WO2017122339A1 - 直交加速飛行時間型質量分析装置 - Google Patents

直交加速飛行時間型質量分析装置 Download PDF

Info

Publication number
WO2017122339A1
WO2017122339A1 PCT/JP2016/051089 JP2016051089W WO2017122339A1 WO 2017122339 A1 WO2017122339 A1 WO 2017122339A1 JP 2016051089 W JP2016051089 W JP 2016051089W WO 2017122339 A1 WO2017122339 A1 WO 2017122339A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
ion
orthogonal acceleration
ion guide
central axis
Prior art date
Application number
PCT/JP2016/051089
Other languages
English (en)
French (fr)
Inventor
治 古橋
大輔 奥村
朝是 大城
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to EP16884942.0A priority Critical patent/EP3404696A4/en
Priority to JP2017561479A priority patent/JP6489240B2/ja
Priority to US16/070,088 priority patent/US10573504B2/en
Priority to CN201680079000.2A priority patent/CN108475616B/zh
Priority to PCT/JP2016/051089 priority patent/WO2017122339A1/ja
Publication of WO2017122339A1 publication Critical patent/WO2017122339A1/ja
Priority to US16/744,290 priority patent/US10923339B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/401Time-of-flight spectrometers characterised by orthogonal acceleration, e.g. focusing or selecting the ions, pusher electrode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/063Multipole ion guides, e.g. quadrupoles, hexapoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/067Ion lenses, apertures, skimmers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/403Time-of-flight spectrometers characterised by the acceleration optics and/or the extraction fields

Definitions

  • the present invention relates to an orthogonal acceleration time-of-flight mass spectrometer, and more particularly to an ion introduction unit that introduces ions into an orthogonal acceleration unit that ejects ions in the orthogonal acceleration time-of-flight mass spectrometer.
  • a constant kinetic energy is applied to ions derived from sample components to fly in a space of a certain distance, the time required for the flight is measured, and the mass-to-charge ratio of ions is calculated from the flight time. calculate. For this reason, when ions are accelerated and flight is started, if there are variations in the position of ions or the initial energy of ions, variations in the flight time of ions with the same mass-to-charge ratio will result in a decrease in mass resolution and mass accuracy. It leads to.
  • OA-TOFMS orthogonal acceleration time-of-flight mass-spectrometer
  • the OA-TOFMS is configured to accelerate ions in a pulse direction in a direction orthogonal to the initial introduction direction of the ion beam derived from the sample component, and thus ionizes the component contained in the continuously introduced sample.
  • a combination with various ion sources for example, an atmospheric pressure ion source such as an electrospray ion source or an electron ion source is possible.
  • a quadrupole mass filter that selects ions having a specific mass-to-charge ratio from ions derived from sample components, and collision-induced dissociation (Collision- A so-called Q-TOF mass spectrometer that combines a collision cell that is dissociated by induced dissociation (CID) and OA-TOFMS is also widely used.
  • FIG. 12 is a schematic diagram of an ion optical system from a collision cell to an orthogonal acceleration unit in a conventional Q-TOF mass spectrometer.
  • various ions sufficiently cooled in the collision cell 13 are introduced into the orthogonal acceleration unit 16 in the X-axis direction through the ion transport optical system 14 that is an electrostatic lens electrode as described above.
  • a pulse-like acceleration voltage is applied to the flat extrusion electrode 161 and the grid-like extraction electrode 162 included in the orthogonal acceleration unit 16 at a constant frequency f, whereby ions introduced into the orthogonal acceleration unit 16 are introduced. Injected in the Z-axis direction toward a flight space (not shown).
  • the ions ejected from the orthogonal acceleration unit 16 at this time are ions existing in a range of a length L (a range of the opening of the extraction electrode 162) along the incident direction (X-axis direction) to the orthogonal acceleration unit 16. .
  • the ions introduced into the orthogonal acceleration unit 16 during the time (1 / f) from when the ions are ejected once to when the ions are ejected next pass through the orthogonal acceleration unit 16 as they are and are wasted.
  • the ion velocity v depends on the mass-to-charge ratio of the ions
  • the smaller the mass-to-charge ratio the lower the duty cycle, that is, the smaller the amount of ions used for analysis and the lower the detection sensitivity.
  • ions are temporarily accumulated in the collision cell 13 and discharged into the orthogonal acceleration unit 16 as a lump (bunch) to be orthogonal acceleration unit.
  • the method of synchronizing with the pulse for ion ejection at 16 is adopted. More specifically, ions are dammed by applying a voltage having the same polarity as the ions to the exit lens electrode 132 of the collision cell 13, and the ions are temporarily accumulated inside the collision cell 13, By reducing the voltage applied to the exit lens electrode 132, the ions are compressed into a bunch and discharged.
  • the observable mass-to-charge ratio range can be adjusted by changing the delay time.
  • the measurement time becomes long because it is necessary to perform a plurality of measurements while changing the delay time.
  • an ion trap is arranged in front of OA-TOFMS, and each ion ejection from the orthogonal acceleration unit is performed by scanning the delay time when ions are ejected from the ion trap. In this case, ions having different mass-to-charge ratio ranges are increased.
  • an ion guide divided into a plurality of ions in the direction of the ion optical axis is provided in front of OA-TOFMS, and the ion guide is applied by applying different voltages to the divided ion guides. It operates as an ion storage part and an ion discharge part. Then, when discharging ions stored in the ion storage unit, ions having different mass to charge ratios have the same kinetic energy and ions having a large mass to charge ratio are discharged in advance. By adjusting the voltage applied to each, ions having different mass-to-charge ratios are introduced into the orthogonal acceleration section almost simultaneously.
  • an ion guide capable of accumulating ions is provided in the front stage of OA-TOFMS, and the accumulated ions are gradually added to the ions having the smallest mass-to-charge ratio among the accumulated ions.
  • the ions are discharged in a small amount so that the first appears, and at each discharge, the orthogonal acceleration unit ejects ions.
  • the voltage applied to each part and its timing are adjusted according to the ions fed into the orthogonal acceleration part.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to measure ions over a wide mass-to-charge ratio range with high sensitivity while avoiding complicated apparatus configuration and control. It is to provide an OA-TOFMS that can be performed.
  • the present invention comprises an orthogonal acceleration unit that accelerates and ejects ions in a direction perpendicular to the incident axis where ions derived from a sample enter, and the ejected ions.
  • a quadrature acceleration time-of-flight mass spectrometer comprising: a separation detection unit that separates and detects according to a flight time depending on a mass-to-charge ratio; a) an ion accumulating unit that is arranged upstream of the orthogonal acceleration unit and accumulates ions to be measured; a1) Consisting of a plurality of rod-shaped electrodes arranged so as to surround the central axis, the ions are focused in a space surrounded by the rod-shaped electrodes by the action of the high-frequency electric field, and simulated by the high-frequency electric field along the central axis An ion guide that accelerates ions in one direction along the central axis by a gradient of potential magnitude or depth; a2) an exit electrode disposed
  • a voltage generator for changing the voltage to remove the potential barrier An ion storage unit having b) A pulse voltage for ion ejection is applied to the orthogonal acceleration unit when a predetermined time has elapsed from when the voltage applied from the voltage generating unit to the outlet electrode is changed so that the potential barrier is removed.
  • An accelerating voltage generator that It is characterized by having.
  • ions having a specific mass-to-charge ratio among the ions generated by the ion source are selected by the first mass separation unit and the selected ions are selected.
  • Ions are introduced into a collision cell to which collision-induced dissociation gas is supplied and dissociated, and product ions generated by the dissociation are introduced into the orthogonal acceleration unit, ejected from the orthogonal acceleration unit, and separated by the separation detection unit
  • the ion guide can be configured to be disposed inside a collision cell for dissociating ions.
  • the orthogonal acceleration time-of-flight mass spectrometer when the measurement of ions derived from various components contained in the sample continuously introduced into the ion source of the apparatus is repeatedly executed at a predetermined cycle, voltage generation is performed.
  • the unit applies a predetermined DC voltage having the same polarity as the ions in the cycle to the outlet electrode for a predetermined time in one cycle period.
  • the voltage generator continuously applies a predetermined high-frequency voltage to each of a plurality of rod-shaped electrodes constituting the ion guide.
  • ions to be measured in the ion guide are converged in the vicinity of the central axis in the space surrounded by the rod-shaped electrodes by the action of the high-frequency electric field, and proceed in the exit direction due to the magnitude or depth gradient of the pseudopotential.
  • a potential barrier is formed in the vicinity of the electrode by a DC voltage applied to the outlet electrode, ions that reach the vicinity of the outlet electrode are pushed back due to the potential barrier.
  • ions having a large mass-to-charge ratio can be accelerated together with ions having a small mass-to-charge ratio. That is, it is possible to obtain an effect of increasing the amount of ions by ion accumulation in the ion accumulation unit for ions having a wide range of mass to charge ratio.
  • the ion guide is continuously discharged after the ions are discharged. It is necessary to accumulate ions introduced into the ion guide or ions generated by dissociation of the ions in the ion guide. For this purpose, it is necessary to change the applied voltage to the exit electrode so as to remove the potential barrier in order to discharge ions, and then to return the applied voltage to the exit electrode so that the potential barrier is formed again. That is, ions are ejected from the ion guide only during the ejection time during which a voltage is applied to the exit electrode so that the potential barrier is removed.
  • the above discharge time should be long in order to reliably discharge the ions accumulated in the ion guide.
  • it is desirable that the voltage applied to each electrode is not changed during the period from when the ions exit the ion guide to the orthogonal acceleration unit.
  • the pseudopotential on the central axis by the high-frequency electric field in the ion guide is the radius of the circle centered on the central axis where multiple rod-shaped electrodes are in contact, the number of poles of the ion guide (number of rod-shaped electrodes, etc.), and each rod-shaped electrode Depends on parameters such as the amplitude and frequency of the high-frequency voltage applied to the. Therefore, by changing any of these parameters along the central axis, it is possible to form a gradient of the magnitude or depth of the pseudo potential along the central axis. For these reasons, the orthogonal acceleration time-of-flight mass spectrometer according to the present invention can take various forms.
  • the ion guide is composed of a plurality of linearly extending rod electrodes surrounding the central axis, and each rod electrode is a central axis from the inlet side to the outlet side of the ion guide. It is preferable that the distance from the center be inclined with respect to the central axis so as to be continuously increased.
  • the ion guide is composed of a plurality of rod electrodes surrounding the central axis, and each rod electrode is continuously spaced from the central axis from the inlet side to the outlet side of the ion guide. It is good also as a structure which has a shape which has the inclination part which becomes large in part.
  • the inclined portion may be linear or curved.
  • the ion guide is composed of a plurality of virtual rod electrodes surrounding the central axis, each of which is composed of a short split rod electrode divided into a plurality along the central axis.
  • the plurality of divided rod electrodes belonging to the same virtual rod electrode may be arranged so that the distance from the central axis increases stepwise from the inlet side to the outlet side of the ion guide. Good.
  • the ion guide is composed of a plurality of hypothetical lines extending in a straight line surrounding the central axis, each consisting of a short split rod electrode divided into a plurality along the central axis.
  • the voltage generator may be configured to apply a high-frequency voltage having a different amplitude or frequency to a plurality of divided rod electrodes belonging to the same virtual rod electrode.
  • the ion guide is composed of a plurality of hypothetical lines extending in a straight line surrounding the central axis, each consisting of a short split rod electrode divided into a plurality along the central axis. It is good also as a structure which consists of a common rod electrode and has a different cross-sectional shape in the some division
  • the cross-sectional shape of the split rod electrode is changed, pseudo-potential terms with different numbers of poles are superimposed, so that the shape of the pseudo-potential well changes along the central axis, resulting in a pseudo-potential depth gradient. can do.
  • mass analysis can be performed by increasing the amount of ions for ions in a wide mass-to-charge ratio range without using complicated configuration and control, and high detection. Sensitivity can be achieved. Thus, a high-sensitivity mass spectrum over a wide mass-to-charge ratio range can be obtained by a single measurement while avoiding an increase in device cost and an increase in size of the device.
  • FIG. 1 is a schematic configuration diagram showing an ion optical system and a control system circuit after a collision cell, which are characteristic of the Q-TOF mass spectrometer of the first embodiment.
  • the left side view (a) and front end view (b) of the multipole ion guide in the Q-TOF type mass spectrometer of the fourth embodiment The front end view of the multipole ion guide in the Q-TOF type mass spectrometer of the fifth embodiment.
  • FIG. 1 is an overall configuration diagram of the Q-TOF mass spectrometer of the present embodiment.
  • the Q-TOF mass spectrometer of the present embodiment has a multi-stage differential exhaust system configuration, and is provided between the ionization chamber 2 that is a substantially atmospheric pressure atmosphere and the high vacuum chamber 6 having the highest degree of vacuum.
  • First to third intermediate vacuum chambers 3, 4, and 5 are disposed in the chamber 1.
  • the ionization chamber 2 is provided with an ESI spray 7 for performing electrospray ionization (ESI).
  • ESI electrospray ionization
  • a sample liquid containing a target component is supplied to the ESI spray 7, the sample liquid is electrostatically sprayed from the spray 7.
  • ions derived from the target component in the sample solution are generated.
  • the ionization method is not limited to this.
  • the generated various ions are sent to the first intermediate vacuum chamber 3 through the heating capillary 8, converged by the ion guide 9, and sent to the second intermediate vacuum chamber 4 through the skimmer 10. Further, the ions are converged by the octopole ion guide 11 and sent to the third intermediate vacuum chamber 5.
  • a quadrupole mass filter 12 and a collision cell 13 in which a multipole ion guide 30 is provided are installed in the third intermediate vacuum chamber 5.
  • Various ions derived from the sample are introduced into the quadrupole mass filter 12, and only ions having a specific mass-to-charge ratio corresponding to the voltage applied to the quadrupole mass filter 12 pass through the quadrupole mass filter 12. .
  • the ions are introduced into the collision cell 13 as precursor ions, and the precursor ions are dissociated by collision with the CID gas supplied from the outside into the collision cell 13 to generate various product ions.
  • the ion guide 30 functions as a kind of linear ion trap together with the entrance lens electrode 131 and the exit lens electrode 132, and the generated product ions are temporarily accumulated.
  • the accumulated ions are discharged from the collision cell 13 at a predetermined timing, and are introduced into the high vacuum chamber 6 through the ion passage port 15 while being guided by the ion transport optical system 14.
  • the ion transport optical system 14 is disposed across the third intermediate vacuum chamber 5 and the high vacuum chamber 6 with the ion passage port 15 interposed therebetween.
  • an orthogonal acceleration unit 16 In the high vacuum chamber 6, an orthogonal acceleration unit 16, a flight space 17 having no electric field, a reflector 18 including a plurality of reflection electrodes and a back plate, and an ion detector 19 are provided.
  • the ions introduced into the unit 16 in the X-axis direction start to fly by being accelerated in the Z-axis direction at a predetermined timing.
  • the ions ejected from the orthogonal acceleration unit 16 first fly freely in the flight space 17 and then turn back by the reflected electric field formed by the reflector 18.
  • the ions fly freely in the flight space 17 and reach the ion detector 19.
  • the flight time from when the ions leave the orthogonal acceleration unit 16 until they reach the ion detector 19 depends on the mass-to-charge ratio of the ions.
  • the data processing unit (not shown) that receives the detection signal from the ion detector 19 calculates the mass-to-charge ratio based on the flight time of each ion, and creates a mass spectrum that indicates the relationship between the mass-to-charge ratio and the ion intensity. .
  • FIG. 2 is a schematic diagram showing an ion optical system and a control system circuit after the collision cell 13 which are characteristic of the Q-TOF mass spectrometer of the present embodiment.
  • 3 is a front view (a), a left side view (b), and a right side view (c) of the ion guide 30 disposed in the collision cell 13.
  • FIG. 1 is a schematic diagram showing an ion optical system and a control system circuit after the collision cell 13 which are characteristic of the Q-TOF mass spectrometer of the present embodiment.
  • 3 is a front view (a), a left side view (b), and a right side view (c) of the ion guide 30 disposed in the collision cell 13.
  • the front end surface and the rear end surface of the collision cell 13 are a disk-shaped entrance lens electrode 131 and an exit lens electrode (corresponding to the exit electrode in the present invention) 132 each having a circular opening at the center.
  • both the lens electrodes 131 and 132 and the ion guide 30 substantially function as a linear ion trap.
  • the ion transport optical system 14 has a configuration in which a large number of disk-shaped electrode plates having a circular opening at the center are arranged along the central axis C.
  • the orthogonal acceleration unit 16 includes a flat plate-like extrusion electrode 161 extending in the XY plane direction and a plurality of grid-shaped extraction electrodes 162 extending in the same direction.
  • an ion guide voltage generation unit (corresponding to the voltage generation unit in the present invention) 41 is provided in the ion guide 30, and an exit lens electrode voltage generation unit (corresponding to the voltage generation unit in the present invention) 42 is provided in the outlet.
  • the ion transport optical system voltage generation unit 43 is provided in each electrode plate included in the ion transport optical system 14, and the orthogonal acceleration unit voltage generation unit (corresponding to the acceleration voltage generation unit in the present invention) 44 is provided in the extrusion electrode 161 and A predetermined voltage is applied to each of the extraction electrodes 162.
  • FIG. 2 only the components necessary for explaining the characteristic operation are shown. Although not shown, an appropriate voltage is applied to the entrance lens electrode 131 and each electrode constituting the reflector 18. Needless to say.
  • the ion guide 30 includes eight cylindrical rod electrodes 31 to 38 arranged so as to surround the central axis C which is also an ion optical axis.
  • Each of the rod electrodes 31 to 38 has a radius of a circle in contact with the eight rod electrodes 31 to 38 with the center axis C as the center and r1 on the ion incident end face 39a side and r2 (> r1) on the ion exit end face 39b side.
  • r1 on the ion incident end face 39a side
  • r2 > r1
  • the eight rod electrodes 31 to 38 are made up of four rod electrodes 31, 33, 35, which belong to one set.
  • a voltage V Bias + V RF obtained by adding a positive high frequency voltage V RF to the bias DC voltage V Bias from the ion guide voltage generation unit 41 is applied to 37, and four rod electrodes 32, 34, 36, 38 also ion guide voltage voltage V bias -V RF from generator 41 by adding the high-frequency voltage -V RF reverse phase bias dc voltage V bias is applied to.
  • a high-frequency electric field is formed in the space surrounded by the eight rod electrodes 31 to 38 by the application of the high-frequency voltage ⁇ V RF , but each rod electrode 31 to 38 is inclined and disposed as described above.
  • a pseudo potential depth gradient is formed in the direction from the entrance to the exit of the ion guide 30.
  • Vp (R) ⁇ qn 2 / (4 m ⁇ 2 ) ⁇ ⁇ (V / r) 2 ⁇ (R / r) 2 (n ⁇ 1)
  • r is the radius of a circle in contact with the ion guide 30
  • is the frequency of the high frequency voltage
  • V is the amplitude of the high frequency voltage
  • n is the number of poles of the ion guide 30
  • m is the mass of the ion
  • q is the charge.
  • the pseudo potential Vp (R) is changed. It can be varied along the central axis C.
  • a gradient gradient
  • charged ions are accelerated or decelerated according to the gradient.
  • FIG. 4 is a diagram illustrating timings of voltages applied to the exit lens electrode 132, the extrusion electrode 161, and the extraction electrode 162, and
  • FIG. 5 is a schematic diagram for explaining the behavior of ions.
  • the precursor ion collides with the CID gas and dissociates. Since dissociation forms are generally various, product ions having various mass-to-charge ratios are generated from a kind of precursor ion by dissociation.
  • a high frequency electric field is formed in the space surrounded by the rod electrodes 31 to 38 by the high frequency voltage applied to the rod electrodes 31 to 38 of the ion guide 30, and ions (both precursor ions and product ions) are formed. Is converged by the action of the high-frequency electric field.
  • the exit lens electrode voltage generator 42 applies a positive predetermined voltage having the same polarity as the ions to the exit lens electrode 132 when accumulating ions in the collision cell 13. To do. As a result, a potential barrier against ions is formed at the position of the exit lens electrode 132, and discharge of ions through the exit lens electrode 132 is prevented. In the collision cell 13, ions are accelerated by the pseudo potential shown in the above equation (1) and travel toward the exit lens electrode 132, but the ions are pushed back toward the entrance lens electrode 131 by the potential barrier. Since there is no DC potential gradient on the central axis C of the ion guide 30, the pushed ions travel along the central axis C to the entrance side.
  • the potential barrier disappears, and at that time, ions located near the exit lens electrode 132, mainly Ions having a large mass-to-charge ratio first jump out toward the orthogonal acceleration unit 16. Thereafter, the ions that have been returned in the direction of the entrance lens electrode 131 are also accelerated by the gradient of the depth of the pseudo potential, and are slowly ejected through the exit lens electrode 132 with a delay. As a result, at least some of the ions with a low mass to charge ratio accumulated in the collision cell 13 are ejected from the collision cell 13 much later than the ions with a high mass to charge ratio.
  • the exit lens electrode voltage generation unit 42 sets the applied voltage to the same polarity as that of ions at a time t2 when a certain delay time Tdelay has elapsed from the time when the applied voltage to the exit lens electrode 132 is switched to the negative polarity (time t1). Return to some positive predetermined voltage.
  • the orthogonal acceleration section voltage generation section 44 applies a positive high voltage pulse (Push) to the extrusion electrode 161 and a negative high voltage pulse (Pull) to the extraction electrode 162. Apply.
  • Push positive high voltage pulse
  • Pull negative high voltage pulse
  • the low mass-to-charge ratio ions ejected from the collision cell 13 behind the high-mass-to-charge ratio ions have a high velocity. Gradually catch up with charge ratio ions. Therefore, when the delay time Tdelay is appropriately determined, when passing between the extrusion electrode 161 and the extraction electrode 162 in a state where ions having a high mass-to-charge ratio and ions having a low mass-to-charge ratio discharged later are mixed. , Ions can be accelerated and ejected.
  • ions having an increased amount by accumulating in the collision cell 13 can be used for mass analysis with respect to ions over a wide range of mass-to-charge ratios without shifting to high-mass-to-charge ratios or low-mass-to-charge ratios.
  • the discharge time (the time during which the voltage CCout shown in FIG. 4A is negative) is better.
  • the voltage applied to each electrode including the exit lens electrode 132 changes while the ions ejected from the collision cell 13 fly to reach the orthogonal acceleration unit 16, the mass is affected by the change in the electric field. There is a risk of mass shift in the analysis.
  • the voltage applied to the exit lens electrode 132 is changed while the ions discharged from the collision cell 13 fly until they reach the orthogonal acceleration unit 16, that is, until the ions are emitted from the orthogonal acceleration unit 16. It is desirable not to let it.
  • the end time of the discharge time may be set to be after the acceleration voltage start time in the orthogonal acceleration unit 16.
  • the discharge time is lengthened in a certain repeated measurement cycle, the accumulation time is shortened, and the amount of accumulated ions is reduced accordingly. Therefore, in order to increase the amount of accumulated ions as much as possible, it is preferable that the discharge time is short. Therefore, here, in order to satisfy these three conditions as much as possible, the end point of the discharge time is made coincident with the acceleration voltage start point in the orthogonal acceleration unit 16.
  • the frequency of ion ejection (application of high voltage pulse Push / Pull) is set to 2 kHz, and how much the peak signal intensity of each mass-to-charge ratio increases due to ion accumulation compared to the case where ion accumulation is not performed.
  • the delay time Tdelay was changed little by little and examined.
  • the sample used for the measurement is sodium iodide (NaI).
  • FIG. 6 is a graph of experimental results showing the relationship between the mass-to-charge ratio and the degree of ion increase with the delay time as a parameter.
  • the peak moves in the direction in which the mass-to-charge ratio increases (in the right direction in FIG. 6) as the delay time Tdelay increases. This indicates that as the delay time Tdelay becomes longer, the increase rate for ions having a larger mass-to-charge ratio increases.
  • the delay time Tdelay it can be seen that even when the delay time Tdelay is increased, the rate of increase for ions having a small mass-to-charge ratio has not decreased so much.
  • the delay time Tdelay may be determined according to the upper limit mass to charge ratio value of the mass to charge ratio range. From the result shown in FIG. 6, for example, when it is desired to obtain a mass spectrum in a mass-to-charge ratio range of m / z 1000 or less, the delay time is set to 50 ⁇ s based on the delay time Tdelay in which the ion increase rate has a peak in the vicinity of m / z 1000. It is good to set to.
  • the delay time Tdelay may be set to about 100 ⁇ s although the overall increase rate is slightly reduced. Further, it can be seen from FIG. 6 that if the delay time Tdelay is further increased, the effect of ion accumulation is diminished, so that the ion increase rate converges to 1.
  • the optimum delay time is determined according to the mass-to-charge ratio range to be observed, particularly the upper limit value, the effect of accumulating ions in the collision cell 13 can be sufficiently exerted.
  • the ion accumulation effect in the collision cell 13 is sufficiently exhibited for ions over a wide range of mass to charge ratio, and each ion is observed with high sensitivity. can do.
  • FIG. 7 is a front end view of the ion guide 50 arranged in the collision cell in the Q-TOF mass spectrometer of the second embodiment.
  • the ion guide 50 is bent in the middle of the rod electrode (only two rod electrodes indicated by reference numerals 51 and 55 in FIG. 7 are present, but there are eight rod electrodes as in the first embodiment).
  • the Q-TOF mass spectrometer of the second embodiment provided with this ion guide 50 has the same effect as the first embodiment.
  • FIG. 8 is a front end view of the ion guide 60 disposed in the collision cell in the Q-TOF mass spectrometer of the third embodiment.
  • the ion guide 60 has a shape in which the rod electrodes (only two rod electrodes indicated by reference numerals 61 and 65 in FIG. 8 are present in the same manner as in the first embodiment) are curved. This ensures that the radius of the circular opening 69b on the exit end face side is larger than the radius of the circular opening 69a on the entrance end face side, and that the radius gradually increases from the entrance side to the exit side. Therefore, the Q-TOF mass spectrometer of the third embodiment provided with this ion guide 60 has the same effect as that of the first embodiment.
  • FIG. 9 is a left side view (a) and a front end view (b) of the ion guide 70 disposed in the collision cell in the Q-TOF type mass spectrometer of the fourth embodiment.
  • each rod electrode is not a single extending electrode, but is composed of divided rod electrodes (for example, reference numerals 71a to 71e) divided into a plurality (in this example, five) in the direction of the central axis C.
  • each of the divided rod electrodes (for example, reference numerals 71a to 71e) is disposed such that the distance from the central axis C increases stepwise from the inlet side to the outlet side.
  • the ion guide 70 can be regarded as having eight rod electrodes arranged so as to surround the central axis C as in the first embodiment, and the ion guide 70 of the fourth embodiment having the ion guide 60 is provided.
  • the Q-TOF type mass spectrometer has the same effect as the first embodiment.
  • FIG. 10 is a front end view of an ion guide disposed in the collision cell in the Q-TOF mass spectrometer of the fifth embodiment.
  • the ion guide 80 is a virtual rod electrode composed of a plurality of divided rod electrodes (only two are shown by reference numerals 81 and 85 in FIG. 10, but the same as in the first embodiment. 8 are present so as to surround the central axis C.
  • the distance from the central axis C of each divided rod electrode belonging to the same virtual rod electrode is the same. That is, the radius of the circular opening of the virtual rod electrode is the same at any position on the central axis C.
  • FIG. 11 is a front end view (a) of the ion guide 90 arranged in the collision cell in the Q-TOF type mass spectrometer of the sixth embodiment, and end views (b), (c), (d) ).
  • the ion guide 90 is arranged so that four virtual rod electrodes 91 to 94 formed of a plurality of divided rod electrodes surround the central axis C.
  • the same high frequency voltage ⁇ V RF is applied to a plurality of divided rod electrodes belonging to the same virtual rod electrode, and instead, the plurality of divided rod electrodes include those having different cross-sectional shapes.
  • the virtual rod electrode 91 as shown in FIG.
  • the divided rod electrodes 91a and 91b have a circular cross-sectional shape, and as shown in FIG. 91c and 91d have pentagonal cross sections, and the split rod electrode 91e has a square cross section as shown in FIG. 11 (d).
  • the cross-sectional shapes of the split rod electrodes are different, more specifically, when the cross-sectional shape is other than a circle, pseudo-potential terms having different number n of poles are superimposed in the above equation (1).
  • the shape of the pseudo potential changes. Thereby, a substantial gradient can be formed in the magnitude or depth of the pseudopotential. Therefore, the Q-TOF mass spectrometer of the sixth embodiment provided with this ion guide 90 has the same effect as the first embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

直交加速部(16)の前段に配置されるコリジョンセル(13)内には、複数のロッド電極が中心軸(C)に対して傾けて配置された多重極型のイオンガイド(30)が配置される。該イオンガイド(30)の各ロッド電極には、周方向に隣接するロッド電極に互いに逆位相の高周波電圧が印加され、それによりロッド電極で囲まれる空間には入口側から出口側に向かって擬似ポテンシャルの深さの勾配が形成され、この勾配によってイオンは加速される。イオン蓄積時には出口レンズ電極(132)にイオンと同極性の直流電圧が印加され、それによる電位障壁によってイオンは蓄積される。このとき、電位障壁によって押し戻されたイオンはm/zが小さいほど入口付近まで戻る。そのため、電位障壁が除去されイオンが排出される際には、m/zが大きなイオンよりも遅れてm/zが小さなイオンが排出されるので、幅広いm/z範囲のイオンを直交加速部(16)で同時に加速して射出することができる。

Description

直交加速飛行時間型質量分析装置
 本発明は、直交加速飛行時間型質量分析装置に関し、さらに詳しくは、直交加速飛行時間型質量分析装置においてイオンを射出する直交加速部にイオンを導入するイオン導入部に関する。
 飛行時間型質量分析装置では一般に、試料成分由来のイオンに一定の運動エネルギを付与して一定距離の空間を飛行させ、その飛行に要する時間を計測して該飛行時間からイオンの質量電荷比を算出する。そのため、イオンを加速して飛行を開始させる際に、イオンの位置やイオンが持つ初期エネルギにばらつきがあると、同一質量電荷比を持つイオンの飛行時間にばらつきが生じ質量分解能や質量精度の低下に繋がる。こうした課題を解決する手法の一つとして、イオンビームの入射方向と直交する方向にイオンを加速して飛行空間に送り込む直交加速飛行時間型質量分析装置(Orthogonal Acceleration Time-of-Flight Mass Spectrometer、以下、適宜「OA-TOFMS」と略す)が知られている。
 上述したようにOA-TOFMSは、試料成分由来のイオンビームの初期導入方向と直交する方向にイオンをパルス的に加速する構成であるため、連続的に導入される試料に含まれる成分をイオン化する様々なイオン源、例えばエレクトロスプレイイオン源などの大気圧イオン源や電子イオン源などとの組み合わせが可能である。また最近では、化合物の構造解析等を行うために、試料成分由来のイオンから特定の質量電荷比を有するイオンを選択する四重極マスフィルタ、及びその選択されたイオンを衝突誘起解離(Collision-induced dissociation=CID)により解離させるコリジョンセルと、OA-TOFMSとを組み合わせた、いわゆるQ-TOF型質量分析装置も広く利用されるようになってきている。
 Q-TOF型質量分析装置では、コリジョンセル内に連続的又は間欠的にCIDガスが導入されるため、該コリジョンセル内のガス圧は比較的高くなっている。そのため、コリジョンセルから出て来る様々な質量電荷比を有するイオンはいずれも十分にクーリングされた状態にあり、同程度の運動エネルギを有している。したがって、質量電荷比が小さいイオンほど大きな速度を持ってOA-TOFMSの直交加速部に到達する。このために、Q-TOF型質量分析装置では次のようないわゆるデューティサイクル(Duty Cycle)の問題が生じる(非特許文献1参照)。
 図12は、従来のQ-TOF型質量分析装置におけるコリジョンセルから直交加速部までのイオン光学系の概略図である。
 いま、上述したようにコリジョンセル13内で十分にクーリングされた各種イオンが静電レンズ電極であるイオン輸送光学系14を通して直交加速部16にX軸方向に導入される場合を考える。直交加速部16に含まれる平板状の押出電極161及びグリッド状の引出電極162には一定の周波数fで以てパルス状の加速電圧が印加され、それによって直交加速部16に導入されたイオンが図示しない飛行空間に向けてZ軸方向に射出される。このときに直交加速部16から射出されるイオンは、直交加速部16への入射方向(X軸方向)に沿った長さLの範囲(引出電極162の開口の範囲)に存在するイオンである。イオンが一回射出されてから次にイオンが射出されるまでの時間(1/f)の間に直交加速部16に導入されたイオンはそのまま直交加速部16を通り過ぎてしまい無駄になる。
 このとき、直交加速部16へ入射して来るイオンの速度をvとすると、イオンの利用効率つまりデューティサイクルεは次の式で定義される。
  ε=fL/v
上述したようにイオンの速度vは該イオンの質量電荷比に依存するため、質量電荷比の小さいイオンほどデューティサイクルは低くなる、つまり分析に供されるイオンの量が少なくなり検出感度が下がる。
 この問題を回避するために、特許文献1に記載のTOFMSでは、コリジョンセル13の内部にイオンを一時的に蓄積し、イオンをひとかたまり(バンチ)として直交加速部16へと排出して直交加速部16でのイオン射出用のパルスと同期させる方法が採られている。
 具体的に説明すると、コリジョンセル13の出口レンズ電極132にイオンと同極性の高い電圧を印加することでイオンを堰き止めて、コリジョンセル13の内部に一時的にイオンを蓄積し、そのあと、出口レンズ電極132への印加電圧を下げることでイオンをバンチ状に圧縮して排出する。出口レンズ電極132への印加電圧を下げた時点から一定の遅延時間が経過したあとに押出電極161等へ加速電圧を印加することで、コリジョンセル13からバンチ状に排出されたイオンを飛行空間へと射出する。このようにして、このTOFMSでは所定時間内にコリジョンセル13に導入された又はコリジョンセル13内で生成されたイオンを圧縮して質量分析することができる。これにより、質量分析に供されるイオンの量が増加し、それだけ検出感度を上げることができる。
 しかしながら、この方法では、コリジョンセル13からほぼ一斉に排出されたイオンが直交加速部16に到達するまでの過程で、質量電荷比に応じてイオンはその進行方向に分散する。通常、OA-TOFMSとコリジョンセルとは隔壁で隔てられた異なる真空室内に配置されるため、コリジョンセル13から直交加速部16までの経路は比較的長い。そのため、直交加速部16で加速される際にイオンは質量電荷比に応じてその進行方向に広がっており、特定の質量電荷比範囲のイオンのみが飛行空間に向けて射出されることになる。その結果、特定の質量電荷比範囲のイオンについては高い感度で検出ができるものの、その範囲外のイオンは観測されなくなる。特許文献1に記載の装置では、上記遅延時間を変更することによって、観測され得る質量電荷比範囲を調整できるようにしている。ただし、広い質量電荷比範囲に亘るマススペクトルを取得したい場合には、遅延時間を変更しつつ複数回の測定を行う必要があるため測定時間が長くなる等の問題がある。
 これに対し、広い質量電荷比範囲に亘るイオンを高い感度で検出するために、従来、様々な方法が提案されている。
 例えば特許文献2に記載の装置では、OA-TOFMSの前段に電場が時間的に変動する領域を設け、その領域における電場の時間的な変動によってイオンの速度を調整することで、異なる質量電荷比を有するイオンがほぼ同時に直交加速部に導入されるようにしている。
 また特許文献3に記載の装置では、OA-TOFMSの前段にイオントラップを配置し、該イオントラップからイオンを排出する際に上記遅延時間を走査することにより、直交加速部からのそれぞれのイオン射出の際に異なる質量電荷比範囲のイオンを増加させるようにしている。
 また特許文献4に記載の装置では、OA-TOFMSの前段にイオン光軸方向に複数に分割されたイオンガイドを設け、その分割されたイオンガイドにそれぞれ異なる電圧を印加することで該イオンガイドをイオン蓄積部及びイオン排出部として動作させる。そして、イオン蓄積部に蓄積したイオンを排出する際に質量電荷比が異なるイオンが同じ運動エネルギを持ち且つ質量電荷比が大きいイオンが先行して排出されるように、イオン蓄積部及びイオン排出部へそれぞれ印加する電圧を調整することによって、異なる質量電荷比を有するイオンがほぼ同時に直交加速部に導入されるようにしている。
 さらにまた特許文献5に記載の装置では、OA-TOFMSの前段にイオンを蓄積可能なイオンガイドを設け、蓄積したイオンを少しずつ且つ蓄積されていたイオンの中で質量電荷比が最小であるイオンが最初に出るようにイオンを小出しに排出し、その排出毎に直交加速部ではイオンを射出する。その射出の都度、直交加速部に送り込むイオンに合わせて各部への印加電圧やそのタイミングを調整する。
 上述したように従来様々な提案がなされているものの、こうした装置ではいずれも、イオンを蓄積したりイオンの速度を調整したりするために、特別なイオン光学系を追加したり或いは複雑な制御を行ったりする必要がある。そのため、装置のコストが高くなる、或いは装置が大形化するといった問題がある。
米国特許第5689111号明細書 米国特許第7087897号明細書 米国特許第7208726号明細書 米国特許第7456388号明細書 米国特許第7714279号明細書 特開2011-175982号公報
グイルハウス(M. Guilhaus)、ほか2名 、「オーソゴナル・アクセラレイション・タイム・オブ・フライト・マス・スペクトロメトリ(Orthogonal Acceleration Time-of-flight Mass Spectrometry)」、マス・スペクトロメトリー・レビュー(Mass Spectrom. Rev.)、Vol.19、2000年、pp.65-107
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、装置構成や制御が複雑になるのを避けながら、広い質量電荷比範囲に亘るイオンを高い感度で測定することができるOA-TOFMSを提供することにある。
 上記課題を解決するために成された本発明は、試料由来のイオンが入射して来るその入射軸と直交する方向に該イオンを加速して射出する直交加速部と、その射出されたイオンを質量電荷比に依存する飛行時間に応じて分離して検出する分離検出部と、を具備する直交加速飛行時間型質量分析装置において、
 a)前記直交加速部の前段に配置された、測定対象であるイオンを蓄積するイオン蓄積部であって、
  a1)中心軸を取り囲むように配置された複数本のロッド状電極から成り、高周波電場の作用により該ロッド状電極で囲まれる空間にイオンを収束するとともに、前記中心軸に沿った高周波電場による擬似ポテンシャルの大きさ又は深さの勾配によってイオンを該中心軸に沿った一方向に加速するイオンガイドと、
  a2)前記イオンガイドにおいてイオンが加速される方向の出口側に配置された、イオンが通過可能な開口を有する出口電極と、
  a3)前記イオンガイドを構成する複数本のロッド状電極にそれぞれ所定の高周波電圧を印加する一方、測定対象のイオンと同極性である直流電圧を前記出口電極に印加することで電位障壁を形成したあと該電位障壁を取り除くように該電圧を変化させる電圧発生部と、
 を有するイオン蓄積部と、
 b)前記電圧発生部から前記出口電極に印加される電圧が電位障壁が取り除かれるように変化された時点から所定の時間が経過した時点で前記直交加速部にイオン射出用のパルス状電圧を印加する加速電圧発生部と、
 を備えることを特徴としている。
 本発明に係る直交加速飛行時間型質量分析装置の好ましい一態様は、イオン源で生成されたイオンのうち特定の質量電荷比を有するイオンを第一の質量分離部で選別し、該選別されたイオンを衝突誘起解離ガスが供給されるコリジョンセルに導入して解離させ、該解離によって生成されたプロダクトイオンを上記直交加速部に導入して該直交加速部から射出して上記分離検出部で分離して検出するタンデム型の質量分析装置であり、上記イオンガイドは、イオンを解離させるためのコリジョンセルの内部に配設される構成とすることができる。
 本発明に係る直交加速飛行時間型質量分析装置において、当該装置のイオン源に連続的に導入される試料に含まれる各種成分由来のイオンについての測定を所定の周期で繰り返し実行する場合、電圧生成部はその周期で以てイオンと同極性である所定の直流電圧を一周期期間中の所定の時間だけ出口電極に印加する。一方、電圧生成部は、イオンガイドを構成する複数のロッド状電極に所定の高周波電圧をそれぞれ連続的に印加する。イオンガイドにおいて測定対象である各種イオンは高周波電場の作用によってロッド状電極で囲まれる空間内で中心軸付近に収束されつつ、擬似ポテンシャルの大きさ又は深さの勾配によって出口方向に進行する。出口電極へ印加される直流電圧によって該電極付近に電位障壁が形成されていると、出口電極付近にまで到達したイオンはその電位障壁のために押し戻される。
 このとき、イオンガイドの中心軸上には、電位障壁のほかに直流的な電位勾配は存在しない。そのため、上述したように押し戻されたイオンはイオンガイドの中心軸に沿って入口方向に向かって進むが、イオンの質量電荷比が小さいほど戻る速度は大きい。したがって、質量電荷比が小さなイオンほどイオンガイドの入口近くまで押し戻され易く、質量電荷比が大きなイオンは主としてイオンガイドの出口側に蓄積され、質量電荷比が小さなイオンはイオンガイドの出口側にも存在するものの入口側にも比較的多く存在する状態となる。この状態で電圧生成部から出口電極に印加されていた電圧が変化して電位障壁が取り除かれると、その直前までイオンガイド内の空間に蓄積されていたイオンは擬似ポテンシャルによって加速され、出口電極の位置を通過して直交加速部に向けて送り出される。このとき、イオンガイドの出口に近い位置に存在していた主として質量電荷比が大きなイオンが先行して排出される。一方、イオンガイドの入口に近い位置まで戻されていた質量電荷比が小さなイオンは遅れて排出される。
 質量電荷比が小さなイオンほど速度は大きいから、出口電極への印加電圧の変化時点つまりはイオン排出開始時点でイオンガイドの入口に近い位置から出発した質量電荷比が小さなイオンは、直交加速部に到達するまでに先行して出発した質量電荷比が大きなイオンに追いつく又は追いつかないまでもその差が縮まる。そのため、イオン排出開始時点から所定の遅延時間が経過した時点で加速電圧発生部から直交加速部に所定の加速電圧が印加されると、従来であれば、質量電荷比が大きなイオンしか加速することができなかったのに対し、本発明によれば、質量電荷比が大きなイオンと共に質量電荷比が小さなイオンも併せて加速することができる。即ち、幅広い質量電荷比のイオンについてイオン蓄積部でのイオン蓄積によるイオン量増大効果を得ることができる。
 上述したように当該装置のイオン源に連続的に導入される試料に含まれる各種成分由来のイオンについての測定を所定の周期で繰り返し実行する場合、イオンガイドからイオンを排出するのに引き続き、該イオンガイドに導入されるイオン或いは該イオンが解離して生成されたイオンをイオンガイドに蓄積する必要がある。そのためには、イオンを排出するために電位障壁を除去するように出口電極への印加電圧を変化させたあと、再び電位障壁が形成されるように出口電極への印加電圧を戻す必要がある。即ち、電位障壁が除去されるような電圧が出口電極に印加されている排出時間の間だけ、イオンガイドからイオンは排出される。
 イオンガイドに蓄積していたイオンを確実に排出するには上記排出時間は長いほうがよい。一方、周期毎の測定におけるイオンの量をできるだけ増やすには排出時間を短くしてイオンの蓄積時間を長くするほうがよい。また、分離検出部での不所望の質量ずれを回避するには、イオンがイオンガイドを出てから直交加速部に達するまでの間に各電極への印加電圧を変化させないことが望ましい。こうした条件を総合的に判断すると、排出時間の終了点つまり電位障壁を形成するように電圧発生部から出口電極へ印加する電圧を変化させる時点と、直交加速電圧発生部から直交加速部へ加速電圧の印加を開始する時点とを一致させるようにするとよい。
 イオンガイドにおける高周波電場による中心軸上の擬似ポテンシャルは、複数本のロッド状電極が接する中心軸を中心とする円の半径、イオンガイドの極数(ロッド状電極の本数など)、各ロッド状電極に印加される高周波電圧の振幅及び周波数、などのパラメータに依存する。そのため、これらパラメータのいずれかを中心軸に沿って変化させることで、中心軸に沿った擬似ポテンシャルの大きさ又は深さの勾配を形成することができる。こうしたことから、本発明に係る直交加速飛行時間型質量分析装置は様々な態様を採り得る。
 具体的には本発明の一態様として、前記イオンガイドは、中心軸を取り囲む複数本の直線状に延伸するロッド電極から成り、各ロッド電極はイオンガイドの入口側から出口側に向かって中心軸からの距離が連続的に大きくなるように該中心軸に対し傾けて配設されている構成とするとよい。
 この構成では、従来一般に、中心軸に平行に配設されているロッド電極を単に傾けて配置するだけで済むので、構成が簡単でありコスト増加も抑えられる。また、各ロッド電極に印加される高周波電圧は単にイオンを収束させるように、振幅及び周波数が同じで位相が互いに逆である二種類の高電圧電源を用意しさえすればよい。したがって、電源系回路が複雑になることも避けることができる。
 また本発明の別の態様として、前記イオンガイドは、中心軸を取り囲む複数本のロッド電極から成り、各ロッド電極はイオンガイドの入口側から出口側に向かって中心軸からの距離が連続的に大きくなる傾斜部を一部に有する形状である構成としてもよい。なお、この傾斜部は直線状でも曲線状でもよい。
 さらにまた本発明の別の態様として、前記イオンガイドは、それぞれが中心軸に沿って複数個に分割された短い分割ロッド電極から構成される、中心軸を取り囲む複数本の仮想的なロッド電極から成り、同一の仮想的なロッド電極に属する複数の分割ロッド電極は、イオンガイドの入口側から出口側に向かって中心軸からの距離が段階的に大きくなるように配設されている構成としてもよい。
 さらにまた本発明の別の態様として、前記イオンガイドは、それぞれが中心軸に沿って複数個に分割された短い分割ロッド電極から構成される、中心軸を取り囲む直線状に延伸する複数本の仮想的なロッド電極から成り、前記電圧生成部は、同一の仮想的なロッド電極に属する複数の分割ロッド電極に振幅又は周波数が相違する高周波電圧を印加する構成としてもよい。
 さらにまた本発明の別の態様として、前記イオンガイドは、それぞれが中心軸に沿って複数個に分割された短い分割ロッド電極から構成される、中心軸を取り囲む直線状に延伸する複数本の仮想的なロッド電極から成り、同一の仮想的なロッド電極に属する複数の分割ロッド電極は異なる断面形状を有する構成としてもよい。分割ロッド電極の断面形状を変化させると、異なる極数の擬似ポテンシャル項が重畳されるため、擬似ポテンシャル井戸の形状が中心軸に沿って変化し、結果的に擬似ポテンシャルの深さの勾配を形成することができる。
 本発明に係る直交加速飛行時間型質量分析装置によれば、複雑な構成や制御を用いることなく、幅広い質量電荷比範囲のイオンについてイオンの量を増加させて質量分析することができ、高い検出感度を達成することができる。それによって、装置コストの増加や装置の大形化を避けつつ、広い質量電荷比範囲に亘る高感度なマススペクトルを1回の測定によって得ることができる。
本発明の第1実施例であるQ-TOF型質量分析装置の全体構成図。 第1実施例のQ-TOF型質量分析装置に特徴的であるコリジョンセル以降のイオン光学系と制御系回路を示す概略構成図。 第1実施例のQ-TOF型質量分析装置においてコリジョンセル内に配置される多重極型イオンガイドの正面図(a)、左側面図(b)、及び右側面図(c)。 第1実施例のQ-TOF型質量分析装置における出口レンズ電極及び直交加速部(押出電極、引出電極)への印加電圧のタイミングを示す図。 第1実施例のQ-TOF型質量分析装置におけるイオン挙動を説明する模式図。 実測結果に基づく遅延時間をパラメータとしたイオンの質量電荷比とイオン増大度との関係を示すグラフ。 第2実施例のQ-TOF型質量分析装置における多重極型イオンガイドの正面端面図。 第3実施例のQ-TOF型質量分析装置における多重極型イオンガイドの正面端面図。 第4実施例のQ-TOF型質量分析装置における多重極型イオンガイドの左側面図(a)及び正面端面図(b)。 第5実施例のQ-TOF型質量分析装置における多重極型イオンガイドの正面端面図。 第6実施例のQ-TOF型質量分析装置における多重極型イオンガイドの正面端面図(a)及び各矢視線端面図(b)、(c)、(d)。 従来のQ-TOF型質量分析装置におけるコリジョンセルから直交加速部までのイオン光学系の概略図。
  [第1実施例]
 以下、本発明の一実施例(第1実施例)であるQ-TOF型質量分析装置について、添付図面を参照して説明する。
 図1は本実施例のQ-TOF型質量分析装置の全体構成図である。
 本実施例のQ-TOF型質量分析装置は、多段差動排気系の構成を有しており、略大気圧雰囲気であるイオン化室2と最も真空度の高い高真空室6との間に、第1乃至第3なる三つの中間真空室3、4、5がチャンバ1内に配設されている。
 イオン化室2には、エレクトロスプレイイオン化(ESI)を行うためのESIスプレー7が設けられ、目的成分を含む試料液がESIスプレー7に供給されると、該スプレー7から試料液が静電噴霧されることで該試料液中の目的成分由来のイオンが生成される。なお、イオン化法はこれに限るものではない。
 生成された各種イオンは加熱キャピラリ8を通して第1中間真空室3へ送られ、イオンガイド9により収束されてスキマー10を通して第2中間真空室4へ送られる。さらに、イオンはオクタポール型のイオンガイド11により収束されて第3中間真空室5へ送られる。第3中間真空室5内には、四重極マスフィルタ12と、多重極型のイオンガイド30が内部に設けられたコリジョンセル13とが設置されている。試料由来の各種イオンは四重極マスフィルタ12に導入され、四重極マスフィルタ12に印加されている電圧に応じた特定の質量電荷比を有するイオンのみが該四重極マスフィルタ12を通り抜ける。このイオンはプリカーサイオンとしてコリジョンセル13に導入され、コリジョンセル13内に外部から供給されるCIDガスとの衝突によってプリカーサイオンは解離し、各種のプロダクトイオンが生成される。
 イオンガイド30は、入口レンズ電極131及び出口レンズ電極132と共に一種のリニアイオントラップとして機能し、生成されたプロダクトイオンは一時的に蓄積される。そして、蓄積されたイオンは所定のタイミングでコリジョンセル13から排出され、イオン輸送光学系14により案内されつつイオン通過口15を経て高真空室6内に導入される。イオン輸送光学系14は、イオン通過口15を挟んで第3中間真空室5と高真空室6とに跨って配置されている。
 高真空室6内には、直交加速部16と、電場を有さない飛行空間17と、複数の反射電極及びバックプレートを含むリフレクタ18と、イオン検出器19とが設けられており、直交加速部16にX軸方向に導入されたイオンは所定のタイミングで以てZ軸方向に加速されることで飛行を開始する。直交加速部16から射出されたイオンはまず飛行空間17中を自由飛行したあとリフレクタ18により形成される反射電場で折り返され、飛行空間17中を再び自由飛行してイオン検出器19に到達する。イオンが直交加速部16を出発した時点からイオン検出器19に到達するまでの飛行時間は、イオンの質量電荷比に依存する。したがって、イオン検出器19による検出信号を受けた図示しないデータ処理部は、各イオンの飛行時間に基づいて質量電荷比を算出し、質量電荷比とイオン強度との関係を示すマススペクトルを作成する。
 図2は、本実施例のQ-TOF型質量分析装置に特徴的であるコリジョンセル13以降のイオン光学系と制御系回路を示す概略図である。また図3はコリジョンセル13内に配置されるイオンガイド30の正面図(a)、左側面図(b)、及び右側面図(c)である。
 図2に示すように、コリジョンセル13の前端面及び後端面はそれぞれ中心に円形開口が形成された円盤状の入口レンズ電極131及び出口レンズ電極(本発明における出口電極に相当)132となっており、上述したように、これら両レンズ電極131、132とイオンガイド30とが実質的にリニアイオントラップとして機能する。イオン輸送光学系14は、中央に円形開口を有する円盤状の電極板が中心軸Cに沿って多数配列された構成である。直交加速部16は、X-Y平面方向に延展する平板状の押出電極161と同方向に延展するグリッド状の複数の引出電極162とを含む。
 制御部40の制御の下に、イオンガイド電圧発生部(本発明における電圧発生部に相当)41はイオンガイド30に、出口レンズ電極電圧発生部(本発明における電圧発生部に相当)42は出口レンズ電極132に、イオン輸送光学系電圧発生部43はイオン輸送光学系14に含まれる各電極板に、直交加速部電圧発生部(本発明における加速電圧発生部に相当)44は押出電極161及び引出電極162に、それぞれ所定の電圧を印加する。なお、図2では、特徴的な動作の説明に必要な構成要素のみを記載しており、図示しないものの、入口レンズ電極131やリフレクタ18を構成する各電極などにも適宜の電圧が印加されるのは言うまでもない。
 図3に示すように、イオンガイド30は、イオン光軸でもある中心軸Cを取り囲むように配置された8本の円柱状のロッド電極31~38から成る。中心軸Cを中心とし8本のロッド電極31~38に接する円の半径はイオン入射端面39a側でr1、イオン出射端面39b側でr2(>r1)となるように、各ロッド電極31~38は中心軸Cに対して傾けて配置されている。
 図3(c)に示すように、8本のロッド電極31~38は周方向に1本おきの4本が1組とされ、一方の組に属する4本のロッド電極31、33、35、37にはイオンガイド電圧発生部41からバイアス直流電圧VBiasに正の高周波電圧VRFを加算した電圧VBias+VRFが印加され、他方の組に属する4本のロッド電極32、34、36、38には同じくイオンガイド電圧発生部41からバイアス直流電圧VBiasに逆位相の高周波電圧-VRFを加算した電圧VBias-VRFが印加される。高周波電圧±VRFの印加によって8本のロッド電極31~38で囲まれる空間には高周波電場が形成されるが、各ロッド電極31~38が上述したように傾けて配設されているために、イオンガイド30の入口から出口の方向に擬似ポテンシャルの深さの勾配が形成される。
 特許文献6等に記載されているように、イオンガイド30で囲まれる略円柱状の空間に形成される、位置(中心軸Cからの径方向の離間距離)Rにおける擬似ポテンシャルVp(R)は、次の(1)式で表されることが知られている。
  Vp(R)={qn2/(4mΩ2)}・(V/r)2・(R/r)2(n-1)   …(1)
ここで、rはイオンガイド30に接する円の半径、Ωは高周波電圧の周波数、Vは高周波電圧の振幅、nはイオンガイド30の極数、mはイオンの質量、qは電荷である。即ち、イオンガイド30に接する円の半径r、高周波電圧の周波数Ω又は振幅V、イオンガイド30の極数nのいずれかを中心軸Cに沿って変化させることで、擬似ポテンシャルVp(R)を中心軸Cに沿って変化させることができる。擬似ポテンシャルの大きさ又は深さに勾配(傾斜)が存在すると、電荷を有するイオンはその勾配に従って加速又は減速される。(1)式から分かるように、この場合、R=0である中心軸C上ではポテンシャルつまり直流的な電位はゼロである。したがって、中心軸C上に直流的な電位勾配を形成することなく、適切な擬似ポテンシャルの大きさ又は深さの勾配によって、イオンガイド30内でイオンを加速することができる。
 本実施例のQ-TOF型質量分析装置における、コリジョンセル13から直交加速部16までのイオン光学系でのイオンの挙動を説明する。なお、ここではイオンは正極性であるとする。
 図4は出口レンズ電極132及び押出電極161、引出電極162への印加電圧のタイミングを示す図、図5はイオンの挙動を説明するための模式図である。
 四重極マスフィルタ12で選択された特定の質量電荷比を有するイオン(プリカーサイオン)がコリジョンセル13に入射すると、該プリカーサイオンはCIDガスと衝突して解離する。一般的に解離の態様は様々であるため、一種のプリカーサイオンから解離によって様々な質量電荷比のプロダクトイオンが生成される。上述したようにイオンガイド30の各ロッド電極31~38に印加される高周波電圧により該ロッド電極31~38で囲まれる空間には高周波電場が形成されており、イオン(プリカーサイオン、プロダクトイオンとも)は高周波電場の作用によって収束される。CIDガスとの衝突によって元々プリカーサイオンが有していた運動エネルギの一部は失われるが、上述のようにイオンガイド30の内部空間に形成されている疑似ポテンシャルの深さの勾配によって運動エネルギが付与される。そのため、プリカーサイオンやプロダクトイオンは出口側に向かって加速される。
 出口レンズ電極電圧発生部42は、図4(a)に示すように、コリジョンセル13内にイオンを蓄積する際には、出口レンズ電極132にイオンと同極性である正の所定の電圧を印加する。これにより、出口レンズ電極132の位置にはイオンに対する電位障壁が形成され、出口レンズ電極132を経たイオンの排出は阻止される。コリジョンセル13内においてイオンは上記(1)式に示した擬似ポテンシャルによって加速されて出口レンズ電極132の方向に向かうが、イオンは上記電位障壁によって入口レンズ電極131の方向に押し戻される。イオンガイド30の中心軸C上には直流的な電位勾配がないため、押し戻されたイオンは中心軸Cに沿って入口側に進行する。このときの進行速度はイオンの質量電荷比が小さいほど大きい。そのため、或る一群のイオンが出口レンズ電極132付近に達した時点から或る一定時間が経過した時点では、質量電荷比が小さいイオンほど入口に近い位置まで戻る。これを模式的に示したのが図5である。もちろん、コリジョンセル13には次々とイオンが導入され、それに伴いプロダクトイオンも次々に発生するから、イオンガイド30の出口に近い位置にも低質量電荷比のイオンは存在するが、相対的にみれば低質量電荷比のイオンは入口側にも多く存在している。即ち、高質量電荷比のイオンは主として出口付近に多くかたまって分布しているのに対し、低質量電荷比のイオンは入口から出口まで全体的に広く分布している。
 そして、図4(a)に示す時刻t1において出口レンズ電極132に印加される電圧が負極性に切り替えられると電位障壁がなくなり、そのときに出口レンズ電極132の近傍に位置しているイオン、主として質量電荷比が大きなイオンが最初に直交加速部16に向けて飛び出す。そのあと、入口レンズ電極131の方向に戻されていたイオンも擬似ポテンシャルの深さの勾配によって加速され、遅れてゆっくりと出口レンズ電極132を経て排出される。その結果、コリジョンセル13内に蓄積されていた低質量電荷比のイオンの少なくとも一部は高質量電荷比のイオンよりもかなり遅れてコリジョンセル13から排出されることになる。
 出口レンズ電極電圧発生部42は、出口レンズ電極132への印加電圧を負極性に切り替えた時点(時刻t1)から一定の遅延時間Tdelayが経過した時刻t2において、該印加電圧をイオンと同極性である正の所定の電圧に戻す。またこれと同期して、直交加速部電圧発生部44は図4(b)に示すように、押出電極161に正の高電圧パルス(Push)、引出電極162に負の高電圧パルス(Pull)を印加する。これにより、その時点で押出電極161と引出電極162との間を通過していたイオンはZ軸方向に加速され、飛行空間17に向けて射出される。
 上述したように、高質量電荷比のイオンに遅れてコリジョンセル13から排出された低質量電荷比のイオンは速度が大きいため、直交加速部16に至るまでの空間を飛行する間に、高質量電荷比のイオンに徐々に追いつく。したがって、遅延時間Tdelayを適切に定めると、高質量電荷比のイオンと遅れて排出された低質量電荷比のイオンとが混じった状態で押出電極161と引出電極162との間を通過するときに、イオンを加速して射出させることができる。それによって、高質量電荷比や低質量電荷比に片寄ることなく幅広い質量電荷比に亘るイオンについて、コリジョンセル13内に蓄積することで量を増加させたイオンを質量分析に供することができる。
 ここでは図4に示すように、コリジョンセル13からのイオンの排出を停止して再びイオンの蓄積を開始する時点と直交加速部16においてイオンの射出を開始する時点とを一致させている。これは次のような理由による。
 コリジョンセル13内においてイオンはX軸方向に広がって存在するため、この蓄積されていたイオンが全て排出されるには或る程度の時間が掛かる。そのため、コリジョンセル13内に蓄積されていたイオンを確実に排出するには排出時間(図4(a)に示す電圧CCoutが負極性である時間)は長いほうがよい。また、コリジョンセル13から排出されたイオンが直交加速部16に到達するまで飛行する間に、出口レンズ電極132を含む各電極に印加される電圧が変化すると、それに伴う電場の変化の影響で質量分析における質量ずれが生じるおそれがある。そのため、コリジョンセル13から排出されたイオンが直交加速部16に到達するまで飛行する間に、つまりは直交加速部16からイオンを射出するまでの間に、出口レンズ電極132への印加電圧を変化させないことが望ましい。これら二つの条件を満たすには、排出時間の終了時点を直交加速部16における加速電圧開始時点以降にするとよい。一方で、一定の繰り返し測定周期において排出時間を長くすると蓄積時間が短くなり、蓄積されるイオンの量がそれだけ少なくなる。したがって、蓄積するイオンの量をできるだけ増やすためには、排出時間は短いほうが好ましい。
 そこで、ここでは、これら三つの条件をできるだけ満たすために、排出時間の終了時点を直交加速部16における加速電圧開始時点に一致させている。
 次に、本実施例のQ-TOF型質量分析装置における効果の確認実験について説明する。この実験では、イオン射出(高電圧パルスPush/Pullの印加)の周波数を2kHzとし、イオン蓄積を行わない場合に対してイオン蓄積によって各質量電荷比のピークの信号強度がどの程度増大するのかを遅延時間Tdelayを少しずつ変えて調べた。信号強度の増大の程度は、イオン増大度=[イオン蓄積時の信号強度]/[イオン蓄積なしの信号強度]で示した。即ち、イオン増大度が1であればイオン蓄積の効果がないといえる。なお、測定に使用したサンプルはヨウ化ナトリウム(NaI)である。
 図6は、遅延時間をパラメータとした質量電荷比とイオン増大度との関係を示す実験結果のグラフである。図6中に下向き矢印で示すように、遅延時間Tdelayが長くなるに伴い質量電荷比が大きくなる方向(図6では右方向)にピークが移動している。これは、遅延時間Tdelayが長くなるに従い、より大きな質量電荷比のイオンに対する増大率が大きくなっていることを示している。一方で、遅延時間Tdelayが長くなっても、質量電荷比が小さいイオンに対する増大率もそれほど低下していないことも分かる。即ち、遅延時間Tdelayを長くすると、質量電荷比が大きいイオンに対する増大率は大きくなるが、質量電荷比が小さいイオンに対する増大率もそれほど下がらない。これは、遅延時間Tdelayを長くすることで、幅広い質量電荷比範囲のイオンを観測可能であることを意味している。このような結果は上述したイオンの挙動の説明と整合している。
 観測したい質量電荷比範囲におけるイオンの増大率をできるだけ上げるためには、その質量電荷比範囲の上限の質量電荷比値に応じて遅延時間Tdelayを決めるとよい。図6に示した結果から、例えばm/z1000以下の質量電荷比範囲のマススペクトルを取得したい場合には、m/z1000付近でイオン増大率がピークを示す遅延時間Tdelayに基づき、遅延時間を50μsに設定するとよい。また、より広い質量電荷比範囲、例えばm/z4000までのマススペクトルを取得したい場合には、全体的な増大率は若干下がるものの遅延時間Tdelayを100μs程度にすればよい。なお、さらにそれ以上に遅延時間Tdelayを長くするとイオン蓄積の効果が薄れてくるため、イオン増大率は1に収束することが図6から分かる。このように観測したい質量電荷比範囲、特にその上限値に応じて最適な遅延時間を決定すると、コリジョンセル13内にイオンを蓄積する効果を十分に発揮することができる。
 以上のように本実施例のQ-TOF型質量分析装置では、幅広い質量電荷比範囲に亘るイオンについて、コリジョンセル13内でのイオン蓄積の効果を十分に発揮し、高い感度で各イオンを観測することができる。
 上述したように、コリジョンセル13内における中心軸Cに沿った擬似ポテンシャルの勾配は、イオンガイド30に接する円の半径、各ロッド電極31~38に印加される高周波電圧の周波数又は振幅、イオンガイド30の極数などを中心軸Cに沿って変化させることによっても形成される。したがって、第1実施例におけるイオンガイド30の構成は以下のように様々に変形することが可能である。図7~図11はいずれも本発明の他の実施例のQ-TOF型質量分析装置におけるイオンガイドの構成を示す図である。
  [第2実施例]
 図7は第2実施例のQ-TOF型質量分析装置においてコリジョンセル内に配置されるイオンガイド50の正面端面図である。このイオンガイド50は、ロッド電極(図7では符号51、55で示す2本のロッド電極のみを示しているが第1実施例と同様にロッド電極は8本存在する)自体が途中で折れ曲がった形状を有する。これによって、入射端面側の円形状開口59aの半径よりも出射端面側の円形状開口59bの半径が大きい。また、ロッド電極が中心軸Cと平行である範囲L1では擬似ポテンシャルの勾配はないが、ロッド電極が中心軸Cに対して傾いている範囲L2では擬似ポテンシャルは第1実施例と同様に勾配を有する。したがって、このイオンガイド50を備えた第2実施例のQ-TOF型質量分析装置は第1実施例と同様の効果を奏する。
  [第3実施例]
 図8は第3実施例のQ-TOF型質量分析装置においてコリジョンセル内に配置されるイオンガイド60の正面端面図である。このイオンガイド60は、ロッド電極(図8では符号61、65で示す2本のロッド電極のみを示しているが第1実施例と同様に8本存在する)自体が湾曲した形状を有する。これによって、入射端面側の円形状開口69aの半径よりも出射端面側の円形状開口69bの半径が大きく、しかもその半径は入口側から出口側に向かって徐々に大きくなることが保証される。したがって、このイオンガイド60を備えた第3実施例のQ-TOF型質量分析装置は第1実施例と同様の効果を奏する。
  [第4実施例]
 図9は第4実施例のQ-TOF型質量分析装置においてコリジョンセル内に配置されるイオンガイド70の左側面図(a)及び正面端面図(b)である。このイオンガイド70は、各ロッド電極が1本の延伸する電極ではなく、中心軸Cの方向に複数個(この例では5個)に分割された分割ロッド電極(例えば符号71a~71e)から成る仮想的なロッド電極(例えば符号71)であり、8本の仮想的なロッド電極71~78が中心軸Cを取り囲むように配設される。各仮想的ロッド電極71~78において、各分割ロッド電極(例えば符号71a~71e)は、中心軸Cからの距離が入口側から出口側に向かって段階的に大きくなるように配設されている。このイオンガイド70は、第1実施例のような、中心軸Cを取り囲むように8本のロッド電極が配設されたものとみなすことができ、該イオンガイド60を備えた第4実施例のQ-TOF型質量分析装置は第1実施例と同様の効果を奏する。
  [第5実施例]
 図10は第5実施例のQ-TOF型質量分析装置においてコリジョンセル内に配置されるイオンガイドの正面端面図である。このイオンガイド80は、第4実施例と同様に、複数個の分割ロッド電極から成る仮想的ロッド電極(図10では符号81、85で示す2本のみ示してあるが、第1実施例と同様に8本存在する)が中心軸Cを取り囲むように配置されている。但し、同一の仮想的ロッド電極に属する各分割ロッド電極の中心軸Cからの距離は同じである。つまり、仮想的ロッド電極の円形状開口の半径は中心軸C上のいずれの位置でも同一である。その代わりに、同一の仮想的ロッド電極に属する複数の分割ロッド電極(例えば符号85a~85e)にそれぞれ相違する高周波電圧VRF1~VRF5が印加されるようになっており、その高周波電圧VRF1~VRF5の周波数又は振幅のいずれか一方又は両方を段階的に変化させることで、中心軸Cに沿った擬似ポテンシャルの大きさ又は深さの勾配を形成する。したがって、このイオンガイド80を備えた第5実施例のQ-TOF型質量分析装置は第1実施例と同様の効果を奏する。
  [第6実施例]
 図11は第6実施例のQ-TOF型質量分析装置においてコリジョンセル内に配置されるイオンガイド90の正面端面図(a)、及び各矢視線端面図(b)、(c)、(d)である。このイオンガイド90は、第4、第5実施例と同様に、複数個の分割ロッド電極から成る4本の仮想的ロッド電極91~94が中心軸Cを取り囲むように配置されている。但し、同一の仮想的ロッド電極に属する複数の分割ロッド電極には同一の高周波電圧±VRFが印加され、その代わりに、複数の分割ロッド電極はその断面形状が異なるものを含む。具体的にはここでは、仮想的ロッド電極91において、図11(b)に示すように分割ロッド電極91a、91bは断面形状が円形状であり、図11(c)に示すように分割ロッド電極91c、91dは断面形状が五角形状であり、図11(d)に示すように分割ロッド電極91eは断面形状が正方形状である。
 上述したように分割ロッド電極の断面形状が相違すると、より具体的には、円形以外の断面形状になると、上記(1)式において異なる極数nの擬似ポテンシャル項が重畳されることになるため、擬似ポテンシャルの形状が変化する。これにより、擬似ポテンシャルの大きさ又は深さに実質的な勾配を形成することができる。したがって、このイオンガイド90を備えた第6実施例のQ-TOF型質量分析装置は第1実施例と同様の効果を奏する。
 なお、上記実施例はいずれも本発明の一例であり、本発明の趣旨の範囲で適宜変更、修正、追加などを行っても本願特許請求の範囲に包含されることは明らかである。
1…チャンバ
2…イオン化室
3…第1中間真空室
4…第2中間真空室
5…第3中間真空室
6…高真空室
7…ESIスプレー
8…加熱キャピラリ
10…スキマー
9、11…イオンガイド
12…四重極マスフィルタ
13…コリジョンセル
131…入口レンズ電極
132…出口レンズ電極
14…イオン輸送光学系
15…イオン通過口
16…直交加速部
161…押出電極
162…引出電極
17…飛行空間
18…リフレクタ
19…イオン検出器
20…高周波イオンガイド
30、50、60、70、80、90…多重極型イオンガイド
31~38…ロッド電極
39a…イオン入射端面
39b…イオン出射端面
40…制御部
41…イオンガイド電圧発生部
42…出口レンズ電極電圧発生部
43…イオン輸送光学系電圧発生部
44…直交加速部電圧発生部
C…中心軸(イオン光軸)

Claims (8)

  1.  試料由来のイオンが入射して来るその入射軸と直交する方向に該イオンを加速して射出する直交加速部と、その射出されたイオンを質量電荷比に依存する飛行時間に応じて分離して検出する分離検出部と、を具備する直交加速飛行時間型質量分析装置において、
     a)前記直交加速部の前段に配置された、測定対象であるイオンを蓄積するイオン蓄積部であって、
      a1)中心軸を取り囲むように配置された複数本のロッド状電極から成り、高周波電場の作用により該ロッド状電極で囲まれる空間にイオンを収束するとともに、前記中心軸に沿った高周波電場による擬似ポテンシャルの大きさ又は深さの勾配によってイオンを該中心軸に沿った一方向に加速するイオンガイドと、
      a2)前記イオンガイドにおいてイオンが加速される方向の出口側に配置された、イオンが通過可能な開口を有する出口電極と、
      a3)前記イオンガイドを構成する複数本のロッド状電極にそれぞれ所定の高周波電圧を印加する一方、測定対象のイオンと同極性である直流電圧を前記出口電極に印加することで電位障壁を形成したあと該電位障壁を取り除くように該電圧を変化させる電圧発生部と、
     を有するイオン蓄積部と、
     b)前記電圧発生部から前記出口電極に印加される電圧が電位障壁が取り除かれるように変化された時点から所定の時間が経過した時点で前記直交加速部にイオン射出用のパルス状電圧を印加する加速電圧発生部と、
     を備えることを特徴とする直交加速飛行時間型質量分析装置。
  2.  請求項1に記載の直交加速飛行時間型質量分析装置であって、
     前記イオンガイドは、イオンを解離させるために衝突誘起解離ガスが供給されるコリジョンセルの内部に配設されることを特徴とする直交加速飛行時間型質量分析装置。
  3.  請求項1又は2に記載の直交加速飛行時間型質量分析装置であって、
     イオン源に連続的に導入される試料に含まれる各種成分由来のイオンについての測定を所定の周期で繰り返し実行するものであって、
     電位障壁を形成するように前記電圧発生部から前記出口電極へ印加する電圧を変化させる時点と、前記直交加速電圧発生部から前記直交加速部へ加速電圧の印加を開始する時点とが一致するように電圧印加の制御タイミングが設定されていることを特徴とする直交加速飛行時間型質量分析装置。
  4.  請求項1又は2に記載の直交加速飛行時間型質量分析装置であって、
     前記イオンガイドは、中心軸を取り囲む複数本の直線状に延伸するロッド電極から成り、各ロッド電極は該イオンガイドの入口側から出口側に向かって中心軸からの距離が連続的に大きくなるように該中心軸に対し傾けて配設されていることを特徴とする直交加速飛行時間型質量分析装置。
  5.  請求項1又は2に記載の直交加速飛行時間型質量分析装置であって、
     前記イオンガイドは、中心軸を取り囲む複数本のロッド電極から成り、各ロッド電極はイオンガイドの入口側から出口側に向かって中心軸からの距離が連続的に大きくなる傾斜部を一部に有する形状であることを特徴とする直交加速飛行時間型質量分析装置。
  6.  請求項1又は2に記載の直交加速飛行時間型質量分析装置であって、
     前記イオンガイドは、それぞれが中心軸に沿って複数個に分割された短い分割ロッド電極から構成される、中心軸を取り囲む複数本の仮想的なロッド電極から成り、同一の仮想的なロッド電極に属する複数の分割ロッド電極は、イオンガイドの入口側から出口側に向かって中心軸からの距離が段階的に大きくなるように配設されていることを特徴とする直交加速飛行時間型質量分析装置。
  7.  請求項1又は2に記載の直交加速飛行時間型質量分析装置であって、
     前記イオンガイドは、それぞれが中心軸に沿って複数個に分割された短い分割ロッド電極から構成される、中心軸を取り囲む直線状に延伸する複数本の仮想的なロッド電極から成り、前記電圧生成部は、同一の仮想的なロッド電極に属する複数の分割ロッド電極に振幅又は周波数が相違する高周波電圧を印加することを特徴とする直交加速飛行時間型質量分析装置。
  8.  請求項1又は2に記載の直交加速飛行時間型質量分析装置であって、
     前記イオンガイドは、それぞれが中心軸に沿って複数個に分割された短い分割ロッド電極から構成される、中心軸を取り囲む直線状に延伸する複数本の仮想的なロッド電極から成り、同一の仮想的なロッド電極に属する複数の分割ロッド電極は異なる断面形状を有することを特徴とする直交加速飛行時間型質量分析装置。
PCT/JP2016/051089 2016-01-15 2016-01-15 直交加速飛行時間型質量分析装置 WO2017122339A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16884942.0A EP3404696A4 (en) 2016-01-15 2016-01-15 Orthogonal acceleration time-of-flight mass spectrometry device
JP2017561479A JP6489240B2 (ja) 2016-01-15 2016-01-15 直交加速飛行時間型質量分析装置
US16/070,088 US10573504B2 (en) 2016-01-15 2016-01-15 Orthogonal acceleration time-of-flight mass spectrometry
CN201680079000.2A CN108475616B (zh) 2016-01-15 2016-01-15 正交加速飞行时间型质谱分析装置
PCT/JP2016/051089 WO2017122339A1 (ja) 2016-01-15 2016-01-15 直交加速飛行時間型質量分析装置
US16/744,290 US10923339B2 (en) 2016-01-15 2020-01-16 Orthogonal acceleration time-of-flight mass spectrometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051089 WO2017122339A1 (ja) 2016-01-15 2016-01-15 直交加速飛行時間型質量分析装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/070,088 A-371-Of-International US10573504B2 (en) 2016-01-15 2016-01-15 Orthogonal acceleration time-of-flight mass spectrometry
US16/744,290 Continuation US10923339B2 (en) 2016-01-15 2020-01-16 Orthogonal acceleration time-of-flight mass spectrometry

Publications (1)

Publication Number Publication Date
WO2017122339A1 true WO2017122339A1 (ja) 2017-07-20

Family

ID=59311084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051089 WO2017122339A1 (ja) 2016-01-15 2016-01-15 直交加速飛行時間型質量分析装置

Country Status (5)

Country Link
US (2) US10573504B2 (ja)
EP (1) EP3404696A4 (ja)
JP (1) JP6489240B2 (ja)
CN (1) CN108475616B (ja)
WO (1) WO2017122339A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211918A1 (ja) * 2018-05-02 2019-11-07 株式会社島津製作所 直交加速飛行時間型質量分析装置
EP3608942A1 (en) * 2018-08-08 2020-02-12 Shimadzu Corporation Time-of-flight mass spectrometer and program
JPWO2019229945A1 (ja) * 2018-05-31 2021-03-11 株式会社島津製作所 質量分析装置
US11270875B2 (en) 2018-07-20 2022-03-08 Shimadzu Corporation Mass spectrometer
JP7548157B2 (ja) 2021-08-19 2024-09-10 株式会社島津製作所 イオン分析装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122339A1 (ja) * 2016-01-15 2017-07-20 株式会社島津製作所 直交加速飛行時間型質量分析装置
US11817303B2 (en) * 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
EP3662501A1 (en) 2017-08-06 2020-06-10 Micromass UK Limited Ion mirror for multi-reflecting mass spectrometers
GB201806507D0 (en) 2018-04-20 2018-06-06 Verenchikov Anatoly Gridless ion mirrors with smooth fields
GB201808530D0 (en) 2018-05-24 2018-07-11 Verenchikov Anatoly TOF MS detection system with improved dynamic range
GB201810573D0 (en) 2018-06-28 2018-08-15 Verenchikov Anatoly Multi-pass mass spectrometer with improved duty cycle
JP7095579B2 (ja) * 2018-12-05 2022-07-05 株式会社島津製作所 質量分析装置
US11728153B2 (en) * 2018-12-14 2023-08-15 Thermo Finnigan Llc Collision cell with enhanced ion beam focusing and transmission
CN110767526B (zh) * 2019-11-01 2022-07-05 上海裕达实业有限公司 一种倾斜多极杆导引系统
CN112799120B (zh) * 2019-11-13 2024-03-22 中国科学院国家空间科学中心 一种离子和电子同步测量的双通道静电分析器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689111A (en) 1995-08-10 1997-11-18 Analytica Of Branford, Inc. Ion storage time-of-flight mass spectrometer
US6285027B1 (en) * 1998-12-04 2001-09-04 Mds Inc. MS/MS scan methods for a quadrupole/time of flight tandem mass spectrometer
US7087897B2 (en) 2003-03-11 2006-08-08 Waters Investments Limited Mass spectrometer
US7208726B2 (en) 2004-08-27 2007-04-24 Agilent Technologies, Inc. Ion trap mass spectrometer with scanning delay ion extraction
JP2007536714A (ja) * 2004-05-05 2007-12-13 エムディーエス インコーポレイテッド ドゥーイング ビジネス スルー イッツ エムディーエス サイエックス ディヴィジョン 質量分析計用イオンガイド
US7456388B2 (en) 2004-05-05 2008-11-25 Mds Inc. Ion guide for mass spectrometer
US7714279B2 (en) 2006-04-11 2010-05-11 Bruker Daltonik, Gmbh Orthogonal time-of-flight mass spectrometers with low mass discrimination
JP2011175982A (ja) 2011-06-03 2011-09-08 Shimadzu Corp 質量分析装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507019B2 (en) 1999-05-21 2003-01-14 Mds Inc. MS/MS scan methods for a quadrupole/time of flight tandem mass spectrometer
US6417511B1 (en) * 2000-07-17 2002-07-09 Agilent Technologies, Inc. Ring pole ion guide apparatus, systems and method
GB2388467B (en) 2001-11-22 2004-04-21 Micromass Ltd Mass spectrometer
DE102004028419B4 (de) * 2004-06-11 2011-06-22 Bruker Daltonik GmbH, 28359 Massenspektrometer und Reaktionszelle für Ionen-Ionen-Reaktionen
US7582864B2 (en) * 2005-12-22 2009-09-01 Leco Corporation Linear ion trap with an imbalanced radio frequency field
US20080031208A1 (en) 2006-08-04 2008-02-07 Microsoft Corporation Synchronization between wireless devices while saving power
DE102010022184B4 (de) * 2010-05-21 2013-04-04 Bruker Daltonik Gmbh Mischfrequenz-Stabsystem als Ionenreaktor
US8680463B2 (en) * 2010-08-04 2014-03-25 Dh Technologies Development Pte. Ltd. Linear ion trap for radial amplitude assisted transfer
DE112011102743T5 (de) * 2010-08-19 2013-07-04 Leco Corporation Laufzeit-Massenspektrometer mit akkumulierender Elektronenstoss-Ionenquelle
CN105144339B (zh) * 2013-04-23 2017-11-07 莱克公司 具有高吞吐量的多反射质谱仪
WO2015191569A1 (en) * 2014-06-13 2015-12-17 Perkinelmer Health Sciences, Inc. Rf ion guide with axial fields
WO2017122339A1 (ja) * 2016-01-15 2017-07-20 株式会社島津製作所 直交加速飛行時間型質量分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689111A (en) 1995-08-10 1997-11-18 Analytica Of Branford, Inc. Ion storage time-of-flight mass spectrometer
US6285027B1 (en) * 1998-12-04 2001-09-04 Mds Inc. MS/MS scan methods for a quadrupole/time of flight tandem mass spectrometer
US7087897B2 (en) 2003-03-11 2006-08-08 Waters Investments Limited Mass spectrometer
JP2007536714A (ja) * 2004-05-05 2007-12-13 エムディーエス インコーポレイテッド ドゥーイング ビジネス スルー イッツ エムディーエス サイエックス ディヴィジョン 質量分析計用イオンガイド
US7456388B2 (en) 2004-05-05 2008-11-25 Mds Inc. Ion guide for mass spectrometer
US7208726B2 (en) 2004-08-27 2007-04-24 Agilent Technologies, Inc. Ion trap mass spectrometer with scanning delay ion extraction
US7714279B2 (en) 2006-04-11 2010-05-11 Bruker Daltonik, Gmbh Orthogonal time-of-flight mass spectrometers with low mass discrimination
JP2011175982A (ja) 2011-06-03 2011-09-08 Shimadzu Corp 質量分析装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. GUILHAUS: "Orthogonal Acceleration Time-of-flight Mass Spectrometry", MASS SPECTROM. REV., vol. 19, 2000, pages 65 - 107
See also references of EP3404696A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211918A1 (ja) * 2018-05-02 2019-11-07 株式会社島津製作所 直交加速飛行時間型質量分析装置
JPWO2019229945A1 (ja) * 2018-05-31 2021-03-11 株式会社島津製作所 質量分析装置
US11270875B2 (en) 2018-07-20 2022-03-08 Shimadzu Corporation Mass spectrometer
EP3608942A1 (en) * 2018-08-08 2020-02-12 Shimadzu Corporation Time-of-flight mass spectrometer and program
JP7548157B2 (ja) 2021-08-19 2024-09-10 株式会社島津製作所 イオン分析装置

Also Published As

Publication number Publication date
US20200152441A1 (en) 2020-05-14
CN108475616A (zh) 2018-08-31
US10923339B2 (en) 2021-02-16
JPWO2017122339A1 (ja) 2018-05-24
US20190019664A1 (en) 2019-01-17
EP3404696A1 (en) 2018-11-21
EP3404696A4 (en) 2019-01-02
US10573504B2 (en) 2020-02-25
JP6489240B2 (ja) 2019-03-27
CN108475616B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
JP6489240B2 (ja) 直交加速飛行時間型質量分析装置
JP6237908B2 (ja) 飛行時間型質量分析装置
EP0917728B1 (en) Ion storage time-of-flight mass spectrometer
US7208728B2 (en) Mass spectrometer
US7064319B2 (en) Mass spectrometer
US6852972B2 (en) Mass spectrometer
JP5257334B2 (ja) 質量分析装置
JP6202214B2 (ja) 飛行時間型質量分析装置
JP6544430B2 (ja) 質量分析装置
JP6006322B2 (ja) 質量分析装置および質量分離装置
JP2012084299A (ja) タンデム型飛行時間型質量分析計
JP3830344B2 (ja) 垂直加速型飛行時間型質量分析装置
JP6311791B2 (ja) 飛行時間型質量分析装置
JP6881679B2 (ja) 飛行時間型質量分析装置
WO2019211918A1 (ja) 直交加速飛行時間型質量分析装置
CA2262646C (en) Ion storage time-of-flight mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016884942

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016884942

Country of ref document: EP

Effective date: 20180816