WO2017122344A1 - ノックセンサ信号処理装置 - Google Patents

ノックセンサ信号処理装置 Download PDF

Info

Publication number
WO2017122344A1
WO2017122344A1 PCT/JP2016/051117 JP2016051117W WO2017122344A1 WO 2017122344 A1 WO2017122344 A1 WO 2017122344A1 JP 2016051117 W JP2016051117 W JP 2016051117W WO 2017122344 A1 WO2017122344 A1 WO 2017122344A1
Authority
WO
WIPO (PCT)
Prior art keywords
knock sensor
sensor signal
knock
unit
output
Prior art date
Application number
PCT/JP2016/051117
Other languages
English (en)
French (fr)
Inventor
雅 山崎
邦人 加門
Original Assignee
新電元工業株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社, 本田技研工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2017561484A priority Critical patent/JP6539753B2/ja
Priority to PCT/JP2016/051117 priority patent/WO2017122344A1/ja
Publication of WO2017122344A1 publication Critical patent/WO2017122344A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present invention relates to a knock sensor signal processing device.
  • a knock control system that detects a knock generated in an internal combustion engine by a knock sensor, and controls the ignition timing so as to suppress the knock when the knock occurs.
  • This knock sensor detects a vibration generated in the internal combustion engine by a piezoelectric element built in its own device, and outputs a knock sensor signal corresponding to the detected vibration.
  • the vibration generated in the internal combustion engine includes vibration of the internal combustion engine, vibration from the ground that is received by the vehicle on which the internal combustion engine is mounted, in addition to vibration due to knocking. Therefore, the knock sensor signal output from the knock sensor includes a signal having an amplitude corresponding to vibration other than that caused by knocking.
  • the knock sensor has an internal resistance.
  • the resistance value of the internal resistance (hereinafter referred to as “internal resistance value”) varies depending on the ambient environment such as ambient temperature and humidity. Therefore, the amplitude of the knock sensor signal varies under the influence of the change in the internal resistance value. Therefore, a knock sensor signal processing device that adjusts the amplitude of the knock sensor signal has been proposed (see, for example, Patent Document 1).
  • the knock sensor signal processing device described in Patent Literature 1 amplifies the amplitude of the knock sensor signal output from the knock sensor with a preset gain, and outputs the amplified signal to a subsequent knock control device (DSP, host CPU).
  • the knock control device takes in the knock sensor signal output from the knock sensor signal processing device, and controls the ignition timing of the internal combustion engine based on the taken knock sensor signal. At this time, the knock control device captures a voltage value in a range (for example, 0 V to +5 V) that can be captured by the knock sensor signal output from the knock sensor signal processing device.
  • the knock control device when the knock sensor signal processing device described in Patent Document 1 is used, when a knock sensor signal that exceeds a voltage value within a captureable range is input, the knock control device captures a voltage value that exceeds the range. Can not. In this case, since a part of the value of the knock sensor signal is not correctly transmitted to the knock control device, the knock control device cannot control the ignition timing with high accuracy.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a voltage range that can be captured by a subsequent knock control device without missing both the upper limit side and the lower limit side of the knock sensor signal. It is to provide a knock sensor signal processing device that can be stored in a container and output.
  • One aspect of the present invention is a high-pass filter unit that outputs a second knock sensor signal obtained by removing a low-frequency component from a first knock sensor signal output from a knock sensor, and the second knock that is output from the high-pass filter unit.
  • a bandpass filter unit that outputs a third knock sensor signal whose gain is adjusted with respect to the second knock sensor signal so that an upper limit value and a lower limit value of the sensor signal fall within a predetermined range; and the bandpass filter unit
  • a bias unit that outputs a fourth knock sensor signal obtained by applying a predetermined voltage to the third knock sensor signal output from a knock control device that determines the presence or absence of knocking. is there.
  • one aspect of the present invention is the above-described knock sensor signal processing device, further including a failure determination unit that determines whether or not the knock sensor has failed based on a voltage value of the first knock sensor signal.
  • One embodiment of the present invention is the above-described knock sensor signal processing device, wherein the gain of the first knock sensor signal output from the knock sensor is connected in parallel to the knock sensor. And a first capacitor for suppressing overvoltage with respect to the high-pass filter unit.
  • One embodiment of the present invention is the above-described knock sensor signal processing device, connected in parallel to the knock sensor, smooths the first knock sensor signal input to the failure determination unit, and A second capacitor that is output to the failure determination unit is further provided.
  • One embodiment of the present invention is the above-described knock sensor signal processing device, wherein the second capacitor has the first knock sensor signal, the gain of which is adjusted by the first capacitor, received by the failure determination unit.
  • the first knock sensor signal which is connected to the output path and whose gain is adjusted by the first capacitor, is smoothed.
  • one aspect of the present invention is the above-described knock sensor signal processing device, wherein the predetermined range corresponds to a voltage range that can be captured by the knock control device.
  • both the upper limit side and the lower limit side of the knock sensor signal can be output within the voltage range that can be captured by the subsequent knock control device without being lost.
  • a knock sensor signal processing apparatus can be provided.
  • FIG. 3 is a waveform diagram of a knock sensor signal obtained at point A in FIG. 1 in the present embodiment.
  • FIG. 3 is a waveform diagram of a knock sensor signal obtained at point C in FIG. 1 in the present embodiment.
  • FIG. 3 is a waveform diagram of a knock sensor signal obtained at point D in FIG. 1 in the present embodiment.
  • FIG. 3 is a waveform diagram of a knock sensor signal obtained at point E in FIG. 1 in the present embodiment.
  • the functional block diagram which shows schematic structure of the knock control system 1 which has the knock sensor signal processing apparatus 10 provided with the 2nd capacitor
  • the knock sensor signal processing apparatus removes a DC component from the knock sensor signal output from the knock sensor by a high-pass filter, and based on the center level of the voltage value of the knock sensor signal from which the DC component is removed. Then, the gain is adjusted by the band pass filter unit so that the upper limit value and the lower limit value of the voltage value fall within a predetermined value.
  • the knock sensor signal processing device applies a predetermined DC voltage to the knock sensor signal whose gain has been adjusted. As a result, the knock sensor signal processing device can output within the range of voltages that can be captured by the subsequent knock control device without missing both the upper limit side and the lower limit side of the knock sensor signal.
  • the knock control system 1 includes a knock sensor 2 and a control device 3.
  • Each functional block of the control device 3 is connected to the ground so that the reference potential becomes a common ground (GND) potential.
  • GND common ground
  • the sensor ground (SG) and the logic ground (LG) are connected to the ground.
  • the knock sensor 2 is attached to an internal combustion engine (for example, an engine). Knock sensor 2 outputs a voltage value corresponding to vibration generated in the internal combustion engine to which the device is attached to control device 3 as a first knock sensor signal.
  • the vibration generated in the internal combustion engine may include vibration generated by factors other than knocking in addition to vibration generated by knocking. That is, the first knock sensor signal output from the knock sensor 2 corresponds to a signal having a frequency corresponding to vibration generated by knocking (hereinafter referred to as “knocking frequency”) or vibration generated by a factor other than knocking.
  • a signal of a frequency hereinafter referred to as “disturbance frequency” is included.
  • the knock sensor 2 is composed of a piezoelectric element, and an equivalent circuit thereof is represented, for example, by a circuit in which a capacitor C3 and a resistor R2 are connected in parallel.
  • Control device 3 determines the presence or absence of knocking based on the first knock sensor signal output from knock sensor 2, and controls the ignition timing of ignition device 4 based on the determination result.
  • the control device 3 includes a knock sensor signal processing device 10 and a knock control device 20.
  • Knock sensor signal processing device 10 acquires a first knock sensor signal output from knock sensor 2, and extracts a knock frequency signal (hereinafter referred to as "knock signal") from the acquired first knock sensor signal. Further, knock sensor signal processing device 10 includes both the upper limit value and the lower limit value of the extracted knocking signal, and outputs it within a voltage range that can be captured by subsequent knock control device 20.
  • the knock sensor signal processing device 10 includes a first capacitor C1, a resistor R1, a high-pass filter unit 12, a band-pass filter unit 13, a bias unit 14, a protection unit 15, and a failure determination unit 11.
  • Knock sensor signal processing device 10 offsets the first knock sensor signal output from knock sensor 2 by a predetermined DC voltage.
  • the power supply voltage Vcc is connected to the output terminal of the knock sensor 2 via the resistor R1.
  • the first knock sensor signal output from the knock sensor 2 is applied with a DC voltage (hereinafter referred to as “offset voltage”) V 1 that is resistance-divided by the resistance R 2 of the knock sensor 2 and the resistance R 1 . Is done.
  • FIG. 2A is a diagram illustrating an example of a waveform of the first knock sensor signal offset at the offset voltage V 1 obtained at point A in FIG.
  • the point A here is any point between the output terminal of the knock sensor 2 and the positive terminal of the first capacitor C1.
  • the first capacitor C ⁇ b> 1 is connected in parallel to the knock sensor 2. Specifically, the first capacitor C ⁇ b> 1 is connected between the output terminal of the knock sensor 2 and the connection point between the input terminal of the high-pass filter unit 12 and the input terminal of the failure determination unit 11. The first capacitor C1 adjusts the gain of the first knock sensor signal output from the knock sensor 2. Then, the first capacitor C1 outputs the first knock sensor signal whose gain is adjusted to the high-pass filter unit 12 and the failure determination unit 11.
  • FIG. 2B is a diagram showing an example of a waveform of the first knock sensor signal obtained by adjusting the gain by the first capacitor C1 obtained at point B in FIG.
  • the point B here is either between the positive terminal of the first capacitor C1 and the input terminal of the failure determination unit 11, or between the positive terminal of the first capacitor C1 and the input terminal of the high-pass filter unit 12. That is the point.
  • the first capacitor C1 has a maximum amplitude of ⁇ 20V to ⁇ 10V without changing the frequency with respect to the first knock sensor signal output from the knock sensor 2.
  • the first capacitor C1 suppresses the application of the overvoltage of the first knock sensor signal to the high-pass filter unit 12 when the first knock sensor signal is output from the knock sensor 2.
  • the capacitance value of the first capacitor C1 may be set according to the type of the knock sensor 2, or a voltage (for example, rated voltage or input) that can be handled by the knock sensor signal processing device 10 or the knock control device 20. It may be set according to the voltage range) or may be set arbitrarily.
  • the high pass filter unit 12 converts the second knock sensor signal obtained by removing the low frequency component from the first knock sensor signal output from the knock sensor 2 via the first capacitor C ⁇ b> 1 to the band pass filter unit. 13 is output.
  • the first knock sensor signal from which the low-frequency component has been removed by the high-pass filter unit 12 is a signal that is less than the knocking frequency. Therefore, the cutoff frequency in the high-pass filter unit 12 is the lowest frequency among the knocking frequencies. Thereby, the high pass filter unit 12 removes a signal having a disturbance frequency lower than the knocking frequency from the first knock sensor signal. Further, the high pass filter unit 12 removes the offset voltage V 1 from the first knock sensor signal.
  • FIG. 2C is a diagram showing an example of the waveform of the second knock sensor signal obtained at point C in FIG.
  • the point C is any point between the output terminal of the high-pass filter unit 12 and the input terminal of the band-pass filter unit 13.
  • the second knock sensor signal is represented by a waveform having an amplitude up and down around the center of 0V from which a signal having a disturbance frequency lower than the knocking frequency is removed.
  • the upper limit value and the lower limit value of the second knock sensor signal fall within the range of ⁇ 5V to + 5V.
  • the band pass filter unit 13 adjusts the gain of the second knock sensor signal so that the upper limit value and the lower limit value of the second knock sensor signal output from the high pass filter unit 12 are within a predetermined range. To do. Then, the bandpass filter unit 13 outputs the second knock sensor signal whose gain has been adjusted to the bias unit 14 as a third knock sensor signal.
  • the predetermined range here corresponds to a voltage range that can be captured by the knock control device 20. For example, the predetermined range is set such that the difference between the upper limit value and the lower limit value of the second knock sensor signal is less than or equal to the difference between the upper limit value and the lower limit value of the voltage that can be captured by the knock control device 20. .
  • the band pass filter unit 13 adjusts the gain in the second knock sensor signal so that the amplitude of the disturbance frequency signal equal to or higher than the knocking frequency becomes 0V.
  • “To be 0V” does not necessarily need to be 0V, but means to be as close to 0V as possible. That is, the bandpass filter unit 13 has an upper limit value and a lower limit value of the second knock sensor signal output from the highpass filter unit 12 within a predetermined range, and the amplitude of a signal having a disturbance frequency equal to or higher than the knocking frequency is the value of the knocking signal.
  • the gain is adjusted so as to be sufficiently smaller than the amplitude.
  • the bandpass filter unit 13 has an upper limit value and a lower limit value of the knocking signal in the second knock sensor signal within a predetermined range, and the amplitude of the signal having the disturbance frequency equal to or higher than the knocking frequency is approximately 0V.
  • a 3-knock sensor signal can be output to the bias unit 14.
  • FIG. 2D is a diagram illustrating an example of a waveform of the third knock sensor signal obtained at point D in FIG. 1.
  • the point D here is any point between the output terminal of the bandpass filter unit 13 and the input terminal of the bias unit 14.
  • the predetermined range is a range of ⁇ 2.5V to + 2.5V
  • a signal having a disturbance frequency in the third knock sensor signal is removed.
  • the upper limit value and the lower limit value of the knocking signal in the third knock sensor signal are within the range of ⁇ 2.5V to + 2.5V.
  • the bias unit 14 outputs a fourth knock sensor signal obtained by applying a predetermined DC voltage V ⁇ b > 2 to the third knock sensor signal output from the bandpass filter unit 13 to the knock control device 20. That is, the bias unit 14, the third knock sensor signal up to or just a DC voltage V 2 minutes by applying a predetermined DC voltage V 2 relative to the third knock sensor signal.
  • the DC voltage V 2 is determined based on a voltage range that can be captured by the knock control device 20. For example, the DC voltage V 2 is determined to be a half value of the voltage range that can be captured by the knock control device 20.
  • the fourth knock sensor signal is represented by a waveform of the knocking frequency having an amplitude to and below the DC voltage V 2. The upper limit value and the lower limit value of the amplitude are within the voltage range that can be captured by knock control device 20.
  • FIG. 2E is a diagram illustrating an example of a waveform of the fourth knock sensor signal obtained at point E in FIG. 1.
  • the point E is any point between the output terminal of the bias unit 14 and the input terminal of the knock control device 20.
  • the DC voltage V 2 is half the value of + 5V (+ 2.5V).
  • the fourth knock sensor signal has an amplitude up and down around + 2.5V, and the upper limit value and lower limit value of the amplitude are represented by a waveform of the knocking frequency within the range of 0V to + 5V.
  • knock sensor signal processing device 10 keeps the upper limit value and lower limit value of the knock sensor signal output from knock sensor 2 within the voltage range that can be captured by knock control device 20. Therefore, knock sensor signal processing device 10 can transmit the voltage value of the knock sensor signal output from knock sensor 2 to knock control device 20 without loss.
  • the protection unit 15 performs an overvoltage protection operation by monitoring the voltage value of the fourth knock sensor signal output from the bias unit 14 to the knock control device 20. For example, when the voltage value of the fourth knock sensor signal output from the bias unit 14 to the knock control device 20 is equal to or higher than the preset voltage value V h1 , the protection unit 15 has an abnormal value. It is assumed that the voltage value of the fourth knock sensor signal is controlled so that a voltage equal to or higher than the voltage value V h1 is not applied to the knock control device 20. For example, the protection unit 15 connects the bias unit 14 and the knock control device 20 when the voltage value of the fourth knock sensor signal output from the bias unit 14 is equal to or higher than a preset voltage value V h1. The voltage value of the fourth knock sensor signal is controlled to be less than the voltage value V h1 by reducing the impedance between the first knock sensor signal and the ground, and causing the current of the fourth knock sensor signal to flow to the ground.
  • the failure determination unit 11 determines whether or not the knock sensor 2 has failed based on the voltage value of the first knock sensor signal whose gain is adjusted by the first capacitor C1.
  • the failure determination unit 11 includes a buffer unit 111, a half-wave rectification unit 112, a failure detection unit 113, and a failure signal voltage protection unit 114.
  • the buffer unit 111 performs impedance conversion between circuits between the front stage and the rear stage of the buffer unit 111.
  • the buffer unit 111 increases the input impedance of the failure determination unit 11 to reduce fluctuations in the voltage value of the first knock sensor signal whose gain is adjusted by the first capacitor C1.
  • the buffer unit 111 acquires the first knock sensor signal whose gain has been adjusted by the first capacitor C ⁇ b> 1 with an input impedance higher than the previous impedance of the buffer unit 111.
  • the buffer unit 111 supplies the first knock sensor signal to the half-wave rectification unit 112 without affecting the voltage value of the first knock sensor signal whose gain is adjusted by the first capacitor C1. Can do.
  • the buffer unit 111 outputs the acquired first knock sensor signal to the half-wave rectifying unit 112 with an impedance lower than the impedance of the subsequent stage of the buffer unit 111.
  • the first knock sensor signal whose gain is adjusted by the first capacitor C ⁇ b> 1 is input to the half-wave rectifying unit 112 via the buffer unit 111.
  • the half-wave rectification unit 112 performs half-wave rectification on the input first knock sensor signal and outputs it to the failure detection unit 113.
  • the half-wave rectification unit 112 passes the first knock sensor signal whose gain is adjusted by the first capacitor C1 when it has a positive value, and passes the first knock sensor signal when it has a negative value.
  • the offset voltage V 1 is output to the failure detection unit 113 instead of the sensor signal.
  • Failure detection unit 113 detects a failure of knock sensor 2 based on the voltage value of the first knock sensor signal output from half-wave rectification unit 112. For example, the failure detection unit 113 detects that the knock sensor 2 is out of order when the voltage value of the first knock sensor signal output from the half-wave rectification unit 112 is outside a normal range that is a predetermined voltage range. Is detected, the failure of the knock sensor 2 is detected.
  • the upper limit value of the voltage in the normal range is V th1 (V 1 ⁇ V th1 ⁇ V cc ), and the lower limit value is V th2 (0 V ⁇ V th2 ⁇ V 1 ).
  • the voltage value of the first knock sensor signal output from half-wave rectification unit 112 is a value between V th1 and V th2. .
  • the voltage value of the first knock sensor signal is 0V.
  • the voltage value of the first knock sensor signal is power supply voltage Vcc . Therefore, failure detection unit 113 determines that knock sensor 2 has failed when the voltage value of the first knock sensor signal output from half-wave rectification unit 112 is either 0 V or power supply voltage Vcc . judge. Thereby, failure detection unit 113 can detect a failure of knock sensor 2.
  • Failure detection unit 113 outputs a failure signal indicating that knock sensor 2 has failed to knock control device 20 when a failure of knock sensor 2 is detected.
  • the failure signal voltage protection unit 114 performs an overvoltage protection operation by monitoring the voltage value of the failure signal output from the failure detection unit 113 to the knock control device 20. For example, if the voltage value of the failure signal output from the failure detection unit 113 to the knock control device 20 is equal to or higher than the preset voltage value V h2 , the failure signal voltage protection unit 114 is abnormal. As a value, the voltage value of the failure signal is controlled so that a voltage equal to or higher than the voltage value V h2 is not applied to the knock control device 20.
  • the failure signal voltage protection unit 114 when the voltage value of the failure signal output from the failure detection unit 113 becomes equal to or higher than the preset voltage value Vh2 , the failure detection unit 113 and the knock control device 20 The voltage value of the failure signal is controlled to be less than the voltage value V h2 by lowering the impedance between the connection line and the ground and causing the current of the failure signal to flow to the ground.
  • Knock control device 20 determines the presence or absence of knocking based on the fourth knock sensor signal output from bias unit 14.
  • the knock control device 20 includes a knock IC 21 and a control unit 22.
  • Knock IC 21 acquires the voltage value of the knock frequency of the fourth knock sensor signal as the knock signal level.
  • the knock IC 21 may acquire the voltage value of the knock frequency of the fourth knock sensor signal in a section where knocking may occur.
  • the section in which knocking may occur is, for example, a period that extends from the initial stage to the middle stage of the combustion stroke in the internal combustion engine to which the knock sensor 2 is attached.
  • knock IC 21 may acquire a peak value as a knock signal level among a plurality of voltage values of the fourth knock sensor signal acquired in a section where knocking may occur.
  • Knock IC 21 outputs the acquired knock signal level to control unit 22.
  • the control unit 22 determines that knocking has occurred when the knock signal level output from the knock IC 21 is equal to or higher than the threshold value Vth3 . On the other hand, when the knock signal level output from knock IC 21 is less than threshold value V th3 , control unit 22 determines that knocking has not occurred. When it is determined that knocking has occurred, the control unit 22 outputs a delay instruction for delaying the ignition timing to the ignition device 4. Thereby, the ignition device 4 controls the ignition timing of the internal combustion engine so as to delay the ignition timing of the internal combustion engine based on the delay instruction output from the control unit 22. Thereby, the ignition device 4 can eliminate knocking of the internal combustion engine. When it is determined that knocking has not occurred, the control unit 22 does not output the delay instruction to the ignition device 4. Accordingly, the ignition device 4 controls the ignition timing of the internal combustion engine based on the preset ignition timing.
  • the control unit 22 does not determine whether or not knocking has occurred based on the fourth knock sensor signal. That is, when a failure signal is output from the failure detection unit 113, the control unit 22 prohibits acceptance of the knock signal level output from the knock IC 21. As a result, when the knock signal level is output from the knock IC 21 due to the failure of the knock sensor 2, the control unit 22 does not determine whether or not knocking has occurred due to the incorrect knock signal level. Therefore, since the control unit 22 does not determine the presence or absence of knocking based on an incorrect knock signal level, it can determine the presence or absence of knocking based on the correct knock signal level, and can improve the determination accuracy.
  • Knock sensor signal processing device 10 acquires a first knock sensor signal from knock sensor 2 (step S101).
  • the first capacitor C1 adjusts the gain of the first knock sensor signal output from the knock sensor 2 in order to suppress the overvoltage of the first knock sensor signal from being applied to the high-pass filter unit 12 ( Step S102).
  • the first knock sensor signal whose gain is adjusted by the first capacitor C1 is output to the high-pass filter unit 12.
  • the high-pass filter unit 12 outputs a second knock sensor signal obtained by removing a low-frequency component from the first knock sensor signal output from the knock sensor 2 via the first capacitor C1 to the band-pass filter unit 13 ( Step S103). Thereby, a signal having a disturbance frequency lower than the knocking frequency in the second knock sensor signal is removed.
  • This second knock sensor signal is represented by a waveform having an amplitude in the vertical direction around the center of 0V.
  • the bandpass filter unit 13 sets the second knock sensor signal output from the highpass filter unit 12 so that the upper limit value and the lower limit value are within a predetermined range, for example, a range of ⁇ 2.5V to + 2.5V.
  • the third knock sensor signal in which the gain of the knock sensor signal is adjusted is output to the bias unit 14 (step S104). Thereby, a signal having a disturbance frequency equal to or higher than the knocking frequency in the third knock sensor signal is removed. Further, the upper limit value and the lower limit value of the knocking signal in the third knock sensor signal are within the range of ⁇ 2.5V to + 2.5V.
  • Bias unit 14 outputs the fourth knock sensor signal by applying a predetermined DC voltage V 2 relative to the third knock sensor signal outputted from the band-pass filter unit 13 to the knock control device 20 (step S105). That is, the bias unit 14 raises the voltage of the third knock sensor signal so that the third knock sensor signal falls within a voltage range that can be captured by the knock control device 20. Then, the bias unit 14 outputs the fourth knock sensor signal obtained by raising the voltage of the third knock sensor signal to the knock control device 20 via the protection unit 15 (step S106).
  • the buffer unit 111 acquires the first knock sensor signal whose gain is adjusted by the first capacitor C1 (step S201).
  • the buffer unit 111 performs impedance conversion between circuits between the preceding stage and the subsequent stage of the buffer unit 111 (step S202).
  • the first knock sensor signal whose gain is adjusted by the first capacitor C1 is supplied to the half-wave rectifier 112 without the voltage value fluctuating.
  • the half-wave rectification unit 112 performs half-wave rectification on the first knock sensor signal supplied from the buffer unit 111. Then, the half wave rectification unit 112 outputs the first knock sensor signal subjected to the half wave rectification to the failure detection unit 113 (step S203). That is, when the first knock sensor signal whose gain is adjusted by the first capacitor C1 is a positive value, the voltage value is output to the failure detection unit 113 as it is. On the other hand, when the first knock sensor signal whose gain is adjusted by the first capacitor C ⁇ b> 1 is a negative value, the offset voltage V ⁇ b> 1 is output to the failure detection unit 113.
  • the failure detection unit 113 determines whether or not the knock sensor 2 has failed based on the voltage value of the first knock sensor signal output from the half-wave rectification unit 112. For example, the failure detection unit 113 determines whether or not the voltage value of the first knock sensor signal output from the half-wave rectification unit 112 is outside the normal range (step S204). Failure detection unit 113 determines that knock sensor 2 has failed when the voltage value of the first knock sensor signal output from half-wave rectification unit 112 is outside the normal range, and performs knock control on the failure signal. It outputs to the apparatus 20 (step S205). If the voltage value of the first knock sensor signal output from half-wave rectification unit 112 is within the normal range, failure detection unit 113 determines that knock sensor 2 has not failed, and knocks the failure signal. Does not output to device 20.
  • the knock sensor signal processing apparatus 10 includes the high-pass filter unit 12, the band-pass filter unit 13, and the bias unit 14.
  • the high-pass filter unit 12 outputs a second knock sensor signal obtained by removing low frequency components from the first knock sensor signal output from the knock sensor 2.
  • the band pass filter unit 13 adjusts the gain of the second knock sensor signal so that the upper limit value and the lower limit value of the second knock sensor signal output from the high pass filter unit 12 are within a predetermined range.
  • Bias unit 14, a fourth knock sensor signal by applying a DC voltage V 2 given with respect to the third knock sensor signal output from the band pass filter unit 13, the presence or absence of knocking determining knock control device 20 outputs To do.
  • the knock sensor signal processing device 10 can capture the knock sensor signal output from the knock sensor 2 in the subsequent knock control device 20 without missing both the upper limit value and the lower limit value of the knock signal. It can be output within the voltage range. Therefore, the knock control device 20 can control the ignition timing with high accuracy.
  • the knock sensor signal processing device 10 further includes the failure determination unit 11 that determines whether or not there is a failure of the knock sensor based on the voltage value of the first knock sensor signal. Failure determination unit 11 outputs a failure signal indicating that knock sensor 2 has failed to knock control device 20 when it is determined that knock sensor 2 has failed. Thereby, the knock control device 20 does not determine the presence or absence of knocking when a failure signal is output from the failure detection unit 113. Thereby, when knocking signal level is outputted from knocking IC 21 due to failure of knocking sensor 2, knocking control device 20 can prevent the presence or absence of knocking from being judged at the wrong knocking signal level. .
  • knock sensor signal processing apparatus 10 further includes a first capacitor C1 that is connected in parallel to the knock sensor and adjusts the gain of the first knock sensor signal output from knock sensor 2. Prepare. Thereby, knock sensor signal processing device 10 can suppress overvoltage with respect to high-pass filter unit 12.
  • the knock sensor signal processing device 10 includes the second capacitor C2 that is connected in parallel to the knock sensor 2 and smoothes the first knock sensor signal input to the failure determination unit 11. Further, it may be provided.
  • the knock sensor signal processing apparatus 10 of the present modification includes a first capacitor C1, a second capacitor C2, a resistor R1, a high pass filter unit 12, a band pass filter unit 13, a bias unit 14, a protection unit 15, and a failure determination unit 11. Is provided.
  • the second capacitor C2 is connected to the subsequent stage of the first capacitor C1.
  • the second capacitor C2 is connected to a path through which the first knock sensor signal whose gain is adjusted by the first capacitor C1 is output to the failure determination unit 11.
  • the knock sensor signal processing device 10 of the present modification can output the first knock sensor signal with the noise frequency amplitude further reduced to the buffer unit 111.
  • control device 3 may be realized by hardware, may be realized by software, or may be realized by a combination of hardware and software. Further, the computer may function as a part of the control device 3 by executing the program.
  • the program may be stored in a computer-readable medium, or may be stored in a storage device connected to a network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

ノックセンサから出力される第1ノックセンサ信号から低周波成分を除去した第2ノックセンサ信号を出力するハイパスフィルタ部と、前記ハイパスフィルタ部から出力される前記第2ノックセンサ信号の上限値と下限値とが所定の範囲に収まるように、前記第2ノックセンサ信号に対してゲインを調整した第3ノックセンサ信号を出力するバンドパスフィルタ部と、前記バンドパスフィルタ部から出力される前記第3ノックセンサ信号に対して所定の電圧を印加した第4ノックセンサ信号を、ノッキングの有無を判定するノック制御装置に出力するバイアス部と、を備える。

Description

ノックセンサ信号処理装置
 本発明は、ノックセンサ信号処理装置に関する。
 内燃機関に発生するノッキングをノックセンサによって検出し、ノッキングが発生している場合に、ノッキングを抑制するように点火時期を制御するノックコントロールシステムがある。このノックセンサは、内燃機関に発生する振動を自装置に内蔵された圧電素子によって検出し、検出した振動に応じたノックセンサ信号を出力する。この内燃機関に発生する振動には、ノッキングによる振動以外に、内燃機関の振動、内燃機関を搭載した車両が受ける地面からの振動等が含まれる。したがって、ノックセンサから出力されるノックセンサ信号には、ノッキングによる振動以外の振動に応じた振幅の信号が含まれる。ここで、ノックセンサは、内部抵抗を有している。この内部抵抗の抵抗値(以下、「内部抵抗値」という。)は、周囲の温度や湿度等の周囲環境によって変化する。そのため、ノックセンサ信号の振幅は、内部抵抗値の変化の影響を受けて変動する。そこで、ノックセンサ信号の振幅を調整するノックセンサ信号処理装置が提案されている(例えば、特許文献1参照)。特許文献1に記載のノックセンサ信号処理装置は、ノックセンサから出力されるノックセンサ信号の振幅を予め設定されたゲインで増幅し、後段のノック制御装置(DSP、ホストCPU)に出力する。ノック制御装置は、ノックセンサ信号処理装置から出力されたノックセンサ信号を取り込み、取り込んだノックセンサ信号に基づいて内燃機関の点火時期を制御する。このとき、ノック制御装置は、ノックセンサ信号処理装置から出力されたノックセンサ信号のうち、自身が取り込むことが可能な範囲(例えば、0V~+5V)の電圧値を取り込む。
特開平7-306119号公報
 しかしながら、特許文献1に記載のノックセンサ信号処理装置を用いる場合、ノック制御装置は、取り込み可能な範囲の電圧値を超えるノックセンサ信号が入力されると、その範囲を超える電圧値を取り込むことができない。その場合、ノック制御装置にノックセンサ信号の一部の値が正しく伝達されないため、ノック制御装置は精度のよい点火時期の制御を行うことができない。
 本発明は、このような事情に鑑みてなされたもので、その目的は、ノックセンサ信号の上限側及び下限側の両方について欠落させることなく、後段のノック制御装置にて取り込み可能な電圧の範囲に収めて出力することができるノックセンサ信号処理装置を提供することである。
 本発明の一態様は、ノックセンサから出力される第1ノックセンサ信号から低周波成分を除去した第2ノックセンサ信号を出力するハイパスフィルタ部と、前記ハイパスフィルタ部から出力される前記第2ノックセンサ信号の上限値と下限値とが所定の範囲に収まるように、前記第2ノックセンサ信号に対してゲインを調整した第3ノックセンサ信号を出力するバンドパスフィルタ部と、前記バンドパスフィルタ部から出力される前記第3ノックセンサ信号に対して所定の電圧を印加した第4ノックセンサ信号を、ノッキングの有無を判定するノック制御装置に出力するバイアス部と、を備えるノックセンサ信号処理装置である。
 また、本発明の一態様は、上述のノックセンサ信号処理装置であって、前記第1ノックセンサ信号の電圧値に基づいて、前記ノックセンサの故障の有無を判定する故障判定部をさらに備える。
 また、本発明の一態様は、上述のノックセンサ信号処理装置であって、前記ノックセンサに対して並列に接続され、前記ノックセンサから出力される前記第1ノックセンサ信号のゲインを調整することで前記ハイパスフィルタ部に対する過電圧を抑制する第1のコンデンサをさらに備える。
 また、本発明の一態様は、上述のノックセンサ信号処理装置であって、前記ノックセンサに対して並列に接続され、前記故障判定部に入力される前記第1ノックセンサ信号を平滑し、前記故障判定部に出力する第2のコンデンサをさらに備える。
 また、本発明の一態様は、上述のノックセンサ信号処理装置であって、前記第2のコンデンサは、前記第1のコンデンサによりゲインが調整された前記第1ノックセンサ信号が前記故障判定部に出力される経路に接続され、前記第1のコンデンサでゲインが調整された前記第1ノックセンサ信号を平滑化する。
 また、本発明の一態様は、上述のノックセンサ信号処理装置であって、前記所定の範囲は、前記ノック制御装置の取り込み可能な電圧範囲に対応している。
 以上説明したように、本発明によれば、ノックセンサ信号の上限側及び下限側の両方について欠落させることなく、後段のノック制御装置にて取り込み可能な電圧の範囲に収めて出力することができるノックセンサ信号処理装置を提供することができる。
本実施形態におけるノックセンサ信号処理装置を備えたノックコントロールシステム1の概略構成の一例を示す機能ブロック図。 本実施形態における図1のA点で得られるノックセンサ信号の波形図。 本実施形態における図1のB点で得られるノックセンサ信号の波形図。 本実施形態における図1のC点で得られるノックセンサ信号の波形図。 本実施形態における図1のD点で得られるノックセンサ信号の波形図。 本実施形態における図1のE点で得られるノックセンサ信号の波形図。 本実施形態におけるノックセンサ信号処理装置10の信号処理のフローチャート図。 本実施形態における故障判定部11の故障判定処理のフローチャート図。 本実施形態のおける第2のコンデンサC2を備えたノックセンサ信号処理装置10を有するノックコントロールシステム1の概略構成を示す機能ブロック図。
 本実施形態におけるノックセンサ信号処理装置は、ノックセンサから出力されるノックセンサ信号に対してハイパスフィルタ部によって直流成分を除去し、直流成分を除去したノックセンサ信号の電圧値の中央レベルを元にして、バンドパスフィルタ部にて電圧値の上限値及び下限値が所定の値に収まるようにゲインを調整する。そして、ノックセンサ信号処理装置は、ゲインを調整したノックセンサ信号に対して所定の直流電圧を印加する。これにより、ノックセンサ信号処理装置は、ノックセンサ信号の上限側及び下限側の両方について欠落させることなく、後段のノック制御装置にて取り込み可能な電圧の範囲に収めて出力することができる。
 以下、図1~図3を参照して、本発明の実施形態について説明する。
 ノックコントロールシステム1は、ノックセンサ2及び制御装置3を備える。なお、制御装置3の各機能ブロックは、基準電位が共通のグラウンド(GND)の電位になるようにグラウンドに接続されている。しかし、ここでは図面が煩雑になるため、各機能ブロックそれぞれとグラウンドとを接続する配線の図示は省略されている。また、本実施形態において、センサーグラウンド(SG)とロジックグラウンド(LG)とは、グラウンドに接続されている。
 ノックセンサ2は、内燃機関(例えば、エンジン)に取り付けられている。ノックセンサ2は、自装置が取り付けられた内燃機関に発生する振動に応じた電圧値を第1ノックセンサ信号として、制御装置3に出力する。内燃機関に発生する振動には、ノッキングによって発生する振動の他に、ノッキング以外の要因で発生する振動が含まれる場合がある。すなわち、ノックセンサ2から出力される第1ノックセンサ信号には、ノッキングによって発生する振動に応じた周波数(以下、「ノッキング周波数」という。)の信号やノッキング以外の要因で発生する振動に応じた周波数(以下、「外乱周波数」という。)の信号が含まれる。なお、本実施形態では、ノックセンサ2は、圧電素子で構成されており、その等価回路としては、例えば、コンデンサC3と抵抗R2とが並列接続された回路で表される。
 制御装置3は、ノックセンサ2から出力される第1ノックセンサ信号に基づいて、ノッキングの有無を判定し、その判定結果に基づいて、点火装置4の点火時期を制御する。制御装置3は、ノックセンサ信号処理装置10及びノック制御装置20を備える。
 ノックセンサ信号処理装置10は、ノックセンサ2から出力される第1ノックセンサ信号を取得し、取得した第1ノックセンサ信号からノッキング周波数の信号(以下、「ノッキング信号」という。)を抽出する。また、ノックセンサ信号処理装置10は、その抽出したノッキング信号の上限値及び下限値の両方を含むようにして、後段のノック制御装置20にて取り込み可能な電圧の範囲に収めて出力する。
 ノックセンサ信号処理装置10は、第1のコンデンサC1、抵抗R1、ハイパスフィルタ部12、バンドパスフィルタ部13、バイアス部14、保護部15及び故障判定部11を備える。
 ノックセンサ信号処理装置10は、ノックセンサ2から出力される第1ノックセンサ信号を所定の直流電圧だけオフセットする。例えば、ノックセンサ2の出力端子には、抵抗R1を介して電源電圧Vccが接続されている。したがって、ノックセンサ2から出力される第1ノックセンサ信号には、ノックセンサ2の抵抗R2と、抵抗R1とので抵抗分圧された直流電圧(以下、「オフセット電圧」という。)Vが印加される。
 図2Aは、図1のA点で得られる、オフセット電圧Vでオフセットされた第1ノックセンサ信号の波形の一例を示す図である。ここでいうA点とは、ノックセンサ2の出力端子から第1のコンデンサC1の正端子との間のいずれかの点である。図2Aに示すように、ノックセンサ2の出力端子から出力される第1ノックセンサ信号は、オフセット電圧Vを中心に上下に振幅をもったノッキング信号と外乱周波数の信号とが含まれた波形で表される。本実施形態では、例えば、図1のA点において、第1ノックセンサ信号の振幅の最大値が±20Vである場合について説明する。
 図1に戻り、第1のコンデンサC1は、ノックセンサ2に対して並列に接続される。具体的には、第1のコンデンサC1は、ノックセンサ2の出力端子と、ハイパスフィルタ部12の入力端子と故障判定部11の入力端子との接続点と、の間に接続される。第1のコンデンサC1は、ノックセンサ2から出力される第1ノックセンサ信号のゲインを調整する。そして、第1のコンデンサC1は、ゲインを調整した第1ノックセンサ信号をハイパスフィルタ部12と故障判定部11とに出力する。
 図2Bは、図1のB点で得られる、第1のコンデンサC1によってゲインが調整された第1ノックセンサ信号の波形の一例を示す図である。ここでいうB点とは、第1のコンデンサC1の正端子と故障判定部11の入力端子との間、又は第1のコンデンサC1の正端子とハイパスフィルタ部12の入力端子との間のいずれかの点である。図2Bに示すように、例えば、第1のコンデンサC1は、ノックセンサ2から出力される第1ノックセンサ信号に対して、周波数を変化させることなく、振幅の最大値が±20Vから±10Vになるようにゲインを調整する。これにより、第1のコンデンサC1は、ノックセンサ2から第1ノックセンサ信号が出力された場合に、ハイパスフィルタ部12に対して第1ノックセンサ信号の過電圧が印加されることを抑制する。なお、第1のコンデンサC1の容量値は、ノックセンサ2の種類に応じて設定されてもよいし、ノックセンサ信号処理装置10やノック制御装置20の対応可能な電圧(例えば、定格電圧や入力電圧の範囲)に応じて設定されてもよいし、任意に設定されてもよい。
 図1に戻り、ハイパスフィルタ部12は、ノックセンサ2から第1のコンデンサC1を介して出力された第1ノックセンサ信号に対して低周波成分を除去した第2ノックセンサ信号をバンドパスフィルタ部13に出力する。ハイパスフィルタ部12により低周波成分が除去された第1ノックセンサ信号は、ノッキング周波数未満の信号である。したがって、ハイパスフィルタ部12における遮断周波数は、ノッキング周波数の中で最も低い周波数である。これにより、ハイパスフィルタ部12は、第1ノックセンサ信号に対して、ノッキング周波数未満の外乱周波数の信号を除去する。また、ハイパスフィルタ部12は、第1ノックセンサ信号に対してオフセット電圧Vを除去する。
 図2Cは、図1のC点で得られる、第2ノックセンサ信号の波形の一例を示す図である。ここでいうC点とは、ハイパスフィルタ部12の出力端子とバンドパスフィルタ部13の入力端子との間のいずれかの点である。図2Cに示すように、第2ノックセンサ信号は、ノッキング周波数未満の外乱周波数の信号が除去され、0V中心に上下に振幅をもった波形で表される。これにより、例えば、第2ノックセンサ信号の上限値と下限値とが-5Vから+5Vの範囲内に収まる。
 図1に戻り、バンドパスフィルタ部13は、ハイパスフィルタ部12から出力される第2ノックセンサ信号の上限値と下限値とが所定の範囲に収まるように、第2ノックセンサ信号のゲインを調整する。そして、バンドパスフィルタ部13は、ゲインを調整した第2ノックセンサ信号を第3ノックセンサ信号としてバイアス部14に出力する。ここでいう所定の範囲は、ノック制御装置20にて取り込み可能な電圧の範囲に対応している。例えば、所定の範囲は、第2ノックセンサ信号の上限値と下限値との差が、ノック制御装置20にて取り込み可能な電圧の上限値と下限値との差以下になるように設定される。ただし、バンドパスフィルタ部13は、第2ノックセンサ信号において、ノッキング周波数以上の外乱周波数の信号の振幅が0Vとなるようにゲインを調整する。0Vとなるようにとは、必ずしも0Vにする必要がないが、可能な限り0Vに近づけることを意味する。すなわち、バンドパスフィルタ部13は、ハイパスフィルタ部12から出力される第2ノックセンサ信号の上限値と下限値とが所定の範囲に収まり、ノッキング周波数以上の外乱周波数の信号の振幅がノッキング信号の振幅と比較して十分小さくなるようにゲインを調整する。これにより、バンドパスフィルタ部13は、第2ノックセンサ信号におけるノッキング信号の上限値と下限値とが所定の範囲内であり、ノッキング周波数以上の外乱周波数の信号の振幅が略0Vになった第3ノックセンサ信号をバイアス部14に出力することができる。
 図2Dは、図1のD点で得られる、第3ノックセンサ信号の波形の一例を示す図である。ここでいうD点とは、バンドパスフィルタ部13の出力端子とバイアス部14の入力端子との間のいずれかの点である。図2Dに示すように、例えば、所定の範囲が-2.5Vから+2.5Vの範囲である場合に、第3ノックセンサ信号における外乱周波数の信号が除去される。また、第3ノックセンサ信号におけるノッキング信号の上限値と下限値とが-2.5Vから+2.5Vの範囲内に収められる。
 図1に戻り、バイアス部14は、バンドパスフィルタ部13から出力される第3ノックセンサ信号に対して所定の直流電圧Vを印加した第4ノックセンサ信号をノック制御装置20に出力する。すなわち、バイアス部14は、第3ノックセンサ信号に対して所定の直流電圧Vを印加することで第3ノックセンサ信号を直流電圧V分だけかさ上げする。直流電圧Vは、ノック制御装置20にて取り込み可能な電圧の範囲に基づいて決定される。例えば、直流電圧Vは、ノック制御装置20にて取り込み可能な電圧の範囲の半分の値に決定される。これにより、第4ノックセンサ信号は、直流電圧Vを中心に上下に振幅をもったノッキング周波数の波形で表される。そして、その振幅の上限値と下限値とは、ノック制御装置20にて取り込み可能な電圧の範囲に収まっている。
 図2Eは、図1のE点で得られる、第4ノックセンサ信号の波形の一例を示す図である。ここでいうE点とは、バイアス部14の出力端子とノック制御装置20の入力端子との間のいずれかの点である。図2Eに示すように、例えば、ノック制御装置20にて取り込み可能な電圧の範囲が0Vから+5Vである場合には、直流電圧Vは+5Vの半分の値(+2.5V)である。そして、第4ノックセンサ信号は、+2.5Vを中心に上下に振幅をもち、その振幅の上限値と下限値とが0Vから+5V以内の収まったノッキング周波数の波形で表される。これにより、ノック制御装置20の取り込み可能な電圧の範囲を超えた電圧の信号がノック制御装置20に入力されない。このように、ノックセンサ信号処理装置10は、ノックセンサ2から出力されるノックセンサ信号の上限値及び下限値をノック制御装置20の取り込み可能な電圧の範囲に収める。したがって、ノックセンサ信号処理装置10は、ノックセンサ2から出力されるノックセンサ信号の電圧値を欠落させることなくノック制御装置20に伝達することができる。
 図1に戻り、保護部15は、バイアス部14からノック制御装置20に出力される第4ノックセンサ信号の電圧値を監視して過電圧保護動作を行う。例えば、保護部15は、バイアス部14からノック制御装置20に出力される第4ノックセンサ信号の電圧値が予め設定された電圧値Vh1以上となった場合に、その電圧値が異常値であるとして、電圧値Vh1以上の電圧がノック制御装置20に印加されないように第4ノックセンサ信号の電圧値を制御する。例えば、保護部15は、バイアス部14から出力された第4ノックセンサ信号の電圧値が予め設定された電圧値Vh1以上となった場合に、バイアス部14とノック制御装置20との接続ラインと、グラウンドとの間のインピーダンスを低下させ、第4ノックセンサ信号の電流をグラウンドに流すことで、第4ノックセンサ信号の電圧値を電圧値Vh1未満に制御する。
 故障判定部11は、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号の電圧値に基づいて、ノックセンサ2の故障の有無を判定する。故障判定部11は、バッファ部111、半波整流部112、故障検出部113及び故障信号電圧保護部114を備える。
 バッファ部111は、バッファ部111の前段と後段との間における回路間のインピーダンス変換を行う。一般的に、半波整流部112の入力インピーダンスは低いため、第1ノックセンサ信号が半波整流部112に入力されると、半波整流部112に向かって流れる電流によって、第1ノックセンサ信号の電圧値が変動してしまう。そこで、バッファ部111は、故障判定部11の入力インピーダンスを高くすることで、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号の電圧値の変動を低減する。すなわち、バッファ部111は、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号を、バッファ部111の前段のインピーダンスよりも高い入力インピーダンスで取得する。これにより、バッファ部111は、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号の電圧値に影響を与えることなく、その第1ノックセンサ信号を半波整流部112に供給することができる。また、バッファ部111は、取得した第1ノックセンサ信号をバッファ部111の後段のインピーダンスよりも低いインピーダンスで半波整流部112に出力する。
 半波整流部112には、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号をバッファ部111を介して入力される。半波整流部112は、入力された第1ノックセンサ信号に対して半波整流を行い、故障検出部113に出力する。半波整流部112は、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号が正の値を有する場合にはそのまま通過させ、負の値を有する場合には入力された第1ノックセンサ信号の代わりにオフセット電圧Vを故障検出部113に出力する。
 故障検出部113は、半波整流部112から出力された第1ノックセンサ信号の電圧値に基づいて、ノックセンサ2の故障を検出する。例えば、故障検出部113は、半波整流部112から出力された第1ノックセンサ信号の電圧値が所定の電圧範囲である正常範囲の範囲外である場合に、ノックセンサ2が故障していると判定することで、ノックセンサ2の故障を検出する。例えば、正常範囲の電圧の上限値がVth1(V<Vth1<Vcc)、下限値がVth2(0V<Vth2<V)である。したがって、ノックセンサ2が故障していない(正常である)場合には、半波整流部112から出力された第1ノックセンサ信号の電圧値は、Vth1とVth2との間の値となる。しかしながら、ノックセンサ2が故障しノックセンサ2の出力端子がグラウンドに短絡した場合には、第1ノックセンサ信号の電圧値は0Vとなる。また、ノックセンサ2が故障しノックセンサ2の出力端子とグラウンドとの間が開放状態になった場合には、第1ノックセンサ信号の電圧値は電源電圧Vccとなる。したがって、故障検出部113は、半波整流部112から出力された第1ノックセンサ信号の電圧値が、0V又は電源電圧Vccのいずれかである場合に、ノックセンサ2が故障していると判定する。これにより、故障検出部113は、ノックセンサ2の故障を検出することができる。故障検出部113は、ノックセンサ2の故障を検出した場合に、ノックセンサ2が故障したことを示す故障信号をノック制御装置20に出力する。
 故障信号電圧保護部114は、故障検出部113からノック制御装置20に出力される故障信号の電圧値を監視して過電圧保護動作を行う。例えば、故障信号電圧保護部114は、故障検出部113からノック制御装置20に出力される故障信号の電圧値が予め設定された電圧値Vh2以上となった場合には、その電圧値が異常値であるとして、電圧値Vh2以上の電圧がノック制御装置20に印加されないように故障信号の電圧値を制御する。例えば、故障信号電圧保護部114は、故障検出部113から出力された故障信号の電圧値が予め設定された電圧値Vh2以上となった場合には、故障検出部113とノック制御装置20との接続ラインと、グラウンドとの間のインピーダンスを低下させ、故障信号の電流をグラウンドに流すことで、故障信号の電圧値を電圧値Vh2未満に制御する。
 ノック制御装置20は、バイアス部14から出力された第4ノックセンサ信号に基づいてノッキングの有無を判定する。ノック制御装置20は、ノックIC21及び制御部22を備える。
 ノックIC21は、第4ノックセンサ信号のノッキング周波数の電圧値をノック信号レベルとして取得する。例えば、ノックIC21は、ノッキングが発生する可能性のある区間において、第4ノックセンサ信号のノッキング周波数の電圧値を取得してもよい。ノッキングが発生する可能性のある区間とは、例えば、ノックセンサ2が取り付けられる内燃機関における燃焼行程の初期から中期にわたる程度の期間である。この場合、ノックIC21は、ノッキングが発生する可能性のある区間において取得した第4ノックセンサ信号の複数の電圧値の中でピーク値をノック信号レベルとして取得してもよい。ノックIC21は、取得したノック信号レベルを制御部22に出力する。
 制御部22は、ノックIC21から出力されたノック信号レベルが閾値Vth3以上である場合には、ノッキングが発生したと判定する。一方、制御部22は、ノックIC21から出力されたノック信号レベルが閾値Vth3未満である場合には、ノッキングが発生していないと判定する。
 制御部22は、ノッキングが発生したと判定した場合には、点火時期を遅らせる遅延指示を点火装置4に出力する。これにより、点火装置4は、制御部22から出力される遅延指示に基づいて、内燃機関の点火時期を遅延させるように内燃機関の点火時期を制御する。これにより、点火装置4は、内燃機関のノッキングを解消することができる。制御部22は、ノッキングが発生していないと判定した場合には、点火装置4に上記遅延指示を出力しない。したがって、点火装置4は、予め設定された点火時期に基づいて内燃機関の点火時期を制御する。
 また、制御部22は、故障検出部113から故障信号が出力された場合には、第4ノックセンサ信号に基づくノッキングの有無の判定を行わない。すなわち、制御部22は、故障検出部113から故障信号が出力された場合には、ノックIC21から出力されるノック信号レベルの受け付けを禁止する。これにより、制御部22は、ノックセンサ2の故障によりノックIC21から誤ったノック信号レベルが出力された場合に、その誤ったノック信号レベルによるノッキングの有無を判定しない。したがって、制御部22は、誤ったノック信号レベルに基づくノッキングの有無を判定しないため、正しいノック信号レベルに基づいてノッキングの有無を判定することができ、その判定精度を向上させることができる。
 以下に、本実施形態におけるノックセンサ信号処理装置10の信号処理の流れについて図3を参照して説明する。ノックセンサ信号処理装置10は、ノックセンサ2から第1ノックセンサ信号を取得する(ステップS101)。第1のコンデンサC1は、ハイパスフィルタ部12に対して第1ノックセンサ信号の過電圧が印加されることを抑制するために、ノックセンサ2から出力される第1ノックセンサ信号のゲインを調整する(ステップS102)。第1のコンデンサC1によりゲインが調整された第1ノックセンサ信号は、ハイパスフィルタ部12に出力される。
 ハイパスフィルタ部12は、ノックセンサ2から第1のコンデンサC1を介して出力された第1ノックセンサ信号に対して低周波成分を除去した第2ノックセンサ信号をバンドパスフィルタ部13に出力する(ステップS103)。これにより、第2ノックセンサ信号におけるノッキング周波数未満の外乱周波数の信号が除去される。この、第2ノックセンサ信号は、0V中心に上下に振幅をもった波形で表される。
 バンドパスフィルタ部13は、ハイパスフィルタ部12から出力される第2ノックセンサ信号の上限値と下限値とが所定の範囲、例えば-2.5Vから+2.5Vの範囲に収まるように、第2ノックセンサ信号のゲインを調整した第3ノックセンサ信号をバイアス部14に出力する(ステップS104)。これにより、第3ノックセンサ信号におけるノッキング周波数以上の外乱周波数の信号が除去される。また、第3ノックセンサ信号におけるノッキング信号の上限値と下限値とが-2.5Vから+2.5Vの範囲内に収められる。
 バイアス部14は、バンドパスフィルタ部13から出力される第3ノックセンサ信号に対して所定の直流電圧Vを印加した第4ノックセンサ信号をノック制御装置20に出力する(ステップS105)。すなわち、バイアス部14は、第3ノックセンサ信号がノック制御装置20にて取り込み可能な電圧の範囲になるように、第3ノックセンサ信号の電圧をかさ上げする。そして、バイアス部14は、第3ノックセンサ信号の電圧をかさ上げした第4ノックセンサ信号を保護部15を介してノック制御装置20に出力する(ステップS106)。
 以下に、本実施形態における故障判定部11のノックセンサ2の故障の有無を判定する故障判定処理の流れについて図4を参照して説明する。
 バッファ部111は、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号を取得する(ステップS201)。
 バッファ部111は、バッファ部111の前段と後段との間における回路間のインピーダンス変換を行う(ステップS202)。これにより、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号は、電圧値が変動することなく半波整流部112に供給される。
 半波整流部112は、バッファ部111から供給された第1ノックセンサ信号に対して半波整流を行う。そして、半波整流部112は、半波整流を行った第1ノックセンサ信号を故障検出部113に出力する(ステップS203)。すなわち、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号が正の値である場合には、そのままの電圧値が故障検出部113に出力される。一方、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号が負の値である場合には、オフセット電圧Vが故障検出部113に出力される。
 故障検出部113は、半波整流部112から出力された第1ノックセンサ信号の電圧値に基づいて、ノックセンサ2の故障の有無を判定する。例えば、故障検出部113は、半波整流部112から出力された第1ノックセンサ信号の電圧値が正常範囲外であるか否かを判定する(ステップS204)。故障検出部113は、半波整流部112から出力された第1ノックセンサ信号の電圧値が正常範囲外である場合には、ノックセンサ2が故障していると判定し、故障信号をノック制御装置20に出力する(ステップS205)。故障検出部113は、半波整流部112から出力された第1ノックセンサ信号の電圧値が正常範囲内である場合には、ノックセンサ2が故障していないと判定し、故障信号をノック制御装置20に出力しない。
 上述したように、本実施形態におけるノックセンサ信号処理装置10は、ハイパスフィルタ部12、バンドパスフィルタ部13及びバイアス部14を備える。ハイパスフィルタ部12は、ノックセンサ2から出力される第1ノックセンサ信号から低周波成分を除去した第2ノックセンサ信号を出力する。バンドパスフィルタ部13は、ハイパスフィルタ部12から出力される第2ノックセンサ信号の上限値と下限値とが所定の範囲に収まるように、第2ノックセンサ信号に対してゲインを調整した第3ノックセンサ信号を出力する。バイアス部14は、バンドパスフィルタ部13から出力される第3ノックセンサ信号に対して所定の直流電圧Vを印加した第4ノックセンサ信号を、ノッキングの有無を判定するノック制御装置20に出力する。これにより、ノックセンサ信号処理装置10は、ノックセンサ2から出力されるノックセンサ信号において、ノッキング信号の上限値及び下限値の両方について欠落させることなく、後段のノック制御装置20にて取り込み可能な電圧の範囲に収めて出力することができる。したがって、ノック制御装置20は、精度のよい点火時期の制御を行うことができる。
 また、上述の実施形態において、ノックセンサ信号処理装置10は、第1ノックセンサ信号の電圧値に基づいて、ノックセンサの故障の有無を判定する故障判定部11をさらに備える。故障判定部11は、ノックセンサ2が故障していると判定した場合に、ノックセンサ2が故障したことを示す故障信号をノック制御装置20に出力する。これにより、ノック制御装置20は、故障検出部113から故障信号が出力された場合には、ノッキングの有無の判定を行わない。これにより、ノック制御装置20は、ノックセンサ2の故障によりノックIC21から誤ったノック信号レベルが出力された場合に、その誤ったノック信号レベルでノッキングの有無を判定することを防止することができる。
 また、上述の実施形態において、ノックセンサ信号処理装置10は、ノックセンサに対して並列に接続され、ノックセンサ2から出力される第1ノックセンサ信号のゲインを調整する第1のコンデンサC1をさらに備える。これにより、ノックセンサ信号処理装置10は、ハイパスフィルタ部12に対する過電圧を抑制することができる。
 また、上述の実施形態において、ノックセンサ信号処理装置10は、ノックセンサ2に対して並列に接続され、故障判定部11に入力される第1ノックセンサ信号を平滑化する第2のコンデンサC2をさらに備えてもよい。以下に、図5を参照して上述の実施形態における第2のコンデンサC2が備えられたノックセンサ信号処理装置10の変形例について説明する。
 本変形例のノックセンサ信号処理装置10は、第1のコンデンサC1、第2のコンデンサC2、抵抗R1、ハイパスフィルタ部12、バンドパスフィルタ部13、バイアス部14、保護部15及び故障判定部11を備える。第2のコンデンサC2は、第1のコンデンサC1の後段に接続される。例えば、第2のコンデンサC2は、第1のコンデンサC1でゲインが調整された第1ノックセンサ信号が故障判定部11に出力される経路に接続される。これにより、本変形例のノックセンサ信号処理装置10は、ノイズ周波数の振幅がより低減された第1ノックセンサ信号をバッファ部111に出力することができる。
 上述の実施形態において、制御装置3は、ハードウエアにより実現されてもよく、ソフトウエアにより実現されてもよく、ハードウエアとソフトウエアとの組み合わせにより実現されてもよい。また、プログラムが実行されることにより、コンピュータが、制御装置3の一部として機能してもよい。プログラムは、コンピュータ読み取り可能な媒体に記憶されていてもよく、ネットワークに接続された記憶装置に記憶されていてもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1 ノックコントロールシステム
2 ノックセンサ
3 制御装置
11 故障判定部
12 ハイパスフィルタ部
13 バンドパスフィルタ部
14 バイアス部
15 保護部
20 ノック制御装置
21 ノックIC
22 制御部

Claims (6)

  1.  ノックセンサから出力される第1ノックセンサ信号から低周波成分を除去した第2ノックセンサ信号を出力するハイパスフィルタ部と、
     前記ハイパスフィルタ部から出力される前記第2ノックセンサ信号の上限値と下限値とが所定の範囲に収まるように、前記第2ノックセンサ信号に対してゲインを調整した第3ノックセンサ信号を出力するバンドパスフィルタ部と、
     前記バンドパスフィルタ部から出力される前記第3ノックセンサ信号に対して所定の電圧を印加した第4ノックセンサ信号を、ノッキングの有無を判定するノック制御装置に出力するバイアス部と、
     を備えるノックセンサ信号処理装置。
  2.  前記第1ノックセンサ信号の電圧値に基づいて、前記ノックセンサの故障の有無を判定する故障判定部をさらに備える請求項1に記載のノックセンサ信号処理装置。
  3.  前記ノックセンサに対して並列に接続され、前記ノックセンサから出力される前記第1ノックセンサ信号のゲインを調整することで前記ハイパスフィルタ部に対する過電圧を抑制する第1のコンデンサをさらに備える請求項2に記載のノックセンサ信号処理装置。
  4.  前記ノックセンサに対して並列に接続され、前記故障判定部に入力される前記第1ノックセンサ信号を平滑し、前記故障判定部に出力する第2のコンデンサをさらに備える請求項3に記載のノックセンサ信号処理装置。
  5.  前記第2のコンデンサは、前記第1のコンデンサによりゲインが調整された前記第1ノックセンサ信号が前記故障判定部に出力される経路に接続され、前記第1のコンデンサでゲインが調整された前記第1ノックセンサ信号を平滑化する請求項4に記載のノックセンサ信号処理装置。
  6.  前記所定の範囲は、前記ノック制御装置の取り込み可能な電圧範囲に対応している請求項1から請求項5のいずれか一項に記載のノックセンサ信号処理装置。
PCT/JP2016/051117 2016-01-15 2016-01-15 ノックセンサ信号処理装置 WO2017122344A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017561484A JP6539753B2 (ja) 2016-01-15 2016-01-15 ノックセンサ信号処理装置
PCT/JP2016/051117 WO2017122344A1 (ja) 2016-01-15 2016-01-15 ノックセンサ信号処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051117 WO2017122344A1 (ja) 2016-01-15 2016-01-15 ノックセンサ信号処理装置

Publications (1)

Publication Number Publication Date
WO2017122344A1 true WO2017122344A1 (ja) 2017-07-20

Family

ID=59311030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051117 WO2017122344A1 (ja) 2016-01-15 2016-01-15 ノックセンサ信号処理装置

Country Status (2)

Country Link
JP (1) JP6539753B2 (ja)
WO (1) WO2017122344A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143428A (en) * 1979-04-26 1980-11-08 Nissan Motor Co Ltd Knocking discriminating unit
JPH07306119A (ja) * 1994-05-16 1995-11-21 Nippondenso Co Ltd 内燃機関用ノック検出装置
JPH09112333A (ja) * 1996-06-03 1997-04-28 Mazda Motor Corp エンジンのノッキング制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143428A (en) * 1979-04-26 1980-11-08 Nissan Motor Co Ltd Knocking discriminating unit
JPH07306119A (ja) * 1994-05-16 1995-11-21 Nippondenso Co Ltd 内燃機関用ノック検出装置
JPH09112333A (ja) * 1996-06-03 1997-04-28 Mazda Motor Corp エンジンのノッキング制御装置

Also Published As

Publication number Publication date
JPWO2017122344A1 (ja) 2018-09-27
JP6539753B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
CN110741542B (zh) 半导体元件的驱动电路
US20130253865A1 (en) Alternating Current Input Voltage Detection Circuit
JPS6338549B2 (ja)
US10114064B2 (en) Error detection device
CN107942126B (zh) 电流检测电路、方法、可读存储介质和电力电子设备
WO2017073031A1 (ja) 漏電検出装置および漏電検出方法
US9041406B2 (en) Insulation deterioration detection apparatus
US9787184B2 (en) Multiple-phase power circuit
US11519786B2 (en) Temperature detection circuit, temperature sensor device and display device
WO2017122344A1 (ja) ノックセンサ信号処理装置
US8297114B2 (en) Pressure measuring device and corresponding method
JP2013528040A5 (ja)
KR102212300B1 (ko) 픽오프 변환기 와이어 결합 비트 검출
JP5685717B2 (ja) 赤外線検出装置
JP5382048B2 (ja) 差動信号故障検出装置及び差動信号故障検出方法
US20200173842A1 (en) Mobile vibration detecting device and detecting method thereof
JP4425648B2 (ja) 地絡検出装置
JP6399447B2 (ja) 赤外線検出装置
CN220305705U (zh) 一种偏置电路
CN102520244A (zh) 一种频率信号检测电路
US9529023B2 (en) Signal analysis circuit and signal analysis method thereof
US9448571B2 (en) Voltage converting circuit having voltage feedback terminal
US20210388779A1 (en) Internal combustion engine and power generation system
CN115549653A (zh) 脉冲信号捕捉电路与方法
JP2010059938A (ja) 内燃機関の点火装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884947

Country of ref document: EP

Kind code of ref document: A1