining a phase shift of the first received signal according to the control parameter, thereby obtaining a relative position of the first receiving center point in the first receiving antenna.
  • the first phase shifter can adopt a tunable capacitor
  • the central processor can change the phase shift of the signal received by the first phase shifter to the first receiving antenna by adjusting the DC voltage applied to the tunable capacitor, and can be adjusted.
  • the relationship between the DC voltage of the capacitor and the phase shift is the property of the tunable capacitor itself. It can be obtained by experimenting or looking up the table in advance.
  • the central processor determines the first phase shifter pair based on the DC voltage applied to the tunable capacitor. Phase shift of the first receiving antenna, The position of the first receiving center point in the first receiving antenna can be calculated by the phase shift of the first phase shifter to the first receiving antenna.
  • the first phase shifter is adjusted to maximize the signal amplitude of the first received signal, or the signal amplitude of the first received signal is brought close to a maximum value, and the first receiving antenna receives the artery-reflected radar at this time.
  • the signal has the strongest signal, that is, the reflection point of the radar signal reflected on the artery is closest to the distance of the first receiving antenna.
  • Step S303 the first receiving antenna receives the first receiving signal through the first receiving center point.
  • the position of the first receiving center point is determined accordingly.
  • the first receiving antenna receives the reflected signal of the radar signal reflected by the artery through the first receiving center point to obtain the first receiving signal.
  • the first received signal is a reflected signal generated by the first transmitting antenna to transmit a radar signal through arterial reflection.
  • the first received signal is a non-continuous sampling signal. According to the sampling principle, the sampled signal of the first received signal can be recovered and restored to the first received signal of the continuous waveform.
  • Step S304 adjusting the second phase shifter to adjust the second receiving center point of the second receiving antenna to receive the second receiving signal.
  • the second received signal is a reflected signal of the radar signal received by the second receiving antenna and reflected by the artery, and the second receiving center point is a receiving point of the second receiving antenna for receiving the second received signal.
  • Step S305 the second receiving antenna receives the second receiving signal through the second receiving center point.
  • Step S304 to step S305 are the same as the specific implementations of step S302 to step S303, and details are not described herein again.
  • Step S306 determining a receiving point distance between the first receiving center point and the second receiving center point.
  • the first control parameter is the first corresponding to the first receiving center point a control parameter of a phase shifter
  • the second control parameter is the second receiving Determining, by a control parameter of the second phase shifter corresponding to the center point, determining a receiving point distance between the first receiving center point and the second receiving center point, determining the first receiving center point and the first according to the first control parameter and the second control parameter
  • the receiving point distance between the receiving center points, the control parameter and the phase shifter have a mapping relationship with the phase shift of the received signal, and the phase shift of the phase shifter to the received signal can be obtained according to the control parameter.
  • the second receiving center point is on the same curved surface as the first receiving antenna and the second receiving antenna, and the first receiving center point and the second are determined.
  • the specific process of receiving the receiving point distance between the central points can be as follows:
  • T is the period of the radar and T is known.
  • the relationship between the delay difference t and the phase difference ⁇ is
  • the receiving point distance d between the first receiving center point and the second receiving center point is:
  • k is the distance correction coefficient
  • y is the distance between the first receiving center point and the second receiving center point on the curved surface of the first receiving antenna and the second receiving antenna
  • k is a correction coefficient greater than 0 and less than or equal to 1.
  • the first receiving antenna and the second receiving antenna may adopt other setting manners, and the receiving point distance between the first receiving center point and the second receiving center point may be calculated through the spatial position relationship according to a specific situation.
  • Step S307 determining a reception time difference according to the first received signal and the second received signal.
  • the receiving time difference is a difference between a time when the first receiving antenna receives the first received signal and the second receiving antenna receives the second received signal. After receiving the first received signal and the second received signal, the time difference of the two signals is determined.
  • Step S308 calculating a pulse wave velocity according to a preset algorithm according to the received dot distance and the received time difference.
  • the pulse wave speed calculated according to the preset algorithm according to the received point distance and the received time difference may be the first corresponding to the first receiving center point by the receiving point distance between the first receiving center point and the second receiving center point.
  • the length of the artery on the arterial vessel at the second reflection point corresponding to the second receiving center point, using the length of the artery The pulse wave velocity is calculated by dividing the reception time difference.
  • the length of the artery is the distance between the first reflection point on the artery and the second reflection point on the artery, wherein the first reflection point is a reflection point on the artery corresponding to the first received signal, and the second reflection point is the second reception point The point of reflection on the artery corresponding to the signal.
  • the distance between the first receiving antenna and the second receiving antenna is relatively close, for example, when the distance between the first receiving antenna and the second receiving antenna is 20 mm, between the first reflecting point and the second reflecting point on the artery
  • the length of the artery is similar to the distance d of the receiving point.
  • the length of the artery can be directly estimated according to the distance d of the receiving point.
  • the distance between the first receiving center point and the first reflecting point on the artery can be calculated by the radar ranging principle.
  • the distance r 2 between 1 and the second receiving center point and the second reflecting point on the artery, the length of the artery is calculated from d, r 1 and r 2 .
  • the method for detecting a pulse wave velocity provided by the embodiment, by controlling a transmitting antenna to transmit a radar signal, adjusting a first phase shifter to adjust a first receiving center point at which the first receiving antenna receives the first received signal, and passing through the first receiving antenna
  • the first receiving center point receives the first receiving signal
  • adjusts the second phase shifter to adjust the second receiving center point of the second receiving antenna to receive the second receiving signal
  • determining a receiving point distance between the first receiving center point and the second receiving center point determining a receiving time difference according to the first receiving signal and the second receiving signal, and finally calculating a pulse wave according to a preset algorithm according to the receiving point distance and the receiving time difference
  • the speed solves the complicated operation of the method for measuring the pulse wave velocity in the related art, thereby achieving the effect of simplifying the operation of measuring the pulse wave velocity.
  • Embodiments of the present invention also provide a smart bracelet including a pulse wave velocity detecting apparatus according to an embodiment of the present invention.
  • the smart bracelet includes a meter head 100, a first watch band 200 and a second watch band 300.
  • the first strap 200 is provided with a flexible circuit board 210.
  • the flexible circuit board 210 is provided with a first transmitting antenna 11, a second transmitting antenna 12, a first receiving antenna 20 and a second receiving antenna 30.
  • the antenna is generally disposed on the flexible circuit board 210.
  • the antenna surrounds the wrist about half a circle, intersects the radial artery of the wrist, and the receiving antenna receives the radar signal through the radial artery.
  • the reflected signal of vascular reflex The central processing unit is disposed in the meter head 100, and the display unit 100 can also be configured with a display for displaying the final pulse wave velocity detection result.
  • the first transmitting antenna 11, the second transmitting antenna 12, the first receiving antenna 20 and the second receiving antenna 30 are integrated on the flexible circuit board 210.
  • First receiving antenna 20 and second The receiving antenna 30 is symmetrical to one bus.
  • the central processor switches the first transmitting antenna 11 and the second transmitting antenna 12 to alternately transmit the radar signals according to the preset time interval by controlling a single-pole double-throwing control switch, thereby avoiding mutual interference caused by simultaneously transmitting the radar signals by using two transmitting antennas.
  • the two received signals of the first receiving antenna 20 and the second receiving antenna 30 can be used to calculate the time difference between the signals received by the two antennas.
  • the first phase shifter and the second phase shifter are adjustable capacitors connected in parallel with the paths of the first receiving antenna 20 and the second receiving antenna 30, respectively, and the central processor can be adjusted and applied to the adjustable capacitor.
  • the DC voltage regulating phase shifter phase shifts the signal received by the receiving antenna.
  • the central processor first controls the control switch to tangentially illuminate the first transmit antenna 11 and continuously adjusts the first phase shifter until the signal obtains the maximum amplitude, and the central processor acquires the maximum amplitude of the signal received by the first receive antenna 20
  • the state of the first phase shifter that is, the DC voltage V 1 applied to the first adjustable capacitor.
  • the central processing unit controls the control switch to tangentially to the second transmitting antenna 12, and the central processing unit acquires the state V 2 of the second phase shifter.
  • a delay t 1 of the first received signal passing through the first phase shifter can be obtained.
  • the delay t 2 of the second received signal passing through the second phase shifter can be obtained.
  • the distance y along the symmetrical bus line direction of the first receiving antenna 20 and the second receiving antenna 30 on the flexible circuit board 210 is The distance x between the receiving center points of the first receiving antenna 20 and the second receiving antenna 30 on the flexible circuit board 210 in the direction perpendicular to the symmetric bus bars of the first receiving antenna 20 and the second receiving antenna 30 can be measured. .
  • the receiving point distance d between the receiving center points of the first receiving antenna 20 and the second receiving antenna 30 is:
  • k is the distance correction coefficient and is a coefficient greater than 0 and less than or equal to 1.
  • y is the arc length along the symmetrical bus of the first receiving antenna 20 and the second receiving antenna 30 on the flexible circuit board 210.
  • Multiplying by a correction coefficient k greater than 0 and less than or equal to 1 may approach a linear distance between the receiving center points of the first receiving antenna 20 and the second receiving antenna 30.
  • the distance r 1 between the first receiving center point and the first reflecting point on the radial artery corresponding to the first receiving center point and the second receiving center can be respectively calculated.
  • the distance r 2 between the point and the second reflection point on the radial artery corresponding to the second receiving center point, and the radial artery between the first reflection point and the second reflection point can be calculated according to d, r 1 and r 2 The length D of the blood vessel.
  • the central processor maintains V 1 of the first phase shifter and V 2 of the second phase shifter unchanged, and the control switch switches alternately between the two transmitting antennas according to a certain frequency.
  • the central processing unit records the sampling signal received by the first receiving antenna 20 when the first transmitting antenna 11 transmits the radar signal and the second receiving antenna 30 transmits the radar signal when the second transmitting antenna 12 transmits the radar signal.
  • the sampling principle when the switching speed of the control switch and the sampling speed are maintained in a certain relationship, the original continuous waveform of the sampling signals of the first receiving antenna 20 and the second receiving antenna 30 can be recovered, and the first receiving signal and the second receiving signal are obtained.
  • the central processor can determine the time difference t between the first received signal and the second received signal according to the waveforms of the first received signal and the second received signal.
  • the pulse wave velocity is the length D of the brachial artery divided by the time difference t.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in a storage device by a computing device, or they may be fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种脉冲波速度的检测装置和方法及智能手环,该脉冲波速度的检测装置包括:发射天线(10),用于发射雷达信号;第一接收天线(20),用于接收雷达信号经过动脉反射的反射信号,得到第一接收信号;第二接收天线(30),用于接收雷达信号经过动脉反射的反射信号,得到第二接收信号;第一移相器(40),与第一接收天线(20)相连接,用于调节接收第一接收信号的第一接收中心点;第二移相器(50),与第二接收天线(30)相连接,用于调节接收第二接收信号的第二接收中心点;以及中央处理器(60),与第一移相器(40)和第二移相器(50)相连接,用于计算脉冲波速度。该检测装置和方法解决了现有技术中测量脉冲波速度的方法操作复杂、携带不便、价格昂贵等问题。

Description

脉冲波速度的检测方法和装置及智能手环 技术领域
本发明涉及检测领域,具体而言,涉及一种脉冲波速度的检测方法和装置及智能手环。
背景技术
动脉的脉冲波速度(Pulse Wave Velocity,简称PWV)是一个非常重要的人体生理指标,通过脉冲波速度可以推算出动脉的血流速度和血压等多项人体生理指标,是人体生理健康的一个重要生理参数,通过检测脉冲波速度可以实现对人体健康的监控和相关疾病的预防。
相关技术中对脉冲波速度进行检测的传统做法是采用压力传感器进行测量,例如目前全球通用的PulsePen,PulsePen在测量时,将一个压力传感器放在颈动脉处,另一个压力传感器放在股动脉处,测出两个压力传感器之间接收到脉冲波的时间差,再用皮尺测出人体上两个压力传感器之间的距离,并根据两个压力传感器之间的距离估算出人体内部动脉血管的实际距离,将估算出的动脉距离血管的实际距离除以时间差,得到脉冲波速度,这就是目前全球通用的金标准的测量方法。这种方法需要两个昂贵的压力传感器,体积较大,携带不便,而且不便于一个人进行测量操作,需要旁人辅助,另外,这种方法还需要用卷尺测量距离,测量过程复杂。
针对相关技术中测量脉冲波速度的方法操作复杂的问题,目前尚未提出有效的解决方案。
发明内容
本发明的主要目的在于提供一种脉冲波速度的检测方法和装置及智能手环,以解决相关技术中测量脉冲波速度的方法操作复杂的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种脉冲波速度的检测装置。该装置包括:发射天线,用于发射雷达信号;第一接收天线,用于接收雷达信号经过动脉反射的反射信号,得到第一接收信号;第二接收天线,用于接收雷达信号经过动脉反射的反射信号,得到第二接收信号;第一移相器,与第一接收天线相连接,用于调节接收第一接收信号的第一接收中心点;第二移相器,与第二接收天线相连接,用于调节接收第二接收信号的第二接收中心点;以及中央处理器,与第一移相器和第二 移相器相连接,用于确定第一接收中心点和第二接收中心点之间的接收点距,计算第一接收信号和第二接收信号的接收时间差,并根据接收点距和接收时间差计算脉冲波速度。
进一步地,发射天线包括一个或者多个发射天线。
进一步地,该装置还包括:控制开关,与中央处理器、多个发射天线分别相连接,用于根据中央处理器的控制切换多个发射天线按照预设时间间隔交替发射雷达信号。
进一步地,第一移相器和第二移相器是以下任意一种移相器:可调电容;模拟移相器;以及数字移相器。
进一步地,该装置除第一接收天线和第二接收天线以外,还包括一个或多个接收天线。
进一步地,发射天线、第一接收天线和第二接收天线集成在柔性电路板上。
进一步地,该装置还包括雷达信号发生模块,用于发射雷达信号。
为了实现上述目的,根据本发明的一个方面,提供了一种智能手环。该智能手环包括本发明的脉冲波速度的检测装置。
为了实现上述目的,根据本发明的一个方面,提供了一种脉冲波速度的检测方法。该方法包括:控制发射天线发射雷达信号;调节第一移相器以调节第一接收天线接收第一接收信号的第一接收中心点,其中,第一接收信号为第一接收天线接收到的雷达信号经过动脉反射的反射信号,第一接收中心点为第一接收天线接收第一接收信号的接收点;第一接收天线通过第一接收中心点接收第一接收信号;调节第二移相器以调节第二接收天线接收第二接收信号的第二接收中心点,其中,第二接收信号为第二接收天线接收到的雷达信号经过动脉反射的反射信号,第二接收中心点为第二接收天线接收第二接收信号的接收点;第二接收天线通过第二接收中心点接收第二接收信号;确定第一接收中心点和第二接收中心点之间的接收点距;根据第一接收信号和第二接收信号确定接收时间差,其中,接收时间差为第一接收天线接收到第一接收信号和第二接收天线接收到第二接收信号的时间的差值;以及根据接收点距和接收时间差按照预设算法计算脉冲波速度。
进一步地,发射天线包括第一发射天线和第二发射天线,控制发射天线发射雷达信号包括:控制第一发射天线与第二发射天线按照预设时间间隔交替发射雷达信号,其中,第一接收信号为第一接收天线接收到的第一发射天线发射的雷达信号经过动脉反射的反射信号,第二接收信号为第二接收天线接收到的第二发射天线发射的雷达信号经过动脉反射的反射信号。
进一步地,在调节第一移相器以调节第一接收天线接收第一接收信号的第一接收中心点之后,该方法还包括:确定第一控制参数,其中,第一控制参数为第一接收中心点对应的第一移相器的控制参数,在调节第二移相器以调节第二接收天线接收第二接收信号的第二接收中心点之后,方法还包括:确定第二控制参数,其中,第二控制参数为第二接收中心点对应的第二移相器的控制参数,确定第一接收中心点和第二接收中心点之间的接收点距包括:根据第一控制参数和第二控制参数确定第一接收中心点和第二接收中心点之间的接收点距。
进一步地,根据接收点距和接收时间差按照预设算法计算得到脉冲波速度包括:根据接收点距确定动脉长度,其中,动脉长度为动脉上的第一反射点与动脉上的第二反射点之间的距离,其中,第一反射点为第一接收信号对应的动脉上的反射点,第二反射点为第二接收信号对应的动脉上的反射点;以及用动脉长度除以接收时间差,得到脉冲波速度。
进一步地,调节第一移相器以调节第一接收天线接收第一接收信号的第一接收中心点包括:调节第一移相器以使第一接收信号的信号幅值最大,调节第二移相器以调节第二接收天线接收第二接收信号的第二接收中心点包括:调节第二移相器以使第二接收信号的信号幅值最大。
本发明通过用于发射雷达信号的发射天线,用于接收雷达信号经过动脉反射的反射信号的第一接收天线和第二接收天线;与第一接收天线相连接的第一移相器调节接收第一接收信号的第一接收中心点,与第二接收天线相连接的第二移相器调节接收第二接收信号的第二接收中心点,与第一移相器和第二移相器相连接的中央处理器根据第一接收中心点和第二接收中心点之间的接收点距和第一接收信号和第二接收信号的接收时间差计算脉冲波速度,解决了相关技术中测量脉冲波速度的方法操作复杂的问题,进而达到了简化测量脉冲波速度操作的效果。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明第一实施例的脉冲波速度的检测装置的示意图;
图2是根据本发明第二实施例的脉冲波速度的检测装置的示意图;
图3是根据本发明实施例的脉冲波速度的检测方法的流程图;以及
图4是根据本发明实施例的智能手环的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明的实施例提供了一种脉冲波速度的检测装置。
图1是根据本发明第一实施例的脉冲波速度的检测装置的示意图。如图1所示,该装置包括:发射天线10,第一接收天线20,第二接收天线30,第一移相器40,第二移相器50和中央处理器60。
发射天线10用于发射雷达信号。优选地,发射天线10可以是导线形式的天线,设置在柔性电路板上。雷达信号可以是由多普勒雷达产生的雷达信号,也可以是由调频雷达产生的雷达信号。雷达信号通过发射天线10发射出去,识别到目标之后反射回反射信号,在本发明实施例中,雷达能够识别到的目标为动脉。第一接收天线20用于接收雷达信号经过动脉反射的反射信号并得到第一接收信号;第二接收天线30用于接收雷达信号经过动脉反射的反射信号并得到第二接收信号,当第一接收天线20与第二接收天线30的位置不同时,第一接收信号与第二接收信号在动脉上对应的反射点的位置不同。优选地,第一接收天线20和第二接收天线30可以是导线形式的天线,与发射天线10一并集成在柔性电路板上。该装置还可以包括用于发射雷达信号的雷达信号发生模块,优选地,该雷达信号发生模块为多普勒雷达,多普勒雷达可以探测到运动目标。
第一移相器40与第一接收天线20相连接,用于调节接收第一接收信号的第一接收中心点;第二移相器50与第二接收天线30相连接,用于调节接收第二接收信号的 第二接收中心点。第一移相器40与中央处理器60相连接,可以接收中央处理器60的控制。中央处理器60通过调节第一移相器40的控制参数来调节第一移相器40对第一接收天线20接收到的信号的相移,其中,相移为信号相位的变化,对第一接收信号进行相移可以改变第一接收信号的幅值,调节第一移相器40对第一接收信号进行相移,对第一接收信号进行相移相当于对第一接收天线20相对于动脉上反射雷达信号的反射点的接收点的位置进行的位移,也即,改变了第一接收天线20上的等效接收点,第一接收天线20上的接收点称为第一接收中心点,对应的动脉上的反射点为第一反射点,中央处理器60可以保存第一移相器40的控制参数,并可以根据该控制参数求出对第一接收信号的相移,从而求出第一接收中心点在第一接收天线20中的相对位置。同理,中央处理器60可以对第二移相器50采用相同的处理方法,并求出第二接收中心点在第一接收天线20中的相对位置。第一接收天线20与第二接收天线30的位置关系是已知的,因此,中央处理器60可以确定出第一接收中心点与第二接收中心点之间的接收点距。
优选地,中央处理器60可以调节第一移相器40直至第一接收信号的信号幅值最大,或者,使第一接收信号的信号幅值接近最大值,此时的第一接收天线20接收的经过动脉反射的雷达信号的信号最强,也即,此时动脉上反射雷达信号的反射点距离第一接收天线20的距离最近。同理,中央处理器60也可以调节第二移相器50以使第二接收信号的信号幅值最大或者接近最大值。
优选地,第一移相器40和第二移相器50可以是以下任意一种移相器:可调电容,模拟移相器,数字移相器。可调电容可以与第一接收天线20或第二接收天线30对地并联且与中央处理器60相连接;模拟移相器可以与第一接收天线20或第二接收天线30串联且与中央处理器60相连接;数字移相器可以与第一接收天线20或第二接收天线30串联且与中央处理器60相连接。第一移相器40和第二移相器50采用上述移相器中的任意一种移相器均可以根据中央处理器60的控制调节自身的控制参数以调节第一接收信号或第二接收信号的相移。对于可调电容,中央处理器60可以通过调节加在可调电容上的直流电压来调节对接收天线的接收信号的相移,通过相移
Figure PCTCN2016071462-appb-000001
和雷达信号的周期T可以计算出对接收信号的时延
Figure PCTCN2016071462-appb-000002
时延
Figure PCTCN2016071462-appb-000003
与相移
Figure PCTCN2016071462-appb-000004
的关系式为
Figure PCTCN2016071462-appb-000005
可调电容可以是变容二极管,表1是一种变容二极管的电压V和对应的时延
Figure PCTCN2016071462-appb-000006
的关系表。
表1变容二极管的电压V和对应的时延
Figure PCTCN2016071462-appb-000007
的关系表
Figure PCTCN2016071462-appb-000008
Figure PCTCN2016071462-appb-000009
中央处理器60在采用移相器对接收信号进行相移之后,对两路接收天线接收到的信号进行采集,并根据采集到的第一接收信号与第二接收信号计算出第一接收信号与第二接收信号接收同一雷达信号的反射信号的接收时间差,该接收时间差是由动脉上第一反射点与第二反射点之间的距离引起的接收信号的时间差。中央处理器60在计算出接收时间差之后,根据接收点距与接收时间差计算脉冲波速度。接收点距是第一接收中心点与第二接收中心点之间的接收点距,可以近似为动脉上两个反射点之间的距离,或者,还可以采用现有技术推算出动脉上两个反射点之间的距离。例如,可以根据美国专利US20090209850分别估算出第一接收中心点到第一反射点之间的直线距 离,以及第二接收中心点到第二反射点之间的直线距离,然后根据接收点距、第一接收中心点到第一反射点之间的直线距离和第二接收中心点到第二反射点之间的直线距离推算出动脉上第一反射点与第二反射点之间的动脉长度,用动脉长度除以接收时间差可以计算出脉冲波速度。
发射天线10可以包括一个或者多个发射天线,脉冲波速度的检测装置除了包括第一接收天线20和第二接收天线30以外,还可以包括一个或多个接收天线。脉冲波速度的检测装置可以采用控制开关对多个发射天线进行控制,控制开关与中央处理器60、多个发射天线分别相连接,可以根据中央处理器60的控制切换多个发射天线按照预设时间间隔交替发射雷达信号。优选地,在采用第一接收天线20和第二接收天线30对雷达信号的反射信号进行接收时,可以采用两个发射天线对雷达信号进行发射,发射天线10包括第一发射天线10和第二发射天线10,第一发射天线10与第一接收天线20间隔第一预设距离,第二发射天线10与第二接收天线30间隔第二预设距离,其中,第一预设距离和第二预设距离均小于预设间隔距离。接收天线与对应的发射天线10间隔越小,接收天线接收雷达信号的反射信号与发射天线10发射的雷达信号之间的夹角越小,雷达信号从发射到接收经过的距离越短,接收天线接收到的信号越强。中央处理器60可以通过控制一个单刀双掷的控制开关切换通过第一发射天线10还是第二发射天线10发射雷达信号,控制开关与中央处理器60、第一发射天线10和第二发射天线10分别相连接。中央处理器60控制第一发射天线10与第二发射天线10在通过移相器对接受天线的接收信号进行相移的阶段切换发射雷达信号,首先控制第一发射天线10发射雷达信号,并控制第一移相器40对第一接收信号进行相移,然后切换至第二发射天线10发射雷达信号,控制第二移相器50对第二接收信号进行相移。在对接收信号进行采集的阶段,中央处理器60不对移相器的控制参数进行改变,按照预设时间间隔切换第一发射天线10与第二发射天线10对雷达信号进行交替发射,在第一发射天线10发射雷达信号时记录第一接收天线20的信号,不记录第二接收天线30的信号,由于第一发射天线10是按照预设时间间隔发射雷达信号,因此第一接收天线20接收到的信号为间隔的,中央处理器60根据采样原理恢复出连续的原始信号波形,其中,中央处理器60切换第一发射天线10和第二发射天线10的预设时间间隔需要遵循奈奎斯特采样原理,使得可以由第一接收信号的采样信号恢复出第一接收信号的原始连续波形。在第二发射天线10发射雷达信号时步骤相同,在此不再赘述。
该实施例提供的脉冲波速度的检测装置,通过用于发射雷达信号的发射天线10,用于接收雷达信号经过动脉反射的反射信号的第一接收天线20和第二接收天线30;与第一接收天线20相连接的第一移相器40调节接收第一接收信号的第一接收中心点,与第二接收天线30相连接的第二移相器50调节接收第二接收信号的第二接收中心点,与第一移相器40和第二移相器50相连接的中央处理器60根据第一接收中心点和第二 接收中心点之间的接收点距和第一接收信号和第二接收信号的接收时间差计算脉冲波速度,解决了相关技术中测量脉冲波速度的方法操作复杂的问题,进而达到了简化测量脉冲波速度操作的效果。
图2是根据本发明第二实施例的脉冲波速度的检测装置的示意图。如图2所示,该装置包括:第一发射天线11,第二发射天线12,第一接收天线20,第二接收天线30,第一移相器40,第二移相器50,中央处理器60和控制开关70。
控制开关70可以是一个单刀双掷的开关,中央处理器60与控制开关70相连接,通过控制开关70来切换第一发射天线11或第二发射天线12来交替发射雷达信号,避免了两路发射天线同时发射雷达信号产生信号干扰。第一接收天线20和第二接收天线30分别用于接收第一发射天线11和第二发射天线12发射的雷达信号经过动脉反射的反射信号,可以根据两路接收天线接收到的信号计算出两路接收天线之间接收到信号的时间差。在第一发射天线11发射信号时,中央处理器60记录第一接收天线20的第一接收信号,在第二发射天线12发射信号时,中央处理器60记录第二接收天线30的第二接收信号。第一移相器40与第一接收天线20相连接,用于调节第一接收天线20接收到的第一接收信号的相移,其中,第一接收信号为第一发射天线11发射的雷达信号经过动脉反射的反射信号;第二移相器50与第二接收天线30之间的关系与第一移相器40与第一接收天线20相连接相同,在此不再赘述。可以通过调节第一移相器40和第二移相器50搜索两路接收天线接收到的信号的最大幅值,接收天线接收到的信号幅值最大时,接收信号最强。具体而言,搜索两路接收天线接收到的信号的最大幅值可以通过中央处理器60不断调节第一移相器40和第二移相器50的控制参数来改变对第一接收天线20和第二接受天线30的信号的相移,直至接收信号获得最大幅值。
中央处理器60可以通过控制第一移相器40和第二移相器50的控制参数来分别调节第一移相器40对第一接收信号的相移和第二移相器50对第二接收信号的相移,移相器对接收信号进行相移等价于对接收天线的等效接收点的位置进行位移,中央处理器60根据移相器的控制参数可以确定移相器对接收信号的相移,根据相移、雷达信号的波长、周期或频率等信息可以计算出接收天线的接收中心点的位置,在求出两个接收天线的接收中心点的位置之后,可以计算出两个接收中心点之间的距离,并根据两个接收中心点之间的距离推算出动脉上相对于两个接收中心点的两个反射雷达信号的反射点之间的动脉长度。中央处理器60通过控制控制开关70来切换第一发射天线11或第二发射天线12按照预设时间间隔交替发射雷达信号,第一接收天线20与第二接收天线30在接收到非连续的采样信号之后,中央处理器60可以根据采样原理恢复出第一接收信号和第二接收信号的原始连续波形。中央处理器60根据第一接收信号和第二接收信号的波形可以计算出第一接收天线20和第二接收天线30的接收时间差,然 后用动脉长度除以接收时间差,即可得到脉冲波速度。
本发明的实施例还提供了一种脉冲波速度的检测方法。需要说明的是,本发明实施例的脉冲波速度的检测方法可以由本发明的脉冲波速度的检测装置执行。
图3是根据本发明实施例的脉冲波速度的检测方法的流程图。如图3所示,该方法包括以下步骤:
步骤S301,控制发射天线发射雷达信号。
雷达信号可以是多普勒雷达信号,雷达信号通过发射天线发射出去,在遇到移动的目标物体时反射雷达信号,在本发明实施例中,目标物体为动脉,在雷达信号入射到动脉时反射会产生反射信号。
优选地,发射天线包括第一发射天线和第二发射天线,控制发射天线发射雷达信号包括控制第一发射天线与第二发射天线按照预设时间间隔交替发射雷达信号,其中,第一接收信号为第一接收天线接收到的第一发射天线发射的雷达信号经过动脉反射的反射信号,第二接收信号为第二接收天线接收到的第二发射天线发射的雷达信号经过动脉反射的反射信号。采用两个发射天线进行交替发射,使第一接收天线和第二接收天线分时接收雷达信号,可以避免采用一个发射天线发射雷达信号时两路接收天线之间同时接收反射信号产生的信号干扰。
步骤S302,调节第一移相器以调节第一接收天线接收第一接收信号的第一接收中心点。
第一接收信号为第一接收天线接收到的雷达信号经过动脉反射的反射信号,第一接收中心点为第一接收天线接收第一接收信号的接收点。第一移相器与第一接收天线相连接,可以调节第一接收天线接收第一接收信号的第一接收中心点。中央处理器通过调节第一移相器的控制参数来调节第一移相器对第一接收天线接收到的信号的相移,对第一接收信号进行相移可以改变第一接收信号的幅值,调节第一移相器对第一接收信号进行相移,对第一接收信号进行相移相当于对第一接收天线相对于动脉上反射雷达信号的反射点的接收点的位置进行的位移,也即,对第一接收信号进行相移改变了第一接收天线上的等效接收点,对应的动脉上的反射点为第一反射点,中央处理器可以保存第一移相器的控制参数,并可以根据该控制参数求出对第一接收信号的相移,从而求出第一接收中心点在第一接收天线中的相对位置。
优选地,第一移相器可以采用可调电容,中央处理器通过调节加在可调电容上的直流电压来改变第一移相器对第一接收天线接收到的信号的相移,可调电容的直流电压与相移之间的关系是可调电容自身的属性,可以通过预先进行实验或查表得到,中央处理器根据加在可调电容上的直流电压来确定第一移相器对第一接收天线的相移, 通过第一移相器对第一接收天线的相移可以计算出第一接收中心点在第一接收天线中所处的位置。
优选地,调节第一移相器以使第一接收信号的信号幅值最大,或者,使第一接收信号的信号幅值接近最大值,此时的第一接收天线接收的经过动脉反射的雷达信号的信号最强,也即,此时动脉上反射雷达信号的反射点距离第一接收天线的距离最近。
步骤S303,第一接收天线通过第一接收中心点接收第一接收信号。
在对第一移相器进行相移之后,第一接收中心点的位置随之确定。第一接收天线通过第一接收中心点接收雷达信号经过动脉反射的反射信号得到第一接收信号。优选地,如果采用两个发射天线按照预设时间间隔交替发射雷达信号,则第一接收信号为第一发射天线发射雷达信号经过动脉反射产生的反射信号。第一接收信号为非连续的采样信号,根据采样原理,可以对第一接收信号的采样信号进行信号复原,恢复为连续波形的第一接收信号。
步骤S304,调节第二移相器以调节第二接收天线接收第二接收信号的第二接收中心点。
第二接收信号为第二接收天线接收到的雷达信号经过动脉反射的反射信号,第二接收中心点为第二接收天线接收第二接收信号的接收点。
步骤S305,第二接收天线通过第二接收中心点接收第二接收信号。
步骤S304至步骤S305与步骤S302至步骤S303的具体实施方式相同,在此不再赘述。
步骤S306,确定第一接收中心点和第二接收中心点之间的接收点距。
优选地,在调节第一移相器以调节第一接收天线接收第一接收信号的第一接收中心点之后,确定第一控制参数,其中,第一控制参数为第一接收中心点对应的第一移相器的控制参数,在调节第二移相器以调节第二接收天线接收第二接收信号的第二接收中心点之后,确定第二控制参数,其中,第二控制参数为第二接收中心点对应的第二移相器的控制参数,确定第一接收中心点和第二接收中心点之间的接收点距包括根据第一控制参数和第二控制参数确定第一接收中心点和第二接收中心点之间的接收点距,控制参数与移相器对接收信号的相移有映射关系,根据控制参数可以得到移相器对接收信号的相移。
当第一接收天线与第二接收天线集成在柔性电路板上且平行设置时,第二接收中心点在第一接收天线与第二接收天线处于同一曲面上,确定第一接收中心点和第二接收中心点之间的接收点距的具体过程可以如下:
首先,在确定出第一移相器对第一接收信号的相移ω1和第二移相器对第二接收信号的相移ω2之后,可以求出第一移相器和第二移相器之间的相位差ω=ω12。其次,第一接收中心点与第二接收中心点在第一接收天线与第二接收天线所处曲面上沿着与第一接收天线和第二接收天线平行的方向上的距离y与ω的关系式为:
Figure PCTCN2016071462-appb-000010
其中,λ为雷达的波长且λ已知,因此,y可以求出。如果采用第一移相器对第一接收信号的时延t1和第二移相器对第二接收信号的时延t2做计算,第一移相器和第二移相器之间的时延差t=t1-t2,y与t的关系式为:
Figure PCTCN2016071462-appb-000011
其中,T为雷达的周期且T已知。时延差t与相位差ω之间的关系式为
Figure PCTCN2016071462-appb-000012
由于第一接收天线与第二接收天线平行设置,因此,第一接收中心点与第二接收中心点沿着与第一接收天线和第二接收天线相交并垂直的方向上的距离x是不变且已知的。第一接收中心点与第二接收中心点之间的接收点距d为:
Figure PCTCN2016071462-appb-000013
其中,k为距离校正系数,由于y是第一接收中心点与第二接收中心点在第一接收天线与第二接收天线所处曲面上的距离,因此,第一接收中心点与第二接收中心点在空间中的距离为k·y,k是一个大于0且小于等于1的校正系数。
第一接收天线和第二接收天线采用其它的设置方式也可以根据具体情况通过空间位置关系推算出来第一接收中心点与第二接收中心点之间的接收点距。
步骤S307,根据第一接收信号和第二接收信号确定接收时间差。
接收时间差为第一接收天线接收到第一接收信号和第二接收天线接收到第二接收信号的时间的差值。在接收到第一接收信号和第二接收信号之后,确定出两路信号的时间差。
步骤S308,根据接收点距和接收时间差按照预设算法计算脉冲波速度。
优选地,根据接收点距和接收时间差按照预设算法计算得到脉冲波速度可以是通过第一接收中心点与第二接收中心点之间的接收点距推算出第一接收中心点对应的第一反射点与第二接收中心点对应的第二反射点在动脉血管上的动脉长度,用动脉长度 除以接收时间差计算出脉冲波速度。动脉长度为动脉上的第一反射点与动脉上的第二反射点之间的距离,其中,第一反射点为第一接收信号对应的动脉上的反射点,第二反射点为第二接收信号对应的动脉上的反射点。
如果第一接收天线与第二接收天线之间的距离较近,例如,第一接收天线与第二接收天线之间的距离为20mm时,动脉上第一反射点与第二反射点之间的动脉长度与接收点距d是相近的,动脉长度可以根据接收点距d直接估算得到,或者,可以通过雷达测距原理计算出第一接收中心点与动脉上第一反射点之间的距离r1和第二接收中心点与动脉上的第二反射点之间的距离r2,根据d、r1和r2计算动脉长度。
在本发明的一个实施例中,确定出r1=5.35mm,r2=4.26mm,最终确定出的脉冲波速度PWV=5.23m/s。
该实施例提供的脉冲波速度的检测方法,通过控制发射天线发射雷达信号,调节第一移相器以调节第一接收天线接收第一接收信号的第一接收中心点,通过第一接收天线的第一接收中心点接收第一接收信号,调节第二移相器以调节第二接收天线接收第二接收信号的第二接收中心点,通过第二接收天线的第二接收中心点接收第二接收信号,确定第一接收中心点和第二接收中心点之间的接收点距,根据第一接收信号和第二接收信号确定接收时间差,最后根据接收点距和接收时间差按照预设算法计算脉冲波速度,解决了相关技术中测量脉冲波速度的方法操作复杂的问题,进而达到了简化测量脉冲波速度操作的效果。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明的实施例还提供了一种智能手环,包括本发明实施例的脉冲波速度的检测装置。
图4是根据本发明实施例的智能手环的示意图。如图4所示,该智能手环包括:表头100,第一表带200和第二表带300。其中,第一表带200内设置有柔性电路板210,柔性电路板210上设置有第一发射天线11,第二发射天线12,第一接收天线20和第二接收天线30。
在本发明实施例的智能手环中,天线一般做在柔性电路板210上,在使用智能手环时,天线环绕手腕半圈左右,和手腕的桡动脉交叉,接收天线接收雷达信号经桡动脉血管反射的反射信号。中央处理器设置于表头100内,表头100上还可以配置有显示器,用于显示最终的脉冲波速度检测结果。第一发射天线11,第二发射天线12,第一接收天线20和第二接收天线30集成于柔性电路板210上。第一接收天线20和第二 接收天线30对称于一条母线。中央处理器通过控制一个单刀双掷的控制开关切换第一发射天线11和第二发射天线12按照预设时间间隔交替发射雷达信号,避免了采用两个发射天线同时发射雷达信号会产生互相干扰。第一接收天线20和第二接收天线30的两个接收信号可用于计算两路天线收到信号之间的时间差。另外还有第一相移器和第二相移器,分别与第一接收天线20和第二接收天线30相连接,用于搜索两个接收天线上的幅值最大信号。其中,第一移相器和第二移相器为分别与第一接收天线20和第二接收天线30的通路对地并联的可调电容,中央处理器可以通过调节加在可调电容上的直流电压调节移相器对接收天线接收的信号进行相移。
一种采用该实施例的智能手环测量脉冲波速度的流程如下:
中央处理器首先控制控制开关切向第一发射天线11,并不断调节第一相移器,直至信号获得最大的幅值,中央处理器获取第一接收天线20接收到的信号幅值最大时的第一相移器的状态,也即加在第一可调电容上的直流电压V1。然后中央处理器控制控制开关切向第二发射天线12,中央处理器获取第二相移器的状态V2,操作步骤同上,在此不再赘述。
根据V1可以得到第一接收信号经过第一移相器的时延t1。同理,根据V2可以得到第二接收信号经过第二移相器的时延t2。从而两路之间的时延差t=t1-t2。由于雷达信号的波长λ、周期T已知,从而可以计算出经过第一相移器和第二相移器进行相移之后的第一接收天线20和第二接收天线30的接收中心点之间在柔性电路板210上沿着第一接收天线20和第二接收天线30的对称母线方向上的距离y为
Figure PCTCN2016071462-appb-000014
第一接收天线20和第二接收天线30的接收中心点之间在柔性电路板210上沿着与第一接收天线20和第二接收天线30的对称母线垂直方向上的距离x可以测量得出。第一接收天线20和第二接收天线30的接收中心点之间的接收点距d为:
Figure PCTCN2016071462-appb-000015
其中,k为距离校正系数,是一个大于0且小于等于1的系数。
用于校正两中心点之间的直线距离。因为智能手环佩戴在手腕上时,柔性电路板210是沿着手腕弯曲的,y是沿着柔性电路板210上第一接收天线20和第二接收天线30的对称母线方向上的弧线长度,乘以一个大于0且小于等于1的校正系数k可以趋近第一接收天线20和第二接收天线30的接收中心点之间在的直线距离。另外,根据现有技术,例如,美国专利US20090209850,可以分别计算出第一接收中心点与桡动脉血管上与第一接收中心点对应的第一反射点之间的距离r1和第二接收中心点与桡动脉血管上与第二接收中心点对应的第二反射点之间的距离r2,根据d、r1和r2可以计算 出第一反射点与第二反射点之间的桡动脉血管的长度D。
在测量脉冲波速度的采样阶段,中央处理器保持第一移相器的V1和第二移相器的V2不变,并且控制控制开关在两个发射天线之间按照一定的频率交替切换,同时中央处理器记录第一接收天线20在第一发射天线11发射雷达信号和第二接收天线30在第二发射天线12发射雷达信号时接收到的采样信号。根据采样原理,在控制开关的切换速度和采样速度保持一定关系时,可以恢复出第一接收天线20和第二接收天线30的采样信号的原始连续波形,得到第一接收信号和第二接收信号。中央处理器根据第一接收信号和第二接收信号的波形可以求出第一接收信号和第二接收信号之间的时间差t。
脉冲波速度就是桡动脉血管的长度D除以时间差t。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种脉冲波速度的检测装置,其特征在于,包括:
    发射天线,用于发射雷达信号;
    第一接收天线,用于接收所述雷达信号经过动脉反射的反射信号,得到第一接收信号;
    第二接收天线,用于接收所述雷达信号经过动脉反射的反射信号,得到第二接收信号;
    第一移相器,与所述第一接收天线相连接,用于调节接收所述第一接收信号的第一接收中心点;
    第二移相器,与所述第二接收天线相连接,用于调节接收所述第二接收信号的第二接收中心点;以及
    中央处理器,与所述第一移相器和所述第二移相器相连接,用于调节所述第一移相器与所述第二移相器,确定所述第一接收中心点和所述第二接收中心点之间的接收点距,计算所述第一接收信号和所述第二接收信号的接收时间差,并根据所述接收点距和所述接收时间差计算脉冲波速度。
  2. 根据权利要求1所述的装置,其特征在于,所述发射天线包括一个或者多个发射天线。
  3. 根据权利要求2所述的装置,其特征在于,所述装置还包括:
    控制开关,与所述中央处理器、所述多个发射天线分别相连接,用于根据所述中央处理器的控制切换所述多个发射天线按照预设时间间隔交替发射所述雷达信号。
  4. 根据权利要求1所述的装置,其特征在于,所述第一移相器和所述第二移相器是以下任意一种移相器:
    可调电容;
    模拟移相器;以及
    数字移相器。
  5. 根据权利要求1所述的装置,其特征在于,所述装置除所述第一接收天线和所述第二接收天线以外,还包括一个或多个接收天线。
  6. 根据权利要求1所述的装置,其特征在于,所述发射天线、所述第一接收天线和 所述第二接收天线集成在柔性电路板上。
  7. 根据权利要求1所述的装置,其特征在于,所述装置还包括雷达信号发生模块,用于发射所述雷达信号。
  8. 一种智能手环,其特征在于,包括权利要求1至7中任一项所述的脉冲波速度的检测装置。
  9. 一种脉冲波速度的检测方法,其特征在于,包括:
    控制发射天线发射雷达信号;
    调节第一移相器以调节第一接收天线接收第一接收信号的第一接收中心点,其中,所述第一接收信号为所述第一接收天线接收到的所述雷达信号经过动脉反射的反射信号,所述第一接收中心点为所述第一接收天线接收所述第一接收信号的接收点;
    所述第一接收天线通过所述第一接收中心点接收所述第一接收信号;
    调节第二移相器以调节第二接收天线接收第二接收信号的第二接收中心点,其中,所述第二接收信号为所述第二接收天线接收到的所述雷达信号经过动脉反射的反射信号,所述第二接收中心点为所述第二接收天线接收所述第二接收信号的接收点;
    所述第二接收天线通过所述第二接收中心点接收所述第二接收信号;
    确定所述第一接收中心点和所述第二接收中心点之间的接收点距;
    根据所述第一接收信号和所述第二接收信号确定接收时间差,其中,所述接收时间差为所述第一接收天线接收到所述第一接收信号和所述第二接收天线接收到所述第二接收信号的时间的差值;以及
    根据所述接收点距和所述接收时间差按照预设算法计算脉冲波速度。
  10. 根据权利要求9所述的方法,其特征在于,所述发射天线包括第一发射天线和第二发射天线,
    控制发射天线发射雷达信号包括:控制所述第一发射天线与所述第二发射天线按照预设时间间隔交替发射所述雷达信号,
    其中,所述第一接收信号为所述第一接收天线接收到的所述第一发射天线发射的所述雷达信号经过动脉反射的反射信号,所述第二接收信号为所述第二接收天线接收到的所述第二发射天线发射的所述雷达信号经过动脉反射的反射信号。
  11. 根据权利要求9所述的方法,其特征在于,
    在调节第一移相器以调节第一接收天线接收第一接收信号的第一接收中心点之后,所述方法还包括:确定第一控制参数,其中,所述第一控制参数为所述第一接收中心点对应的所述第一移相器的控制参数,
    在调节第二移相器以调节第二接收天线接收第二接收信号的第二接收中心点之后,所述方法还包括:确定第二控制参数,其中,所述第二控制参数为所述第二接收中心点对应的所述第二移相器的控制参数,
    确定所述第一接收中心点和所述第二接收中心点之间的接收点距包括:根据所述第一控制参数和所述第二控制参数确定所述第一接收中心点和所述第二接收中心点之间的接收点距。
  12. 根据权利要求9所述的方法,其特征在于,根据所述接收点距和所述接收时间差按照预设算法计算得到脉冲波速度包括:
    根据所述接收点距确定动脉长度,其中,所述动脉长度为动脉上的第一反射点与动脉上的第二反射点之间的距离,其中,所述第一反射点为所述第一接收信号对应的动脉上的反射点,所述第二反射点为所述第二接收信号对应的动脉上的反射点;以及
    用所述动脉长度除以所述接收时间差,得到所述脉冲波速度。
  13. 根据权利要求9所述的方法,其特征在于,
    调节第一移相器以调节第一接收天线接收第一接收信号的第一接收中心点包括:调节所述第一移相器以使所述第一接收信号的信号幅值最大,
    调节第二移相器以调节第二接收天线接收第二接收信号的第二接收中心点包括:调节所述第二移相器以使所述第二接收信号的信号幅值最大。
PCT/CN2016/071462 2016-01-20 2016-01-20 脉冲波速度的检测方法和装置及智能手环 WO2017124329A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/071462 WO2017124329A1 (zh) 2016-01-20 2016-01-20 脉冲波速度的检测方法和装置及智能手环

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/071462 WO2017124329A1 (zh) 2016-01-20 2016-01-20 脉冲波速度的检测方法和装置及智能手环

Publications (1)

Publication Number Publication Date
WO2017124329A1 true WO2017124329A1 (zh) 2017-07-27

Family

ID=59361217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071462 WO2017124329A1 (zh) 2016-01-20 2016-01-20 脉冲波速度的检测方法和装置及智能手环

Country Status (1)

Country Link
WO (1) WO2017124329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115969347A (zh) * 2022-12-07 2023-04-18 重庆理工大学 一种基于ncc测量原理的ccbfp实时监测系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287180A (ja) * 1989-04-27 1990-11-27 Matsushita Electric Works Ltd 車載用レーダシステム
US20030191399A1 (en) * 2002-04-03 2003-10-09 Hiroyuki Muramatsu Circulation dynamics measuring apparatus, circulation dynamics measuring method, blood pressure measuring method and circulation dynamics sensor
JP2008142254A (ja) * 2006-12-08 2008-06-26 Univ Nihon 血流速度測定装置
US20090278728A1 (en) * 2008-05-09 2009-11-12 Lucent Technologies, Inc. Doppler Radar Cardiopulmonary Sensor and Signal Processing System and Method for Use Therewith
CN103002798A (zh) * 2010-07-20 2013-03-27 欧姆龙健康医疗事业株式会社 测定装置
CN103860155A (zh) * 2012-12-13 2014-06-18 财团法人工业技术研究院 生理测量系统及其方法
CN103954933A (zh) * 2014-04-29 2014-07-30 中国人民解放军国防科学技术大学 一种基于太赫兹波段的雷达信号处理方法
CN104545859A (zh) * 2013-10-17 2015-04-29 财团法人工业技术研究院 生理量测的感测系统与方法
CN104620073A (zh) * 2012-06-13 2015-05-13 皇家飞利浦有限公司 确定表面波的传播速度
CN105241796A (zh) * 2015-10-26 2016-01-13 广东奥迪威传感科技股份有限公司 粉尘检测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287180A (ja) * 1989-04-27 1990-11-27 Matsushita Electric Works Ltd 車載用レーダシステム
US20030191399A1 (en) * 2002-04-03 2003-10-09 Hiroyuki Muramatsu Circulation dynamics measuring apparatus, circulation dynamics measuring method, blood pressure measuring method and circulation dynamics sensor
JP2008142254A (ja) * 2006-12-08 2008-06-26 Univ Nihon 血流速度測定装置
US20090278728A1 (en) * 2008-05-09 2009-11-12 Lucent Technologies, Inc. Doppler Radar Cardiopulmonary Sensor and Signal Processing System and Method for Use Therewith
CN103002798A (zh) * 2010-07-20 2013-03-27 欧姆龙健康医疗事业株式会社 测定装置
CN104620073A (zh) * 2012-06-13 2015-05-13 皇家飞利浦有限公司 确定表面波的传播速度
CN103860155A (zh) * 2012-12-13 2014-06-18 财团法人工业技术研究院 生理测量系统及其方法
CN104545859A (zh) * 2013-10-17 2015-04-29 财团法人工业技术研究院 生理量测的感测系统与方法
CN103954933A (zh) * 2014-04-29 2014-07-30 中国人民解放军国防科学技术大学 一种基于太赫兹波段的雷达信号处理方法
CN105241796A (zh) * 2015-10-26 2016-01-13 广东奥迪威传感科技股份有限公司 粉尘检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG, FEIXUE ET AL.: "The Development of Dual Channel Pulse Wave Velocity Measurement System", CHINESE JOURNAL OF MEDICAL PHYSICS, vol. 23, no. 3, 31 May 2006 (2006-05-31), pages 209 - 212, ISSN: 1005-202X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115969347A (zh) * 2022-12-07 2023-04-18 重庆理工大学 一种基于ncc测量原理的ccbfp实时监测系统

Similar Documents

Publication Publication Date Title
JP5861178B1 (ja) 生体情報の検知装置及びその利用方法
US9877659B2 (en) Sensing system and method for physiology measurements
JP6222523B2 (ja) 移動目標抽出システム、移動目標抽出方法、情報処理装置およびその制御方法と制御プログラム
EP2862508B1 (en) Sensing system and method for physiology measurements through a measuring signal with overshoot and undershoot pulses
JP2544342B2 (ja) 超音波ドップラ―診断装置
JP2005102959A (ja) 脈波検出器及びこれを使用した脈波検出装置
JPH07241288A (ja) 超音波装置
US20210345270A1 (en) Method for synchronization of a multitude of wearable devices
JP2004154231A (ja) 血圧測定装置及び血圧測定方法
JPWO2014033942A1 (ja) 生体信号計測装置、および、生体信号計測システム
KR100755236B1 (ko) 생체정보 검출 시스템
US20170143309A1 (en) Ultrasonic probe, control device, and measurement apparatus
US20130165780A1 (en) Blood pressure measurement apparatus and control method for blood pressure measurement apparatus
CN107960998B (zh) 血压测量装置
WO2017124329A1 (zh) 脉冲波速度的检测方法和装置及智能手环
US11125870B2 (en) Moving-target detection system and moving-target detection method
US20110288420A1 (en) Blood pressure measuring device and blood pressure measuring method
Tseng et al. Noncontact wrist pulse waveform detection using 24-GHz continuous-wave radar sensor for blood pressure estimation
US9872627B2 (en) Method and device for detecting blood flow rate
US5297552A (en) Process for measuring the position of at least one mobile interface using ultrasound and apparatus for carrying out said process
Wenzel et al. Catch Your Breath! Vital Sign Sensing With Radar
Albrecht et al. Long-distance heart sound detection using 122 GHz CW radar with 3D printed high-gain antennas
CN114533004A (zh) 基于毫米波雷达的生命体征检测方法及系统
Shin et al. FMCW radar-based vital signal monitoring technique using adaptive range-bin selection
WO2021010117A1 (ja) 脈波測定装置および測定方法、血圧測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16885602

Country of ref document: EP

Kind code of ref document: A1