WO2017122644A1 - Radiant cooling/heating device and radiant cooling device - Google Patents

Radiant cooling/heating device and radiant cooling device Download PDF

Info

Publication number
WO2017122644A1
WO2017122644A1 PCT/JP2017/000521 JP2017000521W WO2017122644A1 WO 2017122644 A1 WO2017122644 A1 WO 2017122644A1 JP 2017000521 W JP2017000521 W JP 2017000521W WO 2017122644 A1 WO2017122644 A1 WO 2017122644A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
cooling
far
radiant
heating
Prior art date
Application number
PCT/JP2017/000521
Other languages
French (fr)
Japanese (ja)
Inventor
崇治 二枝
Original Assignee
Kft株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kft株式会社 filed Critical Kft株式会社
Priority to JP2017561116A priority Critical patent/JPWO2017122644A1/en
Priority to CN201780006396.2A priority patent/CN108463674A/en
Priority to KR1020187023144A priority patent/KR20180104651A/en
Publication of WO2017122644A1 publication Critical patent/WO2017122644A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/02Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets
    • E04F2290/023Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets for heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a radiant cooling and heating device and a radiant cooling device having a radiant panel.
  • the conventional radiant air conditioner needs to provide a radiant panel that circulates cold water or hot water in a room to be air conditioned. Therefore, the radiating panel occupies a part of the room, and the number of persons accommodated in the room and the substantial use area are limited according to the occupied area of the radiating panel.
  • An object of the present invention was created in view of the above circumstances, and is to provide a radiant cooling and heating apparatus and a radiant cooling apparatus that can expand the number of people accommodated in the room and the substantial use area. Another object of the present invention is to provide a radiant cooling / heating device and a radiant cooling device that can prevent local cooling in the vicinity of the radiant panel during cooling and can take measures against condensation.
  • a radiant cooling and heating apparatus includes at least a heat pump, a cooling radiant panel for circulating a refrigerant, and a heating radiant panel for circulating a heat medium,
  • the radiant panel is opened to face the room to be air-conditioned, and is housed in a panel housing recess formed by being recessed from the wall surface of the room to form a panel housing for housing the radiant panel for cooling.
  • the recess and the panel storage recess for storing the heating radiating panel are arranged apart from each other.
  • the panel storage recess for storing the cooling radiant panel and the panel storage recess for storing the heating radiant panel may be disposed relatively vertically. preferable.
  • a drain pan connected to a drain discharge pipe is provided at the lower part of the cooling radiation panel.
  • the panel housing recess is provided with a heat insulating material and a reflective material, or a resin layer having a heat insulating property and a waterproof property.
  • the radiant cooling and heating apparatus has an indoor surface component member made of a material containing a far infrared radiation material that radiates and absorbs far infrared rays and has an emissivity of far infrared rays of 0.6 or more.
  • the surface of the cooling radiation panel is made of a material containing the same far infrared radiation material as the far infrared radiation material of the indoor surface component, and the surface of the cooling radiation panel is cooled when the surface is cooled.
  • the far-infrared emitting material absorbs far-infrared radiation emitted by the far-infrared emitting material of the indoor surface component, and when the surface of the heating radiation panel is heated, the far-infrared emitting material on the heating surface is It is preferable that the far-infrared radiation material of the indoor surface constituent member absorbs the far-infrared radiation to be emitted.
  • the radiant cooling device includes at least a heat pump and a cooling radiant panel for circulating the refrigerant, and the radiant panel for cooling is opened to face a room to be cooled, It is accommodated in the inside of the panel accommodation recessed part formed in a dimple rather than the wall surface in the room.
  • the number of people accommodated in the room and the area of use can be expanded.
  • FIG. 1 is a schematic vertical cross-sectional view of a radiant panel arrangement of a radiant cooling and heating apparatus according to the first embodiment.
  • FIG. 2 is a schematic longitudinal sectional view of the radiant cooling and heating apparatus according to the first embodiment.
  • the radiant cooling and heating apparatus 100 includes at least a heat pump 11, a cooling radiant panel 20, and a heating radiant panel 30.
  • the heat pump 11 is included in the outdoor unit 10 and operates on the same principle as a normal air conditioner or the like.
  • the heat pump 11 includes a condenser, an expansion valve, an evaporator, and a compressor (not shown), and exchanges heat reversibly using an exothermic phenomenon and an endothermic phenomenon.
  • the outdoor unit 10 is connected to the heat exchanger 12 via a circulation pipe 13 through which the refrigerant is circulated.
  • the refrigerant is not particularly limited, and chlorofluorocarbons (HCFC) (alternative chlorofluorocarbons such as R-22) and hydrofluorocarbon (HFC) (alternative chlorofluorocarbons such as R-410A) are preferable.
  • the cooling radiation panel 20 is a radiation panel provided with fins used during cooling.
  • a refrigerant such as cold water is circulated through the circulation pipe 21 in the cooling radiation panel 20.
  • the heating radiating panel 30 is a radiating panel provided with fins used during heating.
  • a heating medium such as hot water is circulated in the heating radiating panel 30 through the circulation pipe 31.
  • a cooling circulation pipe 21 and a heating circulation pipe 31 are connected via a switching valve 40.
  • the switching valve 40 is switched to the cooling circulation pipe 21 side.
  • cold water is supplied from the heat exchanger 12 to the cooling circulation pipe 21
  • the fins of the cooling radiation panel 20 are cooled, and the surfaces of the fins function as cooling surfaces for performing the cold radiation.
  • the switching valve 40 is switched to the heating circulation pipe 31 side.
  • hot water is supplied from the heat exchanger 12 to the circulation pipe 31 for heating, the fins of the radiation panel 30 for heating are warmed, and the surface of the fins functions as a heating surface that performs thermal radiation.
  • the temperature of cold water or warm water can be set by a driving operation unit (not shown).
  • the fins of the cooling radiation panel 20 and the heating radiation panel 30 for example, aluminum fins are preferably used.
  • the aluminum fin is integrally formed with an aluminum support plate (not shown).
  • the cooling circulation pipe 21 and the heating circulation pipe 31 are preferably provided on the back surface of the support plate.
  • the fin has a thin plate shape and extends left and right or up and down.
  • a fin is comprised with the metal or alloy with favorable heat conduction, for example, can be produced with iron, copper, those alloys other than aluminum.
  • Each radiation panel 20 and 30 is housed inside the panel housing recesses 2 and 3.
  • the panel housing recesses 2 and 3 are opened so as to face the room 1 to be air-conditioned, and are formed to be recessed from the wall surface 5 of the room 1.
  • the panel housing recess 2 for housing the cooling radiation panel 20 and the panel housing recess 3 for housing the heating radiation panel 30 are arranged apart from each other.
  • the panel housing recesses 2 and 3 need only have a depth sufficient to accommodate the radiating panels 20 and 30 without protruding the radiating panels 20 and 30 from the wall surface 5.
  • the panel housing recess 2 for housing the cooling radiation panel 20 and the panel housing recess 3 for housing the heating radiation panel 30 are disposed relatively vertically.
  • the panel housing recess 2 for housing the cooling radiation panel 20 is disposed in the vicinity of the ceiling portion 6.
  • the reason why the cooling radiation panel 20 is arranged in the vicinity of the ceiling portion 6 is because the cool air convects downward.
  • the panel housing recess 3 for housing the heating radiation panel 30 is disposed in the vicinity of the floor 7.
  • the reason why the heating radiating panel 30 is disposed in the vicinity of the floor 7 is that warm air convects upward.
  • a drain pan 50 for receiving moisture condensed on the surface of the cooling radiation panel 20 is provided below the cooling radiation panel 20.
  • the drain pan 50 extends in a bowl shape along the extending direction of the cooling radiation panel 20.
  • a drain discharge pipe 51 for discharging the condensed water received by the drain pan 50 is connected to the drain pan 50.
  • the extended end of the drain discharge pipe 51 is connected to a circulation pipe 21 through which cold water flows through a check valve 52.
  • the drain pan 50 may be attached in a detachable state from the drain discharge pipe 51.
  • the indoor surface configuration made of a material containing a far infrared radiation substance that radiates and absorbs far infrared rays and has an emissivity of far infrared rays of 0.6 or more.
  • the surfaces of the cooling radiation panel 20 and the heating radiation panel 30 are made of a material containing the same far-infrared radiation material as the far-infrared radiation material of the indoor surface constituent member.
  • the far-infrared radiation material on the surface absorbs the far-infrared radiation emitted by the far-infrared radiation material of the indoor surface constituent member, and the surface of the heating radiation panel 30 is heated. Then, the far-infrared radiation material of the indoor surface constituent member absorbs the far-infrared radiation emitted by the far-infrared radiation material on the heating surface.
  • the indoor surface constituent member is made of a far-infrared emitting material, made of a material mixed with a far-infrared emitting material, or has a film made of a far-infrared emitting material.
  • the surfaces of the cooling radiation panel 20 and the heating radiation panel 30 are also composed of the same far-infrared radiation material as the far-infrared radiation material of the indoor surface constituent member or a material mixed with the far-infrared radiation material Or a film made of a far-infrared emitting material.
  • the term “interior surface constituent member” refers to a member that constitutes a surface exposed to a sealed space that is subject to environmental adjustment.
  • the sealed space can be provided with opening / closing means such as a door or a window that enables communication between the inside and the outside.
  • the sealed space is not particularly limited, but is usually a room or a corridor of a building where people live and act. Whether at least some of the indoor surface components are made of a far-infrared emitting material that emits or absorbs far-infrared rays necessary for adjusting the indoor environment in the present invention, or is it made of a material mixed with a far-infrared emitting material Or a film made of a far-infrared emitting material.
  • the far-infrared emitting substance mixed in the indoor surface constituent member is exposed to the indoor space. Nonetheless, the far-infrared emitting material in the indoor surface constituent member is not directly exposed to the indoor space, and does not significantly interfere with the far-infrared radiation and absorption of the far-infrared emitting material (for example, about 1 mm) It may be covered with a coating film, varnish layer, wallpaper or the like having the following thickness.
  • the far-infrared emitting material refers to a material that emits and absorbs far-infrared rays.
  • the far-infrared emitting material used in the present invention is a far-infrared emitting material having a far-infrared emissivity of 0.6 or more, preferably 0.8 or more. is there.
  • Such far-infrared emitting materials are usually so-called inorganic materials, such as natural and artificial minerals, metal and metalloid oxides, nitrides, carbides, sulfides, hydroxides, carbonates and other salts, In addition to these composites (double salt) and charcoal, natural materials such as shells are also included.
  • inorganic materials such as natural and artificial minerals, metal and metalloid oxides, nitrides, carbides, sulfides, hydroxides, carbonates and other salts, In addition to these composites (double salt) and charcoal, natural materials such as shells are also included.
  • most of the far-infrared emitting materials of the present invention are ceramic materials in a broad sense (referring to inorganic materials other than metals). However, even organic materials or substances derived from organic materials are used as long as the above emissivity conditions are satisfied. be able to.
  • the form of the far-infrared emitting material in the member containing the far-infrared emitting material is not particularly limited as long as the member containing the far-infrared emitting material can emit and absorb far-infrared rays. It can be in the form of a monolithic material (stone), a member containing particles of far-infrared radiation, powder, aggregate, etc. (these are also called particles), a member having a film of far-infrared radiation, etc. .
  • a stone material made of a far-infrared emitting material is a solid integrated material made of a natural or artificial inorganic material, and is usually used as a panel or tile-shaped building material. Examples of natural stone materials include granite and basalt. Needless to say, artificially produced stone may be used. Building materials such as artificial panels and other integral members can be considered stone.
  • the material mixed with the far-infrared emitting material means a material containing the far-infrared emitting material as a part of the constituent components.
  • the far-infrared emitting substance is typically mixed as a particle of a natural or artificial inorganic material in the manufacturing material or manufacturing material of the indoor surface constituent member.
  • a film made of a far-infrared emitting material means a film of a far-infrared emitting material formed on the surface of an indoor surface constituent member or a cooling and / or heating source.
  • This film can be formed by coating the target surface with a far-infrared radiation material by an appropriate film forming technique, for example, PVD technique such as spraying or vapor deposition, or CVD technique.
  • the far-infrared emitting material of the indoor surface constituent member and the far-infrared emitting material on the surface of the cooling / heating radiation panel are the same.
  • the radiant cooling and heating apparatus according to the present invention uses a phenomenon in which heat transfer via thermal radiation between the same molecular species is performed with higher efficiency than in the case where the same molecular species is not between the same molecular species. Adjustment of the indoor environment is achieved by causing heat transfer to and from the panel surface through heat radiation with high efficiency. Therefore, in order for the radiant cooling and heating apparatus of the present invention to perform its intended functions, the indoor surface constituent members, the cooling radiant panel 20 and the heating radiant panel 30 in which heat transfer is performed between them are performed.
  • the far-infrared emitting material of the indoor surface constituting member and the far-infrared emitting material of the cooling and / or heating source, which are composed of the same molecular species, are referred to as the same material.
  • the same molecular species indicates the property of radiating and absorbing far infrared rays, and one substance (e.g., used in indoor surface constituent members) having far infrared emissivity of 0.6 or more, preferably 0.8 or more.
  • Far infrared radiation material and other materials that exhibit the properties of emitting and absorbing far infrared radiation, and the far infrared emissivity is 0.6 or more, preferably 0.8 or more (used on the surface of a cooling / heating radiation panel) Far-infrared emitting material) is the same at the molecular level.
  • the molecule here means a group of atoms bonded by chemical bonds. Therefore, the molecule referred to here includes, for example, a crystal of a mineral constituting a natural stone material. The same mineral with substitution or solid solution of similar elements is regarded as a substance of the same molecular species.
  • the mineral cut out from the same place of origin is a collection of substantially the same composition of substances of substantially the same molecular species, and may be considered in the same way as a substance of the same molecular species as a whole.
  • inorganic material particles are used as the above-mentioned far-infrared radiation material on the interior surface components or the surfaces of the cooling radiation panel 20 and the heating radiation panel 30, other than the inorganic material particles as the far-infrared radiation material It is normal for these substances to coexist.
  • the indoor surface constituent member is formed of plaster containing inorganic material particles as a far-infrared emitting material, or when a paint containing inorganic material particles as a far-infrared emitting material is applied to the surface of a cooling / heating radiation panel,
  • the inorganic material particles as the infrared emitting substance coexist with the aggregate in the plaster or the binder component in the paint.
  • substances other than the inorganic material particles as the “far-infrared emitting substance” described above also have the property of emitting or absorbing far-infrared rays more or less.
  • the present invention uses a phenomenon in which heat transfer via thermal radiation between the same molecular species is performed with significantly higher efficiency than when the same molecular species is not between the same molecular species. Substances that are not commonly present on both sides of the radiating panel play a very small or negligible role in the present invention.
  • the far-infrared radiation material in the present invention it is common to both the interior surface components and the surfaces of the cooling radiation panel 20 and the heating radiation panel 30, and far-infrared emissivity of 0.6 or more, Preferably, it refers to the same substance of 0.8 or more (a substance that causes a resonance phenomenon of molecular vibrations between the same molecules via electromagnetic waves).
  • both particles have the same or different particle sizes and shapes. Also good.
  • the blending amount of the inorganic material particles contained in both the indoor surface component and the cooling / heating radiation panel surface need not be the same.
  • the indoor surface constituent member forms a wall surface and a ceiling surface
  • the inorganic material particles are used as the far infrared radiation material
  • the particle size and shape of the far infrared radiation material particles on the wall surface and the ceiling surface are: It may be the same or different.
  • the inorganic material particles enable the desired heat transfer through thermal radiation between the same molecular species according to the present invention in the interior surface constituent members (for example, building materials forming the wall surface and the ceiling surface). It is blended by content. At this time, the amount of the inorganic material particles may be the same or different between the building material forming the wall surface and the building material forming the ceiling surface. These also apply to the inorganic material particles of the far-infrared emitting material on each of the two or more wall surfaces.
  • a plurality of types of far-infrared emitting materials may be used on the surface of the indoor surface constituent member and the cooling radiation panel 20 and the heating radiation panel 30.
  • the far-infrared radiation material is a stone material
  • two or more kinds of stone materials can be used in combination for the interior surface constituent members or the surfaces of the cooling radiation panel 20 and the heating radiation panel 30.
  • the far-infrared emitting material is inorganic material particles
  • a mixture of two or more inorganic material particles can be used. In either case, if the combination of the inorganic material particles in the interior surface constituent member and the combination of the inorganic material particles on the surfaces of the cooling radiation panel 20 and the heating radiation panel 30 are the same (if the same combination is included). They are considered to be the same substance.
  • Infrared material particles as far-infrared radiation materials contained on the interior surface components and the surfaces of the cooling radiation panel 20 and the heating radiation panel 30 are capable of desired heat transfer via thermal radiation between the same molecular species. Present in them in an amount to make.
  • the interior surface components and the surfaces of the cooling radiant panel 20 and the heating radiant panel 30 are often manufactured outside the construction site and carried into the construction site or installed on the construction site by different contractors. it is conceivable that. Therefore, common inorganic material particles as far-infrared radiation materials are often mixed by the respective manufacturers or contractors on the interior surface constituent members and the surfaces of the cooling radiation panel 20 and the heating radiation panel 30. it is conceivable that.
  • the content of the inorganic material particles as the far-infrared emitting substance is included in each manufacturing material on the surface of the indoor surface constituent member and the cooling radiation panel 20 and the heating radiation panel 30 by each supplier.
  • the content of inorganic material particles in the interior surface components and in the surface forming materials of the cooling radiant panel 20 and the heating radiant panel 30 is determined as an amount that makes heat transfer via heat radiation effective according to the present invention. be able to.
  • the amount used is the amount of heat transfer required for the desired cooling and / or heating, the interior surface components available for heat transfer via heat radiation and the area of the cooling and / or heating surface. Depends on the thermal radiation characteristics of far-infrared radiation materials.
  • the inorganic material particles as the far-infrared radiation material are effective when they are present in the interior surface component material or the material forming the cooling / heating radiation panel surface in an amount of 1% by weight or more. An effect was recognized, and a more preferable effect was obtained when the content was 3% by weight or more.
  • the upper limit of the content is actually included in the material forming the interior surface components and the surfaces of the cooling radiation panel 20 and the heating radiation panel 30. It is determined by the maximum amount of inorganic material particles that can be produced and is not particularly limited (theoretically, for example, 90% by weight may be used).
  • plural types of substances may be used as the inorganic material particles of the far-infrared emitting substance (multiple types of substances that are “identical at the molecular level” described above are used).
  • the same mixture of inorganic material particles can be used for the interior surface constituting member and the cooling / heating radiation panel surface.
  • the content of the inorganic material particles in the material constituting the indoor surface constituent material and the surfaces of the cooling radiating panel 20 and the heating radiating panel 30 is the total amount of the same kind of substances in the mixture. expressed.
  • far-infrared emitting materials are exposed to the indoor space where the environment is adjusted as much as possible.
  • a protective layer of about 1 mm or less (for example, a paint layer, a varnish layer, wallpaper, etc.).
  • the far-infrared emissivity of the far-infrared emitting material used in the present invention is 0.6 or more, preferably 0.8 or more, more preferably 0.9 or more.
  • Far-infrared radiation refers to electromagnetic waves having a wavelength of 3 ⁇ m to 1000 ⁇ m.
  • the emissivity of a material is defined by W / W0, where W0 is the ideal black body far-infrared radiation energy under the same conditions, and W is the far-infrared radiation energy of the material.
  • the emissivity value is preferably at room temperature (for example, 25 ° C.) close to the actual use temperature of the system of the present invention. For example, a value near 10 ⁇ m at which the thermal action on the human body is large is adopted.
  • the surfaces of the fins of the cooling radiant panel 20 and the heating radiant panel 30 are coated by mixing a pulverized far-infrared radiant material and a binder, coating them in layers, and drying them. ing.
  • a coating layer having a thickness of about 200 ⁇ m formed of a white paint mixed with a pulverized material (stone powder) obtained by pulverizing granite, which has a far-infrared emissivity exceeding 0.9 is formed on the surface of the fin.
  • the particle size of the stone powder in the coating layer is 50 ⁇ m or less.
  • the content of the stone powder in the coating layer is 20% by weight in the cured state (dry state) of the paint.
  • the radiant cooling and heating apparatus 100 performs a cooling operation and a heating operation by switching a switching valve 40.
  • the temperature of the cold water flowing through the cooling circulation pipe 21 or the temperature of the hot water flowing through the heating circulation pipe 31 can be set by an operation unit (not shown).
  • the radiant cooling and heating apparatus 100 includes an indoor surface constituent member made of a material containing a far-infrared emitting material that emits and absorbs far-infrared rays and has a far-infrared emissivity of 0.6 or more. Further, the surfaces of the cooling radiation panel 20 and the cooling radiation panel 30 are made of a material containing the same far-infrared radiation material as the far-infrared radiation material of the indoor surface constituent member.
  • the switching valve 40 is switched to the cooling circulation pipe 21 side.
  • the fins of the cooling radiation panel 20 are cooled, and the surfaces of the fins function as cooling surfaces for performing the cold radiation.
  • the far-infrared radiation material on the surface absorbs the far-infrared radiation emitted by the far-infrared radiation material of the indoor surface constituent member.
  • the cooling radiation panel 20 is housed in the panel housing portion 2 disposed in the vicinity of the ceiling portion 6. Since the cooling radiating panel 20 is close to the ceiling portion 6 and the surface of the cooling radiating panel 20 is made of a material containing the same far infrared radiating substance as the far infrared radiating substance of the indoor surface constituent member, The cooling radiation panel 20 absorbs the radiant heat of the ceiling portion 6 without blowing air like an air conditioner. If the temperature of the ceiling part 6 falls and a temperature difference with the temperature of the wall surface 5 arises, the radiant heat of the said wall surface 5 will move to the ceiling side. Furthermore, the radiant heat moved from the wall surface 5 to the ceiling side is absorbed by the cooling radiation panel 20 in the vicinity of the ceiling portion 6.
  • the switching valve 40 is switched to the heating circulation pipe 31 side.
  • the fins of the radiation panel 30 for heating are warmed, and the surface of the fins functions as a heating surface that performs thermal radiation.
  • the far-infrared radiation material of the indoor surface constituent member absorbs the far-infrared radiation emitted by the far-infrared radiation material on the heating surface.
  • the radiant cooling and heating apparatus 100 stores the cooling radiant panel 20 in the panel storage unit 2 disposed in the vicinity of the ceiling unit 6 and the heating radiant panel 30 on the floor. It is housed in the panel housing part 3 disposed in the vicinity of the part 7. Therefore, according to the radiant cooling and heating apparatus 100 according to the present invention, since the cooling radiating panel 20 and the heating radiating panel 30 do not occupy the indoor space, it is possible to increase the number of people accommodated and the usage area in the room to be cooled and heated. .
  • the panel storage recess 2 for storing the cooling radiant panel 20 and the panel storage recess 3 for storing the heating radiant panel 30 are separated from each other. Are arranged. Furthermore, the panel housing recess 2 for housing the cooling radiation panel 20 and the panel housing recess 3 for housing the heating radiation panel 30 are disposed relatively vertically. Specifically, the cooling radiation panel 20 is disposed in the vicinity of the ceiling portion 6, and the heating radiation panel 30 is disposed in the vicinity of the floor portion 7. Therefore, according to the radiant cooling and heating apparatus 100 according to the first embodiment, since the cooling radiating panel 20 is disposed in the vicinity of the ceiling portion 6, local cooling near the radiating panel during cooling is prevented. be able to.
  • the radiant cooling and heating apparatus 100 according to the first embodiment is provided with a drain pan 50 having a drain discharge pipe 51 connected to the lower part of the cooling radiating panel 20. Therefore, according to the radiant cooling and heating apparatus 100 according to the first embodiment, even when condensation occurs in the cooling radiant panel 20, the condensed water is received by the drain pan 50 and discharged from the drain discharge pipe 51. Can do.
  • the extended end portion of the drain discharge pipe 51 is connected to the circulation pipe 31 for circulating the cooling water to the cooling radiation panel 20, so that the dew condensation water of the cooling radiation panel 20 is reduced. It can be used as cooling water.
  • FIG. 3 is a schematic longitudinal sectional view of a dew condensation preventing structure in the radiant cooling and heating apparatus according to the second embodiment.
  • symbol is attached
  • the radiant cooling and heating apparatus 200 according to the second embodiment has the same configuration as that of the first embodiment, and includes a heat pump 11, a cooling radiant panel 20, and a heating radiant panel 30. As shown in FIG. 3, the radiant cooling and heating apparatus 200 according to the second embodiment is that a heat insulating material 61 and a reflective material 62 are provided in the panel housing recess 2 for housing the cooling radiating panel 20. Different from the first embodiment.
  • the panel housing recess 2 for housing the cooling radiation panel 20 is provided with a reflective material 62 via a heat insulating material 61. That is, the reflective material 62 is disposed on the indoor surface of the heat insulating material 61.
  • the heat insulating material 61 any type of heat insulating material can be used. For example, fiber-based heat insulating materials such as glass wool, cellulose fiber, insulation board, wool heat insulating material, and rock wool, styrene foam, beaded polyethylene foam, And plastic heat insulating materials such as phenol foam.
  • the reflector 62 is preferably a reflector having a mirror surface such as an aluminum foil.
  • the fins of the cooling radiation panel 20 are disposed only on the front panel of the room.
  • the radiant cooling and heating apparatus 200 there are basically the same effects as the radiant cooling and heating apparatus 100 according to the first embodiment.
  • the reflective material 62 is provided via the heat insulating material 61 in the panel housing recess 2 for housing the cooling radiating panel 20. Therefore, according to the radiant cooling and heating apparatus 200 according to the second embodiment, it is possible to positively take measures against condensation by reflecting far-infrared rays. Furthermore, by applying a material containing a far-infrared emitting substance on the surface of the reflective material 62, the wall surface of the panel housing recess 2 can have the function of a quasi-radiating panel.
  • FIG. 4 is a schematic longitudinal sectional view of an application example of the dew condensation prevention structure in the second embodiment.
  • a resin layer 63 having a heat insulating property and a waterproof property is disposed on the back side of the cooling radiating panel 20 (the side opposite to the room 1).
  • the thickness of the resin layer 63 increases sequentially from below to above, and the resin layer 63 is inclined obliquely downward. Since the resin layer 63 is close to the cooling radiation panel 20 and the aluminum cooling radiation panel 20 serves as a reflector, it is not necessary to provide a reflector on the surface of the resin layer 63. In this application example, the fins of the cooling radiation panel 20 are extended horizontally.
  • the dew condensation prevention structure of this application example is configured to take into account the convection direction of the warm air H.
  • the resin layer 63 has a heat insulating effect and prevents moisture from moving from the cooling radiation panel 20 to the wall material. Further, by providing a certain gap between the cooling radiation panel 20 and the resin layer 63, moisture generated by condensation can be guided to the drain pan.
  • both the cooling radiation panel 20 and the heating radiation panel 30 are provided.
  • the present invention is not limited to these modes, and the cooling radiation panel or Only one of the heating radiating panels may be provided.
  • the cooling radiant panel or the heating radiant panel is opened by facing the room to be cooled or heated, and is recessed from the wall surface of the room to form a panel housing recess. It is preferable to be housed inside.
  • the panel storage recessed part for accommodating the radiation panel for cooling is arrange
  • the panel housing recess for housing the heating radiating panel is preferably disposed in the vicinity of the floor.
  • the heat insulating material 61 and the reflective material 62 are provided only in the panel storage recessed part 2 for accommodating the radiation panel 20 for cooling, it is the structure similar to this, and the radiation panel 30 for heating is used.
  • a heat insulating material 61 and a reflective material 62 may be provided in the same configuration in the panel housing recess 3 for housing the light.
  • the panel storage recess 2 for storing the cooling radiation panel 20 and the panel storage recess 3 for storing the heating radiation panel 30 are relatively vertically positioned.
  • the present invention is not limited to these embodiments, and as shown in the schematic plan view of FIG. 5, a panel storage recess 302 for storing the cooling radiation panel 320 and a heating radiation panel 330 are stored.
  • the panel housing recess 3 may be spaced apart in a plane.
  • a panel storage recess 302 for storing the cooling radiant panel 20 and a panel storage recess 303 for storing the heating radiant panel 30 are arranged on opposite walls. These panel storage recesses 302 and 303 may be disposed on the same wall surface.
  • the cooling radiant panel and the heating radiant panel are each housed in the panel housing portion, application to a newly built house is particularly preferable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

[Problem] To achieve a radiant cooling/heating device which allows an increase in the number of occupants that can be accommodated in the room to be cooled/heated as well as the substantially usable area therein. [Solution] The radiant cooling/heating device 100 comprises at least: a heat pump 11; a cooling radiation panel 20 for circulating a refrigerant therethrough; and a heating radiation panel 30 for circulating a heat carrier therethrough. The radiation panels 20 and 30 each have an opening facing the room 1 to be cooled/heated and are housed within panel housing recesses 2 and 3 which are set further back than the wall surface 5 of the room 1 and partitioned off. The panel housing recess 2 for housing the cooling radiation panel 20 and the panel housing recess 3 for housing the heating radiation panel 30 are arranged so as to be separated from each other.

Description

放射冷暖房装置および放射冷房装置Radiant air conditioner and radiant air conditioner
 本発明は、放射パネルを有する放射冷暖房装置および放射冷房装置に関する。 The present invention relates to a radiant cooling and heating device and a radiant cooling device having a radiant panel.
 近年、放射パネルを用いた各種の放射冷暖房装置が提案され、実用化されている。放射冷暖房装置は、たとえば、ヒートポンプ機能を備えた室外機から熱交換器に冷媒が循環して送り込まれ、熱交換器において冷媒と熱交換された冷水または温水が室内に設けられた放射パネルに循環して送り込まれている(特許文献1参照)。この種の放射冷暖房装置は、送風により強制的な対流を発生させないので、人体に不快な風が当たることのなく、快適な冷暖房を達成することができる。 In recent years, various radiant cooling and heating devices using radiant panels have been proposed and put into practical use. In the radiant cooling and heating device, for example, refrigerant is circulated and sent from an outdoor unit having a heat pump function to a heat exchanger, and cold water or hot water that is heat-exchanged with the refrigerant in the heat exchanger is circulated to a radiant panel provided in the room. (See Patent Document 1). Since this type of radiant cooling and heating apparatus does not generate forced convection by blowing air, it is possible to achieve comfortable cooling and heating without unpleasant wind hitting the human body.
特開2005-24197号公報JP 2005-24197 A
 ところで、従来の放射冷暖房装置は、冷暖房対象となる室内に冷水または温水を循環させる放射パネルを設ける必要がある。したがって、放射パネルが室内の一部を占有し、当該放射パネルの占有面積に応じて室内の収容人数や実質的な利用面積が制限される。 By the way, the conventional radiant air conditioner needs to provide a radiant panel that circulates cold water or hot water in a room to be air conditioned. Therefore, the radiating panel occupies a part of the room, and the number of persons accommodated in the room and the substantial use area are limited according to the occupied area of the radiating panel.
 また、冷房時において、放射パネルの近傍は局所的に冷えやすく、結露が生じてコピー機の用紙などが湿気を帯びやすかった。 Also, during cooling, the vicinity of the radiant panel was likely to cool locally, causing condensation, and the paper of the copier was likely to get wet.
 本発明の目的は、上記の事情に鑑みて創案されたものであり、室内の収容人数や実質的な利用面積を拡大することができる放射冷暖房装置、および放射冷房装置を提供することにある。また、本発明の他の目的は、冷房時における放射パネル近傍の局所的な冷え込みを防止するとともに、結露対策を行うことができる放射冷暖房装置、および放射冷房装置を提供することにある。 An object of the present invention was created in view of the above circumstances, and is to provide a radiant cooling and heating apparatus and a radiant cooling apparatus that can expand the number of people accommodated in the room and the substantial use area. Another object of the present invention is to provide a radiant cooling / heating device and a radiant cooling device that can prevent local cooling in the vicinity of the radiant panel during cooling and can take measures against condensation.
 上記目的を達成するために、本発明に係る放射冷暖房装置は、ヒートポンプと、冷媒を流通させるための冷房用放射パネルと、熱媒を流通させるための暖房用放射パネルと、を少なくとも備え、各放射パネルは、冷暖房対象となる室内に臨ませて開口され、該室内の壁面よりも窪ませて区画形成されたパネル収納凹部の内部に収納され、上記冷房用放射パネルを収納するためのパネル収納凹部と、上記暖房用放射パネルを収納するためのパネル収納凹部とは、離間させて配置されていることを特徴とする。 In order to achieve the above object, a radiant cooling and heating apparatus according to the present invention includes at least a heat pump, a cooling radiant panel for circulating a refrigerant, and a heating radiant panel for circulating a heat medium, The radiant panel is opened to face the room to be air-conditioned, and is housed in a panel housing recess formed by being recessed from the wall surface of the room to form a panel housing for housing the radiant panel for cooling. The recess and the panel storage recess for storing the heating radiating panel are arranged apart from each other.
 上記放射冷暖房装置の構成において、上記冷房用放射パネルを収納するためのパネル収納凹部と、上記暖房用放射パネルを収納するためのパネル収納凹部とは、相対的に上下に配置されていることが好ましい。 In the configuration of the radiant cooling and heating apparatus, the panel storage recess for storing the cooling radiant panel and the panel storage recess for storing the heating radiant panel may be disposed relatively vertically. preferable.
 また、上記冷房用放射パネルの下部には、ドレン排出管が接続されたドレンパンが備えられていることが好ましい。 Moreover, it is preferable that a drain pan connected to a drain discharge pipe is provided at the lower part of the cooling radiation panel.
 さらに、上記パネル収納凹部には、断熱材および反射材、または断熱性および防水性を有する樹脂層が設けられていることが好ましい。 Furthermore, it is preferable that the panel housing recess is provided with a heat insulating material and a reflective material, or a resin layer having a heat insulating property and a waterproof property.
 放射冷暖房装置が、遠赤外線を放射・吸収し遠赤外線の放射率が0.6以上である遠赤外線放射物質を含む材料で構成された室内面構成部材を有し、上記冷房用放射パネルおよび上記冷房用放射パネルの表面が、上記室内面構成部材の前記遠赤外線放射物質と同一の遠赤外線放射物質を含む材料で構成されてなり、上記冷房用放射パネルの表面が冷却されると、その表面の上記遠赤外線放射物質が上記室内面構成部材の上記遠赤外線放射物質が放射する遠赤外線を吸収し、上記暖房用放射パネルの表面が加熱されると、その加熱面の上記遠赤外線放射物質が放射する遠赤外線を上記室内面構成部材の上記遠赤外線放射物質が吸収するように構成されてなることが好ましい。 The radiant cooling and heating apparatus has an indoor surface component member made of a material containing a far infrared radiation material that radiates and absorbs far infrared rays and has an emissivity of far infrared rays of 0.6 or more. The surface of the cooling radiation panel is made of a material containing the same far infrared radiation material as the far infrared radiation material of the indoor surface component, and the surface of the cooling radiation panel is cooled when the surface is cooled. The far-infrared emitting material absorbs far-infrared radiation emitted by the far-infrared emitting material of the indoor surface component, and when the surface of the heating radiation panel is heated, the far-infrared emitting material on the heating surface is It is preferable that the far-infrared radiation material of the indoor surface constituent member absorbs the far-infrared radiation to be emitted.
 また、本発明に係る放射冷房装置は、ヒートポンプと、冷媒を流通させるための冷房用放射パネルと、を少なくとも備え、上記冷房用放射パネルは、冷房対象となる室内に臨ませて開口され、該室内の壁面よりも窪ませて区画形成されたパネル収納凹部の内部に収納されていることを特徴とする。 The radiant cooling device according to the present invention includes at least a heat pump and a cooling radiant panel for circulating the refrigerant, and the radiant panel for cooling is opened to face a room to be cooled, It is accommodated in the inside of the panel accommodation recessed part formed in a dimple rather than the wall surface in the room.
 本発明に係る放射冷暖房装置によれば、冷暖房対象となる室内の収容人数や利用面積を拡大することができる。また、本発明に係る放射冷暖房装置および放射冷暖房装置によれば、冷房時における放射パネル近傍の局所的な冷え込みを防止するとともに、結露対策を行うことができるという優れた効果を発揮する。 According to the radiant cooling and heating apparatus according to the present invention, the number of people accommodated in the room and the area of use can be expanded. In addition, according to the radiant cooling and heating apparatus and the radiant cooling and heating apparatus according to the present invention, it is possible to prevent local cooling in the vicinity of the radiant panel during cooling and to exhibit an excellent effect of being able to take measures against condensation.
第1の実施形態に係る放射冷暖房装置の放射パネル配置の縦断面模式図である。It is a longitudinal cross-sectional schematic diagram of the radiation | emission panel arrangement | positioning of the radiation cooling / heating apparatus which concerns on 1st Embodiment. 第1の実施形態に係る放射冷暖房装置の縦断面模式図である。It is a longitudinal cross-sectional schematic diagram of the radiation cooling and heating apparatus which concerns on 1st Embodiment. 第2の実施形態に係る放射冷暖房装置における結露防止構造の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the dew condensation prevention structure in the radiation cooling / heating apparatus which concerns on 2nd Embodiment. 第2の実施形態における結露防止構造の応用例の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the application example of the dew condensation prevention structure in 2nd Embodiment. 他の実施形態に係る放射冷暖房装置の放射パネル配置の平面模式図である。It is a plane schematic diagram of the radiation panel arrangement | positioning of the radiation cooling / heating apparatus which concerns on other embodiment.
 以下、図面を参照して、第1および第2の実施形態に係る放射冷暖房装置について説明する。ただし、図面は模式的に図示しており、実際の寸法や比率等とは必ずしも一致しない。また、図面相互間において、互いの寸法の関係や比率が異なる部分が含まれることがある。
〔第1の実施形態〕
(放射冷暖房装置の構成)
Hereinafter, the radiant cooling and heating apparatus according to the first and second embodiments will be described with reference to the drawings. However, the drawings are schematically shown and do not always match actual dimensions and ratios. In addition, the drawings may include portions having different dimensional relationships and ratios.
[First Embodiment]
(Configuration of radiant air conditioning unit)
 まず、図1および図2を参照して、第1の実施形態に係る放射冷暖房装置の構成について説明する。図1は第1の実施形態に係る放射冷暖房装置の放射パネル配置の縦断面模式図である。図2は第1の実施形態に係る放射冷暖房装置の縦断面模式図である。 First, with reference to FIG. 1 and FIG. 2, the structure of the radiation cooling and heating apparatus which concerns on 1st Embodiment is demonstrated. FIG. 1 is a schematic vertical cross-sectional view of a radiant panel arrangement of a radiant cooling and heating apparatus according to the first embodiment. FIG. 2 is a schematic longitudinal sectional view of the radiant cooling and heating apparatus according to the first embodiment.
 図1および図2に示すように、第1の実施形態に係る放射冷暖房装置100は、少なくとも、ヒートポンプ11、冷房用放射パネル20、および暖房用放射パネル30を備えている。 As shown in FIGS. 1 and 2, the radiant cooling and heating apparatus 100 according to the first embodiment includes at least a heat pump 11, a cooling radiant panel 20, and a heating radiant panel 30.
 ヒートポンプ11は、屋外機10に含まれ、通常の空気調和機等と同一の原理により動作する。すなわち、ヒートポンプ11は、不図示の凝縮器、膨張弁、蒸発器、および圧縮機を備え、可逆的に発熱現象と吸熱現象とを利用して熱のやり取りを行う。屋外機10は、冷媒が流通される循環配管13を介して、熱交換器12と接続されている。冷媒は、特に制限されないが、ハイドロクロロフルオロカーボン(HCFC)(R-22等の代替フロン)およびハイドロフルオロカーボン(HFC)(R-410A等の代替フロン)であるフロン類が好適である。 The heat pump 11 is included in the outdoor unit 10 and operates on the same principle as a normal air conditioner or the like. In other words, the heat pump 11 includes a condenser, an expansion valve, an evaporator, and a compressor (not shown), and exchanges heat reversibly using an exothermic phenomenon and an endothermic phenomenon. The outdoor unit 10 is connected to the heat exchanger 12 via a circulation pipe 13 through which the refrigerant is circulated. The refrigerant is not particularly limited, and chlorofluorocarbons (HCFC) (alternative chlorofluorocarbons such as R-22) and hydrofluorocarbon (HFC) (alternative chlorofluorocarbons such as R-410A) are preferable.
 冷房用放射パネル20は、冷房時に使用されるフィンを備えた放射パネルである。冷房用放射パネル20には、循環配管21を通じて冷水等の冷媒が流通される。他方、暖房用放射パネル30は、暖房時に使用されるフィンを備えた放射パネルである。暖房用放射パネル30には、循環配管31を通じて温水等の熱媒が流通される。 The cooling radiation panel 20 is a radiation panel provided with fins used during cooling. A refrigerant such as cold water is circulated through the circulation pipe 21 in the cooling radiation panel 20. On the other hand, the heating radiating panel 30 is a radiating panel provided with fins used during heating. A heating medium such as hot water is circulated in the heating radiating panel 30 through the circulation pipe 31.
 熱交換器12は、切り替え弁40を介して、冷房用の循環配管21と暖房用の循環配管31とが接続されている。冷房時には切り替え弁40が冷房用の循環配管21側へと切り替えられる。熱交換器12から冷房用の循環配管21に冷水が供給されると、冷房用放射パネル20のフィンが冷やされ、このフィンの表面は冷放射を行う冷却面として機能する。他方、暖房時には切り替え弁40が暖房用の循環配管31側へと切り替えられる。熱交換器12から暖房用の循環配管31に温水が供給されると、暖房用放射パネル30のフィンが温められ、このフィンの表面は熱放射を行う加熱面として機能する。なお、冷水または温水の温度は、不図示の運転操作部により設定可能となっている。 In the heat exchanger 12, a cooling circulation pipe 21 and a heating circulation pipe 31 are connected via a switching valve 40. During cooling, the switching valve 40 is switched to the cooling circulation pipe 21 side. When cold water is supplied from the heat exchanger 12 to the cooling circulation pipe 21, the fins of the cooling radiation panel 20 are cooled, and the surfaces of the fins function as cooling surfaces for performing the cold radiation. On the other hand, during heating, the switching valve 40 is switched to the heating circulation pipe 31 side. When hot water is supplied from the heat exchanger 12 to the circulation pipe 31 for heating, the fins of the radiation panel 30 for heating are warmed, and the surface of the fins functions as a heating surface that performs thermal radiation. In addition, the temperature of cold water or warm water can be set by a driving operation unit (not shown).
 冷房用放射パネル20および暖房用放射パネル30のフィンは、たとえば、アルミニウム製フィンが好適に用いられる。アルミニウム製フィンは、アルミニウム製の支持板(図示せず)と一体的に形成される。冷房用の循環配管21と暖房用の循環配管31は、上記支持板の裏面に設けることが好ましい。フィンは、薄手の板状であり、左右もしくは上下に延在している。フィンは、熱伝導の良好な金属または合金で構成され、アルミニウムの他、たとえば、鉄や銅、それらの合金などで作製することができる。 As the fins of the cooling radiation panel 20 and the heating radiation panel 30, for example, aluminum fins are preferably used. The aluminum fin is integrally formed with an aluminum support plate (not shown). The cooling circulation pipe 21 and the heating circulation pipe 31 are preferably provided on the back surface of the support plate. The fin has a thin plate shape and extends left and right or up and down. A fin is comprised with the metal or alloy with favorable heat conduction, for example, can be produced with iron, copper, those alloys other than aluminum.
 各放射パネル20、30は、パネル収納凹部2、3の内部に収納される。パネル収納凹部2、3は、冷暖房対象となる室内1に臨ませて開口され、該室内1の壁面5よりも窪ませて区画形成されている。冷房用放射パネル20を収納するためのパネル収納凹部2と、暖房用放射パネル30を収納するためのパネル収納凹部3とは、離間させて配置されている。パネル収納凹部2、3は、各放射パネル20、30が壁面5から突き出すことなく、各放射パネル20、30を収容しうるに足りる奥行きがあればよい。 Each radiation panel 20 and 30 is housed inside the panel housing recesses 2 and 3. The panel housing recesses 2 and 3 are opened so as to face the room 1 to be air-conditioned, and are formed to be recessed from the wall surface 5 of the room 1. The panel housing recess 2 for housing the cooling radiation panel 20 and the panel housing recess 3 for housing the heating radiation panel 30 are arranged apart from each other. The panel housing recesses 2 and 3 need only have a depth sufficient to accommodate the radiating panels 20 and 30 without protruding the radiating panels 20 and 30 from the wall surface 5.
 冷房用放射パネル20を収納するためのパネル収納凹部2と、暖房用放射パネル30を収納するためのパネル収納凹部3とは、相対的に上下に配置されている。本実施形態において、冷房用放射パネル20を収納するためのパネル収納凹部2は、天井部6の近傍に配設されている。冷房用放射パネル20を天井部6の近傍に配置しているのは、冷気は下方へと対流するからである。他方、暖房用放射パネル30を収納するためのパネル収納凹部3は、床部7の近傍に配設されている。暖房用放射パネル30を床部7の近傍に配置しているのは、暖気は上方へと対流するからである。 The panel housing recess 2 for housing the cooling radiation panel 20 and the panel housing recess 3 for housing the heating radiation panel 30 are disposed relatively vertically. In the present embodiment, the panel housing recess 2 for housing the cooling radiation panel 20 is disposed in the vicinity of the ceiling portion 6. The reason why the cooling radiation panel 20 is arranged in the vicinity of the ceiling portion 6 is because the cool air convects downward. On the other hand, the panel housing recess 3 for housing the heating radiation panel 30 is disposed in the vicinity of the floor 7. The reason why the heating radiating panel 30 is disposed in the vicinity of the floor 7 is that warm air convects upward.
 冷房用放射パネル20の下部には、冷房用放射パネル20の表面に結露した水分を受けるためのドレンパン50が備えられている。ドレンパン50は、冷房用放射パネル20の延在方向に沿って樋状に延出されている。ドレンパン50には、このドレンパン50で受けた結露水を排出するためのドレン排出管51が接続されている。ドレン排出管51の延出端部は、逆止弁52を介して冷水が流通する循環配管21に接続されている。ドレンパン50は、ドレン排出管51から着脱可能な状態で取り付けても構わない。 A drain pan 50 for receiving moisture condensed on the surface of the cooling radiation panel 20 is provided below the cooling radiation panel 20. The drain pan 50 extends in a bowl shape along the extending direction of the cooling radiation panel 20. A drain discharge pipe 51 for discharging the condensed water received by the drain pan 50 is connected to the drain pan 50. The extended end of the drain discharge pipe 51 is connected to a circulation pipe 21 through which cold water flows through a check valve 52. The drain pan 50 may be attached in a detachable state from the drain discharge pipe 51.
 本発明の床冷暖房以外の放射冷暖房装置の好適な態様においては、遠赤外線を放射・吸収し遠赤外線の放射率が0.6以上である遠赤外線放射物質を含む材料で構成された室内面構成部材を有し、冷房用放射パネル20および暖房用放射パネル30の表面が、室内面構成部材の遠赤外線放射物質と同一の遠赤外線放射物質を含む材料で構成されてなる。冷房用放射パネル20の表面が冷却されると、その表面の遠赤外線放射物質が室内面構成部材の遠赤外線放射物質が放射する遠赤外線を吸収し、暖房用放射パネル30の表面が加熱されると、その加熱面の遠赤外線放射物質が放射する遠赤外線を室内面構成部材の上記遠赤外線放射物質が吸収する。 In a preferred embodiment of the radiant cooling and heating device other than the floor cooling and heating according to the present invention, the indoor surface configuration made of a material containing a far infrared radiation substance that radiates and absorbs far infrared rays and has an emissivity of far infrared rays of 0.6 or more. The surfaces of the cooling radiation panel 20 and the heating radiation panel 30 are made of a material containing the same far-infrared radiation material as the far-infrared radiation material of the indoor surface constituent member. When the surface of the cooling radiation panel 20 is cooled, the far-infrared radiation material on the surface absorbs the far-infrared radiation emitted by the far-infrared radiation material of the indoor surface constituent member, and the surface of the heating radiation panel 30 is heated. Then, the far-infrared radiation material of the indoor surface constituent member absorbs the far-infrared radiation emitted by the far-infrared radiation material on the heating surface.
 室内面構成部材は、遠赤外線放射物質で構成されるか、遠赤外線放射物質を混入した材料で構成されるか、又は遠赤外線放射物質からなる皮膜を有する。冷房用放射パネル20および暖房用放射パネル30の表面も、室内面構成部材の遠赤外線放射物質と同一の遠赤外線放射物質で構成されるか、遠赤外線放射物質を混入した材料で構成されるか、又は遠赤外線放射物質からなる皮膜で構成される。 The indoor surface constituent member is made of a far-infrared emitting material, made of a material mixed with a far-infrared emitting material, or has a film made of a far-infrared emitting material. Whether the surfaces of the cooling radiation panel 20 and the heating radiation panel 30 are also composed of the same far-infrared radiation material as the far-infrared radiation material of the indoor surface constituent member or a material mixed with the far-infrared radiation material Or a film made of a far-infrared emitting material.
 本発明において、室内面構成部材とは、環境調整の対象となる密閉空間に露出した面を構成している部材を指す。密閉空間は、その内部と外部との連絡を可能にするドアや窓などのような開閉手段を備えることができる。密閉空間は、特に制限されないが、通常は人間が生活・活動する建物の部屋や廊下などである。室内面構成部材の少なくとも一部は、本発明における室内環境の調整に必要な遠赤外線を放射・吸収する遠赤外線放射物質で構成されるか、遠赤外線放射物質を混入した材料で構成されるか、又は遠赤外線放射物質からなる皮膜を有する。遠赤外線の放射および吸収を効率よく行うため、室内面構成部材に混入される遠赤外線放射物質は、室内空間に露出していることが好ましい。とはいえ、室内面構成部材中の遠赤外線放射物質は、室内空間に直接露出されずに、遠赤外線放射物質の遠赤外線の放射・吸収を有意に妨げない程度の保護層(例えば、1mm程度以下の厚さの塗装膜、ニス層、壁紙等)などで覆われていてもよい。 In the present invention, the term “interior surface constituent member” refers to a member that constitutes a surface exposed to a sealed space that is subject to environmental adjustment. The sealed space can be provided with opening / closing means such as a door or a window that enables communication between the inside and the outside. The sealed space is not particularly limited, but is usually a room or a corridor of a building where people live and act. Whether at least some of the indoor surface components are made of a far-infrared emitting material that emits or absorbs far-infrared rays necessary for adjusting the indoor environment in the present invention, or is it made of a material mixed with a far-infrared emitting material Or a film made of a far-infrared emitting material. In order to efficiently emit and absorb far-infrared rays, it is preferable that the far-infrared emitting substance mixed in the indoor surface constituent member is exposed to the indoor space. Nonetheless, the far-infrared emitting material in the indoor surface constituent member is not directly exposed to the indoor space, and does not significantly interfere with the far-infrared radiation and absorption of the far-infrared emitting material (for example, about 1 mm) It may be covered with a coating film, varnish layer, wallpaper or the like having the following thickness.
 遠赤外線放射物質は遠赤外線を放射・吸収する物質をいうが、本発明で用いる遠赤外線放射物質は、遠赤外線の放射率が0.6以上、好ましくは0.8以上の遠赤外線放射物質である。 The far-infrared emitting material refers to a material that emits and absorbs far-infrared rays. The far-infrared emitting material used in the present invention is a far-infrared emitting material having a far-infrared emissivity of 0.6 or more, preferably 0.8 or more. is there.
 このような遠赤外線放射物質は、通常、いわゆる無機材料であり、天然及び人工の鉱物、金属及び半金属の酸化物、窒化物、炭化物、硫化物、水酸化物等、炭酸塩などの塩やそれらの複合物(複塩)、炭などのほか、貝殻などの天然素材なども含まれる。また、本発明の遠赤外線放射物質の殆どは広義のセラミックス材料(金属以外の無機材料をいう。)であるが、有機物や有機物由来の物質であっても上記放射率の条件を満たすならば用いることができる。 Such far-infrared emitting materials are usually so-called inorganic materials, such as natural and artificial minerals, metal and metalloid oxides, nitrides, carbides, sulfides, hydroxides, carbonates and other salts, In addition to these composites (double salt) and charcoal, natural materials such as shells are also included. In addition, most of the far-infrared emitting materials of the present invention are ceramic materials in a broad sense (referring to inorganic materials other than metals). However, even organic materials or substances derived from organic materials are used as long as the above emissivity conditions are satisfied. be able to.
 本発明において、遠赤外線放射物質を含む部材中における遠赤外線放射物質の形態は、遠赤外線放射物質を含む部材が遠赤外線を放射・吸収できれば格別に制約はなく、代表的には、遠赤外線放射物質からなる一体物(石材)、遠赤外線放射物質の粒子、粉末、骨材等(これらを粒子ともいう。)を含む部材、遠赤外線放射物質の皮膜を有する部材などの形態であることができる。本発明において、遠赤外線放射物質からなる石材とは、天然又は人工の無機材料からなる固体一体物のことであって、通常はパネルまたはタイル状の建材等として用いられる。天然の石材の例としては、花崗岩、玄武岩、などを挙げることができる。人工的に製造した石材でもよいことはいうまでもない。人造パネル等の建材やその他の一体物部材は、石材と考えることができる。 In the present invention, the form of the far-infrared emitting material in the member containing the far-infrared emitting material is not particularly limited as long as the member containing the far-infrared emitting material can emit and absorb far-infrared rays. It can be in the form of a monolithic material (stone), a member containing particles of far-infrared radiation, powder, aggregate, etc. (these are also called particles), a member having a film of far-infrared radiation, etc. . In the present invention, a stone material made of a far-infrared emitting material is a solid integrated material made of a natural or artificial inorganic material, and is usually used as a panel or tile-shaped building material. Examples of natural stone materials include granite and basalt. Needless to say, artificially produced stone may be used. Building materials such as artificial panels and other integral members can be considered stone.
 本発明において、遠赤外線放射物質を混入した材料とは、構成成分の一部として遠赤外線放射物質を含む材料をいう。この場合の遠赤外線放射物質は、典型的には天然又は人工の無機材料の粒子として、室内面構成部材の製造材料や製造材料中に混入される。 In the present invention, the material mixed with the far-infrared emitting material means a material containing the far-infrared emitting material as a part of the constituent components. In this case, the far-infrared emitting substance is typically mixed as a particle of a natural or artificial inorganic material in the manufacturing material or manufacturing material of the indoor surface constituent member.
 本発明において、遠赤外線放射物質からなる皮膜とは、室内面構成部材や冷却及び/又は加熱源の表面に形成した遠赤外線放射物質の皮膜をいう。この皮膜は、適当な皮膜形成技術、例えば熔射、蒸着などのPVD技術、あるいはCVD技術により、遠赤外線放射物質を対象表面にコーティングして形成することができる。 In the present invention, a film made of a far-infrared emitting material means a film of a far-infrared emitting material formed on the surface of an indoor surface constituent member or a cooling and / or heating source. This film can be formed by coating the target surface with a far-infrared radiation material by an appropriate film forming technique, for example, PVD technique such as spraying or vapor deposition, or CVD technique.
 本発明においては、室内面構成部材の遠赤外線放射物質と、冷暖放射パネル表面の遠赤外線放射物質とは、同一である。本発明における放射冷暖房装置は、同一分子種間における熱放射を介した熱移動が、同一分子種間でない場合に比較して高い効率で行われる現象を利用して、室内面構成部材と冷暖放射パネル表面との間で熱放射を介し熱移動を高い効率で行わせることにより、室内環境の調整を実現するものである。よって、本発明の放射冷暖房装置が所期の機能を発揮するためには、それらの間で熱放射を介した熱移動が行われる室内面構成部材と冷房用放射パネル20および暖房用放射パネル30の表面とに、同一分子種の物質が存在する必要がある。本発明では、同一分子種で構成されている、室内面構成部材の遠赤外線放射物質と冷却及び/又は加熱源の遠赤外線放射物質のことを、同一物質であると称する。ここで同一分子種とは、遠赤外線を放射・吸収する性質を示し、遠赤外線の放射率が0.6以上、好ましくは0.8以上である一方の物質(例えば、室内面構成部材において使用する遠赤外線放射物質)と、遠赤外線を放射・吸収する性質を示し、遠赤外線の放射率が0.6以上、好ましくは0.8以上であるもう一方の物質(冷暖放射パネル表面で使用する遠赤外線放射物質)とが、分子レベルで同一であることをいう。ここでの分子とは、化学結合により結合された原子の集団を意味する。したがって、ここでいう分子には、例えば天然石材を構成する鉱物の結晶なども含まれる。類似元素が置換あるいは固溶した同一鉱物は同一分子種の物質とみなされている。天然の鉱物の場合、複数の化合物で構成されるのが普通であり、しかも巨視的レベルでは鉱物中の部位によりそれらの化合物の結晶構造に違いが見られることもある。とは言え、この場合は、同じ原産地から切り出した鉱物は、実質的に同じ分子種の物質の実質的に同じ組成の集合体であり、全体として同一分子種の物質と同様に考えてよい。 In the present invention, the far-infrared emitting material of the indoor surface constituent member and the far-infrared emitting material on the surface of the cooling / heating radiation panel are the same. The radiant cooling and heating apparatus according to the present invention uses a phenomenon in which heat transfer via thermal radiation between the same molecular species is performed with higher efficiency than in the case where the same molecular species is not between the same molecular species. Adjustment of the indoor environment is achieved by causing heat transfer to and from the panel surface through heat radiation with high efficiency. Therefore, in order for the radiant cooling and heating apparatus of the present invention to perform its intended functions, the indoor surface constituent members, the cooling radiant panel 20 and the heating radiant panel 30 in which heat transfer is performed between them are performed. It is necessary that substances of the same molecular species exist on the surface of each other. In the present invention, the far-infrared emitting material of the indoor surface constituting member and the far-infrared emitting material of the cooling and / or heating source, which are composed of the same molecular species, are referred to as the same material. Here, the same molecular species indicates the property of radiating and absorbing far infrared rays, and one substance (e.g., used in indoor surface constituent members) having far infrared emissivity of 0.6 or more, preferably 0.8 or more. Far infrared radiation material) and other materials that exhibit the properties of emitting and absorbing far infrared radiation, and the far infrared emissivity is 0.6 or more, preferably 0.8 or more (used on the surface of a cooling / heating radiation panel) Far-infrared emitting material) is the same at the molecular level. The molecule here means a group of atoms bonded by chemical bonds. Therefore, the molecule referred to here includes, for example, a crystal of a mineral constituting a natural stone material. The same mineral with substitution or solid solution of similar elements is regarded as a substance of the same molecular species. In the case of a natural mineral, it is usually composed of a plurality of compounds, and on the macroscopic level, the crystal structure of these compounds may be different depending on the site in the mineral. However, in this case, the mineral cut out from the same place of origin is a collection of substantially the same composition of substances of substantially the same molecular species, and may be considered in the same way as a substance of the same molecular species as a whole.
 室内面構成部材、あるいは冷房用放射パネル20および暖房用放射パネル30の表面において、上述の遠赤外線放射物質として無機材料粒子を使用する場合、そこには、遠赤外線放射物質としての無機材料粒子以外の物質が共存するのが普通である。例えば、遠赤外線放射物質としての無機材料粒子を含む漆喰により室内面構成部材を形成した場合や、遠赤外線放射物質としての無機材料粒子を含む塗料を冷暖放射パネル表面に塗布した場合、上述の遠赤外線放射物質としての無機材料粒子は、漆喰中の骨材あるいは塗料中のバインダー成分などと共存する。このような場合、上述の「遠赤外線放射物質」としての無機材料粒子以外の物質も、遠赤外線を多かれ少なかれ放射・吸収する性質を持つ。しかし、本発明では、同一分子種間における熱放射を介した熱移動が同一分子種間でない場合に比較して顕著に高い効率で行われる現象を利用しているので、室内面構成部材と冷暖放射パネル表面の両者に共通に存在しない物質が本発明において果たす役割は、きわめて少ないか、または無視できる程度である。したがって、本発明において遠赤外線放射物質に言及する場合、それは室内面構成部材と冷房用放射パネル20および暖房用放射パネル30の表面の両者に共通に存在する、遠赤外線放射率0.6以上、好ましくは0.8以上の同一の物質(電磁波を介した同一分子間における分子振動の共鳴現象を引き起こす物質)を指す。 When inorganic material particles are used as the above-mentioned far-infrared radiation material on the interior surface components or the surfaces of the cooling radiation panel 20 and the heating radiation panel 30, other than the inorganic material particles as the far-infrared radiation material It is normal for these substances to coexist. For example, when the indoor surface constituent member is formed of plaster containing inorganic material particles as a far-infrared emitting material, or when a paint containing inorganic material particles as a far-infrared emitting material is applied to the surface of a cooling / heating radiation panel, The inorganic material particles as the infrared emitting substance coexist with the aggregate in the plaster or the binder component in the paint. In such a case, substances other than the inorganic material particles as the “far-infrared emitting substance” described above also have the property of emitting or absorbing far-infrared rays more or less. However, the present invention uses a phenomenon in which heat transfer via thermal radiation between the same molecular species is performed with significantly higher efficiency than when the same molecular species is not between the same molecular species. Substances that are not commonly present on both sides of the radiating panel play a very small or negligible role in the present invention. Therefore, when referring to the far-infrared radiation material in the present invention, it is common to both the interior surface components and the surfaces of the cooling radiation panel 20 and the heating radiation panel 30, and far-infrared emissivity of 0.6 or more, Preferably, it refers to the same substance of 0.8 or more (a substance that causes a resonance phenomenon of molecular vibrations between the same molecules via electromagnetic waves).
 室内面構成部材と冷房用放射パネル20および暖房用放射パネル30の表面とで遠赤外線放射物質としてともに無機材料粒子を使用する場合には、双方の粒子の粒径や形状は同一でも異なっていてもよい。室内面構成部材と冷暖放射パネル表面の双方に含まれる無機材料粒子の配合量も、同じである必要はない。また、例えば、室内面構成部材が壁面と天井面を形成していて、遠赤外線放射物質として無機材料粒子を使用する場合、壁面と天井面の遠赤外線放射物質の粒子の粒径や形状は、同一でも異なっていてもよい。この場合、無機材料粒子は、室内面構成部材(たとえば、壁面及び天井面を形成する建材)中に、本発明による同一分子種間での熱放射を介した所期の熱移動を可能にする含有量で配合される。このとき、壁面を形成する建材と天井面を形成する建材とで、無機材料粒子の配合量は同一でも異なっていてもよい。これらは、2以上の壁面のそれぞれにおける遠赤外線放射物質の無機材料粒子についてもいえる。 In the case where inorganic material particles are used as far-infrared radiation materials on the interior surface constituent members and the surfaces of the cooling radiation panel 20 and the heating radiation panel 30, both particles have the same or different particle sizes and shapes. Also good. The blending amount of the inorganic material particles contained in both the indoor surface component and the cooling / heating radiation panel surface need not be the same. Further, for example, when the indoor surface constituent member forms a wall surface and a ceiling surface, and the inorganic material particles are used as the far infrared radiation material, the particle size and shape of the far infrared radiation material particles on the wall surface and the ceiling surface are: It may be the same or different. In this case, the inorganic material particles enable the desired heat transfer through thermal radiation between the same molecular species according to the present invention in the interior surface constituent members (for example, building materials forming the wall surface and the ceiling surface). It is blended by content. At this time, the amount of the inorganic material particles may be the same or different between the building material forming the wall surface and the building material forming the ceiling surface. These also apply to the inorganic material particles of the far-infrared emitting material on each of the two or more wall surfaces.
 室内面構成部材と冷房用放射パネル20および暖房用放射パネル30の表面において、遠赤外線放射物質は複数種を用いてもよい。遠赤外線放射物質が石材の場合は、室内面構成部材あるいは冷房用放射パネル20および暖房用放射パネル30の表面のために、2種以上の石材を組み合わせて用いることができる。遠赤外線放射物質が無機材料粒子の場合は、2種以上の無機材料粒子の混合物を用いることができる。どちらの場合も、室内面構成部材における無機材料粒子の組み合わせと冷房用放射パネル20および暖房用放射パネル30の表面における無機材料粒子の組み合わせが同じであれば(同じ組み合わせが含まれていれば)、それらは同一物質であると見なされる。 A plurality of types of far-infrared emitting materials may be used on the surface of the indoor surface constituent member and the cooling radiation panel 20 and the heating radiation panel 30. In the case where the far-infrared radiation material is a stone material, two or more kinds of stone materials can be used in combination for the interior surface constituent members or the surfaces of the cooling radiation panel 20 and the heating radiation panel 30. When the far-infrared emitting material is inorganic material particles, a mixture of two or more inorganic material particles can be used. In either case, if the combination of the inorganic material particles in the interior surface constituent member and the combination of the inorganic material particles on the surfaces of the cooling radiation panel 20 and the heating radiation panel 30 are the same (if the same combination is included). They are considered to be the same substance.
 室内面構成部材と冷房用放射パネル20および暖房用放射パネル30の表面に含まれる遠赤外線放射物質としての無機材料粒子は、同一分子種間での熱放射を介した所期の熱移動を可能にする量でそれらに存在する。通常、室内面構成部材と冷房用放射パネル20および暖房用放射パネル30の表面は、異なる業者により、建設現場以外で製作して建設現場に搬入されるか又は建設現場において施工されることが多いと考えられる。従って、室内面構成部材と冷房用放射パネル20および暖房用放射パネル30の表面には、遠赤外線放射物質としての共通の無機材料粒子が、それぞれの製造業者又は施工業者により混入されることが多いと考えられる。このような場合、遠赤外線放射物質としての無機材料粒子の含有量は、それぞれの業者により室内面構成部材と冷房用放射パネル20および暖房用放射パネル30の表面の各製造材料に含められる共通の無機材料粒子の量をいう。室内面構成部材中及び冷房用放射パネル20および暖房用放射パネル30の表面形成材料中の無機材料粒子含有量は、本発明による熱放射を介した熱移動を実効あるものにする量として決定することができる。その量は、所期の冷房及び/又は加熱のために必要とされる熱移動量、熱放射を介した熱移動に利用可能な室内面構成部材と冷却及び/又は加熱面の面積、使用する遠赤外線放射物質の熱放射特性などに依存する。下記で説明する計測実験では、遠赤外線放射物質としての無機材料粒子は、室内面構成部材材料中、あるいは冷暖放射パネル表面を形成している材料中に、1重量%以上存在する場合に有効な効果が認められ、3重量%以上存在する場合により好ましい効果が得られた。一方、遠赤外線放射物質として無機材料粒子を用いる場合、その含有量の上限は、室内面構成部材と冷房用放射パネル20および暖房用放射パネル30の表面を形成する材料中に実際上含ませることができる無機材料粒子の最大量によって決まり、特に制約はない(理論的には、例えば90重量%でもよい)。 Infrared material particles as far-infrared radiation materials contained on the interior surface components and the surfaces of the cooling radiation panel 20 and the heating radiation panel 30 are capable of desired heat transfer via thermal radiation between the same molecular species. Present in them in an amount to make. Usually, the interior surface components and the surfaces of the cooling radiant panel 20 and the heating radiant panel 30 are often manufactured outside the construction site and carried into the construction site or installed on the construction site by different contractors. it is conceivable that. Therefore, common inorganic material particles as far-infrared radiation materials are often mixed by the respective manufacturers or contractors on the interior surface constituent members and the surfaces of the cooling radiation panel 20 and the heating radiation panel 30. it is conceivable that. In such a case, the content of the inorganic material particles as the far-infrared emitting substance is included in each manufacturing material on the surface of the indoor surface constituent member and the cooling radiation panel 20 and the heating radiation panel 30 by each supplier. The amount of inorganic material particles. The content of inorganic material particles in the interior surface components and in the surface forming materials of the cooling radiant panel 20 and the heating radiant panel 30 is determined as an amount that makes heat transfer via heat radiation effective according to the present invention. be able to. The amount used is the amount of heat transfer required for the desired cooling and / or heating, the interior surface components available for heat transfer via heat radiation and the area of the cooling and / or heating surface. Depends on the thermal radiation characteristics of far-infrared radiation materials. In the measurement experiment described below, the inorganic material particles as the far-infrared radiation material are effective when they are present in the interior surface component material or the material forming the cooling / heating radiation panel surface in an amount of 1% by weight or more. An effect was recognized, and a more preferable effect was obtained when the content was 3% by weight or more. On the other hand, when inorganic material particles are used as the far-infrared radiation material, the upper limit of the content is actually included in the material forming the interior surface components and the surfaces of the cooling radiation panel 20 and the heating radiation panel 30. It is determined by the maximum amount of inorganic material particles that can be produced and is not particularly limited (theoretically, for example, 90% by weight may be used).
 本発明では、遠赤外線放射物質の無機材料粒子として、複数種の物質を使用(上述の「分子レベルで同一」である物質を複数種使用)してもよい。この場合には、室内面構成部材と冷暖放射パネル表面とで同じ無機材料粒子の混合物を用いることができる。この場合の室内面構成部材材料と冷房用放射パネル20および暖房用放射パネル30の表面を形成している材料における無機材料粒子の含有量は、混合物中の複数種の同じ物質の合計量でもって表される。 In the present invention, plural types of substances may be used as the inorganic material particles of the far-infrared emitting substance (multiple types of substances that are “identical at the molecular level” described above are used). In this case, the same mixture of inorganic material particles can be used for the interior surface constituting member and the cooling / heating radiation panel surface. In this case, the content of the inorganic material particles in the material constituting the indoor surface constituent material and the surfaces of the cooling radiating panel 20 and the heating radiating panel 30 is the total amount of the same kind of substances in the mixture. expressed.
 遠赤外線の放射および吸収を効率よく行うためには、遠赤外線放射物質は極力、環境調整する室内空間に露出していることが好ましい。とは言え、遠赤外線放射物質が室内空間に直接露出していなくても、1mm程度以下の保護層(例えば塗装の層、ニスの層、壁紙等)で覆われているのであれば、大きな問題はない。 In order to efficiently radiate and absorb far-infrared rays, it is preferable that far-infrared emitting materials are exposed to the indoor space where the environment is adjusted as much as possible. However, if the far-infrared emitting material is not directly exposed to the indoor space, it is a major problem if it is covered with a protective layer of about 1 mm or less (for example, a paint layer, a varnish layer, wallpaper, etc.). There is no.
 本発明で使用する遠赤外線放射物質の遠赤外線の放射率は、0.6以上であり、好ましくは0.8以上、より好ましくは0.9以上である。遠赤外線は、波長が3μm~1000μmの電磁波のことをいう。材料の放射率は、同一条件における理想的な黒体の遠赤外線の放射エネルギーをW0とし、当該材料の遠赤外線の放射エネルギーをWとした場合に、W/W0によって定義される。放射率の値は、本発明のシステムの実際の使用温度に近い室温(例えば25℃)におけるものが好ましく、例えば、人体に対する熱的な作用の大きい10μm付近における値を採用する。 The far-infrared emissivity of the far-infrared emitting material used in the present invention is 0.6 or more, preferably 0.8 or more, more preferably 0.9 or more. Far-infrared radiation refers to electromagnetic waves having a wavelength of 3 μm to 1000 μm. The emissivity of a material is defined by W / W0, where W0 is the ideal black body far-infrared radiation energy under the same conditions, and W is the far-infrared radiation energy of the material. The emissivity value is preferably at room temperature (for example, 25 ° C.) close to the actual use temperature of the system of the present invention. For example, a value near 10 μm at which the thermal action on the human body is large is adopted.
 本発明の一態様において、冷房用放射パネル20および暖房用放射パネル30のフィンの表面は、遠赤外線放射物質の粉砕物とバインダーとを混合し、それを層状に塗り、乾燥させることでコーティングされている。たとえば、フィンの表面には、遠赤外線の放射率が0.9を超える数値を示す花崗岩を粉砕した粉砕物(石粉)を混ぜた白い塗料により構成された厚さ約200μmのコーティング層が形成される。コーティング層中の石粉の粒径は、50μm以下である。この石粉のコーティング層における含有率は、塗料の硬化状態(乾燥状態)で20重量%とされている。
(放射冷暖房装置の作用)
In one embodiment of the present invention, the surfaces of the fins of the cooling radiant panel 20 and the heating radiant panel 30 are coated by mixing a pulverized far-infrared radiant material and a binder, coating them in layers, and drying them. ing. For example, on the surface of the fin, a coating layer having a thickness of about 200 μm formed of a white paint mixed with a pulverized material (stone powder) obtained by pulverizing granite, which has a far-infrared emissivity exceeding 0.9 is formed. The The particle size of the stone powder in the coating layer is 50 μm or less. The content of the stone powder in the coating layer is 20% by weight in the cured state (dry state) of the paint.
(Operation of radiant cooling and heating equipment)
 次に、図1および図2を参照して、第1の実施形態に係る放射冷暖房装置100の作用について説明する。 Next, the operation of the radiant cooling and heating apparatus 100 according to the first embodiment will be described with reference to FIGS. 1 and 2.
 図1および図2に示すように、第1の実施形態に係る放射冷暖房装置100は、切り替え弁40を切り替えることにより、冷房運転と暖房運転を行う。冷房用の循環配管21を流通する冷水の温度、または暖房用の循環配管31を流通する温水の温度は、不図示の運転操作部により設定可能となっている。 1 and 2, the radiant cooling and heating apparatus 100 according to the first embodiment performs a cooling operation and a heating operation by switching a switching valve 40. The temperature of the cold water flowing through the cooling circulation pipe 21 or the temperature of the hot water flowing through the heating circulation pipe 31 can be set by an operation unit (not shown).
 第1の実施形態に係る放射冷暖房装置100は、遠赤外線を放射・吸収し遠赤外線の放射率が0.6以上である遠赤外線放射物質を含む材料で構成された室内面構成部材を有する。また、冷房用放射パネル20および冷房用放射パネル30の表面が、室内面構成部材の遠赤外線放射物質と同一の遠赤外線放射物質を含む材料で構成されている。 The radiant cooling and heating apparatus 100 according to the first embodiment includes an indoor surface constituent member made of a material containing a far-infrared emitting material that emits and absorbs far-infrared rays and has a far-infrared emissivity of 0.6 or more. Further, the surfaces of the cooling radiation panel 20 and the cooling radiation panel 30 are made of a material containing the same far-infrared radiation material as the far-infrared radiation material of the indoor surface constituent member.
 冷房時には、切り替え弁40が冷房用の循環配管21側へと切り替えられる。熱交換器12から冷房用の循環配管21に冷水が供給されると、冷房用放射パネル20のフィンが冷やされ、このフィンの表面は冷放射を行う冷却面として機能する。冷房用放射パネル20の表面が冷却されると、その表面の遠赤外線放射物質が室内面構成部材の遠赤外線放射物質が放射する遠赤外線を吸収する。 During cooling, the switching valve 40 is switched to the cooling circulation pipe 21 side. When cold water is supplied from the heat exchanger 12 to the cooling circulation pipe 21, the fins of the cooling radiation panel 20 are cooled, and the surfaces of the fins function as cooling surfaces for performing the cold radiation. When the surface of the cooling radiation panel 20 is cooled, the far-infrared radiation material on the surface absorbs the far-infrared radiation emitted by the far-infrared radiation material of the indoor surface constituent member.
 冷房用放射パネル20は、天井部6の近傍に配設されたパネル収納部2内に収納されている。冷房用放射パネル20が天井部6に近く、冷房用放射パネル20の表面が、室内面構成部材の遠赤外線放射物質と同一の遠赤外線放射物質を含む材料で構成されているので、一般的な空気調和機のように送風することなく、天井部6の輻射熱を冷房用放射パネル20が吸収する。天井部6の温度が下がり、壁面5の温度との温度差が生じると、当該壁面5の輻射熱が天井側へと移動する。さらに、壁面5から天井側へと移動した輻射熱は、天井部6の近傍の冷房用放射パネル20に吸収されることになる。 The cooling radiation panel 20 is housed in the panel housing portion 2 disposed in the vicinity of the ceiling portion 6. Since the cooling radiating panel 20 is close to the ceiling portion 6 and the surface of the cooling radiating panel 20 is made of a material containing the same far infrared radiating substance as the far infrared radiating substance of the indoor surface constituent member, The cooling radiation panel 20 absorbs the radiant heat of the ceiling portion 6 without blowing air like an air conditioner. If the temperature of the ceiling part 6 falls and a temperature difference with the temperature of the wall surface 5 arises, the radiant heat of the said wall surface 5 will move to the ceiling side. Furthermore, the radiant heat moved from the wall surface 5 to the ceiling side is absorbed by the cooling radiation panel 20 in the vicinity of the ceiling portion 6.
 他方、暖房時には切り替え弁40が暖房用の循環配管31側へと切り替えられる。熱交換器12から暖房用の循環配管31に温水が供給されると、暖房用放射パネル30のフィンが温められ、このフィンの表面は熱放射を行う加熱面として機能する。暖房用放射パネル30の表面が加熱されると、その加熱面の遠赤外線放射物質が放射する遠赤外線を室内面構成部材の前記遠赤外線放射物質が吸収する。 On the other hand, during heating, the switching valve 40 is switched to the heating circulation pipe 31 side. When hot water is supplied from the heat exchanger 12 to the circulation pipe 31 for heating, the fins of the radiation panel 30 for heating are warmed, and the surface of the fins functions as a heating surface that performs thermal radiation. When the surface of the heating radiating panel 30 is heated, the far-infrared radiation material of the indoor surface constituent member absorbs the far-infrared radiation emitted by the far-infrared radiation material on the heating surface.
 以上説明したように、第1の実施形態に係る放射冷暖房装置100は、冷房用放射パネル20を天井部6の近傍に配設したパネル収納部2に収納するとともに、暖房用放射パネル30を床部7の近傍に配設したパネル収納部3に収納している。したがって、本発明に係る放射冷暖房装置100によれば、冷房用放射パネル20および暖房用放射パネル30が室内空間を占有しないので、冷暖房対象となる室内の収容人数や利用面積を拡大することができる。 As described above, the radiant cooling and heating apparatus 100 according to the first embodiment stores the cooling radiant panel 20 in the panel storage unit 2 disposed in the vicinity of the ceiling unit 6 and the heating radiant panel 30 on the floor. It is housed in the panel housing part 3 disposed in the vicinity of the part 7. Therefore, according to the radiant cooling and heating apparatus 100 according to the present invention, since the cooling radiating panel 20 and the heating radiating panel 30 do not occupy the indoor space, it is possible to increase the number of people accommodated and the usage area in the room to be cooled and heated. .
 また、第1の実施形態に係る放射冷暖房装置100は、冷房用放射パネル20を収納するためのパネル収納凹部2と、暖房用放射パネル30を収納するためのパネル収納凹部3とは、離間させて配置されている。さらに、冷房用放射パネル20を収納するためのパネル収納凹部2と、暖房用放射パネル30を収納するためのパネル収納凹部3とは、相対的に上下に配置されている。具体的には、冷房用放射パネル20は天井部6の近傍に配設され、暖房用放射パネル30は床部7の近傍に配設されている。したがって、第1の実施形態に係る放射冷暖房装置100によれば、冷房用放射パネル20が天井部6の近傍に配設されているので、冷房時における放射パネル近傍の局所的な冷え込みを防止することができる。 In addition, in the radiant cooling and heating apparatus 100 according to the first embodiment, the panel storage recess 2 for storing the cooling radiant panel 20 and the panel storage recess 3 for storing the heating radiant panel 30 are separated from each other. Are arranged. Furthermore, the panel housing recess 2 for housing the cooling radiation panel 20 and the panel housing recess 3 for housing the heating radiation panel 30 are disposed relatively vertically. Specifically, the cooling radiation panel 20 is disposed in the vicinity of the ceiling portion 6, and the heating radiation panel 30 is disposed in the vicinity of the floor portion 7. Therefore, according to the radiant cooling and heating apparatus 100 according to the first embodiment, since the cooling radiating panel 20 is disposed in the vicinity of the ceiling portion 6, local cooling near the radiating panel during cooling is prevented. be able to.
 さらに、第1の実施形態に係る放射冷暖房装置100は、冷房用放射パネル20の下部にドレン排出管51が接続されたドレンパン50が備えられている。したがって、第1の実施形態に係る放射冷暖房装置100によれば、冷房用放射パネル20に結露が生じた場合であっても、ドレンパン50で結露水を受けて、ドレン排出管51から排出することができる。特に、本実施形態では、このドレン排出管51の延出端部を冷房用放射パネル20に冷却水を流通させるための循環配管31に接続しているので、冷房用放射パネル20の結露水を冷却水として用いることができる。
〔第2の実施形態〕
Further, the radiant cooling and heating apparatus 100 according to the first embodiment is provided with a drain pan 50 having a drain discharge pipe 51 connected to the lower part of the cooling radiating panel 20. Therefore, according to the radiant cooling and heating apparatus 100 according to the first embodiment, even when condensation occurs in the cooling radiant panel 20, the condensed water is received by the drain pan 50 and discharged from the drain discharge pipe 51. Can do. In particular, in the present embodiment, the extended end portion of the drain discharge pipe 51 is connected to the circulation pipe 31 for circulating the cooling water to the cooling radiation panel 20, so that the dew condensation water of the cooling radiation panel 20 is reduced. It can be used as cooling water.
[Second Embodiment]
 次に、図3および図4を参照して、第2の実施形態に係る放射冷暖房装置の構成について説明する。図3は第2の実施形態に係る放射冷暖房装置における結露防止構造の概略縦断面図である。なお、同一の構成要素については、同一の符号を付して説明する。 Next, the configuration of the radiant cooling and heating apparatus according to the second embodiment will be described with reference to FIGS. FIG. 3 is a schematic longitudinal sectional view of a dew condensation preventing structure in the radiant cooling and heating apparatus according to the second embodiment. In addition, about the same component, the same code | symbol is attached | subjected and demonstrated.
 第2の実施形態に係る放射冷暖房装置200は、第1の実施形態と同様の構成で、ヒートポンプ11、冷房用放射パネル20、および暖房用放射パネル30を備えている。第2の実施形態に係る放射冷暖房装置200は、図3に示すように、冷房用放射パネル20を収納するためのパネル収納凹部2に断熱材61および反射材62が設けられている点が第1の実施形態と異なる。 The radiant cooling and heating apparatus 200 according to the second embodiment has the same configuration as that of the first embodiment, and includes a heat pump 11, a cooling radiant panel 20, and a heating radiant panel 30. As shown in FIG. 3, the radiant cooling and heating apparatus 200 according to the second embodiment is that a heat insulating material 61 and a reflective material 62 are provided in the panel housing recess 2 for housing the cooling radiating panel 20. Different from the first embodiment.
 冷房用放射パネル20を収納するためのパネル収納凹部2には、断熱材61を介して、反射材62が設けられている。すなわち、反射材62は、断熱材61の室内側の表面に配設されている。断熱材61は、いかなる種類の断熱材も使用することができ、たとえば、グラスウール、セルローズファイバー、インシュレーションボード、羊毛断熱材、およびロックウールなどの繊維系断熱材や、 発泡スチロール、ビーズ法ポリエチレンフォーム、およびフェノールフォームなどのプラスチック系断熱材が挙げられる。反射材62は、アルミニウム箔などの鏡面を有する反射体を用いることが好ましい。さらに、反射材62の表面には、前述した室内面構成部材の遠赤外線放射物質と同一の遠赤外線放射物質を含む材料を塗布することが好ましい。なお、第2の実施形態では、冷房用放射パネル20のフィンは、室内側のパネル前面のみに配設されている。 The panel housing recess 2 for housing the cooling radiation panel 20 is provided with a reflective material 62 via a heat insulating material 61. That is, the reflective material 62 is disposed on the indoor surface of the heat insulating material 61. As the heat insulating material 61, any type of heat insulating material can be used. For example, fiber-based heat insulating materials such as glass wool, cellulose fiber, insulation board, wool heat insulating material, and rock wool, styrene foam, beaded polyethylene foam, And plastic heat insulating materials such as phenol foam. The reflector 62 is preferably a reflector having a mirror surface such as an aluminum foil. Furthermore, it is preferable to apply a material containing the same far-infrared emitting material as the far-infrared emitting material of the indoor surface constituting member described above to the surface of the reflecting material 62. In the second embodiment, the fins of the cooling radiation panel 20 are disposed only on the front panel of the room.
 以上説明したように、第2の実施形態に係る放射冷暖房装置200によれば、基本的に第1の実施形態に係る放射冷暖房装置100と同様の作用効果を奏する。特に、本実施形態に係る放射冷暖房装置200は、冷房用放射パネル20を収納するためのパネル収納凹部2には、断熱材61を介して、反射材62が設けられている。したがって、第2の実施形態に係る放射冷暖房装置200によれば、遠赤外線を反射させて、積極的に結露対策を行うことができる。さらに、反射材62の表面に遠赤外線放射物質を含む材料を塗布することにより、パネル収納凹部2の壁面に準放射パネルの機能を持たせることができる。 As described above, according to the radiant cooling and heating apparatus 200 according to the second embodiment, there are basically the same effects as the radiant cooling and heating apparatus 100 according to the first embodiment. In particular, in the radiant cooling and heating apparatus 200 according to the present embodiment, the reflective material 62 is provided via the heat insulating material 61 in the panel housing recess 2 for housing the cooling radiating panel 20. Therefore, according to the radiant cooling and heating apparatus 200 according to the second embodiment, it is possible to positively take measures against condensation by reflecting far-infrared rays. Furthermore, by applying a material containing a far-infrared emitting substance on the surface of the reflective material 62, the wall surface of the panel housing recess 2 can have the function of a quasi-radiating panel.
 また、図4は第2の実施形態における結露防止構造の応用例の概略縦断面図である。図4に示す結露防止構造の応用例では、冷房用放射パネル20の背面側(室内1と反対側)に、断熱性および防水性を有する樹脂層63が配設されている。樹脂層63の肉厚は、下方から上方へ向けて順次増加しており、樹脂層63は斜め下方へ臨んで傾斜している。樹脂層63は冷房用放射パネル20と接近しており、アルミニウム製の冷房用放射パネル20が反射材の役目を果たすので、樹脂層63の表面に反射材を設ける必要はない。この応用例では、冷房用放射パネル20のフィンは水平に延出されている。すなわち、この応用例の結露防止構造は、暖気Hの対流方向を考慮した構造に構成されている。樹脂層63は断熱効果を有し、冷房用放射パネル20から壁材への水分移動を防止する。また、冷房用放射パネル20と樹脂層63との間に一定の隙間を設けることにより、結露により発生した水分をドレンパンに導くことができる。
〔他の実施形態〕
FIG. 4 is a schematic longitudinal sectional view of an application example of the dew condensation prevention structure in the second embodiment. In the application example of the dew condensation prevention structure shown in FIG. 4, a resin layer 63 having a heat insulating property and a waterproof property is disposed on the back side of the cooling radiating panel 20 (the side opposite to the room 1). The thickness of the resin layer 63 increases sequentially from below to above, and the resin layer 63 is inclined obliquely downward. Since the resin layer 63 is close to the cooling radiation panel 20 and the aluminum cooling radiation panel 20 serves as a reflector, it is not necessary to provide a reflector on the surface of the resin layer 63. In this application example, the fins of the cooling radiation panel 20 are extended horizontally. That is, the dew condensation prevention structure of this application example is configured to take into account the convection direction of the warm air H. The resin layer 63 has a heat insulating effect and prevents moisture from moving from the cooling radiation panel 20 to the wall material. Further, by providing a certain gap between the cooling radiation panel 20 and the resin layer 63, moisture generated by condensation can be guided to the drain pan.
[Other Embodiments]
 以上、本発明の好適な実施形態を説明したが、これらは本発明の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。 The preferred embodiments of the present invention have been described above, but these are examples for explaining the present invention, and the scope of the present invention is not limited to these embodiments. The present invention can be implemented in various modes different from the above-described embodiments without departing from the gist thereof.
 たとえば、第1および第2の実施形態では、ヒートポンプ10の他、冷房用放射パネル20と暖房用放射パネル30との双方を備えているが、これらの態様に限定されず、冷房用放射パネルまたは暖房用放射パネルの一方のみを配設しても構わない。この態様の場合においても、冷房用放射パネルまたは暖房用放射パネルは、冷房対象または暖房対象となる室内に臨ませて開口され、該室内の壁面よりも窪ませて区画形成されたパネル収納凹部の内部に収納されていることが好ましい。また、冷房用放射パネルを収納するためのパネル収納凹部は、天井部の近傍に配設されることが好ましい。他方、暖房用放射パネルを収納するためのパネル収納凹部は、床部の近傍に配設されることが好ましい。 For example, in the first and second embodiments, in addition to the heat pump 10, both the cooling radiation panel 20 and the heating radiation panel 30 are provided. However, the present invention is not limited to these modes, and the cooling radiation panel or Only one of the heating radiating panels may be provided. Even in the case of this aspect, the cooling radiant panel or the heating radiant panel is opened by facing the room to be cooled or heated, and is recessed from the wall surface of the room to form a panel housing recess. It is preferable to be housed inside. Moreover, it is preferable that the panel storage recessed part for accommodating the radiation panel for cooling is arrange | positioned in the vicinity of a ceiling part. On the other hand, the panel housing recess for housing the heating radiating panel is preferably disposed in the vicinity of the floor.
 また、第2の実施形態では、冷房用放射パネル20を収納するためのパネル収納凹部2のみに断熱材61および反射材62を設けているが、これと同様の構成で、暖房用放射パネル30を収納するためのパネル収納凹部3にも同様の構成で断熱材61および反射材62を設けてもよい。暖房用放射パネル30を収納するためのパネル収納凹部3にも断熱材61および反射材62を設けることにより、暖房時の輻射効率を高めることができる。 Moreover, in 2nd Embodiment, although the heat insulating material 61 and the reflective material 62 are provided only in the panel storage recessed part 2 for accommodating the radiation panel 20 for cooling, it is the structure similar to this, and the radiation panel 30 for heating is used. A heat insulating material 61 and a reflective material 62 may be provided in the same configuration in the panel housing recess 3 for housing the light. By providing the heat insulating material 61 and the reflective material 62 also in the panel housing recess 3 for housing the heating radiating panel 30, the radiation efficiency during heating can be increased.
 さらに、第1および第2の実施形態では、冷房用放射パネル20を収納するためのパネル収納凹部2と、暖房用放射パネル30を収納するためのパネル収納凹部3とは、相対的に上下に配置されているが、これらの態様に限定されず、図5に示す平面模式図のように、冷房用放射パネル320を収納するためのパネル収納凹部302と、暖房用放射パネル330を収納するためのパネル収納凹部3とを平面的に離間させて配置してもよい。また、図5では、冷房用放射パネル20を収納するためのパネル収納凹部302と、暖房用放射パネル30を収納するためのパネル収納凹部303とを相対向する壁面に配設しているが、これらのパネル収納凹部302,303は同じ側の壁面に配設してもよい。 Further, in the first and second embodiments, the panel storage recess 2 for storing the cooling radiation panel 20 and the panel storage recess 3 for storing the heating radiation panel 30 are relatively vertically positioned. However, the present invention is not limited to these embodiments, and as shown in the schematic plan view of FIG. 5, a panel storage recess 302 for storing the cooling radiation panel 320 and a heating radiation panel 330 are stored. The panel housing recess 3 may be spaced apart in a plane. In FIG. 5, a panel storage recess 302 for storing the cooling radiant panel 20 and a panel storage recess 303 for storing the heating radiant panel 30 are arranged on opposite walls. These panel storage recesses 302 and 303 may be disposed on the same wall surface.
 本発明の放射冷暖房装置によれば、冷房用放射パネルおよび暖房用放射パネルがそれぞれパネル収納部に収納される構造を有しているので、特に新築家屋への適用が好ましい。 According to the radiant cooling and heating apparatus of the present invention, since the cooling radiant panel and the heating radiant panel are each housed in the panel housing portion, application to a newly built house is particularly preferable.
   1  室内、
   5  壁面、
   2、3  パネル収納凹部、
  11  ヒートポンプ、
  20  冷房用放射パネル、
  30  暖房用放射パネル、
  50  ドレンパン、
  51  ドレン排出管、
  61  断熱材、
  62  反射材、
  100、200  放射冷暖房装置。
1 indoor,
5 walls,
2, 3 Panel storage recess,
11 Heat pump,
20 Radiant panel for cooling,
30 Radiant panel for heating,
50 Drain pan,
51 drain discharge pipe,
61 insulation,
62 reflective material,
100, 200 Radiant air conditioner.

Claims (6)

  1.  ヒートポンプと、
     冷媒を流通させるための冷房用放射パネルと、
     熱媒を流通させるための暖房用放射パネルと、
    を少なくとも備え、
     各放射パネルは、冷暖房対象となる室内に臨ませて開口され、該室内の壁面よりも窪ませて区画形成されたパネル収納凹部の内部に収納され、
     前記冷房用放射パネルを収納するためのパネル収納凹部と、前記暖房用放射パネルを収納するためのパネル収納凹部とは、離間させて配置されていることを特徴とする放射冷暖房装置。
    A heat pump,
    A cooling radiant panel for circulating refrigerant;
    A heating radiant panel for circulating the heat medium;
    Comprising at least
    Each radiant panel is opened facing the room to be air-conditioned, and is housed inside a panel housing recess formed by being partitioned from the wall surface in the room,
    A radiant cooling and heating apparatus, wherein a panel storage recess for storing the cooling radiant panel and a panel storage recess for storing the heating radiant panel are arranged apart from each other.
  2.  前記冷房用放射パネルを収納するためのパネル収納凹部と、前記暖房用放射パネルを収納するためのパネル収納凹部とは、相対的に上下に配置されている請求項1に記載の放射冷暖房装置。 The radiant cooling and heating apparatus according to claim 1, wherein a panel storage recess for storing the cooling radiant panel and a panel storage recess for storing the heating radiant panel are disposed relatively vertically.
  3.  前記冷房用放射パネルの下部には、ドレン排出管が接続されたドレンパンが備えられている請求項1または請求項2に記載の放射冷暖房装置。 The radiant cooling and heating apparatus according to claim 1 or 2, further comprising a drain pan connected to a drain discharge pipe at a lower portion of the radiating panel for cooling.
  4.  前記パネル収納凹部には、断熱材および反射材、または断熱性および防水性を有する樹脂層が設けられている請求項1から3のいずれか1項に記載の放射冷暖房装置。 The radiation cooling and heating apparatus according to any one of claims 1 to 3, wherein the panel housing recess is provided with a heat insulating material and a reflective material, or a resin layer having heat insulating properties and waterproof properties.
  5.  放射冷暖房装置が、
    遠赤外線を放射・吸収し遠赤外線の放射率が0.6以上である遠赤外線放射物質を含む材料で構成された室内面構成部材を有し、
     前記冷房用放射パネルおよび前記冷房用放射パネルの表面が、前記室内面構成部材の前記遠赤外線放射物質と同一の遠赤外線放射物質を含む材料で構成されてなり、
     前記冷房用放射パネルの表面が冷却されると、その表面の前記遠赤外線放射物質が前記室内面構成部材の前記遠赤外線放射物質が放射する遠赤外線を吸収し、
     前記暖房用放射パネルの表面が加熱されると、その加熱面の前記遠赤外線放射物質が放射する遠赤外線を前記室内面構成部材の前記遠赤外線放射物質が吸収するように構成されてなる請求項1から4のいずれか1項に記載の放射冷暖房装置。
    Radiant air conditioning unit
    It has an indoor surface component made of a material containing a far-infrared emitting material that radiates and absorbs far-infrared and has a far-infrared emissivity of 0.6 or more,
    The cooling radiation panel and the surface of the cooling radiation panel are made of a material containing the same far-infrared radiation material as the far-infrared radiation material of the indoor surface component,
    When the surface of the cooling radiation panel is cooled, the far-infrared radiation material on the surface absorbs far-infrared radiation emitted by the far-infrared radiation material of the indoor surface component member,
    The far-infrared radiation material of the indoor surface constituent member absorbs far-infrared radiation emitted by the far-infrared radiation material on the heating surface when the surface of the heating radiation panel is heated. The radiant cooling and heating apparatus according to any one of 1 to 4.
  6.  ヒートポンプと、
     冷媒を流通させるための冷房用放射パネルと、
    を少なくとも備え、
     前記冷房用放射パネルは、冷房対象となる室内に臨ませて開口され、該室内の壁面よりも窪ませて区画形成されたパネル収納凹部の内部に収納されていることを特徴とする放射冷房装置。
    A heat pump,
    A cooling radiant panel for circulating refrigerant;
    Comprising at least
    The radiant cooling device is characterized in that the cooling radiant panel is opened facing the room to be cooled, and is housed in a panel housing recess formed by being recessed from the wall surface of the room. .
PCT/JP2017/000521 2016-01-12 2017-01-10 Radiant cooling/heating device and radiant cooling device WO2017122644A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017561116A JPWO2017122644A1 (en) 2016-01-12 2017-01-10 Radiant air conditioner and radiant air conditioner
CN201780006396.2A CN108463674A (en) 2016-01-12 2017-01-10 Radiation refrigeration heating installation and radiation cooling device
KR1020187023144A KR20180104651A (en) 2016-01-12 2017-01-10 Radiant heating and cooling device and radiant cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016003307 2016-01-12
JP2016-003307 2016-01-12

Publications (1)

Publication Number Publication Date
WO2017122644A1 true WO2017122644A1 (en) 2017-07-20

Family

ID=59311694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000521 WO2017122644A1 (en) 2016-01-12 2017-01-10 Radiant cooling/heating device and radiant cooling device

Country Status (5)

Country Link
JP (1) JPWO2017122644A1 (en)
KR (1) KR20180104651A (en)
CN (1) CN108463674A (en)
TW (1) TW201730485A (en)
WO (1) WO2017122644A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015340B1 (en) * 1970-02-03 1975-06-04
JPH0428929A (en) * 1990-05-23 1992-01-31 Matsushita Electric Works Ltd Device for radiant type local cooking and heating
JPH0480534A (en) * 1990-07-24 1992-03-13 Noboru Maruyama Heating and cooling device
JPH0533968A (en) * 1991-07-26 1993-02-09 Sharp Corp Air conditioner
JP2003322363A (en) * 2002-04-26 2003-11-14 Toshiba Kyaria Kk Air conditioner
JP2012036657A (en) * 2010-08-09 2012-02-23 Tesuku Shizai Hanbai Co Ltd Partition embedded type heating and cooling system
JP2015206526A (en) * 2014-04-18 2015-11-19 Kft株式会社 Radiation air conditioning device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192565A (en) * 2010-10-06 2011-09-21 广东力优环境系统股份有限公司 Radiation-plane flow distribution adjustment system for air conditioner
CN102162672B (en) * 2011-04-22 2015-11-18 严继光 Can the radiation heat exchange plate of outdoor use and corresponding template radiation air-conditioner
CN204648744U (en) * 2015-03-09 2015-09-16 浙江曼瑞德舒适系统有限公司 Indoor environment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015340B1 (en) * 1970-02-03 1975-06-04
JPH0428929A (en) * 1990-05-23 1992-01-31 Matsushita Electric Works Ltd Device for radiant type local cooking and heating
JPH0480534A (en) * 1990-07-24 1992-03-13 Noboru Maruyama Heating and cooling device
JPH0533968A (en) * 1991-07-26 1993-02-09 Sharp Corp Air conditioner
JP2003322363A (en) * 2002-04-26 2003-11-14 Toshiba Kyaria Kk Air conditioner
JP2012036657A (en) * 2010-08-09 2012-02-23 Tesuku Shizai Hanbai Co Ltd Partition embedded type heating and cooling system
JP2015206526A (en) * 2014-04-18 2015-11-19 Kft株式会社 Radiation air conditioning device

Also Published As

Publication number Publication date
KR20180104651A (en) 2018-09-21
JPWO2017122644A1 (en) 2018-12-20
TW201730485A (en) 2017-09-01
CN108463674A (en) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2015022902A1 (en) Radiant cooling and heating device
JP6566530B2 (en) Air conditioning apparatus and air conditioning system
EP2679922B1 (en) Heat pump system and air-conditioner
JP6281197B2 (en) Thermal storage laminate
JP2001507420A (en) Building air conditioning technology using phase change materials.
KR20100062993A (en) An element for emission of thermal radiation
WO2015147182A1 (en) Heat-insulating, heat-shielding sheet
EP2098654B1 (en) Heating or cooling ceiling with corrugated steel sheet
WO2012077687A1 (en) Indoor environment adjustment system
JP2015206526A (en) Radiation air conditioning device
WO2017122644A1 (en) Radiant cooling/heating device and radiant cooling device
JP2014085025A (en) Automatic operation control system of radiation cooling/heating apparatus
JP2003160985A (en) Partition panel
JP2014113139A (en) Plant cultivation system
JP2015135197A (en) Radiation air conditioner
JP2945962B2 (en) Air conditioning
JP2017128853A (en) Building and air conditioner
JP6010786B2 (en) Purification and reuse of condensed water
JP2013104615A (en) Far infrared ray radiating and/or absorbing device and room environment adjusting system
JP2014085026A (en) Radiation cooling/heating apparatus
JP2011021417A (en) Cooling device
JP2006132822A (en) Indoor air-conditioning system of building
JPS60232440A (en) Heat storage type space cooling and heating system
JP5459701B2 (en) Radiation panel for cooling and cooling device
JP6991496B2 (en) Air conditioning system and heat exchange air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187023144

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023144

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 17738398

Country of ref document: EP

Kind code of ref document: A1