WO2017119493A1 - Positive electrode active material for secondary battery, production method therefor, and secondary battery - Google Patents

Positive electrode active material for secondary battery, production method therefor, and secondary battery Download PDF

Info

Publication number
WO2017119493A1
WO2017119493A1 PCT/JP2017/000301 JP2017000301W WO2017119493A1 WO 2017119493 A1 WO2017119493 A1 WO 2017119493A1 JP 2017000301 W JP2017000301 W JP 2017000301W WO 2017119493 A1 WO2017119493 A1 WO 2017119493A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
secondary battery
positive electrode
raw material
electrode active
Prior art date
Application number
PCT/JP2017/000301
Other languages
French (fr)
Japanese (ja)
Inventor
タイタス ニャムワロ マセセ
鹿野 昌弘
栄部 比夏里
博 妹尾
光 佐野
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2017560437A priority Critical patent/JP6934665B2/en
Publication of WO2017119493A1 publication Critical patent/WO2017119493A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a secondary battery, a manufacturing method thereof, and a secondary battery.
  • An energy storage medium is indispensable for solving energy problems, and the development of a high-performance secondary battery is urgent.
  • the secondary battery with the highest performance is a lithium ion secondary battery, but there are still problems in terms of capacity, cost, and safety in realizing electric vehicles and smart grids that can be considered for future use.
  • a secondary battery system using magnesium as a negative electrode has attracted attention because it has a high theoretical capacity density, is rich in resources, has a high melting point, and is safe.
  • Magnesium has a high theoretical weight and volume capacity, and exhibits a relatively base redox potential. Therefore, a secondary battery using magnesium as a negative electrode is expected to have a high energy density. In particular, the theoretical capacity per volume is higher than that of lithium, which is advantageous in that a large capacity can be packed in a limited space (volume) such as a secondary battery for an electric vehicle. Furthermore, the reserves of magnesium are abundant in the crust layer, and the problems of resource depletion and cost, which are disadvantages of lithium ion secondary batteries, can be cleared. Magnesium has a melting point of about 650 ° C., which is very high compared to Li (180 ° C.), Na (98 ° C.) and the like.
  • the melting point is an indicator of metal stability, and secondary batteries using magnesium can be expected to improve safety.
  • the safety of the negative electrode metal will be a very important factor when the metal negative electrode is put to practical use.
  • lithium, sodium, and the like are difficult to handle because they react vigorously with moisture in the air, but magnesium is stable in the air and easy to handle.
  • magnesium secondary batteries are regarded as candidates for post-lithium ion secondary batteries, and many studies have been conducted in recent years.
  • polyvalent ions have twice the Coulomb interaction with anions in the solid phase compared to lithium ions, and the ionic radius is smaller than lithium ions, so the distance from the anion. Becomes smaller and the interaction increases.
  • multivalent ions are expected to be greatly affected by the electrostatic interaction in the positive electrode host compound, so the higher the valence ions, the more suitable the intercalation electrode based on the topochemical reaction is. Have difficulty.
  • the present invention has been made in view of the above, and has a high theoretical capacity, a high potential, and a low cost, and can construct a secondary battery having a high theoretical energy density, and a positive electrode active material for a secondary battery and a method for producing the same. And it aims at providing the secondary battery comprised with the said positive electrode active material for secondary batteries.
  • the present inventor has found that the above object can be achieved by a magnesium compound having a specific composition, and has completed the present invention.
  • the present invention includes, for example, the subject matters described in the following sections.
  • Item 1 The following general formula (1) Mg a Xb Y c O d (1)
  • X is at least one selected from the group consisting of Ni, Fe, Mn, Co, and Cu
  • Y is Ge or Ti
  • a is 0.5 to 1
  • b is 0.5 to 1.5
  • c is 0.5 to 1.5
  • d is 3.8 to 4.1.
  • Item 2. A secondary battery comprising the positive electrode active material according to Item 1 as a constituent element.
  • a method for producing a positive electrode active material for a secondary battery according to Item 1 A manufacturing method provided with the heating process which heats the raw material mixture containing the raw material containing Mg, the raw material containing said X, and the raw material containing said Y. Item 4. Item 4. The production method according to Item 3, wherein the heating temperature in the heating step is 500 to 1500 ° C.
  • a secondary battery having a high theoretical capacity, a high potential, a low cost, and a high theoretical energy density can be constructed.
  • the XRD pattern of the product obtained in Example 1 is shown. It shows an SEM image of MgMnGeO 4 obtained in Example 1.
  • the XRD pattern of the product obtained in Example 2 is shown. It shows an SEM image of MgCoGeO 4 obtained in Example 2.
  • the XRD pattern of the product obtained in Example 3 is shown. It shows an SEM image of MgNiGeO 4 obtained in Example 3. It shows an SEM image of MgFeTiO 4 obtained in Example 4.
  • the charge / discharge characteristics when MgCoGeO 4 obtained in Example 2 is used as the positive electrode material, and the relationship between each cycle and the discharge capacity are shown.
  • the charge / discharge characteristics when MgFeTiO 4 obtained in Example 4 is used as the positive electrode material, and the relationship between each cycle and the discharge capacity are shown.
  • the result of the potential-time characteristic of all the Mg batteries when using MgMnGeO 4 obtained in Example 1 as a positive electrode material is shown.
  • the result of the potential-time characteristic of all the Mg batteries when using MgNiGeO 4 obtained in Example 3 as a positive electrode material is shown.
  • the result of the potential-time characteristic of all the Mg batteries when using MgFeTiO 4 obtained in Example 4 as the positive electrode material is shown.
  • the XRD pattern of the product obtained in Example 5 is shown.
  • the XRD pattern of the product obtained in Example 6 is shown.
  • the SEM image of the product obtained in Example 8 is shown.
  • the SEM image of the product obtained in Example 9 is shown.
  • Positive electrode active material for secondary battery The positive electrode active material for a secondary battery of this embodiment is represented by the following general formula (1) Mg a Xb Y c O d (1)
  • X is at least one selected from the group consisting of Ni, Fe, Mn, Co, and Cu
  • Y is Ge or Ti
  • a is 0.5 to 1
  • b is 0.5 to 1.5
  • c is 0.5 to 1.5
  • d is 3.8 to 4.1.
  • Such a magnesium compound is useful as a positive electrode active material for a magnesium ion secondary battery because it can insert and desorb magnesium ions.
  • X is preferably at least one selected from the group consisting of Ni, Mn and Co.
  • the production of the magnesium compound is easy and low.
  • a magnesium compound can be produced at low cost, and the capacity and potential of the secondary battery can be further improved.
  • X is preferably Fe.
  • a magnesium compound can be produced with high purity, and the capacity and potential of the secondary battery are further improved. Can be made.
  • the value of a is more preferably 0.8 to 1.3, and more preferably 0.9 to 1.1, from the viewpoints of easy insertion and desorption of magnesium ions, capacity, and high potential. It is particularly preferred.
  • the value b is more preferably 0.7 to 1.3, and more preferably 0.8 to 1.1, from the viewpoints of ease of insertion and desorption of magnesium ions, capacity, and high potential. It is particularly preferred.
  • X is two or more selected from the group consisting of Ni, Fe, Mn, Co and Cu
  • the value of b is the total amount of each of the two or more elements. Represents.
  • c is more preferably 0.7 to 1.3, and more preferably 0.8 to 1.1, from the viewpoints of ease of insertion and desorption of magnesium ions, capacity, and high potential. It is particularly preferred.
  • the value of d is more preferably 3.8 to 4.0 from the viewpoint of easy insertion and desorption of magnesium ions, capacity, and high potential, and is 3.9 to 4.0. It is particularly preferred.
  • magnesium compound represented by the general formula (1) examples include MgNiGeO 4 , MgMnGeO 4 , MgCoGeO from the viewpoints of easy insertion and desorption of magnesium ions, low cost, capacity, and high potential. 4 and MgFeTiO 4 are preferable.
  • the abundance of the crystal structure as the main phase is not particularly limited, and is preferably 80 mol% or more, more preferably 90 mol% or more based on the entire magnesium compound represented by the general formula (1). .
  • the magnesium compound represented by the general formula (1) can be formed as a material having a single-phase crystal structure.
  • the magnesium compound represented by the general formula (1) may be formed as a material having a plurality of crystal structures unless the effects of the present invention are impaired.
  • the crystal structure of the magnesium compound represented by the general formula (1) can be confirmed by X-ray diffraction measurement.
  • the magnesium compound represented by the general formula (1) can be in the form of a particulate powder, for example.
  • the average particle size is preferably 0.005 to 50 ⁇ m, preferably 0.01 to 0.5 ⁇ m from the viewpoints of easy insertion and desorption of magnesium ions, capacity, and high potential. 2 ⁇ m is more preferable.
  • the average particle diameter of the magnesium compound represented by the general formula (1) is measured by observation with an electron microscope (SEM).
  • SEM electron microscope
  • the average particle diameter here refers to, for example, an arithmetic average value of equivalent circle diameters measured by direct observation with an electron microscope.
  • the magnesium ion secondary battery can have a high capacity. . Moreover, in the positive electrode active material for a secondary battery containing the magnesium compound, a redox reaction in two steps of X 2+ / X 3+ and X 3+ / X 4+ occurs, which increases the capacity of the magnesium ion secondary battery. Cheap. Moreover, since the said magnesium compound can be manufactured with an inexpensive and easy process, according to the positive electrode active material for magnesium ion secondary batteries of this embodiment, a magnesium secondary battery can be provided at low cost. Therefore, the positive electrode active material for secondary batteries of this embodiment is suitable as a positive electrode material constituting a magnesium secondary battery with high energy density.
  • the positive electrode active material for secondary batteries of the present embodiment can also contain an unavoidable impurity other than a magnesium compound.
  • an unavoidable impurity include a raw material mixture described later.
  • the magnesium compound and a carbon material may form a composite.
  • a carbon material suppresses the grain growth of a magnesium compound at the time of baking, it can become a fine particle-form positive electrode active material for secondary batteries excellent in the electrode characteristic.
  • the content of the carbon material is preferably adjusted to 3 to 20% by mass, particularly 5 to 15% by mass in the positive electrode active material for an ion secondary battery.
  • Method for producing a positive active material for a secondary battery comprising a magnesium compound represented by the production method above general formula of the positive electrode active material for a secondary battery (1) is not particularly limited.
  • the magnesium compound is manufactured by a manufacturing method including a heating step of heating a raw material mixture including a raw material containing Mg, a raw material containing X, and a raw material containing Y.
  • a positive electrode active material can be obtained.
  • this manufacturing method will be specifically described.
  • the raw material mixture in the said manufacturing method contains the raw material containing Mg, the raw material containing said X, and the raw material containing said Y.
  • the raw material mixture may be three kinds of mixtures including one raw material containing Mg, one raw material containing X, and one raw material containing Y.
  • the raw material containing Mg, the raw material containing X, and the raw material containing Y can all be one type or two or more types.
  • the raw material mixture can use, as a part of the raw material, a compound containing Mg, two or more elements of X and Mn at the same time. In this case, the raw material mixture is a mixture of less than three types.
  • the raw material containing Mg may be, for example, metallic Mg or a compound containing Mg element.
  • the compound containing Mg element include magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), magnesium chloride (MgCl 2 ), magnesium carbonate (MgCO 3 ), and magnesium nitrate (Mg (NO 3 ) 2. ), Magnesium oxalate (MgC 2 O 4 ), magnesium acetate (Mg (CH 3 COO) 2 ), and the like. Hydrate may be sufficient as the compound containing Mg element.
  • the raw material containing X may be a single metal X or a compound containing metal X.
  • Examples of the compound containing metal X include metal X oxides, hydroxides, chlorides, carbonates, nitrates, and oxalates.
  • the compound containing metal X may be a hydrate.
  • a compound containing a metal X if X if it is Fe FeC 2 O 4, if X is Mn MnC 2 O 4, X is Ni, with Ni (OH) 2, X is Co If there is CoC 2 O 4 and X is Cu, CuO is exemplified.
  • the raw material containing Y may be, for example, metal Y or a compound containing Y.
  • the compound containing Y that is, germanium compound or titanium compound
  • the raw material mixture does not include Mg and other metal elements (particularly rare metal elements) other than the metals X and Y.
  • other metal elements those that are detached and volatilized by heat treatment in a non-oxidizing atmosphere are desirable.
  • the raw material containing Mg the raw material containing X, and the raw material containing Y
  • any of commercially available products may be used, or they may be synthesized separately and used.
  • the shape of the raw material mixture there is no particular limitation on the shape of the raw material mixture, and powder is preferable from the viewpoint of handleability. Further, from the viewpoint of reactivity, the particles are preferably fine, and a powder having an average particle size of 1 ⁇ m or less (particularly about 60 to 80 nm) is preferable. The average particle diameter of each raw material is measured by electron microscope observation (SEM).
  • the raw material mixture can be prepared by mixing a raw material containing Mg, a raw material containing X and a raw material containing Y in a predetermined blending ratio.
  • the mixing method is not particularly limited, and for example, a method that can uniformly mix the raw materials can be employed. Specifically, mortar mixing, mechanical milling treatment, coprecipitation method, a method of mixing after each raw material is dispersed in a solvent, a method of mixing each raw material at once in a solvent, etc. may be adopted. it can. Among these, a magnesium compound can be obtained by a simpler method when mortar mixing is employed. A coprecipitation method can be employed to obtain a more uniformly mixed raw material mixture.
  • the mixing ratio of each raw material in each raw material mixture is not particularly limited. For example, it is preferable to blend each raw material so that a magnesium compound having a desired composition as a final product is obtained. Specifically, it is preferable to adjust the blending ratio of each raw material so that the ratio of each element contained in each raw material is the same as the ratio of each element in the target magnesium compound.
  • the heating step can be performed, for example, in an inert gas atmosphere such as argon or nitrogen. Alternatively, the heating step may be performed under reduced pressure such as vacuum.
  • the heating temperature (that is, the firing temperature) in the heating step is preferably 500 to 1500 ° C.
  • the operation of the heating step can be performed more easily, and the obtained magnesium compound can easily form a spinel structure.
  • the crystallinity and electrode characteristics (particularly capacity and potential) of the obtained magnesium compound are likely to be improved.
  • the lower limit of the heating temperature in the heating step is preferably 700 ° C., particularly preferably 1150 ° C., if X is Fe.
  • the upper limit of heating temperature can be suitably determined in the range which can operate easily in manufacture of a magnesium compound (for example, 1500 degreeC).
  • the heating time in the heating step is not particularly limited. For example, 10 minutes to 48 hours are preferable, and 30 minutes to 24 hours are more preferable.
  • the desired magnesium compound is obtained by cooling.
  • the cooling rate is not particularly limited.
  • baking may be performed again at the heating temperature.
  • a magnesium compound can be manufactured by methods, such as a coprecipitation method, a sol gel method, a hydrothermal synthesis method, other than the said manufacturing method.
  • Secondary battery of the present embodiment includes the above-described positive electrode active material for a secondary battery as a constituent element.
  • the positive electrode active material for a secondary battery is suitable as a component of a magnesium ion secondary battery.
  • the basic structure of the magnesium ion secondary battery shall be a known non-aqueous electrolyte magnesium ion secondary battery, except that the positive electrode active material for magnesium ion secondary battery is used as the positive electrode active material. Can do.
  • the positive electrode, the negative electrode, and the separator can be disposed in the battery container so that the positive electrode and the negative electrode are separated from each other by the separator. Then, after filling the non-aqueous electrolyte into the battery container, the magnesium ion secondary battery can be manufactured by sealing the battery container.
  • the magnesium ion secondary battery may be a magnesium secondary battery.
  • “magnesium ion secondary battery” means a secondary battery using magnesium ions as carrier ions
  • “magnesium secondary battery” means a secondary that uses magnesium metal or a magnesium alloy as a negative electrode active material. Means battery.
  • the positive electrode can adopt a structure in which a positive electrode material containing a positive electrode active material for a magnesium ion secondary battery is supported on a positive electrode current collector.
  • a positive electrode active material for a magnesium ion secondary battery, a conductive additive, and, if necessary, a positive electrode mixture containing a binder can be produced by applying to a positive electrode current collector.
  • conductive aid for example, carbon materials such as acetylene black, ketjen black, carbon nanotube, vapor grown carbon fiber, carbon nanofiber, graphite, and coke can be used.
  • carbon materials such as acetylene black, ketjen black, carbon nanotube, vapor grown carbon fiber, carbon nanofiber, graphite, and coke
  • a powder form etc. are employable.
  • binder examples include fluorine resins such as polyvinylidene fluoride resin and polytetrafluoroethylene.
  • the content of various components in the positive electrode material is not particularly limited and can be appropriately determined from a wide range.
  • the positive electrode active material for a magnesium ion secondary battery is 50 to 95% by volume (particularly 70 to 90% by volume)
  • the conductive auxiliary agent is 2.5 to 25% by volume (particularly 5 to 15% by volume)
  • the binder is added.
  • the content is preferably 2.5 to 25% by volume (particularly 5 to 15% by volume).
  • Examples of the material constituting the positive electrode current collector include aluminum, titanium, platinum, molybdenum, stainless steel, and copper.
  • Examples of the shape of the positive electrode current collector include a porous body, a foil, a plate, and a mesh made of fibers.
  • the amount of the positive electrode material applied to the positive electrode current collector is preferably determined as appropriate according to the use of the magnesium ion secondary battery.
  • Examples of the negative electrode active material constituting the negative electrode include magnesium metal; silicon; silicon-containing acrylate compound; magnesium alloy; M 1 M 2 2 O 4 (M 1 : Co, Ni, Mn, Sn, etc., M 2 : Mn, Ternary or quaternary oxides represented by Fe, Zn, etc .; M 3 3 O 4 (M 3 : Fe, Co, Ni, Mn, etc.), M 4 2 O 3 (M 4 : Fe, Co, Ni) , Mn, etc.), MnV 2 O 6 , M 5 O 2 (M 5 : Sn, Ti etc.), M 6 O (M 6 : Fe, Co, Ni, Mn, Sn, Cu etc.) Oxides; graphite, hard carbon, soft carbon, graphene; the above-described carbon materials; organic compounds such as MgC 8 H 4 O 4 , MgC 8 H 4 O 4 .2H 2 O, and the like.
  • magnesium alloys include alloys containing magnesium and aluminum as constituent elements, alloys containing magnesium and zinc as constituent elements, alloys containing magnesium and manganese as constituent elements, alloys containing magnesium and bismuth as constituent elements, magnesium and nickel Alloy containing magnesium, alloy containing magnesium and antimony as constituent elements, alloy containing magnesium and tin as constituent elements, alloy containing magnesium and indium as constituent elements; metal (scandium, titanium, vanadium, chromium, zirconium, niobium) , molybdenum, hafnium, MXene based alloy containing as constituent elements carbon and tantalum), M 7 x BC 3 alloy (M 7: Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, T Quaternary layered carbide or nitride compound etc.) and the like; alloys containing magnesium and lead as a constituent element thereof.
  • the negative electrode can be composed of a negative electrode active material, and adopts a configuration in which a negative electrode material containing a negative electrode active material, a conductive additive, and a binder as necessary is supported on the negative electrode current collector. You can also. When adopting a configuration in which the negative electrode material is supported on the negative electrode current collector, a negative electrode mixture containing a negative electrode active material, a conductive additive, and a binder as necessary is applied to the negative electrode current collector. Can be manufactured.
  • the negative electrode When the negative electrode is composed of a negative electrode active material, it can be obtained by molding the negative electrode active material into a shape (such as a plate shape) suitable for the electrode.
  • the types of the conductive auxiliary agent and the binder, and the negative electrode active material, the conductive auxiliary agent, and the binder content are those of the positive electrode described above. Can be applied.
  • the material constituting the negative electrode current collector include aluminum, copper, nickel, and stainless steel.
  • Examples of the shape of the negative electrode current collector include a porous body, a foil, a plate, and a mesh made of fibers. In addition, it is preferable to determine suitably the application quantity of the negative electrode material with respect to a negative electrode collector according to the use etc. of a magnesium ion secondary battery.
  • the separator is not limited as long as it is made of a material that can separate the positive electrode and the negative electrode in the battery and can hold the electrolytic solution to ensure the ionic conductivity between the positive electrode and the negative electrode.
  • polyolefin resin such as polyethylene, polypropylene, polyimide, polyvinyl alcohol, terminal aminated polyethylene oxide
  • fluorine resin such as polytetrafluoroethylene
  • acrylic resin nylon
  • aromatic aramid inorganic glass
  • Materials in the form of a membrane, nonwoven fabric, woven fabric, etc. can be used.
  • the non-aqueous electrolyte is preferably an electrolyte containing magnesium ions.
  • an electrolytic solution include a magnesium salt solution, an ionic liquid composed of an inorganic material containing magnesium, and the like.
  • the electrolytic solution include a solution in which a magnesium salt is dissolved in a solvent and an ionic liquid composed of an inorganic material containing magnesium.
  • the electrolytic solution is not limited to such examples.
  • magnesium salts include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, and magnesium fluoride, magnesium perchlorate, magnesium tetrafluoroborate, magnesium hexafluorophosphate, magnesium hexafluoroarsenate, and the like.
  • Magnesium inorganic salt compounds magnesium such as bis (trifluoromethylsulfonyl) imido magnesium, magnesium benzoate, magnesium salicylate, magnesium phthalate, magnesium acetate, magnesium propionate, tris (pentafluoroethane) trifluorophosphate magnesium, Grignard reagent, etc.
  • Examples include organic salt compounds, but are not limited to such examples.
  • the solvent examples include carbonate compounds such as propylene carbonate, ethylene carbonate, dimethol carbonate, ethylmethyl carbonate, and diethyl carbonate; lactone compounds such as ⁇ -butyrolactone and ⁇ -valerolactone; tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, Such as diisopropyl ether, dibutyl ether, methoxymethane, N, N-dimethylformamide, glyme, N-propyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide, dimethoxyethane, dimethoxymethane, diethoxymethane, dietochiethane, propylene glycol dimethyl ether Ether compounds; acetonitrile and the like.
  • carbonate compounds such as propylene carbonate, ethylene carbonate, dimethol carbonate, ethylmethyl carbonate, and diethyl
  • a solid electrolyte can be used instead of the non-aqueous electrolyte.
  • Example 1 MgO (Wako Chemical, 0.05 ⁇ m, 99.9% (3N)), MnC 2 O 4 (high purity chemistry, 99.9% (3N)), GeO 2 (rare metallic, 99.99%) (4N)) was used. MgO, MnC 2 O 4 and GeO 2 were weighed so that the molar ratio of magnesium, manganese and germanium was 1: 1: 1, and mixed in an agate mortar for about 30 minutes to obtain a raw material mixture. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mm ⁇ ⁇ 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6).
  • acetone is distilled off under reduced pressure, and then the recovered powder is pellet-molded at 40 MPa, and heated in a range of 800 ° C. to 1150 ° C. for 1 hour, 2 hours, 4 hours, or 6 hours under Ar flow. Baked. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
  • Example 2 MgO (Wako Chemical, 0.05 ⁇ m, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), GeO 2 (rare metallic, 99.99%) (4N)) was used. MgO, magnesium CoC 2 O 4 and GeO 2, the molar ratio of cobalt and germanium 1: 1: 1 and were weighed so as to obtain a raw material mixture is mixed for about 30 minutes in an agate mortar. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mm ⁇ ⁇ 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6).
  • the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream.
  • the temperature raising rate was set to 400 ° C./h.
  • the cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling.
  • the product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
  • Example 3 MgO (Wako Chemical, 0.05 ⁇ m, 99.9% (3N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), GeO 2 (rare metallic, 99.99) % (4N)). MgO, Ni (OH) 2 and GeO 2 were weighed so that the molar ratio of magnesium, nickel and germanium was 1: 1: 1, and mixed in an agate mortar for about 30 minutes to obtain a raw material mixture. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mm ⁇ ⁇ 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6).
  • acetone is distilled off under reduced pressure, and then the recovered powder is pellet-molded at 40 MPa, and heated in a range of 800 ° C. to 1150 ° C. for 1 hour, 2 hours, 4 hours, or 6 hours under Ar flow. Baked. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
  • Example 4 MgO (Wako Chemical, 0.05 ⁇ m, 99.9% (3N)), FeC 2 O 4 ⁇ 2H 2 O (Pure Chemical, 99.9% (3N)), TiO 2 (A) (rare) Metallic, 99.99% (4N)) was used. MgO, FeC 2 O 4 and TiO 2 were weighed so that the molar ratio of magnesium, iron and titanium was 1: 1: 1, and mixed in an agate mortar for about 30 minutes to obtain a raw material mixture. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mm ⁇ ⁇ 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6).
  • acetone is distilled off under reduced pressure, and then the recovered powder is pellet-molded at 40 MPa, and heated in a range of 800 ° C. to 1150 ° C. for 1 hour, 2 hours, 4 hours, or 6 hours under Ar flow. Baked. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
  • Example 5 MgO (Wako Chemical, 0.05 ⁇ m, 99.9% (3N)), MnC 2 O 4 (high purity chemistry, 99.9% (3N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), GeO 2 (rare metallic, 99.99% (4N)).
  • MgO, MnC 2 O 4 , Ni (OH) 2 and GeO 2 so that the molar ratio of magnesium, manganese, nickel and germanium is 2: 1: 1: 2, and mix for about 30 minutes in an agate mortar. A raw material mixture was obtained.
  • the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mm ⁇ ⁇ 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
  • Example 6 MgO (Wako Chemical, 0.05 ⁇ m, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), MnC 2 O 4 (high purity chemistry, 99 0.9% (3N)), GeO 2 (rare metallic, 99.99% (4N)).
  • MgO, CoC 2 O 4 , MnC 2 O 4 and GeO 2 are weighed so that the molar ratio of magnesium, cobalt, manganese and germanium is 2: 1: 1: 2, and mixed in an agate mortar for about 30 minutes. A mixture was obtained.
  • the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mm ⁇ ⁇ 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
  • Example 7 MgO (Wako Chemical, 0.05 ⁇ m, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), GeO 2 (rare metallic, 99.99% (4N)).
  • MgO, CoC 2 O 4 , Ni (OH) 2 and GeO 2 are weighed so that the molar ratio of magnesium, cobalt, nickel and germanium is 2: 1: 1: 2, and mixed in an agate mortar for about 30 minutes. A raw material mixture was obtained.
  • the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mm ⁇ ⁇ 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
  • Example 8 MgO (Wako Chemical, 0.05 ⁇ m, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), was used GeO 2 (Rare metallic, 99.99% (4N) a). Weigh MgO, CoC 2 O 4 , Ni (OH) 2 and GeO 2 so that the molar ratio of magnesium, cobalt, nickel and germanium is 4: 1: 3: 4, and mix for about 30 minutes in an agate mortar. A raw material mixture was obtained.
  • the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mm ⁇ ⁇ 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
  • Example 9 MgO (Wako Chemical, 0.05 ⁇ m, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), was used GeO 2 (Rare metallic, 99.99% (4N) a). MgO, CoC 2 O 4 , Ni (OH) 2 and GeO 2 are weighed so that the ratio of magnesium, cobalt, nickel and germanium is 4: 3: 1: 4 and mixed in an agate mortar for about 30 minutes to obtain a raw material mixture Got.
  • the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mm ⁇ ⁇ 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
  • ⁇ Evaluation method> [Powder X-ray diffraction (XRD) measurement]
  • the synthesized sample was measured using an X-ray diffractometer (RINT-UltimaIII / G manufactured by Rigaku Corporation).
  • a CuK ⁇ ray was used as the X-ray source, the applied voltage was 40 kV, and the current value was 40 mA.
  • the measurement was performed at an angle range of 10 ° to 80 ° at a scanning speed of 0.02 ° / sec.
  • ICP-AES measurement ICP-AES measurement was performed using an inductively coupled plasma emission spectrometer (“iCAP6500” manufactured by Thermo Fisher Scientific).
  • the Li box was used as the negative electrode, and the electrolyte used was an electrolyte obtained by dissolving LiPF 6 at a concentration of 1M as a supporting electrolyte in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2. .
  • the constant current charge / discharge measurement was started by charging using a voltage switch, setting the current to 10 mAg ⁇ 1 , the upper limit voltage 4.8 V, and the lower limit voltage 1.5 V. Charge / discharge measurement was performed in a state where the cell was placed in a 55 ° C. constant temperature bath.
  • the cell used was a CR2032-type coin cell.
  • the electrolyte solution was prepared by dissolving Mg (TFSI) 2 in ethylene glycol dimethyl ether dimethoxyethylene glycol (trade name: monoglyme) so that its concentration was 0.5 M, using the Mg disk as the negative electrode.
  • the constant current charge / discharge measurement was performed by using a voltage switch, setting the current to 5 mAg ⁇ 1 , the upper limit voltage 3.6 V, and the lower limit voltage 0 V, and starting from charge. The measurement was performed at room temperature.
  • FIG. 2 shows an SEM image of a product (MgMnGeO 4 ) obtained by performing a heating process at 1150 ° C. for 6 hours in Example 1.
  • the scale bar indicates 0.5 ⁇ m. From this result, it can be seen that the MgMnGeO 4 obtained in Example 1 has an average particle diameter of about 0.5 ⁇ m although the particles tend to aggregate.
  • FIG. 3 shows the XRD pattern of the product baked in Example 2.
  • the X-ray wavelength used is 1.5418 mm.
  • Figure 4 shows an SEM image of MgCoGeO 4 obtained in Example 2.
  • the scale bar indicates 1.66 ⁇ m. From this result, it can be seen that MgCoGeO 4 obtained in Example 2 has an average particle diameter of around 0.5 ⁇ m.
  • FIG. 5 shows the XRD pattern of the product baked in Example 3.
  • the X-ray wavelength used is 1.5418 mm.
  • FIG. 6 shows an SEM image of a product (MgNiGeO 4 ) obtained by performing a heating process at 1150 ° C. for 6 hours in Example 3.
  • the scale bar indicates 1.66 ⁇ m. From this result, it can be seen that MgNiGeO 4 obtained in Example 3 has an average particle diameter of around 0.5 ⁇ m.
  • FIG. 7 shows an SEM image of a product (MgFeTiO 4 ) obtained by performing a heating process at 1150 ° C. for 6 hours in Example 4.
  • the scale bar indicates 2.04 ⁇ m. From this result, it can be seen that MgFeTiO 4 obtained in Example 4 has an average particle diameter of around 0.5 ⁇ m.
  • FIG. 8 shows the results of Test Example 1 (charge / discharge characteristics and the relationship between each cycle and discharge capacity) when the positive electrode active material containing MgCoGeO 4 obtained in Example 2 was used as the positive electrode material. Yes. From the results shown in FIG. 8, it can be seen that the drawable capacity (discharge capacity) is 160 mAhg ⁇ 1 and the average operating potential is 3.9 V (approximately 3.2 V when converted to the Mg 2+ / Mg potential standard). It can also be seen that even when the charge / discharge cycle is repeated, there is almost no deterioration.
  • FIG. 9 shows the results of Test Example 1 (charge / discharge characteristics and the relationship between each cycle and the discharge capacity) when the positive electrode active material containing MgFeTiO 4 obtained in Example 4 was used as the positive electrode material. Yes. From the results shown in FIG. 9, it can be seen that the capacity that can be extracted (discharge capacity) is 50 mAhg ⁇ 1 , and the average operating potential is 2.6 V (approximately 2.0 V when converted to the Mg 2+ / Mg potential standard). It can also be seen that even when the charge / discharge cycle is repeated, there is almost no deterioration.
  • FIGS. 10 to 12 show, as positive electrode materials, positive electrode active materials for secondary batteries containing MgMnGeO 4 obtained in Example 1, MgNiGeO 4 obtained in Example 3, and MgFeTiO 4 obtained in Example 4 , respectively.
  • the results of the potential-time characteristics (Test Example 2) of all Mg batteries when used are shown. From FIGS. 10 to 12, it was found that a potential response suggesting insertion and detachment of magnesium was observed in all cases.
  • Table 1 shows the results of elemental analysis by ICP of the products obtained in Examples 1 to 4.
  • the X-ray wavelength used is 1.5418 mm. From FIG. 13, it was found that the product fired in Example 5 formed a mixed phase of MgMnGeO 4 and MgNiGeO 4 .
  • the X-ray wavelength used is 1.5418 mm. From Figure 14, calcined product in Example 6 was found to form a mixed phase of MgMnGeO 4 and MgCoGeO 4.
  • the scale bar indicates 5.55 ⁇ m.
  • the scale bar indicates 16.6 ⁇ m.
  • FIG. 17 shows the XRD pattern of the product fired in Examples 2, 3, and 7-9
  • FIG. 17 (b) is an enlarged view of part of (a).
  • FIG. 19 shows an SEM image of the product obtained in Example 8.
  • the scale bar indicates 7.14 ⁇ m.
  • FIG. 20 shows an SEM image of the product obtained in Example 9.
  • the scale bar indicates 16.6 ⁇ m.
  • x 0, 0.25, 0.50, 0.75, 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided are a positive electrode active material for a secondary battery and a production method therefor, capable of constructing a secondary battery having high theoretical capacity, high theoretical electric potential, and high theoretical energy density at a low cost. Also provided is a secondary battery composed of said positive electrode active material for a secondary battery. The present invention comprises a magnesium compound represented by general formula (1) Mga Xb Yc Od (here, in formula (1), X is at least one selected from the group consisting of Ni, Fe, Mn, Co, and Cu, and Y is Ge or Ti. Further, a represents 0.5-1.5, b represents 0.5-1.5, c represents 0.5-1.5, and d represents 3.8-4.1).

Description

二次電池用正極活物質及びその製造方法、並びに二次電池Positive electrode active material for secondary battery, method for producing the same, and secondary battery
 本発明は、二次電池用正極活物質及びその製造方法、並びに二次電池に関する。 The present invention relates to a positive electrode active material for a secondary battery, a manufacturing method thereof, and a secondary battery.
 エネルギー問題の解決に向け、エネルギー貯蔵媒体は必要不可欠なものであり、高性能な二次電池の開発が急務である。現在、最高性能を誇る二次電池はリチウムイオン二次電池であるが、今後の利用展開として考えられる電気自動車やスマートグリッドの実現にはその容量面、コスト面、安全面に課題が残る。更なる発展に向けては現状の系を超越した革新的な二次電池の開発が必要であり、その方向性の一つに多価のイオンをキャリアとする多価イオン二次電池がある。例えば、マグネシウムを負極とする二次電池系は、高い理論容量密度を有し、資源が豊富で、高融点で安全性に富む点から注目されている。 An energy storage medium is indispensable for solving energy problems, and the development of a high-performance secondary battery is urgent. Currently, the secondary battery with the highest performance is a lithium ion secondary battery, but there are still problems in terms of capacity, cost, and safety in realizing electric vehicles and smart grids that can be considered for future use. For further development, it is necessary to develop an innovative secondary battery that transcends the current system, and one of the directions is a multivalent ion secondary battery that uses multivalent ions as carriers. For example, a secondary battery system using magnesium as a negative electrode has attracted attention because it has a high theoretical capacity density, is rich in resources, has a high melting point, and is safe.
 マグネシウムは高い理論重量、体積容量を有し、比較的卑な酸化還元電位を示すため、マグネシウムを負極に用いた二次電池は高エネルギー密度を有することが予想される。特に体積当たりの理論容量に関してはリチウムを凌ぐ値であり、これは電気自動車用二次電池等、限られたスペース(体積)に大容量を詰め込める点で有利である。さらに、マグネシウム埋蔵量が地殻層に豊富であり、リチウムイオン二次電池の欠点である、資源枯渇及びコストの問題がクリアできる。また、マグネシウムは融点が約650℃であり、Li(180℃)、Na(98℃)などと比べて非常に高い。融点は金属の安定性の指標であり、マグネシウムを用いた二次電池は安全性の向上も見込める。将来金属負極の実用化まで見据えると負極金属の安全性というのは非常に重要なファクターになる。さらに、リチウム、ナトリウムなどは空気中の水分などと激しく反応するため取り扱いが困難であるが、マグネシウムは空気中で安定であり、取り扱いも容易である。これらの理由から、マグネシウム二次電池はポストリチウムイオン二次電池の候補とみなされ、近年、多数の研究が行われている。 Magnesium has a high theoretical weight and volume capacity, and exhibits a relatively base redox potential. Therefore, a secondary battery using magnesium as a negative electrode is expected to have a high energy density. In particular, the theoretical capacity per volume is higher than that of lithium, which is advantageous in that a large capacity can be packed in a limited space (volume) such as a secondary battery for an electric vehicle. Furthermore, the reserves of magnesium are abundant in the crust layer, and the problems of resource depletion and cost, which are disadvantages of lithium ion secondary batteries, can be cleared. Magnesium has a melting point of about 650 ° C., which is very high compared to Li (180 ° C.), Na (98 ° C.) and the like. The melting point is an indicator of metal stability, and secondary batteries using magnesium can be expected to improve safety. In the future, the safety of the negative electrode metal will be a very important factor when the metal negative electrode is put to practical use. Furthermore, lithium, sodium, and the like are difficult to handle because they react vigorously with moisture in the air, but magnesium is stable in the air and easy to handle. For these reasons, magnesium secondary batteries are regarded as candidates for post-lithium ion secondary batteries, and many studies have been conducted in recent years.
 マグネシウム二次電池系の創製にはまだいくつかの課題が存在する。特に、正極材料においては、多価のイオンはリチウムイオンに比べ、固相内でのアニオンとのクーロン相互作用は二倍と大きくなり、また、イオン半径がリチウムイオンより小さいため、アニオンとの距離が小さくなり、さらにその相互作用は増大する。それにより、多価のイオンは正極ホスト化合物内での静電相互作用の影響が非常に大きくなることが予想されるため、より価数の高いイオンほどトポケミカル反応に基づくインターカレーション電極の適応は困難である。 There are still some issues in the creation of the magnesium secondary battery system. In particular, in the positive electrode material, polyvalent ions have twice the Coulomb interaction with anions in the solid phase compared to lithium ions, and the ionic radius is smaller than lithium ions, so the distance from the anion. Becomes smaller and the interaction increases. As a result, multivalent ions are expected to be greatly affected by the electrostatic interaction in the positive electrode host compound, so the higher the valence ions, the more suitable the intercalation electrode based on the topochemical reaction is. Have difficulty.
 これに対し、近年ではマグネシウム二次電池向けの正極材料は多々報告されており、正極としてシェブレル相を有するMo(T=S,Se)、V、TiSナノチューブ・graphene-likeMoSなどのナノ構造材料はマグネシウム二次電池として安定で可逆的な充放電特性を示すことが報告されている(例えば、非特許文献1等を参照)。 On the other hand, in recent years, a large number of positive electrode materials for magnesium secondary batteries have been reported, and Mo 6 T 8 (T = S, Se), V 2 O 5 , TiS 2 nanotubes / graphene- having a chevrel phase as a positive electrode. It has been reported that nanostructured materials such as likeMoS 2 exhibit stable and reversible charge / discharge characteristics as magnesium secondary batteries (see, for example, Non-Patent Document 1).
 しかしながら、硫黄イオンなどの軟らかい塩基を含む化合物においては、その反応電位の低下が見られ、また、シェブレル相は分子量が大きくその理論容量が低いため、リチウムイオン二次電池を超えるデバイスとしての正極には成り得るには多くの課題を抱えている。このような観点から、例えば、強固なポリアニオン酸骨格によって高安全性を有し、かつ多電子移動を可能にする高い真密度なポリアニオン化合物の開発が求められている。 However, in compounds containing soft bases such as sulfur ions, the reaction potential is lowered, and the chevrel phase has a large molecular weight and a low theoretical capacity, so that it can be used as a positive electrode as a device exceeding lithium ion secondary batteries. Has many challenges to become. From such a viewpoint, for example, development of a high true density polyanion compound which has high safety by a strong polyanionic acid skeleton and enables multiple electron transfer is demanded.
 本発明は、上記に鑑みてなされたものであり、高い理論容量、高電位かつ、低コストで、理論エネルギー密度の高い二次電池を構築できる、二次電池用正極活物質及びその製造方法、並びに、前記二次電池用正極活物質で構成される二次電池を提供することを目的とする。 The present invention has been made in view of the above, and has a high theoretical capacity, a high potential, and a low cost, and can construct a secondary battery having a high theoretical energy density, and a positive electrode active material for a secondary battery and a method for producing the same. And it aims at providing the secondary battery comprised with the said positive electrode active material for secondary batteries.
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定組成のマグネシウム化合物により、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by a magnesium compound having a specific composition, and has completed the present invention.
 すなわち、本発明は、例えば以下の項に記載の主題を包含する。
項1.下記一般式(1)
Mg   (1)
(ここで、式(1)中、XはNi、Fe、Mn、Co及びCuからなる群より選ばれる少なくとも1種であり、YはGe又はTiである。また、aは0.5~1.5、bは0.5~1.5、cは0.5~1.5、dは3.8~4.1を示す。)
で表されるマグネシウム化合物を含む、二次電池用正極活物質。
項2.上記項1に記載の正極活物質を構成要素とする二次電池。
項3.上記項1に記載の二次電池用正極活物質の製造方法であって、
 Mgを含有する原料と、上記Xを含有する原料と、上記Yを含有する原料とを含む原料混合物を加熱する加熱工程を備える、製造方法。
項4.前記加熱工程における加熱温度が500~1500℃である、上記項3に記載の製造方法。
That is, the present invention includes, for example, the subject matters described in the following sections.
Item 1. The following general formula (1)
Mg a Xb Y c O d (1)
(In the formula (1), X is at least one selected from the group consisting of Ni, Fe, Mn, Co, and Cu, Y is Ge or Ti, and a is 0.5 to 1) .5, b is 0.5 to 1.5, c is 0.5 to 1.5, and d is 3.8 to 4.1.)
The positive electrode active material for secondary batteries containing the magnesium compound represented by these.
Item 2. A secondary battery comprising the positive electrode active material according to Item 1 as a constituent element.
Item 3. A method for producing a positive electrode active material for a secondary battery according to Item 1,
A manufacturing method provided with the heating process which heats the raw material mixture containing the raw material containing Mg, the raw material containing said X, and the raw material containing said Y.
Item 4. Item 4. The production method according to Item 3, wherein the heating temperature in the heating step is 500 to 1500 ° C.
 本発明に係るイオン二次電池用正極活物質によれば、高い理論容量、高電位かつ、低コストで、理論エネルギー密度の高い二次電池を構築できる。 According to the positive electrode active material for an ion secondary battery according to the present invention, a secondary battery having a high theoretical capacity, a high potential, a low cost, and a high theoretical energy density can be constructed.
実施例1で得られた生成物のXRDパターンを示す。The XRD pattern of the product obtained in Example 1 is shown. 実施例1で得られたMgMnGeOのSEM像を示す。It shows an SEM image of MgMnGeO 4 obtained in Example 1. 実施例2で得られた生成物のXRDパターンを示す。The XRD pattern of the product obtained in Example 2 is shown. 実施例2で得られたMgCoGeOのSEM像を示す。It shows an SEM image of MgCoGeO 4 obtained in Example 2. 実施例3で得られた生成物のXRDパターンを示す。The XRD pattern of the product obtained in Example 3 is shown. 実施例3で得られたMgNiGeOのSEM像を示す。It shows an SEM image of MgNiGeO 4 obtained in Example 3. 実施例4で得られたMgFeTiOのSEM像を示す。It shows an SEM image of MgFeTiO 4 obtained in Example 4. 実施例2で得られたMgCoGeOを正極材料として用いたときの充放電特性、並びに、各サイクルと放電容量との関係を示す。The charge / discharge characteristics when MgCoGeO 4 obtained in Example 2 is used as the positive electrode material, and the relationship between each cycle and the discharge capacity are shown. 実施例4で得られたMgFeTiOを正極材料として用いたときの充放電特性、並びに、各サイクルと放電容量との関係を示す。The charge / discharge characteristics when MgFeTiO 4 obtained in Example 4 is used as the positive electrode material, and the relationship between each cycle and the discharge capacity are shown. 実施例1で得られたMgMnGeOを正極材料として用いたときのMg全電池の電位-時間特性の結果を示す。The result of the potential-time characteristic of all the Mg batteries when using MgMnGeO 4 obtained in Example 1 as a positive electrode material is shown. 実施例3で得られたMgNiGeOを正極材料として用いたときのMg全電池の電位-時間特性の結果を示す。The result of the potential-time characteristic of all the Mg batteries when using MgNiGeO 4 obtained in Example 3 as a positive electrode material is shown. 実施例4で得られたMgFeTiOを正極材料として用いたときのMg全電池の電位-時間特性の結果を示す。The result of the potential-time characteristic of all the Mg batteries when using MgFeTiO 4 obtained in Example 4 as the positive electrode material is shown. 実施例5で得られた生成物のXRDパターンを示す。The XRD pattern of the product obtained in Example 5 is shown. 実施例6で得られた生成物のXRDパターンを示す。The XRD pattern of the product obtained in Example 6 is shown. 実施例6で得られた生成物のSEM像を示す。The SEM image of the product obtained in Example 6 is shown. 実施例7で得られた生成物のSEM像を示す。The SEM image of the product obtained in Example 7 is shown. 実施例2,3,7-9において焼成された生成物のXRDパターンを示す。The XRD pattern of the product baked in Examples 2, 3, 7-9 is shown. MgCo1-xNiGeO(x=0、0.25、0.5、0.75、1)の体積変化を示す図である。MgCo is a diagram illustrating a change in volume of 1-x Ni x GeO 4 ( x = 0,0.25,0.5,0.75,1). 実施例8で得られた生成物のSEM像を示す。The SEM image of the product obtained in Example 8 is shown. 実施例9で得られた生成物のSEM像を示す。The SEM image of the product obtained in Example 9 is shown. MgCo1-xNiGeO(x=0、0.25、0.5、0.75、1)の物性変化を示す。The physical property changes of MgCo 1-x Ni x GeO 4 (x = 0, 0.25, 0.5, 0.75, 1 ) are shown.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書において範囲を示す場合、いずれも両端の数値を含む。 Hereinafter, embodiments of the present invention will be described in detail. In addition, when showing a range in this specification, all include the numerical value of both ends.
 1.二次電池用正極活物質
 本実施形態の二次電池用正極活物質は、下記一般式(1)
Mg   (1)
(ここで、式(1)中、XはNi、Fe、Mn、Co及びCuからなる群より選ばれる少なくとも1種であり、YはGe又はTiである。また、aは0.5~1.5、bは0.5~1.5、cは0.5~1.5、dは3.8~4.1を示す。)で表されるマグネシウム化合物を含む。
1. Positive electrode active material for secondary battery The positive electrode active material for a secondary battery of this embodiment is represented by the following general formula (1)
Mg a Xb Y c O d (1)
(In the formula (1), X is at least one selected from the group consisting of Ni, Fe, Mn, Co, and Cu, Y is Ge or Ti, and a is 0.5 to 1) .5, b is 0.5 to 1.5, c is 0.5 to 1.5, and d is 3.8 to 4.1.
 このようなマグネシウム化合物は、マグネシウムイオンを挿入及び脱離することができることから、マグネシウムイオン二次電池用正極活物質として有用である。 Such a magnesium compound is useful as a positive electrode active material for a magnesium ion secondary battery because it can insert and desorb magnesium ions.
 一般式(1)において、YがGeであれば、Xは、Ni、Mn及びCoからなる群より選ばれる少なくとも1種であることが好ましく、この場合、マグネシウム化合物の製造が容易で、しかも低コストでマグネシウム化合物を製造でき、また、二次電池の容量や電位をより向上させることができる。 In the general formula (1), when Y is Ge, X is preferably at least one selected from the group consisting of Ni, Mn and Co. In this case, the production of the magnesium compound is easy and low. A magnesium compound can be produced at low cost, and the capacity and potential of the secondary battery can be further improved.
 また、一般式(1)において、YがTiであれば、Xは、Feであることが好ましく、この場合、純度よくマグネシウム化合物を製造することができ、二次電池の容量や電位をより向上させることができる。 In general formula (1), if Y is Ti, X is preferably Fe. In this case, a magnesium compound can be produced with high purity, and the capacity and potential of the secondary battery are further improved. Can be made.
 上記aの値は、マグネシウムイオンの挿入及び脱離のしやすさ、容量、並びに高電位の観点から、0.8~1.3であることがより好ましく、0.9~1.1であることが特に好ましい。 The value of a is more preferably 0.8 to 1.3, and more preferably 0.9 to 1.1, from the viewpoints of easy insertion and desorption of magnesium ions, capacity, and high potential. It is particularly preferred.
 上記bの値は、マグネシウムイオンの挿入及び脱離のしやすさ、容量、並びに高電位の観点から、0.7~1.3であることがより好ましく、0.8~1.1であることが特に好ましい。なお、念のための注記であるが、Xが、Ni、Fe、Mn、Co及びCuからなる群より選ばれる2種以上である場合、bの値は、それら2種以上の各元素の総量を表す。 The value b is more preferably 0.7 to 1.3, and more preferably 0.8 to 1.1, from the viewpoints of ease of insertion and desorption of magnesium ions, capacity, and high potential. It is particularly preferred. As a reminder, when X is two or more selected from the group consisting of Ni, Fe, Mn, Co and Cu, the value of b is the total amount of each of the two or more elements. Represents.
 上記cの値は、マグネシウムイオンの挿入及び脱離のしやすさ、容量、並びに高電位の観点から、0.7~1.3であることがより好ましく、0.8~1.1であることが特に好ましい。 The value of c is more preferably 0.7 to 1.3, and more preferably 0.8 to 1.1, from the viewpoints of ease of insertion and desorption of magnesium ions, capacity, and high potential. It is particularly preferred.
 上記dの値は、マグネシウムイオンの挿入及び脱離のしやすさ、容量、並びに高電位の観点から、3.8~4.0であることがより好ましく、3.9~4.0であることが特に好ましい。 The value of d is more preferably 3.8 to 4.0 from the viewpoint of easy insertion and desorption of magnesium ions, capacity, and high potential, and is 3.9 to 4.0. It is particularly preferred.
 一般式(1)で表されるマグネシウム化合物としては、具体的には、マグネシウムイオンの挿入及び脱離のしやすさ、低コスト、容量、並びに高電位の観点から、MgNiGeO、MgMnGeO、MgCoGeO、MgFeTiOであることが好ましい。 Specific examples of the magnesium compound represented by the general formula (1) include MgNiGeO 4 , MgMnGeO 4 , MgCoGeO from the viewpoints of easy insertion and desorption of magnesium ions, low cost, capacity, and high potential. 4 and MgFeTiO 4 are preferable.
 上記マグネシウム化合物において、主相である結晶構造の存在量は特に限定的ではなく、一般式(1)で表されるマグネシウム化合物全体を基準として80モル%以上が好ましく、90モル%以上がより好ましい。このため、一般式(1)で表されるマグネシウム化合物は、単相の結晶構造からなる材料として形成され得る。ただし、本発明の効果を損なわない限り、一般式(1)で表されるマグネシウム化合物は、複数の結晶構造を有する材料して形成されていてもよい。なお、一般式(1)で表されるマグネシウム化合物の結晶構造は、X線回折測定により確認することができる。 In the magnesium compound, the abundance of the crystal structure as the main phase is not particularly limited, and is preferably 80 mol% or more, more preferably 90 mol% or more based on the entire magnesium compound represented by the general formula (1). . For this reason, the magnesium compound represented by the general formula (1) can be formed as a material having a single-phase crystal structure. However, the magnesium compound represented by the general formula (1) may be formed as a material having a plurality of crystal structures unless the effects of the present invention are impaired. The crystal structure of the magnesium compound represented by the general formula (1) can be confirmed by X-ray diffraction measurement.
 一般式(1)で表されるマグネシウム化合物は、例えば、粒子状の粉末の形態となり得る。マグネシウム化合物が粒子状である場合、その平均粒子径は、マグネシウムイオンの挿入及び脱離のしやすさ、容量、並びに高電位の観点から、0.005~50μmが好ましく、0.01~0.2μmがより好ましい。一般式(1)で表されるマグネシウム化合物の平均粒子径は、電子顕微鏡(SEM)観察により測定する。ここでいう平均粒子径とは、例えば、電子顕微鏡による直接観察によって測定された円相当径の算術平均値をいう。 The magnesium compound represented by the general formula (1) can be in the form of a particulate powder, for example. In the case where the magnesium compound is in the form of particles, the average particle size is preferably 0.005 to 50 μm, preferably 0.01 to 0.5 μm from the viewpoints of easy insertion and desorption of magnesium ions, capacity, and high potential. 2 μm is more preferable. The average particle diameter of the magnesium compound represented by the general formula (1) is measured by observation with an electron microscope (SEM). The average particle diameter here refers to, for example, an arithmetic average value of equivalent circle diameters measured by direct observation with an electron microscope.
 上記のような一般式(1)で表されるマグネシウム化合物を含む二次電池用正極活物質を用いてマグネシウムイオン二次電池を形成すると、当該マグネシウムイオン二次電池を高容量とすることができる。しかも、上記マグネシウム化合物を含む二次電池用正極活物質では、X2+/X3+及びX3+/X4+の二段階でのレドックス反応が起こるので、これによってマグネシウムイオン二次電池の容量が高くなりやすい。また、上記マグネシウム化合物は安価で容易なプロセスで製造することができるため、本実施形態のマグネシウムイオン二次電池用正極活物質によれば、低コストでマグネシウム二次電池を提供することができる。そのため、本実施形態の二次電池用正極活物質は、エネルギー密度の高いマグネシウム二次電池を構成する正極材料として適している。 When a magnesium ion secondary battery is formed using the positive electrode active material for a secondary battery containing the magnesium compound represented by the general formula (1) as described above, the magnesium ion secondary battery can have a high capacity. . Moreover, in the positive electrode active material for a secondary battery containing the magnesium compound, a redox reaction in two steps of X 2+ / X 3+ and X 3+ / X 4+ occurs, which increases the capacity of the magnesium ion secondary battery. Cheap. Moreover, since the said magnesium compound can be manufactured with an inexpensive and easy process, according to the positive electrode active material for magnesium ion secondary batteries of this embodiment, a magnesium secondary battery can be provided at low cost. Therefore, the positive electrode active material for secondary batteries of this embodiment is suitable as a positive electrode material constituting a magnesium secondary battery with high energy density.
 なお、本実施形態の二次電池用正極活物質の性能が阻害されない程度であれば、二次電池用正極活物質には他の材料が含まれていてもよい。また、上記二次電池用正極活物質は、マグネシウム化合物の他に不可避不純物を含むこともできる。このような不可避不純物としては、後述の原料混合物等が挙げられ、例えば、二次電池用正極活物質中に10モル%以下程度、好ましくは5モル%以下程度、より好ましくは2モル%以下程度含有し得る。 In addition, as long as the performance of the positive electrode active material for secondary batteries of the present embodiment is not hindered, other materials may be included in the positive electrode active material for secondary batteries. Moreover, the said positive electrode active material for secondary batteries can also contain an unavoidable impurity other than a magnesium compound. Examples of such inevitable impurities include a raw material mixture described later. For example, in the positive electrode active material for a secondary battery, about 10 mol% or less, preferably about 5 mol% or less, more preferably about 2 mol% or less. May be contained.
 二次電池用正極活物質においては、上記マグネシウム化合物と炭素材料(例えば、アセチレンブラック等のカーボンブラック等)とが複合体を形成していてもよい。これにより、焼成時に炭素材料がマグネシウム化合物の粒成長を抑制するため、電極特性に秀でた微粒子状の二次電池用正極活物質となり得る。この場合、炭素材料の含有量は、イオン二次電池用正極活物質中に3~20質量%、特に5~15質量%となるように調整することが好ましい。 In the positive electrode active material for a secondary battery, the magnesium compound and a carbon material (for example, carbon black such as acetylene black) may form a composite. Thereby, since a carbon material suppresses the grain growth of a magnesium compound at the time of baking, it can become a fine particle-form positive electrode active material for secondary batteries excellent in the electrode characteristic. In this case, the content of the carbon material is preferably adjusted to 3 to 20% by mass, particularly 5 to 15% by mass in the positive electrode active material for an ion secondary battery.
 2.二次電池用正極活物質の製造方法
 上記一般式(1)で表されるマグネシウム化合物を含む二次電池用正極活物質を製造する方法は特に限定されない。例えば、Mgを含有する原料と、上記Xを含有する原料と、上記Yを含有する原料とを含む原料混合物を加熱する加熱工程を備える製造方法によって、上記マグネシウム化合物が製造され、二次電池用正極活物質を得ることができる。以下、この製造方法について具体的に説明する。
2. Method for producing a positive active material for a secondary battery comprising a magnesium compound represented by the production method above general formula of the positive electrode active material for a secondary battery (1) is not particularly limited. For example, the magnesium compound is manufactured by a manufacturing method including a heating step of heating a raw material mixture including a raw material containing Mg, a raw material containing X, and a raw material containing Y. A positive electrode active material can be obtained. Hereinafter, this manufacturing method will be specifically described.
 (1)原料混合物
 上記製造方法における原料混合物は、Mgを含有する原料と、上記Xを含有する原料と、上記Yを含有する原料とを含む。上記原料混合物は、Mgを含有する原料、上記Xを含有する原料及びYを含有する原料を各1種類ずつ含む3種類の混合物であってもよい。あるいは、Mgを含有する原料、上記Xを含有する原料及びYを含有する原料はいずれも、1種又は2種以上とすることができる。さらに、原料混合物は、Mg、上記X及びMnの内の2種類又はそれ以上の元素を同時に含む化合物を原料の一部として用いることができる。この場合は、原料混合物は、3種類未満の混合物となる。
(1) Raw material mixture The raw material mixture in the said manufacturing method contains the raw material containing Mg, the raw material containing said X, and the raw material containing said Y. The raw material mixture may be three kinds of mixtures including one raw material containing Mg, one raw material containing X, and one raw material containing Y. Or the raw material containing Mg, the raw material containing X, and the raw material containing Y can all be one type or two or more types. Furthermore, the raw material mixture can use, as a part of the raw material, a compound containing Mg, two or more elements of X and Mn at the same time. In this case, the raw material mixture is a mixture of less than three types.
 Mgを含有する原料は、例えば、金属Mgであってもよいし、あるいは、Mg元素を含む化合物であってもよい。Mg元素を含む化合物としては、例えば、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、塩化マグネシウム(MgCl)、炭酸マグネシウム(MgCO)、硝酸マグネシウム(Mg(NO)、シュウ酸マグネシウム(MgC)、酢酸マグネシウム(Mg(CHCOO))等が挙げられる。Mg元素を含む化合物は、水和物であってもよい。 The raw material containing Mg may be, for example, metallic Mg or a compound containing Mg element. Examples of the compound containing Mg element include magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), magnesium chloride (MgCl 2 ), magnesium carbonate (MgCO 3 ), and magnesium nitrate (Mg (NO 3 ) 2. ), Magnesium oxalate (MgC 2 O 4 ), magnesium acetate (Mg (CH 3 COO) 2 ), and the like. Hydrate may be sufficient as the compound containing Mg element.
 上記Xを含有する原料は、金属X単体であってもよいし、あるいは、金属Xを含む化合物であってもよい。金属Xを含む化合物としては、金属Xの酸化物、水酸化物、塩化物、炭酸塩、硝酸塩、シュウ酸塩等が例示される。金属Xを含む化合物は、水和物であってもよい。 The raw material containing X may be a single metal X or a compound containing metal X. Examples of the compound containing metal X include metal X oxides, hydroxides, chlorides, carbonates, nitrates, and oxalates. The compound containing metal X may be a hydrate.
 金属Xを含む化合物のさらなる具体例として、XがFeであればFeC、XがMnであればMnC、XがNiであれば、Ni(OH)、XがCoであればCoC、XがCuであれば、CuOが例示される。 As a further embodiment of a compound containing a metal X, if X if it is Fe FeC 2 O 4, if X is Mn MnC 2 O 4, X is Ni, with Ni (OH) 2, X is Co If there is CoC 2 O 4 and X is Cu, CuO is exemplified.
 Yを含有する原料は、例えば、金属Yであってもよいし、あるいは、Yを含む化合物であってもよい。Yを含む化合物(すなわち、ゲルマニウム化合物又はチタニウム化合物)としては、例えば、酸化ゲルマニウム(GeO)、四塩化ゲルマニウム(GeCl)、四臭化ゲルマニウム(GeBr)、四ヨウ化ゲルマニウム(GeI)、四フッ化ゲルマニウム(GeF)、二硫化ゲルマニウム(GeS)、酸化チタン(TiO)、四塩化チタン(TiCl)、四臭化チタン(TiBr)、四ヨウ化Ti(TiI)、四フッ化チタン(TiF)、二硫化チタン(TiS)等が挙げられる。 The raw material containing Y may be, for example, metal Y or a compound containing Y. As the compound containing Y (that is, germanium compound or titanium compound), for example, germanium oxide (GeO 2 ), germanium tetrachloride (GeCl 4 ), germanium tetrabromide (GeBr 4 ), germanium tetraiodide (GeI 4 ) , Germanium tetrafluoride (GeF 4 ), germanium disulfide (GeS 2 ), titanium oxide (TiO 2 ), titanium tetrachloride (TiCl 4 ), titanium tetrabromide (TiBr 4 ), Ti tetraiodide (TiI 4 ) , Titanium tetrafluoride (TiF 4 ), titanium disulfide (TiS 2 ), and the like.
 原料混合物は、Mg、上記金属X、Y以外のその他金属元素(特に希少金属元素)を含まないことが好ましい。また、その他金属元素については、非酸化性雰囲気下での熱処理により離脱及び揮発していくものが望ましい。 It is preferable that the raw material mixture does not include Mg and other metal elements (particularly rare metal elements) other than the metals X and Y. As for other metal elements, those that are detached and volatilized by heat treatment in a non-oxidizing atmosphere are desirable.
 なお、上記したMgを含有する原料、上記Xを含有する原料、上記Yを含有する原料はいずれも市販品を使用してもよく、あるいは、別途合成して使用することもできる。 In addition, as for the raw material containing Mg, the raw material containing X, and the raw material containing Y, any of commercially available products may be used, or they may be synthesized separately and used.
 原料混合物の形状については特に限定はなく、取り扱い性の観点から、粉末状が好ましい。また反応性の観点から粒子は微細である方がよく平均粒子径が1μm以下(特に60~80nm程度)の粉末状が好ましい。各原料の平均粒子径は、電子顕微鏡観察(SEM)により測定する。 There is no particular limitation on the shape of the raw material mixture, and powder is preferable from the viewpoint of handleability. Further, from the viewpoint of reactivity, the particles are preferably fine, and a powder having an average particle size of 1 μm or less (particularly about 60 to 80 nm) is preferable. The average particle diameter of each raw material is measured by electron microscope observation (SEM).
 原料混合物は、Mgを含有する原料と、上記Xを含有する原料と、上記Yを含有する原料とを所定の配合割合で混合することで調製することができる。混合方法は、特に制限されず、例えば、各原料を均一に混合できる方法を採用することができる。具体的には、乳鉢混合、メカニカルミリング処理、共沈法、各原料を溶媒中に分散させた後に混合する方法、各原料を溶媒中で一度に分散させて混合する方法等を採用することができる。これらのなかでも、乳鉢混合を採用するとより簡便な方法でマグネシウム化合物を得ることができる。より均一な混ざり合った原料混合物を得る場合は、共沈法を採用することができる。 The raw material mixture can be prepared by mixing a raw material containing Mg, a raw material containing X and a raw material containing Y in a predetermined blending ratio. The mixing method is not particularly limited, and for example, a method that can uniformly mix the raw materials can be employed. Specifically, mortar mixing, mechanical milling treatment, coprecipitation method, a method of mixing after each raw material is dispersed in a solvent, a method of mixing each raw material at once in a solvent, etc. may be adopted. it can. Among these, a magnesium compound can be obtained by a simpler method when mortar mixing is employed. A coprecipitation method can be employed to obtain a more uniformly mixed raw material mixture.
 各原料混合物における各原料の混合割合については、特に限定的ではない。例えば、最終生成物である所望の組成を有するマグネシウム化合物が得られるように各原料を配合することが好ましい。具体的には、各原料に含まれる各元素の比率が、目的とするマグネシウム化合物中の各元素の比率と同一となるように各原料の配合割合を調整することが好ましい。 The mixing ratio of each raw material in each raw material mixture is not particularly limited. For example, it is preferable to blend each raw material so that a magnesium compound having a desired composition as a final product is obtained. Specifically, it is preferable to adjust the blending ratio of each raw material so that the ratio of each element contained in each raw material is the same as the ratio of each element in the target magnesium compound.
 (2)加熱工程
 加熱工程では、Mgを含有する原料と、上記Xを含有する原料と、上記Yを含有する原料とを含む原料混合物を加熱する。
(2) Heating step In the heating step, a raw material mixture including a raw material containing Mg, a raw material containing X, and a raw material containing Y is heated.
 上記加熱工程は、例えば、アルゴン、窒素等の不活性ガス雰囲気等で行うことができる。あるいは、上記加熱工程は、真空等の減圧下で行ってもよい。 The heating step can be performed, for example, in an inert gas atmosphere such as argon or nitrogen. Alternatively, the heating step may be performed under reduced pressure such as vacuum.
 加熱工程における加熱温度(すなわち、焼成温度)は500~1500℃であることが好ましい。この場合、加熱工程の操作をより容易に行うことができるとともに、得られるマグネシウム化合物がスピネル型構造を形成しやすい。その結果、得られるマグネシウム化合物の結晶性及び電極特性(特に容量及び電位)が向上しやすい。 The heating temperature (that is, the firing temperature) in the heating step is preferably 500 to 1500 ° C. In this case, the operation of the heating step can be performed more easily, and the obtained magnesium compound can easily form a spinel structure. As a result, the crystallinity and electrode characteristics (particularly capacity and potential) of the obtained magnesium compound are likely to be improved.
 加熱工程における加熱温度の下限は、上記XがFeであれば、700℃であることが好ましく、1150℃であることが特に好ましい。なお、加熱温度の上限値は、マグネシウム化合物の製造における操作を容易におこなうことができる範囲で適宜決定することができる(例えば、1500℃)。 The lower limit of the heating temperature in the heating step is preferably 700 ° C., particularly preferably 1150 ° C., if X is Fe. In addition, the upper limit of heating temperature can be suitably determined in the range which can operate easily in manufacture of a magnesium compound (for example, 1500 degreeC).
 加熱工程における加熱時間については、特に限定的ではなく、例えば、10分~48時間が好ましく、30分~24時間がより好ましい。 The heating time in the heating step is not particularly limited. For example, 10 minutes to 48 hours are preferable, and 30 minutes to 24 hours are more preferable.
 所定時間加熱を行った後、冷却することで所望のマグネシウム化合物が得られる。冷却速度は特に限定されない。また、一度冷却してから再度、前記加熱温度にて加熱処理を行って焼成を行ってもよい。 After heating for a predetermined time, the desired magnesium compound is obtained by cooling. The cooling rate is not particularly limited. In addition, after cooling once, baking may be performed again at the heating temperature.
 なお、マグネシウム化合物は、上記製造方法の他に、例えば、共沈法、ゾルゲル法、水熱合成法などの方法によって製造することができる。 In addition, a magnesium compound can be manufactured by methods, such as a coprecipitation method, a sol gel method, a hydrothermal synthesis method, other than the said manufacturing method.
 3.二次電池
 本実施形態の二次電池は、上記二次電池用正極活物質を構成要素とする。特に、上記二次電池用正極活物質はマグネシウムイオン二次電池の構成要素として適している。
3. Secondary battery The secondary battery of the present embodiment includes the above-described positive electrode active material for a secondary battery as a constituent element. In particular, the positive electrode active material for a secondary battery is suitable as a component of a magnesium ion secondary battery.
 マグネシウムイオン二次電池は、上記マグネシウムイオン二次電池用正極活物質を正極活物質として使用する他は、基本的な構造は、公知の非水電解液マグネシウムイオン二次電池を参考に構成することができる。例えば、正極、負極及びセパレータを、前記正極及び負極がセパレータによって互いに隔離されるように電池容器内に配置することができる。その後、非水電解液を当該電池容器内に充填した後、当該電池容器を密封すること等によってマグネシウムイオン二次電池を製造することができる。なお、マグネシウムイオン二次電池は、マグネシウム二次電池であってもよい。本明細書において、「マグネシウムイオン二次電池」は、マグネシウムイオンをキャリアイオンとする二次電池を意味し、「マグネシウム二次電池」は、負極活物質としてマグネシウム金属又はマグネシウム合金を使用する二次電池を意味する。 The basic structure of the magnesium ion secondary battery shall be a known non-aqueous electrolyte magnesium ion secondary battery, except that the positive electrode active material for magnesium ion secondary battery is used as the positive electrode active material. Can do. For example, the positive electrode, the negative electrode, and the separator can be disposed in the battery container so that the positive electrode and the negative electrode are separated from each other by the separator. Then, after filling the non-aqueous electrolyte into the battery container, the magnesium ion secondary battery can be manufactured by sealing the battery container. The magnesium ion secondary battery may be a magnesium secondary battery. In this specification, “magnesium ion secondary battery” means a secondary battery using magnesium ions as carrier ions, and “magnesium secondary battery” means a secondary that uses magnesium metal or a magnesium alloy as a negative electrode active material. Means battery.
 前記正極は、マグネシウムイオン二次電池用正極活物質を含有する正極材料を正極集電体に担持した構造を採用することができる。例えば、上記マグネシウムイオン二次電池用正極活物質、導電助剤、及び必要に応じて結着剤を含有する正極合剤を、正極集電体に塗布することで製造することができる。 The positive electrode can adopt a structure in which a positive electrode material containing a positive electrode active material for a magnesium ion secondary battery is supported on a positive electrode current collector. For example, the positive electrode active material for a magnesium ion secondary battery, a conductive additive, and, if necessary, a positive electrode mixture containing a binder can be produced by applying to a positive electrode current collector.
 導電助材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、気相法炭素繊維、カーボンナノファイバー、黒鉛、コークス類等の炭素材料を用いることができる。導電助剤の形状は、特に制限はなく、例えば粉末状等を採用することができる。 As the conductive aid, for example, carbon materials such as acetylene black, ketjen black, carbon nanotube, vapor grown carbon fiber, carbon nanofiber, graphite, and coke can be used. There is no restriction | limiting in particular in the shape of a conductive support agent, For example, a powder form etc. are employable.
 結着剤としては、例えば、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン等のフッ素樹脂等が挙げられる。 Examples of the binder include fluorine resins such as polyvinylidene fluoride resin and polytetrafluoroethylene.
 正極材料中の各種成分の含有量については、特に制限はなく、広い範囲内から適宜決定することができる。例えば、マグネシウムイオン二次電池用正極活物質を50~95体積%(特に70~90体積%)、導電助剤を2.5~25体積%(特に5~15体積%)、結着剤を2.5~25体積%(特に5~15体積%)含有することが好ましい。 The content of various components in the positive electrode material is not particularly limited and can be appropriately determined from a wide range. For example, the positive electrode active material for a magnesium ion secondary battery is 50 to 95% by volume (particularly 70 to 90% by volume), the conductive auxiliary agent is 2.5 to 25% by volume (particularly 5 to 15% by volume), and the binder is added. The content is preferably 2.5 to 25% by volume (particularly 5 to 15% by volume).
 正極集電体を構成する材料としては、例えば、アルミニウム、チタン、白金、モリブデン、ステンレス、銅等が挙げられる。前記正極集電体の形状としては、例えば、多孔質体、箔、板、繊維からなるメッシュ等が挙げられる。 Examples of the material constituting the positive electrode current collector include aluminum, titanium, platinum, molybdenum, stainless steel, and copper. Examples of the shape of the positive electrode current collector include a porous body, a foil, a plate, and a mesh made of fibers.
 なお、正極集電体に対する正極材料の塗布量は、マグネシウムイオン二次電池の用途等に応じて適宜決定することが好ましい。 It should be noted that the amount of the positive electrode material applied to the positive electrode current collector is preferably determined as appropriate according to the use of the magnesium ion secondary battery.
 負極を構成する負極活物質としては、例えば、マグネシウム金属;ケイ素;ケイ素含有Clathrate化合物;マグネシウム合金;M (M:Co、Ni、Mn、Sn等、M:Mn、Fe、Zn等)で表される三元又は四元酸化物;M (M:Fe、Co、Ni、Mn等)、M (M:Fe、Co、Ni、Mn等)、MnV、M(M:Sn、Ti等)、MO(M:Fe、Co、Ni、Mn、Sn、Cu等)等で表される金属酸化物;黒鉛、ハードカーボン、ソフトカーボン、グラフェン;上記した炭素材料;MgC、MgC・2HO等のような有機系化合物等が挙げられる。マグネシウム合金としては、例えば、マグネシウム及びアルミニウムを構成元素として含む合金、マグネシウム及び亜鉛を構成元素として含む合金、マグネシウム及びマンガンを構成元素として含む合金、マグネシウム及びビスマスを構成成分として含む合金、マグネシウム及びニッケルを構成元素として含む合金、マグネシウム及びアンチモンを構成元素として含む合金、マグネシウム及びスズを構成元素として含む合金、マグネシウム及びインジウムを構成元素として含む合金;金属(スカンジウム、チタン、バナジウム、クロム、ジルコニウム、ニオブ、モリブデン、ハフニウム、タンタル等)とカーボンを構成元素として含むMXene系合金、M BC系合金(M:Sc、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta等)等の四元系層状炭化又は窒化化合物;マグネシウム及び鉛を構成元素として含む合金等が挙げられる。 Examples of the negative electrode active material constituting the negative electrode include magnesium metal; silicon; silicon-containing acrylate compound; magnesium alloy; M 1 M 2 2 O 4 (M 1 : Co, Ni, Mn, Sn, etc., M 2 : Mn, Ternary or quaternary oxides represented by Fe, Zn, etc .; M 3 3 O 4 (M 3 : Fe, Co, Ni, Mn, etc.), M 4 2 O 3 (M 4 : Fe, Co, Ni) , Mn, etc.), MnV 2 O 6 , M 5 O 2 (M 5 : Sn, Ti etc.), M 6 O (M 6 : Fe, Co, Ni, Mn, Sn, Cu etc.) Oxides; graphite, hard carbon, soft carbon, graphene; the above-described carbon materials; organic compounds such as MgC 8 H 4 O 4 , MgC 8 H 4 O 4 .2H 2 O, and the like. Examples of magnesium alloys include alloys containing magnesium and aluminum as constituent elements, alloys containing magnesium and zinc as constituent elements, alloys containing magnesium and manganese as constituent elements, alloys containing magnesium and bismuth as constituent elements, magnesium and nickel Alloy containing magnesium, alloy containing magnesium and antimony as constituent elements, alloy containing magnesium and tin as constituent elements, alloy containing magnesium and indium as constituent elements; metal (scandium, titanium, vanadium, chromium, zirconium, niobium) , molybdenum, hafnium, MXene based alloy containing as constituent elements carbon and tantalum), M 7 x BC 3 alloy (M 7: Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, T Quaternary layered carbide or nitride compound etc.) and the like; alloys containing magnesium and lead as a constituent element thereof.
 前記負極は、負極活物質から構成することもでき、また、負極活物質、導電助剤、及び必要に応じて結着剤を含有する負極材料が負極集電体上に担持する構成を採用することもできる。負極材料が負極集電体上に担持する構成を採用する場合、負極活物質、導電助剤、及び必要に応じて結着剤を含有する負極合剤を、負極集電体に塗布することで製造することができる。 The negative electrode can be composed of a negative electrode active material, and adopts a configuration in which a negative electrode material containing a negative electrode active material, a conductive additive, and a binder as necessary is supported on the negative electrode current collector. You can also. When adopting a configuration in which the negative electrode material is supported on the negative electrode current collector, a negative electrode mixture containing a negative electrode active material, a conductive additive, and a binder as necessary is applied to the negative electrode current collector. Can be manufactured.
 負極が負極活物質から構成される場合、上記の負極活物質を電極に適した形状(板状等)に成形して得ることができる。 When the negative electrode is composed of a negative electrode active material, it can be obtained by molding the negative electrode active material into a shape (such as a plate shape) suitable for the electrode.
 また、負極材料が負極集電体上に担持する構成を採用する場合、導電助剤及び結着剤の種類、並びに負極活物質、導電助剤及び結着剤の含有量は上記した正極のものを適用することができる。負極集電体を構成する材料としては、例えば、アルミニウム、銅、ニッケル、ステンレス等が挙げられる。前記負極集電体の形状としては、例えば、多孔質体、箔、板、繊維からなるメッシュ等が挙げられる。なお、負極集電体に対する負極材料の塗布量は、マグネシウムイオン二次電池の用途等に応じて適宜決定することが好ましい。 In addition, when adopting a configuration in which the negative electrode material is supported on the negative electrode current collector, the types of the conductive auxiliary agent and the binder, and the negative electrode active material, the conductive auxiliary agent, and the binder content are those of the positive electrode described above. Can be applied. Examples of the material constituting the negative electrode current collector include aluminum, copper, nickel, and stainless steel. Examples of the shape of the negative electrode current collector include a porous body, a foil, a plate, and a mesh made of fibers. In addition, it is preferable to determine suitably the application quantity of the negative electrode material with respect to a negative electrode collector according to the use etc. of a magnesium ion secondary battery.
 セパレータとしては、電池中で正極と負極を隔離し、且つ、電解液を保持して正極と負極との間のイオン伝導性を確保することができる材料からなるものであれば制限はない。例えば、ポリエチレン、ポリプロピレン、ポリイミド、ポリビニルアルコール、末端アミノ化ポリエチレンオキシド等のポリオレフィン樹脂;ポリテトラフルオロエチレン等のフッ素樹脂;アクリル樹脂;ナイロン;芳香族アラミド;無機ガラス;セラミックス等の材質からなり、多孔質膜、不織布、織布等の形態の材料を用いることができる。 The separator is not limited as long as it is made of a material that can separate the positive electrode and the negative electrode in the battery and can hold the electrolytic solution to ensure the ionic conductivity between the positive electrode and the negative electrode. For example, polyolefin resin such as polyethylene, polypropylene, polyimide, polyvinyl alcohol, terminal aminated polyethylene oxide; fluorine resin such as polytetrafluoroethylene; acrylic resin; nylon; aromatic aramid; inorganic glass; Materials in the form of a membrane, nonwoven fabric, woven fabric, etc. can be used.
 非水電解液は、マグネシウムイオンを含む電解液が好ましい。このような電解液としては、例えば、マグネシウム塩の溶液、マグネシウムを含む無機材料で構成されるイオン液体等が挙げられる。前記電解液としては、例えば、マグネシウム塩を溶媒に溶解させた溶液、マグネシウムを含む無機材料で構成されるイオン液体などが挙げられるが、かかる例示のみに限定されるものではない。マグネシウム塩としては、例えば、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、フッ化マグネシウムなどのハロゲン化マグネシウム、過塩素酸マグネシウム、テトラフルオロホウ酸マグネシウム、ヘキサフルオロリン酸マグネシウム、ヘキサフルオロヒ酸マグネシウムなどのマグネシウム無機塩化合物;ビス(トリフルオロメチルスルホニル)イミドマグネシウム、安息香酸マグネシウム、サリチル酸マグネシウム、フタル酸マグネシウム、酢酸マグネシウム、プロピオン酸マグネシウム、トリス(ペンタフルオロエタン)トリフルオロフォスフェイトマグネシウム、グリニャール試薬などのマグネシウム有機塩化合物などが挙げられるが、かかる例示のみに限定されるものではない。 The non-aqueous electrolyte is preferably an electrolyte containing magnesium ions. Examples of such an electrolytic solution include a magnesium salt solution, an ionic liquid composed of an inorganic material containing magnesium, and the like. Examples of the electrolytic solution include a solution in which a magnesium salt is dissolved in a solvent and an ionic liquid composed of an inorganic material containing magnesium. However, the electrolytic solution is not limited to such examples. Examples of magnesium salts include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, and magnesium fluoride, magnesium perchlorate, magnesium tetrafluoroborate, magnesium hexafluorophosphate, magnesium hexafluoroarsenate, and the like. Magnesium inorganic salt compounds: magnesium such as bis (trifluoromethylsulfonyl) imido magnesium, magnesium benzoate, magnesium salicylate, magnesium phthalate, magnesium acetate, magnesium propionate, tris (pentafluoroethane) trifluorophosphate magnesium, Grignard reagent, etc. Examples include organic salt compounds, but are not limited to such examples.
 溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメトルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート化合物;γ-ブチロラクトン、γ-バレロラクトンなどのラクトン化合物;テトラヒドロフラン、2-メチルテトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メトキシメタン、N,N-ジメチルホルムアミド、グライム、N-プロピル-N-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、ジメトキシエタン、ジメトキメタン、ジエトキメタン、ジエトキエタン、プロピレングリコールジメチルエーテル等のエーテル化合物;アセトニトリル等が挙げられる。 Examples of the solvent include carbonate compounds such as propylene carbonate, ethylene carbonate, dimethol carbonate, ethylmethyl carbonate, and diethyl carbonate; lactone compounds such as γ-butyrolactone and γ-valerolactone; tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, Such as diisopropyl ether, dibutyl ether, methoxymethane, N, N-dimethylformamide, glyme, N-propyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide, dimethoxyethane, dimethoxymethane, diethoxymethane, dietochiethane, propylene glycol dimethyl ether Ether compounds; acetonitrile and the like.
 また、上記非水電解液の代わりに固体電解質を使用することもできる。固体電解質としては、例えば、(Mg0.1Hf0.94/3.8Nb(PO、(Mg0.1Hf0.94/3.8(Nb1-y)(PO (0≦y≦3)、MgZr(PO(k、m=1、2、4、5、7;n=2、4、6、8、10)、Mg(BH(NH等のマグネシウムイオン伝導体等が列挙される。 Further, a solid electrolyte can be used instead of the non-aqueous electrolyte. Examples of the solid electrolyte include (Mg 0.1 Hf 0.9 ) 4 / 3.8 Nb (PO 4 ) 3 , (Mg 0.1 Hf 0.9 ) 4 / 3.8 (Nb 1-y W y ) (PO 4 ) 3 (0 ≦ y ≦ 3), Mg k Zr m (PO 4 ) n (k, m = 1, 2, 4, 5, 7; n = 2, 4, 6, 8, 10 ), Magnesium ion conductors such as Mg (BH 4 ) 2 (NH 3 ) 2 and the like are listed.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the embodiments.
 (実施例1)
 原料粉体としてMgO(和光化学、0.05μm、99.9%(3N))、MnC(高純度化学、99.9%(3N))、GeO(レアメタリック、99.99%(4N))を用いた。MgO、MnC及びGeOをマグネシウム、マンガン及びゲルマニウムのモル比が1:1:1となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、Ar気流下にて、800℃~1150℃の焼成温度範囲で1時間、2時間、4時間または6時間で焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。焼成後に得られた生成物をAr雰囲気に保ったグローブボックス内に持ち込み、空気との接触がない環境で保管した。
Example 1
MgO (Wako Chemical, 0.05 μm, 99.9% (3N)), MnC 2 O 4 (high purity chemistry, 99.9% (3N)), GeO 2 (rare metallic, 99.99%) (4N)) was used. MgO, MnC 2 O 4 and GeO 2 were weighed so that the molar ratio of magnesium, manganese and germanium was 1: 1: 1, and mixed in an agate mortar for about 30 minutes to obtain a raw material mixture. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Thereafter, acetone is distilled off under reduced pressure, and then the recovered powder is pellet-molded at 40 MPa, and heated in a range of 800 ° C. to 1150 ° C. for 1 hour, 2 hours, 4 hours, or 6 hours under Ar flow. Baked. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
 (実施例2)
 原料粉体としてMgO(和光化学、0.05μm、99.9%(3N))、CoC(高純度化学、99.9%(2N))、GeO(レアメタリック、99.99%(4N))を用いた。MgO、CoC及びGeOをマグネシウム、コバルト及びゲルマニウムのモル比が1:1:1となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、Ar気流下にて、1150℃の焼成温度、6時間で焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。焼成後に得られた生成物をAr雰囲気に保ったグローブボックス内に持ち込み、空気との接触がない環境で保管した。
(Example 2)
MgO (Wako Chemical, 0.05 μm, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), GeO 2 (rare metallic, 99.99%) (4N)) was used. MgO, magnesium CoC 2 O 4 and GeO 2, the molar ratio of cobalt and germanium 1: 1: 1 and were weighed so as to obtain a raw material mixture is mixed for about 30 minutes in an agate mortar. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
 (実施例3)
 原料粉体としてMgO(和光化学、0.05μm、99.9%(3N))、Ni(OH)(高純度化学、99.9%(3N))、GeO(レアメタリック、99.99%(4N))を用いた。MgO、Ni(OH)及びGeOをマグネシウム、ニッケル及びゲルマニウムのモル比が1:1:1となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、Ar気流下にて、800℃~1150℃の焼成温度範囲で1時間、2時間、4時間または6時間で焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。焼成後に得られた生成物をAr雰囲気に保ったグローブボックス内に持ち込み、空気との接触がない環境で保管した。
(Example 3)
MgO (Wako Chemical, 0.05 μm, 99.9% (3N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), GeO 2 (rare metallic, 99.99) % (4N)). MgO, Ni (OH) 2 and GeO 2 were weighed so that the molar ratio of magnesium, nickel and germanium was 1: 1: 1, and mixed in an agate mortar for about 30 minutes to obtain a raw material mixture. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Thereafter, acetone is distilled off under reduced pressure, and then the recovered powder is pellet-molded at 40 MPa, and heated in a range of 800 ° C. to 1150 ° C. for 1 hour, 2 hours, 4 hours, or 6 hours under Ar flow. Baked. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
 (実施例4)
 原料粉体としてMgO(和光化学、0.05μm、99.9%(3N))、FeC・2HO(純正化学、99.9%(3N))、TiO(A)(レアメタリック、99.99%(4N))を用いた。MgO、FeC及びTiOをマグネシウム、鉄及びチタンのモル比が1:1:1となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、Ar気流下にて、800℃~1150℃の焼成温度範囲で1時間、2時間、4時間または6時間で焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。焼成後に得られた生成物をAr雰囲気に保ったグローブボックス内に持ち込み、空気との接触がない環境で保管した。
Example 4
MgO (Wako Chemical, 0.05 μm, 99.9% (3N)), FeC 2 O 4 · 2H 2 O (Pure Chemical, 99.9% (3N)), TiO 2 (A) (rare) Metallic, 99.99% (4N)) was used. MgO, FeC 2 O 4 and TiO 2 were weighed so that the molar ratio of magnesium, iron and titanium was 1: 1: 1, and mixed in an agate mortar for about 30 minutes to obtain a raw material mixture. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Thereafter, acetone is distilled off under reduced pressure, and then the recovered powder is pellet-molded at 40 MPa, and heated in a range of 800 ° C. to 1150 ° C. for 1 hour, 2 hours, 4 hours, or 6 hours under Ar flow. Baked. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
 (実施例5)
 原料粉体としてMgO(和光化学、0.05μm、99.9%(3N))、MnC(高純度化学、99.9%(3N))、Ni(OH)(高純度化学、99.9%(3N))、GeO(レアメタリック、99.99%(4N))を用いた。MgO、MnC、Ni(OH)及びGeOをマグネシウム、マンガン、ニッケル及びゲルマニウムのモル比が2:1:1:2となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、Ar気流下にて、1150℃の焼成温度で6時間焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。焼成後に得られた生成物をAr雰囲気に保ったグローブボックス内に持ち込み、空気との接触がない環境で保管した。
(Example 5)
MgO (Wako Chemical, 0.05 μm, 99.9% (3N)), MnC 2 O 4 (high purity chemistry, 99.9% (3N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), GeO 2 (rare metallic, 99.99% (4N)). Weigh MgO, MnC 2 O 4 , Ni (OH) 2 and GeO 2 so that the molar ratio of magnesium, manganese, nickel and germanium is 2: 1: 1: 2, and mix for about 30 minutes in an agate mortar. A raw material mixture was obtained. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
 (実施例6)
 原料粉体としてMgO(和光化学、0.05μm、99.9%(3N))、CoC(高純度化学、99.9%(2N))、MnC(高純度化学、99.9%(3N))、GeO(レアメタリック、99.99%(4N))を用いた。MgO、CoC、MnC及びGeOをマグネシウム、コバルト、マンガン及びゲルマニウムのモル比が2:1:1:2となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、Ar気流下にて、1150℃の焼成温度、6時間で焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。焼成後に得られた生成物をAr雰囲気に保ったグローブボックス内に持ち込み、空気との接触がない環境で保管した。
(Example 6)
MgO (Wako Chemical, 0.05 μm, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), MnC 2 O 4 (high purity chemistry, 99 0.9% (3N)), GeO 2 (rare metallic, 99.99% (4N)). MgO, CoC 2 O 4 , MnC 2 O 4 and GeO 2 are weighed so that the molar ratio of magnesium, cobalt, manganese and germanium is 2: 1: 1: 2, and mixed in an agate mortar for about 30 minutes. A mixture was obtained. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
 (実施例7)
 原料粉体としてMgO(和光化学、0.05μm、99.9%(3N))、CoC(高純度化学、99.9%(2N))、Ni(OH)(高純度化学、99.9%(3N))、GeO(レアメタリック、99.99%(4N))を用いた。MgO、CoC、Ni(OH)及びGeOをマグネシウム、コバルト、ニッケル及びゲルマニウムのモル比が2:1:1:2となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、Ar気流下にて、1150℃の焼成温度、6時間で焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。焼成後に得られた生成物をAr雰囲気に保ったグローブボックス内に持ち込み、空気との接触がない環境で保管した。
(Example 7)
MgO (Wako Chemical, 0.05 μm, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), GeO 2 (rare metallic, 99.99% (4N)). MgO, CoC 2 O 4 , Ni (OH) 2 and GeO 2 are weighed so that the molar ratio of magnesium, cobalt, nickel and germanium is 2: 1: 1: 2, and mixed in an agate mortar for about 30 minutes. A raw material mixture was obtained. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
 (実施例8)
 原料粉体としてMgO(和光化学、0.05μm、99.9%(3N))、CoC(高純度化学、99.9%(2N))、Ni(OH)(高純度化学、99.9%(3N))、GeO(レアメタリック、99.99%(4N))を用いた。MgO、CoC 、Ni(OH)及びGeOをマグネシウム、コバルト、ニッケル及びゲルマニウムのモル比が4:1:3:4となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、Ar気流下にて、1150℃の焼成温度、6時間で焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。焼成後に得られた生成物をAr雰囲気に保ったグローブボックス内に持ち込み、空気との接触がない環境で保管した。
(Example 8)
MgO (Wako Chemical, 0.05 μm, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), was used GeO 2 (Rare metallic, 99.99% (4N) a). Weigh MgO, CoC 2 O 4 , Ni (OH) 2 and GeO 2 so that the molar ratio of magnesium, cobalt, nickel and germanium is 4: 1: 3: 4, and mix for about 30 minutes in an agate mortar. A raw material mixture was obtained. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
 (実施例9)
 原料粉体としてMgO(和光化学、0.05μm、99.9%(3N))、CoC(高純度化学、99.9%(2N))、Ni(OH)(高純度化学、99.9%(3N))、GeO(レアメタリック、99.99%(4N))を用いた。MgO、CoC、Ni(OH)及びGeOをマグネシウム、コバルト、ニッケル及びゲルマニウム比が4:3:1:4となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、Ar気流下にて、1150℃の焼成温度、6時間で焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。焼成後に得られた生成物をAr雰囲気に保ったグローブボックス内に持ち込み、空気との接触がない環境で保管した。
Example 9
MgO (Wako Chemical, 0.05 μm, 99.9% (3N)), CoC 2 O 4 (high purity chemistry, 99.9% (2N)), Ni (OH) 2 (high purity chemistry, 99.9% (3N)), was used GeO 2 (Rare metallic, 99.99% (4N) a). MgO, CoC 2 O 4 , Ni (OH) 2 and GeO 2 are weighed so that the ratio of magnesium, cobalt, nickel and germanium is 4: 3: 1: 4 and mixed in an agate mortar for about 30 minutes to obtain a raw material mixture Got. Thereafter, the raw material mixture was placed in a chrome steel container together with zirconia balls (15 mmΦ × 10), added with acetone, and pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after distilling acetone off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 1150 ° C. for 6 hours under an Ar stream. At this time, the temperature raising rate was set to 400 ° C./h. The cooling rate was set to 100 ° C./h up to 300 ° C., and thereafter it was allowed to cool to room temperature by natural cooling. The product obtained after firing was brought into a glove box kept in an Ar atmosphere and stored in an environment without contact with air.
 <評価方法>
 [粉末X線回折(XRD)測定]
 X線回折装置((株)リガク製 RINT-UltimaIII/G)を用いて合成した試料の測定を行った。X線源には CuKα線を用い、印加電圧40kV、電流値40mAとした。測定は0.02°/secの走査速度で10°~80°の角度範囲で行った。
<Evaluation method>
[Powder X-ray diffraction (XRD) measurement]
The synthesized sample was measured using an X-ray diffractometer (RINT-UltimaIII / G manufactured by Rigaku Corporation). A CuKα ray was used as the X-ray source, the applied voltage was 40 kV, and the current value was 40 mA. The measurement was performed at an angle range of 10 ° to 80 ° at a scanning speed of 0.02 ° / sec.
 [ICP-AES測定]
 ICP-AES測定は、誘導結合プラズマ発光分光分析装置(サーモフィッシャーサイエンティフィック社の「iCAP6500」を使用して行った。
[ICP-AES measurement]
ICP-AES measurement was performed using an inductively coupled plasma emission spectrometer (“iCAP6500” manufactured by Thermo Fisher Scientific).
 [試験例1:カチオン脱離及び挿入の検討(Liハーフセル)]
 充放電測定を行うために、実施例で得られた生成物と、アセチレンブラック(AB)と、ポリフッ化ビニリデン(PVDF)とが重量比85:7.5:7.5となるように、めのう乳鉢で混合し、得られたスラリーを集電体であるAl箔(厚さ20μm)上に塗布し、これを円形(直径8mm)に打ち抜き正極とした。セルはCR2032型コインセルを用いた。Li箱を負極として用い、電解液はエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比1:2で混合した溶媒に支持電解質としてLiPFを1Mの濃度で溶解した電解液を使用した。定電流充放電測定は電圧切り替え器を用い、電流10mAg-1、上限電圧4.8V、下限電圧1.5Vに設定し、充電より開始した。55℃恒温槽内にセルを入れた状態で充放電測定を行った。
[Test Example 1: Examination of cation desorption and insertion (Li half-cell)]
In order to perform charge / discharge measurement, the product obtained in the example, acetylene black (AB), and polyvinylidene fluoride (PVDF) are agglomerated so that the weight ratio is 85: 7.5: 7.5. The mixture was mixed in a mortar, and the resulting slurry was applied on an Al foil (thickness 20 μm) as a current collector, which was punched into a circle (diameter 8 mm) to obtain a positive electrode. The cell used was a CR2032-type coin cell. The Li box was used as the negative electrode, and the electrolyte used was an electrolyte obtained by dissolving LiPF 6 at a concentration of 1M as a supporting electrolyte in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2. . The constant current charge / discharge measurement was started by charging using a voltage switch, setting the current to 10 mAg −1 , the upper limit voltage 4.8 V, and the lower limit voltage 1.5 V. Charge / discharge measurement was performed in a state where the cell was placed in a 55 ° C. constant temperature bath.
 [試験例2:マグネシウムイオン脱離及び挿入の検討(Mg全電池)]
 セルはCR2032型コインセルを用いた。Mg盤を負極として、電解液は、Mg(TFSI)をその濃度が0.5Mとなるようにエチレングリコールジメチルエーテルジメトキシエチレングリコール(商品名:monoglyme)に溶解させて調製した。定電流充放電測定は電圧切り替え器を用い、電流5mAg-1、上限電圧3.6V、下限電圧0Vに設定し、充電より開始することで充放電測定を行った。なお、測定は室温で行った。
[Test Example 2: Investigation of magnesium ion desorption and insertion (Mg all battery)]
The cell used was a CR2032-type coin cell. The electrolyte solution was prepared by dissolving Mg (TFSI) 2 in ethylene glycol dimethyl ether dimethoxyethylene glycol (trade name: monoglyme) so that its concentration was 0.5 M, using the Mg disk as the negative electrode. The constant current charge / discharge measurement was performed by using a voltage switch, setting the current to 5 mAg −1 , the upper limit voltage 3.6 V, and the lower limit voltage 0 V, and starting from charge. The measurement was performed at room temperature.
 図1(a)、(b)は、実施例1において焼成された生成物(1150℃で6時間の焼成)のXRDパターンを示している((b)は(a)における40~70付近の拡大図である)。使用したX線波長は1.5418Åである。図1(b)に示すように、高角度側においても良いフィットができたことから、満足すべき構造精密化が行われたことがわかった。 1 (a) and 1 (b) show XRD patterns of the product baked in Example 1 (baked at 1150 ° C. for 6 hours) ((b) is around 40 to 70 in (a). It is an enlarged view). The X-ray wavelength used is 1.5418 mm. As shown in FIG. 1B, it was found that satisfactory structural refinement was performed because a good fit was achieved even on the high angle side.
 図1から、特に1150℃にて6時間焼成した試料の全てのBraggピークに斜方晶格子の指数付けを行えたこと、出発材料やその生成物等に見られた不純物相の存在がほぼ確認されなかったことがわかる。また、XRDの結果より、MgMnGeOは斜方晶系、空間群Pbnm(No.62)に帰属できた。リートベルト法により精密化した格子定数がa=4.9655(5)Å、b=10.5880(12)Å、c=6.1738(7)Å、α=β=γ=90°、単位格子体積(V)が323.95(10)Åであり、文献値と合致する。解析により算出したMgMnGeO結晶密度はρ=4.41gcm-3であった。なお、信頼度因子は、Rwp=9.22%、R=6.02%、χ=2.36であった。 From FIG. 1, it was confirmed that the orthorhombic lattice index was assigned to all Bragg peaks of the sample fired at 1150 ° C. for 6 hours, and the presence of the impurity phase found in the starting materials and their products. You can see that it was not done. Further, from the results of XRD, MgMnGeO 4 could be assigned to the orthorhombic system and the space group Pbnm (No. 62). The lattice constants refined by the Rietveld method are a = 4.9655 (5) Å, b = 10.5880 (12) Å, c = 6.1738 (7) Å, α = β = γ = 90 °, unit cell volume (V) is 323.95 (10) Å 3, consistent with literature values. The MgMnGeO 4 crystal density calculated by analysis was ρ = 4.41 gcm −3 . The reliability factors were R wp = 9.22%, R p = 6.02%, and χ 2 = 2.36.
 図2は、実施例1において1150℃で6時間の加熱工程を行って得られた生成物(MgMnGeO)のSEM像を示している。図中、スケールバーは0.5μmを示す。この結果から、実施例1で得られたMgMnGeOは、粒子が凝集している傾向にあるが、平均粒子径0.5μm前後であることがわかる。 FIG. 2 shows an SEM image of a product (MgMnGeO 4 ) obtained by performing a heating process at 1150 ° C. for 6 hours in Example 1. In the figure, the scale bar indicates 0.5 μm. From this result, it can be seen that the MgMnGeO 4 obtained in Example 1 has an average particle diameter of about 0.5 μm although the particles tend to aggregate.
 図3は、実施例2において焼成された生成物のXRDパターンを示している。使用したX線波長は1.5418Åである。 FIG. 3 shows the XRD pattern of the product baked in Example 2. The X-ray wavelength used is 1.5418 mm.
 図3から、特に1150℃にて6時間焼成した試料の全てのBraggピークに斜方晶格子の指数付けを行えたこと、出発材料やその生成物等に見られた不純物相の存在がほぼ確認されなかったことがわかる。また、XRDの結果より、MgCoGeOは斜方晶系、空間群Fd-3m(No.62)に帰属できた。リートベルト法により格子定数がa=b=c=8.2831(5)Å、α=β=γ=90°、単位格子体積(V)が568.29(3)Åであり、文献値と合致する。解析により算出したMgCoGeO結晶密度はρ=5.1386gcm―3であった。なお、信頼度因子は、Rwp=4.04%、R=2.73%、χ=1.84であった。 From FIG. 3, it was confirmed that the orthorhombic lattice index was assigned to all the Bragg peaks of the sample fired at 1150 ° C. for 6 hours, and the presence of the impurity phase found in the starting materials and their products. You can see that it was not done. From the results of XRD, MgCoGeO 4 could be assigned to the orthorhombic system, space group Fd-3m (No. 62). Ried lattice constant by the belt method a = b = c = 8.2831 ( 5) Å, α = β = γ = 90 °, the unit cell volume (V) is 568.29 (3) Å 3, the literature value Matches. The MgCoGeO 4 crystal density calculated by analysis was ρ = 5.1386 gcm −3 . Incidentally, the reliability factor, R wp = 4.04%, R p = 2.73%, was χ 2 = 1.84.
 図4は、実施例2において得られたMgCoGeOのSEM像を示している。図中、スケールバーは1.66μmを示す。この結果から、実施例2で得られたMgCoGeOは平均粒子径0.5μm前後であることがわかる。 Figure 4 shows an SEM image of MgCoGeO 4 obtained in Example 2. In the figure, the scale bar indicates 1.66 μm. From this result, it can be seen that MgCoGeO 4 obtained in Example 2 has an average particle diameter of around 0.5 μm.
 図5は、実施例3において焼成された生成物のXRDパターンを示している。使用したX線波長は1.5418Åである。 FIG. 5 shows the XRD pattern of the product baked in Example 3. The X-ray wavelength used is 1.5418 mm.
 図5から、特に1150℃にて6時間焼成した試料の全てのBraggピークに斜方晶格子の指数付けを行えたこと、出発材料やその生成物等に見られた不純物相の存在がほぼ確認されなかったことがわかる。また、XRDの結果より、MgNiGeOは斜方晶系、空間群Pbnm(No.62)に帰属できた。リートベルト法により格子定数がa=b=c=8.2261(3)Å、α=β=γ=90°、単位格子体積(V)が556.65(2)Åであり、文献値と合致する。解析により算出したMgNiGeO結晶密度はρ=5.2402gcm-3であった。なお、信頼度因子は、Rwp=7.74%、R=5.34%、χ=2.54であった。 From FIG. 5, it was confirmed that the orthorhombic lattice index could be assigned to all the Bragg peaks of the sample fired at 1150 ° C. for 6 hours, and the presence of the impurity phase found in the starting materials and their products. You can see that it was not done. From the results of XRD, MgNiGeO 4 could be assigned to the orthorhombic system and the space group Pbnm (No. 62). REITs lattice constant a by the belt method = b = c = 8.2261 (3 ) Å, α = β = γ = 90 °, the unit cell volume (V) is 556.65 (2) Å 3, the literature value Matches. The MgNiGeO 4 crystal density calculated by analysis was ρ = 5.2402 gcm −3 . The reliability factors were R wp = 7.74%, R p = 5.34%, and χ 2 = 2.54.
 図6は、実施例3において1150℃で6時間の加熱工程を行って得られた生成物(MgNiGeO)のSEM像を示している。図中、スケールバーは1.66μmを示す。この結果から、実施例3で得られたMgNiGeOは平均粒子径0.5μm前後であることがわかる。 FIG. 6 shows an SEM image of a product (MgNiGeO 4 ) obtained by performing a heating process at 1150 ° C. for 6 hours in Example 3. In the figure, the scale bar indicates 1.66 μm. From this result, it can be seen that MgNiGeO 4 obtained in Example 3 has an average particle diameter of around 0.5 μm.
 図7は、実施例4において1150℃で6時間の加熱工程を行って得られた生成物(MgFeTiO)のSEM像を示している。図中、スケールバーは2.04μmを示す。この結果から、実施例4で得られたMgFeTiOは平均粒子径0.5μm前後であることがわかる。 FIG. 7 shows an SEM image of a product (MgFeTiO 4 ) obtained by performing a heating process at 1150 ° C. for 6 hours in Example 4. In the figure, the scale bar indicates 2.04 μm. From this result, it can be seen that MgFeTiO 4 obtained in Example 4 has an average particle diameter of around 0.5 μm.
 図8は、実施例2で得られたMgCoGeOを含む正極活物質を正極材料として用いたときの試験例1の結果(充放電特性、並びに、各サイクルと放電容量との関係)を示している。図8に示された結果から、引き出し可能な容量(放電容量)は、160mAhg-1、平均作動電位が3.9V(Mg2+/Mg電位基準に換算すると約3.2V)であることがわかり、また、充放電サイクルを繰り返しても、ほとんど劣化していないことがわかる。 FIG. 8 shows the results of Test Example 1 (charge / discharge characteristics and the relationship between each cycle and discharge capacity) when the positive electrode active material containing MgCoGeO 4 obtained in Example 2 was used as the positive electrode material. Yes. From the results shown in FIG. 8, it can be seen that the drawable capacity (discharge capacity) is 160 mAhg −1 and the average operating potential is 3.9 V (approximately 3.2 V when converted to the Mg 2+ / Mg potential standard). It can also be seen that even when the charge / discharge cycle is repeated, there is almost no deterioration.
 図9は、実施例4で得られたMgFeTiOを含む正極活物質を正極材料として用いたときの試験例1の結果(充放電特性、並びに、各サイクルと放電容量との関係)を示している。図9に示された結果から、引き出し可能な容量(放電容量)は、50mAhg-1、平均作動電位が2.6V(Mg2+/Mg電位基準に換算すると約2.0V)であることがわかり、また、充放電サイクルを繰り返しても、ほとんど劣化していないことがわかる。 FIG. 9 shows the results of Test Example 1 (charge / discharge characteristics and the relationship between each cycle and the discharge capacity) when the positive electrode active material containing MgFeTiO 4 obtained in Example 4 was used as the positive electrode material. Yes. From the results shown in FIG. 9, it can be seen that the capacity that can be extracted (discharge capacity) is 50 mAhg −1 , and the average operating potential is 2.6 V (approximately 2.0 V when converted to the Mg 2+ / Mg potential standard). It can also be seen that even when the charge / discharge cycle is repeated, there is almost no deterioration.
 図10~図12はそれぞれ、実施例1で得られたMgMnGeO、実施例3で得られたMgNiGeO及び実施例4で得られたMgFeTiOを含む二次電池用正極活物質を正極材料として用いたときのMg全電池の電位-時間特性(試験例2)の結果を示す。図10~12から、いずれにおいてもマグネシウムの挿入及び脱離を示唆する電位応答が見られることがわかった。 FIGS. 10 to 12 show, as positive electrode materials, positive electrode active materials for secondary batteries containing MgMnGeO 4 obtained in Example 1, MgNiGeO 4 obtained in Example 3, and MgFeTiO 4 obtained in Example 4 , respectively. The results of the potential-time characteristics (Test Example 2) of all Mg batteries when used are shown. From FIGS. 10 to 12, it was found that a potential response suggesting insertion and detachment of magnesium was observed in all cases.
 表1には、実施例1~4で得られた生成物のICPによる元素分析結果を示している。 Table 1 shows the results of elemental analysis by ICP of the products obtained in Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図13は、実施例5において焼成された生成物(MgMn1-xNixGeO4(x=0.5))のXRDパターンを示している。使用したX線波長は1.5418Åである。図13から、実施例5において焼成された生成物は、MgMnGeOとMgNiGeOとの混在相を形成していることがわかった。 Figure 13 shows the XRD pattern of the fired product in Example 5 (MgMn 1-x Ni x GeO 4 (x = 0.5)). The X-ray wavelength used is 1.5418 mm. From FIG. 13, it was found that the product fired in Example 5 formed a mixed phase of MgMnGeO 4 and MgNiGeO 4 .
 図14は、実施例6において焼成された生成物(MgMn1-xCoxGeO4(x=0.5))のXRDパターンを示している。使用したX線波長は1.5418Åである。図14から、実施例6において焼成された生成物は、MgMnGeOとMgCoGeOとの混在相を形成していることがわかった。 FIG. 14 shows the XRD pattern of the product (MgMn 1-x Co x GeO 4 (x = 0.5)) calcined in Example 6. The X-ray wavelength used is 1.5418 mm. From Figure 14, calcined product in Example 6 was found to form a mixed phase of MgMnGeO 4 and MgCoGeO 4.
 図15は、実施例6において得られた生成物(MgMn1-xCoxGeO4(x=0.5))のSEM像を示している。図中、スケールバーは5.55μmを示す。 FIG. 15 shows an SEM image of the product (MgMn 1-x Co x GeO 4 (x = 0.5)) obtained in Example 6. In the figure, the scale bar indicates 5.55 μm.
 図16は、実施例7において得られた生成物(MgCo1-xNixGeO4(x=0.5))のSEM像を示している。図中、スケールバーは16.6μmを示す。 FIG. 16 shows an SEM image of the product (MgCo 1-x Ni x GeO 4 (x = 0.5)) obtained in Example 7. In the figure, the scale bar indicates 16.6 μm.
 図17は、実施例2,3,7-9において焼成された生成物のXRDパターンを示しており、図17(b)は、(a)の一部を拡大した図である。図17からMgCo1-xNixGeO4(x=0.25,0.75)は固溶体を形成していることがわかった。 FIG. 17 shows the XRD pattern of the product fired in Examples 2, 3, and 7-9, and FIG. 17 (b) is an enlarged view of part of (a). FIG. 17 shows that MgCo 1-x Ni x GeO 4 (x = 0.25, 0.75) forms a solid solution.
 図18は、MgCo1-xNixGeO4(x=0,0.25,0.5,0.75,1)の体積変化を示す図である。図18から、実施例7-9において焼成された生成物は固溶体を形成していることが明らかである。 FIG. 18 is a diagram showing the volume change of MgCo 1-x Ni x GeO 4 (x = 0, 0.25, 0.5, 0.75, 1 ). From FIG. 18, it is apparent that the product fired in Examples 7-9 forms a solid solution.
 図19は、実施例8において得られた生成物のSEM像を示している。図中、スケールバーは7.14μmを示す。 FIG. 19 shows an SEM image of the product obtained in Example 8. In the figure, the scale bar indicates 7.14 μm.
 図20は、実施例9において得られた生成物のSEM像を示している。図中、スケールバーは16.6μmを示す。 FIG. 20 shows an SEM image of the product obtained in Example 9. In the figure, the scale bar indicates 16.6 μm.
 図21は、MgCo1-xNixGeO4(x=0,0.25,0.50,0.75,1)の物性変化を示す。得られた生成物の色を目視で観察したところ、x=0,0.25,0.50,0.75,1の順に、ピンク色、茶色、灰色、薄緑色、緑色であることがわかった。 FIG. 21 shows changes in physical properties of MgCo 1-x Ni x GeO 4 (x = 0, 0.25, 0.50, 0.75, 1 ). When the color of the obtained product was visually observed, it was found that the color was pink, brown, gray, light green, and green in the order of x = 0, 0.25, 0.50, 0.75, and 1.
 表2には、実施例2,3,7-9で得られた生成物(MgCo1-xNixGeO4(x=0,0.25,0.50,0.75,1))のリートベルト解析結果を示している。 Table 2 shows the Rietveld analysis results of the products (MgCo 1-x Ni x GeO 4 (x = 0, 0.25, 0.50, 0.75, 1)) obtained in Examples 2, 3, and 7-9. ing.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1.  下記一般式(1)
    Mg   (1)
    (ここで、式(1)中、XはNi、Fe、Mn、Co及びCuからなる群より選ばれる少なくとも1種であり、YはGe又はTiである。また、aは0.5~1.5、bは0.5~1.5、cは0.5~1.5、dは3.8~4.1を示す。)
    で表されるマグネシウム化合物を含む、二次電池用正極活物質。
    The following general formula (1)
    Mg a Xb Y c O d (1)
    (In the formula (1), X is at least one selected from the group consisting of Ni, Fe, Mn, Co, and Cu, Y is Ge or Ti, and a is 0.5 to 1) .5, b is 0.5 to 1.5, c is 0.5 to 1.5, and d is 3.8 to 4.1.)
    The positive electrode active material for secondary batteries containing the magnesium compound represented by these.
  2.  請求項1に記載の正極活物質を構成要素とする二次電池。 A secondary battery comprising the positive electrode active material according to claim 1 as a constituent element.
  3.  請求項1に記載の二次電池用正極活物質の製造方法であって、
     Mgを含有する原料と、上記Xを含有する原料と、上記Yを含有する原料とを含む原料混合物を加熱する加熱工程を備える、製造方法。
    It is a manufacturing method of the positive electrode active material for secondary batteries of Claim 1, Comprising:
    A manufacturing method provided with the heating process which heats the raw material mixture containing the raw material containing Mg, the raw material containing said X, and the raw material containing said Y.
  4.  前記加熱工程における加熱温度が500~1500℃である、請求項3に記載の製造方法。
     
     
    The production method according to claim 3, wherein the heating temperature in the heating step is 500 to 1500 ° C.

PCT/JP2017/000301 2016-01-06 2017-01-06 Positive electrode active material for secondary battery, production method therefor, and secondary battery WO2017119493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017560437A JP6934665B2 (en) 2016-01-06 2017-01-06 Positive electrode active material for secondary batteries, their manufacturing methods, and secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016000927 2016-01-06
JP2016-000927 2016-01-06

Publications (1)

Publication Number Publication Date
WO2017119493A1 true WO2017119493A1 (en) 2017-07-13

Family

ID=59273684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000301 WO2017119493A1 (en) 2016-01-06 2017-01-06 Positive electrode active material for secondary battery, production method therefor, and secondary battery

Country Status (2)

Country Link
JP (1) JP6934665B2 (en)
WO (1) WO2017119493A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017119494A1 (en) * 2016-01-06 2018-11-22 国立研究開発法人産業技術総合研究所 Magnesium compound, positive electrode active material for secondary battery, secondary battery, and method for producing magnesium compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007155A (en) * 2012-05-30 2014-01-16 Showa Denko Kk Positive electrode active material for magnesium ion secondary battery and method for producing the same, and magnesium ion secondary battery
WO2014017461A1 (en) * 2012-07-25 2014-01-30 国立大学法人京都大学 Magnesium compound, method for producing same, positive electrode active material, positive electrode, and magnesium ion secondary battery
JP2014143183A (en) * 2012-12-27 2014-08-07 Showa Denko Kk Positive electrode active material for magnesium ion secondary battery, method for producing the same, positive electrode for magnesium ion secondary battery, and magnesium ion secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241996B2 (en) * 2012-12-26 2017-12-06 昭和電工株式会社 Positive electrode active material for magnesium ion secondary battery, method for producing the same, and magnesium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007155A (en) * 2012-05-30 2014-01-16 Showa Denko Kk Positive electrode active material for magnesium ion secondary battery and method for producing the same, and magnesium ion secondary battery
WO2014017461A1 (en) * 2012-07-25 2014-01-30 国立大学法人京都大学 Magnesium compound, method for producing same, positive electrode active material, positive electrode, and magnesium ion secondary battery
JP2014143183A (en) * 2012-12-27 2014-08-07 Showa Denko Kk Positive electrode active material for magnesium ion secondary battery, method for producing the same, positive electrode for magnesium ion secondary battery, and magnesium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017119494A1 (en) * 2016-01-06 2018-11-22 国立研究開発法人産業技術総合研究所 Magnesium compound, positive electrode active material for secondary battery, secondary battery, and method for producing magnesium compound
JP7060866B2 (en) 2016-01-06 2022-04-27 国立研究開発法人産業技術総合研究所 A method for manufacturing a positive electrode active material for a secondary battery, a secondary battery, and a positive electrode active material for a secondary battery.

Also Published As

Publication number Publication date
JP6934665B2 (en) 2021-09-15
JPWO2017119493A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP7460590B2 (en) Oxides for high energy cathode materials
JP6927579B2 (en) Lithium iron manganese-based composite oxide
JP7034471B2 (en) Potassium compound and positive electrode active material for potassium ion secondary battery containing it
WO2017099137A1 (en) Positive electrode active material for potassium ion secondary cell
JP6246109B2 (en) Lithium / cobalt-containing composite oxide and method for producing the same, electrode for non-aqueous secondary battery using the lithium / cobalt-containing composite oxide, and non-aqueous secondary battery using the same
KR102161900B1 (en) Cathode active material having zinc in sodium atomic layer, preparation method thereof and the sodium secondary battery comprising the same
JP6417888B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP7255831B2 (en) Positive electrode active material for potassium ion secondary battery and secondary battery
JPWO2020044653A1 (en) Positive electrode active material and battery equipped with it
JP7169650B2 (en) Positive electrode active material for potassium ion secondary battery, manufacturing method thereof, and potassium ion secondary battery
JP7224617B2 (en) Potassium compounds, solid electrolytes for potassium ion secondary batteries, positive electrode active materials for potassium ion secondary batteries, and secondary batteries
JP7116464B2 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery
JP7016148B2 (en) Positive electrode active material for potassium ion secondary batteries
US8962187B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP7074314B2 (en) Positive electrode active material for potassium ion secondary battery and secondary battery
WO2017119493A1 (en) Positive electrode active material for secondary battery, production method therefor, and secondary battery
JP7060866B2 (en) A method for manufacturing a positive electrode active material for a secondary battery, a secondary battery, and a positive electrode active material for a secondary battery.
JP6857361B2 (en) Lithium copper-based composite oxide
JP2017216211A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP7126234B2 (en) Potassium compound and positive electrode active material for potassium ion secondary battery containing the same
JP6636827B2 (en) Electrode active material for sodium ion secondary battery, method for producing the same, and sodium ion secondary battery
Pfanzelt Development of TiO2 rutile as negative electrode material for lithium ion batteries
JPWO2019188751A1 (en) Lithium composite oxide, positive electrode active material for secondary batteries and secondary batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17736030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17736030

Country of ref document: EP

Kind code of ref document: A1