WO2017119715A1 - Graphene inspection device and method - Google Patents

Graphene inspection device and method Download PDF

Info

Publication number
WO2017119715A1
WO2017119715A1 PCT/KR2017/000095 KR2017000095W WO2017119715A1 WO 2017119715 A1 WO2017119715 A1 WO 2017119715A1 KR 2017000095 W KR2017000095 W KR 2017000095W WO 2017119715 A1 WO2017119715 A1 WO 2017119715A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene film
liquid
graphene
image information
image
Prior art date
Application number
PCT/KR2017/000095
Other languages
French (fr)
Korean (ko)
Inventor
주상현
Original Assignee
경기대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기대학교 산학협력단 filed Critical 경기대학교 산학협력단
Publication of WO2017119715A1 publication Critical patent/WO2017119715A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to an apparatus and an inspection method for inspecting the properties of graphene.
  • Graphene is a two-dimensional structure made of carbon and has advantages of high mobility and conductivity, as well as transparency and flexibility. These characteristics of graphene can overcome the limitations of device implementations that occur in conventional displays, semiconductor devices, sensors, supercapacitors, and solar cells. For example, by replacing the existing transparent electrode (ITO electrode or IZO electrode) with graphene having a transparent and bendable characteristics, it is possible to manufacture various types of transparent electrodes as well as lower the manufacturing cost.
  • ITO electrode or IZO electrode transparent and bendable characteristics
  • graphene In order for graphene to be applied to an actual commercially available device, it is important to grow well so that there are almost no defects.
  • Graphene is generally formed on a surface of a metal, such as copper or nickel, and then transferred from the metal surface to an insulating substrate.
  • Graphene grows with defects such as vacancies, interstitial atoms, non-carbon atoms, and lattice reconstruction.
  • graphene is grown after tearing or stretching due to physical impact during transfer, transfer and removal of poly (methyl methacrylate) (PMMA), annealing, and cleaning with acetone. Couplings such as doping by PMMA occur.
  • PMMA poly (methyl methacrylate)
  • Raman spectroscopy is one of the most widely used analytical methods for examining the characteristics of graphene such as the presence of defects.
  • X-ray photoelectron spectroscopy, transmission electron microscopy, scanning tunneling microscope, atomic force microscopy In addition, there are analysis methods using Auger electron spectroscopy and laser photo analysis.
  • Existing analytical methods are capable of accurate and diverse analysis of graphene characteristics, but it takes a long time to obtain analytical results, and requires expensive equipment.
  • existing analytical methods do not directly analyze the graphene film grown on the surface of the metal substrate, thus transferring the grown graphene to another insulator substrate or mesh grid. The process is necessary. Therefore, the existing analytical methods have a problem that it is not possible to determine whether the defects found in the analysis of graphene occurred in the process of growing graphene or in the process of transferring graphene.
  • An object of the present invention is to provide an inspection apparatus and an inspection method capable of inspecting the characteristics of graphene in real time without transferring the graphene.
  • the graphene inspection device of the present invention is a device for inspecting the characteristics of the graphene film including whether the graphene film is defective, the injection nozzle unit for forming a liquid droplet by spraying a liquid on the upper surface of the graphene film; At least one of a diameter, a height, and a contact angle of the graphene film from the image information generating unit and the image information generating unit for generating image information of the shape of the liquid droplet formed on the graphene film; It characterized in that it comprises an image analyzer for determining whether a defect is generated in the graphene film by calculating a value.
  • the injection nozzle unit includes at least one injection nozzle for injecting the liquid on the upper surface of the graphene film, the injection nozzle is one on the upper surface of the graphene film by injecting the liquid of 0.01 ⁇ 200 ⁇ l each It can form the liquid drop of.
  • the liquid may be water or alcohol.
  • the image information generating unit may photograph the liquid droplets from the upper portion of the liquid droplets to generate first image information including information about the diameter of the liquid droplets, and the front and rear portions of the liquid droplets. And a second photographing unit configured to photograph the liquid drop from the side to generate second image information including information about a contact angle and a height of the liquid droplet of the graphene film.
  • the first photographing unit includes a first camera for photographing the first image information and a first transmission module for transmitting the first image information to the image analyzing unit, and the second photographing unit includes the second image information.
  • a second transmission module configured to transmit a second camera to photograph and the second image information to the image analyzer.
  • the first photographing unit or the second photographing unit may have the liquid droplet formed on the graphene film. The first image information or the second image information may be photographed after a shooting time interval of 0 to 30 seconds has elapsed.
  • first photographing unit or the second photographing unit may be formed to photograph one time or at least two times according to the photographing time interval.
  • the image analyzer may include at least one of a reference diameter, a reference height, and a reference contact angle calculated by forming the droplets on the graphene film without defects, and the diameter of the droplets is larger than the reference diameter. In this case, it may be determined that a defect is generated in the graphene film when the height of the liquid drop is lower than the reference height or when the contact angle of the liquid drop is smaller than the reference contact angle.
  • the image analyzer may generate alarm information when it is determined that a defect is generated in the graphene film, and may further include an alarm unit configured to receive the alarm information transmitted from the image analyzer and generate an alarm signal. have.
  • the graphene inspection apparatus may further include an image information display unit displaying first image information and second image information transmitted from the image analyzer.
  • the graphene inspection device may further include a droplet removing unit for removing the liquid droplets by supplying wind, hot air or light to the liquid droplets after the generation of the image information in the image generating unit.
  • the graphene inspection method of the present invention is a method for examining the characteristics of the graphene film including whether the graphene film is defective, liquid injection to form a liquid droplet by spraying a liquid on the upper surface of the graphene film And generating image information of the shape of the liquid drop formed on the top surface of the graphene film, and at least a diameter, a height of the liquid drop, and a contact angle with the graphene film from the image information. And calculating an image to determine whether a defect is generated in the graphene film.
  • the image analysis step using the at least one of the reference diameter, reference height and reference contact angle calculated by forming the liquid droplets on the graphene film without defects, the diameter of the liquid droplets than the reference diameter it may be determined that a defect is generated in the graphene film when the height of the liquid drop is lower than the reference height or when the contact angle of the liquid drop is smaller than the reference contact angle.
  • the liquid spraying step may inject a liquid of 0.01 ⁇ 200 ⁇ m on the upper surface of the graphene film at one time, it may proceed to form one of the liquid droplets in one spray.
  • the liquid spraying step may be made to spray a liquid at a position spaced apart from the upper surface of the graphene film in the width direction at the same time, a plurality of the liquid droplets are formed in the width direction of the graphene film.
  • the liquid may be water or alcohol.
  • the image information may include first image information including information about a diameter of the liquid droplet by photographing the liquid droplet from an upper portion of the liquid droplet, and photographing the liquid droplet from the front rear or side of the liquid droplet.
  • the image information may include second image information including information about a height of a liquid drop and a contact angle with respect to the graphene film.
  • the generating of the image information may be performed such that the first image information or the second image information is photographed after the liquid droplet is formed on the graphene film and a shooting time interval of 0 to 30 seconds has elapsed.
  • the first image information or the second image information may be made to photograph once or at least twice according to the photographing time interval.
  • the graphene inspection method generates alarm information when it is determined that a defect is generated in the graphene film in the image analysis step, and generates an alarm signal according to the alarm information after the image analysis step. It may further comprise a generating step.
  • the graphene inspection method may further include a drop removing step of removing the liquid drop by supplying hot air or irradiating light to the liquid drop after the image information generating step.
  • Graphene inspection apparatus and method according to the present invention has the effect that can be inspected in real time without transferring the graphene film on the characteristics including whether or not a defect is present in the graphene film grown on the metal substrate.
  • the graphene inspection apparatus and method according to the present invention excludes defects that may occur in the process of transferring the graphene from the metal substrate and examines only the defects generated in the growth process, the roll-to-roll method by the chemical vapor deposition method It is effective to accurately identify and replace in real time whether or not a problem occurs in the large-scale graphene growth process that is grown.
  • the graphene inspection apparatus and method according to the present invention has the effect of reducing the analysis time and analysis cost compared to the existing method without using expensive equipment (Raman spectroscopy or transmission electron microscope, etc.).
  • the graphene inspection apparatus and method according to the present invention removes the liquid sprayed on the upper surface of the graphene film for the inspection to use the graphene film as a normal production product when there is no defect in the graphene film There is an effect of minimizing the consumption of the graphene film according to the inspection.
  • FIG. 1 is a block diagram of a graphene inspection device according to an embodiment of the present invention.
  • FIG. 2 is a process chart of the graphene test method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a liquid ejecting step, an image information generating step, and an image analyzing step in the process diagram of FIG. 2.
  • FIG. 4 is a graph showing a contact angle measurement result according to a defect of a graphene film grown on a metal substrate.
  • FIG. 5 is a graph showing a contact angle measurement result according to a defect after transferring a graphene film grown on a metal substrate to an insulating substrate.
  • FIG. 6 is a graph showing a measurement result of Raman characteristics according to a defect of a graphene film grown on a metal substrate.
  • FIG. 7 is a graph showing measurement results of Raman characteristics according to defects in graphene films after transferring graphene films grown on metal substrates to insulating substrates.
  • FIG. 10 is a graph showing a result of measuring the height of water droplets according to a defect of a graphene film grown on a metal substrate.
  • FIG. 11 is a graph illustrating a diameter measurement result of water droplets according to a defect of a graphene film grown on a metal substrate.
  • FIG. 1 is a block diagram of a graphene inspection device according to an embodiment of the present invention.
  • a graphene inspection apparatus includes a spray nozzle unit 110, an image information generator 120, and an image analyzer 130.
  • the graphene test apparatus may further include an image information display unit 140, an alarm unit 150, and a drop removing unit 160.
  • the graphene inspection apparatus sprays a liquid onto the surface of the graphene film (b) to form a liquid droplet (c) and the diameter, height of the liquid droplet (c) or the contact angle with the graphene film (b)
  • the shape is measured to evaluate the characteristics including whether the graphene film (b) is defective.
  • the spray nozzle unit 110 may include at least one spray nozzle 111 and may include a plurality of spray nozzles 111.
  • the spray nozzle unit 110 may be formed such that the plurality of spray nozzles 111 are spaced apart from each other in a line along the width direction of the graphene film b.
  • the spray nozzle unit 110 may include the spray nozzles 111 in a number corresponding to the number of inspection points in which the graphene film b is appropriately set along the width direction.
  • the injection nozzles 111 are spaced apart from each other according to the inspection interval required for the inspection in the width direction of the graphene film (b). Accordingly, the spray nozzle unit 110 includes a relatively large number of spray nozzles 111 when the graphene film b has a wide width, and the narrower the inspection interval, the relatively large number of spray nozzles 111. ) May be included.
  • the spray nozzle 111 sprays a liquid such as water or alcohol onto the surface of the graphene film b to form a liquid drop c.
  • the liquid may be a polymer solution or an organic solvent solution.
  • the liquid may be Dimethyl sulfoxide (DMSO), Chlorobenzene, Methanol, Toluene, Isopropanol, Acetone, Ethanol, oil, benzene, THF (L (-)-5,6,7,8-tetrahydrofolic acid), DMF ( dimethylformamide), Hexane, glycerol, cyclohexane, gasoline, diesel.
  • DMSO Dimethyl sulfoxide
  • Chlorobenzene Chlorobenzene
  • Methanol Toluene
  • Isopropanol Acetone
  • Ethanol oil
  • benzene THF (L (-)-5,6,7,8-tetrahydrofolic acid)
  • DMF dimethylformamide
  • the spray nozzle 111 is dropped onto the graphene surface in the form of a drop rather than spraying the liquid to be sprayed at a time in a mist state.
  • the injection nozzle 111 may be sprayed so that the liquid falls to the upper surface of the graphene film (b) by the free fall to form a liquid drop (c).
  • the liquid sprayed from the spray nozzle 111 forms a liquid drop c having the same or similar size on the surface of the graphene film b in the same state.
  • the injection nozzle 111 is formed to supply a predetermined amount of liquid.
  • the spray nozzle 111 may spray a liquid of 0.01 ⁇ 200 ⁇ l at a time.
  • the spray nozzle 111 may spray 0.1-50 ⁇ l of liquid at a time. More preferably, the injection nozzle 111 may inject 1 to 20 ⁇ l of liquid at a time.
  • the amount of the liquid sprayed by the spray nozzle 111 is too small, the size of the liquid drop c may be too small to make it difficult to measure the shape of the liquid drop c.
  • the amount of the liquid sprayed by the spray nozzle 111 is too large, it may be difficult for the liquid drop (c) to reflect the surface characteristics of the graphene film (b).
  • the injection nozzle unit 110 is a nozzle for moving the injection nozzle 111 in the width direction of the graphene film (b) when the number of the injection nozzle 111 is less than one or the number of inspection points required It may further comprise a moving means (115).
  • the nozzle moving means 115 continuously conveys the spray nozzle 111 at predetermined intervals in the width direction of the graphene film b. Therefore, the injection nozzle unit 110 forms a predetermined number of liquid droplets c in the width direction on the top surface of the graphene film b.
  • the nozzle moving means 115 may move the injection nozzle 111 in the width direction of graphene, such as a means including a motor and a ball screw, a means including a motor and a chain or a belt, and a means including an air cylinder. Which can be formed by various means.
  • the image information generating unit 120 generates image information of the liquid drop (c) formed on the upper surface of the graphene film (b).
  • the image information generating unit 120 may include a first photographing unit 121 and a second photographing unit 125.
  • the first photographing unit 121 and / or the second photographing unit 125 captures an image once after the liquid droplet c is formed on the graphene film b and a shooting time interval of 0 to 30 seconds has elapsed. You can do that.
  • the photographing time interval is set in consideration of the time required for the liquid droplet (c) to maintain a stable shape in the graphene film (b).
  • the liquid droplet (c) may take time from 0 seconds to several tens of seconds to stabilize while reacting with the surface of the graphene film (b) according to the type of liquid. That is, the liquid used in the liquid drop (c) can be stabilized immediately upon being seated on the graphene film (b).
  • the photographing time interval of 0 seconds means that immediately after the liquid droplet (c) is formed on the graphene film (b).
  • the liquid used in the liquid drop (c) may require a few seconds to be seated on the graphene film (b).
  • the shooting time interval is too short, the image may be taken before the liquid drop c is stabilized.
  • the shooting time interval is too long, the size of the liquid drop (c) may be reduced by evaporation of the liquid, depending on the type of liquid.
  • the shooting time interval may be longer than 30 seconds.
  • the diameter, height and contact angle of the liquid drop (c) may be measured. This is because the liquid droplet c stabilizes while reacting with the surface of the graphene film b, depending on the type of liquid and the type of substrate, which takes time from 0 to several tens of seconds. For example, the image capturing time intervals are set to 1 second and 5 seconds, respectively, and then the images may be compared and analyzed.
  • the first photographing unit 121 is formed to include a first camera 122 for photographing an image or a photo to generate first image information.
  • the first photographing unit 121 may further include a first transmitting module 123 that transmits the photographed first image information to the image analyzing unit 130.
  • the first photographing unit 121 is positioned in front of the spray nozzle unit 110 based on the flow direction of the graphene film b.
  • the first photographing unit 121 photographs the liquid droplet c from the upper portion of the liquid droplet c formed on the upper surface of the graphene film b grown on the metal substrate a. That is, the first photographing unit 121 photographs the liquid drop c from the upper portion of the vertical direction of the liquid drop c to generate first image information corresponding to the top view of the liquid drop c.
  • the first photographing unit 121 generates first image information when the liquid drop c formed by the liquid ejected from the spray nozzle unit 110 is transferred to the lower portion of the first camera 122.
  • the first photographing unit 121 is different due to the influence of the brightness or color of the liquid drop c based on the image information of the upper surface of the graphene film b in which the liquid drop c is not formed.
  • it may be determined that there is a liquid drop c and generate first image information.
  • the first camera 122 is formed to have a resolution that can clearly distinguish the boundary line of the liquid drop (c) formed on the surface of the graphene film (b).
  • the first camera 122 is formed in one or a plurality of images so as to capture all the liquid droplets (c) formed spaced apart in the width direction on the upper surface of the graphene film (b).
  • the first camera 122 is spaced apart a predetermined distance from the upper portion of the graphene film (b) to be continuously transported, the liquid droplet is formed in the upper surface of the graphene film (b) is injected from the injection nozzle 111
  • the first image information is generated by taking an image or a picture of c).
  • the first camera 122 preferably generates the first image information when the liquid drop c formed on the top surface of the graphene film b is located under the camera. Therefore, since the first camera 122 photographs the liquid drop c from the vertical upper portion of the liquid drop c, the first camera 122 always generates first image information on the liquid drop c constantly. Since the first image information is image information obtained by capturing the liquid drop c from the top, the first image information includes an image of the liquid drop c photographed in a circular shape.
  • the first transmission module 123 is connected to the first camera 122 and transmits the captured first image information to the analyzer.
  • the first transmission module 123 may be formed in various configurations used to transmit image information.
  • the second photographing unit 125 is formed to include a second camera 126 that photographs an image or a photo to generate second image information.
  • the second photographing unit 125 may further include a second transmitting module 127 which transmits photographed second image information to the image analyzing unit 130.
  • the second photographing unit 125 is positioned in front, rear, or side of the first photographing unit 121 based on the flow direction of the graphene film b.
  • the second photographing unit 125 may be linked with the first photographing unit 121 and may generate second image information simultaneously or after a set time according to a photographing signal transmitted from the first photographing unit 121.
  • the second photographing unit 125 may generate second image information when the liquid drop c is recognized from the front regardless of the first photographing unit 121.
  • the second photographing unit 125 photographs the liquid droplet c from the front, rear or side of the liquid droplet c formed on the upper surface of the graphene film b grown on the metal substrate a. That is, the second photographing unit 125 photographs the vertical shape of the liquid drop c to generate second image information corresponding to the front view, the rear view, or the side view of the liquid drop c.
  • the second camera 126 is formed to have a resolution that can clearly distinguish the boundary line of the liquid droplet (c) formed on the surface of the graphene film (b).
  • the second camera 126 is formed on one or a plurality of the plurality of liquid droplets (c) formed to be spaced apart in the width direction on the upper surface of the graphene film (b).
  • the second camera 126 is positioned at the same height as the upper surface of the graphene film (b) continuously transferred, the liquid droplet (c) is sprayed from the injection nozzle 111 formed on the upper surface of the graphene film (b)
  • the second image information is generated by taking an image or a picture of the front, rear or side of the camera.
  • the second camera 126 preferably generates the second image information in the vertical shape of the liquid drop c formed on the top surface of the graphene film b. Since the second image information is image information obtained by photographing the liquid drop c from the front, the second image information includes an image photographed in a circular, semi-circular, or arc shape.
  • the second transmission module 127 is connected to the second camera 126 and transmits the photographed second image information to the image analyzer 130.
  • the second transmission module 127 may be formed in various configurations used to transmit image information.
  • the second photographing unit 125 is omitted.
  • the first imaging unit 121 may be omitted.
  • the image analyzer 130 is interlocked with the image information generator 120 and the diameter, height, and graphene film (b) of the liquid droplet (c) from the image information transmitted from the image information generator 120. At least one value of the contact angle is calculated, and it is determined whether the reference angle with respect to the predetermined reference diameter, reference height or the graphene film (b) is out of the range. In this case, the image analyzer 130 determines whether at least one of the diameter, the height, and the contact angle of the liquid drop c deviates from the reference diameter, the reference height, and the reference contact angle, two values deviate, or three values. It may be determined that the defects are generated in the graphene film (b) by determining whether all the deviations.
  • the image analyzing unit 130 is connected to the first photographing unit 121 and the second photographing unit 125, and the first image information transmitted from the first photographing unit 121 and the second photographing unit 125.
  • the second image information transmitted is analyzed.
  • the image analyzer 130 includes at least one piece of information among a preset reference diameter, a reference height, and a reference contact angle with the graphene film b.
  • the reference diameter, reference height, and reference contact angle may vary depending on the type of liquid used, the amount of liquid sprayed, and the characteristics of the graphene film (b). Therefore, the reference diameter, reference height and the reference contact angle with the graphene film (b) is stored in advance for each graphene film (b) manufacturing line to which the graphene inspection device according to an embodiment of the present invention is applied It is necessary to do
  • the image analyzer 130 may transmit information about a time at which the first image information and the second image information are photographed to the first photographing unit 121 and the second photographing unit 125, respectively.
  • the first photographing unit 121 captures an image of the upper portion of the liquid drop c at the time when the liquid drop c is positioned below the first camera 122 to capture the first image information.
  • the second photographing unit 125 captures an image of the front surface of the liquid drop c at a time when the liquid drop c is located in front of the first camera 122 to generate second image information. can do.
  • the image analyzer 130 calculates a diameter having a size viewed from an upper surface of the liquid drop c from the first image information. In this case, the image analyzer 130 separates the liquid drop c from the periphery of the liquid drop c in the first image information to determine a planar shape of the liquid drop c and to determine the size of the liquid drop c. Measure In this case, the image of the liquid drop (c) is circular as described above.
  • the image analyzer 130 calculates the contact angle of the graphene film (b) of the liquid drop (c) and the height from the upper surface of the graphene film (b) from the second image information.
  • the image analyzer 130 separates the liquid drop c from the liquid drop c surrounding the liquid drop c in the second image information to determine the vertical shape of the liquid drop c, and the liquid drop c and the graphene film ( The contact angle of b) and the height from the upper surface of the graphene film (b) of the liquid drop (c) are calculated.
  • the image analyzer 130 may use a method of extracting the shape of the liquid drop c based on the brightness or the color of the liquid drop c from the first image information or the second image information. In addition, the image analyzer 130 may use various known methods for separating a specific shape from an image.
  • the image analyzer 130 may measure a diameter, a height, or a contact angle of a liquid drop (c) currently measured based on a reference diameter, a reference height, and a reference contact angle of a previously set liquid drop (c). It is determined in real time whether it is lower, and alarm information can be generated if necessary. That is, the image analyzer 130 may measure the diameter, height, and contact angle of the liquid droplet c currently being measured based on a reference diameter, a reference height, and a reference value of the reference contact angle of the liquid droplet c previously set. It may be determined in real time whether it is lower than the reference value. Therefore, the image analyzer 130 may determine in real time whether there is an abnormality in the graphene growth process currently being performed, and in the case of abnormality in the process, generate alarm information to identify the process stop and cause in real time. To proceed.
  • the image information display unit 140 includes an image display module capable of displaying an image, and displays the first image information and the second image information transmitted from the image analyzer 130.
  • the image information display unit 140 may display the diameter, height, or contact angle of the liquid drop c calculated from the first image information and the second image information.
  • the image information display unit 140 may be integrally formed with the image analyzer 130.
  • the alarm unit 150 includes a device such as a speaker or a warning lamp, and is connected to the image analyzer 130.
  • the alarm unit 150 receives alarm information from the image analyzer 130 and generates an alarm signal such as sound or light.
  • the alarm unit 150 may be integrally formed with the image analyzer 130.
  • the drop removing unit 160 is formed to include a means for supplying wind, hot air, heat or light.
  • the drop removing unit 160 is positioned in front of the second photographing unit 125 based on the flow direction of the graphene film b.
  • the drop removing unit 160 removes the liquid drop (c) formed on the upper surface of the graphene film (b) by supplying wind, hot air, heat or light to the upper surface of the graphene film (b). That is, the drop removing unit 160 removes the liquid drop c by supplying wind, hot air, heat, or light to the liquid drop c after the generation of the image information is completed by the image generating unit 120. Therefore, the liquid is not present on the upper surface of the graphene film (b) is completed by the graphene inspection device.
  • FIG. 2 is a process chart of the graphene test method according to an embodiment of the present invention.
  • 3 is a schematic diagram of a liquid ejecting step, an image information generating step, and an image analyzing step in the process diagram of FIG. 2.
  • 4 is a graph showing a contact angle measurement result according to a defect of a graphene film grown on a metal substrate.
  • 5 is a graph showing a contact angle measurement result according to a defect after transferring a graphene film grown on a metal substrate to an insulating substrate.
  • 6 is a graph showing a measurement result of Raman characteristics according to a defect of a graphene film grown on a metal substrate.
  • FIG. 7 is a graph showing measurement results of Raman characteristics according to defects in graphene films after transferring graphene films grown on metal substrates to insulating substrates.
  • 8 is a graph showing the correlation between the contact angle of the graphene film and Raman characteristics (I D / I G ).
  • 9 is a graph showing the correlation between the contact angle of the graphene film and Raman properties (I 2D / I G ).
  • 10 is a graph showing a result of measuring the height of water droplets according to a defect of a graphene film grown on a metal substrate.
  • FIG. 11 is a graph illustrating a diameter measurement result of water droplets according to a defect of a graphene film grown on a metal substrate.
  • FIG. It is a graph which shows the measurement result of the diameter of the water droplet with the defect of the graphene film grown on the metal base material.
  • the graphene inspection method includes a liquid injection step S20, an image information generation step S30, and an image analysis step S40.
  • the graphene test method may further include a reference value setting step S10, an alarm signal generating step S50, and a drop removing step S60.
  • the graphene film (b) to which the graphene inspection method is applied is grown and formed by the source material supplied to the surface of the metal substrate (a).
  • the metal substrate (a) is Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, white It may be formed of one or more metals or alloys selected from the group consisting of brass, stainless steel and Ge.
  • the metal substrate (a) may be further formed with a catalyst layer on the surface for the smooth growth of the graphene film (b).
  • the graphene inspection method according to the present invention may be applied even after the graphene film b is transferred to another substrate.
  • the substrate may be formed of corning glass, quartz, dielectric, or plastic substrate.
  • the graphene inspection method according to the present invention includes a flat panel display module, a semiconductor device, a solar cell module, and the like. It can also be applied to evaluate the properties of the graphene film used in the module in the various modules used and manufactured.
  • the graphene film (b) may be grown using any of a variety of growth methods, including chemical vapor deposition method commonly used for graphene growth in the art, for example, thermal vapor deposition process, Rapid Thermal Chemical Vapor Deposition (RTCVD) Process, Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) Process, Low Pressure Chemical Vapor Deposition (LPCVD) Process, Atmospheric Pressure Chemical Vapor Deposition (APCVD) Process, Metal Organic Chemical Vapor Deposition (MOCVD) Process Plasma-enhanced chemical vapor deposition (PECVD) processes may be used, but are not limited now.
  • chemical vapor deposition method commonly used for graphene growth in the art, for example, thermal vapor deposition process, Rapid Thermal Chemical Vapor Deposition (RTCVD) Process, Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) Process, Low Pressure Chemical Vapor Deposition (LPCVD) Process, Atmospheric Pressure Chemical Va
  • the reference value setting step (S10) is a step of setting a reference value for determining whether a defect exists in the graphene film (b).
  • the graphene film (b) may include defects due to various factors while growing on the surface of the metal substrate (a).
  • the graphene film (b) has a hydrophilicity (hydrophilicity) or hydrophobicity (hydrophobicity) characteristics change when it contains a defect therein.
  • hydrophilicity hydrophilicity
  • hydrophobicity hydroophobicity
  • the reference value setting step (S10) is set to the reference value by measuring the diameter, height, or contact angle of the water droplets formed by spraying water on the graphene film (b) is not generated defects. That is, the diameter, height, and contact angle of the water droplets formed by spraying water on the graphene film b in which the defect is not generated are set as the reference diameter, the reference height, and the reference contact angle, respectively.
  • the contact angle, height, and diameter of the water droplets formed on the upper surface of the graphene film (b) may be relatively changed according to the amount of water sprayed. Therefore, the amount of water sprayed on the graphene film (b) is set to be constant, the same as the amount of water sprayed in the actual graphene film (b) growth process.
  • the water may be sprayed in the range of 0.01 to 200 ⁇ l.
  • the water is not sprayed by the mist, it is sprayed at a low pressure to form water droplets on the upper surface of the graphene film (b).
  • the water may be sprayed to fall to the upper surface of the graphene film (b) by the free fall to form water droplets.
  • the graphene film may generate various kinds of defects in the growth process, and the ratio of defects generated may also vary.
  • the graphene film is a surface characteristic changes according to the type of defects and the ratio of defects generated. Therefore, the graphene film prepared with various defects was prepared and evaluated.
  • the graphene film has most defects of the defect-free graphene film (type 1), hydroxyl (hydroxyl) group and most of the defects of the graphene film (type 2), hydroxyl group (hydroxyl) of 2% or more defects 5% or more of the graphene film (type 3), carbonyl group (carbonyl) and ether (ether) and carboxyl group of the defects are most of the graphene film (type 4), the defect is more than 3%, Most of the defects of carbonyl and carboxyl groups were prepared, and graphene films (type 5, type 6, and type 7) having 7% or more of defects were prepared.
  • the liquid to be sprayed on the graphene film was made of water, and the amount of sprayed at once was 5 ⁇ l and five water droplets were formed for each type.
  • the contact angle and height and diameter of the water droplets to be measured below can be measured differently when using a different liquid, and the reference value can be set differently.
  • the contact angle with respect to the water droplet formed by spraying water while the graphene film is on a metal substrate was measured.
  • the contact angle of the type 1 was measured as 80.1 ⁇ 1.26 °
  • the contact angle is the highest in the graphene film without a bond, it can be seen that gradually decreases according to the ratio and type of defects.
  • the graphene film maintains hydrophobicity when there are no defects, so that the contact angle is the highest, and when the defects are generated, the contact angle has hydrophilicity and the contact angle decreases.
  • the result of measuring the contact angle with respect to each after transferring the graphene film same as the above to the insulating substrate is shown in FIG. Referring to FIG. 5, although the change in the absolute value of the measured contact angle is different for each type, it can be seen that the trend of the contact value is maintained as it is.
  • the reference value for the reference contact angle for determining whether or not the defect of the graphene film may be set to 70 °, preferably 75 °, more preferably 80 °. From the above results, the contact angle is measured in real time in the process of growing the graphene film in a roll-to-roll manner to determine whether a defect is generated in the graphene film when the contact angle is lower than the reference contact angle. In addition, the type and amount of defects generated in the graphene film may be evaluated from the contact angle of the graphene film.
  • I D / I G represents the intensity ratio of D Raman peak (1344 cm -1 ) and G Raman peak (1596 cm -1 )
  • I 2D / I G represents 2D Raman peak (2682 cm -1 ) and G Raman peak 6 shows the intensity ratio of and the frequency of defects generated in the graphene film.
  • FIG. 6 in the state where the graphene film is on a metal substrate, each type of graphene film shows the same Raman characteristics, and thus defect analysis through Raman characteristics was not possible.
  • the Raman characteristics are different for each type. Can be.
  • the graphene substrate without defects is relatively strong in the G peak and the 2D peak, while the intensity of the D peak is weak.
  • the intensity of the G peak and the 2D peak is relatively weak, while the intensity of the D peak is strong.
  • the graphene film compared the contact angle and Raman characteristics for each type. 8 and 9, the contact angle of each type of the graphene film has a constant correlation with the Raman property, and it can be seen that the physical properties of the graphene film including the presence of defects are shown. That is, when a defect is generated in the graphene film, the contact angle may be lowered and I D / I G may be increased.
  • the water droplets formed on the upper surface of the graphene film are lowered in height compared to the graphene film without defects, and are shown in the same manner as the change in contact angle.
  • the reference height for the height may be set to 1.4 to 1.5 mm. Therefore, when the height of the water droplets formed on the upper surface of the graphene film is lower than 1.4 ⁇ 1.5mm it can be determined that a defect is generated in the graphene film.
  • the height of the water droplets may vary slightly depending on the amount of water to be sprayed, it is necessary to determine a reference value according to the amount of water.
  • the change in the diameter of the water droplet according to the defects generated in the graphene film is shown in FIG. Referring to FIG. 11, it can be seen that the water droplets formed on the upper surface of the graphene film are larger in diameter compared to the graphene film without defects, and are opposite to the change tendency of the contact angle.
  • the reference diameter for the diameter may be set to 4.6 to 4.8 mm. Therefore, when the diameter of the water droplets formed on the upper surface of the graphene film is larger than 4.6 ⁇ 4.8mm it can be determined that a defect is generated in the graphene film.
  • the diameter of the water droplets may vary slightly depending on the amount of water to be sprayed, it is necessary to determine a reference value according to the amount of water.
  • the diameter of the water droplets is relatively small, such as 4.47 mm, and the height is 1.55 mm, but the diameter is larger and the height is lower toward the type 2, type 4, and type 6. You can see it losing.
  • the liquid spraying step (S20) is a step of forming water droplets by spraying water on the upper surface of the graphene film grown on the upper surface of the metal substrate.
  • a predetermined amount of water is sprayed onto the upper surface of the graphene film through the spraying nozzle 111 of the spraying nozzle unit 110 so that one droplet is formed.
  • the liquid spray step (S20) is to spray a liquid of 0.01 ⁇ 200 ⁇ l at a time so that one liquid droplet is formed. Therefore, in the liquid spraying step (S20), when a plurality of droplets are formed on the upper surface of the graphene film, the plurality of liquids are sprayed.
  • the liquid spraying step (S20) may be performed to simultaneously spray water at a position spaced apart from the upper surface of the graphene film in the width direction so that a plurality of water droplets are formed along the width direction of the graphene film.
  • the droplet may be formed in at least one along the width direction of the graphene film, a plurality of graphene film may be formed in accordance with the width.
  • the image information generating step (S30) is a step of generating image information on the shape of the water droplets formed on the upper surface of the graphene film. That is, the image information generating step S30 is a step of generating first image information on the plane of the droplet and second image information on the front image (rear or side image). In the image information generating step S30, the first photographing unit 121 generates first image information and the second photographing unit 125 generates second image information. The image information generating step S30 may be performed to selectively generate only one of the first image information and the second image information, and may be performed to generate both the first image information and the second image information.
  • the image information generating step (S30) is the first image information and / or the second image information is taken after the liquid droplet (c) is formed on the graphene film (b) and the shooting time interval of 3 to 30 seconds elapsed May be proceeded to.
  • the photographing time interval is set in consideration of the time required for the liquid droplet (c) to maintain a stable shape in the graphene film (b) and the transfer speed of the graphene film (b). If the shooting time interval is too short, the image may be taken before the liquid drop (c) is stabilized. In addition, if the shooting time interval is too long, the size of the liquid drop (c) may be reduced by evaporation of the liquid, depending on the type of liquid.
  • the shooting time interval may be longer than 30 seconds.
  • the image information generating step (S30) is to measure the diameter, height and contact angle of the liquid droplet (c) after measuring two or more times at intervals of shooting time in order to more accurately see the characteristics of the graphene film (b). It may be. This is because the liquid droplet (c) takes several seconds to stabilize while reacting with the surface of the graphene film (b).
  • the first image information is image information photographed from the upper surface of the water droplets, which is image information on the plane of the water droplets, and allows the diameter of the water droplets to be measured.
  • the second image information is image information photographed from the front, rear, or side of the water droplets.
  • the second image information is image information on the vertical shape of the water droplets, and the contact angle and height of the water droplets can be measured.
  • the image analysis step (S40) is a step of determining whether a defect is generated in the graphene film by calculating at least one of diameter, height, or contact angle with the graphene film from the image information on the droplet.
  • the image analyzing step S40 may use any one or both of the first image information and the second image information.
  • the image analyzing step (S40) is performed by extracting the shape of the droplet based on the brightness or the color of the droplet from the first image information or the second image information, and extracting the shape of the droplet from the extracted shape. At least one of the contact angles with the graphene film is calculated.
  • the image processing may be performed to more accurately display the outline with respect to the image information.
  • the image analyzing step (S40) is performed when the diameter of the droplet is larger than the reference diameter using at least one of the reference diameter, the reference height, and the reference contact angle for the preset droplet, the height of the droplet is lower than the reference height or It is determined that a defect is generated in the graphene film when the contact angle of is smaller than the reference contact angle.
  • the image analysis step (S40) may generate alarm information when at least one of the calculated diameter, height, or contact angle with the graphene film is out of the reference value.
  • the alarm signal generating step (S50) is a step of generating an alarm signal when any one value of the calculated diameter, height or contact angle with the graphene film is out of the reference value.
  • the image analyzer 130 generates alarm information and transmits the alarm information to the alarm unit 150 when any one of the calculated diameter, height, or contact angle with the graphene film is out of the reference value, and the alarm unit 150.
  • the alarm signal generating step S50 may generate an alarm signal when any one of the calculated diameter, height, or contact angle with the graphene film is out of the reference value, and at least two values are out of the reference value. In this case, an alarm signal can be generated.
  • the alarm signal generating step S50 does not proceed when the calculated diameter, height, or contact angle with the graphene film do not deviate from the reference value.
  • the drop removing step (S60) is a step of removing the water droplets sprayed on the upper surface of the graphene film.
  • the drop removing unit 160 is sprayed on the graphene upper surface when the region of the graphene film where the water droplets are finished, the image information generation is approaching close to the top surface of the graphene film by supplying wind, hot air or heat or irradiating light Remove the formed water droplets. Therefore, if it is determined that no defects are formed on the upper surface of the graphene film, the graphene film may be used as a normally produced product, and no loss occurs due to property inspection.
  • the graphene inspection device and method according to the present invention can be inspected in real time without transferring the graphene film with respect to the characteristics including whether a defect is present in the graphene film grown on the metal substrate.
  • the graphene inspection apparatus and method according to the present invention excludes defects that may occur in the process of transferring the graphene from the metal substrate and examines only the defects generated in the growth process, the roll-to-roll method by the chemical vapor deposition method It is possible to accurately identify and replace in real time whether or not a problem occurs in a large-scale graphene growth process that is grown with.
  • the graphene inspection apparatus and method according to the present invention can reduce the analysis time and lower the analysis cost compared to the existing method without using expensive equipment (Raman spectroscopy or transmission electron microscope, etc.).

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Quality & Reliability (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)

Abstract

Disclosed are a graphene inspection device and a graphene inspection method using the same, the device being for inspecting the properties of a graphene film including whether there is a defect in the graphene film, and comprising: a spray nozzle unit for spraying liquid to the upper surface of the graphene film so as to form a liquid droplet; an image information generation unit for generating image information for the shape of the liquid droplet formed on the upper surface of the graphene film; and an image analysis unit for calculating, from the image information, at least one value from among the diameter, height and contact angle with the graphene film of the liquid droplet so as to determine whether a defect is generated on the graphene film.

Description

그래핀 검사 장치 및 방법Graphene inspection device and method
본 발명은 그래핀의 특성을 검사하는 장치 및 검사 방법에 관한 것이다.The present invention relates to an apparatus and an inspection method for inspecting the properties of graphene.
그래핀(graphene)은 카본(carbon)으로 이루어진 2차원 구조의 물질이며, 높은 이동도(mobility) 및 전도도(conductivity)뿐만 아니라 투명성(transparency) 및 휘어짐(flexibility)의 장점을 가진다. 그래핀의 이러한 특성은 기존의 디스플레이, 반도체 소자, 센서, 슈퍼캐페시터(supercapacitor) 및 태양 전지(solar cell)에서 발생하는 소자 구현의 한계를 극복하도록 해줄 수 있다. 예를 들면, 투명하고 휠 수 있는 특성을 가진 그래핀으로 기존의 투명 전극(ITO 전극 또는 IZO 전극)을 대체함으로써 다양한 형태의 투명 전극을 제조할 수 있을 뿐만 아니라 제조 단가도 낮출 수 있다.Graphene is a two-dimensional structure made of carbon and has advantages of high mobility and conductivity, as well as transparency and flexibility. These characteristics of graphene can overcome the limitations of device implementations that occur in conventional displays, semiconductor devices, sensors, supercapacitors, and solar cells. For example, by replacing the existing transparent electrode (ITO electrode or IZO electrode) with graphene having a transparent and bendable characteristics, it is possible to manufacture various types of transparent electrodes as well as lower the manufacturing cost.
그래핀이 실제 상용되는 소자에 응용되기 위해서는 결함(defect)이 거의 없도록 잘 성장되는 것이 우선적으로 중요하다. 그래핀은 일반적으로 구리(cupper) 또는 니켈(nickel)과 같은 금속(metal)의 표면에서 성장된 후에 금속 표면으로부터 절연 기판으로 전사되어 형성된다. 그래핀은 성장하는 과정에서 vacancies, interstitial atoms, non-carbon atoms, and lattice reconstruction과 같은 결함이 발생된다. 또한, 그래핀은 성장된 후에 전사(transfer) 공정, PMMA(poly(methyl methacrylate)) 코팅 및 제거 공정, 어닐링(anneal) 공정, 아세톤을 사용한 세정 공정등에서 물리적인 충격으로 인한 찢어짐 또는 늘어남, 또는 잔여 PMMA에 의한 도핑과 같은 결합이 발생된다.In order for graphene to be applied to an actual commercially available device, it is important to grow well so that there are almost no defects. Graphene is generally formed on a surface of a metal, such as copper or nickel, and then transferred from the metal surface to an insulating substrate. Graphene grows with defects such as vacancies, interstitial atoms, non-carbon atoms, and lattice reconstruction. In addition, graphene is grown after tearing or stretching due to physical impact during transfer, transfer and removal of poly (methyl methacrylate) (PMMA), annealing, and cleaning with acetone. Couplings such as doping by PMMA occur.
기존에 결함의 존재 여부와 같은 그래핀의 특성을 검사하기 위해 가장 많이 사용되는 분석 방법으로 Raman spectroscopy를 이용하는 방법이 있으며, 이 외에도 X-ray photoelectron spectroscopy, transmission electron microscopy, scanning tunneling microscope, atomic force microscopy, Auger electron spectroscopy 및 레이저 광분석법 laser photo analysis를 이용한 분석 방법들이 있다. 기존의 분석 방법들은 그래핀 특성에 대해 정확하고 다양한 분석이 가능한 반면, 분석 결과를 얻기 위한 많은 시간이 소요되며, 고가의 장비를 사용해야 한다는 단점이 있다. 또한, 기존의 분석 방법들은 금속 기재의 표면에 성장된 그래핀 필름을 직접적으로 분석하지 못하기 때문에, 성장된 그래핀을 다른 절연체 기판 또는 메쉬 형태의 그리드(mesh grid)로 전사(transfer)시키는 추가 공정이 필요하다. 따라서, 기존의 분석 방법들은 그래핀의 분석시에 발견된 결함이 그래핀을 성장시키는 과정에서 발생한 것인지, 그래핀을 전사하는 과정에서 발생한 것인지 파악할 수 없는 문제가 있다.Conventionally, Raman spectroscopy is one of the most widely used analytical methods for examining the characteristics of graphene such as the presence of defects. In addition, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning tunneling microscope, atomic force microscopy In addition, there are analysis methods using Auger electron spectroscopy and laser photo analysis. Existing analytical methods are capable of accurate and diverse analysis of graphene characteristics, but it takes a long time to obtain analytical results, and requires expensive equipment. In addition, existing analytical methods do not directly analyze the graphene film grown on the surface of the metal substrate, thus transferring the grown graphene to another insulator substrate or mesh grid. The process is necessary. Therefore, the existing analytical methods have a problem that it is not possible to determine whether the defects found in the analysis of graphene occurred in the process of growing graphene or in the process of transferring graphene.
본 발명은 그래핀의 특성을 그래핀을 전사하지 않고 실시간으로 검사할 수 있는 검사 장치 및 검사 방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide an inspection apparatus and an inspection method capable of inspecting the characteristics of graphene in real time without transferring the graphene.
본 발명의 그래핀 검사 장치는 그래핀 필름에 결함이 있는지 여부를 포함하는 그래핀 필름의 특성을 검사하는 장치로서, 상기 그래핀 필름의 상면에 액체를 분사하여 액체 방울을 형성하는 분사 노즐부와, 상기 그래핀 필름의 상면에 형성된 상기 액체 방울의 형상에 대한 영상 정보를 생성하는 영상 정보 생성부 및 상기 영상 정보로부터 상기 액체 방울의 직경, 높이 및 상기 그래핀 필름과의 접촉각의 적어도 어느 하나의 값을 산출하여 상기 그래핀 필름에 결함이 생성되는지 여부를 판단하는 영상 분석부를 포함하는 것을 특징으로 한다. The graphene inspection device of the present invention is a device for inspecting the characteristics of the graphene film including whether the graphene film is defective, the injection nozzle unit for forming a liquid droplet by spraying a liquid on the upper surface of the graphene film; At least one of a diameter, a height, and a contact angle of the graphene film from the image information generating unit and the image information generating unit for generating image information of the shape of the liquid droplet formed on the graphene film; It characterized in that it comprises an image analyzer for determining whether a defect is generated in the graphene film by calculating a value.
또한, 상기 분사 노즐부는 상기 그래핀 필름의 상면에 상기 액체를 분사하는 적어도 1개의 분사 노즐을 포함하며, 상기 분사 노즐은 각각 0.01 ∼ 200㎕의 상기 액체를 분사하여 상기 그래핀 필름의 상면에 하나의 상기 액체 방울을 형성할 수 있다. 이때, 상기 액체는 물 또는 알코올일 수 있다.In addition, the injection nozzle unit includes at least one injection nozzle for injecting the liquid on the upper surface of the graphene film, the injection nozzle is one on the upper surface of the graphene film by injecting the liquid of 0.01 ~ 200μl each It can form the liquid drop of. In this case, the liquid may be water or alcohol.
또한, 상기 영상 정보 생성부는 상기 액체 방울의 상부에서 상기 액체 방울을 촬영하여 상기 액체 방울의 직경에 대한 정보를 포함하는 제 1 영상 정보를 생성하는 제 1 촬영부 및 상기 액체 방울의 전방, 후방 또는 측방에서 상기 액체 방울을 촬영하여 상기 액체 방울의 상기 그래핀 필름에 대한 접촉각과 높이에 대한 정보를 포함하는 제 2 영상 정보를 생성하는 제 2 촬영부를 포함할 수 있다. 이때, 상기 제 1 촬영부는 상기 제 1 영상 정보를 촬영하는 제 1 카메라와 상기 제 1 영상 정보를 상기 영상 분석부로 전송하는 제 1 전송 모듈을 포함하며, 상기 제 2 촬영부는 상기 제 2 영상 정보를 촬영하는 제 2 카메라와 상기 제 2 영상 정보를 상기 영상 분석부로 전송하는 제 2 전송 모듈을 포함할 수 있다, 또한, 상기 제 1 촬영부 또는 제 2 촬영부는 상기 액체 방울이 상기 그래핀 필름에 형성되고 0 ~ 30초의 촬영 시간 간격이 경과된 후 상기 제 1 영상 정보 또는 제 2 영상 정보를 촬영하도록 형성될 수 있다.The image information generating unit may photograph the liquid droplets from the upper portion of the liquid droplets to generate first image information including information about the diameter of the liquid droplets, and the front and rear portions of the liquid droplets. And a second photographing unit configured to photograph the liquid drop from the side to generate second image information including information about a contact angle and a height of the liquid droplet of the graphene film. In this case, the first photographing unit includes a first camera for photographing the first image information and a first transmission module for transmitting the first image information to the image analyzing unit, and the second photographing unit includes the second image information. And a second transmission module configured to transmit a second camera to photograph and the second image information to the image analyzer. Further, the first photographing unit or the second photographing unit may have the liquid droplet formed on the graphene film. The first image information or the second image information may be photographed after a shooting time interval of 0 to 30 seconds has elapsed.
또한, 상기 제 1 촬영부 또는 제 2 촬영부는 상기 촬영 시간 간격에 따라 1 번 또는 적어도 2번 촬영하도록 형성될 수 있다.In addition, the first photographing unit or the second photographing unit may be formed to photograph one time or at least two times according to the photographing time interval.
또한, 상기 영상 분석부는 결함이 없는 상기 그래핀 필름에 상기 액체 방울을 형성하여 산출한 기준 직경, 기준 높이 및 기준 접촉각중에 적어도 하나의 정보를 포함하며, 상기 액체 방울의 직경이 상기 기준 직경보다 큰 경우, 상기 액체 방울의 높이가 상기 기준 높이보다 낮은 경우 또는 상기 액체 방울의 접촉각이 상기 기준 접촉각보다 작은 경우에 상기 그래핀 필름에 결함이 생성되는 것으로 판단할 수 있다.The image analyzer may include at least one of a reference diameter, a reference height, and a reference contact angle calculated by forming the droplets on the graphene film without defects, and the diameter of the droplets is larger than the reference diameter. In this case, it may be determined that a defect is generated in the graphene film when the height of the liquid drop is lower than the reference height or when the contact angle of the liquid drop is smaller than the reference contact angle.
또한, 상기 영상 분석부는 상기 그래핀 필름에 결함이 생성되는 것으로 판단하는 경우에 알람 정보를 생성하며, 상기 영상 분석부로부터 전송되는 상기 알람 정보를 수신하여 알람 신호를 발생하는 알람부를 더 포함할 수 있다.The image analyzer may generate alarm information when it is determined that a defect is generated in the graphene film, and may further include an alarm unit configured to receive the alarm information transmitted from the image analyzer and generate an alarm signal. have.
또한, 또한, 상기 그래핀 검사 장치는 상기 영상 분석부로부터 전송되는 제 1 영상 정보와 제 2 영상 정보를 표시하는 영상 정보 표시부를 더 포함할 수 있다.The graphene inspection apparatus may further include an image information display unit displaying first image information and second image information transmitted from the image analyzer.
또한, 상기 그래핀 검사 장치는 상기 영상 정부 생성부에서 상기 영상 정보의 생성이 종료된 상기 액체 방울에 바람, 열풍 또는 빛을 공급하여 상기 액체 방울을 제거하는 방울 제거부를 더 포함할 수 있다. In addition, the graphene inspection device may further include a droplet removing unit for removing the liquid droplets by supplying wind, hot air or light to the liquid droplets after the generation of the image information in the image generating unit.
또한, 본 발명의 그래핀 검사 방법은 그래핀 필름에 결함이 있는지 여부를 포함하는 그래핀 필름의 특성을 검사하는 방법으로서, 상기 그래핀 필름의 상면에 액체를 분사하여 액체 방울을 형성하는 액체 분사 단계와, 상기 그래핀 필름의 상면에 형성된 상기 액체 방울의 형상에 대한 영상 정보를 생성하는 영상 정보 생성 단계와, 상기 영상 정보로부터 상기 액체 방울의 직경, 높이 및 상기 그래핀 필름과의 접촉각의 적어도 어느 하나의 값을 산출하여 상기 그래핀 필름에 결함이 생성되는지 여부를 판단하는 영상 분석 단계를 포함하는 것을 특징으로 한다.In addition, the graphene inspection method of the present invention is a method for examining the characteristics of the graphene film including whether the graphene film is defective, liquid injection to form a liquid droplet by spraying a liquid on the upper surface of the graphene film And generating image information of the shape of the liquid drop formed on the top surface of the graphene film, and at least a diameter, a height of the liquid drop, and a contact angle with the graphene film from the image information. And calculating an image to determine whether a defect is generated in the graphene film.
또한, 상기 영상 분석 단계는 결함이 없는 상기 그래핀 필름에 상기 액체 방울을 형성하여 산출한 기준 직경, 기준 높이 및 기준 접촉각중에 적어도 하나의 정보를 사용하여, 상기 액체 방울의 직경이 상기 기준 직경보다 큰 경우, 상기 액체 방울의 높이가 상기 기준 높이보다 낮은 경우 또는 상기 액체 방울의 접촉각이 상기 기준 접촉각보다 작은 경우에 상기 그래핀 필름에 결함이 생성되는 것으로 판단할 수 있다.In addition, the image analysis step using the at least one of the reference diameter, reference height and reference contact angle calculated by forming the liquid droplets on the graphene film without defects, the diameter of the liquid droplets than the reference diameter In a large case, it may be determined that a defect is generated in the graphene film when the height of the liquid drop is lower than the reference height or when the contact angle of the liquid drop is smaller than the reference contact angle.
또한, 상기 액체 분사 단계는 상기 그래핀 필름의 상면에 0.01 ∼ 200㎕의 액체를 일 회에 분사하며, 일 회 분사로 하나의 상기 액체 방울이 형성되도록 진행될 수 있다.In addition, the liquid spraying step may inject a liquid of 0.01 ~ 200㎛ on the upper surface of the graphene film at one time, it may proceed to form one of the liquid droplets in one spray.
또한, 상기 액체 분사 단계는 상기 그래핀 필름의 상면에서 폭 방향으로 이격되는 위치에 동시에 액체를 분사하여, 상기 그래핀 필름의 폭 방향을 따라 복수 개의 상기 액체 방울이 형성되도록 이루어질 수 있다. 이때, 상기 액체는 물 또는 알코올일 수 있다.In addition, the liquid spraying step may be made to spray a liquid at a position spaced apart from the upper surface of the graphene film in the width direction at the same time, a plurality of the liquid droplets are formed in the width direction of the graphene film. In this case, the liquid may be water or alcohol.
또한, 상기 영상 정보는 상기 액체 방울의 상부에서 상기 액체 방울을 촬영하여 상기 액체 방울의 직경에 대한 정보를 포함하는 제 1 영상 정보 및 상기 액체 방울의 전방 후방 또는 측방에서 상기 액체 방울을 촬영하여 상기 액체 방울의 높이 및 상기 그래핀 필름에 대한 접촉각에 대한 정보를 포함하는 제 2 영상 정보를 포함할 수 있다.The image information may include first image information including information about a diameter of the liquid droplet by photographing the liquid droplet from an upper portion of the liquid droplet, and photographing the liquid droplet from the front rear or side of the liquid droplet. The image information may include second image information including information about a height of a liquid drop and a contact angle with respect to the graphene film.
또한, 상기 영상 정보 생성 단계는 상기 제 1 영상 정보 또는 제 2 영상 정보를 상기 액체 방울이 상기 그래핀 필름에 형성되고 0 ~ 30초의 촬영 시간 간격이 경과된 후 촬영하도록 이루어질 수 있다.The generating of the image information may be performed such that the first image information or the second image information is photographed after the liquid droplet is formed on the graphene film and a shooting time interval of 0 to 30 seconds has elapsed.
또한, 상기 제 1 영상 정보 또는 제 2 영상 정보는 상기 촬영 시간 간격에 따라 1 번 또는 적어도 2번 촬영하도록 이루어질 수 있다.In addition, the first image information or the second image information may be made to photograph once or at least twice according to the photographing time interval.
또한, 상기 그래핀 검사 방법은 상기 영상 분석 단계에서 상기 그래핀 필름에 결함이 생성되는 것으로 판단하는 경우에 알람 정보를 생성하며, 상기 영상 분석 단계 후에 상기 알람 정보에 따라 알람 신호를 발생하는 알람 신호 발생 단계를 더 포함할 수 있다.In addition, the graphene inspection method generates alarm information when it is determined that a defect is generated in the graphene film in the image analysis step, and generates an alarm signal according to the alarm information after the image analysis step. It may further comprise a generating step.
또한, 상기 그래핀 검사 방법은 상기 영상 정보 생성 단계 후에 상기 액체 방울에 열풍을 공급하거나 빛을 조사하여 상기 액체 방울을 제거하는 방울 제거 단계를 더 포함할 수 있다.The graphene inspection method may further include a drop removing step of removing the liquid drop by supplying hot air or irradiating light to the liquid drop after the image information generating step.
본 발명에 따른 그래핀 검사 장치 및 방법은 금속 기재에 성장된 그래핀 필름에 결함이 존재하는지 여부를 포함하는 특성에 대하여 그래핀 필름을 전사하지 않고 실시간으로 검사할 수 있는 효과가 있다. Graphene inspection apparatus and method according to the present invention has the effect that can be inspected in real time without transferring the graphene film on the characteristics including whether or not a defect is present in the graphene film grown on the metal substrate.
또한, 본 발명에 따른 그래핀 검사 장치 및 방법은 그래핀을 금속 기재로부터 전사하는 과정에서 발생될 수 있는 결함을 배제하고 성장 과정에서 발생되는 결함만을 검사하므로, 화학적 기상 증착 방법에 의하여 롤투롤 방식으로 성장되는 대면적의 그래핀 성장 공정에서 문제가 발생되는지 여부를 실시간으로 정확하게 확인하고 대체할 수 있도록 하는 효과가 있다.In addition, the graphene inspection apparatus and method according to the present invention excludes defects that may occur in the process of transferring the graphene from the metal substrate and examines only the defects generated in the growth process, the roll-to-roll method by the chemical vapor deposition method It is effective to accurately identify and replace in real time whether or not a problem occurs in the large-scale graphene growth process that is grown.
또한, 본 발명에 따른 그래핀 검사 장치 및 방법은 고가의 장비(라만분광기 또는 투과 전자 현미경등)를 사용하지 않고도 기존 방법 대비 분석 시간을 단축시키고 분석 비용을 낮추는 효과가 있다.In addition, the graphene inspection apparatus and method according to the present invention has the effect of reducing the analysis time and analysis cost compared to the existing method without using expensive equipment (Raman spectroscopy or transmission electron microscope, etc.).
또한, 본 발명에 따른 그래핀 검사 장치 및 방법은 검사를 위하여 그래핀 필름의 상면에 분사하였던 액체를 제거하므로 그래핀 필름에 결함이 존재하지 않는 경우에 그래핀 필름을 정상적인 생산 제품으로 사용하도록 하여 검사에 따른 그래핀 필름의 소모량을 최소화하는 효과가 있다.In addition, the graphene inspection apparatus and method according to the present invention removes the liquid sprayed on the upper surface of the graphene film for the inspection to use the graphene film as a normal production product when there is no defect in the graphene film There is an effect of minimizing the consumption of the graphene film according to the inspection.
도 1은 본 발명의 일 실시예에 따른 그래핀 검사 장치의 구성도이다. 1 is a block diagram of a graphene inspection device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 그래핀 검사 방법의 공정도이다.2 is a process chart of the graphene test method according to an embodiment of the present invention.
도 3은 도 2의 공정도에서 액체 분사 단계와 영상 정보 생성 단계 및 영상 분석 단계에 대한 모식도이다. 3 is a schematic diagram of a liquid ejecting step, an image information generating step, and an image analyzing step in the process diagram of FIG. 2.
도 4는 금속 기재에 성장한 그래핀 필름의 결함에 따른 접촉각 측정 결과를 나타내는 그래프이다. 4 is a graph showing a contact angle measurement result according to a defect of a graphene film grown on a metal substrate.
도 5는 금속 기재에 성장한 그래핀 필름을 절연 기판에 전사한 후에 결함에 따른 접촉각 측정 결과를 나타내는 그래프이다.5 is a graph showing a contact angle measurement result according to a defect after transferring a graphene film grown on a metal substrate to an insulating substrate.
도 6은 금속 기재에 성장한 그래핀 필름의 결함에 따른 라만 특성의 측정 결과를 나타내는 그래프이다.6 is a graph showing a measurement result of Raman characteristics according to a defect of a graphene film grown on a metal substrate.
도 7은 금속 기재에 성장한 그래핀 필름을 절연 기판에 전사한 후에 그래핀 필름의 결함에 따른 라만 특성의 측정 결과를 나타내는 그래프이다.7 is a graph showing measurement results of Raman characteristics according to defects in graphene films after transferring graphene films grown on metal substrates to insulating substrates.
도 8은 그래핀 필름의 접촉각과 라만 특성(ID/IG)의 상관 관계를 나타내는 그래프이다.8 is a graph showing the correlation between the contact angle of the graphene film and Raman characteristics (I D / I G ).
도 9는 그래핀 필름의 접촉각과 라만 특성(I2D/IG)의 상관 관계를 나타내는 그래프이다.9 is a graph showing the correlation between the contact angle of the graphene film and Raman properties (I 2D / I G ).
도 10은 금속 기재에 성장한 그래핀 필름의 결함에 따른 물방울의 높이 측정 결과를 나타내는 그래프이다.10 is a graph showing a result of measuring the height of water droplets according to a defect of a graphene film grown on a metal substrate.
도 11은 금속 기재에 성장한 그래핀 필름의 결함에 따른 물방울의 직경 측정 결과를 나타내는 그래프이다. FIG. 11 is a graph illustrating a diameter measurement result of water droplets according to a defect of a graphene film grown on a metal substrate. FIG.
도 12는 금속 기재에 성장한 그래핀 필름의 결함에 따른 물방울의 직경의 측정 결과를 나타내는 그래프이다.It is a graph which shows the measurement result of the diameter of the water droplet with the defect of the graphene film grown on the metal base material.
이하, 본 발명의 일 실시예에 따른 그래핀 검사 장치와 검사 방법에 대하여 첨부된 도면을 통하여 상세히 설명한다. Hereinafter, a graphene inspection device and an inspection method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 본 발명의 일 실시예에 따른 그래핀 검사 장치에 대하여 설명한다.First, a graphene inspection device according to an embodiment of the present invention will be described.
도 1은 본 발명의 일 실시예에 따른 그래핀 검사 장치의 구성도이다. 1 is a block diagram of a graphene inspection device according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 그래핀 검사 장치는, 도 1을 참조하면, 분사 노즐부(110)와 영상 정보 생성부(120) 및 영상 분석부(130)를 포함하여 형성된다. 또한, 상기 그래핀 검사 장치는 영상 정보 표시부(140)와 알람부(150) 및 방울 제거부(160)를 더 포함할 수 있다.Referring to FIG. 1, a graphene inspection apparatus according to an exemplary embodiment of the present invention includes a spray nozzle unit 110, an image information generator 120, and an image analyzer 130. In addition, the graphene test apparatus may further include an image information display unit 140, an alarm unit 150, and a drop removing unit 160.
상기 그래핀 검사 장치는 그래핀 필름(b)의 표면에 액체를 분사하여 액체 방울(droplet)(c)을 형성하고 액체 방울(c)의 직경, 높이 또는 그래핀 필름(b)와의 접촉각과 같은 형상을 측정하여 그래핀 필름(b)에 결함이 있는지 여부를 포함하는 특성에 대한 평가를 진행한다.The graphene inspection apparatus sprays a liquid onto the surface of the graphene film (b) to form a liquid droplet (c) and the diameter, height of the liquid droplet (c) or the contact angle with the graphene film (b) The shape is measured to evaluate the characteristics including whether the graphene film (b) is defective.
상기 분사 노즐부(110)는 적어도 1개의 분사 노즐(111)을 포함하며, 복수 개의 분사 노즐(111)을 포함하여 형성될 수 있다. 상기 분사 노즐부(110)는 복수 개의 분사 노즐(111)이 그래핀 필름(b)의 폭 방향을 따라 일렬로 서로 이격되어 위치하도록 형성될 수 있다. 이때 상기 분사 노즐부(110)는 그래핀 필름(b)이 폭 방향을 따라 적정하게 설정된 검사 포인트의 수에 대응되는 개수로 분사 노즐(111)을 포함할 수 있다. 또한, 상기 분사 노즐(111)은 그래핀 필름(b)의 폭 방향으로 검사에 필요한 검사 간격에 따라 서로 이격되어 위치한다. 따라서, 상기 분사 노즐부(110)는 그래핀 필름(b)의 폭이 넓은 경우에 상대적으로 많은 개수의 분사 노즐(111)을 포함하며, 검사 간격이 좁을수록 상대적으로 많은 개수의 분사 노즐(111)을 포함할 수 있다. The spray nozzle unit 110 may include at least one spray nozzle 111 and may include a plurality of spray nozzles 111. The spray nozzle unit 110 may be formed such that the plurality of spray nozzles 111 are spaced apart from each other in a line along the width direction of the graphene film b. In this case, the spray nozzle unit 110 may include the spray nozzles 111 in a number corresponding to the number of inspection points in which the graphene film b is appropriately set along the width direction. In addition, the injection nozzles 111 are spaced apart from each other according to the inspection interval required for the inspection in the width direction of the graphene film (b). Accordingly, the spray nozzle unit 110 includes a relatively large number of spray nozzles 111 when the graphene film b has a wide width, and the narrower the inspection interval, the relatively large number of spray nozzles 111. ) May be included.
상기 분사 노즐(111)은 물 또는 알코올과 같은 액체를 그래핀 필름(b)의 표면에 분사하여 액체 방울(c)을 형성한다. 또한, 상기 액체는 고분자 용액 또는 유기용매 용액일 수 있다. 예를 들면, 상기 액체는 Dimethyl sulfoxide (DMSO), Chlorobenzene, Methanol, Toluene, Isopropanol, Acetone, Ethanol, oil, benzene, THF(L(-)-5,6,7,8-tetrahydrofolic acid), DMF(dimethylformamide), Hexane, glycerol, cyclohexane, gasoline, diesel일 수 있다. 상기 분사 노즐(111)은 한번에 분사되는 액체를 미스트 상태로 분사하기 보다는 하나의 방울 형태로 그래핀 표면에 떨어뜨린다. 또한, 상기 분사 노즐(111)은 액체가 자유 낙하에 의하여 그래핀 필름(b)의 상면으로 떨어져 액체 방울(c)을 형성하도록 분사할 수 있다. 상기 분사 노즐(111)에서 분사되는 액체는 동일한 상태의 그래핀 필름(b)의 표면에서 동일 또는 유사한 크기를 갖는 액체 방울(c)을 형성한다. 상기 분사 노즐(111)은 미리 설정된 일정량의 액체를 공급하도록 형성된다. 상기 분사 노즐(111)은 0.01 ∼ 200㎕의 액체를 한 번에 분사할 수 있다. 상기 분사 노즐(111)은 바람직하게는 0.1 ∼ 50㎕의 액체를 한 번에 분사할 수 있다. 상기 분사 노즐(111)은 더욱 바람직하게는 1 ∼ 20㎕의 액체를 한 번에 분사할 수 있다. 상기 분사 노즐(111)이 분사하는 액체의 양이 너무 적으면, 액체 방울(c)의 크기가 너무 작아 액체 방울(c)의 형상 측정이 어려울 수 있다. 또한, 상기 분사 노즐(111)이 분사하는 액체의 양이 너무 많으면, 액체 방울(c)이 그래핀 필름(b)의 표면 특성을 반영하기 어려울 수 있다.The spray nozzle 111 sprays a liquid such as water or alcohol onto the surface of the graphene film b to form a liquid drop c. In addition, the liquid may be a polymer solution or an organic solvent solution. For example, the liquid may be Dimethyl sulfoxide (DMSO), Chlorobenzene, Methanol, Toluene, Isopropanol, Acetone, Ethanol, oil, benzene, THF (L (-)-5,6,7,8-tetrahydrofolic acid), DMF ( dimethylformamide), Hexane, glycerol, cyclohexane, gasoline, diesel. The spray nozzle 111 is dropped onto the graphene surface in the form of a drop rather than spraying the liquid to be sprayed at a time in a mist state. In addition, the injection nozzle 111 may be sprayed so that the liquid falls to the upper surface of the graphene film (b) by the free fall to form a liquid drop (c). The liquid sprayed from the spray nozzle 111 forms a liquid drop c having the same or similar size on the surface of the graphene film b in the same state. The injection nozzle 111 is formed to supply a predetermined amount of liquid. The spray nozzle 111 may spray a liquid of 0.01 ~ 200μl at a time. Preferably, the spray nozzle 111 may spray 0.1-50 μl of liquid at a time. More preferably, the injection nozzle 111 may inject 1 to 20 μl of liquid at a time. When the amount of the liquid sprayed by the spray nozzle 111 is too small, the size of the liquid drop c may be too small to make it difficult to measure the shape of the liquid drop c. In addition, when the amount of the liquid sprayed by the spray nozzle 111 is too large, it may be difficult for the liquid drop (c) to reflect the surface characteristics of the graphene film (b).
한편, 상기 분사 노즐부(110)는 분사 노즐(111)의 수가 1개 또는 필요로 하는 검사 포인트의 수보다 작은 경우에 분사 노즐(111)을 그래핀 필름(b)의 폭 방향으로 이동시키는 노즐 이동 수단(115)을 더 포함할 수 있다. 상기 노즐 이동 수단(115)은 그래핀 필름(b)이 생성되어 이송될 때 분사 노즐(111)을 그래핀 필름(b)의 폭 방향으로 소정 간격으로 연속적으로 이송시킨다. 따라서, 상기 분사 노즐부(110)는 그래핀 필름(b)의 상면에 폭 방향으로 소정 개수의 액체 방울(c)을 형성한다. 상기 노즐 이동 수단(115)은 모터와 볼 스크류를 포함하는 수단, 모터와 체인 또는 벨트를 포함하는 수단, 에어 실린더를 포함하는 수단과 같이 분사 노즐(111)을 그래핀의 폭 방향으로 이동시킬 수 있는 다양한 수단으로 형성될 수 있다. On the other hand, the injection nozzle unit 110 is a nozzle for moving the injection nozzle 111 in the width direction of the graphene film (b) when the number of the injection nozzle 111 is less than one or the number of inspection points required It may further comprise a moving means (115). When the graphene film b is generated and conveyed, the nozzle moving means 115 continuously conveys the spray nozzle 111 at predetermined intervals in the width direction of the graphene film b. Therefore, the injection nozzle unit 110 forms a predetermined number of liquid droplets c in the width direction on the top surface of the graphene film b. The nozzle moving means 115 may move the injection nozzle 111 in the width direction of graphene, such as a means including a motor and a ball screw, a means including a motor and a chain or a belt, and a means including an air cylinder. Which can be formed by various means.
상기 영상 정보 생성부(120)는 그래핀 필름(b)의 상면에 형성된 액체 방울(c)에 대한 영상 정보를 생성한다. 상기 영상 정보 생성부(120)는 제 1 촬영부(121) 및 제 2 촬영부(125)를 포함하여 형성될 수 있다. The image information generating unit 120 generates image information of the liquid drop (c) formed on the upper surface of the graphene film (b). The image information generating unit 120 may include a first photographing unit 121 and a second photographing unit 125.
상기 제 1 촬영부(121) 또는/및 제 2 촬영부(125)가 액체 방울(c)이 그래핀 필름(b)에 형성되고 0 ~ 30초의 촬영 시간 간격이 경과된 후 영상을 한 번 촬영하도록 할 수 있다. 상기 촬영 시간 간격은 액체 방울(c)이 그래핀 필름(b)에서 안정된 형상을 유지하기 위하여 필요한 시간을 고려하여 시간을 설정한다. 상기 액체 방울(c)은 액체의 종류에 따라 그래핀 필름(b)의 표면과 반응하면서 안정화하는데 0초부터 수십 초의 시간이 소요될 수 있다. 즉, 상기 액체 방울(c)에 사용되는 액체는 그래핀 필름(b)에 안착되는 즉시 안정화될 수 있다. 여기서, 상기 촬영 시간 간격이 0 초라는 의미는 그래핀 필름(b)에 액체 방울(c)이 형성된 후에 즉시 촬영한다는 의미이다. 또한, 즉, 상기 액체 방울(c)에 사용되는 액체는 그래핀 필름(b)에 안착되는데 수초가 수요될 수 있다. 이러한 경우에 상기 촬영 시간 간격이 너무 짧으면 액체 방울(c)이 안정되기 전에 영상이 촬영될 수 있다. 또한, 상기 촬영 시간 간격이 너무 길면 액체의 종류에 따라 액체 방울(c)의 크기가 액체의 증발 등에 의하여 감소될 수 있다. 다만, 상기 액체 방울(c)의 크기가 시간에 따라 감소되거나 형상이 변경되지 않는 경우에 촬영 시간 간격이 30초보다 더 길어질 수 있다. 또한, 상기 그래핀 필름(b)의 특성을 보다 정확하게 보기 위해서는 촬영 시간 간격을 두고 2번 이상을 측정한 후 액체 방울(c)의 직경, 높이 및 접촉각을 측정할 수도 있다. 이는 상기 액체 방울(c)이 그래핀 필름(b)의 표면과 반응하면서 안정화하는데 액체의 종류와 기판의 종류에 따라 0초부터 수십 초의 시간이 걸리기 때문이다. 예를 들면 상기 촬영 시간 간격을 1초 및 5초로 하여 각각 영상 촬영을 한 후 데이터를 비교 분석할 수 있다.The first photographing unit 121 and / or the second photographing unit 125 captures an image once after the liquid droplet c is formed on the graphene film b and a shooting time interval of 0 to 30 seconds has elapsed. You can do that. The photographing time interval is set in consideration of the time required for the liquid droplet (c) to maintain a stable shape in the graphene film (b). The liquid droplet (c) may take time from 0 seconds to several tens of seconds to stabilize while reacting with the surface of the graphene film (b) according to the type of liquid. That is, the liquid used in the liquid drop (c) can be stabilized immediately upon being seated on the graphene film (b). Here, the photographing time interval of 0 seconds means that immediately after the liquid droplet (c) is formed on the graphene film (b). In other words, the liquid used in the liquid drop (c) may require a few seconds to be seated on the graphene film (b). In this case, if the shooting time interval is too short, the image may be taken before the liquid drop c is stabilized. In addition, if the shooting time interval is too long, the size of the liquid drop (c) may be reduced by evaporation of the liquid, depending on the type of liquid. However, when the size of the liquid drop (c) is reduced with time or the shape does not change, the shooting time interval may be longer than 30 seconds. In addition, in order to more accurately see the characteristics of the graphene film (b), after measuring two or more times at intervals of shooting time, the diameter, height and contact angle of the liquid drop (c) may be measured. This is because the liquid droplet c stabilizes while reacting with the surface of the graphene film b, depending on the type of liquid and the type of substrate, which takes time from 0 to several tens of seconds. For example, the image capturing time intervals are set to 1 second and 5 seconds, respectively, and then the images may be compared and analyzed.
상기 제 1 촬영부(121)는 영상 또는 사진을 촬영하여 제 1 영상 정보를 생성하는 제 1 카메라(122)를 포함하여 형성된다. 상기 제 1 촬영부(121)는 촬영된 제 1 영상 정보를 영상 분석부(130)로 전송하는 제 1 전송 모듈(123)을 더 포함하여 형성될 수 있다. 상기 제 1 촬영부(121)는 그래핀 필름(b)의 흐름 방향을 기준으로 분사 노즐부(110)의 전방에 위치한다. The first photographing unit 121 is formed to include a first camera 122 for photographing an image or a photo to generate first image information. The first photographing unit 121 may further include a first transmitting module 123 that transmits the photographed first image information to the image analyzing unit 130. The first photographing unit 121 is positioned in front of the spray nozzle unit 110 based on the flow direction of the graphene film b.
상기 제 1 촬영부(121)는 금속 기재(a)에서 성장된 그래핀 필름(b)의 상면에 형성된 액체 방울(c)의 상부에서 액체 방울(c)을 촬영한다. 즉, 상기 제 1 촬영부(121)는 액체 방울(c)의 수직 방향의 상부에서 액체 방울(c)을 촬영하여 액체 방울(c)의 평면도에 대응되는 제 1 영상 정보를 생성한다. 상기 제 1 촬영부(121)는 분사 노즐부(110)에서 분사된 액체에 의하여 형성된 액체 방울(c)이 제 1 카메라(122)의 하부로 이송될 때 제 1 영상 정보를 생성한다. 이때, 상기 제 1 촬영부(121)는 액체 방울(c)이 형성되지 않은 그래핀 필름(b)의 상면에 대한 영상 정보를 기준으로 액체 방울(c)에 의한 밝기 또는 색상에 의한 영향으로 다른 부분이 인지될 때 액체 방울(c)이 있다고 판단하고 제 1 영상 정보를 생성할 수 있다.The first photographing unit 121 photographs the liquid droplet c from the upper portion of the liquid droplet c formed on the upper surface of the graphene film b grown on the metal substrate a. That is, the first photographing unit 121 photographs the liquid drop c from the upper portion of the vertical direction of the liquid drop c to generate first image information corresponding to the top view of the liquid drop c. The first photographing unit 121 generates first image information when the liquid drop c formed by the liquid ejected from the spray nozzle unit 110 is transferred to the lower portion of the first camera 122. In this case, the first photographing unit 121 is different due to the influence of the brightness or color of the liquid drop c based on the image information of the upper surface of the graphene film b in which the liquid drop c is not formed. When the part is recognized, it may be determined that there is a liquid drop c and generate first image information.
상기 제 1 카메라(122)는 그래핀 필름(b)의 표면에 형성되는 액체 방울(c)의 경계선을 명확하게 분별할 수 있는 정도의 해상도를 갖도록 형성된다. 상기 제 1 카메라(122)는 그래핀 필름(b)의 상면에 폭 방향으로 이격되어 형성되는 액체 방울(c)을 모두 촬영할 수 있도록 1 대 또는 복수 대로 형성된다. 상기 제 1 카메라(122)는 연속적으로 이송되는 그래핀 필름(b)의 상부에 소정 거리로 이격되어 위치하며, 분사 노즐(111)에서 분사되어 그래핀 필름(b)의 상면에 형성된 액체 방울(c)에 대한 영상 또는 사진을 촬영하여 제 1 영상 정보를 생성한다. 이때, 상기 제 1 카메라(122)는 바람직하게는 그래핀 필름(b)의 상면에 형성되는 액체 방울(c)이 카메라의 하부에 위치할 때 제 1 영상 정보를 생성한다. 따라서, 상기 제 1 카메라(122)는 액체 방울(c)의 수직 상부에서 액체 방울(c)을 촬영하므로 항상 일정하게 액체 방울(c)에 대한 제 1 영상 정보를 생성한다. 상기 제 1 영상 정보는 액체 방울(c)을 상부에서 촬영한 영상 정보이므로, 원형으로 촬영된 액체 방울(c)에 대한 영상을 포함한다.The first camera 122 is formed to have a resolution that can clearly distinguish the boundary line of the liquid drop (c) formed on the surface of the graphene film (b). The first camera 122 is formed in one or a plurality of images so as to capture all the liquid droplets (c) formed spaced apart in the width direction on the upper surface of the graphene film (b). The first camera 122 is spaced apart a predetermined distance from the upper portion of the graphene film (b) to be continuously transported, the liquid droplet is formed in the upper surface of the graphene film (b) is injected from the injection nozzle 111 The first image information is generated by taking an image or a picture of c). In this case, the first camera 122 preferably generates the first image information when the liquid drop c formed on the top surface of the graphene film b is located under the camera. Therefore, since the first camera 122 photographs the liquid drop c from the vertical upper portion of the liquid drop c, the first camera 122 always generates first image information on the liquid drop c constantly. Since the first image information is image information obtained by capturing the liquid drop c from the top, the first image information includes an image of the liquid drop c photographed in a circular shape.
상기 제 1 전송 모듈(123)은 제 1 카메라(122)와 연결되며, 촬영된 제 1 영상 정보를 분석부로 전송한다. 상기 제 1 전송 모듈(123)은 영상 정보를 전송하는데 사용되는 다양한 구성으로 형성될 수 있다.The first transmission module 123 is connected to the first camera 122 and transmits the captured first image information to the analyzer. The first transmission module 123 may be formed in various configurations used to transmit image information.
상기 제 2 촬영부(125)는 영상 또는 사진을 촬영하여 제 2 영상 정보를 생성하는 제 2 카메라(126)를 포함하여 형성된다. 상기 제 2 촬영부(125)는 촬영된 제 2 영상 정보를 영상 분석부(130)로 전송하는 제 2 전송 모듈(127)을 더 포함하여 형성될 수 있다. 상기 제 2 촬영부(125)는 그래핀 필름(b)의 흐름 방향을 기준으로 제 1 촬영부(121)의 전방, 후방 또는 측방에 위치한다. 상기 제 2 촬영부(125)는 제 1 촬영부(121)와 연동되며, 제 1 촬영부(121)로부터 전송되는 촬영 신호에 따라 동시에 또는 설정된 시간 후에 제 2 영상 정보를 생성할 수 있다. 또한, 상기 제 2 촬영부(125)는 제 1 촬영부(121)와 관계없이 전방에서 액체 방울(c)이 인지될 때 제 2 영상 정보를 생성할 수 있다.The second photographing unit 125 is formed to include a second camera 126 that photographs an image or a photo to generate second image information. The second photographing unit 125 may further include a second transmitting module 127 which transmits photographed second image information to the image analyzing unit 130. The second photographing unit 125 is positioned in front, rear, or side of the first photographing unit 121 based on the flow direction of the graphene film b. The second photographing unit 125 may be linked with the first photographing unit 121 and may generate second image information simultaneously or after a set time according to a photographing signal transmitted from the first photographing unit 121. In addition, the second photographing unit 125 may generate second image information when the liquid drop c is recognized from the front regardless of the first photographing unit 121.
상기 제 2 촬영부(125)는 금속 기재(a)에서 성장된 그래핀 필름(b)의 상면에 형성된 액체 방울(c)의 전방, 후방 또는 측방에서 액체 방울(c)을 촬영한다. 즉, 상기 제 2 촬영부(125)는 액체 방울(c)의 수직 방향의 형상을 촬영하여 액체 방울(c)의 정면도, 후면도 또는 측면도에 대응되는 제 2 영상 정보를 생성한다.The second photographing unit 125 photographs the liquid droplet c from the front, rear or side of the liquid droplet c formed on the upper surface of the graphene film b grown on the metal substrate a. That is, the second photographing unit 125 photographs the vertical shape of the liquid drop c to generate second image information corresponding to the front view, the rear view, or the side view of the liquid drop c.
상기 제 2 카메라(126)는 그래핀 필름(b)의 표면에 형성되는 액체 방울(c)의 경계선을 명확하게 분별할 수 있는 정도의 해상도를 갖도록 형성된다. 상기 제 2 카메라(126)는 그래핀 필름(b)의 상면에 폭 방향으로 이격되어 형성되는 액체 방울(c)을 모두 촬영할 수 있도록 1 대 또는 복수 대로 형성된다. 상기 제 2 카메라(126)는 연속적으로 이송되는 그래핀 필름(b)의 상면과 동일한 높이에 위치하며, 분사 노즐(111)에서 분사되어 그래핀 필름(b)의 상면에 형성된 액체 방울(c)의 전방, 후방 또는 측방에 대한 영상 또는 사진을 촬영하여 제 2 영상 정보를 생성한다. 즉, 상기 제 2 카메라(126)는 바람직하게는 그래핀 필름(b)의 상면에 형성되는 액체 방울(c)의 수직 형상을 제 2 영상 정보를 생성한다. 상기 제 2 영상 정보는 액체 방울(c)을 전면에서 촬영한 영상 정보이므로, 원형, 반원형, 또는 호 형상으로 촬영된 영상을 포함한다.The second camera 126 is formed to have a resolution that can clearly distinguish the boundary line of the liquid droplet (c) formed on the surface of the graphene film (b). The second camera 126 is formed on one or a plurality of the plurality of liquid droplets (c) formed to be spaced apart in the width direction on the upper surface of the graphene film (b). The second camera 126 is positioned at the same height as the upper surface of the graphene film (b) continuously transferred, the liquid droplet (c) is sprayed from the injection nozzle 111 formed on the upper surface of the graphene film (b) The second image information is generated by taking an image or a picture of the front, rear or side of the camera. That is, the second camera 126 preferably generates the second image information in the vertical shape of the liquid drop c formed on the top surface of the graphene film b. Since the second image information is image information obtained by photographing the liquid drop c from the front, the second image information includes an image photographed in a circular, semi-circular, or arc shape.
상기 제 2 전송 모듈(127)은 제 2 카메라(126)와 연결되며, 촬영된 제 2 영상 정보를 영상 분석부(130)로 전송한다. 상기 제 2 전송 모듈(127)은 영상 정보를 전송하는데 사용되는 다양한 구성으로 형성될 수 있다.The second transmission module 127 is connected to the second camera 126 and transmits the photographed second image information to the image analyzer 130. The second transmission module 127 may be formed in various configurations used to transmit image information.
한편, 상기 제 1 촬영부(121)에 의하여 생성되는 제 1 영상 정보로부터 성장하는 그래핀 필름(b)에 결함이 있는지 여부를 포함하는 특성 평가가 충분한 경우에 제 2 촬영부(125)는 생략될 수 있다. 반대로 제 2 촬영부(125)에 의하여 생성되는 제 2 영상 정보로부터 그래핀 필름(b)에 결함이 있는지 여부를 포함하는 특성 평가가 충분한 경우에 제 1 촬영부(121)는 생략될 수 있다.On the other hand, when the characteristic evaluation including whether the graphene film (b) growing from the first image information generated by the first photographing unit 121 has a defect is sufficient, the second photographing unit 125 is omitted. Can be. On the contrary, when the characteristic evaluation including whether the graphene film b is defective from the second image information generated by the second imaging unit 125 is sufficient, the first imaging unit 121 may be omitted.
상기 영상 분석부(130)는 영상 정보 생성부(120)와 연동되며, 영상 정보 생성부(120)에서 전송되는 영상 정보로부터 액체 방울(c)의 직경, 높이 및 그래핀 필름(b)과의 접촉각 중에서 적어도 어느 하나의 값을 산출하고, 미리 설정된 기준 직경, 기준 높이 또는 그래핀 필름(b)과의 기준 접촉각을 벗어나는지 여부를 판단한다. 이때, 상기 영상 분석부(130)는 액체 방울(c)의 직경, 높이 및 접촉각 중에서 적어도 어느 하나의 값이 기준 직경, 기준 높이 및 기준 접촉각을 벗어나는지, 두 개의 값이 벗어나는지 또는 세 개의 값이 모두 벗어나는지를 판단하여 그래핀 필름(b)에 결함이 생성되는 것으로 판단할 수 있다. 상기 영상 분석부(130)는 제 1 촬영부(121)와 제 2 촬영부(125)와 연결되며, 제 1 촬영부(121)에서 전송되는 제 1 영상 정보와 제 2 촬영부(125)에서 전송되는 제 2 영상 정보를 분석한다. 상기 영상 분석부(130)는 미리 설정되는 기준 직경, 기준 높이 및 그래핀 필름(b)과의 기준 접촉각 중에서 적어도 하나의 정보를 포함한다. 상기 기준 직경과 기준 높이 및 기준 접촉각은 사용되는 액체의 종류와 분사되는 액체의 양 및 그래핀 필름(b)의 특성등에 의하여 달라질 수 있다. 따라서, 상기 기준 직경, 기준 높이 및 그래핀 필름(b)과의 기준 접촉각은 본 발명의 일 실시예에 따른 그래핀 검사 장치가 적용되는 그래핀 필름(b) 제조 라인 별로 사전에 미리 설정되어 저장하는 것이 필요하다.The image analyzer 130 is interlocked with the image information generator 120 and the diameter, height, and graphene film (b) of the liquid droplet (c) from the image information transmitted from the image information generator 120. At least one value of the contact angle is calculated, and it is determined whether the reference angle with respect to the predetermined reference diameter, reference height or the graphene film (b) is out of the range. In this case, the image analyzer 130 determines whether at least one of the diameter, the height, and the contact angle of the liquid drop c deviates from the reference diameter, the reference height, and the reference contact angle, two values deviate, or three values. It may be determined that the defects are generated in the graphene film (b) by determining whether all the deviations. The image analyzing unit 130 is connected to the first photographing unit 121 and the second photographing unit 125, and the first image information transmitted from the first photographing unit 121 and the second photographing unit 125. The second image information transmitted is analyzed. The image analyzer 130 includes at least one piece of information among a preset reference diameter, a reference height, and a reference contact angle with the graphene film b. The reference diameter, reference height, and reference contact angle may vary depending on the type of liquid used, the amount of liquid sprayed, and the characteristics of the graphene film (b). Therefore, the reference diameter, reference height and the reference contact angle with the graphene film (b) is stored in advance for each graphene film (b) manufacturing line to which the graphene inspection device according to an embodiment of the present invention is applied It is necessary to do
또한, 상기 영상 분석부(130)는 제 1 촬영부(121)와 제 2 촬영부(125)에 각각 제 1 영상 정보와 제 2 영상 정보를 촬영하는 시각에 대한 정보를 전송할 수 있다. 예를 들면, 상기 제 1 촬영부(121)는 제 1 카메라(122)의 하부에 액체 방울(c)이 위치하는 시각에 액체 방울(c)의 상부에 대한 영상을 촬영하여 제 1 영상 정보를 생성하도록 할 수 있다. 또한, 상기 제 2 촬영부(125)는 액체 방울(c)이 제 1 카메라(122)의 전방에 위치하는 시각에 액체 방울(c)의 전면에 대한 영상을 촬영하여 제 2 영상 정보를 생성하도록 할 수 있다.In addition, the image analyzer 130 may transmit information about a time at which the first image information and the second image information are photographed to the first photographing unit 121 and the second photographing unit 125, respectively. For example, the first photographing unit 121 captures an image of the upper portion of the liquid drop c at the time when the liquid drop c is positioned below the first camera 122 to capture the first image information. Can be created. In addition, the second photographing unit 125 captures an image of the front surface of the liquid drop c at a time when the liquid drop c is located in front of the first camera 122 to generate second image information. can do.
상기 영상 분석부(130)는 제 1 영상 정보로부터 액체 방울(c)의 상면에서 본 크기인 직경을 산출한다. 이때, 상기 영상 분석부(130)는 제 1 영상 정보에서 액체 방울(c)을 액체 방울(c)의 주변과 분리하여 액체 방울(c)의 평면 형상을 확정하고 액체 방울(c)의 크기를 측정한다. 이때, 상기 액체 방울(c)에 대한 영상은 상기에서 설명한 바와 같이 원형을 이루게 된다.The image analyzer 130 calculates a diameter having a size viewed from an upper surface of the liquid drop c from the first image information. In this case, the image analyzer 130 separates the liquid drop c from the periphery of the liquid drop c in the first image information to determine a planar shape of the liquid drop c and to determine the size of the liquid drop c. Measure In this case, the image of the liquid drop (c) is circular as described above.
또한, 상기 영상 분석부(130)는 제 2 영상 정보로부터 액체 방울(c)의 그래핀 필름(b)의 접촉각과, 그래핀 필름(b)의 상면으로부터의 높이를 산출한다. 상기 영상 분석부(130)는 제 2 영상 정보에서 액체 방울(c)을 액체 방울(c) 주변과 분리하여 액체 방울(c)의 수직 형상을 확정하고, 액체 방울(c)과 그래핀 필름(b)의 접촉각 및 액체 방울(c)의 그래핀 필름(b)의 상면으로부터의 높이를 산출한다.In addition, the image analyzer 130 calculates the contact angle of the graphene film (b) of the liquid drop (c) and the height from the upper surface of the graphene film (b) from the second image information. The image analyzer 130 separates the liquid drop c from the liquid drop c surrounding the liquid drop c in the second image information to determine the vertical shape of the liquid drop c, and the liquid drop c and the graphene film ( The contact angle of b) and the height from the upper surface of the graphene film (b) of the liquid drop (c) are calculated.
상기 영상 분석부(130)는 제 1 영상 정보 또는 제 2 영상 정보로부터 액체 방울(c)의 밝기 또는 색상을 기준으로 액체 방울(c)의 형태를 추출하는 방법을 사용할 수 있다. 또한, 상기 영상 분석부(130)는 영상으로부터 특정 형상을 분리하는 이미 알려진 다양한 방법을 사용할 수 있다.The image analyzer 130 may use a method of extracting the shape of the liquid drop c based on the brightness or the color of the liquid drop c from the first image information or the second image information. In addition, the image analyzer 130 may use various known methods for separating a specific shape from an image.
상기 영상 분석부(130)는 사전에 설정된 액체 방울(c)의 기준 직경과 기준 높이 및 기준 접촉각에 대한 기준 값을 기준으로 현재 측정되고 있는 액체 방울(c)의 직경, 높이 또는 접촉각이 기준 값보다 낮은 지 여부를 실시간으로 판단하며, 필요한 경우에 알람 정보를 생성할 수 있다. 즉, 상기 영상 분석부(130)는 사전에 설정된 액체 방울(c)의 기준 직경과 기준 높이 및 기준 접촉각에 대한 기준 값을 기준으로 현재 측정되고 있는 액체 방울(c)의 직경과 높이 및 접촉각이 기준 값보다 낮은 지 여부를 실시간으로 판단할 수 있다. 따라서 상기 영상 분석부(130)는 현재 진행되고 있는 그래핀 성장 공정에 이상이 있는지 여부를 실시간으로 판단할 수 있도록 하며, 공정에 이상이 있는 경우에 알람 정보를 생성하여 실시간으로 공정 중단 및 원인 파악을 진행할 수 있도록 한다.The image analyzer 130 may measure a diameter, a height, or a contact angle of a liquid drop (c) currently measured based on a reference diameter, a reference height, and a reference contact angle of a previously set liquid drop (c). It is determined in real time whether it is lower, and alarm information can be generated if necessary. That is, the image analyzer 130 may measure the diameter, height, and contact angle of the liquid droplet c currently being measured based on a reference diameter, a reference height, and a reference value of the reference contact angle of the liquid droplet c previously set. It may be determined in real time whether it is lower than the reference value. Therefore, the image analyzer 130 may determine in real time whether there is an abnormality in the graphene growth process currently being performed, and in the case of abnormality in the process, generate alarm information to identify the process stop and cause in real time. To proceed.
상기 영상 정보 표시부(140)는 영상을 표시할 수 있는 영상 표시 모듈을 포함하며, 영상 분석부(130)로부터 전송되는 제 1 영상 정보와 제 2 영상 정보를 표시한다. 상기 영상 정보 표시부(140)는 제 1 영상 정보와 제 2 영상 정보로부터 산출되는 액체 방울(c)의 직경과 높이 또는 접촉각을 함께 표시할 수 있다. 한편, 상기 영상 정보 표시부(140)는 영상 분석부(130)와 일체로 형성될 수 있다.The image information display unit 140 includes an image display module capable of displaying an image, and displays the first image information and the second image information transmitted from the image analyzer 130. The image information display unit 140 may display the diameter, height, or contact angle of the liquid drop c calculated from the first image information and the second image information. The image information display unit 140 may be integrally formed with the image analyzer 130.
상기 알람부(150)는 스피커 또는 경광등과 같은 장치를 포함하며, 영상 분석부(130)와 연결된다. 상기 알람부(150)는 영상 분석부(130)로부터 알람 정보를 수신하고 소리 또는 빛과 같은 알람 신호를 생성한다. 한편, 상기 알람부(150)는 영상 분석부(130)와 일체로 형성될 수 있다.The alarm unit 150 includes a device such as a speaker or a warning lamp, and is connected to the image analyzer 130. The alarm unit 150 receives alarm information from the image analyzer 130 and generates an alarm signal such as sound or light. The alarm unit 150 may be integrally formed with the image analyzer 130.
상기 방울 제거부(160)는 바람, 열풍, 열 또는 빛을 공급하는 수단을 포함하여 형성된다. 상기 방울 제거부(160)는 그래핀 필름(b)의 흐름 방향을 기준으로 제 2 촬영부(125)의 전방에 위치한다. 상기 방울 제거부(160)는 그래핀 필름(b)의 상면에 바람, 열풍, 열 또는 빛을 공급하여 그래핀 필름(b)의 상면에 형성된 액체 방울(c)을 제거한다. 즉, 상기 방울 제거부(160)는 영상 정부 생성부(120)에서 영상 정보의 생성이 종료된 액체 방울(c)에 바람, 열풍, 열 또는 빛을 공급하여 액체 방울(c)을 제거한다. 따라서, 상기 그래핀 검사 장치에 의하여 검사가 종료된 그래핀 필름(b)의 상면에는 액체가 존재하지 않게 된다. The drop removing unit 160 is formed to include a means for supplying wind, hot air, heat or light. The drop removing unit 160 is positioned in front of the second photographing unit 125 based on the flow direction of the graphene film b. The drop removing unit 160 removes the liquid drop (c) formed on the upper surface of the graphene film (b) by supplying wind, hot air, heat or light to the upper surface of the graphene film (b). That is, the drop removing unit 160 removes the liquid drop c by supplying wind, hot air, heat, or light to the liquid drop c after the generation of the image information is completed by the image generating unit 120. Therefore, the liquid is not present on the upper surface of the graphene film (b) is completed by the graphene inspection device.
다음은 본 발명의 일 실시예에 따른 그래핀 검사 방법에 대하여 설명한다. The following describes a graphene test method according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 그래핀 검사 방법의 공정도이다. 도 3은 도 2의 공정도에서 액체 분사 단계와 영상 정보 생성 단계 및 영상 분석 단계에 대한 모식도이다. 도 4는 금속 기재에 성장한 그래핀 필름의 결함에 따른 접촉각 측정 결과를 나타내는 그래프이다. 도 5는 금속 기재에 성장한 그래핀 필름을 절연 기판에 전사한 후에 결함에 따른 접촉각 측정 결과를 나타내는 그래프이다. 도 6은 금속 기재에 성장한 그래핀 필름의 결함에 따른 라만 특성의 측정 결과를 나타내는 그래프이다. 도 7은 금속 기재에 성장한 그래핀 필름을 절연 기판에 전사한 후에 그래핀 필름의 결함에 따른 라만 특성의 측정 결과를 나타내는 그래프이다. 도 8은 그래핀 필름의 접촉각과 라만 특성(ID/IG)의 상관 관계를 나타내는 그래프이다. 도 9는 그래핀 필름의 접촉각과 라만 특성(I2D/IG)의 상관 관계를 나타내는 그래프이다. 도 10은 금속 기재에 성장한 그래핀 필름의 결함에 따른 물방울의 높이 측정 결과를 나타내는 그래프이다. 도 11은 금속 기재에 성장한 그래핀 필름의 결함에 따른 물방울의 직경 측정 결과를 나타내는 그래프이다. 도 12는 금속 기재에 성장한 그래핀 필름의 결함에 따른 물방울의 직경의 측정 결과를 나타내는 그래프이다.2 is a process chart of the graphene test method according to an embodiment of the present invention. 3 is a schematic diagram of a liquid ejecting step, an image information generating step, and an image analyzing step in the process diagram of FIG. 2. 4 is a graph showing a contact angle measurement result according to a defect of a graphene film grown on a metal substrate. 5 is a graph showing a contact angle measurement result according to a defect after transferring a graphene film grown on a metal substrate to an insulating substrate. 6 is a graph showing a measurement result of Raman characteristics according to a defect of a graphene film grown on a metal substrate. 7 is a graph showing measurement results of Raman characteristics according to defects in graphene films after transferring graphene films grown on metal substrates to insulating substrates. 8 is a graph showing the correlation between the contact angle of the graphene film and Raman characteristics (I D / I G ). 9 is a graph showing the correlation between the contact angle of the graphene film and Raman properties (I 2D / I G ). 10 is a graph showing a result of measuring the height of water droplets according to a defect of a graphene film grown on a metal substrate. FIG. 11 is a graph illustrating a diameter measurement result of water droplets according to a defect of a graphene film grown on a metal substrate. FIG. It is a graph which shows the measurement result of the diameter of the water droplet with the defect of the graphene film grown on the metal base material.
상기 그래핀 검사 방법은, 도 2와 도 3을 참조하면, 액체 분사 단계(S20)와 영상 정보 생성 단계(S30) 및 영상 분석 단계(S40)를 포함하여 이루어진다. 또한, 상기 그래핀 검사 방법은 기준 값 설정 단계(S10)와 알람 신호 발생 단계(S50) 및 방울 제거 단계(S60)를 더 포함하여 형성될 수 있다.2 and 3, the graphene inspection method includes a liquid injection step S20, an image information generation step S30, and an image analysis step S40. The graphene test method may further include a reference value setting step S10, an alarm signal generating step S50, and a drop removing step S60.
이하에서는 그래핀 필름(b)의 상면에 물을 분사하여 물방울을 형성하는 것을 기준으로 설명한다. 그러나 상기에서 설명한 바와 같이 물 외에도 그래핀 필름(b)의 특성에 영향을 주지 않는 알코올을 포함하는 다양한 액체가 사용될 수 있다.Hereinafter will be described on the basis of forming water droplets by spraying water on the upper surface of the graphene film (b). However, as described above, in addition to water, various liquids including alcohols that do not affect the properties of the graphene film (b) may be used.
상기 그래핀 검사 방법이 적용되는 그래핀 필름(b)은 금속 기재(a)의 표면에 공급되는 소스 물질에 의하여 성장되어 형성된다. 상기 금속 기재(a)는 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, white brass, stainless steel 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 합금으로 형성될 수 있다. 또한, 상기 금속 기재(a)는 표면에 그래핀 필름(b)의 원활한 성장을 위하여 촉매층이 더 형성될 수 있다.The graphene film (b) to which the graphene inspection method is applied is grown and formed by the source material supplied to the surface of the metal substrate (a). The metal substrate (a) is Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, white It may be formed of one or more metals or alloys selected from the group consisting of brass, stainless steel and Ge. In addition, the metal substrate (a) may be further formed with a catalyst layer on the surface for the smooth growth of the graphene film (b).
한편, 본 발명에 따른 그래핀 검사 방법은 그래핀 필름(b)이 다른 기판으로 전사(transfer)된 후에도 적용할 수 있다. 이때 상기 기판은 코닝 유리(corning glass), 퀄츠(quartz), 유전체, 플라스틱 기판으로 형성될 수 있다.또한, 본 발명에 따른 그래핀 검사 방법은 평판 디스플레이 모듈, 반도체 소자, 태양 전지 모듈등 그래핀이 사용되어 제조된 다양한 모듈에서 해당 모듈에 사용된 그래핀 필름의 특성을 평가하는데도 적용될 수 있다.Meanwhile, the graphene inspection method according to the present invention may be applied even after the graphene film b is transferred to another substrate. In this case, the substrate may be formed of corning glass, quartz, dielectric, or plastic substrate. In addition, the graphene inspection method according to the present invention includes a flat panel display module, a semiconductor device, a solar cell module, and the like. It can also be applied to evaluate the properties of the graphene film used in the module in the various modules used and manufactured.
상기 그래핀 필름(b)은 당업계에서 그래핀 성장을 위해 통상적으로 사용하는 화학기상증착법을 포함하여 다양한 성장방법을 제한없이 사용하여 성장될 수 있으며, 예를 들어, Thermal vapor deposition process, Rapid Thermal Chemical Vapor Deposition(RTCVD) Process, Inductively Coupled Plasma-Chemical Vapor Deposition(ICP-CVD) Process, Low Pressure Chemical Vapor Deposition(LPCVD) Process, Atmospheric Pressure Chemical Vapor Deposition(APCVD) Process, Metal Organic Chemical Vapor Deposition(MOCVD) Process Plasma-enhanced chemical vapor deposition(PECVD) Process가 사용될 수 있으나, 이제 제한되는 것은 아니다.The graphene film (b) may be grown using any of a variety of growth methods, including chemical vapor deposition method commonly used for graphene growth in the art, for example, thermal vapor deposition process, Rapid Thermal Chemical Vapor Deposition (RTCVD) Process, Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) Process, Low Pressure Chemical Vapor Deposition (LPCVD) Process, Atmospheric Pressure Chemical Vapor Deposition (APCVD) Process, Metal Organic Chemical Vapor Deposition (MOCVD) Process Plasma-enhanced chemical vapor deposition (PECVD) processes may be used, but are not limited now.
상기 기준 값 설정 단계(S10)는 그래핀 필름(b)의 결함 존재 여부를 판정하는 기준 값을 설정하는 단계이다. 상기 그래핀 필름(b)은 금속 기재(a)의 표면에서 성장하면서 여러가지 요인에 의하여 결함이 포함될 수 있다. 상기 그래핀 필름(b)은 내부에 결함을 포함하는 경우에 친수성(hydrophilicity) 또는 소수성(hydrophobicity) 특성이 변하게 된다. 상기 그래핀 필름(b)의 표면에 물을 떨어뜨려 물방울을 형성하면 그래핀 필름(b)에 포함되어 있는 결함에 의한 영향으로 접촉각이 변하면서 물방울의 직경과 높이도 함께 변하게 된다.The reference value setting step (S10) is a step of setting a reference value for determining whether a defect exists in the graphene film (b). The graphene film (b) may include defects due to various factors while growing on the surface of the metal substrate (a). The graphene film (b) has a hydrophilicity (hydrophilicity) or hydrophobicity (hydrophobicity) characteristics change when it contains a defect therein. When water droplets are formed by dropping water on the surface of the graphene film (b), the diameter and height of the water droplets are also changed as the contact angle changes due to the defects included in the graphene film (b).
상기 기준 값 설정 단계(S10)는 결함이 생성되지 않은 그래핀 필름(b)에 물을 분사하여 형성된 물방울의 직경, 높이 또는 접촉각을 측정하여 기준 값으로 설정한다. 즉, 상기 결함이 생성되지 않은 그래핀 필름(b)에 물을 분사하여 형성되는 물방울의 직경과 높이 및 접촉각을 각각 기준 직경과 기준 높이 및 기준 접촉각으로 설정한다. 상기 그래핀 필름(b)의 상면에 형성되는 물방울의 접촉각과 높이 및 직경은 분사되는 물의 양에 따라 상대적으로 변경될 수 있다. 따라서, 상기 그래핀 필름(b)에 분사되는 물의 양은 일정하게 설정하며, 실제 그래핀 필름(b) 성장 과정에서 분사되는 물의 양과 동일하게 한다. 예를 들면, 상기 물은 0.01 ∼ 200㎕의 범위에서 분사될 수 있다. 상기 물은 미스트로 분사되는 것이 아니며, 그래핀 필름(b)의 상면에 물방울을 형성할 수 있도록 낮은 압력으로 분사된다. 상기 물은 자유 낙하에 의하여 그래핀 필름(b)의 상면으로 떨어져 물방울을 형성하도록 분사될 수 있다.The reference value setting step (S10) is set to the reference value by measuring the diameter, height, or contact angle of the water droplets formed by spraying water on the graphene film (b) is not generated defects. That is, the diameter, height, and contact angle of the water droplets formed by spraying water on the graphene film b in which the defect is not generated are set as the reference diameter, the reference height, and the reference contact angle, respectively. The contact angle, height, and diameter of the water droplets formed on the upper surface of the graphene film (b) may be relatively changed according to the amount of water sprayed. Therefore, the amount of water sprayed on the graphene film (b) is set to be constant, the same as the amount of water sprayed in the actual graphene film (b) growth process. For example, the water may be sprayed in the range of 0.01 to 200 μl. The water is not sprayed by the mist, it is sprayed at a low pressure to form water droplets on the upper surface of the graphene film (b). The water may be sprayed to fall to the upper surface of the graphene film (b) by the free fall to form water droplets.
이하에서는 상기에서 설명한 그래핀 검사 장치를 이용하여 실제로 상기 그래핀 필름의 상면에 물을 분사하여 물방울의 접촉각과 높이 및 직경에 대한 기준 값을 설정하는 과정을 보다 구체적인 실시예를 통하여 설명한다. 다만, 이하에서 설명하는 과정은 하나의 예에 해당하며, 본 발명을 한정하는 것은 아니다.Hereinafter, a process of setting the reference values for the contact angle, the height, and the diameter of the droplet by spraying water on the upper surface of the graphene film using the graphene inspection apparatus described above will be described with reference to more specific examples. However, the process described below corresponds to one example, and does not limit the present invention.
상기 그래핀 필름은 성장 과정에서 다양한 종류의 결함이 생성될 수 있으며, 생성되는 결함의 비율도 다양할 수 있다. 또한, 상기 그래핀 필름은 생성되는 결함의 종류와 결함의 비율에 따라 표면 특성이 변한다. 따라서, 다양한 결함이 형성된 그래핀 필름을 준비하여 평가를 진행하였다.The graphene film may generate various kinds of defects in the growth process, and the ratio of defects generated may also vary. In addition, the graphene film is a surface characteristic changes according to the type of defects and the ratio of defects generated. Therefore, the graphene film prepared with various defects was prepared and evaluated.
상기 그래핀 필름은 결함이 없는 그래핀 필름(type 1), 하이드록실(hydroxyl)기의 결함이 대부분이며 결함이 2%이상인 그래핀 필름(type 2), 하이드록실기(hydroxyl)의 결함이 대부분이며, 결함이 5%이상인 그래핀 필름(type 3), 카보닐기(carbonyl)기와 에테르(ether)기 및 카복실(carboxyl)기의 결함이 대부분이며 결함이 3% 이상인 그래핀 필름(type 4), 카보닐기(carbonyl)와 카복실기의 결함이 대부분이며, 결함이 7%이상인 그래핀 필름(type 5, type 6, type 7)을 준비하였다.The graphene film has most defects of the defect-free graphene film (type 1), hydroxyl (hydroxyl) group and most of the defects of the graphene film (type 2), hydroxyl group (hydroxyl) of 2% or more defects 5% or more of the graphene film (type 3), carbonyl group (carbonyl) and ether (ether) and carboxyl group of the defects are most of the graphene film (type 4), the defect is more than 3%, Most of the defects of carbonyl and carboxyl groups were prepared, and graphene films (type 5, type 6, and type 7) having 7% or more of defects were prepared.
상기 그래핀 필름에 분사되는 액체는 물로 하였으며, 한번에 분사되는 양은 5㎕로 하고 각 type 별로 5개의 물방울을 형성하였다. 한편, 이하에서 측정하는 물방울의 접촉각과 높이 및 직경은 다른 액체를 사용하는 경우에 달리 측정될 수 있음은 물론이며, 기준 값도 달리 설정될 수 있다.The liquid to be sprayed on the graphene film was made of water, and the amount of sprayed at once was 5 μl and five water droplets were formed for each type. On the other hand, the contact angle and height and diameter of the water droplets to be measured below can be measured differently when using a different liquid, and the reference value can be set differently.
상기 그래핀 필름이 금속 기재에 있는 상태에서 물을 분사하여 형성된 물방울에 대한 접촉각을 측정하였다. 상기 그래핀 필름에 대한 접촉각 측정 결과에 따르면, type 1은 물방울의 접촉각이 80.1 ± 1.26°로 측정되었으며, type 2, 3, 4, 5, 6, 7에 대한 접촉각은 각각 65.9 ± 1.46°, 56.1 ± 1.52°, 46.3 ± 3.29°, 46.3 ± 1.54°, 38.2 ± 3.15°, 36.2 ± 1.76°로 측정되었으며, 결과를 도 4에 도시하였다. 도 4를 참조하면, 상기 접촉각은 결합이 없는 그래핀 필름에서 가장 높으며, 결함의 비율과 종류에 따라 점차적으로 감소함을 볼 수 있다. 즉, 상기 그래핀 필름은 결함이 없는 경우에 소수성을 유지하여 접촉각이 제일 높으며, 결함이 생성되는 경우에 친수성을 가지며 접촉각이 감소하는 것을 알 수 있다. 또한, 상기와 동일한 그래핀 필름을 절연 기판에 전사한 후에 각각에 대하여 접촉각을 측정한 결과를 도 5에 나타내었다. 도 5를 참조하면, 측정된 접촉각의 절대값의 변화는 각 type별로 차이가 있으나, 접촉값의 경향은 그대로 유지되고 있는 것을 볼 수 있다.The contact angle with respect to the water droplet formed by spraying water while the graphene film is on a metal substrate was measured. According to the contact angle measurement results for the graphene film, the contact angle of the type 1 was measured as 80.1 ± 1.26 °, the contact angle for the type 2, 3, 4, 5, 6, 7, 65.9 ± 1.46 °, 56.1 respectively ± 1.52 °, 46.3 ± 3.29 °, 46.3 ± 1.54 °, 38.2 ± 3.15 °, 36.2 ± 1.76 °, and the results are shown in FIG. Referring to Figure 4, the contact angle is the highest in the graphene film without a bond, it can be seen that gradually decreases according to the ratio and type of defects. That is, the graphene film maintains hydrophobicity when there are no defects, so that the contact angle is the highest, and when the defects are generated, the contact angle has hydrophilicity and the contact angle decreases. In addition, the result of measuring the contact angle with respect to each after transferring the graphene film same as the above to the insulating substrate is shown in FIG. Referring to FIG. 5, although the change in the absolute value of the measured contact angle is different for each type, it can be seen that the trend of the contact value is maintained as it is.
상기와 같은 평가 결과를 반영하여, 그래핀 필름의 결함 발생 여부를 판단하는 기준 접촉각에 대한 기준 값은 70°, 바람직하게는 75°, 더욱 바람직하게는 80°로 설정할 수 있다. 상기와 같은 결과로부터 실제로 롤투롤 방식으로 그래핀 필름을 성장시키는 공정 과정에서 실시간으로 접촉각을 측정하여 접촉각이 기준 접촉각보다 낮아지는 경우에 그래핀 필름에 결함이 생성되고 있는지 여부를 판단한다. 또한, 상기 그래핀 필름의 접촉각으로부터 그래핀 필름에 생성되는 결함의 종류와 양을 평가할 수 있다.Reflecting the above evaluation results, the reference value for the reference contact angle for determining whether or not the defect of the graphene film may be set to 70 °, preferably 75 °, more preferably 80 °. From the above results, the contact angle is measured in real time in the process of growing the graphene film in a roll-to-roll manner to determine whether a defect is generated in the graphene film when the contact angle is lower than the reference contact angle. In addition, the type and amount of defects generated in the graphene film may be evaluated from the contact angle of the graphene film.
한편, 기존의 그래핀 필름의 결함 평가 방법인 리만 분광기를 이용하여 각 type별로 라만 특성(ID/IG, I2D/IG)을 평가하여 결함 분석을 진행하였다. ID/IG는 D Raman peak(1344 cm-1) and G Raman peak(1596 cm-1) 의 세기 비율을 나타내고, I2D/IG는 2D Raman peak(2682 cm-1) and G Raman peak의 세기 비율을 나타내며, 그래핀 필름에 생성되는 결함의 빈도(defect density)를 도 6에 나타낸다. 도 6을 참조하면, 상기 그래핀 필름이 금속 기재에 있는 상태에서는 각 type의 그래핀 필름이 모두 동일한 라만 특성을 보이고 있어 라만 특성을 통한 결함 분석이 불가하였다. 다만, 도 7을 참조하면, 상기 그래핀 필름을 절연 기판(SiO2/Si substrate)에 전사한 후에, 각 그래핀 필름에 대하여 라만 특성을 평가하면, 각 type 별로 라만 특성이 달리 나타나고 있음을 알 수 있다. 즉, 결함이 생성되지 않은 그래핀 기판은 G peak와 2D peak에서 세기가 상대적으로 센 반면, D peak의 세기가 약한 것을 볼 수 있다. 결함이 생성된 그래핀 기판의 경우에는 상대적으로 G peak와 2D peak에서 세기가 상대적으로 약해지는 반면, D peak의 세기가 강해지는 것을 볼 수 있다.Meanwhile, defect analysis was performed by evaluating Raman characteristics (I D / I G, I 2D / I G ) for each type by using a Rieman spectrometer, which is a defect evaluation method of a conventional graphene film. I D / I G represents the intensity ratio of D Raman peak (1344 cm -1 ) and G Raman peak (1596 cm -1 ), and I 2D / I G represents 2D Raman peak (2682 cm -1 ) and G Raman peak 6 shows the intensity ratio of and the frequency of defects generated in the graphene film. Referring to FIG. 6, in the state where the graphene film is on a metal substrate, each type of graphene film shows the same Raman characteristics, and thus defect analysis through Raman characteristics was not possible. However, referring to FIG. 7, after the graphene film is transferred to an insulating substrate (SiO 2 / Si substrate), when the Raman characteristics are evaluated for each graphene film, it is understood that the Raman characteristics are different for each type. Can be. In other words, the graphene substrate without defects is relatively strong in the G peak and the 2D peak, while the intensity of the D peak is weak. In the case of the graphene substrate in which the defect is generated, the intensity of the G peak and the 2D peak is relatively weak, while the intensity of the D peak is strong.
또한, 상기 그래핀 필름은 각 type별로 접촉각과 라만 특성을 비교하였다. 도 8과 도 9를 참조하면, 상기 그래핀 필름의 각 type별 접촉각은 라만 특성과 일정한 상관 관계를 가지고 있으며, 결함 존재 여부를 포함하는 그래핀 필름의 물리적 특성을 보여주고 있음을 알 수 있다. 즉, 상기 그래핀 필름에 결함이 생성되면 접촉각은 낮아지며, ID/IG는 증가되는 것을 볼 수 있다. In addition, the graphene film compared the contact angle and Raman characteristics for each type. 8 and 9, the contact angle of each type of the graphene film has a constant correlation with the Raman property, and it can be seen that the physical properties of the graphene film including the presence of defects are shown. That is, when a defect is generated in the graphene film, the contact angle may be lowered and I D / I G may be increased.
다음은 상기 그래핀 필름의 각 type 별로 상면에 형성된 물방울의 높이와 직경을 측정하였다. 상기 그래핀 필름에 생성되는 결함에 따른 물방울의 높이와 직경의 도 10 및 도 11에 나타내었다. 또한, 상기 그래핀 필름의 각 type 별로 형성되는 물방울에 대하여 촬영된 사진을 도 12에 나타내었다. Next, the height and diameter of the water droplets formed on the upper surface of each type of the graphene film were measured. 10 and 11 show the height and diameter of water droplets according to defects generated in the graphene film. In addition, the photograph taken for the water droplets formed for each type of the graphene film is shown in FIG.
도 10을 참조하면, 상기 그래핀 필름의 상면에 형성되는 물방울은 결함이 없는 그래핀 필름에 대비하여 높이가 낮아지고 있음을 알 수 있으며, 접촉각의 변화 경향과 동일하게 나타나고 있다. 상기 그래핀 필름에 결함이 없는 경우에 높이에 대한 기준 높이는 1.4 ~ 1.5mm로 설정될 수 있다. 따라서, 상기 그래핀 필름의 상면에 형성되는 물방울의 높이가 1.4 ~ 1.5mm보다 낮은 경우에 그래핀 필름에 결함이 생성되고 있다고 판단할 수 있다. 다만, 상기 물방울의 높이는 분사되는 물의 양에 따라 다소 차이가 있을 수 있으므로 물의 양에 따라 기준 값을 정할 필요가 있다. Referring to FIG. 10, it can be seen that the water droplets formed on the upper surface of the graphene film are lowered in height compared to the graphene film without defects, and are shown in the same manner as the change in contact angle. When there is no defect in the graphene film, the reference height for the height may be set to 1.4 to 1.5 mm. Therefore, when the height of the water droplets formed on the upper surface of the graphene film is lower than 1.4 ~ 1.5mm it can be determined that a defect is generated in the graphene film. However, since the height of the water droplets may vary slightly depending on the amount of water to be sprayed, it is necessary to determine a reference value according to the amount of water.
상기 그래핀 필름에 생성되는 결함에 따른 물방울의 직경의 변화는 도 11에 나타내었다. 도 11을 참조하면, 상기 그래핀 필름의 상면에 형성되는 물방울은 결함이 없는 그래핀 필름에 대비하여 직경이 커지고 있음을 알 수 있으며, 접촉각의 변화 경향과 반대로 나타나고 있다. 상기 그래핀 필름에 결함이 없는 경우에 직경에 대한 기준 직경은 4.6 ~ 4.8mm로 설정될 수 있다. 따라서, 상기 그래핀 필름의 상면에 형성되는 물방울의 직경이 4.6 ~ 4.8mm보다 큰 경우에 그래핀 필름에 결함이 생성되고 있다고 판단할 수 있다. 다만, 상기 물방울의 직경은 분사되는 물의 양에 따라 다소 차이가 있을 수 있으므로 물의 양에 따라 기준 값을 정할 필요가 있다.The change in the diameter of the water droplet according to the defects generated in the graphene film is shown in FIG. Referring to FIG. 11, it can be seen that the water droplets formed on the upper surface of the graphene film are larger in diameter compared to the graphene film without defects, and are opposite to the change tendency of the contact angle. When there is no defect in the graphene film, the reference diameter for the diameter may be set to 4.6 to 4.8 mm. Therefore, when the diameter of the water droplets formed on the upper surface of the graphene film is larger than 4.6 ~ 4.8mm it can be determined that a defect is generated in the graphene film. However, since the diameter of the water droplets may vary slightly depending on the amount of water to be sprayed, it is necessary to determine a reference value according to the amount of water.
또한, 도 12를 참조하면, 결함이 없는 type 1의 경우에 물방울의 직경이 4.47mm 정도로 상대적으로 작고 높이가 1.55mm로 높은 편이나, type 2, type 4, type 6으로 갈수록 직경은 커지고 높이는 낮아지는 것을 볼 수 있다.In addition, referring to FIG. 12, in the case of type 1 without defects, the diameter of the water droplets is relatively small, such as 4.47 mm, and the height is 1.55 mm, but the diameter is larger and the height is lower toward the type 2, type 4, and type 6. You can see it losing.
상기 액체 분사 단계(S20)는 금속 기재의 상면에서 성장된 그래핀 필름의 상면에 물을 분사하여 물방울을 형성하는 단계이다. 상기 액체 분사 단계(S20)는 사전에 설정된 일정한 양의 물을 분사 노즐부(110)의 분사 노즐(111)을 통하여 그래핀 필름의 상면에 분사하여 하나의 물방울이 형성되도록 분사한다. 상기 액체 분사 단계(S20)는 0.01 ∼ 200㎕의 액체를 일 회에 분사하여 하나의 액체 방울이 형성되도록 한다. 따라서, 상기 액체 분사 단계(S20)는 복수 개의 물방울을 그래핀 필름의 상면에 형성하는 경우에 복수 회로 액체를 분사한다. 상기 액체 분사 단계(S20)는 그래핀 필름의 상면에서 폭 방향으로 이격되는 위치에 동시에 물을 분사하여, 그래핀 필름의 폭 방향을 따라 복수 개의 물방울이 형성되도록 진행될 수 있다. 상기 물방울은 그래핀 필름의 폭 방향을 따라 적어도 1개로 형성되며, 그래핀 필름이 폭에 따라 복수 개로 형성될 수 있다.The liquid spraying step (S20) is a step of forming water droplets by spraying water on the upper surface of the graphene film grown on the upper surface of the metal substrate. In the liquid spraying step (S20), a predetermined amount of water is sprayed onto the upper surface of the graphene film through the spraying nozzle 111 of the spraying nozzle unit 110 so that one droplet is formed. The liquid spray step (S20) is to spray a liquid of 0.01 ~ 200μl at a time so that one liquid droplet is formed. Therefore, in the liquid spraying step (S20), when a plurality of droplets are formed on the upper surface of the graphene film, the plurality of liquids are sprayed. The liquid spraying step (S20) may be performed to simultaneously spray water at a position spaced apart from the upper surface of the graphene film in the width direction so that a plurality of water droplets are formed along the width direction of the graphene film. The droplet may be formed in at least one along the width direction of the graphene film, a plurality of graphene film may be formed in accordance with the width.
상기 영상 정보 생성 단계(S30)는 그래핀 필름의 상면에 형성되는 물방울의 형상에 대한 영상 정보를 생성하는 단계이다. 즉, 상기 영상 정보 생성 단계(S30)는 물방울의 평면에 대한 제 1 영상 정보와 정면 영상(후면 또는 측면 영상)에 대한 제 2 영상 정보를 생성하는 단계이다. 상기 영상 정보 생성 단계(S30)에서는 제 1 촬영부(121)가 제 1 영상 정보를 생성하고 제 2 촬영부(125)가 제 2 영상 정보를 생성하도록 진행된다. 상기 영상 정보 생성 단계(S30)는 제 1 영상 정보와 제 2 영상 정보에서 선택적으로 어느 하나만을 생성하도록 진행될 수 있으며, 제 1 영상 정보와 제 2 영상 정보를 모두 생성하도록 진행될 수 있다. The image information generating step (S30) is a step of generating image information on the shape of the water droplets formed on the upper surface of the graphene film. That is, the image information generating step S30 is a step of generating first image information on the plane of the droplet and second image information on the front image (rear or side image). In the image information generating step S30, the first photographing unit 121 generates first image information and the second photographing unit 125 generates second image information. The image information generating step S30 may be performed to selectively generate only one of the first image information and the second image information, and may be performed to generate both the first image information and the second image information.
또한, 상기 영상 정보 생성 단계(S30)는 제 1 영상 정보 또는/및 제 2 영상 정보가 액체 방울(c)이 그래핀 필름(b)에 형성되고 3 ~ 30초의 촬영 시간 간격이 경과된 후 촬영하도록 진행될 수 있다. 상기 촬영 시간 간격은 액체 방울(c)이 그래핀 필름(b)에서 안정된 형상을 유지하기 위하여 필요한 시간과 그래핀 필름(b)의 이송 속도를 고려하여 시간을 설정한다. 상기 촬영 시간 간격이 너무 짧으면 액체 방울(c)이 안정되기 전에 영상이 촬영될 수 있다. 또한, 상기 촬영 시간 간격이 너무 길면 액체의 종류에 따라 액체 방울(c)의 크기가 액체의 증발 등에 의하여 감소될 수 있다. 다만, 상기 액체 방울(c)의 크기가 시간에 따라 감소되거나 형상이 변경되지 않는 경우에 촬영 시간 간격이 30초보다 더 길어질 수 있다. 또한, 상기 영상 정보 생성 단계(S30)는 그래핀 필름(b)의 특성을 보다 정확하게 보기 위해서 촬영 시간 간격을 두고 2번 이상을 측정한 후 액체 방울(c)의 직경, 높이 및 접촉각을 측정할 수도 있다. 이는 상기 액체 방울(c)이 그래핀 필름(b)의 표면과 반응하면서 안정화하는데 수 초의 시간이 걸리기 때문이다.In addition, the image information generating step (S30) is the first image information and / or the second image information is taken after the liquid droplet (c) is formed on the graphene film (b) and the shooting time interval of 3 to 30 seconds elapsed May be proceeded to. The photographing time interval is set in consideration of the time required for the liquid droplet (c) to maintain a stable shape in the graphene film (b) and the transfer speed of the graphene film (b). If the shooting time interval is too short, the image may be taken before the liquid drop (c) is stabilized. In addition, if the shooting time interval is too long, the size of the liquid drop (c) may be reduced by evaporation of the liquid, depending on the type of liquid. However, when the size of the liquid drop (c) is reduced with time or the shape does not change, the shooting time interval may be longer than 30 seconds. In addition, the image information generating step (S30) is to measure the diameter, height and contact angle of the liquid droplet (c) after measuring two or more times at intervals of shooting time in order to more accurately see the characteristics of the graphene film (b). It may be. This is because the liquid droplet (c) takes several seconds to stabilize while reacting with the surface of the graphene film (b).
상기 제 1 영상 정보는 물방울의 상면에서 촬영한 영상 정보로서 물망울의 평면에 대한 영상 정보이며, 물방울의 직경을 측정할 수 있도록 한다. 또한, 상기 제 2 영상 정보는 물방울의 전방, 후방 또는 측방에서 촬영한 영상 정보로서 물방울의 수직 형상에 대한 영상 정보이며, 물방울의 접촉각 및 높이를 측정할 수 있도록 한다.The first image information is image information photographed from the upper surface of the water droplets, which is image information on the plane of the water droplets, and allows the diameter of the water droplets to be measured. In addition, the second image information is image information photographed from the front, rear, or side of the water droplets. The second image information is image information on the vertical shape of the water droplets, and the contact angle and height of the water droplets can be measured.
상기 영상 분석 단계(S40)는 물방울에 대한 영상 정보로부터 물방울의 직경, 높이 또는 그래핀 필름과의 접촉각 중에서 적어도 어느 하나의 값을 산출하여 그래핀 필름에 결함이 생성되는지 여부를 판단하는 단계이다. 상기 영상 분석 단계(S40)는 제 1 영상 정보와 제 2 영상 정보중에서 어느 하나 또는 두 개 모두를 사용할 수 있다. 상기 영상 분석 단계(S40)는 제 1 영상 정보 또는 제 2 영상 정보로부터 물방울의 밝기 또는 색상을 기준으로 방울의 형태를 추출하는 방법을 사용하여 물방울의 형상을 추출하고 추출된 형상으로부터 직경, 높이 또는 그래핀 필름과의 접촉각 중에서 적어도 어느 하나를 산출한다. 상기 영상 분석 단계(S40)는 영상 정보에 대하여 윤곽선을 보다 확실하게 현출시키기 위한 영상 처리를 진행할 수 있다.The image analysis step (S40) is a step of determining whether a defect is generated in the graphene film by calculating at least one of diameter, height, or contact angle with the graphene film from the image information on the droplet. The image analyzing step S40 may use any one or both of the first image information and the second image information. The image analyzing step (S40) is performed by extracting the shape of the droplet based on the brightness or the color of the droplet from the first image information or the second image information, and extracting the shape of the droplet from the extracted shape. At least one of the contact angles with the graphene film is calculated. In the image analyzing step S40, the image processing may be performed to more accurately display the outline with respect to the image information.
상기 영상 분석 단계(S40)는 미리 설정된 물방울에 대한 기준 직경, 기준 높이 및 기준 접촉각중에 적어도 하나의 정보를 사용하여 물방울의 직경이 기준 직경보다 큰 경우, 물방울의 높이가 기준 높이보다 낮은 경우 또는 물방울의 접촉각이 기준 접촉각보다 작은 경우에 그래핀 필름에 결함이 생성되는 것으로 판단한다. The image analyzing step (S40) is performed when the diameter of the droplet is larger than the reference diameter using at least one of the reference diameter, the reference height, and the reference contact angle for the preset droplet, the height of the droplet is lower than the reference height or It is determined that a defect is generated in the graphene film when the contact angle of is smaller than the reference contact angle.
또한, 상기 영상 분석 단계(S40)는 산출된 직경, 높이 또는 그래핀 필름과의 접촉각의 적어도 어느 하나의 값이 기준 값을 벗어나는 경우에 알람 정보를 생성할 수 있다. In addition, the image analysis step (S40) may generate alarm information when at least one of the calculated diameter, height, or contact angle with the graphene film is out of the reference value.
상기 알람 신호 발생 단계(S50)는 산출된 직경, 높이 또는 그래핀 필름과의 접촉각의 어느 하나의 값이 기준 값을 벗어나는 경우에 알람 신호를 발생하는 단계이다. 상기 영상 분석부(130)는 산출된 직경, 높이 또는 그래핀 필름과의 접촉각의 어느 하나의 값이 기준 값을 벗어나는 경우에 알람 정보를 생성하여 알람부(150)로 전송하며, 알람부(150)는 영상 분석부(130)로부터 알람 정보를 수신하고 소리 또는 빛과 같은 알람 신호를 발생시킨다. 상기 알람 신호 발생 단계(S50)는 산출된 직경, 높이 또는 그래핀 필름과의 접촉각의 어느 하나의 값이 기준 값을 벗어나는 경우에 알람 신호를 발생시킬 수 있으며, 적어도 2개의 값이 기준 값을 벗어나는 경우에 알람 신호를 발생시킬 수 있다. The alarm signal generating step (S50) is a step of generating an alarm signal when any one value of the calculated diameter, height or contact angle with the graphene film is out of the reference value. The image analyzer 130 generates alarm information and transmits the alarm information to the alarm unit 150 when any one of the calculated diameter, height, or contact angle with the graphene film is out of the reference value, and the alarm unit 150. ) Receives alarm information from the image analyzer 130 and generates an alarm signal such as sound or light. The alarm signal generating step S50 may generate an alarm signal when any one of the calculated diameter, height, or contact angle with the graphene film is out of the reference value, and at least two values are out of the reference value. In this case, an alarm signal can be generated.
상기 알람 신호 발생 단계(S50)는 산출된 직경, 높이 또는 그래핀 필름과의 접촉각이 모두 기준 값을 벗어나지 않는 경우에 진행되지 않는다.The alarm signal generating step S50 does not proceed when the calculated diameter, height, or contact angle with the graphene film do not deviate from the reference value.
상기 방울 제거 단계(S60)는 그래핀 필름의 상면에 분사된 물방울을 제거하는 단계이다. 상기 방울 제거부(160)는 그래핀 상면에 분사되어 영상 정보 생성이 종료된 물방울이 위치하는 그래핀 필름의 영역이 접근하면 바람, 열풍 또는 열을 공급하거나 빛을 조사하여 그래핀 필름의 상면에 형성된 물방울을 제거한다. 따라서, 상기 그래핀 필름은 상면에 결함이 생성되지 않은 것으로 판단되면, 정상적으로 생산된 제품으로 사용될 수 있으며, 특성 검사에 따른 손실이 발생되지 않는다.The drop removing step (S60) is a step of removing the water droplets sprayed on the upper surface of the graphene film. The drop removing unit 160 is sprayed on the graphene upper surface when the region of the graphene film where the water droplets are finished, the image information generation is approaching close to the top surface of the graphene film by supplying wind, hot air or heat or irradiating light Remove the formed water droplets. Therefore, if it is determined that no defects are formed on the upper surface of the graphene film, the graphene film may be used as a normally produced product, and no loss occurs due to property inspection.
본 명세서에 개시된 실시예는 여러 가지 실시 가능한 예 중에서 당업자의 이해를 돕기 위하여 가장 바람직한 실시예를 선정하여 제시한 것일 뿐, 이 발명의 기술적 사상이 반드시 이 실시예에만 의해서 한정되거나 제한되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화와 부가 및 변경이 가능함 물론, 균등한 다른 실시예의 구현이 가능하다. The embodiments disclosed in the present specification are only selected and presented as the most preferred embodiments to help those skilled in the art from the various possible examples, and the technical spirit of the present invention is not necessarily limited or limited only by the embodiments. Various changes, additions, and changes are possible without departing from the spirit of the present invention, as well as other equivalent embodiments.
본 발명에 따른 그래핀 검사 장치 및 방법은 금속 기재에 성장된 그래핀 필름에 결함이 존재하는지 여부를 포함하는 특성에 대하여 그래핀 필름을 전사하지 않고 실시간으로 검사할 수 있다. The graphene inspection device and method according to the present invention can be inspected in real time without transferring the graphene film with respect to the characteristics including whether a defect is present in the graphene film grown on the metal substrate.
또한, 본 발명에 따른 그래핀 검사 장치 및 방법은 그래핀을 금속 기재로부터 전사하는 과정에서 발생될 수 있는 결함을 배제하고 성장 과정에서 발생되는 결함만을 검사하므로, 화학적 기상 증착 방법에 의하여 롤투롤 방식으로 성장되는 대면적의 그래핀 성장 공정에서 문제가 발생되는지 여부를 실시간으로 정확하게 확인하고 대체할 수 있도록 한다.In addition, the graphene inspection apparatus and method according to the present invention excludes defects that may occur in the process of transferring the graphene from the metal substrate and examines only the defects generated in the growth process, the roll-to-roll method by the chemical vapor deposition method It is possible to accurately identify and replace in real time whether or not a problem occurs in a large-scale graphene growth process that is grown with.
또한, 본 발명에 따른 그래핀 검사 장치 및 방법은 고가의 장비(라만분광기 또는 투과 전자 현미경등)를 사용하지 않고도 기존 방법 대비 분석 시간을 단축시키고 분석 비용을 낮출 수 있다.In addition, the graphene inspection apparatus and method according to the present invention can reduce the analysis time and lower the analysis cost compared to the existing method without using expensive equipment (Raman spectroscopy or transmission electron microscope, etc.).

Claims (21)

  1. 그래핀 필름에 결함이 있는지 여부를 포함하는 그래핀 필름의 특성을 검사하는 장치로서,An apparatus for inspecting the properties of a graphene film, including whether the graphene film is defective,
    상기 그래핀 필름의 상면에 액체를 분사하여 액체 방울을 형성하는 분사 노즐부와,An injection nozzle unit for forming a liquid drop by spraying a liquid on an upper surface of the graphene film;
    상기 그래핀 필름의 상면에 형성된 상기 액체 방울의 형상에 대한 영상 정보를 생성하는 영상 정보 생성부 및An image information generator for generating image information on the shape of the liquid droplet formed on the top surface of the graphene film;
    상기 영상 정보로부터 상기 액체 방울의 직경, 높이 및 상기 그래핀 필름과의 접촉각의 적어도 어느 하나의 값을 산출하여 상기 그래핀 필름에 결함이 생성되는지 여부를 판단하는 영상 분석부를 포함하는 것을 특징으로 하는 그래핀 검사 장치.And an image analyzer to determine whether a defect is generated in the graphene film by calculating at least one of a diameter, a height, and a contact angle with the graphene film, from the image information. Graphene inspection device.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 분사 노즐부는 상기 그래핀 필름의 상면에 상기 액체를 분사하는 적어도 1개의 분사 노즐을 포함하며,The spray nozzle unit includes at least one spray nozzle for spraying the liquid on the upper surface of the graphene film,
    상기 분사 노즐은 각각 0.01 ∼ 200㎕의 상기 액체를 분사하여 상기 그래핀 필름의 상면에 하나의 상기 액체 방울을 형성하는 것을 특징으로 하는 그래핀 검사 장치.The injection nozzle is a graphene inspection device, characterized in that to form a single liquid droplet on the upper surface of the graphene film by injecting the liquid of 0.01 ~ 200μl each.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 액체는 물 또는 알코올인 것을 특징으로 하는 그래핀 검사 장치.Graphene inspection device, characterized in that the liquid is water or alcohol.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 영상 정보 생성부는The image information generation unit
    상기 액체 방울의 상부에서 상기 액체 방울을 촬영하여 상기 액체 방울의 직경에 대한 정보를 포함하는 제 1 영상 정보를 생성하는 제 1 촬영부 및 A first photographing unit configured to photograph the liquid droplets from the upper portion of the liquid droplets to generate first image information including information about a diameter of the liquid droplets;
    상기 액체 방울의 전방, 후방 또는 측방에서 상기 액체 방울을 촬영하여 상기 액체 방울의 상기 그래핀 필름에 대한 접촉각과 높이에 대한 정보를 포함하는 제 2 영상 정보를 생성하는 제 2 촬영부를 포함하는 것을 특징으로 하는 그래핀 검사 장치.And a second photographing unit configured to photograph the liquid drop from the front, rear, or side of the liquid drop to generate second image information including information on a contact angle and a height of the liquid drop of the graphene film. Graphene inspection device.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 1 촬영부는 상기 제 1 영상 정보를 촬영하는 제 1 카메라와 상기 제 1 영상 정보를 상기 영상 분석부로 전송하는 제 1 전송 모듈을 포함하며,The first photographing unit includes a first camera for photographing the first image information and a first transmission module for transmitting the first image information to the image analyzing unit.
    상기 제 2 촬영부는 상기 제 2 영상 정보를 촬영하는 제 2 카메라와 상기 제 2 영상 정보를 상기 영상 분석부로 전송하는 제 2 전송 모듈을 포함하는 것을 특징으로 하는 그래핀 검사 장치.The second photographing unit includes a second camera for photographing the second image information and a graphene inspection device comprising a second transmission module for transmitting the second image information to the image analyzer.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 제 1 촬영부 또는 제 2 촬영부는 상기 액체 방울이 상기 그래핀 필름에 형성되고 0 ~ 30초의 촬영 시간 간격이 경과된 후 상기 제 1 영상 정보 또는 제 2 영상 정보를 촬영하도록 형성되는 것을 특징으로 하는 그래핀 검사 장치.The liquid droplets of the first photographing unit or the second photographing unit are The graphene inspection device is formed on the graphene film and is configured to shoot the first image information or the second image information after the shooting time interval of 0 to 30 seconds elapsed.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 제 1 촬영부 또는 제 2 촬영부는 상기 촬영 시간 간격에 따라 1번 또는 적어도 2번 촬영하도록 형성되는 것을 특징으로 하는 그래핀 검사 장치.The first photographing unit or the second photographing unit Graphene inspection device, characterized in that formed to shoot once or at least twice according to the shooting time interval.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 영상 분석부는 결함이 없는 상기 그래핀 필름에 상기 액체 방울을 형성하여 산출한 기준 직경, 기준 높이 및 기준 접촉각중에 적어도 하나의 정보를 포함하며,The image analyzer includes at least one of a reference diameter, a reference height, and a reference contact angle calculated by forming the liquid droplet on the graphene film without defects,
    상기 액체 방울의 직경이 상기 기준 직경보다 큰 경우, 상기 액체 방울의 높이가 상기 기준 높이보다 낮은 경우 또는 상기 액체 방울의 접촉각이 상기 기준 접촉각보다 작은 경우에 상기 그래핀 필름에 결함이 생성되는 것으로 판단하는 것을 특징으로 하는 그래핀 검사 장치. When the diameter of the liquid drop is larger than the reference diameter, when the height of the liquid drop is lower than the reference height or when the contact angle of the liquid drop is smaller than the reference contact angle it is determined that a defect is generated in the graphene film Graphene inspection device, characterized in that.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 영상 분석부는 상기 그래핀 필름에 결함이 생성되는 것으로 판단하는 경우에 알람 정보를 생성하며,The image analyzer generates alarm information when it is determined that a defect is generated in the graphene film.
    상기 영상 분석부로부터 전송되는 상기 알람 정보를 수신하여 알람 신호를 발생하는 알람부를 더 포함하는 것을 특징으로 하는 그래핀 검사 장치.Graphene inspection device further comprises an alarm unit for generating an alarm signal by receiving the alarm information transmitted from the image analysis unit.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 영상 분석부로부터 전송되는 제 1 영상 정보와 제 2 영상 정보를 표시하는 영상 정보 표시부를 더 포함하는 것을 특징으로 하는 그래핀 검사 장치.Graphene inspection apparatus further comprises an image information display unit for displaying the first image information and the second image information transmitted from the image analysis unit.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 영상 정부 생성부에서 영상 정보의 생성이 종료된 상기 액체 방울에 바람 또는 열을 공급하여 상기 액체 방울을 제거하는 방울 제거부를 더 포함하는 것을 특징으로 하는 그래핀 검사 장치.Graphene inspection apparatus further comprises a droplet removal unit for removing the liquid droplets by supplying wind or heat to the liquid droplets, the generation of the image information is finished in the image government generating unit.
  12. 그래핀 필름에 결함이 있는지 여부를 포함하는 그래핀 필름의 특성을 검사하는 방법으로서,As a method of examining the properties of a graphene film including whether the graphene film is defective,
    상기 그래핀 필름의 상면에 액체를 분사하여 액체 방울을 형성하는 액체 분사 단계와,A liquid spray step of forming a liquid drop by spraying a liquid on an upper surface of the graphene film;
    상기 그래핀 필름의 상면에 형성된 상기 액체 방울의 형상에 대한 영상 정보를 생성하는 영상 정보 생성 단계와,An image information generation step of generating image information on the shape of the liquid droplet formed on the top surface of the graphene film;
    상기 영상 정보로부터 상기 액체 방울의 직경, 높이 및 상기 그래핀 필름과의 접촉각의 적어도 어느 하나의 값을 산출하여 상기 그래핀 필름에 결함이 생성되는지 여부를 판단하는 영상 분석 단계를 포함하는 것을 특징으로 하는 그래핀 검사 방법.And an image analysis step of determining whether a defect is generated in the graphene film by calculating at least one of a diameter, a height, and a contact angle with the graphene film, from the image information. Graphene test method.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 영상 분석 단계는 결함이 없는 상기 그래핀 필름에 상기 액체 방울을 형성하여 산출한 기준 직경, 기준 높이 및 기준 접촉각중에 적어도 하나의 정보를 사용하여,The image analyzing step uses at least one of a reference diameter, a reference height, and a reference contact angle calculated by forming the liquid droplet on the graphene film without defects,
    상기 액체 방울의 직경이 상기 기준 직경보다 큰 경우, 상기 액체 방울의 높이가 상기 기준 높이보다 낮은 경우 또는 상기 액체 방울의 접촉각이 상기 기준 접촉각보다 작은 경우에 상기 그래핀 필름에 결함이 생성되는 것으로 판단하는 것을 특징으로 하는 그래핀 검사 방법.When the diameter of the liquid drop is larger than the reference diameter, when the height of the liquid drop is lower than the reference height or when the contact angle of the liquid drop is smaller than the reference contact angle it is determined that a defect is generated in the graphene film Graphene test method characterized in that.
  14. 제 12 항에 있어서,The method of claim 12,
    상기 액체 분사 단계는 상기 그래핀 필름의 상면에 0.01 ∼ 200㎕의 액체를 한 번에 분사하며, 한 번의 분사로 하나의 상기 액체 방울이 형성되도록 진행되는 것을 특징으로 하는 그래핀 검사 방법.The liquid spraying step is a graphene test method characterized in that the injection of 0.01 ~ 200μl liquid at a time on the upper surface of the graphene film, so that one of the liquid droplets are formed by one injection.
  15. 제 12 항에 있어서,The method of claim 12,
    상기 액체 분사 단계는 상기 그래핀 필름의 상면에서 폭 방향으로 이격되는 위치에 동시에 액체를 분사하여, 상기 그래핀 필름의 폭 방향을 따라 복수 개의 상기 액체 방울이 형성되도록 이루어지는 것을 특징으로 하는 그래핀 검사 방법.The liquid spraying step is a graphene inspection method characterized in that the plurality of liquid droplets are formed along the width direction of the graphene film by simultaneously spraying a liquid at a position spaced in the width direction from the upper surface of the graphene film .
  16. 제 12 항에 있어서,The method of claim 12,
    상기 액체는 물 또는 알코올인 것을 특징으로 하는 그래핀 검사 방법.Graphene test method, characterized in that the liquid is water or alcohol.
  17. 제 12 항에 있어서,The method of claim 12,
    상기 영상 정보는The video information
    상기 액체 방울의 상부에서 상기 액체 방울을 촬영하여 상기 액체 방울의 직경에 대한 정보를 포함하는 제 1 영상 정보 및First image information including information on a diameter of the liquid drop by photographing the liquid drop from the top of the liquid drop; and
    상기 액체 방울의 전방 후방 또는 측방에서 상기 액체 방울을 촬영하여 상기 액체 방울의 높이 및 상기 그래핀 필름에 대한 접촉각에 대한 정보를 포함하는 제 2 영상 정보를 포함하는 것을 특징으로 하는 그래핀 검사 방법.And photographing the liquid drop from the front, rear, or side of the liquid drop, and including second image information including information about the height of the liquid drop and the contact angle with respect to the graphene film.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 영상 정보 생성 단계는 상기 제 1 영상 정보 또는 제 2 영상 정보를 상기 액체 방울이 상기 그래핀 필름에 형성되고 0 ~ 30초의 촬영 시간 간격이 경과된 후 촬영하도록 이루어지는 것을 특징으로 하는 그래핀 검사 방법.The generating of the image information may include capturing the first image information or the second image information after the liquid droplet is formed on the graphene film and a shooting time interval of 0 to 30 seconds has elapsed.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 제 1 영상 정보 또는 제 2 영상 정보는 상기 촬영 시간 간격에 따라 1 번 또는 적어도 2번 촬영하도록 형성되는 것을 특징으로 하는 그래핀 검사 장치.The first image information or the second image information graphene inspection device, characterized in that formed to shoot once or at least twice according to the shooting time interval.
  20. 제 13 항에 있어서,The method of claim 13,
    상기 영상 분석 단계에서 상기 그래핀 필름에 결함이 생성되는 것으로 판단하는 경우에 알람 정보를 생성하며,Alarm information is generated when it is determined that a defect is generated in the graphene film in the image analysis step,
    상기 영상 분석 단계 후에 After the image analysis step
    상기 알람 정보에 따라 알람 신호를 발생하는 알람 신호 발생 단계를 더 포함하는 하는 것을 특징으로 하는 그래핀 검사 방법.Graphene inspection method further comprises an alarm signal generating step of generating an alarm signal in accordance with the alarm information.
  21. 제 12 항에 있어서,The method of claim 12,
    상기 영상 정보 생성 단계 후에 After the image information generating step
    상기 액체 방울에 바람을 공급하거나 열을 조사하여 상기 액체 방울을 제거하는 방울 제거 단계를 더 포함하는 것을 특징으로 하는 그래핀 검사 방법.Graphene inspection method further comprises a drop removing step of removing the liquid droplets by supplying air or irradiating heat to the liquid droplets.
PCT/KR2017/000095 2016-01-05 2017-01-04 Graphene inspection device and method WO2017119715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0000956 2016-01-05
KR1020160000956A KR101795566B1 (en) 2016-01-05 2016-01-05 Assessment Apparatus and Method of Graphene

Publications (1)

Publication Number Publication Date
WO2017119715A1 true WO2017119715A1 (en) 2017-07-13

Family

ID=59274319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000095 WO2017119715A1 (en) 2016-01-05 2017-01-04 Graphene inspection device and method

Country Status (2)

Country Link
KR (1) KR101795566B1 (en)
WO (1) WO2017119715A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982303A (en) * 2018-08-29 2018-12-11 清华大学 The acquisition methods and device of liquid residence characteristics on the surface of the material
CN109490567A (en) * 2018-10-17 2019-03-19 重庆天泽新材料有限公司 Glass fiber yarn wetting-out rate detection method
CN110044279A (en) * 2019-04-15 2019-07-23 华中科技大学 A kind of sealing ring measurer for thickness and method
CN110487679A (en) * 2019-07-30 2019-11-22 武汉大学 It is a kind of measurement drop surface of solids frictional force device
CN110496304A (en) * 2018-05-16 2019-11-26 富士胶片株式会社 The manufacturing method of microneedle array
CN110629191A (en) * 2019-11-01 2019-12-31 北京大学 Graphene film roll-to-roll production device and method
US11519840B2 (en) 2019-01-22 2022-12-06 Ford Global Technologies, Llc Hydrophobic coating characterization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975067B2 (en) * 2001-10-17 2007-09-12 大日本印刷株式会社 Pattern forming body inspection method
KR20110119083A (en) * 2010-04-26 2011-11-02 엘아이지에이디피 주식회사 Apparatus for inspecting substrate and method of inspecting substrate
JP2015014522A (en) * 2013-07-05 2015-01-22 パナソニック株式会社 Substrate inspection method
KR20150075651A (en) * 2013-12-26 2015-07-06 한국기술교육대학교 산학협력단 Measurement apparatus for contact angle of droplet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975067B2 (en) * 2001-10-17 2007-09-12 大日本印刷株式会社 Pattern forming body inspection method
KR20110119083A (en) * 2010-04-26 2011-11-02 엘아이지에이디피 주식회사 Apparatus for inspecting substrate and method of inspecting substrate
JP2015014522A (en) * 2013-07-05 2015-01-22 パナソニック株式会社 Substrate inspection method
KR20150075651A (en) * 2013-12-26 2015-07-06 한국기술교육대학교 산학협력단 Measurement apparatus for contact angle of droplet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN, YOUNG JUN ET AL.: "Surface-energy engineering of graphene", LANGMUIR, vol. 26, no. 6, 17 February 2010 (2010-02-17), pages 3798 - 3802, XP055188008 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110496304A (en) * 2018-05-16 2019-11-26 富士胶片株式会社 The manufacturing method of microneedle array
US11452854B2 (en) 2018-05-16 2022-09-27 Fujifilm Corporation Method of manufacturing microneedle array
CN108982303A (en) * 2018-08-29 2018-12-11 清华大学 The acquisition methods and device of liquid residence characteristics on the surface of the material
CN109490567A (en) * 2018-10-17 2019-03-19 重庆天泽新材料有限公司 Glass fiber yarn wetting-out rate detection method
CN109490567B (en) * 2018-10-17 2020-10-27 重庆天泽新材料有限公司 Glass fiber yarn soaking speed detection method
US11519840B2 (en) 2019-01-22 2022-12-06 Ford Global Technologies, Llc Hydrophobic coating characterization
CN110044279A (en) * 2019-04-15 2019-07-23 华中科技大学 A kind of sealing ring measurer for thickness and method
CN110044279B (en) * 2019-04-15 2020-05-19 华中科技大学 Device and method for measuring thickness of sealing ring
CN110487679A (en) * 2019-07-30 2019-11-22 武汉大学 It is a kind of measurement drop surface of solids frictional force device
CN110487679B (en) * 2019-07-30 2021-07-20 武汉大学 Device for measuring friction force of liquid drop on solid surface
CN110629191A (en) * 2019-11-01 2019-12-31 北京大学 Graphene film roll-to-roll production device and method

Also Published As

Publication number Publication date
KR20170082176A (en) 2017-07-14
KR101795566B1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
WO2017119715A1 (en) Graphene inspection device and method
WO2014084574A1 (en) Device and method for analyzing defects by using heat distribution measurement
WO2014169516A1 (en) Detection device and detection method
WO2015012554A1 (en) Method for manufacturing three-dimensional metamaterial of stacked structure using nanotransfer printing, metamaterial structure film manufactured by using same, and optical imaging system comprising same
KR100911330B1 (en) Array tester, method for measuring a point of substrate of the same and method for measuring a position cordinate
DE112014003891T5 (en) Charged particle beam device and sample holder for the charged particle beam device
WO2021177569A1 (en) Thin film specimen for tensile test and physical property evaluation method for thin film specimen
CN104022053B (en) A kind of vacuum chamber detection device and vacuum chamber detection method for film forming
CN104898265A (en) System and method for preventing object lens of microscope from colliding with substrate, and image acquisition system
CN108169240A (en) Nickel foam surface defect detection apparatus
JP2008198966A (en) Wafer defect inspection device
CN109946589B (en) Method and device for detecting bad electricity of display panel
TWI741333B (en) Method and equipment for detecting hole position information of printed circuit board
WO2014209043A1 (en) Image acquiring method and image acquiring apparatus using same
WO2013100223A1 (en) Method for creating the height information of a substrate inspection device
WO2014069962A1 (en) Method and device for measuring surface roughness of deposited thin film
CN215823697U (en) On-line measuring equipment in wire and cable production
CN202583595U (en) Laser range finding integrated electronic periscope
CN1556399A (en) Building structure cracking digital measuring apparatus
CN201255633Y (en) Apparatus for detecting wire width and distance of printed circuit board
CN111223077A (en) Test method and test system of circuit board
CN207198061U (en) A kind of SP251 camera lenses detection device for foreign matter
Wu et al. Automatic measurement and grading of LED dies on wafer by machine vision
CN214894797U (en) Inspection system for inspecting test probes in power supply test fixture
WO2022102824A1 (en) Apparatus for manufacturing hollow fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17736088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17736088

Country of ref document: EP

Kind code of ref document: A1